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Abstract: Materials that can mimic the molecular recognition-based functions found in biology are a
significant goal for science and technology. Molecular imprinting is a technology that addresses this
challenge by providing polymeric materials with antibody-like recognition characteristics. Recently,
significant progress has been achieved in solving many of the practical problems traditionally
associated with molecularly imprinted polymers (MIPs), such as difficulties with imprinting of
proteins, poor compatibility with aqueous environments, template leakage, and the presence of
heterogeneous populations of binding sites in the polymers that contribute to high levels of non-specific
binding. This success is closely related to the technology-driven shift in MIP research from traditional
bulk polymer formats into the nanomaterial domain. The aim of this article is to throw light on
recent developments in this field and to present a critical discussion of the current state of molecular
imprinting and its potential in real world applications.
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1. Introduction

Molecular recognition, the ability of systems to selectively recognize and bind complementary
molecules present in complex mixtures, is the fundamental basis for all chemical and biological processes.
Binding occurs via various forms of non-covalent interactions, such as hydrogen bonds, electrostatic
interactions, hydrophobic interactions, and weak metal coordination [1]. Molecular imprinting is a
strategy that entails the use of these types of interactions for the recognition of predetermined ligands
by synthetic polymers, thus mimicking the recognition events observed in biomolecular recognition
processes [2]. Molecular imprinting has become established as a mature technology with, currently, over
15,000 publications describing MIP synthesis, characterization, and use in a wide range of application
areas [3]. The ligand-selectivities that can be observed in MIP-systems, together with their robust
chemical nature, which is in particular due to their high degree of cross-linking and provides them
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with substantially more stability than biomolecular recognition species, e.g., antibodies, have driven
research in this field [4–6].

The molecular imprinting concept has a long history which traces back to the 1930s when the
Soviet chemist Polyakov reported unusual adsorption properties of silica particles prepared in the
presence of soluble additives [7]. The modern-day approaches to imprinting began in Europe in
the 1970s and 1980s with Günter Wulff in Germany and Klaus Mosbach in Sweden [8,9]. Synthetic
polymer-based imprinting strategies fall into three general classes; covalent, non-covalent, and
semi-covalent imprinting protocols as defined by the nature of the interaction between the template
and functional monomer(s) (T/M) [10] (Figure 1). The covalent approach yields a remarkably well
defined and homogenous distribution of binding sites [11], while the non-covalent counterpart yields
heterogenous binding sites [12–14]. The semi-covalent strategy is a hybrid of the former two, where the
T/M binding and analyte rebinding occur via covalent and non-covalent chemistries, respectively [15].
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The literature reports the synthesis of MIPs in formats suitable for different applications ranging
from monoliths and membranes to films and beads [16]; however, a number of shortcomings have
hindered their implementation in real-world applications. These drawbacks include recognition site
heterogeneity, template leakage, mass transfer limitations, and solubilities. A step-change in the field
has resulted from a shift of focus in MIP research from bulk polymers to nanomaterials, which has
provided a strategy to address these issues [2]. A number of factors underlie the success obtained using
MIP nanoparticles (nanoMIPs) to resolve the problems associated with bulk MIPs; notably, they possess
larger surface/mass ratio, have more easily accessible recognition sites and, importantly, they have
lower heterogeneities and better solubilities; factors which have been instrumental in their successful
use in a diverse range of applications such as diagnostics, imaging and drug delivery [2,17]. This current
review highlights the challenges faced when using bulk imprinting and the recent achievements in the
development of nanoscale molecularly imprinted plastic antibodies along with their potential for use
in real-world applications.

2. Imprinting Challenges

MIPs have tremendous commercial potential; however, there is very little evidence of their
successful application in solving real world problems. There are two main reasons behind this.
The first one is associated with the dominance of antibodies in diagnostic and therapeutic applications.
For MIPs, aptamers and other biomimetic materials it is very difficult to compete with well-established
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technologies that already have attracted multibillion-dollar investments [18–20]. The second reason is
related to the technological challenges faced by traditional (bulk) molecular imprinting, particularly:

(i) Difficulty with imprinting of biological macromolecules, which are not soluble in organic solvents
that are traditionally used in molecular imprinting. All bulk polymers, especially polymers
imprinted with large templates such as proteins, also suffer from slow mass transfer kinetics.
Protein recognition is the most important area of bioanalysis and drug development and for these
reasons traditional MIPs are not considered as a viable alternative to antibodies.

(ii) Template leakage (bleeding) which affects analytical applications of MIP particles. It is not feasible
to use MIP as a biorecognition material in assays and sensors if there is a risk that leaked template
can compromise clinical or forensic analysis.

(iii) Heterogeneity of binding sites. Bulk MIPs always have large numbers of non-specific sites
which contribute to the “polyclonal” nature of their binding profiles [12,21,22]. High levels
of non-specific binding limit the utility of MIPs in diagnostic, pharmaceutical, and separation
applications, except in a limited number of special cases where there is no alternative.

Herein, the significant recent attempts that have been made to address these challenges by
producing MIPs in ‘nano’ formats and to improve their performance are presented.

2.1. Imprinting of Proteins

The molecular imprinting of proteins is necessary for the use of imprinted materials in many
applications, such as diagnostics, drug delivery, environmental analysis, and proteomics [23]. Protein
imprinting is a challenge due to the large size of protein molecules, their complexity, flexibility, and poor
solubility in organic solvents [24]. Bulk imprinting, at first glance, appears the simplest approach for
protein imprinting, with the objective of obtaining macroporous polymer networks which can entrap
and release entire protein molecules. However, in the case of whole protein imprinting, conformational
variation will lead to a multitude of different binding sites in an imprinted polymer, with different
affinities and specificities. Accordingly, the product of protein imprinting will be polyclonal in character,
due to the broad range of binding sites obtained [21]. Proteins are water-soluble substances representing
a challenge for imprinting in organic solvents typical for the bulk imprinting process [21]. Furthermore,
protein structure is sensitive to the non-physiological environment of radical polymerization such as
the presence of organic solvent and functional monomers [25] and changes in temperature or pH [26].
Thus, polymerization in an aqueous environment is the preferred option. However, many popular
monomers used in molecular imprinting are insoluble in water [24] and water may also compete with
the template-monomers interactions reducing MIP affinity [27]. On the other hand, water provides an
opportunity to explore hydrophobic interactions for template recognition [28,29]. The non-specific
hydrophobic interactions can be reduced by using hydrophilic monomers and cross-linkers [30].
Proteins can be wasted by being trapped inside bulk polymers, which is particularly bad in case of
expensive targets. Furthermore, both the surface chemistry and the pore sizes of the polymer can be
affected by the extremely harsh conditions such as high temperature and strong acids necessary for at
least partial removal of protein template entrapped in the polymer matrix, which can in turn impact
adversely on selectivity and adsorption. To circumvent these challenges several other approaches
have been developed to address these issues in bulk polymers, including; surface imprinting [31,32],
epitope-mediated surface imprinting [33], and micro-contact imprinting [34].

In surface imprinting (Figure 2), a certain degree of protein stabilization is achieved by using
oriented immobilization of template [35–38]. Typically, template is immobilized onto the surface of a
sacrificial material such as SiO2, which is immersed in the monomer mixture during polymerization.
Following polymerization SiO2 is dissolved, leaving behind binding sites occupied by template.
In the final step template is extracted from the polymer by extensive washing or hydrolysis [39,40].
In addition to stabilization of protein structure, template immobilization expands the range of solvents
available for imprinting, thus allowing for substances insoluble in the polymerization mixture to be
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imprinted [41]. This also helps with achieving better control over conformation of created imprints
through the control of template orientation [41], prevents protein aggregation [12] and facilitates
the mass transfer kinetics [42,43]. Even this approach has associated challenges, including: poor
control over the thickness of the polymer film, difficulty with extraction of the template from a dense
polymer layer, potential leaking of the entrapped template from the polymer, and long time required
to prepare MIPs [44]. Surface imprinting can be easily combined with different nanomaterial strategies
where nanomaterials act as sacrificial molds, offering more precise control over the morphology of
the imprinted polymer. This involves MIP synthesis inside a sacrificial porous nanomaterial which
is then removed, leaving the nanostructured polymeric material, in the form of nanorods [45,46],
nanofilaments [47] or ordered cavities [48]. The nano-structuring of the material provides significant
enhancement of the MIP surface area and, consequently, improves sensitivity, detectability, and
response time when used in a sensor format. NanoMIPs can also be synthesized by confining the
polymerization reaction to the surface of nanoparticles made from silica [49], quantum dots [50], iron
oxide [51,52], and alumina membranes [53,54]. However, the translation of surface imprinting from
bulk polymers to nanoparticles through the grafting of MIP shells onto nanoparticle cores is much
more difficult to control. Aggregation of nanoparticles, poor penetration of UV light through the dense
suspension, and complicated purification procedures make this approach unsuitable for large-scale
industrial applications. One option to avoid imprinting of costly or difficult to handle proteins is to
instead imprint epitopes. In epitope-mediated imprinting, the whole protein template is replaced by a
peptide fragment (typically 6–12 amino acids) characteristic of this protein [12,55]. In a model study,
imprinting of cytochrome, alcohol dehydrogenase, and bovine serum albumin was achieved using
C-terminal nonapeptides [33,56]. The epitope approach is superior to the other general techniques
since it provides relatively easy template removal, generates uniform binding sites and reduces costs
of synthesis, especially in the case of expensive protein templates [12,57]. The polypeptide templates
are far less sensitive to the surrounding environments as they do not have secondary and tertiary
structures [58]. The disadvantage of this approach is actually closely related to the major problem
associated with production of antibodies, which lies in the complex procedure applied to finding
appropriate (linear) epitopes. Prediction of epitope structure requires detailed knowledge of protein
conformations [59]. Structural analysis by crystallography does not necessarily provide structures
accurately representing native protein structure in solution as may be observed using NMR. A protocol
for identification of protein epitopes suitable for molecular imprinting has recently been reported that
can facilitate this process [60], as summarized in Figure 3.

Micro-contact imprinting is considered as one of the promising techniques for protein
imprinting [61] that can address its common associated problems such as solubility, conformational
stability, and aggregation during the polymerization process [62]. This approach allows rapid
fabrication of MIPs using small amounts of template, and monomer solution with a possibility to
polymerize dozens of samples at the same time applying the same polymerization batch [62–65]. In a
typical procedure, the template is firstly immobilized or adsorbed on a support (glass) to create the
protein stamp. The stamp is subsequently set in contact with monomers followed by a polymerization
step. The cover glass is then removed yielding an imprinted thin film (Figure 4).
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2.2. Incomplete Template Removal and Template Leakage

Once the polymerization process is complete, a subsequent template removal is required to free
the imprinted sites [57]. Large templates [12] and the highly cross-linked nature of MIPs [66] together
have negative impacts on the release of template molecules [43,67]. An inefficient template removal
results in subsequent “template leakage” or “template bleeding” that may contribute to false positive
signals in sensing [2] and poor separation in chromatography [68]. Approaches to solve these problems
include the use of dummy templates and surface imprinting [12]. To date, the dummy imprinting
strategy using a template structural analog (auxiliary template) produces satisfactory outcomes [69,70].
Moreover, the dummy template represents an effective solution in cases when the original template is
a dangerous or unstable material, or is very expensive [71,72]. An example of such a case lies in the
development of MIPs selective for TNT, which were fabricated using trinitrophenol (TNP) as a dummy
template [71]. The resultant MIP demonstrated high sensitivity and selective binding capabilities
(Figure 5). Unfortunately, suitable dummy templates are not always available.

Shifting MIP synthesis from bulk to nanoparticles can improve the situation with template leaking
as it is easier to extract template from small particles with binding sites located onto or close to the
surface [73]. Even so, extraction is a slow procedure, typically performed by dialysis, and in the case of
protein imprinting, complete removal of the template is impossible [49].
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2.3. Heterogeneous and Non-Specific Binding Sites

The problem of high levels of non-specific binding in bulk MIPs is a result of random orientation
of the template-monomer complex in the polymer network [74], differences in the nature of the
complexation of the template due to the equilibria governing the non-covalent interactions of these
complexes and even the presence of template–template interactions [14]. In addition, the relatively high
surface areas of imprinted polymers in relation to the number of high affinity sites contribute directly to
the non-specific binding observed for the template and interfering molecules [75], a feature which often
hinders MIP use in applications such as sensing and separation. To improve the homogeneity of the
binding sites, several successful strategies have been suggested such as the semi-covalent approach [76]
and stoichiometric non-covalent imprinting [77].

The type of the template has major impact on selecting functional monomers suitable for molecular
imprinting. Strong interactions are required to form stable complexes between small organic templates
and monomers that can ‘survive’ through the radical polymerization and produce good quality
binding sites. However, employing charged monomers to gain a strong monomer-template interaction
may lead to very high non-specific binding [68]. These monomers randomly distribute over the
surface of the polymer as well as in the imprinted sites and a net negative or positive charge can
interact non-specifically with all species carrying the opposite charge. The optimal ratio between
monomers and template can be determined empirically [78] or computationally, by using molecular
modelling [14,79–81]. In the case of protein imprinting, the use of monomers with strong interactions
between monomers and template is not recommended. This can be compensated by a multitude of
weak bonds formed between protein functional groups and neutral monomers such as acrylamide or
weak acids and bases [57]. The nano-format opens another interesting procedure for improving the
homogeneity of binding sites. While it is practically impossible to generate perfect binding sites in
every single nanoparticle, affinity separation can be used to remove low affinity nanoMIPs from the
population of high affinity nanoparticles [82], thus increasing the number of high affinity sites per unit
surface area. This approach is similar to the affinity separation of polyclonal antibodies [82].

To summarize, bulk imprinting, specifically in relation to imprinting of proteins, has numerous
issues that cannot be easily resolved without turning to the nano format, as this format offers solutions
to problems associated with imprinting of proteins [83], template leaking [84], and heterogeneity of
imprinted sites [85].

3. Synthesis of MIP Nanoparticles

The synthesis of nanoMIPs with precise dimensions and properties is a goal towards which
significant steps have been made. While the general theory of controlled radical polymerization is
well advanced [86], it is less developed for cross-linked materials such as MIPs. There are very few
publications describing modeling of polymerization processes related to MIP synthesis, and studies
showing relationships between polymerization parameters and size of cross-linked nanoparticles [87,88].
There are however numerous publications describing empirical syntheses of nanoMIPs with excellent
recognition properties [89,90]. The most popular techniques used in nanoMIPs synthesis include
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precipitation polymerization, emulsion polymerization, and core–shell polymerization with subsequent
grafting [91] (Figure 6).
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3.1. Precipitation Polymerization

Precipitation polymerization is a very promising technique for producing uniform sub-micrometer
imprinted particles [12,15,93,94]. It was firstly described by Ye et al. [95] when used for the imprinting
of 17ß-estradiol and theophylline. In this method the imprinting process occurs in an excess of solvent.
The growing polymer continues to catch oligomers [96] and functional monomers from the solution
until they reach critical size leading to precipitation [97–99]. The polymer beads are recovered by
washing and centrifugation [27]. The advantage of this approach lies in the fact that there is no need for
a stabilizer as the MIP particles show no coalescence by virtue of their cross-linking and rigidity [98].
Several factors such as solvent polarity, temperature and stirring speed have a great impact on the
MIP particle size [100–102]. The main problem associated with this method is the requirement for a
large quantity of template dissolved in the excess of solvent [12,27,44]. The high dilution factor may
subsequently decrease the interactions between templates and the functional monomers leading to a
reduction in the product’s selectivity and sensitivity [91]. Overall this approach is poorly controlled,
expensive, and time consuming [12,44].

3.2. Emulsion Polymerization

Particles of sub-micrometer scale can also be prepared by emulsion polymerization [2]. Commonly,
polymerization is performed in oil-in-water emulsions (O/W) in the presence of surfactant [103–105].
This technique can be performed in the form of mini and micro-emulsion polymerization. In the
mini emulsion method, a high yield of homogenous [2] MIP-nanoparticles of 30–500 nm diameter
can be obtained by stabilizing the monomer droplets (50–1000 nm) in water using co-surfactant (e.g.,
hexadecane and cetyl alcohol) along with a suitable surfactant, to suppress the diffusion processes in
the aqueous phase [17]. In order to disperse the two phases, high-shear homogenization is required
either by vigorous stirring and/or sonication [103]. However, the presence of water and surfactants
can have adverse effects on the formation of stable monomer-template complexes. Micro-emulsion
polymerization can yield particles of 5–50 nm diameter [17]. It is performed in a thermodynamically
stable emulsion formed in the presence of co-surfactant by a high shear homogenization step [106].
This system requires higher surfactant concentration and lower monomer concentration than that
used in the mini-emulsion method [17]. Generally speaking, all emulsion approaches suffer from the
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use of chemicals, in particular surfactants, that interfere with molecular recognition, contaminate the
polymeric product and require complicated and time-consuming purification steps.

3.3. Core–Shell Grafting and Polymerization

Principally, there are two stages required to obtain core-shell MIP nanoparticles. The first one is
the formation of solid nanocore (seed particle) while the second stage is the grafting of the imprinted
shell [107]. The solid core can be formed from diverse materials containing additional functionalities
suitable for anchoring e.g., catalytic groups capable of initiating polymer grafting [108,109]. This
approach allows formation of recognition sites at the surface of MIP beads [107,110] improving analyte
transfer [111,112]. Grafting of a thin imprinted layer on prefabricated nanoparticles [113] is preferred
over emulsion polymerization in the presence of seed particles [17] since it allows better control
of the thickness of imprinted film [114]. In addition, grafting using iniferter chemistry allows post
functionalisation of synthesized nanoparticles with fluorescent, PEG, or anchoring groups [115,116].

3.4. Solid Phase Imprinting

This technique is considered as one of the most advanced approaches for the fabrication of
nanoMIPs. According to Canfarotta et al. [84], the solid phase method consists of three main steps:
preparation of the glass beads by activation and silanization, immobilization of the template on the
silanized glass beads, and finally the polymerization and purification process (Figure 7).
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The advantages of solid-phase imprinting include: the possibility for re-using templates attached
to the solid phase, orientational control of template-polymer interaction contributes to a more
homogeneous distribution of recognition sites, the ‘inbuilt’ affinity purification yields high affinity
nanoMIPs, products are virtually free from templates which eliminates bleeding issues.

4. Applications of Nano MIPs

The main advantages of nanoMIPs as compared with antibodies, aptamers and other biomimetics
include:

• High stability against non-physiological conditions such as high temperature, extreme pH, and
pressure [6,22].

• Size of these nanoparticles is comparable to those of proteins and they have high apparent
binding constants.

• NanoMIPs can be stored at room temperature for very long time [117].
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• Synthesis of nanoMIPs requires weeks instead of months as in the case of antibodies [92].
• NanoMIPs can be easily functionalized with fluorescent, catalytic, or magnetic labels [17,118].
• NanoMIPs can pass the cell membrane barrier and be delivered to cell targets orally [30].
• While it has not yet been demonstrated in practice, the production of nanoMIPs has the potential

to be more economical than that of antibodies [119].

4.1. NanoMIPs in Separation

The separation field is continuously expanding driven by the needs of the pharmaceutical and
chemical industries, and by the demands for water purification and waste remediation. By virtue of
their high affinity and selectivity, MIPs have been employed as stationary phases in high performance
liquid chromatography [120], capillary chromatography [121,122], and solid phase extraction [123].
The nano format however is not ideally suited for large-scale separation. The main barrier for this is the
relatively low binding capacity of nanoMIPs, especially monoclonal nanoparticles, and their high price.
In addition, nanoparticles have to be covalently immobilized onto solid support for chromatographic
application, and this procedure can potentially affect their recognition properties. To solve this problem,
nanoMIPs were fabricated with a magnetic core which facilitated their handling during extraction of
tetracycline antibiotics [124]. In some other rare examples of separation, applications nanoMIPs have
been successfully employed in capillary electrophoresis [125,126].

4.2. NanoMIPs in Catalysis

MIPs with catalytic properties can be considered as suitable alternatives for natural enzymes [127].
MIP-based catalysis continues to evolve as one of the most interesting challenges [128]. To date,
the main success with creation of catalytic sites in nanoMIPs is related to imprinting of transition
state analogs (TSA) of catalytic reactions [129,130]. In these examples, nanoMIPs demonstrated very
impressive catalytic constants and turnover. However, despite demonstrating proof-of-concept, no
examples have yet been reported that address problems related to real (industrial) applications and for
the present, this application remains a scientific curiosity similar to catalytic antibodies [131].

4.3. NanoMIPs in Assays and Sensors

Microtiter plate-based assays are very important for clinical and environmental analysis [132,133].
Enzyme-linked immunosorbent assay (ELISA) is among the most common methods of quantification
of analytes in various complex samples. Its principle is based on exploring recognition properties of
natural antibodies and enzymatic amplification of the signal [134]. In total ~12,000 assay protocols are
available in the PubChem BioAssays database. However, traditional assays generally include between
7 and 10 time consuming liquid-handling steps and take three to five hours to produce a result [135].
Other drawbacks of ELISA include relatively limited detection range due to the narrow sensitivity
of monoclonal antibodies, their low stability and high cost of production. The intrinsic low stability
of antibodies has a big negative impact on shelf life of the manufactured bioassays and requires a
constant cold chain supply. It also limits the operation conditions to a very narrow physiological range.
Production of antibodies is a long process, which takes 3–6 months. There is a specific requirement for
‘good’ antigens to be at least 6,000 Da in order to generate good antibodies. The antibody production
for small molecules includes synthesis of a conjugate consisting of a carrier molecule, usually a protein,
and a molecule of interest [79]. Sometimes antibodies are not available due to the high toxicity of the
target molecule, as in the case of the mycotoxin patulin [79]. For these reasons, there are continuous
R&D efforts to develop robust, more rapid and more sensitive assay systems.

Several attempts over the years were made to use MIPs in the assays [136,137]. The obvious
advantage of MIPs is their ability to recognize small molecules, including toxins [138,139]. Historically,
MIPs were prepared using the bulk polymerization approach and were ground to micrometer size
for use in the assays [140]. A problem commonly associated with this approach is the difficulty with
reproducible immobilization of MIPs in microplate wells. Several attempts were made to avoid the
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problem with poor reproducibility of immobilization protocols in the development of MIP-based
homologous assays using competition with a fluorescently labeled template [141–144]. Since MIPs
used in these examples were in the form of microparticles, they did not form stable suspensions in
solution, which made their practical application unreliable. Only with the development of effective
synthesis of MIP nanoparticles using a solid phase approach [145] did it become possible to prepare
MIP nanoparticles or ‘plastic’ antibodies for practically any analyte of interest and integrate them with
microtiter plates by standard protocols used in antibody-based ELISA. In a first such example, MIP
nanoparticles for vancomycin were physically immobilized on the surface of a microtiter plate and all
other steps were conducted as in the classical ELISA [146]. It was demonstrated that the developed
assay was able to detect the antibiotic vancomycin in buffer and in blood plasma within the range of
0.001−70 nM with a detection limit of 2.5 pM. Other examples of pseudo-ELISA assays based on MIP
nanoparticles describe assays for cocaine [147] and gentamicin [148] with very similar sensitivity for
relevant targets. Attractive features of the new assays included long shelf life, lower manufacturing
costs, and a short production time.

Another important aspect in the development of abiotic assays featuring MIP nanoparticles was
the introduction of magnetic inserts in the wells of the microtiter plate [149]. The innovation involved
the use of disk-shaped inserts made of magnetic material, which quickly and effectively captured
any paramagnetic nanoparticles with immobilized target analytes. The internal opening of the disks
allowed measurements of the reactions using standard microtiter plate readers. One of the examples of
such application demonstrated that magnetic nanoMIPs imprinted with blood type B trisaccharide
(Gal-α-1,3(Fuc-α-1,2)Gal) could be used in blood typing assays instead of natural antibodies [150].
The new format of the test system was based on magnetically-induced decolorization, caused by
removal of erythrocytes from the solution by magnetic nanoMIPs (Figure 8).
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A similar principle is used in the magnetic imprinted nanoparticle-based assay (MINA) for
detection of methyl parathion [151], biotin [152], and proteins [153]. This assay was based on
competition of fluorescent nanoMIPs for binding to free analyte and analyte immobilized on magnetic
inserts (Figure 9). The presence of free analyte in solution led to increase in fluorescence, with a biotin
limit of detection of 7 nM [152].

Recently, an integrating approach for the synthesis and direct assay for protein-imprinted
nanoMIPs has been reported using magnetic nanoparticles [153]. The enzymes trypsin and pepsin were
immobilized on solid support, i.e., functionalized magnetic nanoparticles (magNPs). Subsequently,
lightly crosslinked fluorescently doped polyacrylamide nanoMIPs were produced in the presence of
the magNPs. The nanoMIPs were then used in a magnetic competitive fluorescence assay employing
identical protein-conjugated magNPs as ligands to reversibly immobilize the corresponding nanoMIPs.
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Both nanoMIPs exhibited Kd < 10 pM for their respective target protein and low cross-reactivity was
observed for reference proteins (Figure 10).
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with subsequent diffusion to the center enhancing the fluorescent signal. Reproduced from [152]
with permission.
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The advantages of this assay format, as compared with ELISA, include the use of highly stable
reagents and simple protocols with minimal operational steps that do not require highly experienced
operators [152]. MINA assays are characteristically very effective, and can in principle be developed
for any template of interest, moreover they are capable of working in any complex media, such as milk
or blood plasma. They have a long shelf-life and do not depend on availability of a cold chain supply.

Sensors are probably the most advanced (and attractive) niche application for imprinted
polymers. More papers were published on MIP sensors than any other types of sensors based
on synthetic receptors (Web of Science, accessed 10 December 2019). Representative examples
include MIP-based QCM sensors for human rhinovirus immunoglobulins [154], tobacco mosaic
virus [155], and Salmonella paratyphi [34]. MIP films were deposited on the sensor surface via surface
grafting [156,157] or electropolymerization [158,159]. MIPs were incorporated into QCM sensors [160],
optical sensors [161,162], and electrochemical sensors [163]. The advantages offered by nanoMIPs over
other imprinting formats make them interesting targets for use in other sensing configurations not
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least surface-based techniques—e.g., QCM, SPR—where high densities of recognition sites close to the
transducer is most desirable.

4.4. NanoMIPs in Life Science and In Vivo Applications

In vivo applications demand MIPs in the form of nanoparticles. For such applications it is also
necessary to demonstrate that nanoMIPs are not toxic, and do not interfere with cell ‘machinery’. There
is a limited body of evidence that suggests that nanoMIPs are not toxic in cell culture [164]. Interestingly,
nanoMIPs were able to cross cell membranes, which indicates an opportunity for pursuing intracellular
targets for therapeutic applications. NanoMIPs selective for melittin showed no toxicity in fibrosarcoma
cell culture over the tested concentration range (3−3000 µg·mL−1). When tested with mice, the same
nanoMIPs showed no toxicity two weeks after injection in histopathological examination of liver, lung,
and kidney [138,139]. There are three most obvious areas for possible application of nanoMIPs in vivo:
toxin scavenging, imaging, and drug delivery. In a first study of such nature, Hoshino and colleagues
have tailored imprinted nanoparticles against melittin, the active component of the bee venom. When
the melittin-imprinted polymer was injected into living mice, it was acting as an effective antidote
via capturing and clearing melittin from blood circulation. Significantly, both toxic symptoms and
mortality were greatly diminished [138,139].

An exciting area for nanoMIP application is in targeted drug delivery. Recently, a series of reports
have been published describing the use of nanoMIPs as drug carriers for insulin, (R)-thalidomide,
carbazole derivatives, quercetin, and paclitaxel anti-cancer drugs [30,165–168]. The drug release was
achieved using either photo-, thermo-, or pH-responsive stimuli [169–173]. For imaging applications
nanoMIPs can be easily functionalized either with quantum dots or fluorescent dyes [139,174,175].
Kunath, et al. [176] targeted hyaluronan molecules on cell surfaces of fixated and living tissues. In this
work, they used fluorescence for detecting the presence of dye-labelled nanoMIPs in the epidermal
basal layer and papillary dermis. A very significant step towards targeted drug delivery can be found
in the recent report by the Liu group [177] describing HER2 N-glycan nanoMIPs, which were shown
in in vitro studies to inhibit HER2+ cell proliferation. Importantly, in vivo studies demonstrated the
attenuation of HER2+ breast cancer tumor growth by approximately 50% relative to control groups,
highlighting the potential of nanoMIPs in therapeutic applications.

5. Conclusions and Future Outlook

It has been shown that nanoMIPs possess superior properties to bulk polymers in many respects,
including affinity, specificity, and their ease of integration into assays and sensor formats. The soluble
nature of these materials opens for their possible use in in vivo applications such as imaging and drug
delivery, areas which are being pursued by us and others. The remaining challenges associated with
this technology include: (i) lack of evidence of commercial success for MIP-based assays and sensors;
(ii) requirement for comprehensive analysis of nanoMIP toxicity, biodistribution and clearance; and
(iii) demonstration of comparable performance of MIP nanoparticles to antibodies in key therapeutic
applications, such as immunotherapy. We believe that these developments shall be in part driven
through fundamental studies of these novel materials. Resolution of these challenges shall undoubtedly
open for a broader interest for using of these materials in a range of applications where antibodies or
biomolecular receptors are currently used.
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