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From expression footprints to causal pathways:
contextualizing large signaling networks with CARNIVAL
Anika Liu1,2,4, Panuwat Trairatphisan 1,4, Enio Gjerga 1,2,4, Athanasios Didangelos3, Jonathan Barratt3 and Julio Saez-Rodriguez 1,2*

While gene expression profiling is commonly used to gain an overview of cellular processes, the identification of upstream
processes that drive expression changes remains a challenge. To address this issue, we introduce CARNIVAL, a causal network
contextualization tool which derives network architectures from gene expression footprints. CARNIVAL (CAusal Reasoning pipeline
for Network identification using Integer VALue programming) integrates different sources of prior knowledge including signed and
directed protein–protein interactions, transcription factor targets, and pathway signatures. The use of prior knowledge in CARNIVAL
enables capturing a broad set of upstream cellular processes and regulators, leading to a higher accuracy when benchmarked
against related tools. Implementation as an integer linear programming (ILP) problem guarantees efficient computation. As a case
study, we applied CARNIVAL to contextualize signaling networks from gene expression data in IgA nephropathy (IgAN), a condition
that can lead to chronic kidney disease. CARNIVAL identified specific signaling pathways and associated mediators dysregulated in
IgAN including Wnt and TGF-β, which we subsequently validated experimentally. These results demonstrated how CARNIVAL
generates hypotheses on potential upstream alterations that propagate through signaling networks, providing insights into
diseases.
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INTRODUCTION
Cells possess a sophisticated and finely tuned signaling architec-
ture, and its dysregulation can alter cellular behavior leading to
many diseases. A better understanding of signaling networks,
therefore, allows us to gain insights into disease processes and to
prioritize potential targets for drug development.
Signaling networks are context specific. A network for a specific

context can be inferred from dedicated data computationally. This
inference can be performed based on phosphoproteomics data
that directly measure key signaling players such as receptors and
kinases,1,2 preferably in combination with prior knowledge.3

However, the availability of phosphoproteomics data is often
limited while gene expression data are more abundant. The
inference of signaling networks based on gene expression is,
therefore, an attractive approach to uncover the organization of
cellular signal transduction.
There are multiple computational tools which allow the

inference of regulatory signaling networks from gene expression
data. Many of these methods assume gene expression levels as a
proxy for signaling protein activities and use them to construct
networks.4 For instance, Huang and Fraenkel mapped transcrip-
tomics data onto signaling pathways and then applied a Steiner’s
tree algorithm for network contextualization.5 Such methods can
provide valuable insight, but are limited by the fact that the
abundance and activities of signaling proteins only partially
correlate with gene expression.6

To overcome this limitation, one can alternatively identify
upstream signaling regulators from the profiles of downstream
gene targets. One approach is to analyze gene expression
footprints of signaling pathways obtained from perturbation
experiments.7–9 Another one is to predict transcription factor (TF)

activities based on their regulons.10,11 However, these approaches
do not provide information on the topology of signaling
pathways. This information can be obtained by applying
network-based approaches that can incorporate the network
structure as prior information.
Given a starting prior knowledge network (PKN), upstream

regulators can be inferred from downstream signaling targets in
the form of a sub-network that infers direct connections and
further upstream signaling events, as implemented by Melas
et al.12–14 These tools, however, only take the PKN as prior
knowledge. The tool X2K, in contrast, uses expression footprint as
prior knowledge to link gene expression to upstream regulatory
kinases using TF and kinase enrichment, but without considering
the causality of the cascades.15

We set out to integrate the causal network approach with
expression footprints to infer the whole signaling cascade. For this,
we developed the causal reasoning tool CARNIVAL (CAusal
Reasoning pipeline for Network identification using Integer VALue
programming). CARNIVAL expands an integer linear programming
(ILP) implementation for causal reasoning12 to integrate informa-
tion from TF and signaling pathway activity scoring. In addition, it
can be applied not only to perturbation experiments, as in the
original implementation12, but also generally to compare between
two or more conditions. CARNIVAL uses a comprehensive
collection of pathway resources available in OmniPath as PKN,16

though other sources can be used (Fig. 1). We performed a
benchmarking study using the SBVimprover Species Translation
Challenge dataset17 and compared its performance to an
alternative causal reasoning network contextualization tool
CausalR.13 As a case study, we apply CARNIVAL to glomerular
gene expression data on IgA nephropathy (IgAN), a common
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chronic kidney disease (CKD) accounting for 35% of all renal
transplantations in adults,18 in order to gain insights on the
cellular processes that regulate its pathophysiology. These were
confirmed by independent experimental validation.

RESULTS
Benchmarking on the SBV improver dataset
To evaluate the performance of the CARNIVAL pipeline, we
applied it to the SBVimprover Species Translation Challenge
dataset which provides phosphorylation and gene expression data
for multiple perturbations.17 We applied both the Standard
CARNIVAL “StdCARNIVAL” and Inverse CARNIVAL “InvCARNIVAL”
pipelines to evaluate the effect of information from the
perturbation targets onto the resulting networks. The results from
both pipelines were then compared to the ones generated by
CausalR as well as GSEA.
This study provides phosphoprotein data, which in principle

lend itself to validate the estimated activity of nodes with
CARNIVAL. However, only 3-to-4 out of 19 phosphosites in the
phosphoprotein dataset could be mapped to CARNIVAL node
activities per condition, which is insufficient for statistical analyses
(see Methods). We therefore used an alternative validation. We
first determined which pathways are known to be linked to the
perturbations by different molecules according to the KEGG
database;19 referred to perturbation-attributed pathways hence-
forth. We then performed an enrichment analysis to define
whether they are more up- or down-regulated with a two-step
inference approach (see Methods and Fig. 2). This gives insights
into how well expected pathways and their regulatory direction
are captured by CARNIVAL. As all 20 perturbations which were
investigated have activatory effects, we expect significant enrich-
ments in the up-regulated direction.

Incorporation of predicted TF and pathway activities
The normalized enrichment scores (NESs) from DoRothEA were
used as an estimate for the degree of dysregulation (see Methods).
In comparison to the results from Melas et al.’s pipeline without

the integration of TF weights, the results from StdCARNIVAL
showed that significant enrichment of the perturbation-attributed
pathway set in up-regulated pathways is only achieved for IL1-β
(IL1B) and TGF-ɑ (TGFA) with the introduction of TF weights
(Supplementary Fig. S1). In InvCARNIVAL, where the targets of
perturbations are not known, the results with pathway weights
from PROGENy showed a significant enrichment of perturbation-
attributed pathways in up-regulated pathways for PDGF-β
(PDGFB), IL1-β, EGF, TGF-ɑ, and flagellin while only TGF-ɑ and
FSL1 were significant without pathway weights (Supplementary
Fig. S2). TGF-ɑ was more enriched in activated than in inhibited
pathways with pathway weights but this trend was inverse for
IGF2 and AREG. While this implementation could not capture all
expected changes, PROGENy weight still provides an overall
improvement in detecting more dysregulated pathways in the up-
regulated direction (5 versus 2). Given that improved performance
was found with the implementation of TF and pathway weights,
these were implemented in our subsequent benchmarking.
To illustrate the values of the CARNIVAL pipeline with respect to

the ones of DoRothEA and PROGENy, we compared CARNIVAL
enrichment results to the ones generated solely from either
DoRothEA or PROGENy. Results show good agreement to the ones
of StdCARNIVAL but it should be noted that positive results are
not always confirmed by both methods (Supplementary Text S4).

Comparison of StdCARNIVAL, InvCARNIVAL, GSEA, and CausalR
To benchmark CARNIVAL results against related tools, we applied
the two-step inference approach also on their results and made
comparisons. As an overview, the perturbations of the significant
up-regulated sets found in InvCARNIVAL (PDGF-β, IL1-β, EGF, TGF-
ɑ, and flagellin) were also identified in StdCARNIVAL (Fig. 3;
Supplementary Fig. S3). In contrast, NTF3 and FSL1 only showed a
significant enrichment of the up-regulated gene sets in StdCAR-
NIVAL. This suggests that a wider coverage of pathways can be
detected by StdCARNIVAL, where the perturbation target is
known. The same number of enrichment of activated pathways
in the perturbation-attributed pathways (up-regulated) captured
with InvCARNIVAL is slightly higher than the one with pathway

Fig. 1 CARNIVAL pipeline. The CARNIVAL pipeline requires as input a prior knowledge network and differential gene expression. The
information on perturbed targets and their effects can be assigned (Standard CARNIVAL “StdCARNIVAL”) or omitted (InvCARNIVAL). The
differential gene expression is used to infer transcription factor (TF) activities with DoRothEA, which are subsequently discretized in order to
formulate ILPconstraints. As a result, CARNIVAL derives a family of highest scoring networks which best explain theinferred TF activities.
Continuous pathway and TF activities can be additionally considered in the objective function
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inference from differential gene expression directly (n= 5 versus
n= 4). TGF-ɑ and IL1-β were captured with both approaches,
while IFN-γ (IFNG) and TNF-ɑ (TNFA) were only significantly
enriched in activated pathways inferred by GSEA, and IL1-β, PDGF-
β, and EGF by InvCARNIVAL. However, the trend of clear
directionality, i.e. significant in the up-regulated gene sets and
insignificant in the down-regulated gene sets, was only captured
with InvCARNIVAL. CausalR captured a significant enrichment of
activated pathways in the perturbation-attributed pathway set for
IFN-γ, IL1-β, and TNF-ɑ, showing an equal performance to
InvCARNIVAL in terms of detecting non-ambiguous directionality
but still captured less numbers of up-regulated pathways than
GSEA and Std/InvCARNIVAL (Fig. 3).
We then compared the network topology of the CARNIVAL

versus CausalR networks. We found a bias towards hub nodes for
CausalR but not for CARNIVAL. The degree distribution of edges in
CARNIVAL was very similar to the one of the PKN, see
Supplementary Fig. S4. This trend was not affected by different
beta parameters in (0.03; 0.1; 0.3; 0.5; 0.8) (result not shown).

Inferring signaling networks in IgAN
We applied CARNIVAL to identify the regulatory signaling network
that governs the pathophysiological mechanism of IgAN. It is
known from the literature that the pathogenic IgA-containing
immune complexes trigger the activation of inflammation and
fibrosis20 but the dysregulation at the molecular level is yet to be

elucidated. Further improvement in early diagnosis and treatment
of IgAN are still needed and can only be achieved by a better
understanding of the disease’s mechanisms to design appropriate
treatments.

InvCARNIVAL results
In this study, we generated the causal networks from the
differential gene expression in glomeruli between groups of
healthy subjects versus IgAN patients. Given that the node penalty
did not affect the performance but might result in minor
fluctuations, this analysis was performed with different node
penalties to achieve more robust results (β in (0.03; 0.1; 0.3; 0.5;
0.8), see Fig. 4 for β= 0.8 and Supplementary Fig. S5 for all betas).
Given that the adherens junction set is the most dysregulated one,
the set members are highlighted in the network. Thereby, only
one transcription factor (TCF7) inferred by DoRothEA is repre-
sented in this gene set, while 13 associated nodes and four input
nodes are solely inferred by causal reasoning with CARNIVAL.
Hence, CARNIVAL was able to capture more pathway members
and their connections than through TF-regulons alone.
In addition, we performed down-sampling and network

randomization via re-shuffling of TF scores and labels to assess
the robustness of CARNIVAL results for the IgAN datasets (see
Supplementary Fig. S6). We observed that the inferred node
activities of CARNIVAL networks from ±70% down-sampling
datasets is relatively similar to the true IgAN network inferred

Fig. 2 Two-step inference analysis to determine whether relevant molecular processes were identified in CARNIVAL. First, dysregulated
pathways were inferred by over-representation of the nodes in CARNIVAL solution networks based on the KEGG pathway sets in MSigDB. In
the second step, an enrichment analysis was performed on the identified dysregulated pathways using stimulus specific pathways as prior set.
The distributions of p-values from multiple statistical tests are reported as final result. A significant enrichment of the attributed pathways in
the direction that the target protein is perturbed is expected
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from the full dataset (Jaccard similarity measure: 0.448 ± 0.051
[mean ± S.D.]). In contrast, a major difference was observed when
compared the true IgAN network with the randomized networks
from the re-shuffling dataset (Jaccard similarity measure: 0.065 ±
0.032 [mean ± S.D.]). These results suggest that CARNIVAL
provides robust results significantly different from random
networks (p-value < 0.001).

Topological analyses and text-mining results of CARNIVAL
networks
To identify the central regulatory nodes in the IgAN inferred
networks, network’s properties of the results generated from
different node penalties parameters were extracted. These
measures include in-, out-, and all-degree of interactions as well
as betweenness, hub-scor,e and authority-score of nodes in the
networks (see Methods). The Top-20 results in each category are
shown in Supplementary Table S3 and the robustness of results
are shown in Supplementary Fig. S7. Of note, signaling molecules
which are related to p53 pathway and cell cycle regulation
including CDK1, ATM, and TP53 appeared frequently in the top list.
In addition, the ERK/MAPK pathway represented by MAPK1 (ERK-2)
and MAPK3 (ERK-1) was shown to have high-degree of
connectivity where MAPK3 has a very high hub-score. The
distributions of network topology measures for these nodes from
the IgAN networks are statistically different comparing to the ones
from randomized PKNs with the same degree distribution
(average p-value= 0.0135). This suggests that central nodes in
the IgAN network are not necessarily the existing hub nodes in the
PKN. In addition, TP53 is the highest scoring node in randomized
networks while MAPK1 and MAPK3 are often found to rank higher
in the IgAN network. Note that a similar finding was observed for
GSK-3β (GSK3B), highlighting the potential involvement of PI3K/
Akt pathway (together with AKT1) as well as Wnt pathway in the
molecular pathogenesis of IgAN.

Besides topological analyses, we systematically searched in the
literature to identify whether the signaling proteins identified to
be dysregulated in CARNIVAL have support for the roles in the
pathophysiology of IgAN (see Methods and Supplementary Table
S4). We observed that the molecules in the MAPK pathway and
PI3K/Akt pathways, which are previously supported by topological
analysis, also have multiple hits (7 hits for MAPK1/MAPK3 and 3
hits for AKT1). On the other hand, we identified many molecules
which are in the top list of network topology measures but with
no hit on text-mining results. These include down-regulated
MAPK14 in the p38 MAPK pathway, down-regulated GSK3B in the
PI3K/Akt and Wnt pathways, and up-regulated CDK5 in the cell
cycle circuit. Also, we identified RhoA (RHOA) and β-Catenin
(CTNNB1) as the components in the TGF-β and Wnt pathways
having a few literature support with 2 and 3 hits, respectively.
These less or not characterized proteins are candidate players in
IgAN, pending validation.

Inferred dysregulated cellular processes by CARNIVAL
Dysregulated pathways were inferred by over-representation
analysis of the CARNIVAL nodes in the KEGG gene sets. The most
significantly up- and down-regulated pathways were identified by
median p-value over different node penalties (Fig. 5). Among
these, known drivers of renal fibrosis including TGF-β, Wnt, and
EGFR/ErbB signaling stand out.21–23 The TGF-b and EGFR/ErbB
pathways are significantly over-represented in CARNIVAL with
clear directionality while Wnt and TGF-β pathways are ambiguous
in GSEA (Supplementary Table S5). Additionally, focal adhesion
was reported as an activated process in CARNIVAL and GSEA.
Interactions between extracellular matrix and the cytoskeleton are
particularly important in matrix-producing cells like fibroblasts and
mesangial cells in the kidney.24,25 The enrichments of MAPK, Wnt,
TGF-β, and cell cycle pathways were also supported by topological
network analysis and text-mining results.

Fig. 3 Comparison of the enrichment results of the perturbation-attributed pathway set in dysregulated pathways inferred with different
tools. An enrichment of the perturbation-attributed pathway set among the significant pathways was determined. The significance level of
0.05 is indicated by the dotted lines. Asterisks (*) indicate the clear directionality of results where the enrichment results are significant in the
up-regulated set and insignificant in the down-regulated set
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While CARNIVAL predicts an upregulation for Wnt and TGF-β (p-
value: 0.0013 and 0.0014, respectively), GSEA analysis predicts
these two pathways to be both up- and down-regulated in GSEA,
hence being unclear in directionality (see details in Supplementary
Table S5). These pathways are therefore worth to be investigated
experimentally to confirm the validity of results from the two
approaches.

Fluorescence immunohistology detection of RhoA and β-catenin
The role of MAPK and PI3K/Akt signaling on IgAN’s pathophysiol-
ogy have been described in previous studies.26–29 We therefore
focused on validating key components of the TGF-β and Wnt
signaling pathways with less literature support and where

CARNIVAL and GSEA provided inconclusive results. We chose
RhoA (RHOA) and β-catenin (CTNNB1) for fluorescence immunos-
taining on human renal biopsies from healthy pre-transplantation
(controls) and biopsies from diagnosed IgAN patients (see Fig. 6
and Supplementary Text S5). Both RhoA and β-catenin genes were
down-regulated comparing IgAN to control samples while the
corresponding KEGG pathway enrichment scores showed a
deregulation yet unclear direction. In contrast, CARNIVAL predicts
that signaling activities are relatively increased for both when
compared the ones from IgAN patients against healthy donors.
Using immunohistology, mesangial IgA (green) was present in
IgAN but absent in control specimens as expected for this
condition (Fig. 6d–f and Fig. 6a–c, respectively). RhoA (blue) and
β-catenin (red) were present, albeit differentially expressed

Fig. 4 IgAN-contextualized network from CARNIVAL. The network summarizes the CARNIVAL results for node penalty β= 0.8. This network
consists of 43 TFs, 37 input nodes and 62 associated nodes which are connected through 231 edges. Up-regulated nodes and activatory
reactions are indicated in blue while down-regulated nodes and inhibitory edges are colored in red. Triangles correspond to transcription
factors, diamonds represent input nodes and circlescor respond to purely inferred nodes. Members of the most dysregulated gene set, i.e.
adherens junctions, are labeled by more intense background colors

Fig. 5 Dysregulated cellular processes in IgAN. Up- and down-regulated pathways are shown with decreasing median significance from top
to bottom. The significance level is 0.01. Among others, these point to podocyte injury and the disruption of the slit diaphragms, as well as
fibrosis
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between IgAN and control. While the expression of RhoA (blue)
was appreciable in all samples, IgA patients tend to have higher
expression, in particular in the glomeruli (most prominent in
Fig. 6c versus Fig. 6f). In comparison to healthy biopsies, we
observed an increase in β-catenin staining in IgAN glomeruli, most
likely in mesangial cells (Fig. 6). Thus, the increase in β-catenin
expression might be related to increased Wnt/β-catenin signaling
in IgAN glomeruli and this might be related to the deposition of
IgA.

DISCUSSION
In this paper, we present an open-source causal network
contextualization tool, CARNIVAL. It seamlessly integrates the
information from gene expression data with various types of prior
biological knowledge (signaling networks, TF-targets, and path-
way-footprints). CARNIVAL merges TF and pathway activities
estimated from gene expression data with prior knowledge on
the signaling network architecture to identify processes driving
changes in gene expression which can be derived from microarray
or RNAseq data (see an additional independent study using
RNAseq data in Supplementary Text S6). The network inference
process is swiftly performed with an ILP formulation of causal
reasoning. Importantly, using the variant InvCARNIVAL, the origin
of these changes (e.g. perturbation targets) do not need to be
known to produce the contextualized networks.
According to our benchmarking study, the introduction of TF

weights from DoRothEA improves the performance of

StdCARNIVAL (Supplementary Fig. S1). For InvCARNIVAL, a
performance was improved with the additional introduction of
pathway weights inferred from PROGENy (Supplementary Fig. S2),
although the same advantage was not observed in StdCARNIVAL.
This demonstrates that the pathway weights only guide the
network search if a direction is not provided through a known
perturbed target node.
The benchmarking results show that the InvCARNIVAL imple-

mentation with TF and pathway weights can obtain perturbation-
attributed pathways with a comparable accuracy to StdCARNIVAL
(Fig. 3). Therefore, we recommend to include the TF and pathway
implementations as the default setting. Comparing to GSEA,
perturbation-attributed pathways were more frequently identified
with the correct direction. Additionally, a related method, CausalR,
did not perform as well as InvCARNIVAL or GSEA in detecting up-
regulated pathway sets and was biased towards hub nodes while
CARNIVAL was not (Supplementary Fig. S4).
Given that CausalR also captured certain pathways with correct

directionality that CARNIVAL missed, results from the two
methods could be complementary to each other to ensure the
highest coverage of the enriched signaling pathways. It should be
noted though that combined results of the two methods at the
network level does not increase the number of positive results
(see Supplementary Fig. S3). In addition, CARNIVAL offers
additional information from its constituting tools (Supplementary
Text S4). We therefore propose to also perform functional analyses
with DoRothEA and PROGENY along CARNIVAL to get a broader
overview for further interpretation at multiple granularities.

Fig. 6 Validation experiment. IgA (green) beta-catenin (red) and RhoA (blue) staining was performed in human biopsies collected from either
healthy pre-transplantation control donors(Con1-3; a–c) or diagnosed IgAN patients (IgAN1-3; d–f). 3 representative examples are shown and
areas with glomeruli (G) and proximal tubules (T) are indicated. Accumulation of IgA (green) is the pathological hallmark of IgAN and there is
no IgA staining in control specimens (a–c). RhoA immunostaining (blue) seems to be ubiquitous and dispersed in tubules and glomeruli. beta-
catenin31 (red) is elevated in IgAN biopsies and there is an increase in beta-catenin cellular staining in glomeruli (arrows). Dotted white boxes
depict highlighted areas magnified on left panels. All sections were 10 µm thick scanned with a 20x lens

A. Liu et al.

6

npj Systems Biology and Applications (2019)    40 Published in partnership with the Systems Biology Institute



In the application study in IgAN, besides standard enrichment
analyses, quantitative measures from network topology analyses
also pointed to the involvement of multiple signaling pathways in
the pathophysiology of the disease including MAPK, neurotrophin,
PI3K/Akt, cell cycle, Wnt, and TGF-β pathways. The first two
pathways had already been well studied and validated.26,30 In our
study, we chose the latter two which have less literature support
and have inconsistent results to GSEA for experimental validation.
Wnt signaling was reported as a dysregulated process in
CARNIVAL and is known to be involved in podocyte injury and
renal fibrosis.22 The IgAN network included representative
mediators of the classical Wnt signaling pathway from the
messenger WNT7A to the TFs TCF4 and TCF7, although it should
be noted that not all of these are linked in the expected ways nor
do all members show the expected activity. GSK3B, which is one of
the components in the Wnt signaling pathway, also appears
among the nodes with top network topology measure, high-
lighting the importance of this molecule as an important mediator
in the signaling regulation of IgAN’s pathophysiology.
TGF-β signaling is a main driver of fibrosis.21 CARNIVAL’s IgAN

network captured all members of the TGF-β/RhoA pathway as up-
regulated and linked through the biologically expected interac-
tions. This includes the TGF-β receptors (TGFBR1 and TGFBR2), the
ras homolog gene family member A (RHOA) and the Rho-
associated protein kinase 2 (ROCK2). This is consistent with the
previously reported upregulation of protein levels of TGF-β
receptors and RhoA in IgAN31,32 and illustrates how CARNIVAL
can identify highly relevant and specific processes and regulators
from gene expression data. Our validation experiment shows that
both β-catenin and RhoA are more expressed in IgAN compared
to healthy controls, consistent with the involvement of these cells
in the pathophysiology of the disease. This was not captured via
differential expression analysis at the individual gene level and the
results were inconclusive via GSEA at the pathway scale (Fig. 620).
β-catenin and Wnt signaling are studied as drug targets for
different cancers.33 They have been proposed as a potential target
for chronic kidney.34 There are multiple Wnt signaling small-
molecule drugs that bind β-catenin.35 Such drugs have not been
tested in IgAN thus far. Given the pathological importance of the
glomerulus in IgAN, the possible differential expression and
signaling function of RhoA and Wnt/β-catenin needs to be
investigated further. Other dysregulated signaling molecules
identified by CARNIVAL, including MAPK14, GSK3B, and CDK5,
are also interesting targets for further validation, as their role on
the pathophysiology of IgAN is unknown.
Overall, we demonstrate the superior performance of CARNIVAL

over existing methods in the benchmarking study and also its
applicability to biomedical data in our IgAN case study. Many
components in the pipeline are also customizable such as the
optimization parameters and the number and selection method of
TF inputs. It should be noted though that the benchmarking is
performed at the cellular process level due to the limited
information on protein activities (see Methods). Moreover, the
two-step inference approach also has a few limitations: (1) not all
attributed pathways in the KEGG database are represented in
MSigDB nor equally relevant, (2) the majority of the KEGG gene
sets for canonical pathways do not account for directionality, and
(3) gene sets for the same process can be inconsistent in different
databases while some are not directly associated with the
perturbations. All of these factors could affect the benchmarking
results across all methodologies being tested and resulting in
lower yield of overall positive results. Further analyses should be
performed to determine the generality of our findings.
Although we demonstrated that incorporating prior knowledge

into the network inference can lead to a higher accuracy, the
drawback is the inherent bias towards known biology. CARNIVAL
only uses the known interactions as a scaffold and the
contextualization of the network is data driven. Hence, it can still

be applied to predict the status of proteins and their connections
for specific contexts. Since CARNIVAL cannot propose de novo
connections between signaling molecules, it could be combined
with pure data-driven network inference approaches such as
nested effect models (NEMs)36 in the future.
To conclude, we believe that, given the flexibility of the

CARNIVAL pipeline, it can be a useful tool to infer context-specific
signaling network architectures from gene expression in many
studies.

METHODS
CARNIVAL pipeline
We introduce CARNIVAL, an ILP-based causal network contextualization
tool with a high flexibility for data integration. CARNIVAL refines a
quantitative objective function for ILP problem by incorporating TF and
pathway activities on a continuous scale. In addition, the CARNIVAL
framework allows us to contextualize the network with or without known
targets of perturbations. The implementation is separated into two
pipelines which will be referred henceforth as Standard CARNIVAL
“StdCARNIVAL” (with known perturbation targets as an input) and Inverse
CARNIVAL “InvCARNIVAL” (without information on targets of perturbation),
see Fig. 1.
CARNIVAL is a major improvement and extension of the causal

reasoning pipeline by Melas et al. which requires, besides a PKN,
discretized differential gene expression, as well as the target(s) of
perturbation as inputs. The InvCARNIVAL pipeline overcomes the latter
requirement that restricts the original method’s applicability to only well-
characterized perturbations. Also, CARNIVAL takes dysregulated TFs
derived with DoRothEA7,11 which summarizes their activities from the
expression of their multiple targets into TF activities with continuous
values. This step potentially helps us to reduce the noise from the
discretization of individual differential expressed genes and also to reduce
the number of measurements inputs which subsequently increase
computational efficiency of the pipeline.

CARNIVAL inputs and data pre-processing
CARNIVAL requires at least two inputs: a PKN consisting of causal protein
interactions and a set of measurement inputs derived from gene
expression data (either microarray or RNA-seq). The measurement inputs
for CARNIVAL are flexible and can be quantitative measures from
differentially expressed genes (e.g. log-fold-changes or t-values) or
predicted TF activities. These measurement inputs are discretized to
generate ILP constraints as in the original implementation of Melas et al.
The actual continuous input values are used to weight and select causal
links in the network. Optionally, predicted pathway activities in a
continuous scale between −1 and 1 can also be integrated into CARNIVAL
to refine the contextualized network solutions. Targets of perturbation can
be provided if known but are not required.
As a PKN, we considered a signed and direct human signaling network

retrieved from Omnipath. The network contains 9306 signed and directed
edges connecting 3610 nodes pooled and curated from multiple resources
including Signor, Reactome, and Wikipathways.16 Alternative causal
knowledge networks are also compatible with the CARNIVAL pipeline.
For TF activity prediction, we applied DoRothEA version 211 which

provides a framework to estimate TF activity from the gene expression of
its direct target genes. The provided regulon set was filtered to include
only the 289 TF-regulons with at least ten TF-target gene interactions with
medium to high confidence (confidence score A, B, and C as defined in11).
Subsequently, the differential gene expression t-values processed by the
limma R-package37 and the filtered DoRothEA regulon were passed to the
viper function in the VIPER package10 to perform an analytic Rank-based
Enrichment Analysis (aREA). The activities of each TF in the form of NES
were then derived from the rank of the genes and the top 50 TF scores
were used as the input in CARNIVAL by default. Though users can also
select the desirable number of included TFs according to the study.
To predict pathway activity, we applied PROGENy, which calculates

pathways scores of 14 major signaling pathways based on pathway
footprint genes derived from perturbation-based experiments.7,38 The 14
PROGENy pathway signatures were obtained from differential expression t-
values using the limma package.37 Based on an empirical null distribution
generated through 10,000 times gene-wise permutation and the percentile
corresponding to the observed value, the significance score (termed
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“score” henceforth, Eq. 1) was derived:

scoreðxÞ ¼ 2 � ðpercentileðxÞ � 0:5Þ: (1)

Regarding known and potential targets of perturbation in the StdCARNI-
VAL pipeline, users can directly provide the list of targets as being
activated, inhibited or unknown (represented by NaN in the R-script). For
instance, epidermal growth factor (EGF) is assigned as an “activatory”
perturbation target (value of 1) of the experiment with EGF stimulation
while phosphoinositide-3-kinase (PI3K) is assigned as an ‘inhibitory’
perturbation target (value of −1) upon the perturbation by its inhibitor
such as Wortmannin. The compound target information could be obtained
from e.g. the CHEMBL STITCH database via the integrated Omnipath tool.16

CARNIVAL ILP implementation, objective function and parameter
settings
We implemented the causal reasoning ILP formulation of Melas et al.
(Supplementary Text S1) in R. The objective function is defined by Eq. 2:

min
X

αj j � xj �mj

�� ��
� �

þ
X

β � ð1� γiÞ � xþj þ
X

β � ð1þ γiÞ � x�j
� �

;

(2)

where the parameter α refers to the mismatch penalty, β to the node
penalty, and the newly introduced γ to the node penalty adjustment (Eq.
2).
In the previous work of Melas et al., the objective function prioritizes the

network in which the node activities (xj) explain the corresponding
observed discretized measurements (mj) while the overall number of
nodes in the network is minimized through the sum of activities xþi ; x

�
i

� �

for each node j in the network. In CARNIVAL, we introduce the effect of
inferred TF and pathway activities to adjust this tradeoff and model
selection (Eq. 2) where both single samples and differential gene
expression can be applied. For TF scores, we applied a TF-specific
mismatch penalty α corresponding to the NES derived from DoRothEA. The
node parameter β can then be manually assigned to scale the importance
of node penalty relative to TF scores. For pathway scores, a minimal set of
representative downstream nodes was chosen for each PROGENy pathway
to capture all known signal transduction routes involved while avoiding
overlapping information between pathways, and with TF predictions
(Supplementary Table S1). The node penalty is sign-adjusted through the γ
weights which corresponds to PROGENy significance scores (Eq. 1) ranging
from −1 to 1. This means that the anticipated direction corresponding to
pathway score is penalized less in the expected direction while more in the
counterpart.
Regarding parameter settings, we implemented in this study several

options to retrieve alternative top scoring solutions through the available
CPLEX parameters. The solutions within 0.01% tolerance with regard to the
best solution were accepted (mip pool relgap= 0.0001) and the most
aggressive search strategy was employed (mip pool intensity= 4). We
generated up to 500 solutions (mip limits populate= 500) fulfilling the pre-
defined criteria in the solution pool and took the 100 most diverse
solutions generated within 1 h for further analysis (mip pool capacity=
100; mip pool replacement= 2; time limit= 3600 s). We applied the
default setting for all other CPLEX parameters.
Additional information regarding parameter settings and the ILP

problem formulation for InvCARNIVAL can be found in Supplementary
Text S2. Summarized results from the study of multiple α-to-β ratios to
assess parameters’ robustness can be found in Supplementary Text S3.

Benchmark dataset
The benchmark dataset was taken from the SBVimprover project which
contains perturbations on normal human bronchial epithelial cells.17 Gene
expression of 20 perturbations was measured at 6 h after perturbation (E-
MTAB-2091) in a processed form (log2 expression after GC robust
multiarray averaging). Probe IDs were mapped to HGNC gene symbols
and multiple entries were summarized by the mean value. Batch effects
were removed using the combat function of the sva R-package.39

Differential gene expression compared to vehicle control in the same
dataset was then computed with the limma R package.37

The measurements with 19 phosphoprotein-binding antibodies were
mapped to 14 differential protein activities using the curated regulatory
sites in the PhosphositePlus knowledgebase.40 Given that only a small
fraction of the PKN nodes is reported as dysregulated in CARNIVAL, the

overlap between dysregulated nodes and measured protein activities was
low and not suited for statistical testing.

Kidney datasets
Microarray data on glomerular gene expression in individual IgAN patients
and healthy living donors (HLD) were obtained from five publicly
accessible studies,41–44 see details in Supplementary Table S2. The effects
from covariates embedded in each study and platform represented as
batch effects were mitigated using the combat function from the sva R-
package,39 and differential gene expression is determined with the limma
R-package.37

CausalR
The CausalR package identifies dysregulated nodes and networks by
scanning for nodes with sign-consistent shortest paths to the observa-
tions.13 With the SCAN (Sequential Causal Analysis of Networks) method,
path lengths from one to five edges are scanned and potentially
dysregulated nodes are identified which constantly score among the top
150 based on the number of explained observations. Matched observa-
tions increase the score (+ 1), mismatched ones decrease it (−1), and
unmatched or ambiguously matched nodes are not included in the
scoring.

Gene Set Enrichment Analysis (GSEA)
The piano R-package45 was applied to run gene set statistics tests using the
function runGSA with the following methods: mean, median, sum,
maxmean, fisher, stouffer, tailStrength, wilcoxon, page, reporter, and fgsea.
All tests were executed with 10,000 permutations and the p-values were
adjusted by false discovery rate (FDR).

Two-step inference approach to KEGG pathways attribution
In our study, we assume that the inferred node activities from CARNIVAL
represent upstream signaling and should hence map well with the KEGG
pathways attributed to the corresponding perturbation. Hence, a two-step
inference approach was developed for validation (Fig. 2). In the first step,
we assume that an over-representation of up-regulated CARNIVAL nodes
indicates higher activity pathway and, conversely, down-representation
represents down-regulation. Up- and down-regulated pathways were
predicted with a hypergeometric test from the Category package in R on
the dysregulated nodes inferred by CARNIVAL. The universe in this regard
was set to all nodes present in the PKN derived from Omnipath and the
curated KEGG pathway sets were obtained from MSigDB.46 A significance
test was only performed if at least one set member of the pathway was
present in the given CARNIVAL node set.
In the second step, we assumed that the list of KEGG pathways

attributed to the perturbation should be up-regulated upon perturbation
while others are not. We then check if the pathways identified with
CARNIVAL fulfill this assumption (Fig. 2). Specifically, we evaluate if both
the up- and down-regulated pathways with their FDR-adjusted p-values
from the first step were enriched in the attributed pathways. Here, we
applied the function runGSA with the stouffer, tailStrength, wilcoxon and
reporter methods in the piano R-package.45 The mean and standard
deviation across the four methods of the resulting p-values were reported.
A Gene Set Enrichment Analysis (GSEA) was applied to gene expression
directly to identify a baseline performance.

Network topological analyses and text mining
To identify central nodes with regulatory features, we computed
quantitative measures from topological analyses of CARNIVAL networks
and compare them to the ones derived from randomized networks. These
measures were extracted using the functions degree, betweenness, hub_score
and authority_score in the igraph R-package.47 The average nodes’ activities
over the range of size penalty parameter (β in (0.03; 0.1; 0.3; 0.5; 0.8)) in the
CARNIVAL networks were applied as weights for the calculation of these
topological analyses measures. The R-package BiRewire48 was applied to
generate 100 randomized networks with preserved distributions of node
degrees as well as interaction signs. Student’s t test was subsequently used
to determine significant differences between the distributions of network
topology measures from CARNIVAL networks versus the ones from
randomized networks. To assess the “novelty” of genes identified in this
analysis in the context of IgA nephropathy we queried PubMed Central
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using the approved gene symbol and approved gene name from the HUGO
gene nomenclature committee database (genenames.org), together with
the following keywords: “IgA nephropathy”, “IgAN”, “IgA glomerulonephritis”
and “Berger’s disease”. All search terms were enclosed in quotations to
ensure that terms were searched in full and retrieved abstracts were
examined to exclude erroneous matches.

Statistical analyses and data representation
Student’s t tests were performed to identify statistical differences between
two groups using the function t.test in the stats R-package. Unpaired two-
sided t-tests with non-equal variance was applied by default unless
specified. Pearson and Spearman correlation measures were calculated
using the function cor in the stats R-package. Jaccard similarity index is
defined as the ratio between the size of the intersection and the size of the
union of two sets. Boxplots represent the interquartile range (IQR) with
center lines represent median of minus log10 p-values. Outliers are defined
by the data points below the first quartile minus 1.5*IQR and above the
third quartile plus 1.5*IQR. CARNIVAL networks were exported to
Cytoscape to generate figures for publication.49 No Bayesian analysis nor
hierarchical and complex designs was performed in this study.

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this paper.

DATA AVAILABILITY
The benchmark dataset was taken from Poussin et al.17 which is available on
ArrayExpress with accession code “E-MTAB-2091”. The data sources of the kidney
dataset for IgAN patients and healthy samples were derived from several studies.41–44

These datasets are publicly available on Gene Expression Omnibus (GEO) repository
with the accession codes “GSE37460”, “GSE50469”, “GSE93789”, “GSE30122” and
“GSE32591” as summarized in Supplementary Table S2.

CODE AVAILABILITY
CARNIVAL is publicly available as an R-package on GitHub through the following URL:
https://github.com/saezlab/CARNIVAL.
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