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Abstract. This paper considers a game in which a single cop and a
single robber take turns moving along the edges of a given graph G.
If there exists a strategy for the cop which enables it to be positioned
at the same vertex as the robber eventually, then G is called cop-win,
and robber-win otherwise. In contrast to previous work, we study this
classical combinatorial game on edge-periodic graphs. These are graphs
with an infinite lifetime comprised of discrete time steps such that each
edge e is assigned a bit pattern of length le, with a 1 in the i-th position
of the pattern indicating the presence of edge e in the i-th step of each
consecutive block of le steps. Utilising the known framework of reach-
ability games, we obtain an O(LCM(L) · n3) time algorithm to decide
if a given n-vertex edge-periodic graph Gτ is cop-win or robber-win as
well as compute a strategy for the winning player (here, L is the set
of all edge pattern lengths le, and LCM(L) denotes the least common
multiple of the set L). For the special case of edge-periodic cycles, we
prove an upper bound of 2 · l · LCM(L) on the minimum length required
of any edge-periodic cycle to ensure that it is robber-win, where l = 1
if LCM(L) ≥ 2 · maxL, and l = 2 otherwise. Furthermore, we provide
constructions of edge-periodic cycles that are cop-win and have length
1.5 · LCM(L) in the l = 1 case and length 3 · LCM(L) in the l = 2 case.

1 Introduction

Pursuit-evasion games are games played between two teams of players, who take
turns moving within the confines of some abstract arena. Typically, one team –
the pursuers – are tasked with catching the members of the other team – the
evaders – whose task it is to evade capture indefinitely. The study of such games
has led to their application in a number of real-world scenarios, one widely-
studied example of which would be their application to the problem of guiding
robots through real-world environments [8]. From a theoretical standpoint, other
variants of the game have been studied for their intrinsic links to important graph
parameters; for example, in one particular variant in which each pursuer can, in
a single turn, move to an arbitrary vertex of the given graph G, it is well known
that establishing the minimum number of pursuers it takes to catch one evader
also establishes the treewidth of G [20].
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The variant most closely resembled by the one considered in this paper was
first studied separately by Quilliot [18], and by Nowakowski and Winkler [15], as
the discrete Cops and Robbers game: One cop (pursuer) and one robber (evader)
take turns moving across an edge (or remaining at their current vertex) in a given
graph G, with the cop aiming to catch the robber, and the robber attempting
to avoid capture. (By ‘catching the robber’ we mean that the cop occupies the
same vertex as the robber.) In this paper, we consider a variant of this game
where the game arena is an edge-periodic graph [7]. We call this game Edge-
Periodic Cops and Robbers, or EPCR for short. Such graphs can be thought of
as traditional static graphs equipped with an additional function mapping each
edge e to a pattern of length le that dictates in which time steps e is present
within each consecutive period of le steps. Formal definitions of edge-periodic
graphs, which can be seen as a subclass of temporal graphs [14], and EPCR are
given in Section 2. As far as we are aware, pursuit-evasion games have not yet
been studied in the context of temporal graphs.

Paper Outline and Our Results. The remainder of this section discusses related
work. Section 2 gives preliminaries. In Section 3, we consider the problem of
deciding, given an edge-periodic graph Gτ , whether a game of edge-periodic
cops and robbers played on Gτ is won by the cop or won by the robber. We
exploit the connection (which was previously noted, e.g., in [11]) between the
game of cops and robbers and reachability games to solve the one cop, one rob-
ber variant of cops and robbers on edge-periodic graphs. Our algorithm runs in
polynomial-time whenever the lowest common multiple of the lengths of each
edges appearance-pattern is n and maxL; we remark, however, that the algo-
rithms has exponential running-time in the worst-case (more in Section 5). In
Section 4, we consider edge-periodic graphs whose underlying graph is a cycle.
We prove an upper bound of 2·l·LCM(L) on the length required of any such cycle
Cτ in order to guarantee that it is robber-win, where l = 1 if LCM(L) ≥ 2·maxL,
and l = 2 otherwise. Here, L is the set of the lengths of the bit patterns assigned
to the edges of the cycle, and LCM(L) their least common multiple. We also give
lower bound constructions showing that there exist cop-win edge-periodic cycles
of length 3

2 · LCM(L) and 3 · LCM(L) in the l = 1 and l = 2 case, respectively.
Section 5 concludes the paper.

Related Work. The introduction of pursuit-evasion type combinatorial games
is most often attributed to Parsons, who studied a problem in which a team
of rescuers search for a lost spelunker in a circular cave system [16]. By repre-
senting the cave as a cycle graph, he showed that one rescuer is not enough to
guarantee that the spelunker is found, but that two are. In a similar vein, the
Cop and Robber problem, in which one cop attempts to catch a robber in a given
graph G, was introduced independently by Quilliot [18], and by Nowakowski and
Winkler [15]. Their papers characterise precisely those graphs for which one cop
is enough to guarantee that the robber is caught. Aigner and Fromme [1] consid-
ered a generalised variant of the game, in which k cops attempt to catch a single



A Game of Cops and Robbers on Graphs with Periodic Edge-Connectivity 3

robber; their paper introduced the notion of the cop-number of a graph, i.e., the
minimum number of cops required to guarantee that the robber is caught.

Reductions from the standard game of cops and robbers to a game played on
a directed graph, and algorithms that can decide, for a given graph, whether cop
or robber wins, were given in [10, 4, 2]. Kehagias and Konstantinidis [11] note
a connection between these approaches and reachability games. Reachability
games are a well-studied class of 2-player token-pushing games, in which two
players push a token along the edges of a directed graph in turn – one with the
aim to push the token to some vertex belonging to a prespecified subset of the
graph’s vertex set, and the other with the aim to ensure the token never reaches
such a vertex [9]. The winner of a reachability game played on a given directed
graph G can be established in polynomial time [3, 9]. For more information
regarding cops and robbers/pursuit-evasion games, as well as their connection
to reachability games, we refer the reader to [9, 3, 11, 12, 5, 17, 8].

In this paper, we consider the game of cops and robbers within the context
of temporal graphs. Temporal graphs are a relatively new object of interest, and
incorporate an aspect of time-variance into the combinatorial structure of tradi-
tional static graphs [14]. One previously considered way of viewing a temporal
graph G is as a sequence of L subgraphs of a given underlying graph G (where L
is the lifetime of the graph) [13], with each subgraph indexed by the time steps
t ∈ [L]. For problems within this model, it is often natural to assume that each
subgraph Gt in all time steps t ∈ [L] is connected [13]. The edge-periodic graphs
considered in this paper differ in that this connectivity assumption is dropped
– similar graphs were introduced in [7]. For further related work on temporal
graphs, we refer the reader to, e.g., [6, 13, 14].

2 Graph Model and Game Rules

For any positive integer k we write [k] for the set {0, 1, . . . , k − 1}.

Definition 1 (Edge-periodic graph Gτ). An edge-periodic graph Gτ = (V,E, τ)
is a temporal graph with underlying (directed or undirected) graph G = (V,E)
and infinite lifetime, and an additional function τ : E → {0, 1}∗ that maps each
edge e ∈ E to a pattern τ(e) = be(0)be(1) · · · be(le − 1) of length le > 0. Each
τ(e) consists of le Boolean values, such that e is present in a time step t ≥ 0
if and only if be(t mod le) = 1. We can assume that for any edge e ∈ E(Gτ ),
be(i) = 1 for at least one i ∈ [le], so that every edge e is present at least once in
any period of le time steps.

For a given temporal graph Gτ = (V,E, τ), we refer to the length le of the
bit pattern assigned to edge e as the period of e. Furthermore, we use L = {le :
e ∈ E} to denote the set of all edge periods and LCM(L) to denote the least
common multiple of the elements in L. When the set L is clear from the context,
we omit it from the notation, writing LCM in place of LCM(L).

We consider a game of cops and robbers identical in its rule set to the one
introduced in [18] and [15] (in particular, the variant with 1 cop and 1 robber),
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but with edge-periodic graphs as the game arenas. We call the resulting game
edge-periodic cop(s) and robber(s), or EPCR for short. In this paper we only
consider the undirected case, but all results translate to the directed case easily.

Rules of EPCR. Initially, the two players (cop C and robber R) each select
a start vertex on a given edge-periodic graph Gτ . C chooses first, followed by
R, whose choice is made in full knowledge of C’s choice. After the start vertices
have been chosen, in each time step t ≥ 0, players take alternating turns moving
over an edge in the graph that is incident to their current vertex or choosing to
remain at their current vertex, following the convention that in any particular
time step, C moves first, in full knowledge of R’s position, followed by R; again,
R’s move is made with full knowledge of the move that C just made. Whenever
C or R are situated at a vertex v ∈ V (Gτ ) during some time step t and it
is their turn to make a move, they may only traverse those edges {v, u} with
b{v,u}(t mod l{v,u}) = 1. The game terminates only when, at the end of either
player’s move, C and R are situated at the same vertex in Gτ . If there exists a
strategy for C that ensures that the game terminates, we say that Gτ is cop-win.
Otherwise, there must exist a strategy for R that enables infinite evasion of C;
in this case we call Gτ robber-win.

3 Determining the Winner of a Game of EPCR

In this section, we prove the following theorem:

Theorem 1. Let Gτ be an edge-periodic graph with n nodes, and let L = {le :
e ∈ E(Gτ )}. Then, it can be decided in O(LCM ·n3) time whether Gτ is cop-win
or robber-win. A winning strategy for the winning player can be computed in the
same time bound.

The proof mainly uses a transformation from a given edge-periodic graph Gτ

to a finite directed graph G′. The transformation is such that the playing of an
instance of EPCR on Gτ is essentially equivalent to the playing of a reachability
game on G′. For this, we need a way of translating a particular state of an
instance of EPCR played on Gτ to a corresponding state in the reachability game
played on G′. The following definition introduces the notion of a position that
represents the current state in a game of EPCR on an edge-periodic graph Gτ .

Definition 2 (Position in Gτ). A position of a game of EPCR played on an
edge-periodic graph Gτ is a 4-tuple P = (cP , rP , sP , tP ), where cP ∈ V (Gτ ) is
C’s current vertex, rP ∈ V (Gτ ) is R’s current vertex, sP ∈ {C,R} is the player
whose turn it is to move next, and tP is the current time step.

We call any position P such that cP = rP a terminating position, since this
indicates that both players are situated on the same vertex and hence C has
won. Next, we formally introduce reachability games [9]:

Definition 3 (Reachability game G′). A reachability game is a directed graph
G′, given as a 3-tuple

G′ = (V0 ∪ V1, E′, F ),
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where V0 ∪V1 is a partition of the node set V ′ (also referred to as the state set);
E′ ⊆ V ′ × V ′ is a set of directed edges; and F ⊆ V ′ is a set of final states.

The game is played by two opposing players, Player 0 and Player 1; V0 and V1
are the (disjoint) sets of Player 0/Player 1 owned nodes, respectively. A token is
placed at some initial vertex v0 at the start of the game. Depending on whether
v0 ∈ V0 or v0 ∈ V1, the corresponding player then selects one of the outgoing
edges of v0 and pushes the token along that edge. When the token arrives at the
next vertex, the player who owns that vertex then selects an outgoing edge and
pushes the token along it. This process continues, and such a sequence of moves
constitutes a play of the reachability game on G′. Formally, a play φ = v0, v1, ...
is a (possibly infinite) sequence of vertices in V ′, such that (vi, vi+1) ∈ E′ for all
i ≥ 0. We say that a play φ is won by Player 0 if there exists some i such that
vi ∈ F . Otherwise, φ is of infinite length and for no i is vi ∈ F , and φ is won by
Player 1.

3.1 Transformation

We now detail our transformation from a given edge-periodic graph Gτ to a
reachability game G′ = (V ′, E′, F ).

State set V ′. We define the state set (i.e., vertex set) of the directed graph
G′ to be a set of 4-tuples, each corresponding to a position in the game of EPCR
on Gτ as follows:

V ′ = {(c, r, s, t) : c, r ∈ V (Gτ ), s ∈ {C,R}, t ∈ [LCM]}.

Let V0 = {(c, r, s, t) ∈ V ′ : s = C} and V1 = {(c, r, s, t) ∈ V ′ : s = R} be the sets
of Player 0 (or C) owned nodes, and Player 1 (or R) owned nodes, respectively.
We can restrict the range of t to [LCM] without losing information because all
edge periods divide LCM and hence the set of edges present at any time t is the
same as the set of edges present at time t mod LCM.

Edge set E′. In order to construct the edge set E′ ⊆ (V0 × V1) ∪ (V1 × V0)
we include the edge (S, S′) for S = (c, r, s, t) and S′ = (c′, r′, s′, t′) in E′ if and
only if the following conditions are satisfied:

(1) s = C =⇒
(
c = c′ ∨ ({c, c′} ∈ E(Gτ ) and b{c,c′}(t mod l{c,c′}) = 1)

)
∧ (r = r′) ∧ (t′ = t) ∧ (s′ = R),

(2) s = R =⇒
(
r = r′ ∨ ({r, r′} ∈ E(Gτ ) and b{r,r′}(t mod l{r,r′}) = 1)

)
∧
(
c = c′

)
∧
(
t′ = (t+ 1) mod LCM

)
∧ (s′ = C).

Condition (1) ensures that C can only stay at a vertex or move over an
adjacent edge that is present in every time step t′′ with t′′ mod LCM = t, and
that the next state will be a state in the same time step where R has to move.
Condition (2) is the analogous condition for R, but the next state will be in the
following time step (modulo LCM) and C will have to move next.

Set of final states F . Let F = {(c, r, s, t) ∈ V ′ : c = r}, so that the set of
final states consists of all states that correspond to a position in Gτ where C is
positioned on the same vertex as R (i.e., where C has won the game).
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3.2 Proof of Theorem 1

We first introduce the elements of the theory of reachability games that are
required for the proof of Theorem 1, starting with the definition of the attractor
set :

Definition 4 (Attractor set Attr(F ) [3]). The sequence (Attri(F ))i≥0 is re-
cursively defined as follows:

Attr0(F ) = F

Attri+1(F ) = Attri(F ) ∪ {v ∈ V0 | ∃(v, u) ∈ E′ : u ∈ Attri(F )} ∪
{v ∈ V1 | ∀(v, u) ∈ E′ : u ∈ Attri(F )}

The sets Attri(F ) are a sequence of subsets of V ′ that is monotone with respect
to set-inclusion. Let

Attr(F ) =
⋃
i≥0

Attri(F ).

Since G′ is finite, Attr(F ) is the least fixed point of the sequence (Attri(F ))i≥0.

Intuitively, the states in Attr(F ) are the states from which Player 0 can win
the game. For x ∈ {0, 1}, a memoryless strategy of Player x is a partial function
σx : Vx → V ′ that specifies for each state in Vx (except states in Vx ∩ F ) the
state to which Player x pushes the token from that state. The strategy is called
memoryless because the move a player selects only depends on the current state,
not on the history of the game. A winning strategy of Player 0 from any state in
Attr(F ) consists of selecting for each state u in (Attri+1(F )\Attri(F ))∩V0, for
any i ≥ 0, an arbitrary outgoing edge leading to a state in Attri(F ). The states
in Attri(F ), for any i ≥ 0, have the property that Player 0 wins the game after
at most i further moves (in total for both players) when following that strategy.
Similarly, V ′ \Attr(F ) is the set of states from which Player 1 can win the game.
The winning strategy for Player 1 from any such state consists of selecting for
each state u in V1 \ Attr(F ) an arbitrary outgoing edge leading to a state that
is not in Attr(F ). These winning strategies are memoryless.

Theorem 2 (Berwanger [3], Grädel et al.[9]). In a given reachability game
G′ = (V ′, E′, F ), Player 0 has a winning strategy from any state S ∈ Attr(F ),
and Player 1 has a winning strategy from any state S ∈ V ′ \ Attr(F ). There
exists an algorithm which computes the set Attr(F ) and a memoryless winning
strategy for the winning player in time O(|V ′|+ |E′|).

Our transformation produces, from a given edge-periodic graph Gτ , a di-
rected graph G′ = (V ′, E′, F ) such that there is a correspondence between posi-
tions in the game of EPCR on Gτ and states in V ′. Let Attr(F ) be the attractor
set for G′. Winning strategies for G′ translate directly into winning strategies
for EPCR on Gτ from any winning position by moving according to the outgoing
edges chosen by the winning strategy in G′. Using the notation SP to refer to
the state in V ′ that corresponds to the position P in the game of EPCR on Gτ ,
Theorem 2 then implies the following:
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Lemma 1. C can force a win from a position P if and only if the state SP ∈ V ′
satisfies SP ∈ Attr(F ). Starting from a position P such that SP /∈ Attr(F ),
R can force the sequence of moves to never reach any state S ∈ F , and, as such,
the EPCR game can be won by R.

Lemma 2. An edge-periodic graph Gτ is cop-win if and only if there exists a
vertex v ∈ V (Gτ ) such that (v, r,C, 0) ∈ Attr(F ) for all r ∈ V (Gτ ).

Proof. (⇒) Assume not, so that Gτ is cop-win but there exists no vertex v ∈
V (Gτ ) such that (v, r,C, 0) ∈ Attr(F ) for all r ∈ V (Gτ ). Then for every start
vertex c that C can choose, there exists at least one vertex u such that the state
(c, u,C, 0) /∈ Attr(F ). Let R choose such a vertex u as its start vertex. Since R
chooses u in full knowledge of C’s choice of c, it follows that R can force the
equivalent reachability game on G′ to begin from a state S(c,u,C,0) /∈ Attr(F ),
hence winning the reachability game regardless of C’s choice of c. This is a
contradiction since, by assumption, Gτ is cop-win.

(⇐) If C chooses a vertex v with the stated property as its initial vertex, the
resulting position P will correspond to a state SP ∈ Attr(F ) no matter which
vertex R chooses as its initial vertex, and by Lemma 1 C has a winning strategy.

ut

Proof (of Theorem 1). Since n = |V (Gτ )|, our transformation produces, given
an edge-periodic graph Gτ , a directed graph G′ = (V ′, E′, F ), such that |V ′| =
O(LCM · n2). This is because V ′ contains tuples (c, r, s, t) for n choices of c,
n choices of r, two choices of s, and LCM choices of t. Next, note that each state
SP ∈ V ′ has at most n outgoing edges because the player whose turn it is can
only stay at its vertex or move to one of at most n− 1 neighbouring vertices. It
follows that |E′| = O(LCM · n3). Furthermore, the transformation can be done
in O(|V ′|+ |E′|) = O(LCM · n3) time.

By Theorem 2, the attractor set Attr(F ) of G′ can be computed in time
O(LCM · n3). By Lemma 2, we can then determine whether Gτ is cop-win by
checking if there exists at least one vertex c ∈ V (Gτ ) such that (c, r,C, 0) ∈
Attr(F ) for all r ∈ V (Gτ ): if such a c exists, Gτ is cop-win, otherwise it is
robber-win. This check can be done in O(n2) time.

By Theorem 2, we also obtain a memoryless winning strategy σ0 for Player 0
from all states in Attr(F ), and a memoryless winning strategy σ1 for Player 1
from all states in V ′ \ Attr(F ), in O(|V ′| + |E′|) time. If Gτ is cop-win, we
obtain a winning-strategy for C by letting C choose as its initial vertex any
vertex satisfying the condition of Lemma 2 and then behave in line with σ0:
When it is C′s turn in a current position P = (cP , rP ,C, tP ), C constructs from
it the state SP , looks up the state σ0(SP ) = (c′, r′,R, tP mod LCM), and moves
to c′ (or stays at cP if cP = c′). Similarly, if Gτ is robber-win, we obtain a
winning-strategy for R by letting R choose its initial vertex r (in response to C’s
choice of its initial vertex c) in such a way that SP /∈ Attr(F ) for P = (c, r,C, 0)
and then behave in line with σ1. ut

We remark that, as long as LCM is polynomial in n and maxL, the winner of
EPCR on a given graph Gτ can be determined in polynomial time. In particular,
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if the periods le are bounded by some constant for all e ∈ E(Gτ ), the winner
can be determined in O(n3) time.

Finally, we note that Theorem 1 can be generalised to a setting with k cops at
the expense of increasing the algorithm’s running time to O(LCM ·k ·nk+2). The
idea is to fix an arbitrary ordering of the cops and create k + 1 layers of states
during every time step t ∈ [LCM] (one for each of the k cops’ moves, followed
finally by the robber’s move). By allowing the players to play their moves in each
time step in this serialised fashion the resulting game graph requires O(LCM · k)
layers with nk+1 states in each, with at most n edges leading from every state
to states in the following layer.

4 An Upper Bound on the Length Required to Ensure
an Edge-Periodic Cycle is Robber-Win

In this section, we consider edge-periodic cycles, a restricted subclass of edge-
periodic graphs where the underlying graph is a cycle. We are interested in how
long (in terms of number of edges) the cycle needs to be to ensure that the robber
can escape the cop indefinitely. First, we show that any edge-periodic infinite
path for which the set L of its edge periods is finite is robber-win. After this, we
show how the strategy for such infinite paths can be adapted to the cycle case.
Let the given edge periodic cycle be Cτ = (V,E, τ), and let L = {le : e ∈ E}
denote the set of edge periods. In the remainder of this section, we write LCM
as short-hand for LCM.

We first consider infinite paths, which will later allow us to handle the case
in which the cop chases the robber around the cycle in a fixed direction.

Lemma 3. Let P be an infinite edge-periodic path, L = {le : e ∈ E(P )}, and
assume that |L| is finite. Then, starting from any time step t, there exists a
winning strategy for R from any vertex with distance at least 2 · LCM from C’s
start vertex if LCM = maxL, and with distance at least LCM otherwise.

Proof. First, notice that since we assume that |L| is finite, so must be LCM.
Let C’s vertex at the start of time step t be ct ∈ P . Denote R’s initial vertex
by rt, and assume without loss of generality that rt is a vertex in P that lies
to the right of ct. Assume from now onward that P is a path starting at ct and
extending infinitely to the right, and that C moves right whenever possible (it is
clear that this is the best strategy for capturing R).

Consider the set L and its constituent elements. Either (1) there exists x ∈ L
such that maxL is not a multiple of x – then LCM ≥ 2 ·maxL, since it cannot be
the case that LCM = j ·maxL for any j < 2; or (2) for every x ∈ L, maxL = x · i
for some integer i ≥ 1; then LCM = maxL. With this in mind, define B = LCM
if (1) holds and B = 2 · LCM if (2) holds. Now, let us define the strips Si (i ≥ 1)
to be finite subpaths of P , such that for all edges e ∈ Si, e is first traversed by
C in some time step te ∈ [t+ (i− 1)B, t+ iB − 1] (assuming that C moves right
whenever it can). Note that B ≥ 2·maxL and hence each Si must contain at least
two edges. By convention, we call the leftmost and rightmost edges (vertices)
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of any Si its first and last edges (vertices), respectively. Note also that the last
vertex of Si and the first vertex of Si+1 are one and the same, for all i ≥ 1.

Note that the first vertex of S2 is at most B edges away from ct. By the
condition of the lemma, R is located at least B edges away from ct. For the
remainder of the analysis, we assume that R is located at the first vertex of S2

and moves right whenever possible. If R can escape C indefinitely under this
assumption, it is clear that R can also do so if it starts further to the right.

We now demonstrate that R wins the game. Note that the set of edges that
are present in each step repeats every B time steps as LCM divides B. Thus,
we have that C and R traverse strips in a synchronised fashion: For any i ≥ 1,
during the interval [t+ (i− 1)B, t+ iB − 1] of time steps, C traverses Si and R
traverses Si+1. The only possibility for C to catch R would be for C to reach the
last vertex of Si before R leaves the first vertex of Si+1. However, C reaches the
last vertex of Si in a time step t′ = t + iB − j for some 1 ≤ j ≤ maxL, as the
last edge of Si is available at least once in maxL consecutive time steps. On the
other hand, R leaves the first vertex of Si+1 in a time step t′′ = t+ (i− 1)B+ j′

for some 0 ≤ j′ < maxL. As B ≥ 2 maxL, it follows that t′ > t′′, showing that
C cannot catch R. ut

Theorem 3. Let Cτ = (V,E, τ) be an edge-periodic cycle on n vertices and
L = {le : e ∈ E}. If n ≥ 2 · l · LCM(L), then Cτ is robber-win (where l = 1 if
LCM(L) ≥ 2 ·maxL, and l = 2 otherwise).

Proof. For any t ≥ 0, we let ct and rt denote the vertex at which C and R
are positioned at the start of time step t, respectively. Consider now some edge
e ∈ E(Cτ ) and classify its vertices as a ‘left’ and ‘right’ vertex arbitrarily; let
the left vertex of each edge be the right vertex of the following edge in the cycle.
We proceed by specifying a strategy for R. Initially, let C choose c0; R chooses r0
to be the vertex antipodal to c0 in Cτ . (If n is odd then R selects r0 to be either
of the two vertices that are furthest away from c0; we will refer to both these
vertices as antipodal to c0, and treat vertices in all steps t ≥ 0 in the same way.)
We now distinguish between two modes of play, Hide and Escape, and specify
R’s strategy in each of them.

Hide mode: A Hide period begins in step 0 and in any step t ≥ 2 such that
ct and rt are antipodal, but ct−1 and rt−1 were not. Note that any game in which
R follows our strategy begins in a Hide period. The Hide period beginning at step
t is the interval [t, t+ x] such that ct′ and rt′ are antipodal for all t′ ∈ [t, t+ x],
but ct+x+1 and rt+x+1 are not. (If no such step t+ x+ 1 exists, the Hide period
is [t,∞).) Any Hide period (except if it is of the form [t,∞)) is followed directly
by an Escape period, which will start in step t+ x+ 1.

R’s Hide strategy: If the game is in a Hide period during step t, R observes
C’s choice of ct+1 and tries to move to (or stay at) a vertex antipodal to it.
Clearly, R cannot be caught in any step belonging to a Hide period, as regardless
of whether LCM = maxL or LCM ≥ 2 ·maxL, we have that n ≥ 4 ·maxL ≥ 4.
As a result, antipodal vertices in Cτ are at least distance 2 from one another.

Escape mode: An Escape period always begins in a step t such that step
t − 1 was the last step of some Hide period. As such, an Escape period is an
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interval [t, t + x] such that ct′ and rt′ are not antipodal for any t′ ∈ [t, t + x],
but ct+x+1 and rt+x+1 are. The last step of the Escape period is then t+x, and
the first step of the next Hide period is t+ x+ 1. If there is no step t+ x+ 1 in
which ct+x+1 and rt+x+1 are antipodal, the Escape period is [t,∞).

R’s Escape strategy: Assume that some Escape period starts in step t.
Then, at the start of step t − 1, ct−1 and rt−1 were antipodal to one another,
and during step t−1, we had a situation in which C was able to move towards R
in some direction, but the edge incident to rt−1 leading in the same direction was
not present. Now, recall that if l = 2, so that LCM = maxL, then n ≥ 4 · LCM;
and if l = 1, so that LCM ≥ 2·maxL, then n ≥ 2·LCM. Therefore, since ct−1 and
rt−1 are antipodal in Cτ , if l = 2 holds we have that the distance between them
is at least 2 ·LCM and if l = 1 holds, the distance between them is at least LCM.
Observe now that we are able to view any edge-periodic cycle of finite length as
an infinite path whose edge patterns repeat infinitely often. We can thus view
the Escape period as an instance of the game on an infinite edge-periodic path
starting at time step t − 1, to which Lemma 3 applies. Hence, R can evade C
until the Escape period ends (or indefinitely, in case the Escape period never
ends).

Since every step t belongs to either a Hide period or an Escape period, we
have shown that C can never catch R, and the proof is complete. ut

We now give lower bounds on the length required of a strictly edge-periodic
cycle to ensure that it is robber-win.

Theorem 4. There exists an edge-periodic cycle of length 3 · LCM with edge
pattern lengths in the set L that is both cop-win and satisfies LCM = maxL.

Proof. Let M > 1 be an integer and consider an edge-periodic cycle C with 3M
edges and with edge pattern lengths in L = {1,M}. Let two consecutive edges
have patterns 0...01 of length M , and all 3M−2 remaining edges have pattern 1.
We refer to the subpath of C consisting of the two edges with period M as the
M -path, and the subpath with edges labelled with 1 as the 1-path.

We now specify a strategy for C and show that it is in fact a winning strategy:
Let C position itself initially at either of the two vertices belonging to the 1-path
that are distance M − 1 from one extreme point of the M -path, and 2M − 1
from the opposite extreme point (where distance is taken to mean the length
of the path to that extreme point that avoids the edges of the M -path). Call
that chosen vertex c0, and notice that it splits the 1-path into two subpaths that
intersect only in c0 – one of length M − 1 which we will call P−, the other of
length 2M − 1 which we call P+. If R chooses its initial position to be some
vertex lying on P−, then C can move along all edges of P− in the first M − 1
steps and catch R. If R chooses its initial position as some vertex lying on P+,
then in the first 2M −1 steps C can traverse all edges of P+. The only way for R
to leave P+ without encountering C is via the M -path. R can traverse only one
edge of the M -path (in the M -th step) and will be stuck at the middle vertex of
the M -path until the 2M -th step (i.e., until time step 2M − 1). In step 2M − 1,
C will be positioned at the vertex that lies on both the M -path and P+. C will
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move first and catch R. It remains to be shown that R will be caught if it chooses
the middle vertex of the M -path as its start vertex: here, R will not be able to
move until step M − 1, so C can traverse all edges of P− in the first M − 1 steps
and then, in step M − 1, catch R before R can make its move. ut

A small amount of modification to the construction in the proof of Theorem 4
yields the following lower bound for the case when LCM ≥ 2 ·maxL:

Theorem 5. There exists an edge-periodic cycle of length 1.5 · LCM with edge
periods in the set L that is both cop-win and satisfies LCM ≥ 2 ·maxL.

Proof. Perform the construction from the proof of Theorem 4, taking M > 1
to be odd. Again let C select one of the vertices that has distance M − 1 and
2M−1 from opposite ends of the M -path as its start vertex, calling that vertex x.
Consider the strategy from the proof of Theorem 4 and observe that there are
two edges that C may cross in the second step. Select either one of these edges
and replace its pattern of 1 with the pattern 01 (with period 2). C can now
follow the strategy in the proof of Theorem 4 – this works since the edge with
pattern 01 has been selected so that it is present whenever C’s strategy crosses
that edge. Since M is odd, we have that LCM = 2M . Since the constructed cycle
has length 3M , the theorem follows. ut

5 Conclusion

We have introduced a cops and robbers game on edge-periodic graphs and shown
that there exists an algorithm with running time O(LCM · n3) that decides
whether the cop or robber wins and computes a winning strategy for the winning
player. The running-time of the algorithm is polynomial if LCM(L) is polynomial
in n and maxL. A natural open question is: What is the complexity of deciding
whether cop or robber wins when the least common multiple of the edge periods
is exponential in the size of the input? We note that LCM({1, ..., n}) = eφ(n),
where φ(n) ∈ Θ(n) is Chebyshev’s function [19], and thus there are edge-periodic
graphs where the running-time of our algorithm is exponential. It would be in-
teresting to establish whether there exists a better algorithm or whether the
problem is NP -hard for this case. More generally, one could also examine the
cops and robbers game within the context of other temporal graph models. It
would also be interesting to reduce the gap between our upper and lower bounds
on the minimum length required of an edge-periodic cycle to be guaranteed to
be robber-win.

Acknowledgements

The authors would like to thank Maciej Gazda for helpful discussions regarding
reachability games, as well as an anonymous reviewer for a suggestion leading to
the running-time for the variant with k cops mentioned at the end of Section 3.



12 Thomas Erlebach and Jakob T. Spooner

References

1. Aigner, M., Fromme, M.: A game of cops and robbers. Discrete Applied Mathe-
matics 8(1), 1 – 12 (1984). https://doi.org/10.1016/0166-218X(84)90073-8

2. Berarducci, A., Intrigila, B.: On the cop number of a graph. Advances in Applied
Mathematics 14(4), 389 – 403 (1993). https://doi.org/10.1006/aama.1993.1019

3. Berwanger, D.: Graph games with perfect information. arXiv:1407.1647 (2013)
4. Bonato, A., MacGillivray, G.: A general framework for discrete-time pursuit games.

Unpublished manuscript (2015)
5. Bonato, A., Nowakowski, R.: The Game of Cops and Robbers on Graphs, Stu-

dent Mathematical Library, vol. 61. American Mathematical Society (2011).
https://doi.org/10.1090/stml/061

6. Casteigts, A.: A Journey Through Dynamic Networks (with Excursions).
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