Does depth of squat-stand maneuver affect estimates of dynamic cerebral autoregulation?
Supplementary appendix

Figure S1: CBFv (A), MAP (B), Systolic BP (C), Diastolic BP (D), Heart rate (E) and EtCO ${ }_{2}$ (F) for standing baseline, $S_{S M D}$ and $S S M$. Box represents median and upper and lower IQR,
whiskers represent maximum and minimum.

Figure S2: Autoregulation index for standing baseline, $\mathrm{SSM}_{\mathrm{D}}$ and $\mathrm{SSM}_{\mathrm{s}}$

Figure S3: VLF coherence for standing baseline, SSM $_{D}$ and SSM $_{S}$

Figure S4: VLF gain for standing baseline, SSM $_{D}$ and SSMs

Figure S5: VLF phase for standing baseline, SSM $_{D}$ and SSM $_{S}$

Figure S6: Average tilt angle from horizontal for SSMD (solid) and SSMS (dashed). Standing from squat was initiated at 0 seconds, subsequent squat was initiated at 10 seconds.

Table S1: Hemodynamic parameters according to SSM depth and age group

Parameter	Older$(n=16)$		Younger$(n=16)$		P -values	
	SSM ${ }_{\text {d }}$	SSMs	SSMD	SSMs	Age	Interaction
$\begin{aligned} & \text { CBFv MCA } \\ & (\mathrm{cm} / \mathrm{s}) \end{aligned}$	59.0 ± 10.1	56.7 ± 8.1	70.3 ± 7.4	66.6 ± 6.6	<0.01	0.47
MAP (mmHg)	101.1 ± 13.6	99.1 ± 15.7	94.8 ± 10.7	97.4 ± 11.4	0.36	0.19
Systolic BP (mmHg)	133.2 ± 24.8	130.8 ± 26.4	128.0 ± 25.5	130.1 ± 23.6	0.73	0.45
Diastolic BP (mmHg)	84.9 ± 11.5	83.3 ± 12.9	79.9 ± 7.2	85.1 ± 9.7	0.64	0.05
Heart Rate (bpm)	81.6 ± 8.0	84.3 ± 11.4	91.7 ± 10.1	90.7 ± 13.7	0.02	0.34
$\begin{aligned} & \mathrm{EtCO}_{2} \\ & (\mathrm{mmHg}) \end{aligned}$	38.7 ± 2.9	37.2 ± 2.6	37.9 ± 4.5	36.0 ± 4.4	0.40	0.76

Values are given as mean \pm SD. CBFv, Cerebral blood flow velocity; MCA, Middle cerebral artery; MAP, Mean arterial pressure; BP, Blood pressure; EtCO_{2}, End-tidal CO_{2}. P-values from two-way mixed ANOVA demonstrate the between-subject effects of age group on each hemodynamic parameter and the interaction between age group and depth of SSM.

Figure S7: Autoregulation index split by younger (circles) and older (squares) age groups, during each baseline position and SSM depth. Error bars give SD.

Figure S8: VLF gain split by younger (circles) and older (squares) age groups, during each baseline position and SSM depth. Error bars give SD. P-values are from student's t-test * = $\mathrm{p}<0.05$

Figure S9: VLF phase split by younger (circles) and older (squares) age groups, during each baseline position and SSM depth. Error bars give SD. P-values are from student's t-test ** $=$ $\mathrm{p}<0.01$

Figure S10: VLF coherence split by younger (circles) and older (squares) age groups, during each baseline position and SSM depth. Error bars give SD. P-values are from student's t-test $* * *=p<0.001$.

Table S2: Mean change in thigh angle during SSMs between age groups

	Older	Younger	P-value
SSM $_{\boldsymbol{D}}$	65.3 ± 9.2	69.5 ± 10.5	0.23
SSM $_{\mathbf{S}}$	11.6 ± 9.1	11.6 ± 8.4	0.99

Values are given as mean \pm SD. P-values are from Student's t-test.

Figure S11: Mean SSM depth for younger (solid) and older (dashed) age groups. Tilt angle is given in degrees from horizontal.

Figure S12: Mean SSMs depth for younger (solid) and older (dashed) age groups. Tilt angle is given in degrees from horizontal. Note difference in vertical scale from Fig. S11.

