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Abstract

This paper investigates the robust stability of uncertain discrete-time linear systems subject to input and output quantization
and packet loss. First, a necessary and sufficient condition in terms of LMIs is proposed for the quadratic stability of the
closed-loop system with double quantization and norm bounded uncertainty in the plant. Moreover, it is shown that the
proposed condition can be exploited to derive the coarsest logarithmic quantization density under which the uncertain plant
can be quadratically stabilized via quantized state feedback. Second, a new class of Lyapunov function which depends on the
quantization errors in a multilinear way is developed to obtain less conservative results. Lastly, the case with input and output
packet-loss channels is investigated.
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1 Introduction

Motivated by finite network resource, quantized
feedback control has been one of the most popular re-
search trends in the field of networked control systems
(see, e.g., Zhang et al. (2013)). It naturally becomes sig-
nificant that how the quantization error will influence
the stability and performance of the feedback systems.
In the meanwhile, a great deal of effort has gone into
establishing the minimum feedback information needed
to stabilize a open-loop unstable system. Perhaps the
most important results in recent years on the quantized
feedback control should be traced back to Elia & Mitter
(2001) where the logarithmic quantization was proposed
and shown to be the coarsest quantizer to quadratically
stabilize discrete-time linear time-invariant systems.
The logarithmic quantizer was further investigated by
Fu & Xie (2005) in which the sector bound approach
was exploited to relate the design problem for quantized
feedback control to the optimal H∞ control problem.
Besides, the quantized feedback control problem has
been studied in different scenarios. For instance, Gu &
Qiu (2014) put forward the polar logarithmic quantiza-
tion for multi-input systems; Gu et al. (2015) studied
the mean-square stabilization for networked control
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systems with both fading channels and logarithmic
quantization; (Coutinho et al. 2010), Xia et al. (2013)
considered feedback control systems with input and
output quantization. On the other hand, packet loss is
also a widely studied topic as one of the main communi-
cation constraints, see, e.g., Rich & Elia (2015). Among
the works considering both the effect of quantization
and packet loss, one should mention Ishido et al. (2011)
which investigated the digital channel subject to packet
loss and finite-level quantization, Tsumura et al. (2009)
which analyzed the tradeoffs between the coarsest quan-
tizer, packet-loss rate and the instability of the plant.

More recently, another research aspect that re-
searchers have started to deal with is the effect of plant
uncertainty. See, e.g., Su & Chesi (2017a) which con-
sidered robust stability of uncertain system over fading
channels, Fu & Xie (2010) where sufficient condition
was proposed for robust stabilization for linear uncer-
tain systems via logarithmic quantized feedback, Liu
et al. (2015) which studied the stability analysis of
continuous-time uncertain system with dynamic quan-
tization and communication delays, Hayakawa et al.
(2009) in which adaptive quantized control was designed
for nonlinear uncertain system, Kang & Ishii (2015)
which considered coarsest quantization for a class of
finite-order uncertain autoregressive plant.

In this paper, we first consider the model of double
quantization as studied in Coutinho et al. (2010) with
the plant affected by unstructured uncertainty and then
further integrate the effect of input and output packet
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loss. Specifically, the controller output and the plant out-
put are transmitted through input and output packet-
loss channels respectively after being quantized via two
independent logarithmic quantizers. First, a necessary
and sufficient condition in terms of LMIs is proposed for
the quadratic stability of the closed-loop system with
double quantization and norm bounded uncertainty in
the plant. Moreover, it is shown that the proposed condi-
tion can be exploited to derive the coarsest logarithmic
quantization density under which the uncertain plant
can be robustly quadratically stabilized via quantized
state feedback. Second, a new class of Lyapunov function
which depends on the quantization errors in a multilin-
ear way is developed to obtain less conservative result.
Lastly, a sufficient condition is established to ensure the
robust stability in the mean square sense for the uncer-
tain closed-loop systems with input and output quanti-
zation and packet-loss channels. A conference version of
this paper (without Section 4 and part of Section 5) is
reported in Su & Chesi (2017b).

2 Quadratic stability of uncertain systems with
input and output quantization

In this section, we focus on the robust quadratic
stability of uncertain systems with input and output
quantization. Let us first consider the single-input single-
output plant affected by uncertainty described as{

xp(k + 1) = (A+A1)xp(k) + (B +B1)u(k)

y(k) = Cxp(k)
(1)

where xp(k) ∈ Rn is the plant state, u(k) ∈ R is the
plant input and y(k) ∈ R is the plant output, (A, B)
is the nominal system and the time-varying uncertainty
(A1, B1) is assumed to be norm bounded satisfying

[A1 B1] = HF (k)[E1 E2], F (k)F (k)T ≤ I. (2)

The controller is assumed to be dynamic, described as{
xc(k + 1) = Acxc(k) +Bcv(k)

w(k) = Ccxc(k) +Dcv(k)
(3)

where xc(k) ∈ Rnc is the controller state, v(k) ∈ R is the
controller input and w(k) ∈ R is the controller output.

Following the works Elia & Mitter (2001) and Fu
& Xie (2005), we utilize the logarithmic quantization
defined as

Q(v) =


ρi if 1

1+δρ
i < v ≤ 1

1−δρ
i

v > 0, i = ±1,±2, . . .

0 if v = 0

−Q(−v) if v < 0

(4)

where 0 < ρ < 1 is the quantization density and δ =
1−ρ
1+ρ . It is assumed that the output of the plant y(k) is

quantized before being sent to the input of the controller
v(k) and the the output of the controller w(k) is quan-
tized before being sent to the input of the plant u(k).

The two quantizers are modeled as

v(k) = Q1(y(k)), u(k) = Q2(w(k)) (5)

where Q1(·) and Q2(·) are static logarithmic quantizers
with quantization density ρ1 and ρ2.

Let x(k) = [xp(k)T xc(k)T ]T be the state of the
closed-loop system. Comprising the plant, the controller
and the quantizers, such a closed-loop system is given by

x(k + 1) =

(
xp(k + 1)

xc(k + 1)

)
=

(
(A+A1)xp(k)

Acxc(k)

)

+

(
(B +B1)Q2(Ccxc(k) +DcQ1(Cxp(k)))

BcQ1(Cxp(k))

)
.

(6)

When there is no uncertainty in the plant, i.e.,A1 =
0 andB1 = 0, it is shown in Theorem 2 of Coutinho et al.
(2010) that the closed-loop system (6) is quadratically
stable if and only if there exists P > 0 such that

Ā(∆1,∆2)TPĀ(∆1,∆2)− P < 0

∀|∆1| ≤ δ1, |∆2| ≤ δ2
(7)

where

Ā(∆1,∆2) =(
A+B(1 + ∆2)Dc(1 + ∆1)C B(1 + ∆2)Cc

Bc(1 + ∆1)C Ac

)
.

(8)

Lemma 1 (Amato et al. (1996), Garofalo et al. (1993))
Consider the matrix-valued function M(p) : P → Rn×n,
where p ∈ P ⊂ Rq and the set P is a hyper-box, i.e.,
P := [p1, p1]× [p2, p2]× · · · × [pq, pq]. Let us assume

M(p) =
N(p)

d(p)
, (9)

with N(·) a multi-affine matrix-valued function of p, d(·)
a multi-affine polynomial of p and d(p) 6= 0 for all p ∈ P.
Then M(p) > 0,∀p ∈ P if and only if M(p(i)) > 0, i =
1, . . . , 2q where p(i) is the i-th vertex of P.

Therefore, it is necessary and sufficient to check the
quadratic stability of an uncertain system depending
multi-affinely on uncertain parameters constrained into
a hyper-box on the vertices of the hyper-box under the
same Lyapunov function v(x(k)) = x(k)TPx(k).

Next, let us take the uncertainty (A1, B1) into con-
sideration. By treating the quantization errors as sec-
tor bounded time-varying uncertainties, let us define the
auxiliary system for (6) as

x(k + 1) = Â(∆1(k),∆2(k))x(k)

Â(∆1,∆2) =

(
A+A1 0

0 Ac

)
+(B +B1)(1 + ∆2)([0 Cc] +Dc(1 + ∆1)[C 0])

Bc(1 + ∆1)[C 0]


∀|∆1(k)| ≤ δ1, |∆2(k)| ≤ δ2.

(10)
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Before proceeding to our main result, let us report
the following result (see, e.g., Xie (1996)).

Lemma 2 Given real matrices S = ST ,U ,V with appro-
priate dimension, then

S + UF (k)V + VTF (k)TUT > 0 (11)

holds for all F (k) satisfying F (k)F (k)T ≤ I if and only
if there exists a scalar σ > 0 such that

S − σUUT − σ−1VTV > 0. (12)

Theorem 3 The closed-loop system (6) is robustly
quadratically stable if and only if there exist Q > 0 and
a scalar σ(∆1,∆2) > 0 1 such that

Q QĀ(∆1,∆2)T QĒ(∆1,∆2)T

∗ Q− σ(∆1,∆2)H̄H̄T 0

∗ ∗ σ(∆1,∆2)I

 > 0

∀∆1 ∈ {−δ1, δ1} ,∆2 ∈ {−δ2, δ2}

(13)

where Ā(∆1,∆2) is defined in (8), and
Ē(∆1,∆2) =(
E1 + E2(1 + ∆2)Dc(1 + ∆1)C E2(1 + ∆2)Cc

)
H̄ =

(
HT 0

)T
.

(14)
Proof. First, let us observe that, from Theorem 2
in Coutinho et al. (2010), the system (6) is robustly
quadratically stable if and only if the auxiliary sys-
tem (10) is robustly stable with a Lyapunov function
v(x(k)) = x(k)TPx(k) for all |∆1(k)| ≤ δ1, |∆2(k)| ≤ δ2
and all [A1 B1] defined in (2). Next, let us observe that

Â(∆1,∆2) = Ā(∆1,∆2) + Â1(∆1,∆2)

where Â1(∆1,∆2) = H̄F (k)Ē(∆1,∆2). It follows that
the system (10) is robustly quadratically stable if and
only if there exists Q > 0 such that(

Q Q[Ā(∆1,∆2) + Â1(∆1,∆2)]T

∗ Q

)
> 0

∀|∆1| ≤ δ1, |∆2| ≤ δ2,∀F (k)F (k)T ≤ I.

(15)

Since the above matrix depends on (∆1,∆2) bilin-
early, by exploiting Lemma 1, we have that the condition
in (15) can be equivalently rewritten as(

Q Q[Ā(∆1,∆2) + Â1(∆1,∆2)]T

∗ Q

)
> 0

∀∆1 ∈ {−δ1, δ1} ,∆2 ∈ {−δ2, δ2} ,∀F (k)F (k)T ≤ I.
(16)

1 Since (∆1,∆2) takes value only at the vertices of [−δ1, δ1]×
[−δ2, δ2] in (13), σ(∆1,∆2) amounts to 4 scalar variables
corresponding to the 4 vertices, i.e., the variable σ in the
LMI (13) is allowed to vary with different vertex.

Next, let us denote

S(∆1,∆2) =

(
Q QĀ(∆1,∆2)T

∗ Q

)
,U =

(
0

H̄

)
V(∆1,∆2) =

(
Ē(∆1,∆2)Q 0

)
,

one has that(
Q Q[Ā(∆1,∆2) + Â1(∆1,∆2)]T

∗ Q

)
= S(∆1,∆2) + UF (k)V(∆1,∆2) + V(∆1,∆2)TF (k)TUT .
Let us further denote

S1 = S(δ1, δ2)

S2 = S(−δ1, δ2)

S3 = S(δ1,−δ2)

S4 = S(−δ1,−δ2)

and


V1 = S(δ1, δ2)

V2 = S(−δ1, δ2)

V3 = S(δ1,−δ2)

V4 = S(−δ1,−δ2).

Then one can rewrite the condition in (16) as

Si + UF (k)Vi + VTi F (k)TUT > 0, i = 1, 2, 3, 4

for all admissible F (k) defined in (2). Based on Lemma
2 together with the Schur complement lemma, it can be
verified that the condition in (16) holds if and only if
there exist σi > 0, i = 1, 2, 3, 4 satisfying(

Si − σiUUT VTi
∗ σiI

)
> 0, i = 1, 2, 3, 4

which is equivalent to the condition (13). It can be noted
that the scalar function σ(∆1,∆2) in (13) amounts to
the four scalar variables σi, i = 1, 2, 3, 4 corresponding
to each vertex of [−δ1, δ1]× [−δ2, δ2]. �

Remark 4 Theorem 3 proposes a necessary and suffi-
cient condition in terms of LMIs for the robust quadratic
stability of the closed-loop system (6). As mentioned in
Fu & Xie (2010) and Kang & Ishii (2015), it is diffi-
cult to deal with the quadratic stabilization for quantized
feedback uncertain systems since there are two blocks of
uncertainties as a result of the uncertain plant and quan-
tization error. It should be noticed that the system (6)
involves three blocks of uncertainties, the quadratic sta-
bility analysis of which cannot be fully investigated with
the existing approaches including the scaled H∞ analy-
sis method. When considering only one quantizer, i.e.,
∆1 = 0 , the necessary and sufficient condition proposed
in Theorem 3 can be led to derive the coarsest logarith-
mic quantization density δsup under which the uncertain
system (1) can be quadratically stabilized via quantized
state feedback by bisection algorithm. This is shown in the
following corollary, see also Example 12 for illustration.

Corollary 5 The coarsest logarithmic quantization
density under which the uncertain system (1)-(2) can
be robustly quadratically stabilized via quantized state
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feedback is given by ρinf =
1−δsup

1+δsup
, where

δsup = sup
Q,Y,σ(∆)

δ s.t.
Q QAT + (1 + ∆)Y BT QET1 + (1 + ∆)Y ET2

∗ Q− σ(∆)HHT 0

∗ ∗ σ(∆)I

 > 0,

∀∆ ∈ {−δ, δ}
(17)

and the corresponding linear feedback gain is given by

K∗ = (Y ∗)
T

(Q∗)
−1

.

Remark 6 The results proposed in this section and
the following section can be extended to multiple-input
multiple-output systems by quantizing each components
of the vector input and vector output independently.
Moreover, such results remain applicable when there are
more than two quantizers concatenated in a closed loop
as long as the quantizers are independent, which is po-
tential since it is often required to apply a decentralized
structure for the quantizers in networked control systems.

3 Multilinear parameter-dependent quadratic
Lyapunov function

As proposed in Gao & Chen (2008), a quantization
dependent Lyapunov function will provide less conser-
vative condition for the robust stability of the quantized
system. Here we define the following Lyapunov function:

v(x(k)) = x(k)TP (∆1(k),∆2(k))x(k) (18)

where

P (∆1(k),∆2(k))

= P0 + P1∆1(k) + P2∆2(k) + P3∆1(k)∆2(k)
(19)

where P0, P1, P2, P3 are symmetric matrices. We call
(18)-(19) multilinear parameter-dependent quadratic
Lyapunov function. As the name suggests, this class of
Lyapunov function is allowed to depend on the quan-
tization errors (∆1(k),∆2(k)) in a multilinear way. To
be more specific, P (∆1(k),∆2(k)) is a bilinear matrix
function w.r.t (∆1(k),∆2(k)). It should be noted that
Pi, i = 1, 2, 3 do not necessarily have to be positive def-
inite. For simplicity, let ∆ and ∆

′
denote (∆1,∆2) and

(∆
′

1,∆
′

2), respectively.

Theorem 7 The closed-loop system (6) is asymptot-
ically stable if there exist P0, P1, P2, P3 and a scalar
µ(∆,∆

′
) > 0 such that

P (∆) Ā(∆)TP (∆
′
) µ(∆,∆

′
)Ē(∆)T 0

∗ P (∆
′
) 0 P (∆

′
)H̄

∗ ∗ µ(∆,∆
′
)I 0

∗ ∗ ∗ µ(∆,∆
′
)I

 > 0

∀∆1,∆
′

1 ∈ {−δ1, δ1} ∀∆2,∆
′

2 ∈ {−δ2, δ2}
(20)

where Ā, Ē, H̄ are defined in (8) and (14).

Proof. Suppose there existP0, P1, P2, P3 andµ(∆,∆
′
) >

0 such that the condition (20) holds. By replacing

µ(∆,∆
′
) with σ(∆,∆

′
)−1 and Schur complement

lemma, one has that
P (∆) Ā(∆)TP (∆

′
) Ē(∆)T

∗ P (∆
′
)− σ(∆,∆

′
)P (∆

′
)H̄H̄TP (∆

′
) 0

∗ ∗ σ(∆,∆
′
)I


> 0, ∀∆1,∆

′

1 ∈ {−δ1, δ1} ∀∆2,∆
′

2 ∈ {−δ2, δ2}.
By similar reasoning in the proof of Theorem 3 based on
Lemma 2, it can be implicated that the above condition
is equivalent to that(

P (∆) (Ā(∆) + Â1(∆))TP (∆
′
)

∗ P (∆
′
)

)
> 0

∀∆1,∆
′

1 ∈ {−δ1, δ1} ∀∆2,∆
′

2 ∈ {−δ2, δ2}

for all F (k)F (k)T ≤ I where Â1(∆) = H̄F (k)Ē(∆).
Let us observe that the above matrix depend multi-

affinely on (∆1,∆2,∆
′

1,∆
′

2). It follows by exploiting
Lemma 1 that(

P (∆1,∆2) Â(∆1,∆2)TP (∆
′

1,∆
′

2)

∗ P (∆
′

1,∆
′

2)

)
> 0

∀|∆1| ≤ δ1, |∆2| ≤ δ2, ∀|∆
′

1| ≤ δ1, |∆
′

2| ≤ δ2
for all F (k)F (k)T ≤ I. Consequently, it can be implied
that for all nonzero x(k),

∇v(x(k))

= v(x(k + 1))− v(x(k))

= x(k)T Â(∆1(k),∆2(k))TP (∆1(k + 1),∆2(k + 1))×
Â(∆1(k),∆2(k))x(k)− x(k)TP (∆1(k),∆2(k))x(k) < 0

for all |∆1| ≤ δ1, |∆2| ≤ δ2 and all F (k)F (k)T ≤ I.
Thus, the uncertain system (10) is asymptotically

stable, so is the closed-loop system (6). �

It can be verified that the condition (20) will be
reduced to (13) when the common quadratic Lyapunov
function is adopted, i.e., P1 = P2 = P3 = 0. Thus, The-
orem 7 provides a less conservative condition than (13)
for the asympotical stability of the closed-loop system
(6). See Example 13 for demonstration.

4 Packet-loss channels

In this section, we further consider the scenario
where the communication channels are affected by
packet loss, described by Figure 1.

To be specific, the quantized output of the controller
and the plant are transmitted over the packet-loss chan-
nel ξ1(k) and ξ2(k), respectively. The packet loss experi-
enced by the input channel and output channel is char-
acterized via two independent Bernoulli processes with
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Fig. 1. The uncertain closed-loop system with input and
output quantization over packet-loss channels

probability 1− τ1 and 1− τ2, described by

Pr(ξi(k) = j) =

{
1− τi, j = 0,

τi, j = 1,
0 < τi ≤ 1, i = 1, 2.

(21)
To further take the packet loss into consideration,

the closed-loop quantized system over packet-loss chan-
nels as shown in Figure 1 is represented as

x(k + 1) =

(
xp(k + 1)

xc(k + 1)

)
=

(
(A+A1)xp(k)

Acxc(k)

)

+

(
(B +B1)ξ1(k)Q2(Ccxc(k) +Dcξ2(k)Q1(Cxp(k)))

Bcξ2(k)Q1(Cxp(k))

)
(22)

and the auxiliary system obtained by treating the quan-
tization errors as sector-bounded uncertainties is given
by

x(k + 1) = Ã(∆1(k),∆2(k), ξ1(k), ξ2(k))x(k)

Ã(∆1,∆2, ξ1, ξ2)

=

(
A+A1 0

0 Ac

)
+

(
(B +B1)ξ1(k) 0

0 Bcξ2(k)

)

×

(
(1 + ∆2)Dcξ2(k)(1 + ∆1)C (1 + ∆2)Cc

(1 + ∆1)C 0

)
∀|∆1(k)| ≤ δ1, |∆2(k)| ≤ δ2.

(23)
To this end, let us introduce the stability in the

mean square sense to tackle the stochastic uncertainties
used to model the packet-loss channels. Define

X(k) = E(x(k)x(k)′). (24)

Definition 8 (Elia (2005)) The closed-loop system (22)
is said to be robustly stable in the mean square sense if
X(k) is well-defined for all k ≥ 0 and

lim
k→∞

X(k) = 0 ∀x(0) ∈ Rn (25)

for all admissible F (k) defined in (2).

Theorem 9 The closed-loop system (22) is robustly sta-
ble in the mean square sense if there exist Q > 0 and a

scalar σ(∆) > 0 such that the LMIs in (26) hold where{
κ1 =

√
(1− τ1)(1− τ2) , κ2 =

√
τ1τ2

κ3 =
√
τ1(1− τ2) , κ4 =

√
τ2(1− τ1)

and

A1 =

(
A 0

0 Ac

)

A2 =

(
A+ (1 + ∆1)(1 + ∆2)BDcC (1 + ∆2)BCc

(1 + ∆1)BcC Ac

)

A3 =

(
A (1 + ∆2)BCc

0 Ac

)
, A4 =

(
A 0

(1 + ∆1)BcC Ac

)
Ē1 =

(
E1 0

)
Ē2 =

(
E1 + (1 + ∆1)(1 + ∆2)E2DcC (1 + ∆2)E2Cc

)
Ē3 =

(
E1 (1 + ∆2)E2Cc

)
.

Proof. Suppose there exist Q > 0 and σ(∆) > 0 sat-
isfying the condition in (26). First, it can be verified
via applying the S-procedure that the condition (26) is
equivalent to the condition (27).

Since the matrix in (27) depends on (∆1,∆2) multi-
affinely, it can be followed from Lemma 1 that the matrix
inequality in (27) holds for all |∆1| ≤ δ1, |∆2| ≤ δ2 and
all F (k)F (k)T ≤ I.

Next, let us pre and post multiply the matrix in-
equality in (27) with diag{Q−1, Q−1} and after apply-
ing the Schur complement lemma, one has that (27) is
equivalent to

P − κ2
1Ā1

T
P Ā1 − κ2

2Ā2
T
P Ā2 − κ2

3Ā3
T
P Ā3 − κ2

4Ā4
T

×P Ā4 > 0, ∀|∆1| ≤ δ1, |∆2| ≤ δ2, F (k)F (k)T ≤ I
where P = Q−1 and

Ā1 =

(
A+A1 0

0 Ac

)

Ā2 =

(
A+A1 (1 + ∆2)(B +B1)Cc

0 Ac

)

+

(
(1 + ∆1)(1 + ∆2)(B +B1)DcC 0

(1 + ∆1)BcC 0

)

Ā3 =

(
A+A1 (1 + ∆2)(B +B1)Cc

0 Ac

)

Ā4 =

(
A+A1 0

(1 + ∆1)BcC Ac

)
.

Let us observe that for the auxiliary system (23),

X(k + 1) = E(Ã(∆1(k),∆2(k), ξ1(k), ξ2(k))X(k)

Ã(∆1(k),∆2(k), ξ1(k), ξ2(k))T )

= κ2
1Ā1X(k)Ā1

T
+ κ2

2Ā2X(k)Ā2
T

+

κ2
3Ā3X(k)Ā3

T
+ κ2

4Ā4X(k)Ā4
T
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Q κ1QAT1 κ2QAT2 κ3QAT3 κ4QAT4 κ1QĒ
T
1 κ2QĒ

T
2 κ3QĒ

T
3 κ4QĒ

T
1

∗ Q− σ(∆)H̄H̄T 0 0 0 0 0 0 0

∗ ∗ Q− σ(∆)H̄H̄T 0 0 0 0 0 0

∗ ∗ ∗ Q− σ(∆)H̄H̄T 0 0 0 0 0

∗ ∗ ∗ ∗ Q− σ(∆)H̄H̄T 0 0 0 0

∗ ∗ ∗ ∗ ∗ σ(∆)I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ σ(∆)I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ σ(∆)I 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ σ(∆)I



> 0

∀∆1 ∈ {−δ1, δ1},∆2 ∈ {−δ2, δ2}

(26)



Q κ1Q(A1 + H̄F (k)Ē1)T κ2Q(A2 + H̄F (k)Ē2)T κ3Q(A3 + H̄F (k)Ē3)T κ4Q(A4 + H̄F (k)Ē1)T

∗ Q 0 0 0

∗ ∗ Q 0 0

∗ ∗ ∗ Q 0

∗ ∗ ∗ ∗ Q


> 0

∀∆1 ∈ {−δ1, δ1},∆2 ∈ {−δ2, δ2}, ∀F (k)F (k)T ≤ I.

(27)

where X(k) is defined in (24). Based on a Lyapunov
function constructed as V (X(k)) = tr(X(k)P ), we have
that for all |∆1| ≤ δ1, |∆2| ≤ δ2, F (k)F (k)T ≤ I,

V (X(k + 1)) = tr((κ2
1Ā1X(k)Ā1

T
+ κ2

2Ā2X(k)Ā2
T

+

κ2
3Ā3X(k)Ā3

T
+ κ2

4Ā4X(k)Ā4
T

)P )

= tr(X(k))(κ2
1Ā1

T
P Ā1 + κ2

2Ā2
T
P Ā2+

κ2
3Ā3

T
P Ā3 + κ2

4Ā4
T
P Ā4)

< tr (X(k)P ) = V (X(k))

for nonzeroX(k), which indicates that the auxiliary sys-
tem (23) is stable in the mean square sense. Thus, we
can conclude that the closed-loop system (22) is robustly
stable in the mean square sense. �

Remark 10 One can observe that the Lyapunov func-
tion used in the proof above, V (X(k)) = tr(X(k)P ), is
the same with V (x(k)) = E(x(k)TPx(k)). Thus, based on
the definition of stochastic quadratic stability in Tsumura
et al. (2009), it can be implicated by reversing the proof
that the condition (26) is necessary and sufficient for the
stochastic quadratic stability of the system (22).

When there is no packet loss in the communication chan-
nels, i.e., τ1 = τ2 = 1, the Lyapunov function becomes
V (x(k)) = x(k)TPx(k), and thus the condition (26) is
reduced to the condition (13). When we consider only
one quantizer and one packet-loss channel for the state
feedback control of the uncertain system (1), e.g., τ2 = 1
and ρ1 = 1, by simplifying the result in Theorem 9, the
tradeoffs among the quantization, the packet delivery
probability and the uncertainty in the plant is shown in
the following result.

Corollary 11 The coarsest logarithmic quantiza-
tion density under which the uncertain system (1)-
(2) with packet-loss input channel can be stochasti-
cally quadratically stabilized via quantized state feed-

back is ρinf =
1−δsup

1+δsup
, where δsup is given in (28)

and the corresponding linear feedback gain is given by

K∗ = (Y ∗)
T

(Q∗)
−1

.

The δsup derived by the LMI problem (28) coincides with
the one derived by analytical bounds proposed in The-
orem 2.1 in Tsumura et al. (2009) when considering the
case without uncertainty in the plant. See Example 14
for more details.

5 Numerical example

Example 12 The first example is taken from the Exam-
ple 1 in Fu & Xie (2010). The plant to be considered is
described in (1)-(2) with

A =

(
0 1

0 2

)
, B =

(
0

1

)

H = ε

(
1

1

)
, E1 =

(
1 0
)
, E2 = 1

where the parameter ε > 0 is a measure of the size of
uncertainty [A1 B1].

It is assumed that the output of the state feedback
controller is quantized by a quantizer Q(·). The problem
is to find the minimum required quantization density ρinf
for different size of uncertainty ε.

By solving the LMI problem (17), i.e., performing
the LMI feasibility test at each step of bisection algorithm,
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δsup = sup
Q,Y,σ(∆)

δ s.t.

Q
√
τ(QAT + (1 + ∆)Y BT )

√
1− τQAT

√
τ(QET1 + (1 + ∆)Y ET2 )

√
1− τQET1

∗ Q− σ(∆)HHT 0 0 0

∗ ∗ Q− σ(∆)HHT 0 0

∗ ∗ ∗ σ(∆)I 0

∗ ∗ ∗ ∗ σ(∆)I


> 0, ∀∆ ∈ {−δ, δ}

(28)

Fig. 2. Minimum required quantization density versus size
of uncertainty

we obtained the result plotted in Figure 2. As shown
by this figure, the coarsest quantization density ρinf ob-
tained with Corollary 5 is smaller than the results pro-
vided by Fu & Xie (2010) using the H∞ synthesis tech-
niques.

Example 13 Let us consider the situation where the
plant is described as in (1)-(3) with by

A =


1 −0.5 0 1

1 0 0 0

−1 0.5 −0.5 −1

0 0 1 0

 , B =


2

2

1

1


C =

(
1 −1 0 0.5

)
H =

(
0.25 0.5 0.25 0.5

)T
E1 =

(
0.1 0 0 0.1

)
, E2 = 0.1

Ac = 0.69, Bc = −0.85, Cc = −0.11, Dc = 0.075.

When δ1 = 0.05, δ2 = 0.2, the LMIs in (13) is fea-
sible. Thus, based on Theorem 3, the closed-loop system
(6) is robustly quadratically stable.

When δ1 = 0.1, δ2 = 0.2, the LMIs in (13) is in-
feasible. Then, we solve the LMIs in (20) with P3 =
0, i.e., P (∆1(k),∆2(k)) = P0 + P1∆1(k) + P2∆2(k),
and it is feasible. Therefore, the closed-loop system (6)
is asymptotically stable with linear parameter-dependent
quadratic Lyapunov function.

When δ1 = 0.145, δ2 = 0.2, the LMIs in (13) is
infeasible and (20) is also infeasible with P3 = 0. With
the multilinear parameter-dependent Lyapunov function

defined in (18)-(19), we found that the LMIs in (20) is
feasible. Thus we can conclude that the closed-loop system
(6) is asymptotically stable.

Example 14 Consider the uncertain plant described as
in (1)-(2) with

A =


−1 1 −2 1

−0.5 1 −0.5 0

1.5 −1 0 0

1 −1 1 −0.5

 , B =


1

0

1

−1



H = ε


0.5 0.5

0.5 1

1 0

0 1

 , E1 =

(
1 0.5 1 0

1 0 0 1

)
, E2 =

(
0.5

1

)

where the parameter ε > 0 is a measure of the size of
uncertainty [A1 B1].

It is assumed that the output of the state feedback
controller is quantized and sent to the input of the plant
via a packet-loss channel.

With different values of ε and τ , we calculate δsup
in (28). As shown in Figure 3, on the δsup-τ plane with
ε = 0, the derived result based on Corollary 11 coin-
cides with the analytical result proposed in Theorem 2.1
in Tsumura et al. (2009). Moreover, with fixed ε, δsup in-
creases monotonically as τ increases; with fixed τ , δsup
decreases monotonically as ε increases. In general, Fig-
ure 3 shows the tradeoffs among the size of uncertainty,
the probability of packet loss and the quantization den-
sity, as described in (28).

6 Conclusion

In this work, a necessary and sufficient condition
in terms of LMIs is proposed to establish the robust
quadratic stability for the uncertain closed-loop system
with double quantization. Moreover, a new class of Lya-
punov function which depends on the quantization er-
rors in a multilinear way is constructed. In the end, ro-
bust stability in the mean square sense is considered for
the uncertain closed-loop system with input and output
quantization and packet-loss channels. Future work will
look into the linear dynamic output feedback synthe-
sis based on the stability conditions. Another direction
could be considering nonlinear control for the uncertain
networked systems.
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Fig. 3. The relationship among the size of uncertainty ε, the
probability of packet delivery τ and the supremum of δ
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