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Abstract 

Application of Remote Sensing in the Assessment of Oil Pollution Impacts on 

Biodiversity in Rivers State, Nigeria 

Nkeiruka Nneti Onyia 

Biodiversity loss remains a global challenge, and monitoring methods are often limited in 

their coverage. Rivers State is a biodiversity hotspot because of the high number of endemic 

species endangered by oil pollution. This thesis investigates the potential of integrating 

remote sensing tools for monitoring biodiversity in the State using vascular plant species as 

indicators. Satellite data from Hyperion, Sentinel 2A and Landsat were analysed for their 

usefulness. Soil samples from polluted and control transects were analysed for total 

petroleum hydrocarbon (TPH), phosphorus (P), lead (Pb), temperature, acidity, species 

diversity, abundance and leaf chlorophyll concentration. Field data results showed 

significant differences in all variables between polluted and control transects. Average TPH 

on polluted transects was 12,296 mg/kg, and on control transects was 40.53 mg/kg. 163 plant 

species of 52 families were recorded with Poaceae and Cyperaceae the most abundant. 

Floristic data ordinated on orthogonal axes of soil parameters revealed that TPH strongly 

influenced species occurrence (r = -0.42) and abundance (r = -0.39). Similarly, application 

of the spectral variability hypothesis (SVH) revealed the underlying environmental gradient 

controlling vegetation composition on polluted transects as TPH and on control transects as 

P. Models of relationship between spectral metrics and soil properties estimated soil TPH 

(R2 = 0.45) and P (R2 = 0.62) with  marginal errors. Hyperion data provided better insight 

into vegetation response to oil pollution. Continuum removed reflectance, band depths of 

absorption maxima, red edge reflectance all significantly differed between polluted and 

control vegetation. Furthermore, a new index created from TPH sensitive Hyperion 

wavelengths- normalised difference vegetation vigour index (NDVVI) outperformed 

traditional narrowband vegetation indices (NBVIs) in models estimating species diversity in 

Kporghor. R2 and RMSE values for Shannon’s index were 0.54 and 0.5 for NDVVI-based 

models and 0.2 and 0.67 for NBVI-based models respectively. This research provides 

evidence of oil pollution effect on vegetation composition, abundance, growth and 

reflectance and outlines how this information can be used for biodiversity monitoring. 
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1 Introduction 

This chapter provides background information for this research, explaining the oil pollution 

problem and its impact on biodiversity in the study area. It also outlines the justification for 

the study and the potential contribution to remedying the myriad of social issues associated 

with oil pollution in the study area. 

1.1 Research Background 

The Niger Delta is one of the most extensive wetlands in the world and is Africa’s largest 

delta. It consists of unique ecological zones, which extend from the coastal barrier ridges, 

inland to lowland rainforest zone. The well-endowed ecosystem is abundantly rich in 

biodiversity with very high densities of flora and fauna (Emoyan, Akpoborie and 

Akporhonor, 2008). The Niger Delta is part of the Guinean Forests Ecosystems of West 

Africa classified as a biodiversity hotspot (biologically rich and threatened ecological 

habitat). This region originally estimated to cover 1,300,000 km2 is fragmented and most of 

its tropical forest degraded due to mainly human activities. Although severely diminished 

(only about 140,000 km2 remains) the ecosystem harbours about 2000 endemic species from 

approximately 9000 vascular plant species (Khaligian, 2012). The significant diversity of the 

Niger Delta has degraded considerably due to oil-related anthropogenic activities (Agbogidi 

and Ofuoku, 2006). 

Oil exploration in the Niger Delta commenced since the 1950s (Aroh et al. 2010). Over the 

years, the industry has expanded to include oil drilling, production, transportation, processing 

and storage. Accordingly, as noted by Oyinloye and Olamiju, (2013) and other researchers, 

oil production accounts for up to 96% of the Nigerian national economy. This growth has, 

however, come at an enormous cost to the environment of the Niger Delta with oil spillages, 

gas flaring, inappropriate waste disposal (solids and liquids), discharge of toxic chemicals, 

land use changes including forest fragmentation and degradation, flooding and soil erosion, 

and so on adversely impacting on the environment (Emoyan, Akpoborie and Akporhonor, 

2008; Opukri and Ibaba, 2008). 
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Researchers have investigated the significant impacts of the various oil spills on the 

mangrove forest. Corcoran et al. (2007) reported a reduction of 26% in the mangrove forest 

within the Niger Delta since the oil boom. Similarly, Osuji et al. (2004) and United Nations 

Environmental Programme (UNEP, 2011) following a survey of different parts of the region 

revealed the disastrous impact of oil pollution to mangrove and other vegetation ranging 

from extreme stress to destruction. Several investigations such as Zabbey (2004), Osuji et al. 

(2004), Nwilo and Badejo, (2005), Opukri and Ibaba, (2008), Ugochukwu and Ertel (2008) 

also revealed that oil and gas operations not only cause environmental degradation in the 

sensitive ecosystem, they destroy the traditional livelihood of residents, whose main 

occupations are fishing and farming. Additionally, oil and gas operations affect weather 

conditions, soil fertility, waterways and habitats for wildlife; cause acid rains and drastically 

reduce agricultural yields. These negative impacts subsequently result in migration of 

endemic fauna as well as social displacements of inhabitants of the affected areas. 

In the face of these concerns, and the need to sustainably meet the increasing demand for 

natural resources due to the population explosion in the region, policymakers, resource 

managers, and other stakeholders must employ appropriate tools for environmental and 

resource assessment, monitoring and management. As biodiversity is an essential natural 

resource in the Niger Delta, its conservation is a high priority but delicate due to the 

complexity of the concept and the global expectation of contracting parties to meet the targets 

of many international agreements such as the United Nations Environmental Programme 

Convention on Biological Diversity (UNEP-CBD). The CBD which came into force in 

December 1993 demands that all contracting parties develop national strategies, plans and 

programmes for the conservation and sustainable use of biological diversity (Article 6 of the 

CBD). In Article 7, it reiterates that nations are obliged to develop mechanisms to identify 

its components of biological diversity, monitor these components; identify processes/ 

activities that adversely impact on biodiversity and organise and maintain the collated data 

(UNEP, 1992). Thus, it is crucial for Nigeria, a party to this convention to develop a strategic 

and coherent approach to biodiversity management (identification, monitoring and 

conservation) particularly in the Niger Delta region. Presently this is not the case. Firstly, 

information on biodiversity across the vast and ecologically dense Niger Delta region is 

fragmented, incomplete, outdated, offline or even non-existent (United Nations 
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Development Programme UNDP, 2010). Different and sometimes conflicting organisations 

commonly store the available data, thereby rendering data inaccessible and non-

exchangeable. The absence of reliable information has severe consequences for, not only 

understanding regional biodiversity but also hampers the selection and development of 

appropriate indicators for monitoring of temporal and spatial changes in ecosystems (Salem, 

2003). It also hinders effective biodiversity-oriented decision making across the oil and gas 

industry in Nigeria (UNDP  , 2010). 

To remedy this situation, researchers have explored various data acquisition methods to 

determine the biodiversity status in the Niger Delta and establish links between oil 

exploration and biodiversity loss in the region. These include (Environmental Resources 

Managers Limited, (ERML), 1997; World Bank, 1995; Ohimain, 2003; Ohimain, 2004; 

Onwuka, 2005; Olajire et al. 2005; Osuji and Ezebuiro, 2006; Agbagwa, 2008; Agbagwa 

and Akpokodje, 2010; Agbagwa and Ndukwu, 2014). Most of these studies utilised 

traditional methods of data collection including sampling using quadrats or transects (line, 

point and Recce walk). For instance, Osuji et al. (2004) adopted a modified sampling 

technique, which involved field reconnaissance surveys, grid plots and quadrants for a post-

impact assessment of oil pollution on soil, fauna and flora. Luisella and Akani (2003) 

working with freshwater turtles to determine the effects of oil pollution on the community 

adopted another traditional method which involved surveying, hoop traps, dip-netting and 

trawling to collect specimens for their study. 

Similarly, Daniel-Kalio and Braide (2002) conducted a study of the impact of accidental oil 

spill on cultivated and natural vegetation in a wetland area of the Niger Delta using traditional 

techniques of data collection which included the establishment of transects on the oil spill 

sites and the surrounding areas. These traditional approaches to measuring biodiversity at 

local scales are time-consuming, challenging, and expensive. They are also skill and 

experience-dependent and often adversely affect the object and area of study. Furthermore, 

the methods are spatially limited and are incapable of generating relevant data at regional 

and global scales (Duro et al. 2007). With increasing global effort channeled towards 

reducing biodiversity loss, it is pertinent to investigate the adverse effects of oil spills on the 
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environment that may have escaped previous studies relying on traditional biodiversity 

monitoring methods.  

Over the years, remote sensing (RS) have increasingly become indispensable tools in the 

collection, analysis and management of information about the earth’s environment and 

resources. Various studies explored the application of RS in environmental management and 

conservation programmes, for instance, Duro et al. (2007) who examined the potential for 

integrating remote sensing in developing a national biodiversity monitoring system for 

Canada that is applicable across regions and continents. Earlier researchers such as Petit et 

al. (2001) had used remote sensing data to analyse change processes and project short-term 

land-cover changes in Zambia. More recent studies have successfully integrated remotely 

sensed data with traditional methods for the ecosystem and ecosystem service assessments 

(Vihervaara et al. 2014; Andrew, Wulder and Nelson, 2014). 

There is however a paucity of literature on this subject (biodiversity monitoring) that utilises 

remote sensing tools in the Niger Delta region of Nigeria. A significant proportion of the 

available literature on the application of RS in biodiversity-related studies is from developed 

countries. The bulk of literature originating from Nigeria, report investigations in the Niger 

Delta for instance, (Fagbami, Udo and Odu, 2009; Adegoke et al. 2010; Adoki, 2012; 

Oyinloye and Olamiju, 2013; Kuenzer et al. 2014); but none has addressed oil pollution in 

the light of these technological advancements.  A thorough review of related literature has 

hitherto failed to reveal a previous study that documented the species diversity index of the 

study area, investigated the impact of oil pollution on biodiversity in the Niger delta utilising 

RS techniques and developed prediction models using spectral metrics to estimate species 

richness and diversity. These knowledge gaps are what the current study aims to address 

using methods that are repeatable, scalable and accessible to interested parties. The study 

adopted an integrated approach to data generation and evaluation to achieve this aim. The 

integrated approach includes the use of free satellite data, open source software for image 

and statistical analyses, field survey applying standard sampling methods and laboratory 

analysis in an internationally certified laboratory.  
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1.2 Justification of the Study 

1.2.1 Crude Oil Pollution and Effects in Rivers State 

Oil pollution is the contamination of any substrate such as the soil or air with materials 

containing petroleum hydrocarbons. Environmental pollution is the direct or indirect 

alterations of the physical, thermal, biological or radioactive properties of any part of the 

environment in such a way as to create a hazard or potential hazard to health, safety and well-

being of any living species (Oyebadejo and Ugbaja, 1995). the European Union Water 

Framework Directive (2000) defines pollution as the ‘direct or indirect introduction, as a 

result of human activity, of substances or heat into the air, water or land which may be 

harmful to human health or the quality of aquatic ecosystems or terrestrial ecosystems’(p. 

L327/7). Basorun and Olamiju (2013) reported that the effects of pollution on the 

environment could be immediate (primary effects) or delayed (secondary effects).  While 

primary effects occur immediately after contamination, for instance, the death of marine 

plants and wildlife after an oil spill at sea; secondary effects are often delayed or persist in 

the environment for years sometimes in negligible amounts.  There are various sources of oil 

pollution; however, this study limits to pollution caused by crude oil spills from damaged 

pipelines. 

Rivers State extends to slightly over 11000 km2 in the southernmost part of the Niger Delta 

region. According to the National Census in 2006, the State has a population of over 5 million 

people administered in 23 local government areas (National Population Commission, 2015). 

The indigenous people of Rivers State have lived in the Niger Delta region for over 500 years 

in densely populated close-knit rural settings. The people are primarily farmers and anglers 

who depend on the natural resources within their locality. Archaeological and historical 

evidence showed that the people had a well-established social system that placed great value 

on the environment from where they derived their livelihood. This social system also, 

through the observance of traditions rooted in nature; ensure sustainable exploitation of 

natural resources and the protection of biodiversity. For instance, forests (usually 

communally owned) were not just perceived as a piece of land where trees and animals dwell, 

but as an “intrinsically sacred possession” hence indiscriminate felling of trees and hunting 
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animals were forbidden (The Ecumenical Council for Corporate Responsibility, (ECCR), 

2010). 

Before the discovery of oil, agriculture was the primary source of income for the inhabitants. 

More than 44 per cent of the rural population engaged in the farming of cassava, maize, yam, 

plantain, palm oil and scavenging for periwinkles, snails, mushrooms and artisanal fishing. 

About 18 per cent were involved in local trading while 10 per cent were service providers 

such as tailors, transporters, carpenters and so on (Alagoa and Clark, 2009).   Since the 1950s, 

oil exploration has been ongoing in Rivers State with Shell Petroleum Development 

Company (SPDC) Nigeria Limited as the principal operators (Human Rights Watch, 1999; 

Lindén and Pålsson, 2013). Nigeria is the 5th highest exporter of crude oil in the world with 

about 2.524 million barrels of oil exported every day (Central Intelligence Agency, 2015). 

Presently all the oil comes from the Niger Delta region and accounts for 95% of the foreign 

exchange earnings of the country. Consequently, the region is subject to alarming levels of 

environmental pollution from oil spills and gas flaring (Oyeshola, Fayomi and Ifedayo, 

2011). Oyinloye and Olamiju (2013) reported that in the 50 years of oil exploration in 

Nigeria, there are records of about 6000 spill incidents discharging over 5 million barrels of 

crude oil into the environment. 

For several years, Rivers State was an arena of restiveness and conflict due to the impact of 

oil exploration activities on the environment, health and livelihood of the host communities. 

Oil spills from leaking pipelines (huge pipelines that carry oil to other parts of the country 

crisscross the region); wellheads and flow stations, transportation, oil bunkering, artisanal 

refineries have frequently occurred yet under-reported for decades in the Niger Delta 

(Mmom and Arokoyu, 2010; United Nations Environmental Programme, 2011; Lindén and 

Pålsson, 2013). The influence of tides and floods further exacerbate the damage by spreading 

the spillage over large areas of vulnerable ecosystems. What was once a significant wetland 

is now a region whose residents can no longer subsist on traditional fishing and farming 

(United Nations Environmental Programme, 2011; Oluduro, 2012). The drilling for oil has 

also led to gas flares where billions of cubic feet of gas is burnt daily.  
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Incidents of human rights abuses in the form of environmental degradation abound in the 

Niger Delta where the oil wealth originates. For instance, HRW (1999) documented that 

barely 27 per cent of the population have access to safe potable water, while only about 30 

per cent enjoy electricity, usually privately sourced. They also asserted that 90 per cent of 

the populace lives below $2 a day while 80% are unemployed and about 30 per cent are 

illiterate. In the same vein, a report by the Ecumenical Council for Corporate Responsibility 

(ECCR) in 2010 highlighted the impact of oil and gas operations in the Niger Delta on life 

expectancy in the region. From about 70 years, age has markedly dropped to 45 years. It also 

reported that the delta, which was once a net food exporter now imports 80 per cent of its 

food and the health and education facilities colossally dilapidated in the rural areas (The 

Ecumenical Council for Corporate Responsibility, (ECCR), 2010).  

This dismal situation reiterates the need for substantive change in the manner of handling 

environmental issues in Nigeria. The focus needs to shift from reactive to proactive if the 

2020 Aichi targets of the United Nations Convention on Biodiversity (CBD), which Nigeria 

is party to, are to be met. The results of this study will provide relevant tools to support this 

change and equip stakeholders with resources that will facilitate proactive management of 

biodiversity. 

1.2.2  Importance of Biodiversity Monitoring in the Niger Delta 

Rivers State is a biodiversity hot spot with a significant concentration of various species most 

of which are endemic (United Nations Development Programme, 2006; Nzeadibe et al. 

2011). The depletion of these natural resources is alarming due to a combination of several 

factors. In recent years, in addition to licensed oil operators, many artisanal refineries 

operating illegally across the region have gained a foothold in the region. Spillages have 

often occurred from oil exploration activities such as drilling, transportation, bunkering, 

burst pipes and uncleansed oil spills. The growth of the oil industry resulted in an 

unprecedented population explosion. A combination of both factors in concert with 

institutional laxity in environmental protection “led to substantial damage to Nigeria’s 

environment” (Ngoran, 2011). The implication for the environment is massive degradation 

and biodiversity loss (Oluduro, 2012). Several studies report a correlation between the 
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wanton environmental degradation in the Niger Delta and the rise of violent conflicts in the 

region (Watts, 2004; Obi, 2009; Orji, 2012; Adams and Ogbonnaya, 2014).  

The failure of regulatory agencies to enforce environmental laws that address the situation 

and offer viable remedies has been appalling and definitive (Okwoche, 2011; Orji, 2012; 

Odoeme, 2013). The oil companies have not helped matters due to their reluctance to own-

up to spills, engage in effective clean-up procedures or pay commensurate compensation to 

victims. The oil companies also hoard the relevant data and fail to maintain their facilities 

(Adujie, 2010; Duffield, 2010; Oluduro, 2012). As reported by Adujie (2010), the oil 

companies have demonstrated double standards in response to environmental pollution in the 

Niger Delta. For instance, in the aftermath of the Gulf of Mexico spill, oil companies 

voluntarily carried out remediative actions and offered compensations to individuals and 

companies even well before the effects and consequences of pollution were visible. 

However, the same companies have consistently ignored and disregarded clear cases of 

extreme environmental pollution and degradation leading to loss of livelihoods, poverty, and 

even deaths in Niger Delta. Consequently, host communities through civil and militant 

groups resort to demonstrations, attack oil installations and disrupt oil production activities 

across the region. The ensuing chaos has resulted in the loss of revenues to the country of up 

to 543 million dollars per day at the peak of the crises (Obi, 2009; Adujie, 2010; Orji, 2012; 

Odoeme, 2013).  

A comprehensive review of the Nigerian legal system by Oluduro (2012) confirmed that 

there is inadequate legislation for compensating victims of oil spills and environmental 

damage. He suggested that an acceptable regime is enforced to protect the environment and 

inhabitants of oil-rich areas. Effective enactment of such important laws demands among 

others, access to a reliable, valid data set portraying the before and after scenarios of the 

impacted area. A structured monitoring programme can only obtain such data for Nigeria as 

a whole and Rivers State in particular.  

A well-endowed biodiversity hotspot like Rivers State in Nigeria constantly subjected to oil 

spillages, biodiversity monitoring is crucial for several reasons, including the need to meet 

the strategic goals of the Aichi Biodiversity Targets. However, conventional monitoring 
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method such as field survey is not sufficient due to the constraints of time, equipment and 

accessibility associated with the study area. Hence, the proposal for integrating remote 

sensing data with field data to develop prediction models for biodiversity estimation using 

vascular plants as surrogates. Moreover, the need to monitor the variations and patterns of 

ecosystem processes, structures and functions demand the integration of remote sensing and 

field-based management practices (Gould, 2000). Vascular plant species serve as valuable 

biodiversity indicators because they are identifiable, sampled, stored or transported and 

distributed over a wide range of habitats and environments (Faith and Walker, 1996). Pereira 

and Cooper (2006) asserted the suitability of vascular plants species for monitoring 

biodiversity.  

The present study aims to investigate the most appropriate means for biodiversity monitoring 

in the Niger Delta using Rivers State as a case study that will reflect the devastating impact 

of oil pollution on the environment. Results will provide reliable and verifiable data for 

decision making towards achieving both national and global goals.  

1.3 Summary 

This chapter provided a background to the problem tackled in this research and the 

justification. Chapter 2 will provide a detailed review of the literature addressing the concept 

of remote sensing in biodiversity monitoring. 
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2 Literature Review 

This chapter explores the literature on biodiversity monitoring, outlining the global history 

of conservation efforts, progress and challenges. It also provides a review of biodiversity 

monitoring methods, advancing from traditional field sampling practices to integrated 

approaches using earth observation tools. Furthermore, relevant concepts in biodiversity 

monitoring and conservation such as biodiversity indicators, essential biodiversity variables 

and vegetation indices are discussed. Finally, the chapter outlines the aim and objectives of 

this research as well as the thesis structure.  

2.1 Timeline of Global Biodiversity Monitoring  

The earth has the natural capacity to achieve and maintain a balance through the interactions 

and interdependency of the various species of living organisms inhabiting it. Although 

humans and other organisms (flora and fauna) depend on biodiversity for services such as 

water cycle and soil formation; biological resources such as food and medicine; and social 

benefits such as research, education and cultural values (Shah, 2014), the increasing pressure 

on these resources have negatively interfered with nature’s balance. Pitman (1953) stated 

that human activities, particularly the introduction of alien species adversely affect the 

proliferation of the indigenous species and upset the equilibrium of nature.   

Scientists have warned from the 1970s, that the loss of planetary biodiversity occurs at an 

unprecedented rate with dire consequences for the earth and all its inhabitants. 

Environmentalists from around the developed world gathered in the United States to show 

support for the concept of environmental protection. The event tagged First Earth Day was 

in April 1970. Also in 1971, International Institute for Environment and Development (IIED) 

was created with the mission to globally facilitate the scientific investigation, adoption and 

implementation of sustainable development principles (International Institute for 

Environment and Development, 1971).  Following this, a United Nations Conference on the 

Human Environment held in Stockholm in 1972 produced a document outlining 26 guiding 

principles aimed at preserving and enhancing the human environment (United Nations 

Environment Programme, 1972). A few years later, the Convention on International Trade 

in Endangered Species of Wild Fauna and Flora (CITES) came into force. It aimed to protect 
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endangered species by participating countries (CITES, 1975). This convention was a 

significant achievement as ecologists had predicted the extinction of up to a million species 

of living organisms by the year 2000 (Franco, José Luiz de Andrade, 2013). 

In the 1980s and 1990s, the international community under the guidance of the United 

Nations reached several milestone agreements. These include the World Conservation 

Strategy (1980); the UN World Charter for Nature (United Nations, 1982); and the 

Brundtland Commission Report (Brundtland Commission, 1987). The Global Environment 

Facility (GEF) established in 1991 supported the protection of the global environment and 

promoted environmentally sustainable development (Global Environment Facility, 2013). 

With mounting evidence of increased and even irreparable degradation of ecological 

systems, societal concerns triggered a series of regulatory, political and legal actions aimed 

at minimising the impact of anthropogenic disturbances (Kennish, 1991). For instance, the 

United Nations in June 1992 convened a Conference on Environment and Development in 

Rio, also known as the Earth Summit. The principal objectives of this summit were "the 

conservation of biological diversity, the sustainable use of its components and the fair and 

equitable sharing of the benefits arising out of the utilisation of genetic resources”. 

Governments achieving these objectives required the adoption of sustainable development 

programs, which involved finding environmentally friendly alternatives to economic 

development that will protect the earth's non-renewable resources. The summit produced a 

plan of action document known as Agenda 21 which participating countries committed to 

(United Nations, 1997). 

At the turn of the century, and to mark the beginning of a new millennium, the UN General 

Assembly in 2000 drafted a set of goals known as the Millennium Development Goals 

(MDG), which reiterated the need for parties to incorporate the precept of sustainable 

development in nation-building plans. There were set targets for various causes including the 

full implementation of the Convention on Biological Diversity (CBD) by 2010 (United 

Nations General Assembly, 2000). Furthermore, in April 2002, at The Hague, another 

conference of parties (COP) convened by the CBD evaluated the progress of its programmes. 

It focussed on achieving three additional goals namely:-controlling the distribution of 

invasive species; adoption of guidelines for sharing of genetic resources and attendant 
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benefits; and providing stronger economic incentives to reduce deforestation. In the same 

year, a second Earth Summit held in Johannesburg prioritised five issues including 

biodiversity. Participating countries agreed to reduce the extinction rate of the planet’s flora 

and fauna by 2010. In order to achieve this, the UN commissioned the Millennium Ecosystem 

Assessment project to “assess the consequences of ecosystem change for human wellbeing 

and the scientific basis for action needed to enhance the conservation and sustainable use of 

those systems and their contribution to human wellbeing” (Millennium Ecosystem 

Assessment, 2005, page v). The report of the findings was approved and incorporated into 

future deliberations of the global assembly. The CBD in October 2010 adopted a series of 

documents including the revised and updated Strategic Plan for Biodiversity (Aichi Targets 

2020, the Nagoya and the Cartagena Protocols). To mark the 20th anniversary of the Rio 

Conference, the UN Conference on Sustainable Development provided a forum for the 

evaluation of the achievements and shortfalls of previous Summit outcomes. Participating 

countries also reaffirmed their commitment to these agreements. Besides, member States 

agreed to strengthen the United Nations Environment Program and adopted the outcome 

document.  

Before the concern for the diversity of life and its conservation gained worldwide attention, 

Meine et al. (2006) noted that ecologists and biologists together with other stakeholders 

made concerted efforts to confront the issue from various angles. Promoting the sometimes 

conflicting arguments not only expanded the scope of biological studies, but also "unfolded 

as colonialism, the Industrial Revolution, human population growth, expansion of capitalist 

and collectivist economies, and developing trade networks", thereby rapidly and significantly 

transforming human, social, economic and ecological relationships. Progressively, however, 

agitation for protection and conservation of natural resources; initially for their aesthetic 

values and then increasingly for their genetic reserve; gained global attention. Despite these 

laudable efforts, recent reports suggest that progress has been insufficient and uneven, 

particularly in the area of biodiversity conservation. According to the UN Millennium 

Development Goals Fact Sheet (United Nations, 2013), the target of significantly reducing 

biodiversity loss by 2010 failed. In fact, despite an increase in protected areas, many more 

species are at risk of extinction now than before, while the world's fisheries remain below 

sustainable yields due to over-exploitation. The forests are also affected as millions of 
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hectares of forested land are lost yearly to other uses, mainly urbanisation and agriculture. 

Several reports from around the globe analysing remotely sensed images have depicted such 

changes in land cover maps (Stow et al. 2004; Yuan et al. 2005; Shalaby and Tateishi, 2007; 

Xiao et al. 2006; Petit, Scudder and Lambin, 2001). In line with this, the international 

community through the Convention on Biological Diversity of the United Nations have 

developed new frameworks building on previous efforts. These targets known as the Aichi 

Biodiversity Targets are set to be accomplished by the year 2020 (Convention on Biological 

Diversity, 2010a). 

Given this background, researchers have played and continue to play a significant role as 

outlined in the millennium ecosystem assessment documents, to provide the necessary data 

upon which any future success will rely. Earlier in history, Wallace (1862) urged scientists 

and researchers to educate society on the critical role of biological diversity in human 

wellbeing and encourage its preservation for the benefit of both the present and future 

generations. Carpenter et al. (2006) reiterated this position in their outline of the research 

needs of the millennium assessment project. Amongst other knowledge gaps, they noted the 

absence of a systematic and replicable strategy for monitoring ecosystems and biodiversity 

changes and the drivers. They stressed that this information is essential "to understand the 

limits and consequences of biodiversity loss and the actions needed to maintain and restore 

ecosystem functions."  

2.2 Progress and Challenges 

Biodiversity monitoring involves measuring species occurrence and rates of change at 

different scales within an ecosystem (Yoccoz, Nichols and Boulinier, 2001). Biologists, 

ecologists and other stakeholders worldwide agree on the significance of monitoring 

biodiversity at different scales of time and space in the bid to curtail biodiversity loss. Han 

et al. (2014) remarked that resource monitoring is the “cornerstone of biodiversity and 

conservation science.” Muchoney (2008) stated that biodiversity monitoring is vital to satisfy 

the series of Conventions and Protocols that have been agreed upon by parties to the 

Convention on Biodiversity (CBD); the Convention on the Conservation of Migratory 

Species (CMS); the Ramsar Convention (RC); the Convention on International trade in 
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Endangered species (CITES), the Framework Convention on Climate Change (UNFCC) and 

others. Lindenmayer and Likens (2010) outlined the advantages of biodiversity monitoring 

to include 

i. the identification and assessment of threats and uncertainties; 

ii. insight into eco-evolutionary dynamism and basis for scientific research and 

investigations; 

iii. timely intervention when necessary to mitigate ecosystem changes that may impact 

services; 

iv. relevant data pool to support legal decisions about the environment.  

Perhaps, more importantly, the need for biodiversity monitoring hinges on the fact that the 

ecological services that benefit humans and other organisms in a given ecosystem may 

become impeded and untraceable (Dobson, 2005) in the absence of an implementable 

monitoring programme. Methods adopted for biodiversity monitoring determine the quality 

and quantity of data collected as well as its usage. Pettorelli et al. (2014) stated that data 

should be accessible, reliable and globally relevant. Noss (1990) and Nagendra (2001) 

suggested monitoring biodiversity at "multiple levels of organisation and at multiple spatial 

and temporal scales" taking into consideration the various components of biodiversity. 

Furthermore, Hestir et al. (2008) opined that monitoring programmes should be systematic 

and comprehensive to be effective in protecting biodiversity. 

There are challenges associated with biodiversity monitoring. Vihervaara et al. (2014) for 

instance questions how to measure the different components of biodiversity such as 

structures, functions, ecosystems, communities, species and genomes. Others argue that 

since only a little proportion of life on earth is actually known; (in Wilson et al. (1996), Stork 

estimated that only about 10 to 30% of the total global species numbering up to 15 million 

are identified, with little or no knowledge on their distribution and biology) monitoring of 

the known species is irrelevant since unknown species continue to go extinct. The lack of 

consensus on the definition and scope of biodiversity (Holt, 2006), the strategy, scale and 

cost also constrain effective monitoring of biodiversity. For instance, Krebs (2002) argues 

that monitoring will be of scientific value when factors such as environmental variations and 
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ecological processes are investigated. Other areas of discord include the prioritisation of 

conservation goals, in other words, who and what should benefit from conservation efforts 

(Sheil, Sayer and O'Brien, 1999), and the conflicting objectives of economic and sustainable 

development. Many nationally defined conservation goals are local and usually prioritised 

for effective management (Yoccoz, Nichols and Boulinier, 2001) with minimal consideration 

for the role of research in informed decision making (Han et al. 2014). Sheil (2001) noted 

that developing countries usually saddled with limited resources and sometimes bankruptcies 

are “easily side-tracked by initiatives that promise some support.” For instance, the United 

Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest 

Degradation (UN REDD+) linked to the Framework for Climate Change poses a threat to 

biodiversity conservation (United States Agency for International Development, 2014; 

Bayrak and Marafa, 2016). This threat is due to its emphasis on forest preservation for carbon 

sequestration and not necessarily for biodiversity conservation. A recent review of the 

biodiversity goals and proposed monitoring methods in national REDD+ programs in 2014 

revealed that few countries have mitigating plans for the impacts of the programme on 

biodiversity. The review also showed that the sampled countries had commenced the 

implementation of the REDD+ program at subnational levels without a defined process for 

integrating data obtained at different scales for effective monitoring of biodiversity (United 

States Agency for International Development, 2014).  

An important area of contention in biodiversity monitoring is the selection of appropriate 

indicators for assessment. Biodiversity indicators are the characteristics of the organism, and 

the ecosystem that are susceptible to external stimuli and that are measurable repetitively. 

Formulating a measurable set of biodiversity indicators is necessary for any meaningful 

monitoring programme (Dengler, 2009). Furthermore, Dobson (2005) outlined that the lack 

of a skilled workforce to conduct the necessary field collection and taxonomical 

classification constrained the implementation of national monitoring programmes. 

Lindenmayer and Likens (2010) who revealed that a vast majority of monitoring programs 

fail to achieve their aims due to poor planning at the initial stage or lack of focus during 

implementation supported this opinion. Others like Brooks et al. (2006); Mace and Baillie, 

(2007); Carwadine et al. (2009) and Harrop and Pritchard, (2011) reported that political, 
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financial, and institutional difficulties impede successful implementation of the CBD 

decisions at national and regional levels.  

In a recent review, Chandra and Idrisova (2011) observed a vast and growing disparity in the 

measurable progress linked to the development status of the implementing party. They 

discovered that developing economies while in acute need of urgent and thorough action to 

halt biodiversity loss are least able to make meaningful progress in achieving the CBD 

targets. Although there has been notable advancement in monitoring technology, a massive 

database of recorded field observations as well as satellite images available; Carpenter et al. 

(2006) decried the absence of a standard, uniform and integrated procedure for monitoring 

biodiversity loss and ecosystem degradation across local, regional, global and temporal 

scales. Pereira and Cooper (2006); Scholes et al. (2012); Pereira et al. (2013) and Han et al. 

(2014) reaffirmed this in their various works. Fortunately, several national and international 

organisations such as the Global Biodiversity Information Facility (GBIF), the International 

Union for Conservation of Nature (IUCN), World Wildlife Fund (WWF), the Group on Earth 

Observations Biodiversity Observation Network (GEO BON) and so on, are bridging this 

gap. Steps taken to achieve this include digital interconnection of existing databases and 

further research on biodiversity monitoring and conservation (Global Biodiversity 

Information Facility, (GBIF), 2015; Scholes et al. 2012). It is imperative to mention here that 

a higher percentage of the efforts and successes attained concentrate in developed countries 

with extensive databases in the first place. It is also of significant implications that in the 

biodiversity-rich tropics exposed to extreme biodiversity loss (Lugo, 1988), biodiversity 

monitoring is minimal and conservation practices are subject to political, cultural, social and 

financial considerations (Stork, 1996). 

2.3 Methods of Monitoring Biodiversity 

The establishment of global organisations with the goal of integrating the existing local, 

national and regional databases of biodiversity facilitate the incorporation of this information 

in policy and management decision-making processes. However, it is impossible to monitor 

all the various life forms that inhabit any ecosystem at any given time. It is also impossible 

to measure and monitor the effects of various management practices on all species 
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(Lindenmayer, Margules and Botkin, 2000). Furthermore, there is the concern that 

monitoring results are open to high error percentages due to several factors that are difficult 

to control (Archaux, 2011). 

So much has been written about the effect of sampling methods on ecological and diversity 

study (Stohlgren, Falkner and Schell, 1995; Dengler, 2009). Factors such as type (quadrant 

or transect), shape (rectangle or square), size (small or large) and number (few or numerous) 

have been suggested, reviewed and modified by various ecologists over the years (Sattout 

and Caligari, 2011). However, no single technique lends itself to universal applicability; 

hence, ecologists are yet to agree on a standardised sampling method for measuring species 

diversity at any habitat (Stohlgren, Falkner and Schell, 1995). In any case, the appropriate 

monitoring technique suitable for any habitat (for instance-forest, grassland, wetlands, 

marine or desert) depends on identifying the attributes that indicate the condition of the 

habitat, the broad and specific objectives of the programme as well as the available resources 

(Sattout and Caligari, 2011). These attributes may include the size and shape (diameter of 

tree species, boundaries); the soil (type and nutrient status); hydrology (watercourse 

configuration, flooding regime, water chemistry, water table fluctuations); composition 

(communities, species composition, richness and diversity); structure (age class diversity, 

horizontal and vertical structural diversity, deadwood) and dynamics of the system 

(regeneration; composition, number and distribution, planting frequency). Hence different 

habitats required different monitoring methods but based on structural similarities, 

recommended and standardised methods are transferrable across a wide range of habitats   

(Hill et al. 2005). 

The most common method for monitoring biodiversity involves sampling plots. Sample plots 

can be fixed or non-fixed. Random sampling is highly recommended to minimise the 

presence of bias in the results. Samples of any medium are obtained from quadrants or 

transect mapped along the habitat in the desired pattern (either following an apparent 

physical characteristic such as precipitation gradient or following the impact of 

anthropogenic activities such as oil spills). (Elzinga, Willoughby and Salzer, 1998; Musila 

et al. 2005; Seak, Schmidt-Vogt and Thapa, 2012). Sample sizes range from 500 to 1000m2 

depending on the habitat condition, management objectives and available resources. 
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Rondeux and Sanchez (2010) recommended that the total area sampled makeup about 10% 

of the total study area and a minimum sample plot density of 1 plot per hectare. 

Measurements are taken from sample plots using various tools such as traps and nets for 

animals as well as through counting, visual estimation and photography for vegetation (Seak, 

Schmidt-Vogt and Thapa, 2012). 

2.4 Biodiversity Indicators (BIs) 

Biodiversity indicators are components of an ecosystem which are selected to function as 

proxies or surrogates for other members of the community. Assessment of BIs determines 

changes in the ecosystem or the effect of management strategy on protected areas (Burgman 

and Lindenmayer, 1998). According to Landres et al. (1988) an indicator species is "an 

organism whose characteristics (e.g. presence or absence, population density, dispersion, 

reproductive success) are used as an index of attributes too difficult, inconvenient, or 

expensive to measure for other species or environmental conditions of interest". 

Clearly, it is not practicable to monitor all the elements of biodiversity at any level or scale, 

hence the need to select appropriate indicators that convey relevant information about other 

components of the ecosystem (Sparrow et al. 1994; McLaren et al. 1998; Duelli and Obrist, 

2003; Canterello and Newton, 2008; Dung and Webb, 2008). The planned monitoring 

objectives or purposes determine the suitability of an indicator. An ideal indicator according 

to Duelli and Obrist (2003) should correlate linearly with the component of the biodiversity 

or entity assessed.  

2.4.1  Habitat Records 

Habitats are essential indicators of biodiversity due to the presence of particular 

environmental parameters associated with them. A habitat is defined as a geographical entity 

that supports the existence of certain species or communities, as well as, the physical 

dimensions such as soil type, topography and so on of the area (Bruce et al. 2013). Habitats, 

intricately link with biodiversity as the habitat heterogeneity hypothesis suggests.  

The extent and status of habitats is an essential and useful measure of biodiversity and offers 

several practical advantages, which include interpretation of aerial and satellite data for 
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regular monitoring of status and trends. Furthermore, the phytosociological relationships 

between habitat and species composition help to identify particular species assemblages in a 

study transect. Bunce et al. (2013) affirmed that habitat condition relate to species 

distribution and abundance. Processes that promote habitat degradation affect the 

biodiversity of the habitat, and the extent of this effect is established from habitat data. Past 

and ongoing investigations report severe degradation of the landscape and habitat of the 

study area arising from oil exploration and related activities. This study aims to develop 

remote sensing tools that can map both spatial and temporal extents of these changes. 

2.4.2 Plant Species 

Plant species also serve as valuable indicators because they are more easily identified, 

sampled, stored or transported and distributed over a wide range of habitats and 

environments (Faith and Walker, 1996). Also, Pereira and Cooper (2006) affirmed that 

vascular plants are suitable indicators of biodiversity for global monitoring programmes. 

2.4.3 Biodiversity Indicator Partnership  

The Convention on Biological Diversity (CBD) in 2006 mandated the Biodiversity Indicators 

Partnership to facilitate the development and application of biodiversity indicators in 

monitoring programmes worldwide. Since the over 20 years of its existence, the BIP has 

attempted to coordinate a global partnership providing the essential data, analysis and 

professionalism needed for successful development of indicators for biodiversity monitoring. 

Together with the partners, they have created an extensive list of indicators some of which 

are fully developed globally with standardised methodologies. The Aichi 2020 targets of 

focus and biodiversity indicators explored in this study are shown in Table 2.1. 
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Table 2.1 The AICHI 2020 target and biodiversity indicators relevant to the present research 

Target 5 By 2020, the rate of loss of all natural habitats, including forests, is 

at least halved and where feasible brought close to zero, and 

degradation and fragmentation  is significantly reduced 

Indicators Trends in extent, condition and vulnerability of ecosystems. 

Extinction risk trends of habitat dependent species. 

Trends in extent of selected ecosystems and habitats 

Trends in the proportion of degraded/threatened habitats 

Trends in fragmentation of natural habitats 

Trends in the proportion of natural habitats converted. 

Trends in pressures from habitat conversion, pollution, invasive  

species, climate change, overexploitation and underlying drivers 

  

2.5 Determining Species Diversity of Transects. 

2.5.1 Similarity Index of Polluted and Control Transects  

Prior to determining the vascular plants diversity of investigated transects, the similarity 

index of polluted and control transects was evaluated.Similarity index measures the degree 

of association or agreement of two entities or variables, in this case, vegetation data from 

polluted and control transects (Warrens, 2008). Similarity index of pairs of segments 

determines the degree of their association based on their species composition. This study 

utilised the abundance-based Sorenson's similarity index. Abundance data takes into account 

both commonness and rareness of species and places more weight on individuals of the 

species; and hence provide more detailed information about vegetation on the sampled area 

(JOSEPH et al. 2006; Chao et al. 2006). Many researchers (Sattout and Caligari, 2011; 

Petrovic, Jurisic and Rajkovic, 2010) have used Sorenson's coefficient as an appropriate test 

to determine the similarity between investigated units. To ensure that the sampled transects 

have common features, the Sorenson's index (IS) was calculated to determine the community 

similarity between segments of polluted and control transects as well as among the different 

locations.  

The formula for Sөrenson’s similarity index (IS) is:   
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𝐼𝑆 =  
2𝑀𝑊

𝑀𝐴+𝑀𝐵
∗ 100                (1) 

Where  

MW = Sum of the smaller numbers of plant species common to the control and test transects  

MA = the sum of all plant species in the transect A 

MB = the sum of plant species in the transect B 

 

2.5.2 Richness and Diversity Indices 

Species diversity measures the diversity within a habitat or ecological community classified 

as alpha, beta or gamma diversity. Alpha diversity (α-diversity) describes the number of 

species present (species richness or species abundance) and the distribution pattern of the 

individual members of these species (species evenness or species equitability) within an 

ecological unit (Hurlbert, 1971). On the other hand, beta diversity (β-diversity) is the 

summation of the differences among habitats. It measures the change in species composition 

between two or more habitats within a region or between regions (Magurran, 2010). Lastly, 

gamma diversity (γ-diversity) also known as regional diversity is a composite of α and β –

diversities. Diversity indices were computed for each segment of polluted and control 

transects in order to answer the research questions. The various indices of species diversity 

include species richness which refers to the number of species present in a given area without 

reference to the abundance or distribution pattern of the species , species evenness which is 

the relative abundance of a species in a community. Other indices include the Simpson’s 

diversity index and Shannon’ds diversity index; the Chao-1 richness index and the 

Menhinick index. Detailed description of these indices and their formuylae are provided in 

Appendix 8.1: Description of vegetation and biodiversity measures. 

2.5.3 Beta Diversity Index of Polluted and Control Transects  

Beta diversity, a term coined by R. H. Whittaker in 1960 describes ‘the extent of change in 

community composition or degree of community differentiation in relation to a complex 

gradient of the environment or a pattern of environments'. According to Ricotta (2012), beta 

diversity quantifies the amount of variation in species composition among sampling units 
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such as communities, assemblages, plots and so on. Similarly, Baselga (2012) defines beta 

diversity as the ratio between regional (gamma) diversity and local (alpha) diversities. Beta 

diversity values are dependent on the extent of the study area, size of the sampling units and 

sampling interval (Legendre and Legendre, 2012). Quantifying the variation in species 

assemblages provides relevant information for understanding the ecological and 

environmental processes that influence biodiversity and ecosystem services. Beta diversity 

of ecological units provides critical information on the functioning and management of 

ecosystems as well as biodiversity conservation policies (Legendre, 2007). For instance, the 

inference of oil pollution effect on species diversity is possible from beta diversity analysis, 

which detects the variations between species composition and abundance on polluted and 

control transects. Differences in the species turnover for polluted and control transects at 

different locations is an indication of biodiversity response to oil pollution. The formula for 

calculating beta diversity is given by Jost (2010) and based on Whittaker (1960) for 

communities with equal weights (in this study, equal sampling units) is as follows 

𝛽 =  𝛾 𝛼⁄                    (2) 

Where, 

β = Beta diversity, 

γ = Gamma diversity (diversity of the entire study area) 

α = Alpha diversity (diversity of each transect, polluted and control) 

 

2.6 Remote Sensing in Biodiversity Monitoring 

Conventional biodiversity monitoring methods are constrained by local, national and 

regional issues including finances, shortage of skilled staff, out of date equipment, lack of 

accessibility, and further threat of habitat destruction through fieldworks, questionable 

monitoring objectives and attendant errors (Stork, 1996; Powers et al. 2013). One method 

that has proved a hopeful remedy to these constraints is remote sensing from space-borne or 

airborne platforms.  

Remote sensing is the science and art of obtaining information about an object, area or 

phenomenon through the analysis of data acquired by a device that is not in direct contact 
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with the target (Alcantara, 2013). Remote sensing is a viable instrument for photographing 

the earth surface at regular time intervals. It affords a synoptic perspective of earth features, 

which is not feasible through other means of observation. Remote sensing provides data on 

large-scale patterns, trends and interactions at desired levels particularly when combined 

with ground data (Schott, 2007). It generates reliable data about earth's topography and land 

cover, rainfall, temperature and other climatic variables, habitats and world biomes (Noss, 

1999; Boyd and Danson, 2005).  

For this research, remote sensing is defined as the observation of the earth's land surface 

utilising reflected or emitted electromagnetic radiation. It excludes remote sensing 

applications in other fields such as in geodesy and seismology. Used in conjunction with 

Geographical Information Systems (GIS), Nagendra (2001) and other researchers have 

studied the application of remote sensing in understanding the patterns of species distribution 

in an ecosystem. Boyd and Danson (2005) maintained that remote sensing offers 

unprecedented capabilities for global forest mapping and health assessments and may be the 

only practical way of monitoring earth's forested areas on a timely and consistent basis. It 

also allows for the mapping of large areas efficiently and more accurately (Wulder, 1998). 

Furthermore, progress in sensor technology and analytics enhance remote sensing 

application in solving environmental management problems across disciplines (Galidaki and 

Gitas, 2015). For biodiversity issues such as species identification and distribution, this 

progress is a welcome development. 

Generally, data from remote sensing combined with expert knowledge enables the 

classification of landscapes and habitats based on predefined systems such as the Food and 

Agriculture Organization Land Cover Classification System (LCCS) (Lucas et al. 2015). 

Warren et al. (2014) observed that ecosystem heterogeneity affects species richness and 

abundance, suggesting that spectral diversity correlates closely with biodiversity. The 

approaches to the use of remote sensing in monitoring biodiversity are indirect and direct. 

2.6.1 Indirect Remote Sensing (IRS) 

IRS involves the measurement of environmental parameters as proxies of biodiversity trend 

in question. Through remote sensing, indirect indicators of diversity such as land cover maps 
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are analysed and combined with field data to model and predict features of biodiversity like 

species composition or abundance (Turner et al. 2003; Millennium Ecosystem Assessment, 

2005; Haines-Young, Potschin and Kienast, 2012). The concepts driving this approach 

include 

2.6.1.1 The Habitat Heterogeneity Hypothesis (HHH)  

MacArthur and MacArthur (1961) proposed the hypothesis stating that increased 

environmental heterogeneity increases species richness. Douda et al. (2012) stated that the 

distribution of species in any habitat depends on their characteristics and environmental 

requirements; hence, microhabitats support different species (niche theory). It follows that 

the more heterogeneous a habitat is, the higher its species diversity index. Factors such as 

topography, soil variability, habitat disturbance, landscape structure and complexity, in turn, 

determine habitat heterogeneity. These factors are remotely sensed and positively correlate 

with species diversity in swamp forest community (Douda et al. 2012); in a disturbed habitat 

characterised by varying ecological niches (Warren et al. 2014); and in Savannah region 

(Oldeland et al. 2010). 

2.6.1.2 The Spectral Variation Hypothesis (SVH)  

The spectral variation hypothesis proposed by Palmer et al. (2002) suggests that spectral 

variations from remotely sensed images can determine plant species diversity. Palmer tested 

this hypothesis in 2002 using aerial images with very high spatial resolution (1m) while 

Rocchini et al. (2004) carried out similar testing using multispectral satellite image of 3m 

spatial resolution. In both investigations, the possibility of estimating species diversity of the 

study area based on the spectral variability of the remotely sensed images showed great 

potentials (Rocchini, Chiarucci and Loiselle, 2004). Several studies have shown that the 

variations in the internal structures of different species such as pigments, tissues that produce 

unique spectral signatures drive the relationship between spectral variability and species 

diversity at a particular area (Heumann, Hackett and Monfils, 2015). Hall et al. (2012) 

demonstrated that the spectral variability explained about 30-35% of species diversity in their 

study area. In the present research, the potential of both multispectral and hyperspectral 
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images for predicting the diversity of species in Rivers State is investigated using Sentinel-

2 and Hyperion EO-1 images.  

2.6.2 Direct Remote Sensing 

Direct remote sensing involves the use of hyperspectral and hyper-spatial sensors for direct 

sensing of individual organisms, species assemblages or ecological communities (Turner et 

al. 2003). Presently, however, these high-resolution images are mostly commercially 

available and are expensive to acquire. 

2.6.3 Remote Sensing Derived Indices 

A third approach involves the measurement of an ecosystem's functioning and productivity 

variables to determine its species composition. Some researchers have successfully 

established a positive linear relationship between species diversity and ecosystem 

productivity (Waide et al. 1999). Clevers et al. (2002) and Andrew et al. (2014) confirmed 

the direct measurement of plant biophysical and biochemical characteristics and changes in 

these attributes by satellite sensors. These possibilities prompt the development of very high-

resolution sensors to monitor biodiversity, predict species distributions and model ecosystem 

responses to environmental and anthropogenic changes (Turner et al. 2003). For instance, 

Thenkabail et al. (2004b) and Adamu et al. (2014) examined varying plant responses to 

certain stress factors; Blackburn and Ferwerda, (2008) measured chlorophyll concentration 

from leaf reflectance; Houborg and Boegh, (2008) and Dalponte et al. (2009) in their various 

studies determined the nitrogen and lignin content of leaves from reflectance data and so on. 

Recent research established strong links between species richness and spectral diversity 

(Warren et al. 2014; Aneece, Epstein and Lerdau, 2017; Peng et al. 2018a; Onyia, Balzter 

and Berrio, 2018).  

2.6.4 Limitations in Biodiversity Monitoring  

A common drawback to the use of remote sensing in biodiversity monitoring is the level of 

multidisciplinary cooperation and interaction needed to achieve realistic results. Regardless 

of the quality of the remotely sensed data acquired, there is a primary need for local experts 

including ecologists, botanists and so on to ensure accurate interpretation and classification 
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of the data (Lucas et al. 2015). In addition to this, the amount of information relevant to 

biodiversity retrieved from remotely sensed data depends on the size of the study area and 

the resolution of the remote sensor (Nagendra 2001). The choice of the sensor will ultimately 

depend on the availability of funds as data from higher resolution sensors (spectral and 

spatial) cost a lot more to obtain. 

 A review of available literature in remote sensing shows that both very high and very low 

spatial resolutions impede accurate interpretation of the images. For instance, Boyd and 

Danson (2005) explained that coarse spatial resolution imagery might provide inaccurate 

results when applied in a local context but are acceptable in large area studies. Conversely, 

finer spatial resolution imagery suitable for local area studies is less likely to generate 

accurate maps when extrapolated to regional or national scales. Furthermore, Malingreau 

and Tucker (1988) reported that the utilisation of higher resolutions satellite imagery is 

constrained by high cost, large volumes, delay in the acquisition, and particularly in the 

tropics; cloud cover and dense smoke from forest fires.   

Although remote sensing is an effective means of spatial and temporal classification of 

vegetation and land cover types, there are still accuracy problems with attempts at species 

identification (Hu et al. 2008). Nonetheless, as different species of plants respond differently 

to light in the electromagnetic spectrum, the near infrared, middle infrared and thermal 

infrared bands are recommended for species discrimination. Other factors such as ground 

surface and understory components, canopy gaps, stand density and crown size, which 

contribute to spectral variation (Treitz et al. 1992; Eastwood et al. 1997), are unaccounted 

for adequately. Information on lower vegetation strata, such as herbs or shrubs is lost when 

optical sensors are utilised due to their inability to penetrate through the top canopy of 

vegetation.   

Other challenges to the use of remote sensing in studying tropical forests as noted by Jusoff 

and Ibrahim (2009) include sensor design and accuracy, algorithm development and 

availability of baseline ecological and taxonomical data. Jusoff and Ibrahim (2009) also 

pointed out that the data supplied by remote sensing imagery are very complex and hence 

require complex and sophisticated procedures to extract the relevant information. The 
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availability of such skills in developing nations is a significant constraint in effective natural 

resource management. A further obstacle as noted by Lucas et al. (2015) is the absence of a 

standardised, systematic approach to the classification of habitats from remotely sensed data 

that applies to all transects.   

There are also limitations associated with sensor design. According to Carlson et al. (2007), 

land managers and scientists require a comprehensive understanding of species distribution 

on a scale commensurate with conservation, management and policy development programs 

to produce maps with less than 0.5km resolution. Such fine scaled biodiversity maps provide 

a baseline for temporal and spatial change assessment of landscape and evaluation of 

management decisions. They argue that these maps are defined better with high-resolution 

imagery as past efforts using Landsat data characterised by medium to coarse spatial 

resolution (>30m pixels), multispectral (<10 bands) data have failed to fully capture 

landscape, species and canopy-level diversity in monitored forests. 

More recently, Mairota et al. (in press) identified several challenges associated with remote 

sensing application in biodiversity monitoring to include image processing, interpretation, 

integration with other data sources and timely application of results to management 

endeavours. Thenkabail et al. (2004) stated that the older generation of satellite sensors 

perform poorly in studies involving complex biophysical characteristics of plants and 

vegetation. They opined that higher spectral and spatial resolutions allow improved 

interpretation of remotely sensed data over and above that obtainable from lower resolutions. 

Their study comparing four different sensors namely- Hyperion (hyperspectral); IKONOS 

(hyper-spatial); ALI (multispectral), and ETM+ (Landsat) showed that the hyperspectral 

sensors had higher overall accuracies for individual vegetation types than the others did. Hu 

et al. (2008) agree that high-resolution remote sensing provides better details in species and 

spectral signature differentiation. For instance, hyperspectral data can provide near accurate 

information on particular characteristics of vegetation such as biochemical properties, 

biomass, leaf area index, stress, management impacts, and pigment contents. These factors 

are crucial for successful biodiversity monitoring and conservation strategies (Hu et al. 2008; 

Jusoff and Ibrahim, 2009; Thenkabail et al. 2013).  
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2.7 Essential Biodiversity Variables (EBVs) 

An Essential Biodiversity Variable (EBV) is a measurement required for the study, reporting 

and management of biodiversity change (Pereira et al. 2013). They are standardised 

measurements and observations necessary to calculate indicator transformations necessary 

to derive biodiversity indicators. For instance, EBVs such as species population, abundance 

and distribution provide information for many indicators including: -  

i. Trends in extent of selected biomes, ecosystems and habitats 

ii. Trends in abundance and distribution of selected species 

iii. Coverage of protected areas 

iv. Change in status of threatened species 

v. Trends in genetic diversity  

These, in turn, provide information on the status of the habitat. EBVs like biodiversity 

indicators provide information on the changes and the impact of these changes on 

ecosystems, species, genes and ecosystem services. EBVs are scalable (allowing for large-

scale generalisations), measurable (using various techniques including remote sensing), 

feasible and are widely applicable across regions, sensitive to change over time and relevant 

to the CBD targets (Pereira et al. 2013).  

The concept of EBVs recently evolved following the failure of the CBD parties to meet the 

2010 targets. Compounding this was the lack of a global, harmonised system for biodiversity 

monitoring and data acquisition. The Group on Earth Observations- Biodiversity 

Observation Network (GEO BON) spearheaded the exercise to develop these variables to 

form the basis of monitoring programmes worldwide. According to Pereira et al. (2013), the 

EBVs does for biodiversity what other observation initiatives such as the Global Observation 

System for Climate (GCOS) developed Essential Climate Variables ( ECVs) and the 

Essential Ocean Variables (EOVs) developed by the Global Ocean Observing Systems 

(GOOS) does for global environment. Being a new concept and still in development, few 

studies exist on the application of EBVs in biodiversity monitoring schemes. The present 

research integrated the measurement of relevant EBVs to achieve its general aim. The 
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following EBVs measured through in-situ observations and remote sensing, were assessed 

to determine the impact of oil pollution on biodiversity in the study area 

i. species abundance and distribution (vegetation inventory data) 

ii. species traits (leaf chlorophyll data) 

iii. community composition (polluted and control transects) 

iv. ecosystem structure (differences between polluted and control transects) 

2.8 Vegetation Indices (VIs) 

Photosynthetic and protective processes involving pigments such as chlorophylls, 

carotenoids, and anthocyanins drive plant life cycles. These pigments generally absorb and 

convert solar radiation to the chemical energy needed for plant productivity through a process 

known as photosynthesis. According to Thenkabail et al. (2013), every plant species 

produces a unique spectral signature, which is dependent on the proportion of these pigments 

within the cell chloroplast. Additionally, the physiological status of the plant at the time of 

measurement also influences the plant spectral signature.  

Vegetation indices are mathematical expressions derived from the spectral reflectance of 

plant materials on the earth's surface. They are functions of the reflectance in visible and 

near-infrared (NIR) spectral bands. Generally, leaf pigments including chlorophyll, 

carotenoids and anthocyanins absorb significant radiation at the visible light range (VIS, 400 

nm -700 nm) while reflecting near-infrared light (NIR, 700 nm -1300 nm) (Huete, 2012). 

The abrupt transition between both spectral signatures is the red edge. Water, on the other 

hand, have moderate absorptions at the shortwave-infrared (SWIR, 1300 nm -2100 nm) 

bands (Huete, 2012). Many researchers use satellite-based vegetation indices to detect 

(Adamu, Tansey and Ogutu, 2015), explain (Bhandari, Kumar and Singh, 2012), estimate 

(Barati et al. 2011) various environmental phenomena.  

Spectral reflectance signatures correlate well with biophysical and biochemical vegetation 

parameters (Arellano et al. 2015; Thenkabail and Lyon, 2016). Additionally, VIs are 

incorporated in models developed for estimating, monitoring, mapping and analysing 

ecosystem structures such as vegetation cover and species composition as well as functions 
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such as productivity and biomass (for instance, Pu, Bell and English, 2015; Bargain et al. 

2013; Gong et al. 2003; Arellano et al. 2015). They are hence, essential tools in retrieving 

information about the state, biogeochemical composition and structure of an ecosystem 

(Huete, 1988; Jørgensen, Mortensen and Ohlsson, 2003; Alcantara, 2013).  

Spectral VIs are designed to minimise the effect of external influences like solar irradiance, 

changes due to atmospheric effects or variations in soil background optical properties on 

vegetation reflectance (Gilabert et al. 2002). VIs derived from variations in spectral 

reflectance measured by hyperspectral and multispectral sensors contribute to biodiversity 

assressment at different spatial (Rocchini, Chiarucci and Loiselle, 2004) and temporal 

(Martinis et al, 2018) scales.  

Several vegetation indices were analysed for their ability to detect oil pollution effects on 

biodiversity and these include the  Normalised Difference Vegetation Index (NDVI); the Soil 

Adjusted Vegetation Index (SAVI); the Red Edge Position (REP); the Anthocyanin 

Reflectance Index (ARI) and the Carotenoid Reflectance Index (CRI). Detail descriptions of 

these indices and their formulae are provided in appendix 8.2; Description of vegetatiojn 

indices. 

2.9 Plant Biophysical Parameters 

These critical plant characteristics and processes interact with the environment and control 

ecological functions in various habitats. They are useful in ecological research and are 

important indicators of biodiversity assessment, monitoring and management (Pereira et al. 

2013). They strongly influence the spectral signatures of plants and hence are measurable 

through remote sensing. Measurement of these parameters are either at individual plant levels 

or canopy levels. At canopy level, optical properties of leaves, leaf angle distribution, 

biomass and canopy structure influence reflectance whereas concentrations of pigments 

(chlorophyll, carotenoids, anthocyanins); moisture content, leaf area and so on determine 

leaf reflectance. Studies show that these parameters are affected by the presence of 

hydrocarbons in the soil (Rosso et al. 2005). The plant biophysical and biochemical 

parameters examined in the present study to determine the impact of oil pollution on plant 

biodiversity include. 
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2.9.1 Chlorophyll Content (CC) 

Chlorophyll is a group of green pigments that capture light, which provides the energy for 

the process of photosynthesis in plants and other organisms. They are located in the 

chloroplast and directly proportional to the absorption of photosynthetic light. It is an 

essential indicator of the overall physiological state of a plant/vegetation (Gitelson, Gritz and 

Merzlyak, 2003; Wu et al. 2008). Chlorophyll plays a significant role in the process of 

photosynthesis through which plants manufacture their food and grow; hence, the total CC 

in healthy growing plants is expectedly higher than the content in dead or unhealthy plants 

(le Maire, François and Dufrêne, 2004; Wu et al. 2008). Investigations have evidenced a 

correlation between the presence of hydrocarbon compounds and the percentage content of 

chlorophyll in leaves (Baruah et al. 2014), making CC a good indicator of the physiological 

state of vegetation growing on hydrocarbon-polluted soil. 

Other studies prove that chlorophylls strongly influence reflectance in the red and blue 

wavelength, with maximum absorption occurring in the 660 nm – 680 nm regions. However, 

empirical studies based on reflectance between 550 nm to 700 nm show higher accuracy in 

estimating CC in several species of leaves (Gitelson et al. 2002; Wu et al. 2008). CC 

estimation can be done at leaf-level using ratios of three or more bands (Gitelson, Gritz † 

and Merzlyak, 2003; le Maire, François and Dufrêne, 2004) or at canopy level using factor 

analysis, artificial neural networks and stepwise multiple regression. However, individual 

leaf measurements calibrate measurements at higher canopy or ecosystem levels (Mielke, 

Schaffer and Schilling, 2012). Although vegetation species have a similar spectral response, 

differences in leaf internal structure and presence of other pigments affect leaf reflectance of 

different species at similar wavelengths (Mielke, Schaffer and Schilling, 2012). For this 

study, chlorophyll content was determined using a hand-held chlorophyll meter and 

computed using chlorophyll related vegetation indices. 
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2.10 Research Questions and Objectives 

The main aim of this research is to determine the impact of oil pollution on vascular plants 

species used as biodiversity proxies, by analysing remotely sensed hyperspectral and 

multispectral data and validated with field data To achieve this, the research sought answers 

to the following questions:- 

2.10.1 Research Questions (RQ) 

RQ1. Has oil pollution affected the vascular plants' species diversity index of the study 

area? 

RQ2. Are vascular plants species susceptible to oil pollution and does this affect their 

biochemical parameters? 

RQ3. Is there any relationship between spectral diversity metrics and vascular plant species 

diversity measured in the field?   

RQ4. Can this relationship be modelled to estimate the diversity of vascular plants on oil-

polluted transects? 

2.10.2 Research Objectives (RO) 

RO1. To determine the vascular plant species diversity index of the study area and 

investigate the effect of oil pollution on the biodiversity of the study area using 

vascular plants as indicators (RQ1) 

RO2. To investigate the effect of oil pollution on plant biochemical parameters with focus 

on leaf chlorophyll content (RQ2) 

RO3. To test the validity of the spectral variation hypothesis in estimating species diversity 

of the study area (RQ3) 

RO4. To develop prediction models for vascular species diversity in oil-polluted areas 

(RQ4).  

2.11 Thesis Structure 

The arrangement of the chapters in this thesis may be visualised as an ice cream cone in the 

way the research questions listed in section 2.10.1 are tackled. Beginning with the 
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determination of oil pollution effect on soil and vegetation of the entire Rivers State, the 

thesis narrows in scope to investigating the spectral changes in vegetation characteristics 

detected by multispectral satellite sensor, and then focuses on determining the impact of oil 

pollution on vegetation biochemical parameters using hyperspectral data from a subset of the 

study area. Figure 2.1 portrays the relevant connections and the general direction of the 

research. The thesis commences in Chapter 1 with an introduction to the oil pollution 

problem in the study area and justification of the study. In Chapter 2, a general discussion on 

previous literature related to this research is presented with emphasis on remote sensing 

applications in biodiversity monitoring.  

Chapter 3 provides a description of the methodology and datasets utilised in this research as 

well as the sources and characteristics of various satellite data. In this chapter, the 

geomorphological and ecological parameters of the study area are presented to provide the 

reader with a proper perspective of the connections between oil pollution and biodiversity 

loss. Finally, the various statistical tools employed in data analyses are explained.  

Chapter 4 presents the answer to the first research question (RQ1) in section 2.10.1. The 

vascular plant species diversity in Rivers State is determined, and the impact of oil pollution 

on the soil and vegetation parameters is revealed from field data. Chapter 5 subjects the 

spectral variation hypothesis to test and evaluates its usefulness for detecting the impact of 

oil pollution on vascular plants species diversity. Chapter 5 marks the introduction of satellite 

data in answer to the second and third research questions (RQ2 and RQ3) and outlines the 

specific data and methods employed are outlined.  

Chapter 6 provides a detailed evaluation of oil pollution impact on vegetation biochemical 

parameters, specifically chlorophyll and how this influences vegetation reflectance at various 

wavelengths. The higher spectral resolution of the Hyperion image proves suitable for this 

analysis; however, the scarcity of the dataset constrained its application to only a subset of 

the study area. Models derived from relationships among several variables are used to 

estimate species diversity on transects in answer to the fourth research question (RQ4).  

Chapter 7 provides a general discussion, which ties together the results of the investigations 

completed in Chapters 4 to 6 in order to make valid conclusions. The challenges encountered 
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in this research, contributions to knowledge as well as recommendations for future work are 

also presented.   

2.12 Summary 

This chapter provided a review of related literature, with emphasis on the application of 

remote sensing in biodiversity monitoring, the research questions and objectives and the 

thesis structure. Chapter 3 will discuss the general methodology and data sets used in this 

research as well as descriptions of the study area. 
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Figure 2.1: Thesis structure reveals interconnections among chapters, in line with research questions 

and objectives. Data and main procedures performed in each chapter shown in italics. 
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3 Methodology 

This chapter aims to provide an overview of the methodology and datasets employed in this 

research. The chapter details the preliminary steps taken to access polluted locations and the 

difficulties encountered. A description of the study area, field sampling method and 

laboratory analysis follows. Furthermore, the chapter explains the attributes of the satellite 

data utilised and the various computational procedures applied. Although this chapter gives 

an overview of the general methodology of this research, specific methods applied to unique 

datasets are discussed in subsequent result chapters. 

3.1 Description of the Study Area   

Rivers State is located between latitude 4.75o North and longitude 6.83o East in the eastern 

part of the Niger Delta, on the oceanward extension of the Benue trough (Figure 3.1). It 

occupies an area approximately 11,077 km2 of the delta described as constructive and fed 

mainly with sediments from the heavily-laden (about 330,000 cm3/annum) River Niger 

originating from Guinea travelling through Mali, Niger, Benin Republic and Northern 

Nigeria (Netherlands Engineering Consultants, 1959). The Delta also receives sediments 

from the Benue River, albeit to a lesser degree. Rivers State is bounded on the South by the 

Atlantic Ocean, to the North by Imo, Abia and Anambra States, to the East by Akwa Ibom 

State and to the West by Bayelsa and Delta States. It receives some of the highest rainfall in 

the world of up to 3000mm annually (Omo-Irabor et al. 2011). The temperature ranges from 

200 to 300 C during the day. The Intertropical Front wind originates from the meeting point 

of humid air masses of the Gulf of Guinea and dry air masses from the north continuously 

blow over the delta, resulting in high levels of humidity of up to 75% (Elenwo and Akankali, 

2014). The area is also characterised by high cloud cover, which invariably affects the quality 

of satellite data obtained at certain times of the year (Omo-Irabor et al. 2011). 
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Figure 3.1 Map of Rivers State showing the location of investigated spill transects (Polluted 

and non-polluted i.e. control), ecological zones and waterbodies (rivers and creeks).  
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In line with the rest of the delta geomorphology, Rivers State consists of alluvial deposits of 

sands, silts and clays deposited during the late Miocene-Pliocene times. Coarse sands and 

gravels underlie parts of the area while fine sands and clays underlie other areas (United 

Nations Environmental Programme, 2011). The landscape of the area is generally flat with 

altitude ranging between 6 to 14m above sea level. Investigated transects located in various 

local government areas fall in the coastal plain and freshwater ecological zone populated by 

forest tree species, mangrove, palms, shrubs, ferns, lianas and so on, however, the rainforest 

is degraded with fewer trees as observed during the field work. Vegetation around spill 

transects is variable with evidence of fire occurrence within 30 m radius of the spill epicentre 

at one of the polluted locations in Kporghor. Other features include untarred roads which is 

part of the oil companies right of way (ROW), vegetated land (natural and farmed) and bare 

soil. 

Records from the Nigerian Oil Spill Monitor website (NOSDRA, 

2015)(https://oilspillmonitor.ng) indicate that the spills occurred between July to December 

2015 with sabotage being the leading cause. Sabotage of oil pipelines is the typical method 

by which crude oil is illegally extracted or diverted. It involves exploding dynamites near 

pipelines, loosening valves, cutting the pipes, drilling holes in the pipes to fit taps, applying 

corrosive substances all in the bid to access the crude oil (Adishi et al. 2017). The extracted 

crude is either sold in the black market or locally refined for personal use. Estimated spill 

volumes reported range from 46 barrels to over 5000 barrels (at Egbalor and Kporghor2, 

there was no data on the volume of spill). Consequently, between July and December, 2015 

(about six months) over 10,641 barrels of crude oil was spilt into the vulnerable ecosystem 

of Rivers State in the Niger Delta region of Nigeria.  
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Figure 3.2 Field photo showing the extent of fire damage on the vegetation of the study 

transect. Cause of the fire is unknown and was not reported in the initial impact assessment 

conducted by the joint investigation team. 

3.2 Ecology of the Study Area 

Rivers State is characterised by four biodiversity important vegetation zones, namely, the 

lowland rainforests, freshwater swamp forests, mangrove forests, and barrier island forests. 

Ebeku (2006) reported that these zones form a critical component of the ecosystem on which 

the economy and livelihood of the inhabitants depend. According to the World Bank (1995) 

classification, the vegetation zones include 

1. The lowland rainforests (LRF) which represents the coastal plains. The World Bank 

(1995) reported that the study area was predominantly vegetated by these forests. The 

rain forest is characterized by up to four strata of trees growing up to 50 m tall (Izah, 

2018). However, as pointed out by Ugochukwu and Ertel (2008), large chunks of this 

forest has been taken over by agricultural lands. The vegetation found in this 

ecological zone are mostly used for timber, tannins, fuelwood, fences, furniture, saw 

wood, particle board, poles and traditional medicine (Nuga and Offodile 2010).  

2. The freshwater swamp forests (FSF) occurs between the lowland and mangrove 

forests. It can be subdivided into two ecosystems 

a. The rarely flooded riverbank levees most of which is converted to farmlands 

supporting trees, palms and shrub species. 
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b. The flooded back swamps, which support very diverse plants species. 

This ecological zone represents an important biodiversity area, providing habitat for 

endangered and rare wildlife (Igu and Marchant, 2017). It is also a source of 

freshwater supply for inhabitants as well fuel, food, medicine, construction and 

textile materials (Izah, 2018; Igu and Marchant, 2017). 

 

3. The mangrove forest (MGF) is characterised by a dense network of inundated creeks 

and supports the growth of a variety of mangrove and other tree species. The 

ecological zone comprises of estuarine and marine ecosystems which are separated 

by barrier islands. Both habitats are predominantly populated by mangrove tree 

species.  

4. The barrier island forest (BIF) which gradually demarcates the coastal zones and the 

estuarine mangroves. The forest is vegetated by a range of diverse flora and fauna 

species. The zone is bounded by the mangrove swamps inland and beach strand on 

the seaside. It is also characterised by four ecozones namely ridge-top rainforest with 

similar characteristics as the LRF, freshwater swamp forest between the ridges, 

brackish-water swamp forest and the beach strand. 

Each of these zones harbours distinct variations in flora and fauna essentially in response to 

the hydrological variations (Abam, 2001). The dominant species, their habits and                         

ecological zone(s) in which they occur are shown in Table 3.1.  
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Table 3.1: List of dominant species occurring in the different ecological zones of Rivers 

State of Nigeria. LRF = Lowland Rainforest; FSF = Freshwater Swamp Forest; MGF = 

Mangrove Forest and BIF = Barrier Island Forest 

Species name Family name Life form Ecological Zone 

Agelea oblique Connaraceae Tree LRF, FSF 

Albizia adianthifolia Fabaceae Tree LRF, FSF, BIF 

Alchornea cordifolia Euphorbiaceae Shrub FSF 

Alstonia boonei Apocyanaceae Tree FSF 

Anthocliesta vogelii Gentianaceae Tree FSF 

Antidesma vogelianum Euphorbiaceae Tree LRF 

Avicennia africana Acanthaceae  Tree MGF 

Berlinia spp Caesalpiniaceae Tree LRF, FSF, BIF 

Bligha sapida Sapindaceae Tree LRF 

Bombax buonopozense Malvaceae Tree LRF, FSF, BIF 

Borassus aethiopum Arecaceae Tree LRF, FSF, BIF 

Ceiba pentandra  Bombacaceae Tree LRF, FSF, BIF 

Chassalia spp Rubiaceae Shrub FSF,MGF,BIF 

Cleispholis patens Annonaceae Tree LRF 

Cynometra megalophylla Fabaceae Tree MGF, BIF 

Dacryodes edulis Burseraceae Tree LRF, FSF 

Dalbergia ecastaphyllum Papilionoideae Shrub MGF, BIF 

Dichrostachys cinerea Fabaceae Shrub LRF 

Dryopteris spp Dryopteridaceae Fern LRF, FSF, BIF 

Eichornia crassipies Pontederiaceae Creeper FSF 

Elaeis guineensis Arecaceae Tree FSF, MGF, 

Entandrophragma cylindricum Meliaceae Tree LRF 

Entradrophragma angolensis Meliaceae Tree LRF 

Funtumia elastica Apocynaceae Tree LRF 

Harungana madagascariensis Clusiaceae Tree FSF 

Irvingia gabonensis Irvingiaceae Tree FSF 

Languncularia racemosa Combretaceae Tree MGF 

Lophira alata Ochnaceae Tree LRF, FSF, BIF 

Lovoa trichilioides Meliaceae Tree LRF 

Macaranga bacteri Euphorbiaceae Tree FSF, BIF 

Machaerium lunatum Fabaceae Tree MGF, BIF 

Milicia excelsa Moraceae Tree LRF, BIF 

Millettia griffoniana Leguminosae Tree LRF, FSF 

Musanga cecropioides Cecropiaceae Tree FSF 

Nypa fruticans Arecaceae Tree MSF 

Pandanus spp Pandanaceae Tree FSF, MGF, BIF  

Paullinia pinnata Sapindaceae Climber LRF 

Pentaclethra macrophylla Fabaceae Tree LRF 

Piptadeniastrum africanum Leguminosae Tree LRF 

Psychotria manii Rubiaceae Shrub LRF 

Pycnanthus angolensis Myristicaceae Tree FSF 

Raphia spp Arecaceae Tree FSF, MGF 

Rhizophora spp Rhizophoraceae Tree MGF 

Sterculia tragacantha Malvaceae Tree LRF, FSF, MGF 

Symphonia globulifera Clusiaceae Tree LRF, FSF 

Terminalia ivorensis  Combretaceae Tree LRF 

Terminalia superba Combretaceae Tree LRF 

Treculia Africana Moraceae Tree LRF, FSF 

Triplochiton scleroxylon Malvaceae Tree LRF 

Uapaca heudelotii Euphorbiaceae Tree FSF, BIF 
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The well-endowed ecosystem is abundantly rich in biodiversity with very high densities of 

flora and fauna (Emoyan, Akpoborie and Akporhonor, 2008).  The mangrove and freshwater 

swamp forests of the Niger Delta are the largest in Africa and the third largest in the world 

spanning about 70,000 km2.  However, large chunks of the forests are lost to extensive 

logging, fragmentation for oil exploration and agriculture. This ecosystem is under threat 

from unsustainable farming systems such as slash-and-burn practices, shifting cultivation 

and bush burning, indiscriminate hunting and poaching as well as over-exploitation of 

fisheries resources (Zabbey, 2004; United Nations Development Programme, 2006). 

Pollutants generated by a multiplicity of oil and gas related activities have exacerbated these 

threats, including seismic operations, drilling operations and production operations (United 

Nations Environmental Programme, 2011; Emoyan, Akpoborie and Akporhonor, 2008). 

Several other studies (United Nations Development Programme, 2006; Emoyan, Akpoborie 

and Akporhonor, 2008; Ugochukwu and Ertel, 2008; Lindén and Pålsson, 2013) documented 

the negative impact of oil exploration and exploitation on the Niger Delta environment. In 

the 2011 report on the environment of Ogoniland in Rivers State, the UNEP disclosed that 

oil pollution has destroyed the mangrove ecosystem, which had served as spawning areas for 

fish, thereby affecting the fish yield (United Nations Environmental Programme, 2011). The 

report also highlighted the effect of oil pollution on the productivity of valuable cash and 

food crops, vegetation and the introduction of invasive alien species. Despite the critical role 

biodiversity plays in maintaining and sustaining the livelihood of the present and future 

generations in the region, the rate of biodiversity loss remains very high. 

Contrary to the United Nations Environmental Programme Convention on Biodiversity 

(UNEP-CBD) demands in Articles 6 and 7; there is continued absence of a standardised 

environmental monitoring and surveillance systems to capture these occurrences and provide 

data for effective management decisions (Emoyan, Akpoborie and Akporhonor, 2008). Also, 

where these data exist, it is fragmented, incomplete, outdated, off-line and often inaccessible 

(United Nations Development Programme, 2010). This study evaluates the suitability of 

remote sensing and GIS applications in biodiversity monitoring in oil-polluted locations. 
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3.3 Sampling Methods 

3.3.1 Access to Oil Spill Transect 

Oral and written communication with stakeholders in the community, the Nigeria 

Department for Petroleum Resources (DPR) and Shell Petroleum Development Company 

(SPDC) Nigeria Limited was initiated to obtain the needed permission to access the spill 

transects. The DPR authorised the project instructing the oil companies to render assistance 

and access to available data where necessary. Community leaders particularly the members 

of the youth forum offered both the guides and access to polluted and control locations for 

sample collection and vegetation survey.  

Arrangements with the Michael Okpara University of Agriculture, Umudike department of 

Environmental Toxicology and the Forestry Research Institute of Nigeria (FRIN), Umuahia 

provided facilities and literature for species identification. 

3.3.2 Field Observations (FO) 

3.3.2.1 Global Positioning System (GPS) 

Numerous sites were marked for sampling, however, only few were accessible. Global 

Positioning System (GPS) devices Oregon 550T were used to identify the spill epicentres 

and sample points at both polluted and control transects in various locations. Sampled 

transects were predetermined from the Nigeria Oil Spill Monitor website and were located 

to within 3 m using the GPS. Accessing some selected locations was constrained by the 

difficult terrain, vegetation and insecurity. However, the support of the local community was 

invaluable in facilitating the field work.   Once the polluted and control transects were 

identified, the GPS coordinates were recorded and was utilised in identifying the 

corresponding pixels in the satellite image for correlation and validation with field data.  

3.3.2.2 Transect Establishment (TE) 

Vegetation sampling involved the line-intercept method discussed in Cummings and Smith 

(2000). Due to the unique circumstances prevailing at the study area during this campaign, 

the line intercept method offered the most potential at capturing adequate field data to 
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determine species composition and abundance (Kercher, Frieswyk and Zedler, 2003). 

Cummings and Smith (2000) and Buckland et al. (2007) agree that vegetation sampling 

based on the line intercept method although less intensive than quadrant based sampling 

methods, provide sufficient data to determine relative estimates of vegetation frequency, 

coverage, abundance and other relevant vegetation characteristics. Furthermore, according 

to Cummings and Smith (2000) and Kercher et al. (2003), the line intercept method offers a 

handy tool for detecting community transition (such as ecotones) or ecological gradients in 

habitats. It adapts well for investigating the relationships between changes in floristic 

compositions and environmental variables with little room for errors.  

The investigation occurred at ten oil spill locations in the Rivers State of Nigeria. Most of 

the spills emanated from damaged pipelines that criss-cross the landscape of the Niger Delta; 

however, a few occurred at oil well locations and wellhead sites. Accessibility to oil wells 

and wellheads was unavailable; hence, the field survey occured on the more easily accessible 

pipeline spill locations. Table 3.1 shows the location of polluted and control transects 

investigated. Spill epicentres were identified from the Nigerian oil spill monitor website and 

located using GPS devices. Unhindered access to spill locations determined its selection for 

sampling whereas certain attributes of polluted transects such as proximity to roads and 

company right of ways were considered in locating control transects in an attempt to 

minimize the between sample errors. Additionally, control transects were selected based on 

distance from the spill locations.  

Transects were 100 m long and transverse the polluted locations in order to study the effect 

of crude oil on vegetation composition. Polluted transects labelled A, B, C and D originated 

from epicentres of spill locations (SS0) and proceeded in the four cardinal directions 

respectively. Location of the control transects was random in unpolluted areas but within the 

same locations as the oil spills. The randomisation of control transects was to minimise error 

from bias. In addition to the spill epicentre, SS0, each transect was subdivided into five 

segments of 20 m length labelled SS1 to SS5. These segments numbering SS1 to SS5 

corresponded with increasing distance from the spill epicentre (SEC). For instance, SS1 

started from the SEC (SS0) and ended at 20m from the SEC. SS2 was from 20m to 40m; SS3 

was from 40m to 60m; SS4 was from 60m to 80m and SS5 was from 80m to 100m. For each 
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segment, species richness and diversity (alpha) values, vegetation abundance, leaf 

chlorophyll content and the total petroleum hydrocarbon (TPH) concentration in the soil 

were recorded. However, to correct for spatial autocorrelation effects, analysis of data 

involved alternate segments on each transect including the SS0s. 
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Table 3.2 Locations of the investigated polluted and control transects in the Rivers State of Nigeria. Also shown are the type of facility, 

date of spill and volume of the spill in barrels. Oil spill data source https://oilspillmonitor.ng 

NOSDRA ID Location LGA  Date  Latitude Longitude Volume (cbm)  Facility 

 
49636  Alimini  Emokua  04/07/2016 5.056672 6.703269 42   Pipeline 

  Control 1     5.050888 6.718027   

  Control 2     5.0519  6.716672   

41981  Amuruto Abua-Odual 17/12/2015 4.731917 6.432667 803.586   Pipeline 

  Control 1     4.718925 6.44518   

  Control 2     4.725071 6.439931   

52553  Anyu  Abua-Odual 17/11/2016 4.842944 6.468194 20.1   Pipeline 

  Control 1     4.812299 6.43763   

  Control 2     4.86774  6.493655   

45420  Egbalor  Eleme  12/08/2015 4.7906111 7.178528 Unknown  Pipeline 

  Control 1     4.79906  7.173313   

  Control 2     4.798188 7.175265   

41405  Kporghor Tai  12/09/2015 4.718553 7.225111 137.4   Pipeline 

  Control 1     4.711046 7.227604   

  Control 2     4.710883 7.22987   

52014  Kporghor 2 Tai  16/10/2016 4.7148611 7.225333 Unknown  Pipeline 

  Control 1     4.705858 7.221231   

  Control 2     4.720984 7.217364   

37708  Obua  Abua-Odaul 22/08/2015 4.934889 6.479278 7.31   Pipeline 

  Control 1     4.941858 6.473319   

  Control 2     4.930635 6.487469   

37791  Omoigwor Emuohua 31/08/2015 4.95364  6.837996 150.4   Pipeline 

  Control 1     4.962524 6.837512   

  Control 2     4.96662  6.83611   

41640  Umukpobu Emuohua 11/09/2015 4.954519 6.808028 101.3   Pipeline 

  Control 1     4.956759 6.798752   

  Control 2     4.95705  6.801251    

37378  Rumuekpe Emuohua 16/08/2015 5.025361 6.692444 190.8   Pipeline 

  Control 1     5.023084 6.701912   

  Control 2     5.015748 6.68483   

https://oilspillmonitor.ng/
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Figures 3.3 and 3.4 are illustrations of the transect establishment in the study area.  

 
Figure 3.3 Pre-spill digital globe image of investigated polluted locations in the study area. 

A1. Alimini, B1. Amuruto, C1. Egbalor spill points in Rivers State, Nigeria. Bold red lines 

illustrate  transects transversing the spill epicenter. Image downloaded from Google Earth, 

A2, B2 and C2 were images acquired few days after the oil spill during the post-impact 

assessment. Images downloaded from the www.oilspillmonitor.ng; A3, B3 and C3 are field 

photos of same locations acquired during the field campaign. 

 

http://www.oilspillmonitor.ng/
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Figure 3.4: A sketch of transects and investigated segments. Each transect measured 100 m 

from the spill epicentre, and each segment was 20 m in length. Although sampling was on 

all the segments shown, statistical analysis included data from only segments SS1, SS3 and 

SS5 as well as the segment overlaying the spill epicentre (SS0). 

The nature of the polluted transects varied widely. At a few locations like Kporghor and 

Anyu, there is clear evidence of fire incidence following the discharge of crude oil on the 

surface. At other locations, such as Egbalor, Omoigwor and Amuruto, vegetation on polluted 

transects consist mainly of mixed annuals and perennials with few tree species. At others, 

there was a visible ring of vegetation demarcating the epicentre from the surrounding areas. 

Other landscape features include mostly untarred roads, which form part of individual oil 

companies right of way (ROW) for oil pipelines, abandoned farmlands and excavated gutters 

about four meters wide usually installed as containment measures after the spill. 

Based on preliminary reports by a joint team of investigators, and available on the Nigerian 

Oil Spill Monitor website (https://oilspillmonitor.ng) most of the spills were because of 

pipeline vandalism by oil thieves. The spills occurred between August 2015 to November 

2016 with up to 5054 barrels of crude oil discharged into the environment in Amuruto, Abua-

Odual LGA (see Table 3.1 for estimated spill volume for other sites). The area impacted by 

the spill varied from 0.001 km2 at Alimini to 2.22 km2 at Omoigwor. Initial containment 

measures implemented by the host companies involved the use of booms, dykes, pits, 

trenches and natural depressions. This study investigated spills on lands, even though spills 

occurred on different habitats, to maintain optimum similarity of transects.  

3.3.2.3 Soil Sample Collection (SC) 

Soil sample collection was carried out in two phases. The first set from transects in Kporghor 

1and second set from the other locations during the second phase of the field study. A total 

of 210 samples were analysed in the laboratory for various physicochemical properties. 

https://oilspillmonitor.ng/
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Samples were obtained at 30 cm depths from the spill epicentre and 20 m intervals along 

each transect. At each segment including the spill epicentre, three samples were obtained and 

mixed, and a composite sample scooped into sterilised and labelled brown air-tight glass 

bottles to control further chemical reactions. These were stored in a plastic box filled with 

ice packs for transportation to the laboratory for chemical analysis.  

3.3.2.4 Vegetation Survey (VS) 

A comprehensive vegetation survey was carried out at the polluted and control transects. 

Inventory of all vascular plant species present on transects was done with the aid of prepared 

tally sheets and local experts. Tally sheets listing indigenous species and photographs were 

taken to the field to help in species identification with consideration given to the type and 

shape of leaf, margin, apex and base of each species Also considered were the arrangement 

of leaves and leaflets on the petioles. Previous reports of common species in the Niger Delta 

area such as Ubom (2010); Agbagwa and Ekeke (2011) provided material for tally sheets. 

Photographs of unknown plants were taken to the Herbariums of the Forestry Research 

Institute of Nigeria, Umuahia and the Michael Okpara University of Agriculture Umudike 

both in Abia State, Nigeria for identification.  

Occurrence and number of individuals for each species was recorded per segment of transects 

starting from the spill epicentre. Plants that occurred within 500cm on both sides of the 

transect lines were included in the count (Figure 3.5). The data was used to determine several 

phytosociological characteristics such as abundance, density and importance value index of 

species; and vascular plants species indices including the similarity, richness, evenness and 

diversity.  
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Figure 3.5: An example of a counted individual plant species occurring along a transect. 

3.3.2.5 Insitu Chlorophyll Data using SPAD-502 Chlorophyll Meter (ICM) 

The proportion of chlorophyll in leaves is a good indicator of the physiological status of 

vegetation. Laboratory determination of chlorophyll is often, expensive, time-consuming and 

destructive, the Soil Plant Analysis Development (SPAD-502) chlorophyll meter offers an 

alternative which has been reported to provide relatively accurate values that are proportional 

to the chlorophyll content in leaves (Ling, Huang and Jarvis, 2011).  

The SPAD-502 meter is a portable device that facilitates rapid and accurate measurement in 

the field without needing to detach the leaves from the plant. Previous researchers (Uddling, 

Gelang-Alfredsson and Piikki, 2007; Rodriguez and Miller, 2000) have successfully 

documented the conversion of SPAD-502 values to absolute chlorophyll measurements. 

However, the procedures appear to be sensitive to interspecies differences such as shape and 

size of leaves. In the light of this constraint and due to the number of species investigated in 

this research the SPAD-502 readings were used directly in all the statistical analysis.  

Chlorophyll measurements occurred during the first phase of the fieldwork for only the 

Kporghor 1 location. Average readings were taken for all the plants present in segments 

along polluted transects, but on control transects with increased vegetation density, 20 plants 

were randomly sampled in each segment. Plants selected for sampling were those that 

Psychotria 

nigerica plant 

inventoried during 

sampling 

Manihot 

esculenta also 

inventoried  

Fibre tape used for 

measuring 

transects and 

segments 
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appeared unaffected by the presence of TPH in the soil. For each plant, four readings were 

obtained from the midpoint of fully developed healthy leaves located within reach, which is 

the best position to collect the chlorophyll readings from plant leaves (Hoel, 1998; Arellano 

et al. 2015). Leaves of tall trees were pulled down using elongated poles, but care was taken 

to cause only minimal damage during measurements. The device performs an automatic 

calculation for average measurements used in further data analysis. 

3.3.3 Laboratory Analysis of Soil Samples (LAS) 

Soil samples collected from the Kporghor 1 during the first phase of the fieldwork were 

stored and transported to the laboratory in appropriate media. The samples were analysed in 

an internationally accredited laboratory for soil physicochemical properties. These include 

total petroleum hydrocarbon (TPH), total organic carbon (TOC), heavy metals, nutrients, 

electrical conductivity, pH and temperature. Other parameters analysed include the total 

heterotrophic bacteria (THB) and total organic matter (TOM). Likewise, soil samples 

collected during the second phase of the fieldwork under similar conditions of storage and 

transportation were subjected to fewer tests, following preliminary results that showed no 

significant difference in some soil properties between polluted and control transects. Thus 

for these samples, only the TPH, TOM, Phosphates and Lead concentrations were tested.  

The methods used followed international standards documented in the American Public 

Health Association (APHA, 2005) 20th Edition and the American Society for Testing and 

Material (ASTM, 2010). Details of the methodology employed in the soil analysis are 

provided in the appendix (Appendix 3.3). Figure 3.6 presents a flowchart of the overarching 

research methodology.
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 Figure 3.6: Flowchart of research methodology. Procedures and processes are enclosed in squares while inputs and outputs are enclosed in 

parallelograms. Methods enclosed in ovals indicate the start and end processes. The chapters (C), research questions (RQ) and objectives (RO) linked 

to each method are shown in bold. The single asterisk (*) denotes procedures carried out on Hyperion data using ENVI 5.3 while double 

asterisks (**) are procedures performed on Sentinel 2A dataset in ESA-SNAP
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3.4 Satellite Data (SD) 

A combination of multispectral (Sentinel-2 and Landsat 8) and hyperspectral (Hyperion 

EO1) data employed in this research are available and freely downloadable from the USGS 

data distribution tool, earth explorer. The Hyperion acquires 16 bits, 30 meters spatially 

resolved data in 220 discrete narrow-bands between the spectral range of 400 and 2500 nm. 

Although the Hyperion captures about 75 times more data than the Landsat from a similar 

area (Kuenzer et al. 2014), Landsat offers a vast database of the earth’s surface over several 

years which facilitates the identification and mapping of temporal changes in the study area 

(Roy et al. 2014). The images were subjected to pre-processing algorithms using available 

software such as QGIS. R, ArcGIS and ENVI. Various broadband and narrowband indices 

were extracted and statistically correlated with the field data to identify any relationships in 

line with the objectives of the study. 

3.4.1 Sentinel-2A Image Acquisition and Processing (S2AD) 

The Multi-Spectral Imager (MSI) sensor on board the Sentinel 2A satellite acquired the 

images used in this analysis. The Sentinel-2A satellite launched on the 23rd of June 2015 is 

one of the fleets of satellites owned by the European Commission (EC), in partnership with 

the European Space Agency (ESA). It is designed to provide imagery that supports 

environmental monitoring under the EC/ESA’s Copernicus programme. An optical sensor 

named multi-spectral imager (MSI) on-board the satellite acquires images in 13 spectral 

bands with wavelengths ranging from 443-2190nm. The spectral bands include three visible 

(Red, Green and Blue), one near infrared (NIR), and three short-wave infrared (SWIR) 

bands. As an added advantage, the MSI also has three red-edge bands, which are useful for 

differentiating crop types and detecting vegetation stress and one coastal aerosol band useful 

for atmospheric correction (http://www.esa.int//Copernicus/Sentinel-2). For the present 

study, however, only eight bands relevant for vegetation analysis were used. These were the 

visible (bands 2, 3 and 4), NIR (band 8) and red-edge bands (bands 5, 6, 7 and 8A). The 

bands, bandwidths, central wavelengths and spatial resolution of the Sentinel 2A image 

relevant to this study are shown in Table 3.2.  
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Table 3.2:  Spectral and spatial resolution of Sentinel-2A image 

Sentinel-2A bands Band 

Number 

Bandwidth 

(nm) 

Central 

Wavelength 

(nm) 

Resolution 

(m) 

Blue 2 65 490 10 

Green 3 35 560 10 

Red 4 30 665 10 

Vegetation Red Edge 5 15 705 20 

Vegetation Red Edge 6 15 740 20 

Vegetation Red Edge 7 20 783 20 

NIR 8 115 842 10 

Vegetation Red Edge 8A 20 865 20 

Spatially, the Sentinel-2A images have a swath width of 290km and a resolution of 10 m 

(VNIR), 20 m (Red-edge and SWIR) and 60 m (atmospheric correction bands). These are 

some of the best spatial resolutions for freely available satellite data. Six level 1C processed 

images (geometric and radiometrically corrected) were downloaded from the Copernicus 

Services Data Hub (https://cophub.copernicus.eu/) to cover the study area. These images 

acquired between 29th December 2016 and 5th January 2017 and downloaded as 100 by 100 

km2 granules were selected based on cloudy pixel percentage. 

The identity of downloaded and processed images are as follows:- 

COPERNICUS/S2/20161229T095402_20161229T100805_T31NHF 

COPERNICUS/S2/20161229T095402_20161229T100805_T32NKK 

COPERNICUS/S2/20161229T095402_20161229T100805_T32NKM   

COPERNICUS/S2/20170105T094401_20170105T095718_T32NKL 

COPERNICUS/S2/20170105T094401_20170105T095718_T32NLK  

COPERNICUS/S2/20170105T094401_20170105T095718_T32NLL 

Each image was atmospherically corrected and subjected to image analysis (band analysis, 

vegetation index computation and derivation of spectral metrics) before performing further 

geo-processing procedures including resampling, mosaicking and clipping, in order to retain 

as much original information in the pixel texture as possible. Rocchini et al.(2016) observed 

that the image analysis that involves smoothing processes could cause a loss of vital 

information. Resampling was done to downscale the pixel resolution of the various bands to 

10 m. Resampling is a geometric process that transforms an original image to a  suitable 

https://cophub.copernicus.eu/
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image. This procedure was necessary in order to perform further image processing on the 

ESA SNAP platform as well as to achieve uniformity in the results. Upsampling performed 

in SNAP used the bilinear interpolation method which is highly recommended for satellite 

data.  Mosaicking was performed to combine the different granules that cover the extent of 

the study area, and clipping was performed to extract the exact extent image of the study area 

from the mosaic. The clipped images for the various sentinel 2A bands are shown in Figure 

3.7 

  

Figure 3.7: raster image of the mosaicked and clipped bands of Sentinel 2A data. Pixel 

reflectance values range from 0 to 4000 
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All the analyses were performed in the ESA image-processing platform for sentinel data 

(ESA SNAP) including the atmospheric correction using the Sen2cor plugin tool in ESA 

SNAP software for image processing. The Sen2cor plugin tool is a level 2A processor used 

to remove atmospheric effects from sentinel 2A level 1C images. The processor computes 

surface reflectance from the top of the atmosphere reflectance values in the level 1C images. 

Details of the procedure are documented and available at the ESA SNAP website 

(http//www.step.esa.int/main/third-party-plugins-2/sen2cor).  

3.4.2 Hyperion EO-1 Image Acquisition and Processing (HSD) 

Following the observed shortcoming of broadband sensors in capturing discrete scene 

information, hyperspectral imagery was a welcome development in the field of remote 

sensing of vegetation. It has the added advantage of differentiating spectrally similar 

materials. Several researchers have investigated its application in identifying plant species 

and communities, as well as detecting the biophysical and biochemical characteristics of 

vegetation with more accuracy (Thenkabail et al. 2004a; Blackburn and Ferwerda, 2008; 

Houborg and Boegh, 2008). 

3.4.2.1 Description of the Hyperion EO-1 Dataset 

The Hyperion sensor was on board the Earth Orbiter 1 (EO-1) spacecraft of NASA’s New 

Millennium Program (NMP) launched on 21 November 2000. The sensor provides 

radiometrically calibrated spectral data acquired by a push broom system in single frames 

measuring 7.65 km (cross track) by 185 km long (along-track). The Hyperion image 

acquisition was from a NADIR position and altitude of 705 km. The image consists of pixels, 

which approximate 30 m by 30 m regions on the ground. For each pixel location, the sensor 

acquired data in 242 spectral channels ranging from 400 nm to 2500 nm and a resolution of 

10 nm.  There are, however, only 196 useful and calibrated bands (Thenkabail et al. 2013; 

Datt et al. 2003) while the others due to the effect of bad detectors (also known as bad pixels) 

are set to zero during the level 1 processing. The calibrated bands include VNIR bands 8-57 

(427.55 nm to 925.85 nm); SWIR bands 79 to 224 (932.72 nm – 2395.53 nm). Furthermore, 

due to the strong absorption of water vapour and oxygen at wavelengths ranging from 1356 

nm - 1417 nm, 1820 nm - 1932 nm and >2395 nm, as well as the overlap of wavelengths in 
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the VNIR (band 56 and 57) and SWIR (77 and 78) regions, the list of useful bands was 

limited to 176 (Datt et al. 2003). 

On acquisition, the Hyperion image passes two levels of pre-processing, namely level 0 and 

level 1. The Hyperion data are downlinked to a ground station and then sent to the Goddard 

Space Flight Centre (GSFC) for the initial processing. Level 1 processing involves the 

removal of image artefacts, which occur in the SWIR namely SWIR echo and SWIR smear, 

bad pixel replacements, dark pixel subtraction, radiometric calibration and image quality 

assessment (Barry, 2001; Pal and Porwal, 2015). The fully processed level 1 product is 

written in a16-bit signed integer with units of radiance (W/m2/um/sr) times a factor of 40 for 

the VNIR bands (1-70) and a factor of 80 for the SWIR bands (71-242). 

The Hyperion image used for this study was a Level 1T (in GeoTIFF format) downloaded 

from the USGS website (https://earthexplorer.usgs.gov). The image was acquired on the 23rd 

of November 2015 by the Hyperion sensor on board the Earth Observation (EO1) satellite 

following the submission of a data acquisition request (DAR) form. Due to its narrow swath 

width (7.65 km), only one investigated polluted location in Kporghor fell within the image.  

3.4.2.2 Pre-processing of Hyperion Image 

Despite the level 1 processing of the Hyperion image, noise and other artefacts remain and 

these arise from several factors which include atmospheric disturbances and internal sensor 

defects (Scheffler and Karrasch, Oct 17, 2013; Adler-Golden et al. 2013). Various entities in 

the atmosphere such as water vapour, aerosols and clouds interfere with the electromagnetic 

radiation reflected from the surface and measured by the sensor in space. Equipment defects 

occur due to the failure of one or more components during image acquisition. Previous 

studies have investigated several ways of correcting these defects in order to produce an 

image with a very high signal-to-noise ratio (SNR). Some of these methods have resulted in 

modified data with amplified noise; however, the general aim of pre-processing the Hyperion 

image is to generate high-quality bands that provide meaningful information to the user. In 

this study the following pre-processing steps were performed on the raw Hyperion image: 
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1. Original Hyperion image sub-setting to the Kporghor spill site. The resulting image 

had 68 columns and 66 lines, a total of 4,488 pixels and approximately 134 km2 in 

area. 

2. Removal of smile effect  

3. Radiometric Calibration and Atmospheric Correction 

4. Noise reduction; minimum noise fraction transformation applied. 

5. Destriping to remove scan lines 

6. Masking of non-vegetated areas in the image 

There procedures where undertaken using different versions of the environment for 

visualising images (ENVI) image analysis software package from Exelis Inc., (now Harris 

Geospatial Solutions).  

3.4.2.3 Hyperion Image Subset 

The region of interest tool (ROI) in ENVI 5.3 was used to select the Kporghor spill epicentre 

(SEC) and the surrounding areas as well as the location of the control transects. Recorded 

coordinates of the SEC from the fieldwork in February 2016 identified the relevant points in 

the image.  

A new region labelled KporghorSA in Figure 3.8 B was used to extract corresponding data 

from the raw Hyperion image EO1H1880562015327110PR_MTL_L1T.TXT to reduce data 

volume and processing time. Designated bad bands (121–126; 167-180; 222-224) known to 

correspond with strong water vapour absorption were removed following suggestions from 

Datt et al. (2003)  before the subset routine. Figure 3.8 B shows the subset area (red dot in 

map B) and examples of a useful Hyperion band (D) and others with different artefacts (C. 

stripes also known as scan lines; E. Noise). 
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Figure 3.8: Examples of useful and uninformative bands of the Hyperion image. The noisy 

data was eliminated through the Minimum Noise Fraction Transformation (MNFT) while 

the scan lines (stripes) were removed following the method of Datt et al. (2003). 

3.4.2.4 Atmospheric Correction  

The image subset was radiometrically and atmospherically corrected using the Fast Line-of-

sight Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI 4.4. The FLAASH 

module incorporates the MODTRAN radiation transfer code developed by Spectral Sciences 

Inc. (Burlington, MA, USA). The algorithm involves the accurate derivation of atmospheric 

properties such as surface pressure, water vapour column, oxygen, carbon dioxide, aerosol 

and cloud overburdens which are incorporated into a correction matrix to convert sensor 

detected radiance measurements into surface reflectance values (Felde et al. 2003). The 

technique develops from a standard equation that incorporates at-sensor spectral radiance for 

each pixel, from the mid-infrared (IR) through the ultra-violet (UV) wavelengths with 

thermal emission omitted; and flat, Lambertian materials or their equivalents (López-Serrano 

et al. 2016). The equation is as follows: 

𝐿 = (
𝐴𝑝

1 − 𝑝𝑒𝑆
) + (

𝐵𝑝𝑒

1 − 𝑝𝑒𝑆
) + 𝐿𝑎                                                                       (3) 

Where: 
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p is the pixel surface reflectance 

pe  is an average surface reflectance for the pixel and the surrounding region 

S is the spherical albedo of the atmosphere 

La is the radiance backscattered by the atmosphere 

A and B are surface independent coefficients that vary with atmospheric and geometric 

conditions. 

The first term in equation (13) corresponds to the radiance reaching the surface while the 

second term measures the radiance backscattered by the atmosphere into the sensor. The 

difference between these radiances is attributed to the adjacency effect (radiance 

contributions from neighbouring pixels) caused by atmospheric scattering.  The values for 

A, B, S and La are derived from MODTRAN calculations that incorporate user-supplied 

parameters such as data type, sensor, sensor altitude, solar and viewing geometry. This 

information was extracted from the metadata file supplied with the Hyperion image. 

FLAASH generates other results that are not relevant in the present study such as a water 

vapour look-up-table (LUT), a cloud mask for identifying cloud-containing pixels in a scene 

and aerosol scale height. They are, however, employed in the correction matrix to solve for 

the pixel surface reflectance (p) in all the sensor channels. 

Following the atmospheric correction, the number of good Hyperion bands reduced from 

175 to 164. Eleven (11) bands displayed only missing data: bands 120, 127-133 and 165, 166 

and 181. It appears that these bands were affected by strong water vapour absorption. Figure 

3.9 shows the spectral profile of sampled polluted and control pixels. 
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Figure 3.9: The spectral profile of sampled pixels from polluted and control transects 

illustrated the influence of FLAASH atmospheric correction module on surface reflectance. 

Atmospheric interference elimination significantly reduced the at-sensor radiance values in 

the VNIR region while also portraying the robust absorption features in the SWIR region 

(3.9 B). 

3.4.2.5 Removal of Smile Effect  

Images acquired by pushbroom instruments such as the Hyperion EO-1 suffer from a line 

curvature artefact known as the smile or frown effect (Dadon, Ben-Dor and Karnieli, 2010). 

This effect is attributed to the spatial misalignment of wavelength and bandwidth that occur 

during the dispersion of the slit-acquired image over straight rows of detector grid in the 

wavelength dimension (Dadon, Ben-Dor and Karnieli, 2010). An across-track shift from a 

centre wavelength characterises the spatial misalignment (Gersman et al. 2008). Arellano et 

al. (2015) reported that these centre wavelength shifts vary across the VNIR and SWIR 

regions. In the VNIR bands, the shifts range from 2.6 to 3.5 nm, while in the SWIR bands, 

they are less than 1 nm. The smile artefact affects the proper retrieval of surface reflectance 

due to the presence of strong atmospheric absorption features in the spectrum. Gersman et 

al. (2008) pointed out that ignoring this effect alters pixel spectral values and cause an error 

in subsequent applications. 

The smile effect in the Hyperion image was not apparent in any of the individual bands; it 

was however detected using the first component of a minimum noise fraction transformation 

(MNFT). The first eigenimage (MNF-1) portrayed a brightness gradient only visible in the 
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VNIR bands and not detected in the SWIR region. Several studies (including (Goodenough 

et al. 2003; Datt et al. 2003; Dadon, Ben-Dor and Karnieli, 2010) have used the MNF-1 as 

an indicator of smile effect in Hyperion image. Correction of the smile effect in the image 

was performed by the cross-track illumination correction (CTIC) package provided in ENVI. 

The CTIC approach was selected firstly for simplicity and because of the limited Hyperion 

data available for analysis. Dadon et al. (2010) evaluated the performance of CTIC in 

removing smile and reported that it compared favourably with their proposed method across 

varying scenes. A spectral subset of the radiance image (containing only the calibrated VNIR 

bands) was subjected to the CTIC and to the MNF transformation to check for the presence 

of the smile effect in the first eigenimage (MNF-1). The CTI corrected MNF-1, as well as 

the pre-CTIC image, are shown in Figure 3.10; the smile effect in A, MNF-1 of VNIR bands; 

B: MNF-1 of CTI-corrected VNIR bands and C: the spectral profile of corrected and 

uncorrected pixels from the polluted and control transects.  

 

Figure 3.10: The effect of the CTIC performed in ENVI 5.3 shows that the smile effect 

evident in the MNF-1 of transformed VNIR bands (3.10 A) was successfully removed (3.10 

B). The spectra of sampled pixels from the polluted (x, y: 1005.46, 3407.50) and control 

transects (x, y: 973.25, 3398.3) as illustrated in figure 3.10 C show minor differences in the 

basic spectral features of the image, thus satisfying the requirement for maintaining spectral 

fidelity of the image after the removal of the smile effect (Goodenough et al. 2003). 
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3.4.2.6 Noise Reduction 

Noise reduction was performed on the image using the Minimum Noise Fraction 

Transformation (MNFT). This procedure aimed to select the components that maximised the 

signal to noise ratio and eliminate noisy components. Green et al. (1988) and Buddhiraju and 

Porwal (2015) reported that MNFT was more effective at noise and dimensionality reduction 

because it produces a set of images arranged in order of decreasing information content and 

increasing noise fraction. The MNF is a linear transformation involving two distinct principal 

components analysis (PCA) rotations and a noise-whitening step. The covariance matrix of 

estimated noise is used to decorrelate and rescale noise in the data, a procedure known as 

noise whitening. The transformed data with unit noise variance and uncorrelated bands is 

further subjected to a standard principal component analysis (Buddhiraju and Porwal, 2015). 

The first few MNF components have large eigenvalues and coherent eigenimages, while the 

last few components have near unity eigenvalues and noise dominated images (Galidaki and 

Gitas, 2015).  Selection of viable components involved visual inspection of all 164 MNF 

components in conjunction with eigenvalues and scree plot. Pal and Porwal (2015) suggested 

that a visual inspection of the MNF images was necessary to ensure the retention of relevant 

information during noise removal. 

In total, 7 MNF components with eigenvalues ranging from 7.03 (MNF7) to 100.4 (MNF1) 

were selected. These 7 MNF components make up 67% of the variability in the data. 

Although it would have been reasonable to select more components to explain up to 90% of 

data variability, this was not done as the rest of the components (MNF8 to MNF 164) did not 

present any discernible information and hence were discarded. The selected components 

were inversely transformed through the same MNF procedure to its original spectral space. 

This procedure also available in ENVI 5.3 was performed using the statistics obtained from 

the forward MNF procedure. Figure 3.11 shows the spectra of both reflectance images with 

minimal difference in the spectral information.  
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Figure 3.11: Spectral profile of MNF transformed image shows that the process did not 

significantly affect the reflectance values of the original image except for the non-zero 

minimum values and the removal of some strong water absorption bands in the SWIR region 

(1396nm-1487nm).  

The MNFT appeared to have effectively removed both noise and scan lines from the 

Hyperion Image. Figure 3.12 illustrates the difference between pre-MNFT and post-MNFT 

images. There is a remarkable increase in the signal-to-noise ratio (SNR) of the highlighted 

bands following the MNFT procedure.  

 

Figure 3.12: Various effects of the minimum noise fraction transformation (MNFT) on the 

Hyperion bands. The images on the top row are pre-MNFT showing the presence of noise 

and stripes in the bands listed. The bottom row shows post-MNFT images with most of the 

noise and stripes removed. The post-MNFT images clearly show increase SNR in the bands 

listed following the MNFT procedure.  
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3.4.2.7 Band Selection 

A total of 164 bands were selected for analysis. As stated earlier, the Hyperion image has 

242 channels; however, only 196 bands are calibrated and useful. Further pre-processing 

reduced the number of valid bands to 164. Table 3.3 below shows the summary of the unused 

bands and reasons as well as those selected for analysis. 

Table 3.3: List of discarded and selected Hyperion bands used in the study. In total, 164 bands were 

utilised to derive the statistical model  

Hyperon Bands Wavelength Range (nm) Reason 

A. Unused Bands   

1-7  355.95-416.64 Uncalibrated and values set to zero 

during L1 processing and subsequently 

removed 

225-242 2405.6-2577.08 

   

71-76 851.92-902.26 Uncalibrated SWIR due to overlap with 

VNIR bands, values set to zero 

   

58-70 935.58-1057.68 Uncalibrated VNIR due to overlap with 

SWIR bands, values set to zero 

   

77-79 912.45-932.64 Removed during pre-processing due to 

overlap with VNIR bands 56-58 

   

120-126 1346.25-1406.84 Strong water vapour absorption 

167-180 1820.48-1951.57 Strong water vapour absorption 

222-224 2375.3-2395.5 Strong water vapour absorption 

B. Used Bands  

8-57 426.8-925.41 

80-119 942.73- 1336.15 

134-164 1487-1790 

182-224 1971-2395 

Total used bands 164 

The selected bands were subjected to minimum noise fraction transformation procedure, and 

from the results, the first 7 MNF components were selected and used for the inverse 

transformation back to the original spectral space. 

3.4.3 Landsat Data (LSD) 

The Landsat-series was launched by the USGS in March 1984 and remain in operation for 

over 30 years. Landsat data offer a record of the earth’s terrestrial surface and changes over 

time at local, regional and global scales (Roy et al. 2014). The Landsat series offer a massive 
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database of systematic remotely sensed images for use in determining the spatial and 

temporal changes that have occurred in the study area during this period. The Landsat based 

sensor acquires imagery at 30m spatial resolution from 6 to 8 spectral bands including a 

thermal band. Many researchers have applied Landsat data to investigate the status and 

dynamics of ecosystems at local, regional and global scales. Biodiversity evaluation in 

forests (Dymond, Mladenoff and Radeloff, 2002; Thenkabail et al. 2004a), agricultural lands 

(Kuenzer and Knauer, 2013) and several other ecosystems has been carried out. In general, 

Landsat data is highly recommended for mapping and monitoring vegetation and land cover 

changes (Roy et al. 2014). 

A Landsat 8 OLI surface reflectance image downloaded from the USGS data download 

website (earth explorer) was utilised in this study. The image acquired by the OLI sensor 

onboard the Landsat 8 satellite provides information over nine bands ranging from 435 nm 

to 1384 nm in 16 bits. The Landsat Surface Reflectance image downloaded was already 

processed to a Level 2 product, hence needed only a spatial subset to the study area before 

computation of broadband indices in ENVI 5.3. The Level 2 product measured the fraction 

of incoming solar radiation reflected from the earth’s surface to the Landsat sensor (United 

States Geological Survey, USGS, 2016) hence; atmospheric interferences are removed at 

level 2 pre-processing. The index computed from the Landsat data was NDVI. 

3.5 Data Analysis 

3.5.1 Statistical Analysis (STA) 

Analysis of field and satellite data required several statistical packages. These packages 

include Statistical Package for the Social Sciences, (SPSS), R-Packages vegan, LabDSV, 

Betapart and np, Paleontological Statistics Software Package, (PAST) and Microsoft Excel 

(Excel). Excel and SPSS were used for preliminary exploratory analyses and determine the 

characteristics of the data (mean, median, variance, standard deviation and so on). 

Furthermore, relationships among the environmental variables (for instance the relationship 

between total petroleum hydrocarbon and phosphorus in the soil) and between soil properties 

and floristic data were examined through correlation and regression analysis. Analysis of 

non-parametric data was by the R package (np) whereas the PAST software supported the 
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computation of species diversity and other multivariate analysis including principal 

component and correspondence analyses.  

The general null hypothesis tested in this study was that there was no difference in TPH, 

vegetation characteristics (taxa, frequency, abundance, and density), species diversity and 

vegetation reflectance of polluted and control transects.  

Three datasets analysed in this study were the species inventory data, the soil parameters 

data obtained from the laboratory analysis of soil samples and the spectral data derived from 

various remotely sensed images. For each ecosystem component (polluted or control), these 

datasets were grouped by segments of corresponding transects. Exploratory analysis of the 

soil dataset identified the centre and spread of the variables on polluted and control transects, 

as well as the relationship among soil parameters,  which helped determine the effect of oil 

pollution on other soil parameters such as phosphorus, electric conductivity, pH and so on. 

The analysis performed with the floristic data determined firstly, the similarity and diversity 

status of polluted and control transects, identified the relationship between soil parameters 

and floristic characteristics such as taxa (species number), abundance, richness, and diversity 

and evaluate relationships between these characteristics and spectral metrics derived from 

satellite imagery. 

The Anderson-Darling test for normality performed on the datasets revealed a non-normal 

distribution of the datasets. The Anderson-Darling test compares the empirical cumulative 

distribution function of the sample data with the expected normal equivalent. Due to the non-

normal distribution of both datasets, and failure to obtain appropriate transformation that met 

the assumptions of parametric multivariate analysis (such as the Levene’s test for 

homogeneity), non-parametric statistical procedures including Mann-Whitney, Kruskal-

Wallis one-way analysis of variance (K-W) and non-parametric regressions were employed 

in the statistical analysis.  

Further multivariate analytical procedures including ordination were used to infer the 

presence of and then subsequently identify the environmental variables that significantly 

affect floristic composition on transects. This was achieved by investigating the strength of 
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association among species and their habitats (polluted or unpolluted) using the canonical 

correspondence analysis.   

After confirming the similarity of the polluted and control transects across all 20 locations 

(ten polluted and ten control) using the Sorenson’s Similarity Index, the dissection of the 

field data was carried out for the two eco-systems components encountered in the study area. 

These are the polluted and unpolluted (control) transects.  Attributes investigated for each 

component included: - 

i. Soil parameters: Mean and median values, standard deviation, test for differences 

(Mann-Whitney, Kruskal-Wallis, Dunn’s test with Bonferroni correction) between 

polluted and control transects and regression with vegetation data. 

ii. Vegetation data:  

 Species number (taxa), number of individual plants, frequency, abundance, density; 

 Relative frequency, relative abundance, relative density and important value index; 

 Species occurrences, accumulation and abundance distribution curves 

 Species richness, evenness, dominance, diversity indices and beta diversity; 

 Regression with soil parameters. 

 Test for differences between polluted and control vegetation using Mann-Whitney, 

Kruskal-Wallis, Dunn’s test with Bonferroni correction. 

iii. Leaf chlorophyll data: Mean and median values, test for differences in means, 

correlation and regression with soil parameters. Test for differences between polluted 

and control vegetation using Mann-Whitney, Kruskal-Wallis, Dunn’s test with 

Bonferroni correction. 

3.5.1.1 Mann-Whitney U Test (M-W Test) 

The M-W test is a non-parametric statistical model, which test for differences in the medians 

of two groups (Das, 2009). The null hypothesis is that it is equally likely that a randomly 

selected value from polluted samples will be less than or greater than a randomly selected 

value from the control transects. For all tests, the type I error (the probability of rejecting the 

null hypothesis when it is true) was controlled at α= 0.05. All tests evaluated the impact of 
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oil pollution on various parameters including field-measured data and spectral metrics 

derived from satellite images by comparing between polluted and control transects. 

3.5.1.2 Kruskal-Wallis Test (K-W Test)  

The Kruskal-Wallis one-way analysis of variance by ranks was employed to test the null 

hypothesis of no difference in median values of more than two independent samples (Wallis 

and Kruskal, 1952).  It compared samples from segments of polluted and control transects, 

and significant result from the omnibus test was subjected to pairwise multiple-comparisons 

of mean rank sums using the Dunn’s test. Dunn’s test identified which samples differed 

significantly. The Bonferroni correction procedure adjusted the p values, which controlled 

family-wise error that may lead to false discoveries. The Bonferroni adjustment divides the 

overall alpha (0.05) by the total number of multiple tests (Dunn, 1964). 

3.5.1.3 Regression Methods (RM) 

The potential of independent variables (soil properties and spectral metrics) to estimate the 

species richness and diversity of the study area was assessed using non-parametric statistics. 

Vegetation indices such as the normalised difference vegetation index (NDVI) are commonly 

used to predict species richness and diversity (Gould, 2000; Peng et al. 2018b; Kamaljit 

Bawa et al. 2002; Mohammadi and Shataee, 2010; Mapfumo et al. 2016; Heumann, Hackett 

and Monfils, 2015). Each diversity index was modelled as a function of the independent 

variables (for instance spectral metrics and vegetation indices derived from the satellite 

images). Partial least square regression (PLS) and non-parametric multivariate regression 

(NPM) procedures were employed to model the relationship between independent variables 

and the response (for instance, Shannon’s, Simpson’s, Menhinick’s and Chao-1indices). 

These regression models were selected because they are not limited by assumptions of data 

distribution common with parametric regression procedures. Model performance was 

evaluated based on the coefficient of determination, residual errors and graphical residual 

analysis. In all the models, the null hypothesis was that there was no relationship between 

the independent and response variables.  
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A. Partial Least Squares Regression (PLS) 

PLS technique performs multivariate regression without the restrictions associated with the 

standard regression methods. It is particularly useful when predictor variables outnumber 

response variables and when there is high multicollinearity between the predictor variables. 

The procedure transforms the predictor data into a smaller set of uncorrelated components 

and performs least square regression on these components instead of the original data. PLS 

is adequate for the analysis of hyperspectral data (Asner and Martin, 2011; Heumann, 

Hackett and Monfils, 2015) due to high multicollinearity of the wavelengths. Selection of 

the optimum number of components depends on the coefficient of determination (R2) which 

refers to how much of the variance in the predictors and between the predictors and response 

is explained by each component. For highly correlated predictors, it is normal for fewer 

components to appear in the model. 

B. Non-Parametric Regression (NPM) 

NPM regression analysis was performed to account for any violations of the assumptions 

about the distribution of the data. Non-parametric methods allow the modelling of densities 

and local polynomial regression on both continuous and categorical data which do not 

necessarily follow any pre-defined distribution (Albek, 2003). Hayfield and Racine (2008) 

(Hayfield and Racine, 2008)  developed the np package in R used for this analysis. The 

procedure commences with the selection of optimum bandwidths estimated from second-

order Gaussian kernel densities. The bandwidth objects are then assigned to an appropriate 

regression function, which determines the fitting of the curve and calculates the fitted, 

predicted and error values. The np package has a multi-start function, which helps to avoid 

errors that occur in the presence of local minima. Since the NPM relies on kernel density 

estimation, choosing the smoothing parameter (bandwidth) is very crucial. In this study, 

optimum bandwidths were selected using the Akaike information criterion (AIC), which 

provides an unbiased estimation that minimises the expected Kullback-Leibler divergence 

(Hurvich, Simonoff and Tsai, 1998). Three NPM procedures employed in the statistical 

analysis in this study were Multivariate Regression (NPMR) which models the relationship 

among one or more response variables and multiple predictor variables; Univariate 

Regression (NPUR) which models the relationship between one response variable and one 
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predictor variable and Logistic Regression (NPLR) which models the relationship between 

the predicted probability of a binary response variable (usually categorical) and one or more 

predictor variables. All three procedures are extensively discussed in Hayfield and Racine 

(2008). For model validation purposes, original dataset was randomly sub-divided into 

training data and test data in the ratio of 6:4. The training data used to calibrate the models 

while the test data used for model validation. Evaluation of model performance was based 

on the type and the predictors used.  

3.5.2 Vegetation Data Analysis (VDA) 

3.5.2.1 Species Taxa 

Taxa is a measure of the counts of species occurring in each segment along investigated 

transects. It provides an estimate of the species richness and diversity of the segments. 

Determined from species inventory tally sheets. 

3.5.2.2 Sorenson’s Similarity Index of Transects 

Similarity index measures the degree of association or agreement of two entities or variables, 

in this case, vegetation data from polluted and control transects (Warrens, 2008).  In this 

study, segments of polluted and control transects across the entire study area were clustered 

into groups based on their similarity index which, quantifies their level of association 

concerning species composition. The formula for Sөrenson’s similarity index (IS) is:   

𝐼𝑆 =  
2𝑀𝑊

𝑀𝐴+𝑀𝐵
∗ 100             (4) 

Where  

MW = Sum of the smaller numbers of plant species common to the control and test transects  

MA = the sum of all plant species in the transect A 

MB = the sum of plant species in the transect B 

3.5.2.3 Number of Individual Plants 

This is a measure of the abundance of each species observed per segment. The number of 

individual plants per species was determined from tally sheets 
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3.5.2.4 Frequency 

This is the probability of a plant species occurring in a given number of segments (Bonham, 

2013a). Frequency of species occurrence was used to detect any changes in vegetation 

composition of polluted and control transects. Vegetation frequency was calculated from 

species inventory data as:- 

Frequency   =    
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒𝑑
               (5) 

3.5.2.5 Density 

Also a measure of abundance defined as the number of individuals of a given species 

occurring in a given sample unit. Density estimate are relevant for monitoring plant 

responses to environmental disturbances (Bonham, 2013b). Density estimates for observed 

species in the study area were calculated to identify vegetation responses to oil pollution 

using the following formula:- 

Density =  
𝑛𝑢𝑚𝑏𝑒𝑟 .𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑠𝑡𝑢𝑑𝑖𝑒𝑑
      (6) 

3.5.2.6 Importance Value Index 

This is a measure of the ecological importance of a given species in an ecosystem. It is 

frequently used to prioritise species for conservation purposes (Zegeye, Teketay and 

Kelbessa, 2006), however, in this study, the IVI of species was used to determine the effect 

of oil pollution on vegetation structure by comparing the IVI of species on polluted and 

control transects. IVI was calculated by summing the relative values of frequency and density 

where 

Relative frequency =  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑠𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 * 100             (7) 

And  

Relative density = 
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 
 * 100         (8) 
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3.5.2.7 Indicator Species 

Indicator species are organisms whose presence, absence or abundance provides an 

ecological indication of community or habitat types, environmental conditions or 

environmental changes (Cáceres et al. 2012). They can provide important information on the 

type and volume of environmental pollution and other stressors. A good indicator species is 

one that is both abundant in a specific type of habitat (specificity) and predominantly found 

in this type of habitat (fidelity). 

Indicator values of a species (i) at a given site (j) is calculated as 

IndValij = Specificityij * Fidelityij * 100             (9) 

Where 

IndValij = indicator value of a given species (i) in relation to a (j) type of site 

Specificityij = proportion of sites ‘j’ in which occurred species ‘i’ 

Fidelityij = the proportion of the number of individuals (abundance) of species ‘i’ that 

occurred in site ‘j’ 

 

In this study, indicator value of species was calculated in R using the indicspecies package 

developed by De Cáceres and Jansen (2016), to identify species whose presence or absence 

reveal the occurrence of oil pollution in the study area. 

3.5.2.8 Species Occurrence Curve (SOC) 

This is a measure of how individuals of a species are distributed among the sampling units 

(segments). Species occurrence curve was used to visualise the distribution of species in 

polluted and control segments and to determine the most frequently occuring species. The 

curve is derived by plotting the cumulative count of species on the x-axis and the number of 

plots on the y-axis. 

3.5.2.9 Species Accumulation Curve (SAC) 

Provide estimations of the number of species in a given habitat and is used to compare the 

richness of different communities at comparable levels of sampling efforts (Dorazio et al. 

2006). In this study, the SAC was plotted to illustrate the differences in the species richness 

of polluted and control transects.  
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3.5.2.10 Beta-diversity of Transects 

This was determined in R using the betapart package developed by Baselga and Orme 

(2012). Beta diversity is a measure of variation in species composition of two or more 

ecological units. Beta diversity is usually partitioned into two components namely species 

turnover and species nestedness. The species turnover component measures the degree at 

which species observed in one site are replaced by different species at another site (Baselga 

et al. 2018). On the other hand, species nestedness describes the absence of species in one, 

but not another site. Both components of beta diversity were analysed in this study to evaluate 

the changes on species composition of polluted transects. The presence-absence data was 

used for this analysis as recommended by Baselga and Orme (2012). Beta diversity analysis 

was performed to compare vegetation on polluted and control transects across the entire 

study area and for each location. A multivariate analysis of group dispersion was performed 

using the betadisper function in the r package, vegan developed by Oksanen et al. (2018). 

The analysis which test for the homogeneity of variances of both groups (polluted and 

control) was aimed at isolating the effect of soil TPH on species composition of polluted 

transects by evaluating the differences in distances of group members to the group centroid. 

According to Anderson, Ellingsen and McArdle, (2006), betadisper function is important for 

comparing betadiversity among classes or factors.  

3.5.2.11 Canonical Correspondence Analysis 

Species occurrence and distribution are a function of environmental variables. To evaluate 

the impact of the environmental variables particularly the TPH concentrations on the species 

composition and distribution, canonical correspondence analysis was performed. Canonical 

correspondence analysis (CCA) is a multivariate ordination method used to detect the 

influence of environmental variables on biological assemblages of species (Braak and 

Verdonschot, 1995).  CCA reveals synthetic environmental gradients from ecological data 

sets that determine habitat preferences of species. Hejcmanovā-Nežerková and Hejcman 

(2006) applied CCA to reveal the environmental variable most affecting the structure of 

woody vegetation. In this study, the procedure was carried out to determine the 

environmental variable that most influences species occurrence and abundance. The soil 



92 

 

parameters that exhibited strong relationship (0.5 < r <-0.5) with taxa and number of 

individuals were selected as environmental variables. 

3.6 Summary 

This chapter presented the datasets and methods applied in this research. Attributes of the 

satellite datasets including the spatial and spectral resolutions, sensors, acquisition dates and 

pre-processing steps were outlined. The statistical and computational procedures performed 

were also discussed. Chapter 4 presents the results obtained from answering the first research 

question. 

 

 

 

 

 

 

 

 

 

 

 



93 

 

4 Species Distribution and Diversity in Rivers State 

and the Effects of Oil Pollution  

This chapter addresses the first and second research questions (RQ1 and RQ2 in Section 

2.10.1,). Therefore, the objective is to determine the vascular plant species diversity index of 

the study area and to investigate the impact of oil pollution on the characteristics, diversity 

and biophysical parameters of  vascular plant species as surrogates for biodiversity. To 

achieve this objective, a hierarchy of hypotheses were tested in the following order 

HO: Observed differences in TPH concentration and vegetation of polluted and control 

transects are random and not significant 

H1: Observed differences in the TPH concentration and vegetation of polluted and control 

transects are not random and are significant 

Sub-hypotheses: 

H1a: The difference in the TPH concentration of polluted and control transects is significant; 

H1b: The difference in characteristics of vegetation on polluted and control transects is 

significant; 

H1c: The difference in the vascular plant species diversity of polluted and control transects is 

significant. 

H1d: The difference in the biophysical parameter of vegetation on polluted and control 

transects is significant. 

4.1 Methodology 

The methodology for this chapter is elaborated in Chapter 3 and includes field observation 

(FO, section 3.3.2), analysis of soil samples (LAS, section 3.3.3), and data analysis (STA 

and VDA, section 3.4).Results 

4.1.1 Soil Analysis 

4.1.1.1 The Physicochemical Properties of Soil Samples 

Results of laboratory analysis to determine the physicochemical properties of samples 

collected from investigated transects for comparison between polluted and control are 

illustrated in Figure 4.1 From the chart, soil samples from transects in Amuruto appear to 
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have the highest TPH concentrations of nearly 100,000 mg/kg of soil. This may be due to 

the estimated volume of the spill (5054 barrels) reported at the Nigerian oil spill monitor 

website (https://oilspillmonitor.ng/#/41981.2015/LAR/183/492) of which only 332 barrels 

were recovered. 

 

Figure 4.1: Box plots showing the differences in the concentrations of total petroleum hydrocarbons 

(TPH), phosphorus (P), lead (Pb) and total organic matter (TOM) in samples collected from various 

locations in the study area. The locations are Al (Alimini), Am (Amuruto), Ay (Anyu), Eg (Egbalor), 

Kp and Kp2 (Kporghor 1 and 2 respectively), Ob (Obua), Om (Omoigwor) and Ru (Rumuekpe).   

Other highly polluted transects appeared located in Kporghor 2 and Rumuekpe. Although 

there was no estimated crude oil volume for Kporghor 2; about 1200 barrels was reportedly 

spilt at the Rumuekpe location. Locations with the least soil TPH concentrations were 

Alimini, Anyu and Kporghor.  

https://oilspillmonitor.ng/#/41981.2015/LAR/183/492
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The relationship among the soil properties was investigated to determine their independence 

or correlation with one another. The scatterplots in Figure 4.2 confirm the presence of 

correlation between the concentrations of TPH, Phosphorus and Lead. While Lead increased 

with TPH (r = 0.71), Phosphorus exhibited an inverse relationship with TPH as seen in the 

negative correlation coefficient result (r = -0.69).  

 

Figure 4.2: Joint distribution of soil parameters showing a strong positive correlation between Pb (a 

heavy metal) and TPH, and a strong negative relationship between phosphorus (a soil nutrient) and 

TPH.  Conversely, TOM has a weak correlation with TPH, P and Pb  

The strong relationship between these variables signifies the critical effect of crude oil 

pollution in the environment. Considering that phosphorus, for example, is an essential soil 

nutrient that promotes vegetation growth, this result suggests that floristic differences 

between polluted and control transects may be attributable to the presence of TPH in the soil. 

Preliminary analysis of soil properties from the polluted and control soil samples in Kporghor 

1 location (Appendix 4.1) showed there was little variation in the soil acidity and soil 

temperature. While pH values ranged from 4 to 4.9; the mean soil temperature was 29.1 on 

polluted transects and 29 on the control transects. There were, however, significant 

differences (p<0.05) in the total petroleum hydrocarbons (TPH) concentration, electrical 
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conductivity (EC), soil nutrients (Phosphorus, P) and heavy metals (Lead, Pb) content in 

polluted and control transects from Kporghor. The heavy metals tested for and detected in 

the soil samples include lead (Pb), cadmium (Cd) and arsenic (As). Both Cd (Mean = 2.35 

mg/kg) and As (<0.001 mg/kg) levels were negligible and very much below the 

Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN) 

intervention values. The EGASPIN intervention values for Cd = 100 mg/kg and As = 200 

mg/kg.  

Similarly, the total organic carbon (TOC), total organic matter (TOM) and total heterotrophic 

bacteria (THB) content were also significantly different for the polluted and control transects. 

Across the entire study area comprising ten spill locations and ten control locations, four soil 

properties were tested. These were TPH, Phosphorus, Lead and TOM. Median Pb values 

varied significantly (H = 139.02, N = 210, DF = 19, p<0.05) for the polluted (39.15 mg/kg) 

and control (2.14 mg/kg) transects. Levels of Pb in soil samples from several segments of 

polluted transects were above the EGASPIN intervention values whereas this was not the 

case in control transects. Mean and median Pb values are 27.76 mg/kg (S.E. = 2.04) and 19.7 

mg/kg of soil respectively across investigated transects. 

Soil nutrients availability represented by the phosphorus (P) content in the soil also varied 

among polluted and control transects in all investigated locations. The mean and median 

values for P was 10.09 mg/kg (S.E =0.54) and 6.94 mg/kg respectively. On polluted 

transects, median P was 4.69mg/kg while on control transects it was 17.49 mg/kg. Kruskal-

Wallis analysis of variance (K-W) results (H = 146.17, N = 210, DF =19, p < 0.05) show that 

these values were significantly different. The result is similar to that of the total organic 

matter (TOM) content in the soil which showed significant differences among polluted and 

control transects (H = 5.66, N = 210, Df = 19, p<0.05). Following the significant results of 

the omnibus K-W tests of these properties and rejection of the null hypothesis of no 

difference in the mean ranks, a non-parametric post-hoc analysis using the Dunn's test with 

Bonferroni adjustment was performed to determine which transects differed significantly. 

The results are tabulated in Table 4.1 with significant p-values shown as red asterisks. 

Table 4.1: Results of Dunn's pairwise multiple comparison tests with Bonferroni adjustment. The 

results indicate that at six out of ten locations, the phosphorus content was significantly different 
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between polluted and control transects. Conversely, the lead content of soil samples differed 

significantly between polluted and control transects at only four locations. Although the omnibus test 

for TOM was significant, the observed difference is between groups (locations). Significant values 

(p < 0.05) are shown as red asterisks (*). Titles are derived from the first two letters of location names 

and P or C representing polluted or control transect respectively. For instance, AlC is Alimini control 

transects.  

P AlC AmC AyC EgC Kp2C KpC ObC OmC RuC UmC 

AlP 0.27 - - - - - - - - - 

AmP * * - - - - - - - - 

AyP 0.10 * * - - - - - - - 

EgP 0.25 * * * - - - - - - 

Kp2P 0.52 * 0.07 0.10 0.09 - - - - - 

KpP * * * * * * - - - - 

ObP 1.00 0.10 0.26 0.38 0.32 1.00 * - - - 

OmP 0.36 * * 0.07 0.06 1.00 * 0.28 - - 

RuP * * * * * 0.35 * * * - 

UmP 0.31 * * 0.06 * 1.00 * 0.24 * 0.11 

Pb AlC AmC AyC EgC Kp2C KpC ObC OmC RuC UmC 

AlP * - - - - - - - - - 

AmP 0.26 0.06 - - - - - - - - 

AyP 1.00 0.33 0.09 - - - - - - - 

EgP 1.00 0.77 0.22 0.49 - - - - - - 

Kp2P 0.34 0.08 * * * - - - - - 

KpP 1.00 1.00 1.00 1.00 1.00 0.28 - - - - 

ObP 0.06 * * * * * * - - - 

OmP * * * * * * * * - - 

RuP 1.00 0.31 0.08 0.19 0.09 * 0.43 * 0.46 - 

UmP 1.00 1.00 1.00 1.00 1.00 * 1.00 0.07 1.00 0.08 

           

4.1.1.2 Total Petroleum Hydrocarbon (TPH) in Polluted and Control 

Transects  

The average concentration of TPH in polluted and control transects across investigated areas 

are shown in Figure 4.3. The boxplots depict the minimum, first quartile, median, third quartile 

and maximum values of TPH at the different locations as well as the 95% confidence 

intervals of the median values and outliers. The highest concentration of TPH (>99000 

mg/kg) occurred in samples from the Amuruto spill epicentre.  In Figure 4.3A raw TPH 

values used in plotting the bars demonstrate a considerable difference in TPH concentrations 

in polluted and control transects. Overall mean and median TPH values for polluted transects 

were 12,692 and 3933 mg/kg respectively, while for the control, the values were 40.53 and 

36.50 mg/kg respectively. In Figure 4.3B, the raw TPH data was transformed to its common 

logarithm and plotted to highlight the reference line, which signifies the average 
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recommended Environmental Guidelines and Standards for the Petroleum Industry in 

Nigeria (EGASPIN) intervention value of different components of petroleum hydrocarbon 

in the soil. EGASPIN intervention values (mg/kg of soil) documented for different aromatic 

hydrocarbons that make up crude oil range from 1 for Benzene to 130 for Toluene 

(Department of Petroleum Resources, (DPR), 2002). Figure 4.3B reveals that TPH 

concentration in polluted transects is well above EGASPIN intervention values. Although 

lower TPH values were observed in control transects, these values were just within the 

borderline of intervention values and also above the target values of 0.05 mg/kg for the 

various petroleum hydrocarbon components. 

TPH concentrations in polluted and control transects were compared for significant 

differences using the Kruskal-Wallis test. The omnibus test was significant; hence the null 

hypothesis of ‘no difference in samples' was rejected. A post-hoc analysis was then 

performed to determine which locations were affected.  Interesting, significant differences 

between polluted and control transects only occurred at three out of ten locations. this 

suggests that the observed differences were not statistically significant, however, when 

segments of polluted and control transects were compared, the results reflected significant 

differences in soil TPH concentrations particularly between spill epicentres (SS0s) and 

control segments. 
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Figure 4.3: Total petroleum hydrocarbons levels in soil samples from polluted and control transects 

(N=210). Bar charts were plotted using A: raw TPH values and B:  transformed (common log) values. 

The coloured reference lines on chart B illustrates the average EGASPIN intervention value for A: 

Ethylbenzene = 50mg/kg (1.669 on the log scale); B. Phenol = 40 mg/kg (1.6); C. Toluene = 130 

mg/kg (2.11) and D. Xylene = 25 mg/kg (1.4). TPH levels in polluted transects were well over the 

recommended intervention value, whereas levels in control 1 transects were borderline.  

4.1.1.3 Total Petroleum Hydrocarbon (TPH) in Segments Along Polluted 

Transects. 

There appears to be a trend of decreasing TPH concentration as the distance from the spill 

epicentre (SS0) increased along polluted transects (Figure 4.4). For instance, the average 

TPH level at SS1 (0-20m from SS0) was 7659 mg/kg; SS3 (40-60m from SS0): 3375 mg/kg; 

and at SS5 (80-100m from SS0): 2571 mg/kg. Performing Kruskal-Wallis analysis of 

variance for TPH in segments of polluted transects revealed significant differences in the 
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values. (N = 130, H = 170.9, p < 0.05). The result was further subjected to multiple 

comparisons using Dunn's test to identify the segments significantly different. 

 

Figure 4.4: A comparison of average TPH levels at the spill centre and segments SS1, SS3 and SS5 

along polluted transects A, B, C and D (N = 130). Lines on the box show the 1st, median and third 

quartiles. The coloured box is the confidence interval at 95% for the median value.  

The results in Table 4.2 showed that the TPH concentration in SS5 as determined by the 

distance from SS0 along polluted transects was significantly different from SS0 and SS1 but 

not with SS3. There were no significant differences among SS0, SS1 and SS3 suggesting 

that regardless of TPH concentration, the detrimental effects of oil pollution remains 

significant in areas up to 60 m from the spill epicentre. 

Table 4.2: A Dunn's multiple comparison tests to determine the significance of the rank mean 

differences in soil TPH along polluted transects (SS0, SS1, SS3 and SS5). P values were adjusted 

using the Bonferroni method  

H0  (Null Hypothesis) Dunn’s Test Statistic P-value 

(Adjusted) 

Decision 

SS0 = SS1 1.16 1 Accept 

SS0 = SS3 2.37 0.18 Accept 

SS0 = SS5 3.71 <0.05 Reject 

SS1 = SS3 1.92 0.55 Accept 

SS1 = SS5 4.04 <0.05 Reject 

SS3 = SS5 2.12 0.34 Accept 
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4.1.1.4  Other Soil Parameters along Polluted Transects in Kporghor 

Data from Kporghor 1spill location show certain soil properties like temperature and pH 

were nearly constant along polluted transects. Nevertheless, the soil phosphorus (P) appears 

to increase with increasing distance from the spill epicentre (SEC), whereas the heavy metals 

(Lead and Cadmium) appear to decrease with distance from the SEC. Similarly, the Total 

Organic Matter (TOM), Total Organic Carbon (TOC) and Total Heterotrophic Bacteria 

(THB) where higher in the segments closer to the SEC (SS1 and 3) than the segment further 

away from the SEC (SS5). The result generally confirms the relationship between soil TPH 

and other parameters as previously shown in the joint distribution chart in Figure 4.2. 

Although there is no apparent correlation between TPH and soil properties such as pH, 

temperature and nitrates, there was a clear negative correlation between TPH and P (r = -

0.69) TOC and P (r = -0.423). TPH also positively correlated with TOC (r = 0.878); THB (r 

= 0.941); TOM (r = 0.496) and EC (r = 0.368), but correlated negatively with Cd (r = -0.333).  

4.1.2 Vegetation Analysis 

The Anderson-Darling test for normality of the floristic dataset was 1.619 for the polluted 

transects and 1.526 for the control transects. The p-value for both results was less than 0.05; 

hence the null hypothesis of population normality was rejected. Furthermore, due to the 

excessive skewness of the data (skewness = 6.01) as well as the occurrence of non-positive 

values (0), exponential, lognormal, Weibull, gamma, log-logistic distributions could not be 

fitted to the data. Moreover, the box-cox transformation procedures (lambda values ranged 

from -2 to 2) performed produced distributions which failed the goodness of fit test. 

Consequently, non-parametric procedures were applied to the data set. 

In total, 163 plant species belonging to 52 families were recorded on investigated transects. 

There were 37 families on polluted, and 52 on control (non-polluted) transects. In all the 

locations, Poaceae was the most abundant family with 19 species. Cyperaceae followed with 

13 species, then Euphorbiaceae and Leguminoceae with ten species each. Other families 

with over five members were Asteraceae, eight; Arecaceae and Fabaceae, seven each; 

Malvaceae and Rubiaceae, six each and Sterculiaceae, five. Species-wise, polluted transects 
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had fewer species than control transects. The number of species on polluted transects was 93 

and was substantially lower than the 154 observed on control transects.  

Annual herbs dominated on polluted transects with 48 species, followed by shrubs (11), trees 

(18), climbers (4) and trailers (2). Similarly, herbs dominated on control transects with 73 

species but was followed by trees with 42 species. Other lifeforms present were shrubs (17), 

climbers (7), and trailers (4). The tree species were at various stages of secondary growth on 

polluted transects while on the control, they were mostly fully matured. The sum of counts 

of individual plants across the entire study area was 4245 (1264 individual plants at the 

polluted transects and 2657 individual plants at the control transects). 

Table 4.3 lists the 52 families comprising trees, shrubs, herbs, climbers and trailers 

inventoried in the study area. The dominant family based on individual count was Poaceae, 

which had 627 plants and formed 16.89% of the total population. Euphorbiaceae with 410 

(11.04%) followed closely. Other dominating families by numbers were Cyperaceae, 346; 

Leguminosae, 246; Asteraceae, 226; Arecaceae, 222; Rubiaceae, 193; and so on (see Table 

4.3).  

On the other hand, the rarest family encountered at the field was Anthyriaceae, which had 

only one individual observed in Kporghor polluted transect B. Other rare families included 

Cecropiaceae, 3; Rutaceae, 3; Dracaenaceae, 4; and Lamiaceae, 5 (Table 4.3). These five 

families together made up less than 0.5% of the total population of plants observed across 

the entire state. 
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Table 4.3: List of plant families observed in the field with their life forms, taxa and abundance 

Family Life Form Species Individuals % of Total population 

Acanthaceae Herb 2 12 0.32 

Amaranthaceae Herb 4 126 3.39 

Amaryllidaceae Herb 1 8 0.22 

Anacardiaceae Tree 2 22 0.57 

Apocynaceae Herb 3 40 1.08 

Araceae Tree 7 97 2.61 

Arecaceae Climber 1 222 5.98 

Asclepiadaceae Herb 8 15 0.40 

Asteraceae Tree 2 226 6.09 

Bignoniaceae Tree 1 31 0.84 

Bombacaceae Herb 1 10 0.27 

Boraginaceae Tree 2 55 1.48 

Burseraceae Tree 1 25 0.67 

Caricaceae Tree 1 47 1.27 

Cecropiaceae Shrub 1 3 0.08 

Chrysobalanaceae Tree 2 7 0.19 

Combretaceae Herb 1 17 0.46 

Commelinaceae Trailer 4 5 0.13 

Convolvulaceae Herb 3 89 2.40 

Costaceae Climber 2 103 2.77 

Cucurbitaceae Herb 13 15 0.40 

Cyperaceae Climber 2 346 9.32 

Dioscoreaceae Tree 1 40 1.08 

Dracaenaceae Tree(Threatened) 1 4 0.11 

Ebenaceae Shrub 10 17 0.46 

Euphorbiaceae Tree 7 410 11.05 

Fabaceae Tree 2 99 2.67 

Gentianaceae Herb 1 26 0.70 

Lamiaceae Herb 10 5 0.13 

Leguminosae Herb 6 246 6.63 

Malvaceae Tree 1 115 3.10 

Meliaceae Tree 2 6 0.16 

Moraceae Tree 1 26 0.70 

Moringaceae Herb 1 12 0.32 

Orchidaceae Herb 1 49 1.32 

Passifloraceae Tree 1 8 0.22 

Phyllanthaceae Herb 18 9 0.24 

Poaceae Herb 1 627 16.89 

Pteridaceae Herb 6 72 1.94 

Rubiaceae Tree 1 193 5.20 

Rutaceae Tree 2 3 0.08 

Sapindaceae Herb 1 135 3.64 

Solanaceae Herb 1 5 0.13 

Sterculiaceae Herb 5 50 1.35 

Verbenaceae Herb 1 28 0.75 

Zingerberaceae Herb 1 6 0.16 
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4.1.2.1 Similarity Index of Polluted and Control Transects 

The Sorenson similarity index results computed for the investigated transects are shown 

in Table 4.4 All the values are over 0.6 except at Kporghor 2, Amuruto and Rumuekpe, 

which had index values of 0.42, 0.45 and 0.48 respectively. The results confirm the 

similarity of polluted and control transects in terms of floristic composition hence 

validating the comparison of both sites for effects of oil pollution 

Table 4.4: Sorenson's similarity index values for polluted and control transects across the study 

area. Titles are derived from the first two letters of location names and P or C representing 

polluted or control transect respectively. For instance, AlC is Alimini control transect.  

 
AlC AmC AyC EgC Kp2C KpC ObC OmC RuC UmC 

AlP 0.71 0.27 0.43 0.48 0.37 0.23 0.48 0.31 0.44 0.38 

AmP 0.35 0.45 0.29 0.43 0.47 0.17 0.52 0.31 0.3 0.27 

AyP 0.35 0.41 0.86 0.52 0.47 0.27 0.71 0.54 0.48 0.54 

EgP 0.35 0.32 0.29 0.7 0.42 0.23 0.38 0.62 0.41 0.38 

Kp2P 0.29 0.32 0.36 0.43 0.42 0.13 0.38 0.38 0.3 0.35 

KpP 0.12 0.14 0.25 0.26 0.16 0.93 0.19 0.15 0.11 0.12 

ObP 0.29 0.41 0.43 0.39 0.42 0.13 0.67 0.46 0.37 0.46 

OmP 0.53 0.5 0.32 0.48 0.68 0.17 0.33 0.77 0.48 0.42 

RuP 0.41 0.41 0.43 0.48 0.42 0.27 0.43 0.38 0.48 0.27 

UmP 0.41 0.5 0.39 0.43 0.53 0.2 0.43 0.62 0.33 0.92 

 

4.1.2.2 Characteristics of Vegetation in the Study Area 

The LabDSV package in R language was used to examine the characteristics of the 

vegetation dataset. Firstly, Figure 4.5 shows the box plots of species number (taxa), 

frequency, abundance and density of vegetation for different locations investigated. The 

first and third quartiles, the medium as well as the minimum and maximum values of these 

characteristics are illustrated in the plots. The notches on the boxes approximate 95% 

confidence interval (CI) for the median value of each characteristic. According to 

Chambers and Brown (1983), non-overlap of box notches indicate significantly different 

median values that are likely from different populations. The reverse is the case for 

overlapping notches.  
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Figure 4.5: Boxplots of vegetation characteristics for various locations in the study area. Both 

taxa and frequency do not appear significantly different across the locations; however, the least 

number of species (taxa) was recorded for Kporghor. Surprisingly, Kporghor had the most species 

abundance and density among all investigated locations.   

As the boxes illustrate, taxa and frequency of vegetation on locations overlap at the 

notches, suggesting that there are no significant differences in these characteristics among 

the different locations. Likewise, abundance and density overlap at the notches for almost 

all the locations except for Kporghor 1 providing further evidence of the similarity of the 

investigated locations in terms of floristic composition. 
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The cumulative empirical density function (CEDF) of species occurrences was plotted 

using the vegetation dataset (Figure 4.6).  

 

Figure 4.6: Plots of the histograms and cumulative empirical density functions (CEDF) of species 

occurrences and mean abundance. The curves reveal that most of the 163 species occurred in only 

about 50 segments out of the 210 segments surveyed and where they occurred, the abundance 

was also very low. 

The graph shows that about 54 species occurred in less than ten plots while about 91% of 

the total species (149) occurred in 50 plots or less. Only three species (Adianthum vogelli 

(Adivogt), Gomphrena celosioides (Gomcelh) and Chloris pilosa (Chlpilh) out of 163 

occurred in over half of the 210 plots. The rarest species were those that occurred in fewer 

than five plots. These include the tree species Albizia adiantifolia (Albadit) and Capsicum 

frutescens (Capfrut) as well as the herbaceous species Aframonum melagueta (Afrmelh) 

and Solenostemo monstachyus (Solmonh). This result suggests that most of the species 

were rare or infrequent in occurrence and underscores the need for effective monitoring 

of biodiversity in the Niger Delta. Besides, the abundance distribution curve offers a 
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visual expression of the species richness and species evenness of the study area. The 

steepness of the slope portrays a large margin between high and low abundant species.  

The number of species per plot ranged from 1 to 35, with mean and median taxa of 17 

and 13 species respectively. The larger mean value portrays the positive skew of the 

dataset suggesting that a significant number of plots had fewer species occurrences 

(Figure 4.7). On the other hand, the total number of individuals per species per plot ranged 

from 1 to 47. The mean and median values are 21 and 16 respectively, also indicating a 

positive skew in the dataset. Mean abundance plot of each species reveals that the most 

abundant species were herbaceous and occurred an average of two times per plot although 

there were only a few of such species (Acacia kamerunensis (Acakams) and Millettia 

macrophylla (Milmacs). Generally, 148 species out of 163 had an average abundance of 

1.5 individuals or less per plot.  

 

Figure 4.7: Histograms and Cumulative Empirical Density Functions (CEDF) of species and the 

total number of individuals per segment. The steepness of curves for taxa and number of 

individuals reveal sharp differences among the segments. It appears that in segments with over 

20 species, there was a gradual decrease in evenness whereas, in segments with less than 20 

species, the decrease in evenness is more pronounced. 
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Further analysis proved that the frequency of species occurrence did not necessarily 

correlate with species abundance. A low Spearman's correlation coefficient of 0.3 was 

computed for these characteristics. The abundance versus occurrence plot in Figure 4.8A 

reveals that the most abundant species such as Milmacs was among the least frequent 

species while the more frequent species such as Costus afer (Cosafes) was among the 

least abundant in the study area. On the other hand, only one species Manihot esculenta 

(Manescs) showed both high abundance and frequency values. 

In contrast, there was a strong positive correlation between total abundance and number 

of species per segment. The correlation coefficient of 0.97 confirms the strength of this 

relationship as illustrated in Figure 4.8B. 

 

Figure 4.8: Scatterplots of A. abundance versus occurrence of species in the study area, and B. 

total individuals versus the number of species per segments. There is an apparent correlation 

among the variables; however, the relationship becomes much stronger within segments. Hence, 

it indicates the presence of a determining factor in the segments that affect both the number and 

abundance of species of individual segments.  
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4.1.2.3 Comparison of Vegetation Characteristics on Polluted and 

Control Transects. 

Generally, 11 species on the polluted transect occurred in at least 30 segments out of 130 

while on control transects, 15 species occurred in 30 segments out of 80. The most 

common species on polluted transects was Ageratum conyzoides (Ageconh), and on 

control transects, it was Manihot esculenta (Manescs). At soil TPH levels greater than 

50,000mg/kg; only two species, namely Costus afer (Cosafes) and Chloris pilosa 

(Chlpilh), both annual plants occurred up to six times.  

Significant differences were apparent in vegetation characteristics measured from 

polluted and control transects.  The bar charts in figures 4.9A show that median taxa and 

frequency of vegetation on polluted transects are considerably lower than those of control 

transects at all the locations. However, this is not the case with abundance and density 

(Figure 4.9B) as the median values are only slightly different, although, they were higher 

in control transects. 

The species number (taxa) indicates the total number of unique species occurring on 

transects at the time of the investigation. Anyu had the highest taxa of 28 and 52 on 

polluted and control transects respectively. The median taxa value for polluted and 

control segments were 9 (n=130) and 28 (n=80) respectively. 

As mentioned previously, the floristic data did not meet with the assumptions of 

parametric statistics, hence a non-parametric procedure that is, the Kruskal-Wallis one-

way analysis of variance by ranks procedure (K-W) was performed to test the significance 

of the differences in species composition of transects. The results of the analysis showed 

that these differences were significant (H = 170.03, DF = 19, p-value < 0.05) for taxa; (H 

= 169.49, DF = 19, p = <0.05) for frequency; (H = 76.05, DF = 19, p-value = <0.05) for 

abundance and (H = 81, DF = 19, p-value = <0.05) for density. This procedure was 

followed by a post-hoc analysis using Dunn's-test for multiple comparisons of 

independent samples. The results are shown in Table 4.5 for taxa and abundance. The 

differences observed for taxa (and frequency) are not significant at all the studied 

locations. For instance, there was no significant difference between polluted and control 

transects in Egbalor, Kporghor2, Kporghor and Rumuekpe locations.  
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Figure 4.9: Bar charts of median values of A. taxa (number of species), frequency, and B. 

abundance and density of vegetation on polluted and control transect at each location. Taxa and 

frequency of vegetation on polluted and control show considerable difference while abundance 

and density do not. 
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For abundance, the post-hoc results revealed that the differences observed was between 

locations and not within. In other words, the abundance (and density values) were not 

significantly different between polluted and control transects across the study location. 

Table 4.5: Dunn's test to compare the mean rank of taxa and abundance on polluted and control 

transects. The p-values show significant differences in the taxa of polluted and control transects 

at six locations. However, there is no significant difference for abundance values from polluted 

and control transects within locations. Significant values (p < 0.05) are shown as red asterisks 

(*).Titles are derived from the first two letters of location names and P or C representing polluted 

or control transect respectively. For instance, AlC is Alimini control transect.   

Taxa AlC AmC AyC EgC Kp2C KpC ObC OmC RuC 

AlC * - - - - - - - - 

AmC 0.39 * - - - - - - - 

AyC 0.39 * * - - - - - - 

EgC 0.12 * * 0.09 - - - - - 

Kp2C 1.00 0.60 * 1.00 0.08 - - - - 

KpC 0.21 * * 0.16 * 1.00 - - - 

ObC * * * * * 0.18 * - - 

OmC * * * * * * * * - 

RuC 1.00 0.23 * 1.00 * 1.00 0.81 1.00 0.17 

UmC 0.94 0.14 * 0.74 * 1.00 0.51 1.00 0.10 

Abun AlC AmC AyC EgC Kp2C KpC ObC OmC RuC 

AlC 1.00 - - - - - - - - 

AmC 1.00 1.00 - - - - - - - 

AyC 1.00 1.00 0.48 - - - - - - 

EgC 1.00 1.00 1.00 1.00 - - - - - 

Kp2C 1.00 1.00 0.38 0.08 1.00 - - - - 

KpC 1.00 1.00 1.00 1.00 1.00 1.00 - - - 

ObC 1.00 1.00 1.00 0.55 1.00 * 1.00 - - 

OmC 1.00 1.00 1.00 1.00 1.00 * 1.00 1.00 - 

RuC 1.00 1.00 0.20 * 0.90 * 0.44 1.00 1.00 

UmC 1.00 1.00 1.00 0.44 1.00 * 1.00 1.00 1.00 

Species frequency data reflects the number of segments each species occurred in. The 

frequency of species occurrence was highest at control transects across the entire study 

area. Highest frequency values for control transects were recorded at Kporghor2 with 34 

species occurring 259 times and a total frequency of 7.34%. Conversely, lowest 

frequency values were recorded for polluted transects at Alimini (17 species occurring 

81 times, total frequency =2.47%). While for control transects, lowest frequency values 

were observed at Kporghor (33 species occurred 163 times with total frequency = 4.62%).  

Median frequency value for polluted transects was 18.35%, while on control transects, it 

was 58%. Average species frequency per segment in control transects was 0.15, while for 
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polluted it was a mere 0.05. The results show that species frequency values as taxa were 

higher on control transects than on polluted transects. Further analysis using the Kruskal-

Wallis test to compare these values was performed, and the results were similar to that 

obtained for taxa (Table 4.5)  which showed significant differences between polluted and 

control transects at most of the locations. 

Vegetation abundance on polluted transects appeared lower than on control transects. 

Median values were 1.27 plants per occurrence on control transects and 1.19 on polluted 

transects. The difference is not significant when subjected to Kruskal-Wallis test. 

Likewise, the median density of plants on polluted transects was 0.09 plants/m2 while at 

the control transects it was 0.21 plants/m2. These values were not significantly different.  

4.1.2.4 Characteristics of Vegetation in Segments along Polluted 

Transects 

In addition to the inter-transect differences between the polluted and control transects, 

there were also observable differences along transects that corresponded to decreasing 

levels of soil TPH. Firstly, the species number (taxa) appear to increase with a decrease 

in soil TPH. For instance, median taxa at spill epicentres with median TPH concentration 

of 10490 mg/kg of soil is 3, while at SS1 (20m from spill point) with median TPH 

concentration of 6028 mg/kg, median taxa = 7. Furthermore, at SS3, (60 m from spill 

point) median TPH concentration decrease to 1849 mg/kg and median taxa increase 

slightly to 10, while at SS5 (100 m from spill point), median TPH concentration = 721 

mg/kg, median taxa = 13. Contrastingly, median taxa on control segments = 28 and 

median TPH concentration in soil = 36.5 mg/kg.  A similar pattern is observed in 

vegetation frequency, abundance and density. The occurrence of species along polluted 

transects became more frequent, abundant and dense as soil TPH concentration decrease. 

These results clearly show the effect of varying levels of soil TPH on vegetation 

characteristics. As the boxplots of taxa, frequency, abundance and density values for 

segments on polluted transects in Figure 4.10 illustrate, median values for each 

characteristic increased with a decrease in soil TPH concentration. 
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Figure 4.10: Boxplots of taxa, frequency, abundance and density values for segments on polluted 

transects and control segments (SSC) for comparison. For each characteristic, the median values 

increase with a decrease in soil TPH concentration. The occurrence of species along polluted 

transects increased in frequency, abundance and density with decreasing TPH. The notched boxes 

illustrate the confidence interval of the values and the absence of overlap between SS0 values and 

other segments suggest significant differences.  

To determine the actual effect of TPH on these characteristics, an omnibus Kruskal-

Wallis test was performed on the data with a significant result suggesting that at least one 

of the medians was from a different sample. Table 4.6 highlights the result of the Kruskal-
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Wallis test for taxa, frequency, abundance and density of segments along polluted 

transects. 

Table 4.6: Kruskal-Wallis omnibus test results for differences in the mean rank of taxa, 

frequency, abundance and density of vegetation along polluted transects. The results show 

significant differences in all the characteristics leading to a post-hoc analysis using Dunn's test.        

Variable H DF P Decision 

Taxa 169.11 4 <0.05 Reject 

Frequency 167.36 4 <0.05 Reject 

Abundance 62.55 4 <0.05 Reject 

Density 69.31 4 <0.05 Reject 

Rejection of the null hypothesis led to a post-hoc Dunn's test to determine the relationship 

between concentrations of TPH and vegetation characteristics. The results reveal that SS0 

(with the highest median TPH concentration on polluted transects differed significantly 

with SS3 and SS5 in all the characteristics, but not with SS1.  An earlier result from 

section 4.3.1.3 which revealed a significant difference in TPH concentration of segments 

SS0 and SS5. However, it appears that taxa and frequency were more affected by 

increasing TPH along transects than abundance and density. This effect is evident in the 

absence of significant differences in vegetation abundance and density among segments 

except between SS0 and SS5. 

4.1.2.5 Importance Value Index of Species  

Importance value index (IVI) of naturally occurring species across the study transects 

was calculated to determine the species that contributed most to the ecosystem structure 

and function. IVI further provided insight into the tolerance level of various species to 

the presence of petroleum hydrocarbon and heavy metals in the soil. For this analysis, the 

importance function in R package Labdsv was used to determine the importance value of 

the various species in the study area. The weighted average (WA) value of soil TPH 

weighted by species abundance on segments was initially computed to reveal the most 

tolerant and most vulnerable species. Table 4.7 lists the most tolerant and most 

susceptible species along with the WA scores. Interestingly, the most tolerant species 

were herbs, mainly Perotis indica (Perindh) which can tolerate over 67,000 mg/kg of 

TPH in the soil. The last letter in species code name indicates the life form of the species, 

s = shrub, h = herb, c = climber/creeper, t = tree). Other tolerant species include Albizia 

adiantifolia (Albadit), Kyllinga erecta (Kylereh), Sida cordifolia (Sidcorh) and 
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Andropogon tectorum (Andtech). The most susceptible species was Terminalia catappa 

(Tercatt), Synedrella nodiflora (Synnodh), Oldenlandia corymbosa (Oldcorh),   Albizia 

zygia (Albzygt) and Psychotria nigerica (Psynigs). 

Table 4.7: Weighted average scores of soil TPH concentration in investigated transects showing 

species most susceptible and most tolerant to oil pollution. The last letter in species code name 

indicates the life form of the species, s = shrub, h = herb, c = climber/creeper, t = tree). 

 

 

 

 

Similarly, the species with the highest importance value indices on both polluted and 

control transects were mostly shrubs, herbs and climbers and his contrasted clearly with 

tree species, which exhibited low importance index values. The ten most important 

species in the study area are Manihot esculenta (Manescs), IVI = 33.21; Paullinia pinnata 

(Paupinc), IVI = 23.95; Elaeis guineensis (Elaguit), IVI = 19.86; Cocos nucifera 

(Cocnuct), IVI = 18.49; Chloris pilosa (Chlpilh), IVI = 15.94; Ageratum conyzoides 

(Ageconh), IVI = 15.82; Alchornea cordifolia (Alccors), IVI = 14.46; Carica papaya 

(Carpapt), IVI = 13.79 and Gomphrena celosioides (Gomcelh), IVI = 13.67. IVI values 

showed susceptibility to soil TPH as certain species with high IVI values on control 

transects appear to decline on polluted transects. These species include Phyllanthus 

amarus  (Phyamah), IVI = 4.2 and 8.04 respectively on polluted and control transects; 

Axonopus compressus (Axocomph), IVI = 3.66 and 7.73; Adianthum vogelli (Adivogh), 

IVI = 3.71 and 7.53; Spermacoce verticillata (Speverh), IVI = 2.66 and 7.4; Blighia 

sapida (Blisapht), IVI = 1 and 7.21; Calopogonium mucunoides (Calmuc), IVI = 2.17 

and 7.12; Cyperus haspan (Cyphash), IVI = 0 and 6.92; Cyperus esculentus (Cypesch), 

IVI = 0 and 6.62; Millettia macrophylla (Milmacs), IVI = 1.5 and 2.25. 

Conversely, the most critical species on polluted transects were equally important on 

control transects. However, a few species were more abundant on polluted transects. 

These were Ageratum conyzoides (Ageconh), Carica papaya (Carpapt), Bulbophyllum 

Most Susceptible Most Tolerant 

Species Code WA scores of 

TPH (mg/kg) 

Species Code WA scores of 

TPH (mg/kg) 

Tercatt 16.5 Perindh 67940.25 

Synnodh 19.2 Albadit 61232.8 

Oldcorh 25.9 Kylereh 22048.08 

Albzygt 26.25882 Sidcorh 16728.76 

Psynigs 26.53333 Andtech 14470.86 
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barbigerum (Bulbarh), Ipomoea involucrata (Ipoinvc), Scleria verrucosa (Sclverh), 

Oplismenus burmanii (Oplburh) and Desmodium triflorum (Destrih).  

Figure 4.11 is a scatterplot of IVI of species on polluted and control transects. The plots 

show that fewer species on polluted than on control transects scored IVI > 5. 

Additionally, several species with IVI values > 5 on control transects declined in value 

on polluted transects. 

 

Figure 4.11 Scatterplot of IVI values for species on polluted and control transects. Highest IVI 

values were obtained for most shrubs, followed by herbs on both transects, whereas, lowest IVI 

values were obtained for trees. The last letter in species code name indicates the life form of the 

species, s = shrub, h = herb, c = climber/creeper, t = tree).  

Indicator species was determined for each location, and the result plotted in Figure 4.12. 

Interestingly, no two sites had the same indicator species contrary to expectations 

considering that all the sites were located within the same ecological zone. The indicator 

species were not necessarily dominant in their habitats; however, they showed a 

preference for particular environments based on their importance values. For instance,  
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Figure 4.12  Indicator species at different locations investigated. The species with highest indicator values on polluted transects include Kylereh (Kyllinga 

erecta) at Kporghor 2; and Perindh (Perotis indica) at Amuruto. On control tranestc, indicator values were much higher with Pipafrt (Piptadeniastrum 

africanum) and Panlaxh (Panicum laxum) dominating in Obua and Kporghor 2 respectively. All the locations had different indicator species, which is a pointer 

to the species diversity and high turnover (beta-diversity) of the study area. 
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Carluts, (Carpolobia lutea,) a shrub with high indicator value in Kporghor exhibited a 

preference for non-polluted transects whereas Lepowac (Lepistemon owariense), a 

creeping plant with moderate indicator value at Egbalor showed a preference for polluted 

transects. 

4.1.3 Species Diversity Analysis  

4.1.3.1 Species Richness and Diversity on Investigated Transects 

Many indices were used to calculate the diversity of both the polluted and control 

transects across the entire study area. These included those for estimating species 

diversity such as Shannon's (H) and Simpson's (D),   those for estimating species richness 

such as Menhinick's index (M) and Chao-1 (CH) indices; and for estimating the evenness 

of species (EV) distribution and species dominance (DM). The analysis was performed 

using PAST software using the abundance data of all inventoried species. Table 4.8 

summarises the results of the diversity analysis, shows the median value for each index, 

and transect at different locations. From the table, it is clear that there are differences in 

the diversity values for vegetation on polluted transects and control transects. 

Table 4.8 Summary of diversity analysis using PAST for polluted and control transects 

Location Transect Shannon’s Simpson’s Chao-1 Menhinick’s Evenness 

Alimini Polluted 1.89 0.84 10.33 2.33 0.96 

Control 3.18 0.96 72.25 4.63 0.95 

Amuruto Polluted 2.3 0.9 31.33 3.05 0.97 

Control 3.31 0.96 82.13 4.93 0.96 

Anyu Polluted 2.4 0.91 28 3.32 0.97 

Control 3.53 0.97 78.94 5.42 0.94 

Egbalor Polluted 2.08 0.88 19.33 2.83 0.96 

Control 3.2 0.96 67.22 4.53 0.91 

Kporghor Polluted 2.2 0.88 17 2.83 0.92 

Control 2.82 0.92 28.31 3.26 0.82 

Kporghor2 Polluted 2.49 0.91 42 3.33 0.98 

Control 3.43 0.96 87.8 5.08 0.94 

Obua Polluted 1.95 0.86 19.5 2.65 0.97 

Control 3.23 0.96 70.6 4.76 0.92 

Omoigwor Polluted 2.51 0.91 31.5 3.18 0.95 

Control 3.38 0.96 88.8 5.08 0.93 

Rumuekpe Polluted 2.4 0.91 46 3.32 0.98 

Control 3.29 0.96 128.3 4.93 0.94 

Umukpok

u 

Polluted 2.25 0.89 24.25 3 0.97 

Control 3.36 0.96 77.22 5.03 0.94 
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Generally, for all the indices computed, control transects exhibited higher richness and 

diversity values than polluted transects at all locations. Among polluted transects, 

Menhinick's richness index ranged from 2.33 to 3.33 while Shannon diversity values 

ranged from 0 to 2.93 computed for Rumuekpe. Among control transects, species 

richness (Menhinick's Index) ranged from 3.26 to 5.42, and Shannon's index ranged from 

1.87 to 3.6. Zero index values were mostly obtained on spill epicentres in Kporghor and 

Alimini, where fire incidence wholly removed the vegetation. 

Species accumulation curve (Figure 4.13) showed that species richness for polluted 

transects was lower than for polluted transects and that species accumulated more rapidly 

in control segments than in polluted segments. Although the sample sizes varied for 

polluted (n = 130) and control (n = 80) segments, the curves show that at a comparable 

sample size of 50, the species richness for polluted segments was 87 (SD = 3.72) while 

that of control segments was 154 (SD = 1.99) 

 

Figure 4.13 Species accumulation curves comparing the species richness on polluted and control 

transects in the study area. Curves show that species richness and the rate of accumulation (the 

rate at which new species were observed in segments) was higher on control transects than on 

polluted transects.  
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The Anyu control transects had the highest Shannon index of 3.6. Similar patterns were 

observed for other diversity indices, Simpson's and Chao-1 as evident in Figure 4.14. 

Both indices were higher for control transects than for polluted transects. 

 

Figure 4.14 Violin plots of A. Shannon's, B. Simpson's and C. Chao-1 diversity indices on 

polluted and control transect. The density plots with long tails show the non-normal distribution 

of variables, further justifying the use of non-parametric statistics for data analysis. For all 

indices, median values are higher on control transects than on polluted transect. Index values on 

polluted transects exhibited more variability than control transects except in Chao-1 which 

showed a reverse with more variability in values obtained from control transects.  

Species dominance was not strongly exhibited on investigated transects though it 

appeared to be slightly more present on polluted transect than on control transects. This 

difference was significant between transects at only four sites namely Alimini, Amuruto, 

Anyu and Obua. By far, the most dominant species encountered across the entire study 

area was Manihot esculenta (DM = 0.99). Four other species which dominated 

investigated transects include Paullinia pinnata (DM = 0.57),     Chloris pilosa (DM = 

0.56), Ageratum conyzoides (DM = 0.47) and Costus afer (DM, 0.46) which were all 
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herbs and shrubs. Species dominance also varied by location as different species 

exhibited dominance at different locations. Figure 4.15 displays the dominant species at 

each location. 

 

Figure 4.15 Boxplot of vascular plant species dominance at investigated polluted locations in the 

study area.  

While the dominance of species was very low across the study area, evenness was high 

and slightly higher on polluted transects. Median evenness on polluted transects was 0.97 

while on control transects, it was 0.94, and the difference appeared significant when 

subjected to a Kruskal-Wallis test (H = 95.54, DF=19, P-value < 0.05). However, a post-

hoc analysis revealed that the significant difference was between rather than within 

locations. 

Apart from evenness, other evaluated diversity and richness indices showed a 

considerable difference between polluted and control transects at various locations and 

are illustrated in Figure 4.16. 
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Figure 4.16 Results of post-hoc analysis using Dunn's test plotted against locations to illustrate 

the significance level of differences in diversity indices between polluted and control transects. 

All indices were significantly different at Alimini (Al), Amuruto (Am), Anyu (Ay) and Obua 

(Ob). At Umukpoku, only Shannon's and Menhinick's indices were significantly different 

between polluted and control transects.  

4.1.3.2 Species Richness and Diversity on Segments of Polluted 

Transects 

The average index value of segments from polluted transects (A, B, C and D) from the 

diversity analysis performed in the PAST package is shown in Table 4.9. There is an 

observed pattern of increase in index values as the distance from spill epicentre (SEC) 

increased. Vascular plant species diversity indices (Shannon's, Simpson's, Chao-1, and 

Menhinick's) appeared to respond to varying TPH concentrations. 

Table 4.99 Summary of diversity analysis using PAST for segments along polluted transects with 

control segments for comparison. 

Index Segments (SS) on Polluted Transects 

 

Segments on 

Control Transects   
SS0 SS1 SS3 SS5 SSC 

Shannon’s 1.1 2.04 2.27 2.57 3.32 

Simpson’s 0.67 0.86 0.89 0.92 0.96 

Chao-1 6 18.5 23.63 38.35 78.47 

Menhinick’s 1.73 2.67 3.01 3.47 4.87 

Evenness 1 0.97 0.96 0.96 0.94 

Dominance 0.33 0.14 0.11 0.08 0.04 
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Box plot of results (Figure 4.17) for vascular plant species diversity indices further 

highlight the general pattern of increasing values along polluted transects as TPH levels 

declined. However, a reverse trend is observed for evenness and dominance as these 

indices appeared to decrease with increasing TPH concentration in soil.  

 

Figure 4.17 Boxplot of diversity indices along segments (SS) of polluted transects. There is a 

clear pattern of increasing diversity index values as the distance from the spill epicentre (SEC) 

increases. The increasing distance also corresponds with declining TPH concentration in the soil. 

On the other hand, both dominance and evenness decreased as TPH concentration in the soil 

decreased.  
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4.1.3.3 Beta Diversity of Investigated Transects 

The beta diversity polluted and control transects across the entire study area and for each 

location was calculated, and the results are summarised in Table 4.10. Beta diversity of 

polluted transects across the entire study area was quite high, (0.59) suggesting that 

transects were somewhat dissimilar in species composition. Similarly, on control 

transects, beta diversity values were also high (0.53) though slightly lower than polluted 

transects confirming the high biodiversity of the Niger Delta.or. 

Table 4.10 Beta diversity of investigated transects calculated using Sorensen’s dissimilarity 

index 

 Beta diversity Turnover Nestedness 

Polluted Control Polluted Control Polluted Control 

Study Area 0.59 0.53 0.56 0.51 0.06 0.02 

Alimini 0.4 0.23 0.36 0.22 0.14 0.04 

Amuruto 0.38 0.2 0.33 0.15 0.07 0.05 

Anyu 0.44 0.22 0.36 0.2 0.1 0.02 

Egbalor 0.41 0.2 0.37 0.17 0.15 0.03 

Kporghor 0.36 0.18 0.3 0.12 0.1 0.09 

Kporghor2 0.25 0.13 0.23 0.11 0.12 0.02 

Obua 0.4 0.22 0.31 0.19 0.1 0.03 

Omoigwor 0.33 0.12 0.23 0.11 0.11 0.03 

Rumuekpe 0.47 0.39 0.34 0.27 0.11 0.05 

Umukpoku 0.39 0.14 0.32 0.12 0.09 0.02 

Furthermore, results show that species turnover was consistent in determining the beta 

diversity of transects. Nestedness of species was higher in polluted transects than in 

control transects implying that oil pollution may have caused the disappearance of some 

vascular plant species from segments along polluted transects. Beta dispersion analysis 

to determine the effect of pollution on species composition showed significant differences 

in the species composition of polluted and control transects. The results of the analysis 

are shown in Figure 4.18. 
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Figure 4.18 Plots of distances of polluted and control segments from centroids. The non-metric 

dimensional scale plot in A. shows that the vegetation composition of polluted and control 

transects differ. In B, the box plots show that polluted transects vary significantly in their species 

composition across the entire study area. 

Both plots show that polluted transects differed in species composition with control 

transects, although, there appeared to be other underlying factors in addition to soil TPH 

that may have caused this. However, the boxplot of the distance of segments to the 

centroids (Figure 4.18B) showed that polluted transects were more dissimilar in species 

composition than control transects. An analysis of variance (ANOVA) test performed on 

the distances (N = 210, DF= 1 and 208, F = 57.73, p < 0.05) showed significant 

differences. 

Within locations, comparison of pairs of segments using Sorenson's index revealed that 

species composition on oil spill epicentres (SS0s) completely differed from other 

segments with larger dissimilarity values obtained on polluted transects. Average beta 

diversity values among segments on polluted transects were 0.64 (SS0); 0.6 (SS1 and 

SS3); and 0.56 (SS5) while on control transects it was 0.56. An omnibus test comparing 

the differences in beta diversity among segments was significant; hence a post-hoc 

analysis using Dunn's test was performed. Although the result showed that beta diversity 

differences were only significant at p < 0.05 between SS0 and SS5 as well as SSC; it 

suggests a linear relationship between TPH in soils and beta diversity. The presence and 

strength of any relationship between beta diversity components and soil TPH was tested 

using a linear regression model in R. The results of the procedure confirms that soil TPH 

positively influenced both the species turnover component of beta diversity and the 

nestedness as summarised in Table 4.11 



126 

 

Table 4.11 Summary of the linear regression analysis to determine the relationship between beta 

diversity components and soil TPH. For each variable, N = 210, DF = 1 and 208, p-value < 0.05  

Variable F R-squared RSE Equation 

Beta diversity 106.6 0.34 0.13 Beta diversity = 0.06 + 0.09 (LogTPH)  

Turnover 90.88 0.3 0.12 Turnover = 0.05 + 0.08(LogTPH) 

Nestedness 48.39 0.2 0.07 Nestedness = 0.02 + 0.04(LogTPH) 

 

4.1.4 In-Situ Leaf Chlorophyll Data Analysis 

Data measured using the SPAD (Soil Plant Analysis Development)-502 chlorophyll 

meter are summarised in Table 4.12 below. The results show that estimated chlorophyll 

contents of vegetation on the control transects were higher than chlorophyll estimates of 

vegetation on polluted transects. The mean SPAD values for the control transects were 

over 55 while the means from polluted transects were less than 40. 

Table 4.12 Summarised chlorophyll data measured using a SPAD-502 chlorophyll meter taken 

from Kporghor spill location. The means of the data obtained from the control transects are higher 

than those obtained from the polluted transects. Similarly, the maximum values are also higher 

in control transects than in the polluted transects.  

 
Transect 

A 

Transect 

B 

Transect 

C 

Transect 

D 

Control 

1 

Control 

2 

Minimum 21.1 26.5 25.4 26.3 39.9 42.1 

1st Quartile 33.49 33.8 34 32.8 46.6 48.9 

Median 38.5 41.49 35.4 38.2 49.8 52.7 

Mean 39.33 40.52 36.98 39.22 55.32 55.06 

3rd Quartile 46.7 45.6 39.8 44 58.1 57.5 

Maximum 65.7 56.5 58.2 66.3 111 96.4 

 

4.1.4.1 Leaf Chlorophyll Data from Polluted and Control Transects in 

Kporghor 

The SPAD measured chlorophyll content of vegetation on investigated transects reveals 

the variation in the data readings from both the control and polluted transects. For 

instance, the SPAD chlorophyll measured in vegetation on polluted transects ranged from 

21 to 68, with a median value of 36.06; while on control transects, values ranged from 

39.9 to 111 with median = 50.33  The wider range of data readings from vegetation on 

the control transects connotes a wider species variation as previously noted in the species 

number (taxa). A Mann-Whitney test performed on the data showed a significant 

difference between chlorophyll content in vegetation from polluted and control transects.  
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The one-tailed test showed that SPAD chlorophyll estimates on polluted transects were 

significantly less than control transects (N = 31, W = 214, p < 0.05). 

4.1.4.2 Leaf Chlorophyll Data from Segments along Polluted Transects 

SPAD-502 chlorophyll meter reading also showed significant variations in segments 

along polluted transects as is evident in the boxplot in Figure 4.19 It appears that the 

values were increasing as the distance from the spill epicentre increased; further proof 

that the TPH levels in the soil affected the chlorophyll content of vegetation growing on 

the segments. The median values for the segments were SS1 = 32.45; SS3 = 35.17; and 

SS5 = 42.95. An omnibus Kruskal-Wallis test showed significant differences among the 

segments (H = 13.05, DF = 4, p< 0.05), however, following a multiple comparison Dunn's 

test, the significant difference was between SS1 and SS5. The spill epicentre at Kporghor 

was excluded from the analysis due to the absence of vegetation within the segment 

(SS0).  There were differences in the SPAD chlorophyll values estimated for SS1 and 

SS3, but these differences were not significant (p < 0.05). Likewise, between SS3 and 

SS5, there was no significant difference in the SPAD chlorophyll estimates. 

 

Figure 4.19 Boxplot of SPAD-502 chlorophyll meter readings from segments along polluted 

transects. Higher readings suggesting higher chlorophyll content were obtained from vegetation 

growing on segments further away from the spill epicentre (not shown in the graph).  
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4.1.4.3 Effect of Oil Pollution on Leaf Chlorophyll Data  

Estimated chlorophyll content in vegetation strongly correlated with soil parameters. The 

relationship was inverse with soil TPH, Lead and TOC but positive with Phosphorus. The 

corrgram plot in Figure 4.20 illustrates the nature of relationships. 

 

Figure 4.20: A corrgram illustrating the correlation ratios of various soil parameters and the 

SPAD-502 chlorophyll data obtained from the study transects. The colour and intensity of 

shading define the pattern and magnitude of the relationship between the variables. The red pies 

represent the negative correlation while the blue coloured pies illustrate positive correlations. 

Carbon-related parameters (TPH, TOC and THB) and the heavy metal (Lead) correlated 

negatively while TOM and Cadmium had weak positive correlations with the leaf chlorophyll 

data. Conversely, Phosphorus (soil nutrient) had strong positive correlations with the leaf 

chlorophyll data.  
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Additionally, a comparison of the average chlorophyll concentration of selected plant 

species namely Manihot esculenta, Vossia cuspidata and Ficus mucuso on polluted and 

control transects using the Kruskal-Wallis test (H = 126.23, DF = 17, p-value < 0.05) 

showed that differences were significant. Post-hoc analysis revealed that interspecific 

differences in chlorophyll content were not significant, however intraspecific differences 

between polluted and control transects were significant for all species. This may be 

attributed to the effect of oil pollution. Results of the post hoc analysis are shown in Table 

4.13. 

Table 4.13: Dunn's test to compare the mean rank of SPAD chlorophyll in selected species on 

polluted and control transects. The p-values show significant differences in the estimated 

chlorophyll content of Ficus mucuso (Fm) and Vossia cuspidata (Vc) on polluted transects A 

(TA), B (TB), C (TC) and D (TD) and control transects C1 and C2. However, there is no 

significant difference in chloropyll content of Manihot esculentus (Me) on polluted and control 

transects. Significant values (p < 0.05) are shown as red asterisks (*). Variable names are a 

combination of transects label and first letters of plants genus and species names eg C1Me refers 

to Manihot esculentus on control 1 transect.  

 
C1Me C1Fm C1Vc C2Me C2Fm C2Vc 

TAMe 0.851 * * 0.1 * * 

TAFm 1 * * 0.361 * * 

TAVc * * * * * * 

TBMe 0.824 * * 0.096 * * 

TBFm 1 * 0.263 1 * 0.162 

TBVc 1 0.868 1 1 0.425 1 

TCMe 1 * * 0.818 * * 

TCFm 1 0.172 1 1 0.076 1 

TCVc 1 * * 0.488 * * 

TDMe 1 * 0.103 1 * 0.061 

TDFm 1 * 0.202 1 * 0.123 

TDVc 0.857 * * 0.1 * * 

4.1.5 Effects of Environmental Variables on Species 

Occurrence  

Species occurrence and distribution are a function of environmental variables. To 

evaluate the impact of the environmental variables particularly the TPH concentrations 

on the species composition and distribution, the canonical correspondence analytical 

(CCA) procedure was employed. The CCA was performed using species abundance data 

from all transects investigated. The procedure was carried out to determine the 
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environmental variable that most influences species occurrence and abundance. The soil 

parameters that exhibited strong relationship ( 0.5 < r <-0.5) with taxa and number of 

individuals were selected as environmental variables and these were total petroleum 

hydrocarbon (TPH, r = -0.74 and -0.76),  phosphorus (P, r = 0.7 and 0.72) and lead (Pb, 

r = -0.74 and -0.78).  

Results from the canonical correspondence analysis produced strong associations among 

the vegetation data and the environmental variables. While the first CCA axis represented 

39.2% of the total variance in the data and associated with increasing TPH and Lead and 

decreasing phosphorus, the second CCA axis accounts for 24.89% of the total variance 

in the data and associates with decreasing TPH. The plot of the two axes shown in Figure 

4.21 A and B successfully partitioned the study area into polluted microhabitat 

(characterised by high levels of TPH and lead and low levels of phosphorus and TOM) 

and unpolluted microhabitats. The distribution of vegetation in these microhabitats 

showed that the nutrient-rich unpolluted portion supported over 60% of the species while 

40% occurred on the polluted/contaminated portion. The ordination of species on these 

axes revealed the optimal conditions and the effect of changes in these conditions for 

species occurrence and abundance.  For instance, the most common life forms of species 

populating the polluted microhabitat are herbs and shrubs while trees preferred 

unpolluted fertile microhabitats. 

Moreover, the plot revealed that certain species thrived in polluted transects scoring high 

IVI values and WAScores but absent in control transects. These species were labelled as 

TPH-tolerant species as they thrived in polluted soils. 65 species that populated the 

unpolluted microhabitat and were absent in the polluted microhabitat were labelled as 

TPH-sensitive species due to their low WA scores (less than 60 mg/kg) and the 

requirement of good soil conditions to thrive. However, due to their absence or minimal 

presence on polluted transects, their IVI values ranged from 1 to 1.75.
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Figure 4.21A  Plot of the first two axes of the CCA result scaled to display segments. The first CCA axis associates with increasing TPH and the second CCA 

axis associates with increasing TOM.  The length of the tri-plots shows that both soil TPH and P were dominant gradients affecting species distribution. The 

plot successfully apportioned the ordinated space into polluted and unpolluted microhabitats which also correspond with particular species populating each 

microhabitat 
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Figure 4.22B  Plot of the first two axes of the CCA result scaled to displaysSpecies. The first CCA axis associates with increasing TPH and the second CCA 

axis associates with increasing TOM.  The length of the tri-plots shows that both soil TPH and P were dominant gradients affecting species distribution. The 

plot successfully apportioned the ordinated space into polluted and unpolluted microhabitats which also correspond with particular species populating each 

microhabitat  

B 
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Species populating the centre of the plot are those present in both polluted and unpolluted 

microhabitats and were labelled ‘adaptable species’. Table 4.14 shows examples of each 

group of species.  

Table 4.14: Examples of Most TPH tolerant species, most TPH-sensitive species and most 

adaptable species that thrived at the center of the plot.  

Code-name Species name Lifeform IVI  WAScore 

 

TPH-Tolerant Species 

Acakams Acacia kamerunensis Shrub 2 4480 

Albadit Albizia adiantifolia Tree 1 61232.8 

Desscoh Desmodium scorpiurus Herb 2 1440.7 

Diosmic Dioscorea smilacifolia Creeper 1 1679.5 

Kylereh Kyllinga erecta Herb 2.42 22048.8 

Perindh Perotic indica Herb 1.33 67940.25 

TPH-Sensitive Species 

Chralbt Chrysophyllum albidum Tree 1 55.5 

Dramant Dracaena mannii   Tree 1 42.8 

Pipafrt Piptadeniastrum africanum   Tree 1.25 45.4 

Funelat Funtimia elastic Tree 4.38 47 

Spomont Spondias mombin Tree 5.2 35.8 

Colhiss Cola hispida Shrub 2.25 38.5 

Scodulh Scoparia dulcis Herb 1 59 

Solmonh Solenostemo monstachyus Herb 1 46.3 

Boraett Borassus aethiopum Tree 1 54.7 

Tettet Tetrapleura tetraptera Tree 2.25 52.8 

Dalecas Dalbergia ecastaphyllum Shrub 4.87 34.1 

Asyganh Asystasia gangetica Herb 1.17 48.6 

Malcorh Malvastrum coromandelianum Herb 1.4 48.6 

Setmegh Setaria megaphylla Herb 1.75 27.2 

Albzygt Albizia zygia Tree 4.36 26.3 

Cyphash Cyperus haspan Herb 6.92 41 

Cosspeh Costus spectabilis Herb 1.50 40 

Ancdifh Anchomanes difformis Herb 5.79 45.4 

Adaptable Species 

Voscus Vossia cuspidata Shrub 6.56 1301.1 

Chlpilh Chloris pilosa Herb 15.94 8564.9 

Alccors Alchornea cordifolia Shrub 14.46 2009.5 

Sidcorh Sida cordifolia Herb 6.36 16728.8 

Ageconh Ageratum conyzoides Herb 15.82 7566.8 

Andtech Andropogon tectorum Herb 4.75 14470.9 

Phyamah Phyllanthus amarus Herb 12.24 1196.9 

Eleindh Eleiss indica Herb 4.89 9797.8 

Tricorh Triumfetta cordifolia  Herb 7.3 548 

Phynirh Phyllanthus niruri Herb 5.79 11673.3 
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These species appear to have been affected by the presence of TPH in the soil as IVI 

values decreased on polluted transects. The low abundance of the species mentioned 

above (abundance class 2 and 3) may be attributed to their decreased population on 

polluted transects. This decimation is also evident in the vast difference between 

corresponding IVI values on polluted and control transects.  

The correlation coefficient of the first two CCA axes 2 (associated with increasing TPH 

and elevation respectively), and vegetation characteristics show that both TPH and 

elevation influenced the distribution and composition of species in the study area. Table 

4.13 how that taxa, frequency of species occurrence and diversity decreased with 

increasing TPH as well as elevation. 

Table 4.15 Rank correlation coefficient  (r) between relevant variables and CCA axes 1-3. TPH 

= total petroleum hydrocarbon, Pb = lead, P = phosphorus, TOM =total organic matter, taxa, the 

frequency of species occurrence, number of individuals and Shannon's diversity.  

Variable CCA-1 CCA-2 CCA-3 

TPH 0.61 0.22 -0.06 

TOM -0.23 0.12 0.34 

Taxa -0.42 -0.13 0.04 

Frequency -0.36 -0.26 -0.06 

Individuals -0.39 -0.18 0.03 

Shannon’s -0.36 -0.1 0.02 

    

4.2 Discussion 

4.2.1 Oil Pollution at Spill Locations in Rivers State 

The high levels of petroleum hydrocarbon (TPH) recorded in soil samples collected from 

identified spill points and along polluted transects confirm that oil spill incidents polluted 

the land surrounding the area. The levels of TPH extracted from soil samples were in 

varying amounts and higher than the EGASPIN intervention values for different 

components of hydrocarbons. The high average TPH concentration from polluted 

transects (12692 mg/kg) clearly distinguishes them from the control transects which had 

an average TPH of 40.53 mg/kg. These results are comparable to those previously 

reported for soil samples extracted from polluted sites across the Niger Delta. For 

instance, Alinnor, Ogukwe and Nwagbo, (2014) obtained mean TPH concentration of up 

to 5199.52mg/kg from polluted soil in five communities in the Rivers State of Nigeria. 

Also, Ibezue (2013) reported high concentrations of TPH (up to 13949.42mg/kg) for soil 
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samples from spillage sites in Gokana Local Government Area of Rivers State similar to 

the TPH content of 16063mg/kg measured from the spill epicentre in Kporghor location.   

The significant difference between observed TPH concentration in polluted and control 

transects a noted in earlier investigations. Osuji and Nwoye (2007) reported as low as 

0.6mg/kg of TPH in the control sample and between 3400-6800mg/kg from polluted soil 

samples. Tanee and Albert (2015) also reported TPH levels of about 27.90mg/kg in soil 

samples collected from their control site and about 542mg/kg measured at the polluted 

site. Other environmental factors may have contributed to the high TPH concentrations 

observed in polluted transects. For instance, the topography of investigated locations may 

have enhanced the retention of crude oil at the spill points and the almost steady migration 

of oil along polluted transects. Elevation of polluted transects did not vary at each location 

except at Rumuekpe where it ranged from 16 to 17 m. Previous studies such as Seibert, 

Stendahl and Sørensen (2007); Zhang et al. (2012b) and Bockheim et al. (2014) have 

reported topographical influences on soil properties for different biomes. The observed 

high levels of petroleum hydrocarbon in samples from polluted transects in Kporghor 

location gives an insight on the quantity absorbed into the soil as well as the effectiveness 

of the containment measure implemented by the company despite over 60% of the total 

spilt amount recovered.   

4.2.2 Effect of Oil Pollution on Soil Parameters 

Increased concentration of petroleum hydrocarbon increased soil acidic (pH) and 

temperature values. Whereas some researchers report that oil pollution leads to increased 

soil pH (Obire and Nwaubeta, 2002; Udeh, Nwaogazie and Momoh, 2013; Wang et al. 

2013); others showed that oil pollution in soil tends to increase soil acidity (lower pH 

values). For instance, Osuji and Nwoye (2007) and Akubugwo, Elebe and Osuocha 

(2016) reported a significant decrease in the pH of polluted soils. Similarly, Baruah et al. 

(2011) analysed crude oil contaminated soil in North East India and found that the 

contaminated soils were slightly more acidic (pH = 5.8±0.3) than the uncontaminated 

soils (pH = 6.4±0.2), although, they did not clarify if the difference in pH values was 

significant. The increased acidity of polluted soils was attributed on the one hand to the 

formation of organic acids by microorganisms responsible for the biodegradation of 

hydrocarbons, and on the other hand to the non-removal of leachates from the crude oil 

polluted substrate (Das and Chandra, 2011). Furthermore, while Wang et al. (2013) 
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reported a significant decrease in the temperature values of polluted soil samples 

collected from the Momoge Wetland in China. Akubugwo, Elebe and Osuocha (2016) 

reported the reverse for polluted soil in Khana area of Rivers State Nigeria. 

Soil samples collected from Kporghor spill location, however, did not show this trend. 

Although there was a slight increase in the pH and temperature of soil samples obtained 

from the polluted transects, the increase was not statistically significant. The mean pH 

and temperature values of polluted samples were 4.33 and 29.10C while that of control 

samples were 4.2 and 290C respectively. This result compared favourably with those 

posited by Okonokhua et al. (2007), Tanee and Albert (2015). TPH concentration in soil 

influenced soil fertility status.  Soil electrical conductivity (EC) used as to indicate soil 

fertility (determines the cation exchange capacity, organic matter level, drainage 

conditions and other subsoil characteristics of the soil) showed a significant difference in 

polluted and control transects at the Kporghor spill location. Mean EC values were 10.36 

µS/cm and 29.85 µS/cm respectively. The values were comparable to those reported by 

Benka-Coker and Ekundayo (1995); Okonokhua et al. (2007); Tanee and Albert (2015) 

for studies conducted on polluted soils in the Niger Delta region. Benka-Coker and 

Ekundayo (1995) reported EC range of 35-54 µS/cm from the soil sample collected at a 

depth of 15-30 cm within the heavily impacted zone and range of 27-68 µS/cm at similar 

depth for the unimpacted zone. Tanee and Albert (2015) likewise reported lower values 

of 6.33 µS/cm and 10.33 µS/cm for polluted and unpolluted soil respectively. Osuji and 

Nwoye (2007) in their appraisal of the impact of petroleum hydrocarbons on soil fertility 

in Owaza reported very high EC values (688 µS/cm for polluted and >1890 µS/cm for 

control soil samples). The extremely high EC value reported by Osuji and Nwoye may 

have been due to the agricultural use of the land. Other factors that affect soil EC not 

analysed in the current research are soil texture and particle size, cation exchange capacity 

of the soil and depth of topsoil. However, Ayotamuno et al. (2006) and Akubugwo et al. 

(2016) reported significantly higher EC values for polluted soils (p < 0.05); Although 

evidence from previous reports as well as the current research suggest a negative 

relationship between soil TPH and EC; a correlation analysis of the soil parameters data 

showed that EC had a weak positive correlation (r = 0.146; p = 0.434) with TPH 

concentration in soil. 
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The increased  TPH in the soil also influenced soil nutrients. The nitrate content of soil 

samples analysed in the current research was negligible (<   0.02 mg/kg) for both polluted 

and control transects in Kporghor spill location. In contrast, Tanee and Albert (2015) 

reported very high nitrate values (132.36 mg/kg and 95.57 mg/kg for polluted and 

unpolluted soils respectively) and Udeh, Nwaogazie and Momoh (2013) posited high 

nitrate values of 22.06 mg/100g for uncontaminated soil. However, Benka -Coker and 

Ekundayo (1995) reported lower nitrate values of 0.3 mg/kg and 0.9 mg/kg for impacted 

and unimpacted sites respectively. Obire and Nwaubeta (2002) and Osuji and Nwoye 

(2007) also reported lower figures for nitrate in polluted than in control soil samples. The 

reported decrease in nitrate contents of polluted soils indicates inhibition of nitrification 

in polluted soils due to the effect of competition from petroleum compounds (Rasche, 

Hyman and Arp, 1990; John, Ntino and Essien, 2016). 

Phosphorus values of polluted and control transects showed significant differences. 

Caravaca and Roldán (2003) reported available P values of 32 mg/kg for control and 28 

mg/kg for contaminated soils obtained from semiarid Mediterranean conditions. 

Similarly, Wang et al. (2013) in their analysis found that crude oil reduced the available 

phosphorus concentrations in impacted soils (P = 30 mg/kg at control and 13.9 ± 2.8 

mg/kg at polluted sites). They also observed significant differences in phosphorus 

concentrations at different seasons for the polluted soils. Ugboma (2014) and Akubugwo 

et al. (2016) in their various studies reported that available phosphorus in polluted soil 

samples was significantly lower than that in samples obtained from the control site. These 

results were consistent with those obtained in the present study, which showed lower 

concentrations of phosphorus in polluted transects than in the control transects. The 

median phosphorus content in soil samples from polluted transects was 4.69 mg/kg while 

from the control transects it was 17.59 mg/kg. These values were very low compared to 

the mean P value of 75.62 mg/kg, and 103.12 mg/kg reported by Tanee and Albert (2015) 

for polluted and control soils respectively. The higher P values reported by Tanee and 

Albert (2015) for soil collected from a similar ecological area may be due to the lower 

TPH levels of the polluted soil as well as the season of collection. Wang et al. (2013) 

reported that seasonal variation significantly affected phosphorus availability in the soil 

in Momoge, China.  
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Decreasing phosphorus levels in polluted soils may be linked to the presence of 

hydrocarbons stimulating the growth of oil-degrading micro-organisms and hence 

increasing the utilisation of available phosphorus (Atlas, 1981; Eneje, Nwagbara and 

Uwumarongie-Ilori, 2012; Wang et al. 2013). The negative correlation (r = -0.423, p < 

0.05) between phosphorus and total organic carbon (TOC) levels in Kporghor 

investigated transects supports this assertion. Nevertheless, some studies have shown 

available phosphorus to be higher in polluted soil than in the unpolluted soil (Essien and 

John, 2011). 

Low total organic carbon (TOC) values obtained from control transects contrasted with 

Osuji and Nwoye (2007); Atuma and Ojeh (2013) whom both observed higher levels of 

TOC in control samples than in polluted samples. The values are, however, consistent 

with other studies including Obire and Nwaubeta (2002); Essein and John (2011); 

Marinescu et al. (2010); Wang et al. (2013); Udoh and Chukwu (2014) who reported a 

significant increase in TOC content of polluted soil which they attributed to the presence 

of carbonaceous  substances in the soil. 

Values for total organic matter (TOM) content of soil samples varied considerably across 

the entire study area and between polluted and control transects. The difference between 

polluted and control transects was also significant. Higher levels of TOM in soil samples 

from control transects may be attributed to the increased presence of vegetation since 

most soil organic matter originate from living and decomposing plant tissues (Bot and 

Benites, 2005). 

Total heterotrophic bacteria (THB) counts differed significantly between the polluted and 

control transects with the highest levels (5.63*106 CFU/ml) recorded at the spill epicentre 

in Kporghor spill location. The mean THB count on polluted transects was 106 CFU/ml 

and 14.3*106 CFU/ml on control transects. These values agreed with those reported by 

Obire and Nwaubeta (2002); Okoye and Okunrobo (2014) for spill sites in the Niger Delta 

region of Nigeria.  The reduced THB counts observed in the polluted transects may be 

connected to the inhibition of microbial and enzymatic activities in the (Okoye and 

Okunrobo, 2014; Alrumman, Standing and Paton, 2015). Conversely, the natural 

conditions of the unpolluted control transects may have supported normal microbial 

growth and activities.  
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The heavy metals investigated and detected in the soil samples collected from the study 

area were lead and cadmium. The values for lead ranged from 2.16 to 163 mg/kg in the 

polluted transects while in control transects lead values were less than 13.2 mg/kg. 

Although these amounts were higher than those documented by Benka-Coker and 

Ekundayo (1995) in their study of a heavily impacted spill site in the Niger Delta, they 

are consistent with results obtained by Udoh and Chukwu (2014); Fatoba et al. (2016) 

for similar sites. Other investigations such as Kisic et al. (2009) for contaminated soil in 

Croatia and Fu, Cui and Zang, (2014) for oil-polluted soil in Shengli Oilfield, China also 

yielded comparable results. Heavy metal contamination in the polluted transects may 

have been due to the oil spill as crude oil have been identified to contain heavy metals 

such as lead, cadmium, zinc, nickel and so on (Kisic et al. 2009; Dickson and Udoessien, 

2012; Fu, Cui and Zang, 2014), however, it may also have been from other sources. For 

instance, the high values recorded for polluted transect (C) in Kporghor spill location 

may have been because of the application of pesticide and bio-solids on the cassava farm 

intersected by transect. Wuana and Okieimen (2011) reported that about 10% of approved 

chemicals utilised in the production of pesticides contained lead and other metals.  

In summary, crude oil pollution in Rivers State exerted deleterious effects on the physical, 

chemical and biological properties of the soil.  The presence of petroleum hydrocarbon 

in the soil led to reduced levels of beneficial parameters such as electrical conductivity, 

phosphorus, organic matter and microbial population. This effect contributed to the 

stripping of nutrients from polluted transects and might have also accounted for the 

reduced vegetation growth and abundance on these transects as evidenced in the present 

research. Chong et al, (2017) asserted that the efficiency of soil nutrient absorption by 

plants is controlled by soil properties, hence, nutrient deficiency invariably leads to 

reduced vegetation productivity. However, other factors which were not explored in this 

research may have also contributed to the depletion of soil nutrients, for instance the 

disturbance history of polluted transects.  

4.2.3 Effect of Oil Pollution on Vegetation  

Osam, Wegwu and Uwakwe (2011), UNEP (2011), Lindén and Pålsson (2013); Tanee 

and Albert (2015) previously reported the devastating effect of oil pollution on the 

ecosystem flora and fauna. The vegetation on and around polluted transects responded to 

the presence of TPH in the soil by the thinning out of plants and outright disappearance 
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of some species. Oil pollution in soil impedes the growth of plants (Ogbo, Zibigha and 

Odogu, 2009; Chima and Vure, 2014). This effect is attributed to the unavailability of 

essential soil nutrients such as nitrogen and oxygen to the plants (Njoku, Akinola and 

Oboh, 2008; Ogbo, Zibigha and Odogu, 2009). Furthermore, oil constituents block 

stomata and intercellular spaces (Baker, 1970) thereby reducing transpiration rates and 

consequently plant uptake of nutrients (Novák and Vidovič, 2003).  

Statistical analysis of the floristic data showed significant differences between polluted 

and control transects in the study area. The taxa, frequency, abundance and density results 

were all higher in control transects than in the polluted transects, though, a few species 

were observed only on polluted transects and not on the control transects. A total of 163 

plant species belonging to 52 families were inventoried across investigated transects. The 

ratio of species to families corresponds with those obtained from several studies on 

species composition and diversity in the Niger Delta region such as Tanee and Albert 

(2015); Daniel, Jacob and Udeagha, (2015); Ubom, (2010) and Agbagwa and Ekeke 

(2011). For instance, Ubom (2010) recorded 339 plant species belonging to 88 families 

in the forests and homestead gardens in the Niger Delta. Agbagwa and Ekeke (2011) 

reported that 90 plant species belonging to 40 families for Bonny Local government area 

in Rivers State, Nigeria. Furthermore, Daniel, Jacob and Udeagha, (2015) documented 

38 species belonging to 22 families for trees in the Abam Itak sacred forest in the Cross 

River State of Nigeria.  

The taxonomical distribution of vegetation in the current study is consistent with those 

submitted in previous studies. For instance, Onyekwelu, Mosandl and Stimm (2013) 

reported that Euphorbiaceae, Mimosoideae (Leguminosae), Sterculiaceae, Meliceae and 

Apocyanaceae were the dominant families in the two natural forest they investigated. 

Similarly, Jacob et al. (2015) also identified Fabaceae, Leguminosae and Sapotaceae as 

the dominant families in their survey of sacred forest in South Eastern Nigeria. 

Floristic data revealed that average species composition on polluted transects were about 

34% while it was over 66% on the control transects suggesting a deficit of over 30% of 

species in oil-polluted transects. The results further indicate that shrubs, herbs and 

creepers suffered more losses than trees, which implies that not only do species differ in 

their sensitivity to oil pollution, but also the lifeforms of the plant species determine their 

susceptibility to the impact of oil pollution (El-Nemr, 2006). Similar observations were 
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made by Kinako (1981) who reported a species loss of at least 50% in oil-polluted habitats 

as well as Baruah and Sarma (1996) who following their study found that 80% of plant 

species were lost in crude oil spill sites in the Rudrasagar oil field. They also observed 

that annual plants were the most affected. The abundance and density of species on the 

investigated transects were different for the polluted and control transects. These results 

were consistent with those reported by Nkwocha and Duru (2010); Tanee and Albert 

(2015) who affirmed that oil spill impacted negatively on the abundance and density of 

vegetation in the Niger Delta region. Additionally, Lin and Mendelssohn (2012) also 

reported significantly lower levels of life above ground biomass (a measure of 

abundance) at oil-impacted sites than at reference sites in their study of the impacts of an 

oil spill on vegetation structure in coastal salt marshes of the northern part of the Gulf of 

Mexico.  

Based on the IVI, the most valuable species in the study area are:- 

i. Manihot esculenta (Manescs),  

ii. Paullinia pinnata (Paupinc),  

iii. Elaeis guineensis (Elaguit),  

iv. Cocos nucifera (Cocnuct),  

v. Chloris pilosa (Chlpilh),  

vi. Ageratum conyzoides (Ageconh),  

vii. Alchornea cordifolia (Alccors),  

viii. Carica papaya (Carpapt), and  

ix. Gomphrena celosioides (Gomcelh).  

These species were equally present at both the polluted and control transects and appeared 

to have been more tolerant to oil spill impact than the other species. Interestingly, these 

highly tolerant species are all perennials. Burk (1977) and Cowell (1971) both observed 

that perennial species were less affected by an oil spill in a freshwater marsh and salt 

marsh respectively. The reason may be that some perennials such as Manihot esculenta, 

Chloris pilosa,  have well-developed rhizomes which allow the plants to perennate during 

the crucial stages of oil inundation. Maslova (2014) studied the structure and metabolism 

of underground shoots in perennial rhizome-forming plants and reported that rhizomes in 

grassy perennials were extremely adept at self-restoration apparently through vegetative 

propagation. Additionally, some of these tolerant species were characterised by deep tap 
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roots (for instance Elaeis guineensis, Cocos nucifera, Alchornea cordifolia) with capacity 

for nutrient extraction from deeper soil layers (Don Santos and Wenzel, 2007). 

As the results suggest, several species which declined in IVI values or absent on polluted 

transects were present on control transects, a phenomenon attributable to the secondary 

effects of an oil spill such as fire destroying vegetation or use of damaging oil recovery 

methods. However, since the most susceptible species (herbaceous annuals) were well 

represented on control transects but absent or significantly reduced on polluted transects, 

it is more likely that the presence of TPH adversely affected species diversity. This 

phenomenon is an indication of poor growth conditions expedited by oil pollution. These 

results compared favourably with Nwoko et al. (2007); Lin and Mendelssohn (2012) and 

Oyedeji et al. (2012) who found that plant population remarkably decreased in oil-

contaminated soils. They asserted that this decrease is due to the intoxication of the soil 

microenvironment by crude oil, which interferes with the availability of essential 

nutrients as well as the plant uptake and utilisation of nutrients (Novák and Vidovič, 

2003). In summary, therefore, oil pollution has adversely affected the vegetation of the 

area through outright loss of species as well as through reduced abundance of the 

surviving species on polluted transects. 

4.2.4 Effect of Oil Pollution on Species Diversity 

The Niger delta harbours a vast number of diverse living organisms and is a biodiversity 

hot spot (United Nations Development Programme, 2010; Nzeadibe et al. 2011). 

However, there continues to be an increasing threat to the rich biodiversity of this region 

due to ongoing oil production and related activities. Several reports show that oil 

pollution causes a decrease in  species diversity of both long-lived woody species and 

shorter-lived herbaceous species through several processes, which include rendering soil 

nutrients unavailable for plant use (John, Ntino and Essien, 2016; Wang et al. 2013; 

Eneje, Nwagbara and Uwumarongie-Ilori, 2012; Atlas, 1981). The diversity of the study 

area reflected a similar pattern as observed for the tropical forest ecosystems. Vasilyevich 

(2009) reviewed several papers written on species diversity of plants in the tropical 

rainforest and reported species density of 0.03 to 0.25/m2 for the Peruvian Amazonia; 

0.14 /m2 in Australia and 0.1/m2 in Southern Africa. These results compared favourably 

with the average species density of 0.1/m2 obtained from the current study area.  
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The diversity indices obtained for the entire study transects were similarly high 

(Simpson's = 0.95 and Shannon's = 3.22) but differed significantly between polluted and 

control transects. Although several studies have enunciated the inadequacy of species 

richness as an indicator of species diversity, results from the current research showed a 

strong positive correlation among the richness (Menhinick's) and diversity (Simpson's 

and Shannon's) indices evaluated. Despite the high diversity values, there were 

significant differences in the phytosociological characteristics of vegetation on the 

polluted and control transects due to the influence of hydrocarbon in the soil. However, 

other factors may have also induced these changes, for instance, Connell (2008) 

summarised in his paper on diversity in tropical rainforests and coral reefs that 

intermediate disturbances, equal chance and gradual change explain the differences in the 

diversity of tropical rainforests. Furthermore, Huston (1979) asserted that under non-

equilibrium conditions, species diversity is altered by variations in the focus and intensity 

of competitive interaction among communities. He, therefore, opined that intense 

competition, particularly for nutrients and energy, would result in low diversity and vice 

versa.  

The results from this study suggests that the presence of hydrocarbon in the soil induced 

nutrient loss and intensified competition among the surviving species of plants, induced 

species loss and consequently decreased the diversity of vascular plants on polluted 

transects. This interpretation is inferred from the recorded differences in the vascular 

plant species diversity of polluted and control transects. However, despite the 

conscientious effort to select locations with greater environmental similarity, the 

possibility that other extraneous factors may have contributed to the observed phenomena 

remains. Interestingly, the control transects showed higher richness indices (Menhinick's) 

whereas the polluted transects had higher evenness values. Evenness values for polluted 

transects ranged from zero to one, while on control it ranged from 0.5 to 0.97. Although 

these values were not significantly different, the higher evenness of polluted transects 

may be due to the general reduction in the population of individual plants occurring on 

those transects. The results of the current research show that species evenness negatively 

correlated with the number of individual plants in polluted transects (r = -0.37, p < 0.05). 

For polluted transects, this observation supports the hypothesis that plants community 

diversity stabilises functional properties such as equitability during ecological 
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disturbances such as fires, or nutrient perturbation caused by oil pollution (McNaughton, 

1977). 

The relationship between the two components of diversity and their suitability for 

measuring diversity has been a subject of interest among ecologists over the years. Some 

studies show a positive correlation between species evenness and species richness 

(Soininen, Passy and Hillebrand, 2012), thereby supporting the use of one or the other as 

a diversity measure,  others show the reverse or no relationship between the two (Stirling 

and Wilsey, 2001; Gosselin, 2006; Jost, 2010; Zhang et al. 2012a). In the present 

research, the two indices weakly related across all investigated transects, however, the 

relationship between diversity, richness and evenness on the control transects was 

significantly positive (r > 0.5, p < 0.05; n = 80). Hence, either richness or evenness index 

could serve as a surrogate for diversity in unpolluted transects.   

Among segments of polluted transects, evenness correlated negatively with species 

richness and may have contributed more to the diversity index of these transects. While 

evenness showed a consistent and directional response to a decreasing TPH gradient, the 

richness indices appeared stable after certain levels of TPH. Also, along the polluted 

transects, the pattern of species diversity seems to follow the TPH gradient in the soil. 

Results from the data showed that both the Simpson's and Shannon's indices increased 

significantly as the TPH levels in the soil decreased from one segment to another. Thus, 

it is inferred that the presence of TPH created a microenvironment, which caused changes 

in the diversity of vegetation along, transects. Cao and Zhang (1997) reported a similar 

phenomenon in their study of tree species diversity of tropical rainforest vegetation in 

Xishuangbanna, South-west China. They discovered that trees species diversity between 

different samples of the same forest types varied depending on the microenvironment of 

the forests.  

Moreover, the scale of services derived from the ecosystem (which serves as the primary 

means of livelihood for the local people), is dependent on its functional diversity and 

productivity. In other words, the more functionally diverse an ecosystem is, the more 

productive it will be in providing essential ecosystem services for the maintenance of 

biogeochemical processes and human welfare. It then follows that changes in either 

variable will bring about losses in the productivity and services derived from the 

ecosystem. For instance, certain either economically important plant species that showed 
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higher importance value index (IVI) at control transects were seen to have disappeared 

or significantly reduced in IVI on polluted transects. These species include Millettia 

macrophylla, Phyllanthus amarus, Albizia zygia, Blighia sapida, Ipomoea involucrata, 

Manihot esculenta, Carpolobia lutea, Setaria megaphylla, Newbouldia laevis and so on. 

The IUCN has listed Millettia macrophylla in Red List of Threatened Species (IUCN, 

2014) as vulnerable whereas Edu et al. (2015) reported Phyllanthus amarus as scarce in 

a hydrocarbon-impacted site in Rivers State, Nigeria following their investigation. Loss 

of these species, some of which are perennial plants in the rainforest ecological zone may 

instigate the loss of essential ecosystem services they support or provide. Previous studies 

have revealed a linear relationship between biodiversity and ecosystem service provisions 

such as nutrient cycles, biomass production and transfer (Cardinale et al. 2012; 

Flombaum and Sala, 2007; David U Hooper et al. 2012; Hector et al. 1999). A similar 

relationship was observed in the current research as there was a decrease in the 

chlorophyll estimates on polluted transects in comparison with control transects. The 

chlorophyll content in plants plays a crucial role in photosynthesis, which in turn 

determines primary productivity of biomass (McKendry, 2002; Beadle and Long, 1985).  

Curiously and as reported in previous studies (Zak et al. 2003; Liu et al. 2008; Eisenhauer 

et al. 2010), all the diversity indices (Shannon's, Simpson's, richness and evenness) 

correlated positively with soil microbial population (in this case, total heterotrophic 

bacteria) on the control transects. However, the reverse was observed on polluted 

transects as results showed a strong negative correlation between the diversity indices 

and THB population in the soil. Although this discrepancy may be due to the limited 

scope of the microbial analysis performed in this study as most of the previous 

investigations analysed various microbes including fungal, bacterial and protozoan 

populations. Nevertheless, it is apparent that processes are occurring belowground which 

substantially affected by the presence of petroleum hydrocarbon in the soil. Under ideal 

conditions, soil microbial population will do well in a soil characterised by neutral pH, 

balanced moisture and aeration, temperatures below 400C and adequate nutrients 

(Nitrogen, Phosphorus, Potassium, Sulphur and so on) (Ng et al. 2012), but oil pollution 

in the study area has adversely affected these parameters. Since soil microorganisms 

largely control ecosystem functions (Eisenhauer et al. 2010; Steinauer et al. 2015), it 

follows then that any factor that adversely affects microbial population will also affect 

the services derivable from such ecosystems. The evidence from the present research 
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supports these previous results and shows how soil microbial communities respond to the 

anthropogenic activities that are changing the ecological landscape. 

4.3 Summary 

This chapter investigated the effect of oil pollution on the distribution and diversity of 

vascular plant species in the Rivers State of Nigeria. Comparison of soil and vegetation 

data from polluted and control (unpolluted) transects across 20 locations support the 

working hypothesis that oil pollution adversely abundance and diversity of vascular plant 

species. Specifically, evidence from the data suggests the rejection of the null hypothesis 

of no difference in the vegetation characteristics and diversity of polluted and control 

transects. The results revealed that soil and vegetation-related variables were significantly 

different between polluted and control transects.  

Additionally, results showed that soil parameters beneficial to vegetation growth were 

also adversely affected by oil pollution in the study area. Results from the present 

investigation also insinuate that oil pollution impact negatively on nature and diversity of 

ecosystem services derived from the environment. The evidence of this effect is apparent 

in the reduced productivity (measured as chlorophyll content) and diversity of polluted 

transects.  

Chapter 5 presents the results of incorporating satellite data in monitoring oil pollution 

effects on vegetation. The chapter assessed the validity of the spectral variation 

hypothesis by measuring changes in spectral metrics in response to soil TPH 

concentration. 
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5 Spectral Diversity Metrics for Detecting Effect 

of Oil Pollution on Biodiversity 

An article from this chapter is has been accepted  for publication by Elsevier as a chapter 

in a remote sensing book ‘Hyperspectral Remote Sensing’ and a second article was 

published in MDPI Remote Sensing journal 

This chapter introduces the integration of remotely sensed data with field data for 

detecting oil pollution impact on biodiversity. The spectral variability hypothesis (SVH) 

was tested to determine the suitability of spectral diversity metrics derived from Sentinel 

2A data for biodiversity monitoring in oil-polluted locations. In answering RQ3, which 

investigates the relationship between species diversity and spectral diversity, the 

following hypotheses are tested. 

a) There is a significant difference between vegetation spectra from polluted and 

control transects. 

b) There is a significant linear relationship between spectral diversity metrics and 

field measured variables (thereby validating the SVH). 

Validation of the spectral variation hypothesis is tackled from two perspectives 

i. The spectral variation associated with changes in soil properties due to oil 

pollution   

ii. Spectral variation associated with changes in vegetation abundance, species 

richness and diversity 

Additionally, the chapter presents an overview of the SVH as well as specific methods 

and datasets utilised in the analysis. A non-parametric multivariate regression analysis 

performed in R studio (please see Chapter 3 Section 3.5.1.3b) was used to determine the 

relationship between spectral diversity metrics and the listed variables (soil properties 

and species richness and diversity), 

5.1 Overview of the Spectral Variability Hypothesis 

The Spectral Variability Hypothesis (SVH) proposed by Palmer et al. (2002) asserts that 

the spatial heterogeneity of plant species positively correlates with spectral diversity of 

remotely sensed images. Spectral diversity, on the one hand, is determined by the extent 

of variation in reflectance values of corrected images. Plants, like other materials on the 

earth surface, reflect radiation from the sun uniquely for different species. The shape of 

the spectrum is dependent on the optical properties of the plants, which in turn are 
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controlled by biophysical and biochemical factors such as cellular structure, leaf 

anatomy, pigment concentrations and moisture content. According to Clevers et al. 

(2002), control of leaf reflectance is by pigments (chlorophyll a and b, β-carotene and so 

on) in the visible (VIS); the cellular structure in the near-infrared (NIR) and moisture 

content in the short-wave infrared (SWIR) regions of the electromagnetic spectrum. 

Variations in these properties induced by plant response to environmental stress, such as 

oil pollution manifest in the spectral signatures acquired by satellite sensors in orbit. 

Plants response to environmental stress has been well-studied (Sewelam et al. 2014) as 

well as the adverse effect of such stressors to plant productivity (Anjum, 2015). 

Environmental stresses that affect plants are biotic and abiotic. Abiotic factors include 

natural and human-made conditions such as air pollution, heavy metal contamination of 

soil, oil spills, fire incidents and so on. All these variables also result in biodiversity loss 

globally (Arellano et al. 2015; Pysek and Pysek, 1989).  

Oil spills release hydrocarbons in the soil which displace oxygen and nutrients and 

adversely affect plant growth and productivity (Scholten and Leendertse, 1991; Beaubien 

et al. 2008; Noomen et al. 2012). Zhang et al. (2007) investigated the effect of lubricating 

oil pollution on mangrove species in Hong Kong and reported that the hydrocarbons 

induced the formation of excessive free radicals in plant cells. These radicals caused 

oxidative stress by impairing biological processes that enhance growth and productivity 

in plant seedlings. In their work at a leakage site in Central Bohemia, Czechoslovakia 

(present-day Czech Republic) Pyšek and Pyšek (1989) noted a decrease in the growth 

and number of individual plants present on contaminated sites.   

Species diversity on the other hand is recognised as an ecosystem status indicator by 

global organisations such as Group on Earth Observation (GEO BON), the World 

Climate Research Programme (WRCP), the International Geosphere-Biosphere Program 

(IGBP) and the |Committee on Earth Observation systems (CEOS) (Rocchini et al. 2016). 

Past studies show links between species diversity and ecosystem productivity such that 

loss of the former threatens the goods and services derived from the latter (Vihervaara et 

al. 2014; Mace, Norris and Fitter, 2012; Norris, 2012; Chapin et al. 2000; Waide et al. 

1999). Similarly, Pereira and Cooper (2006) observed that species diversity determines 

ecosystem functioning and type of ecosystem services provided at the local, regional or 

global scale. Remote sensing is used in biodiversity monitoring to estimate plant species 
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diversity using very high spectral and spatial resolution images that are analysed for 

spectral diversity and habitat heterogeneity (Block et al. 2016; Heumann et al. 2014; Hall 

et al. 2011; Saatchi et al. 2008 and so on). Hence, the SVH represents a valuable resource 

that integrates spectral and field data for detecting various effects of oil pollution on the 

ecosystem. 

5.2 Sentinel 2A Data Analysis 

This section presents the specific tools, procedures and dataset employed in investigating 

the research questions addressed in this chapter. 

5.2.1 Scale Matching Satellite Image and Study Area 

Sentinel 2A image was spatially scaled to match the sampling units of the field survey. 

Rocchini et al. (2010) suggested that appropriately scaling imagery resolution with 

species data was essential for implementing the SVH. Similarly, Small (2004) and 

Rocchini (2007) noted that matching the field sampling units with the spatial resolution 

of an image will enhance the detection of sub-pixel variability and strengthen the 

relationship between species diversity and spectral variability. Also, Turner et al. (2003) 

and Chen and Henebry (2009) suggested that the calculation of spectral variability is 

enhanced when several pixels cover the spatial dimension of sampling units.  

The region of interest tool in ENVI 5.3 was used to create vector polygons of each 

segment on investigated transects. Each segment of 20 m corresponded to 2 x 10 m pixels 

of the Sentinel 2A image; however, a 2 x 2-pixel window was used in this analysis to 

incorporate information from the surrounding area. Although the total area of the pixel 

window was more than the sampling units (segments), this was not considered a 

limitation since incorporating spectral information of landscape surrounding sampling 

units improve the performance of models linking species to spectral diversity (Parviainen, 

Luoto and Heikkinen, 2009; Rocchini et al. 2010). In total, 210 x 4 pixels (equivalent to 

an area of 84,000 square meters) were used to test the spectral variability hypothesis in 

this study. 
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5.2.2 Spectral Diversity Metrics from Bands   

The study utilised only eight bands out of the original 13 bands of the Sentinel-2A 

imagery, these were bands 2 = blue; 3 = green; 4 = red; 5 - 7, 8A = red edge and 8 = near 

infrared (NIR). A vector layer of polygons representing segments of investigated 

transects as overlaid on the pre-processed satellite imagery. For each segment measuring 

20m in length, four pixels were identified to encompass it. The reflectance of individual 

Sentinel-2A bands was then extracted from these four pixels. 

Evaluating the reliability of the spectral variability hypothesis required each pixel 

considered a distinct species; thus perceiving spectral diversity as the diversity of the 

pixels in each spectral band computed from procedures involving the centre and spread 

of the band reflectance values. Other metrics computed to reflect the spectral 

heterogeneity of the Sentinel 2A data included the Simpson's and Shannon’s diversity 

indices. Spectral diversity computation adopted different approaches from literature, and 

the performance of various metrics for validating the SVH was compared.    

Metrics computed from the mean, standard deviation, Shannon and Simpson’s indices of 

the pixels followed the method outlined in Warren et al. (2014). Two additional metrics 

defined as spectral heterogeneity (SH) and quartile-based coefficient of variation (QCV) 

derived from the methods of Hall et al. (2012) and Heumann, Hackett and Monfils (2015) 

respectively, emerged from the Sentinel 2A bands. SH is the mean difference between 

the mean of each 2 x 2-pixel window overlaying a segment and the mean of all 2 x 2-

pixel windows on each transect (overlaying five segments in total). QCV is a non-

parametric approach that measures the dispersion of data around a centre (median value) 

by taking the ratio of the interquartile range to the median of the data set (IQR/Median).   

Further spectral metrics computed from the original 8 Sentinel-2A bands include those 

obtained by principal component analysis (PCA) which is a mathematical algorithm that 

transforms high dimensional and correlated data to lower dimension and uncorrelated 

components. Data reduction involves identifying the direction (eigenvectors) of the most 

variance in the data (Ringnér, 2008). The Sorenson’s similarity index (IS) of band was 

subtracted from one to determine spectral distances. These statistics were calculated 

using reflectance values of eight bands from the four pixels overlaying the investigated 
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segments. In total 56 band indices were derived from the eight Sentinel-2A bands utilised. 

Table 5.1 presents a list of derived metrics. 

Table 5.1: Spectral indices derived from the Sentinel -2A bands used in the study. Band 

reflectance of four pixels overlaying each segment provided data for this analysis. 

Band Statistic Index  

2 (Blue) Mean M2 

Standard deviation Sd2 

Spectral heterogeneity Sh2 

Quartile coefficient of 

variation 

QCV2 

Shannon’s Index H2 

Simpson’s Index D2 

Sorenson’s Similarity Index SI2 

3 (Green) Mean M3 

Standard deviation Sd3 

Spectral heterogeneity Sh3 

Quartile coefficient of 

variation 

QCV3 

Shannon’s Index H3 

Simpson’s Index D3 

Sorenson’s Similarity Index SI3 

4 (Red) Mean M4 

Standard deviation Sd4 

Spectral heterogeneity Sh4 

Quartile coefficient of 

variation 

QCV4 

Shannon’s Index H4 

Simpson’s Index D4 

Sorenson’s Similarity Index SI4 

5 - 7, 8A(Red Edge) Mean M5 - M7, M8A 

Standard deviation Sd5 - Sd7, Sd8A  

Spectral heterogeneity Sh5 – Sh7, Sh8A 

Quartile coefficient of 

variation 

QCV5 – QCV7, QCV8A 

Shannon’s Index H5 - H7, H8A 

Simpson’s Index D5 - D7, D8A 

Sorenson’s Similarity Index SI5-SI7, SI8A 

8 (NIR) Mean M8 

Standard deviation Sd8 

Spectral heterogeneity Sh8 

Quartile coefficient of 

variation 

QCV8 

Shannon’s Index H8 

Simpson’s Index D8 

Sorenson’s Similarity Index SI8 

PC1 Scores PC1 

PC2 Scores PC2 

PC3 Scores PC3 
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5.2.3 Spectral Diversity Metrics from Vegetation Indices (VIs) 

Vegetation indices useful for detecting the chlorophyll content, primary productivity and 

vegetation stress in plants extracted from the original bands of the Sentinel-2A image are 

listed in Table 5.2. Metrics derived from VIs include the mean, standard deviation, 

Shannon's and Simpson's diversity indices, which were used in further analyses. 

Table 5.2: Summary of selected vegetation indices used in evaluating the spectral variation 

hypothesis (SVH). 

Parameter Index Formula Reference 

Chlorophyll 

Content 

Canopy Chlorophyll 

Index (CCI) 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑5

𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4
 

(Pu, Gong and Yu, 

2008) 

Normalised Difference 

Vegetation Index 

(NDVI) 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑8 + 𝑏𝑎𝑛𝑑4
 

(Tucker, 1979; Rouse et 

al. 1974)  

 

Red Edge Position 2 𝐵𝑎𝑛𝑑5 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑5 + 𝐵𝑎𝑛𝑑4
 

(le Maire, François and 

Dufrêne, 2004) 

Primary 

Productivity 

Soil Adjusted Vegetation 

Index (SAVI) 

𝐵𝑎𝑛𝑑8 − 𝐵𝑎𝑛𝑑4

𝐵𝑎𝑛𝑑8 + 𝐵𝑎𝑛𝑑4 + 𝐿
(1

+ 𝐿) 

(Huete, 1988) 

Leaf 

Pigments 

Anthocyanin 

Reflectance Index (ARI) 

1

𝐵𝑎𝑛𝑑3
−

1

𝐵𝑎𝑛𝑑5
 

(Gitelson, Gritz † and 

Merzlyak, 2003) 

Structure Insensitive 

Pigment Index (SIPI) 

𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 1

𝐵𝑎𝑛𝑑 8 − 𝐵𝑎𝑛𝑑 4
 

(Peñuelas and Filella, 

1998) 

5.2.4 Statistical Analysis 

The correlation of each spectral metric with each species diversity measure identified the 

most sensitive metrics to oil pollution. Following the Spearman's Rank Correlation (SRC) 

of the data, metrics with large coefficient values (r > ±0.2) were selected and further 

tested for significance at alpha = 0.05 using the Student T-test. A p-value less than 0.05 

implies that there is sufficient evidence to conclude that there is a significant linear 

relationship between the spectral metric and the particular field-measured variable and 

that the relationship is replicable. Selected spectral metrics were grouped according to 

their sources (Sentinel 2A bands or vegetation indices) and regressed with field data to 

establish the strength of any relationships amongst the variables using a non-parametric 

regression model (NPM) described in section  3.5.1.3B. 

The regression analysis was performed to investigate the possibility that the MSI detected 

changes in vegetation reflectance caused by oil pollution. Firstly, the spectral diversity of 

polluted transects should vary significantly with that of non-polluted transects. The 
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rationale for this presumption is the documented effects of oil pollution on vegetation, 

which includes the decrease in plant productivity and loss of vulnerable plant species, 

thereby reducing spectral diversity. Secondly, species diversity indices measured from 

the field were expected to regress linearly and positively with spectral diversity metrics 

(particularly on control transects) in line with the spectral variability hypothesis. Finally, 

selected spectral diversity metrics were predictors in models designed to test the SVH 

and estimate vascular plant species diversity in the study area. Metrics were selected 

based on the strength of their relationships with the diversity indices and the variance 

inflation factor (VIF). The VIF adopted to correct for collinearity in the explanatory 

variables was determined in R using the car package. Only metrics with VIF < 10 were 

selected for the models. Prediction modelling involved a non-parametric multivariate 

regression (NPMR) analysis using the np package in R. Two groups of spectral metrics 

namely, band-based (those derived from Sentinel 2A bands) and index-based (those 

derived from common vegetation indices) were used in models to estimate vascular plant 

species diversity. The dataset was randomly subdivided into training and test (validation 

data) using a ratio of 7:3 respectively. Thus, the training data contained 150 observations 

and the test data contained 60 observations. Regression coefficients derived from the 

calibration process were applied to the test data for validation. Assessment of model 

performance was by comparing the adjusted coefficient of determination values 

(Adj.R2), root mean square error (RMSE) and predicted square error (PSE) of both band-

based and index-based models.  

The presence of spatial autocorrelation among data points was acknowledged in this 

study and was minimized by the selection of alternate segments on investigated transects. 

However, the spatial structure of the field data aggregated over transects and locations 

may lead to model over fit. The models and parameters are listed in Table 5.3.  

Table 5.3: Parameters of models used to estimate soil properties and other response variables 

from spectral diversity metrics computed using A. sentinel 2A bands 2 to 8A and B. common 

vegetation indices   

Model ID Predictors Response Variables 

1A. Band-Based 

Metrics 

Selected spectral metrics 

from Sentinel 2A bands 

2 to 8A with -0.3 < r > 

0.3 

1. Soil properties 

2. Species diversity 

3. Vegetation abundance  

1B. Index-Based 

Metrics 

Selected spectral metrics 

from vegetation indices 

with -0.3 < r > 0.3 

1. Soil properties 

2. Species diversity 

3. Vegetation abundance 
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Spectral distance (Sorenson's) computed for pairwise segments using their reflectance 

values was plotted against species similarity to determine the presence of any relationship 

(distance-decay) and assess the validity of the SVH for estimating beta diversity of 

transects. Distance decay describes the inverse relationship between the similarity of a 

pair of observations and their geographical distance. According to Nekola and White 

(1999), distance decay of biological similarity is an essential element of ecological theory 

and biodiversity conservation. The pattern of this relationship and rates of change are 

indicators of the presence of a determinant factor such as an underlying environmental 

gradient or plant dispersal habits and so on. Steinbauer et al. (2012) pointed out that the 

rate at which species similarity decreases with geographical distance provides a measure 

of species turnover and beta-diversity. In line with this argument, both the pattern and 

rates of distance decay were expected to differ between polluted and control transects due 

to the impact of oil pollution, and segments along polluted transects as the concentration 

of TPH decreased from the spill epicentre.   

Spectral distance decay rates were computed for each segment using Sentinel 2A bands 

(2 to 8 and 8A) reflectance values in a 2 by 2-pixel window. Due to the observed impact 

of oil pollution on vegetation, the distance decay rates should be higher on polluted 

transects than on control transects. This expectation followed Morlon et al. (2008) 

assertion that the distance decay relationship is sensitive to environmental variability, 

spatial distribution and autocorrelation. Hence, the difference in distance decay rates of 

polluted and control transects is an indication of oil pollution impact on species 

composition of transects. The distance decay relationship was estimated from quantile 

regression models as described by Rocchini (2010). In Rocchini and Cade (2008), they 

argued that quantile regression was a more competent tool for modelling distance decay 

relationships for ecological data characterised by a large number of zeros. As the 

quantiles (percentage points) are regressed, the coefficients (intercept and decay rate) are 

more representative of the variability in the dataset. Cade and Noon (2003) attributed the 

heteroscedasticity of ecological data to complex environmental interactions that 

influence ecosystem components. Furthermore, quantile regression models are non-

parametric; thus, they are better suited to analyse the data set used for this study. Seven 

quantiles (also known as the tau) ranging from 0.3 to 0.9 were used to subset the data for 

the quantile regression analysis. The higher taus were selected because, at lower quantiles 

(0.1 and 0.2), the relationship between the variables was fragile due to the high number 
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of zero values. The distance and similarity computations were performed on a total (N) 

of 210 segments, whereas the quantile regression involved the two semi-matrices derived 

from the previous computation. Each semi-matrix of pair-wise distance (spectral bands) 

or similarity (species composition) values of all 210 segments comprised (N*(N-1)/2) = 

21945 elements. 

Similarly, the community variability hypothesis (CVH) suggested by Schmidtlein and 

Fassnacht (2017) was tested by correlating the fitted values from models predicting 

species diversity using spectral distances and the original species diversity data. R2 values 

indicate the performance of spectral distance in estimating species diversity as suggested 

by the community variability hypothesis. Quantile regression procedure was performed 

in R using the quantreg package developed by Koenker et al. (2018).  

5.3 Results 

5.3.1 The Relationship between Spectral Diversity Metrics and 

Soil Properties 

Results of the correlation analysis between spectral metrics and field data revealed the 

environmental gradient pervading in each microhabitat (polluted and control). On 

polluted transects, band-based metrics significantly correlated with TPH and negatively 

with Phosphorus, (r > 0.2, p < 0.05). Conversely, Phosphorus concentrations strongly 

correlated with spectral diversity metrics on control transects, while TPH showed no 

discernible relationship with the metrics. This result supports the earlier results discussed 

in Chapter 4 Section 4.3.1.1 and illustrated in Figure 4.2 (joint distribution of soil 

parameters) which showed a strong negative relationship between soil TPH and 

Phosphorus. The inference here is that the debilitating effect of oil pollution such as 

increased patchiness following vegetation removal controls spectral diversity on polluted 

transects, whereas vegetation abundance and diversity enhanced by increased 

concentrations of soil nutrients (phosphorus) influence spectral diversity on control 

transects. 

The regression analysis performed on the entire dataset was in answer to the second 

research question (RQ2) which investigates how spectral metrics respond to oil pollution. 

Since the preliminary results revealed strong relationships between spectral diversity 

metrics and field data from polluted transects, this pattern of association was expected to 
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be consistent across the entire study area not just on polluted transects, thus proving that 

the spectral diversity metrics were sensitive to oil pollution. Results of the regression 

analysis in Table 5.4 revealed that the most sensitive band metrics were those derived 

from the green, red and near infra-red channels (Sentinel 2A bands 3, 4, and 8 

respectively) while sensitive index metrics are the chlorophyll-related indices (NDVI and 

SAVI)  and SIPI which is a stress indicator. Table 5.4 summarises the results of the 

regression analysis of spectral diversity metrics and soil properties. The R2 values ranged 

from 0.59 to 0.99 except for the blue and ARI2 metrics. Overall, band-metrics showed 

more sensitivity to soil TPH than index-metrics, which may be due to the strong influence 

of the visible light spectrum (Red, Green and Blue) on plant photosynthetic processes. 

Table 5.4: Results summary of regression of spectral diversity metrics on soil properties showing 

the R2 and RSE values. Explanatory variables were spectral metrics computed from individual 

Sentinel 2A bands (Table 5.1) and selected vegetation indices listed in Table 5.2.  

Spectral 

metrics 

from 

TPH P Pb TOM 

 R2 RSE R2 RSE R2 RSE R2 RSE 

Blue 0.13 17318 0.16 7.19 0.08 28.15 0.31 2.62 

Green 0.99 <0.01 0.12 7.32 0.07 28.45 0.42 2.45 

Red 0.99 <0.01 0.23 6.88 0.15 27.14 0.3 4.01 

Red Edge 1 0.66 10781 0.2 6.99 0.13 27.45 0.88 1.1 

Red Edge 2 0.7 9915 0.11 7.38 0.08 28.34 0.18 2.82 

Red Edge 3 0.77 8777 0.13 7.29 0.15 27.23 0.66 1.86 

NIR 0.84 7408 0.19 7.08 0.12 27.7 0.52 2.22 

Red Edge 4 0.59 11319 0.12 7.35 0.11 27.74 0.41 2,42 

PC of bands 0.9 5886 0.69 4.43 0.48 21.54 0.34 2.54 

CCI 0.65 11055 0.6 5 0.1 29.36 0.75 1.39 

NDVI 0.75 9614 0.21 6.85 0.1 29.5 0.23 2.37 

REP2 0.64 11109 0.18 6.98 0.1 29.35 0.78 1.27 

SAVI 0.74 9598 0.21 6.85 0.1 29.47 0.79 1.24 

ARI2 0.1 17613 0.25 6.69 0.32 25.67 0.8 1.2 

SIPI 0.81 8119 0.38 6.09 0.43 23.43 0.83 1.11 

 

5.3.2 The Relationship between Spectral Metrics and Species 

Diversity 

Median values of band-based spectral metrics from polluted transects were higher than 

those of the control transects. The exception were SH metrics and all metrics computed 

from band 8 (NIR) reflectance with higher median values in control transects (Table5.5); 

however, the differences were not significant. Due to the increased RGB reflectance 

observed on polluted transects, the larger median values of polluted metrics were 
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expected. Similarly, the decreased NIR reflectance of polluted transects may have 

contributed to the reduced median values of polluted metrics in comparison to control 

metrics. 

Table 5.5: Median values of some spectral metrics computed from Sentinel 2A bands showed 

higher values on polluted transects. The SH metrics and all metrics computed from band 8 (NIR) 

reflectance (in bold) showed higher median values in control than in polluted transects although 

the differences were not significant. 

 

Correlation analysis showed linear relationships between band-based spectral diversity 

metrics and field measured vascular plant species diversity on both polluted transects and 

non-polluted transects. However, while strong and negative relationship prevailed on 

polluted transects; on control transects, they were mostly positive. This contradicted the 

expected strong and positive relationship on control transects. The results of the 

Spearman’s Rank Correlation analysis are illustrated in Figure 5.1.  Plots were charted 

based on the metric derivation method so as to identify the best performing metric. Each 

dot represents the r-value of a band metric versus the indicated species index on the X-

axis. Dots in green are from control transects and those in red are from polluted transects. 

Labels on X-axis are a combination of index (Sm = Simpson, Sh = Shannon, Me = 

Menhinick’s and Ch = Chao-1) and transect group (Con = Control, Pol = Polluted).  The 

plots show that most spectral metrics correlated positively with indices on control  

transects and negatively with indices on polluted transects.  The strongest positive 

relationships (r > 0.3) on control transects were from metrics based on the mean, median 

and PC1 of bands whereas the strongest inverse relationships (r < -0.4) observed on 

polluted transects were from metrics based on the spectral heterogeneity of bands. 

Furthermore, the plots reveal that the best metrics were those computed from M, SD, PC1 

and SH.

Bands Mean Spectral Heterogeneity 1st Principal Component 
 

Control Polluted Control Polluted Control Polluted 
2 1662.5 1678.5 0.03 -0.78 -0.21 -0.04 

3 1516 1529 -0.17 -0.54 0.37 0.42 

4 1357.5 1402.5 -0.11 -1.52 -0.27 0.19 

5 1543.5 1618 -0.39 -2.22 -0.13 0.28 

6 2217.5 2229.5 -0.32 -2.11 0.33 0.36 

7 2455.5 2462 0.31 -0.43 0.36 0.38 

8 2205 2199 -0.18 -3.58 0.38 0.37 
8A 2595 2598 -1.58 -2.76 443 445 
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Figure 5.1: Dot plot of correlation coefficient (r) values of band-based spectral metrics and species diversity indices. The plot titles indicate the method of metric derivation. 

Each dot represents the r-value of a band metric versus the indicated species index on the X-axis. Dots in green are from control transects while those in red are from polluted 

transects. The plots show that most spectral metrics correlated positively with indices on control transects and negatively with indices on polluted transects.  Labels on X-axis 

are a combination of index (Sm = Simpson, Sh = Shannon, Me = Menhinick’s and Ch = Chao-1) and transect group (Con = Control, Pol = Polluted) 
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Results of the NPM regression analysis using derivatives of bands and indices reveal 

strong relationships with the field measured diversity indices (R2 values ranged from 

0.19 to 0.98). The most robust relationships were found on control transects and involved 

metrics from both Sentinel 2A bands and vegetation indices. This strong relationship is 

however, seen to depreciate across the study area when analysed with data from polluted 

and control transects. This suggests the sensitivity of the spectral metrics to the presence 

of soil TPH. Overall, the Simpson’s index was the most sensitive variable with R2 values 

greater than 0.5 for both metrics sets except those derived from SIPI (R2 = 0.3). The 

weakest relationships were between Chao-1 index and other spectral metrics (Figure 5.2). 

 

Figure 5.2: Boxplots of R-square values from regressing species diversity indices with spectral diversity 

metrics computed from Sentinel 2A bands and vegetation indices. Band-based metrics are coloured blue 

and Index-based metrics are in orange. R-square values are compared for band and index-based metrics as 

well as among the study area, polluted transects and control transects. The plots show that stronger 

relationships were present on control transects than on polluted transects which in turn influenced a general 

weakening of this relationship across the study area. Overall, the Simpson’s index was the most sensitive 

variable with R-square values greater than 0.5 for both metrics sets except those derived from SIPI (R-

square = 0.3).  

The most robust relationships occurred between Simpson’s diversity index and metrics 

derived from the PC of bands (R2 = 0.91) across the study area, Blue band (R2 = 0.89) on 

polluted transects and SIPI (R2 = 0.98) on control transects. In contrast, the weakest 

relationships were observed between Chao-1 richness index and spectral metrics from 

NDVI (R2 = 0.05) across the study area, REP2 (R2 = 0.07) on polluted transects and CCI 

(R2 = 0.07) on control transects. Spectral metrics derived from the PC of bands 
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consistently exhibited a strong relationship with all the field diversity indices with R2 

values well over 0.5 except for Chao-1 index. Both Shannon’s and Menhinick’s indices 

associated strongly with the transformed band metrics (PC of bands) and chlorophyll-

based index (CCI) whereas Chao-1 richness index did not.  

In terms of metrics performance, it appears that band-based metrics were more sensitive 

to diversity indices than the index-based metrics across the study area. However, when 

analysed separately, index-based metrics performed better on control transects whereas 

band-based metrics were better on polluted transects. The boxplots in Figure 5.3 shows 

 

Figure 5.3: Boxplots of R2 values illustrating the performance of metrics from individual bands 

and vegetation indices on polluted and control transects and across the entire study area. The plots 

show that the metrics were sensitive to the presence of TPH in the soil as strong relationships 

observed on control transects were weakened across the study area. The x-axis band labels are B 

= Blue, G = Green, R = Red, RE1 = Red Edge 1; RE2 = Red Edge 2; RE3 = Red Edge 3; NIR = 

Near Infrared; RE4 = Red Edge 4; PCB = Principal Components of Bands. 

that that the various spectral metrics performed better on control transects than on 

polluted transects. It appears that the metrics derived from stress indicating VIs (ARI and 

SIPI) were most sensitive to the presence of soil TPH. 
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5.3.3 Distance Decay Relationship on Transects 

The results of the distance decay modelling of the relationship between spectral distance 

and species similarity on transects are summarised in Table 5.6. The spectral distance 

was computed from Sorenson's index using the vegdist function of the R-package vegan.          

Table 5.6: Quantile regression results of distance decay models of Sentinel 2A bands versus 

vascular plants species similarity values on polluted and control transects.  

Transects Quantiles 

(Taus τ) 

Intercept 

 

Intercept  

CI (95%) 

Lower 

Intercept  

CI (95%) 

Upper 

Decay  

Rate 

Decay 

Rate 

CI 

(95%) 

Lower 

Decay 

Rate CI 

(95%) 

Upper 

Polluted 0.3 0.06 0.058 0.062 -0.08 -0.087 -0.073 

N = 16900 0.4 0.08 0.077 0.083 -0.13 -0.141 -0.119 

DF=16898 0.5 0.11 0.106 0.114 -0.21 -0.224 -0.196 

 0.6 0.16 0.146 0.154 -0.31 -0.304 -0.276 

 0.7 0.22 0.186 0.194 -0.47 -0.426 -0.394  
0.8 0.27 0.254 0.266 -0.61 -0.600 -0.560  
0.9 0.41 0.36 0.38 -0.99 -0.929 -0.851         

Control 0.3 0.12 0.118 0.122 -0.1 -0.112 -0.088 

N = 6400                                                                                      0.4 0.14 0.137 0.143 -0.14 -0.152 -0.128 

DF = 6398 0.5 0.16 0.157 0.163 -0.17 -0.183 -0.157  
0.6 0.18 0.175 0.185 -0.22 -0.236 -0.204  
0.7 0.22 0.210 0.230 -0.32 -0.349 -0.291  
0.8 0.37 0.345 0.395 -0.77 -0.846 -0.694  
0.9 0.58 0.560 0.600 -1.3 -1.378 -1.222 

Species similarity inversely related to spectral distance on polluted and control transects; 

however, contrary to expectations, the rate of distance decay was generally higher on 

control transects than on polluted transects. At each tau (τ), the intercept (species 

similarity when distance = 0) was higher for control transects than for polluted transect 

while the rate of decay (decrease in species similarity by 1 unit increase in spectral 

distance) varied at different τ for each group of transects. For instance, at τ = 0.5, 0.6 and 

0.7, distance decay rates were higher on polluted transects whereas they were higher on 

control transects at the rest of the quantiles (τ = 0.3, 0.4, 0.5, 0.8 and 0.9). An analysis of 

deviance results testing for differences in the regression estimates across quantiles 

revealed significant differences (F = 543.1 and 219.66 respectively for polluted and 

control transects, p < 0.05). Additionally, a test of the regression coefficients of transects 

using the two sample T-test showed that decay rates on both polluted and control transects 

were not significantly different (T-value = -0.31, DF = 10, p = 0.765). In like manner, 

intercept values (species similarity when distance = 0) were not significantly different for 

polluted and control transects (T-value = 1.04, DF = 10, p = 0.32).  
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Maximum similarity values predicted for polluted transects at the 0.9 quantile was 0.37 

while on control transects it was 0.58. Furthermore, the 95% confidence intervals show 

that these values were significantly different. The quantile regression plots in Figure 5.4 

reveal the pattern of the relationship between spectral distance and species similarity. The 

scatterplots (Figure 5.4 A1 and B1) clearly show that on polluted transects, several 

segments had much lower compositional similarity than control transects 

 

Figure 5.4: Quantile regression plots of A: polluted and B: control transects. A1 and B1 are 

scatterplots of spectral distance versus species similarity using different regression models. Red 

dashed line is computed from ordinary least square regression, solid green line from quantile 

regression at tau = 0.5 (median) while the solid black lines are quantile regression at six different 

taus (τ = 0.3, 0.4, 0.6, 0.7, 0.8, 0.9). The points within the scatterplot represent pair-wise spectral 



163 

 

distances and species similarity distances between 210 segments. Figures A2 and B2 are the 

intercepts while A3 and B3 are the distance decay curves.            

At spectral distance = 0 (intercept, Figures 5.4 A2 and B2), species similarity values were 

much higher at all quantiles on control transects than on polluted transects, however, as 

spectral distance increased, similarity values decreased. From the distance decay curves 

(Figures 5.4 A3 and B3), it appears the rate of decay on polluted transects was relatively 

constant for all quantiles, however on control transects, the rate of decay initially lower 

than polluted transect suddenly increases after τ = 0.7 (the steepness of the curve increases 

significantly after τ = 0.7). Low R2 values obtained from correlating species distance and 

predicted values from the spectral distance model did not agree with the community 

variability hypothesis. However, the models appeared to perform better on control 

transects (R2 = 0.17 ) than on polluted transects

5.3.4 Estimating Soil Properties using

Spectral Metrics 

Soil properties including TPH, P, Pb and TOM were estimated from the spectral metrics 

using non-parametric models. Two model types (Table 5.3) based on band metrics and 

index metrics as predictors were used and compared for their accuracy. The selected 

metrics regressed linearly with soil properties in both models; however, the index-based 

metrics outperformed the band-based metrics in estimating soil properties. Furthermore, 

TPH and phosphorus were better estimated than Lead and TOM. The R2 values for the 

test data were 0.35 and 0.31 respectively for TPH and phosphorus estimated using band 

metrics whereas, R2 values were 0.45 and 0.62 respectively for TPH and phosphorus 

estimated using index metrics. Result of the regression analysis are summarised in table 

5.7. 
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Table 5.7: : Performance summary of models estimating soil properties using spectral 

diversity metrics computed from Sentinel 2A bands and vegetation indices. The 

combined dataset from polluted and control transects (N = 210) were employed in this 

analysis. The dataset was subdivided into training (n = 150) and test (n = 60) data. 

Explanatory variables (EV) for each model was a combination of all band-based or index-

based metrics which showed a strong correlation (r > ±0.2) with the response variables. 

    Response Variable Parameter Band Metrics Index Metrics 

Log10TPH No. of EV 13 22 

R2 (Train) 0.5 0.8 

R2 (Test) 0.35 0.45 

F 30.76* 47.09* 

RMSE 0.79 0.72 

PSE 0.62 0.51 

Phosphorus No. of EV 9 22 

R2 (Train) 0.49 0.702 

R2 (Test) 0.31 0.62 

F 26.18* 93.99* 

RMSE 6.92 5.04 

PSE 47.86 25.4 

Lead No. of EV 8 21 

R2 (Train) 0.36 0.54 

R2 (Test) 0.1 0.11 

F 2.35ns 7.19* 

RMSE 24.95 29.24 

PSE 622.57 855.2 

TOM No. of EV 5 25 

R2 (Train) 0.26 0.82 

R2 (Test) 0.06 0.07 

F 3.74ns 4.79* 

RMSE 3.83 3.79 

PSE 14.63 14.38 

                              

The residual graphs in figure 5.5 demonstrate that the models for estimating Lead and 

TOM were not good fits for the dataset despite the high R2 values obtained from 

calibrating the model with training data. 
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Figure 5.5: Graphical plots of residuals from model validation using test data. Model parameters 

are from the regression of spectral diversity metrics (A = band metrics and B = index metrics) on 

soil properties using test data (n = 60). The residual plots from band-based models estimating 

TPH, phosphorus and Lead meet the goodness-of-fit assumptions of linearity, randomness and 

homoscedasticity. For the index-based models, only the TPH residual plot met the assumptions.      
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5.3.5 Estimating Species Diversity Using Spectral Metrics 

The SVH was tested using the spectral metrics that strongly correlated with the diversity 

measures (r > ±0.2) and a VIF < 10. The results in Table 5.8 show the R2 values of training 

data and adjusted R2 values test data, RMSE and PSE of validation data sets for both 

models.  

Table 5.8: Performance summary of models estimating species richness and diversity 

using spectral diversity metrics computed from Sentinel 2A bands and vegetation indices. 

The combined dataset from polluted and control transects (N = 210) were employed in 

this analysis. The dataset was subdivided into training (n = 150) and test (n = 60) data. 

Explanatory variables (EV) for each model was a combination of all band-based or index-

based metrics which showed a strong correlation (r > ±0.2) with the response variables. 

Response variable Parameter  Band  

Metrics 

Index  

Metrics 

Simpson’s No of EV 9 11 

R2 (Train) 0.82 0.63 

Adj. R2 (Test) 0.49 0.32 

F 54.84* 28.35* 

RMSE 0.05 0.25 

PSE 0.002 0.06 

Shannon’s No of EV 8 6 

R2 (Train) 0.36 0.41 

R2 (Test) 0.18 0.29 

F 12.81* 22.82* 

RMSE 0.68 0.63 

PSE 0.47 0.4 

Menhinick’s No of EV 7 6 

R2 (Train) 0.29 0.57 

R2 (Test) 0.19 0.31 

F 14.26* 27.12* 

RMSE 1.11 1.03 

PSE 1.23 1.07 

Log10Chao-1 No of EV 5 10 

R2 (Train) 0.41 0.32 

R2 (Test) 0.02 0.07 

F 1.04ns 4.13* 

RMSE 0.45 0.42 

PSE 0.2 0.18 

The results demonstrate that both sets of metrics performed well during model calibration 

with training data, but underperformed at model validation. For instance, among diversity 

indices, Simpson’s index is the most predictable with higher R2 values (0.82) obtained 

from calibrating models with band-based metrics and R2 = 0.63 obtained from model 

calibration with index metrics. However, at validation, the adjusted R-square values were 

less than 0.5 for both sets of metrics, band-based metrics (Adj.R2 = 0.49) and index-based 



167 

 

metrics (Adj.R2 = 0.32). For this index, band-based metrics were better estimators. 

Similar patterns were observed for Shannon’s and Menhinick’s indices with reduced 

Adj.R2 values, although, index-based metrics outperformed band-based metrics as 

estimators of these indices. The least performing models were those that estimated the 

Chao-1 index. Despite high R2 values at calibration, the models did not perform well at 

validation (results show no relationship among the variables).  Graphical plots of 

residuals from model validation using test data are shown in Figure 7. Model parameters 

are from regression of spectral diversity metrics (A = band metrics and B = index metrics) 

on species diversity indices using test data (n = 60).  
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Figure 5.6: Graphical plots of residuals from model validation using test data. Model parameters 

are from the regression of spectral diversity metrics (A = band metrics and B = index metrics) on 

species diversity indices using test data (n = 60). The residual plots from both band and index-

based metrics meet the goodness-of-fit assumptions of linearity, randomness and 

homoscedasticity except for abundance.  
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5.4 Discussion 

The concept of the spectral variability hypothesis as proposed by Palmer (2002) provides 

ecologists with an essential tool for biodiversity monitoring and conservation in the Niger 

Delta region, without the need for labour intensive and time-consuming field work 

(Heumann, Hackett and Monfils, 2015). Understanding and modelling the relationship 

between spectral diversity metrics and local species richness or diversity measures 

provide decision makers with preliminary information on conservation priorities, 

particularly in cases were indicator species co-occur with rare or threatened species 

(cross-taxon surrogacy, (Rocchini, Hernández-Stefanoni and He, 2015). Spectral 

variation hypothesis has been used severally to estimate species diversity and distribution 

in different landscapes and ecosystems. Hall et al. (2012) reported that the area of the site 

might influence spectral variation of large sites; however, this phenomenon is not 

expected to occur within similar sized sample sites, as is the case in this study. The 

relationship between spectral variables and species diversity are usually weak with R2 

values ranging from 0.2 to 0.6 (Hall et al. 2012), however the present study reveals that 

a combination of various derivatives of spectral bands strongly associate with field data. 

Rocchini, Hernández-Stefanoni and He (2015) stated that R2 values of up to 0.5 could be 

considered valid to estimate species diversity from spectral variation, thus, providing an 

integrated and efficient method for monitoring vascular plant species diversity at a 

regional and global scale.                                                                        

5.4.1 Spectral Diversity Metrics for Estimating TPH in the Soil 

Environmental transformations have a significant effect on species diversity at both local 

and large scales. In the Niger Delta, oil exploration activities including forest 

fragmentation for pipelines, fire occurrence and flooding that occur following oil 

pollution have a bearing on the diversity of vascular plant species of the region. Newbold 

et al. (2015) and Paz-Kagan et al. (2017) reported that land use changes affected both 

alpha and beta diversity at the regional scale because they alter the environment and 

induce loss of biodiversity and ecosystem services.  

The combination of the metrics to estimate soil properties was successful for TPH and 

phosphorus. A clear pattern of decreasing spectral diversity with increasing TPH 

concentrations signifies that oil pollution reduced species diversity, which in turn 
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decreased the spectral diversity of the location. This pattern was most evident for metrics 

derived from the green and red bands as well as from chlorophyll related indices. The 

sensitivity of these metrics to the presence of soil TPH is attributable to the known 

deleterious effects of oil pollution on vegetation. Studies investigating this phenomenon 

(Ogbo, Zibigha and Odogu, 2009; Chima and Vure, 2014; Njoku, Akinola and Oboh, 

2008; Wang, Zhu and Tam, 2014a; Naidoo and Naidoo, 2018) reported that hydrocarbons 

in the soil hinder uptake of plant nutrients, damage plant cellular structures, inhibit 

photosynthesis and transpiration as well as cause plant mortality (please see Chapter 4 

Section 4.4.3 for discussion on the effects of oil pollution on vegetation).   

Furthermore, Zhu et al. (2013); Noomen et al. (2009); Li, Ustin and Lay (2005) 

documented that oil pollution induced stress in vegetation and changes in leaf pigments 

and structure. Vegetation stress is characterised by decreased absorption of solar radiation 

at chlorophyll absorption maxima (around 600 nm) and increased absorption of 

anthocyanins (AnC) and carotenoids (CaR). Leaf chlorophyll content measured in the 

field using the SPAD-502 chlorophyll meter showed significant differences between 

polluted and control vegetation. Mean chlorophyll concentration was 39.01 and 55.19 

respectively on polluted and control transects. Merzlyak et al. (2008) reported increased 

AnC occurrence in vegetation subjected to stress. These changes affect plant growth and 

health; quality and quantity of photosynthetic pigments, mainly chlorophyll; thickness of 

leaves and overall plant productivity, thereby increasing the variability of reflectance in 

the green channel (Warren et al. 2014), as well as in the red channel since maximum 

chlorophyll absorption occurs at the red band (Noomen, Van der Meer and Skidmore, 

2005). Spectral diversity metrics from chlorophyll related indices were also seen to 

associate strongly with soil TPH concentration. Adamu, Tansey and Ogutu (2018) 

affirmed that these indices were sensitive to changes in leaf chlorophyll content and 

internal structures and were able to discriminate polluted sites from non-polluted sites. 

The superior predictive performance of index-based metrics may be attributed to the 

enhanced spectral information vegetation indices provide. Vegetation indices are 

designed to maximise information from green vegetation while suppressing reflectance 

from other sources such soil and water, unlike band reflectance that consist of optical 

properties of vegetation and surrounding material (Zhu et al. 2013). The results of the 

present study imply that TPH presence in the soil can be detected and the approximate 
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concentration estimated from spectral metrics without incurring additional costs of soil 

sample collection and chemical analysis.  

The relationship observed between the spectral distance, and species similarity provides 

evidence of the impact of oil pollution on vegetation in the Niger Delta region of Nigeria. 

Species similarity was much lower on polluted transects than on control transects, thus 

fulfilling the competitive exclusion principle of niche theory which states that two species 

with identical niches cannot coexist in the same habitat (Abrams, 1983). This 

phenomenon is particularly apparent at spill epicentres (SS0) of different locations where 

very few species remained; hence, most of the pair-wise similarity values were zero for 

this segment. The implication is that even for species resilient to the direct effects of oil 

pollution such as Perotis indica (Perindh), which can tolerate TPH concentrations of up 

to 60,000 mg/kg of soil (please see Chapter 4 Section 4.3.2.5), increased competition for 

diminished resources presents a threat to their existence. The increased TPH 

concentration on polluted transects appeared to have triggered some form of resource 

partitioning among extant species as their importance value index (IVI, a measure of 

species frequency and abundance) on polluted and control transects were not significantly 

different. The scatterplot of IVI values (Figure 4.11) revealed that the most valuable 

species were almost equally important on both transects. Resource partitioning is an 

ecological concept that refers to the differential use of limited resources by similar species 

(Griffin and Silliman, 2011). Vascular plant species growing on polluted transects may 

have differed in their nutrient uptake, rooting depth or light use, for instance, Kahmen et 

al. (2006) reported that plants could differ in the forms of nitrogen they prefer.  

Regression of species similarity at upper quantiles of spectral distances demonstrates the 

presence of an environmental factor that influenced species composition and richness on 

different segments. Unlike at lower quantiles where the regression line is nearly flat, 

suggesting a lack of relationship, the gradient of the regression line at upper quantiles 

(0.7 to 0.9) was steeper (Figure 5.4 A1) and depicted the expected inverse relationship 

between spectral distance and species similarity (distance decay). Although it is difficult 

to identify the environment variables influencing species composition in the study area 

from spectral distances, the input of field data of soil TPH concentrations support the 

conclusion that oil pollution is one of the most influencing environmental factors. This 

conclusion is supported by higher decay rates of species similarity observed on polluted 
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transects compared to control transects. Tovo and Favretti (2018) recently suggested that 

steeper curves symbolise the presence of rare species in sampled sites  

5.4.2 Spectral Diversity Metrics for Estimating Species 

Richness and Diversity 

Spectral diversity metrics correlated inversely with field measured vascular plant species 

diversity on polluted transects and positively on control transects. The coefficient of 

variation (CV) for metrics of polluted transects were larger than CV of metrics of control 

transects, and suggest that polluted pixels were more diverse than control pixels, but it is 

also a reflection of the higher beta diversity of polluted transects as observed earlier in 

Chapter 4, Section 4.3.3.3. In this case, the spectral metrics do not depict vascular plant 

species diversity but rather the heterogeneity of investigated transects. The reason for this 

is not far-fetched since oil pollution accentuated habitat heterogeneity by creating patches 

where TPH susceptible species used to grow. Additionally, the weak positive correlation 

between the individual spectral metrics and species diversity indices of control transects 

is ascribable to the homogeneity of segments of control transects in terms of species 

composition and distribution patterns. Since the SVH relies on habitat heterogeneity, it 

follows that its application is limited in densely vegetated forests with little or no 

disturbance. 

Despite the observed aberrations, a combination of spectral diversity metrics successfully 

estimated the species richness and diversity of investigated locations with high R2 values 

obtained between the observed and predicted index values. The result was consistent with 

previous studies testing the SVH such as Warren et al. (2014); Hall et al. (2012);  

Rocchini, Hernández-Stefanoni and He (2015); Schmidtlein and Fassnacht (2017). As 

observed with soil TPH estimation, index-based metrics outperformed band-based 

metrics in estimating species richness and diversity indices of investigated transects. The 

stronger association between spectral metrics and species diversity indices was more 

apparent on polluted transects than on control transects. Perhaps, the above emanates 

from the increased heterogeneity of polluted transects induced by oil pollution and 

evident in the higher beta diversity values obtained for polluted locations. However, 

variability in the species composition of the different locations (beta diversity) did not 

provide a better association with spectral diversity than the alpha diversity measures of 

segments. Hence, the community variability hypothesis (CVH) suggested by Schmidtlein 
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and Fassnacht (2017) involving the use of beta diversity values instead of species count 

did not improve the performance of the SVH.  

The use of spectral distance as a metric to determine beta-diversity of transects yielded 

exciting results. Several studies reviewed in Rocchini, Hernández-Stefanoni and He 

(2015) demonstrated that spectral distances are more reliable for summarising the beta-

diversity of sites as it takes into account the habitat heterogeneity. Despite the low R2 

values between the two variables (spectral distance and beta-diversity), the results 

revealed that the spectral distance better explained species composition on control 

transects than on polluted transects. The reason may be ascribable to the issue of scale, 

as noted by Palmer et al. (2002), the relationship between spectral variation and species 

richness is scale dependent. Regardless of spatial scale, distance decay plots of species 

dissimilarity versus spectral distance showed that beta-diversity increased with 

increasing spectral distance at all scales (control, polluted and study area). This result is 

consistent with other studies reported in Rocchini, Hernández-Stefanoni and He (2015). 

5.5 Summary 

This chapter investigated the spectral variation hypothesis t's potential for detecting oil 

pollution effects on vegetation characteristics species diversity using spectral diversity 

metrics derived satellite data. Metrics computed using Sentinel 2A bands and vegetation 

indices proved sensitive to changes in soil properties and vegetation characteristics 

following oil pollution. The strength of the relationship resulted in successfully 

estimating species richness and diversity values of investigated transects. Also, spectral 

metrics displayed high potential for estimating the concentration of total petroleum 

hydrocarbon (TPH) in the soil. Chapter 6 will focus the investigation on a subset of the 

study area and utilises a hyperspectral data set to develop models for predicting species 

diversity on polluted transects. 
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6 Species Diversity Models for Monitoring 

Biodiversity  

(Two articles from Chapter 6  were published in a remote sensing journal ‘Remote 

Sensing Special Issue’ and presented at a remote sensing conference in ‘IGARSS 2018’.) 

The third research questions (RQ3) addressed in chapter 5 identified the nature of 

relationships among oil pollution, species diversity and vegetation reflectance. Having 

established in Chapter 4 the effect of oil pollution on vegetation abundance and diversity, 

this chapter investigates how strongly and in which wavelengths the changes in 

vegetation parameters and species composition influenced reflectance from the polluted 

transects. Accomplishing this task required spectral metrics created from Hyperion 

wavelengths, which were used to answer research questions RQ3 and RQ4, (section 

2.10.1) 

The Hyperion image analysed in this chapter helped to determine the impact of oil 

pollution on vegetation, species richness and diversity. Spectral signatures of vegetation 

from polluted and control transects revealed the Hyperion wavelengths that responded to 

the presence of TPH in the soil. These sensitive wavelengths produced indices that 

measured vegetation vigour of polluted and control transects. Moreover, the application 

of the continuum removal procedure on spectra of polluted and control vegetation 

generated the band depths of chlorophyll absorption features. Background soil effect on 

vegetation reflectance was removed by computing the red edge position using different 

methods and extracting the REP values for each segment on polluted and control 

transects. Regression models determined the capability of derived spectral metrics to 

discriminate polluted from unpolluted sites and to predict various diversity indices of 

vegetation on investigated transects. The statistical procedures performed on datasets are 

discussed in Chapter 3 Section 3.5.1. 

6.1  Hyperspectral Remote Sensing of Biodiversity 

The application of remote sensing technology in biodiversity monitoring has been an area 

of considerable research in the recent past, for instance (Johnson, Hay and Rogers, 1998; 

Nagendra, 2001; Carlson et al. 2007). Several studies have combined remote sensing and 

field data to determine the spatial and temporal distributions of biodiversity (Wilfong, 

Gorchov and Henry, 2009; Foody and Cutler, 2003). Motivated by the need to devise a 
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standardised methodology for monitoring biodiversity at regional and global scales and 

to overcome some limitations of conventional monitoring methods such as in situ field 

surveys; researchers have developed integrated methods using remote sensing and field 

data (Yoccoz, Nichols and Boulinier, 2001; Kerr and Ostrovsky, 2003; Muchoney, 2008; 

Lindenmayer and Likens, 2010; Han et al. 2014). The Group on Earth Observations 

Biodiversity Observation Network (GEO BON) have spearheaded these efforts leading 

to the development of the essential biodiversity variables (EBVs).  

Although there are inherent challenges associated with integrated schemes, studies 

(Clevers et al. 2002; Andrew, Wulder and Nelson, 2014; Guyon et al. 2011), confirm that 

they provide useful information on the response of biodiversity to natural and 

anthropogenic changes. While some studies investigated the link between spectral 

diversity and species diversity through the biochemical diversity of vegetation (Asner et 

al. 2008), others used land cover classifications derived from multispectral sensors such 

as Landsat to estimate the species diversity of the area of interest (Gould, 2000). Critics 

of the land cover approach describe it as inadequate for collecting fine-scale detail of 

vegetation structure and chemistry due to the coarse spectral and spatial resolution 

(Carlson et al. 2007; Gould, 2000) of multispectral sensors.  

Generally, mapping of species diversity estimates are empirically supported by defining 

the relationship between variation in spectral signal and variation in species or habitat 

diversity (Rocchini, Hernández-Stefanoni and He, 2015; Aneece, Epstein and Lerdau, 

2017; Foody and Ajay Mathur, 2004; Wilfong, Gorchov and Henry, 2009) and in some 

cases, variations in pigment concentrations (Féret and Asner, 2014; Asner and Martin, 

2011; Asner et al. 2009). However, this procedure may not be enough if the Aichi 2020 

targets are achievable. There is a need to develop methodologies that estimate species 

diversity against the backdrop of environmental pressures such as oil pollution. Such 

methods will not only reveal the state of the ecosystem following impact (for instance, 

biodiversity change) but also reveal ecosystem resilience to particular external pressure. 

Hyperspectral data not only measure vegetation biochemical and biophysical properties 

including water content, leaf pigments, nitrogen, cellulose and lignin concentrations 

(Guyon et al. 2011; Zhang, 2010; Curran, 1989; Jacquemoud et al. 1996), but also how 

these parameters vary across the ecosystem (Carlson et al. 2007; Asner et al. 2009). The 

Hyperion sensor onboard NASA's Earth Observation-1 satellite is an example of a 
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hyperspectral satellite mission (Ortenberg, 2012). It was the first satellite hyperspectral 

sensor launched onboard the Earth Orbiter-1 platform by the United States National 

Aeronautics and Space Administration (NASA) New Millennium Program (NMP).  

The Hyperion acquire 16 bits, 30 meters spatially resolved data in 220 discrete narrow-

bands between the spectral range of 400 and 2500 nm. The sensor capture about 75 times 

more data than multispectral sensors from a similar area, hence providing a large volume 

of data that need advanced analytical skills and techniques (Kuenzer et al. 2014). As oil 

pollution induces stress in vegetation, invokes changes in leaf pigments and structure 

(Wang, Zhu and Tam, 2014b; Noomen and Skidmore, 2009; Li, Ustin and Lay, 2005; 

Baker, 1970); these changes affect the spectral pattern of reflectance from different plant 

species. Hyperion data is reliable for detecting this subtle variation in reflectance. 

Arellano et al. (2015) used Hyperion data to map vegetation in the Amazon impacted by 

oil pollution. Other studies utilised Hyperion imagery for classification of 

vegetation/forests types and landscape (Yang et al. 2016; Deák et al. 2017; Friedel et al. 

2018). Although the Hyperion sensor is decommissioned, other space-borne imaging 

spectrometers such as the Hyperspectral Environment and Resource Observer (HERO) 

and Environmental Mapping and Analysis Program (EnMAP) will provide needed data 

for similar applications.  

Investigating the effect of oil pollution on vegetation using Hyperion data followed two 

strategies. The first strategy was the identification of wavelengths sensitive to TPH 

concentration in the soil and second was the comparison of reflectance at these 

wavelengths for significant differences between polluted and control transects. 

Sensitivity analysis differentiated between plant stress caused by TPH concentration in 

the soil and other factors while also correcting for irradiance, leaf orientation, irradiance 

angle and shading (Carter, 1993). Due to the strong association between polluted and 

control transects as shown in Chapter 4 section 4.2.2.1, and the congruity of 

geomorphological and ecological processes on both transects (Abam, 2001; Ugochukwu 

and Ertel, 2008; Adegbehin and Nwaigbo, 1990; Osuji, Adesiyan and Obute, 2004); any 

significant reflectance difference between the polluted and control transects is 

attributable to soil TPH. 
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6.2 Hyperion Data Analysis 

This section presents the specific tools, procedures and dataset employed in investigating 

the research questions addressed in this chapter. 

6.2.1 Narrowband Vegetation Indices (NBVIs) 

Vegetation indices derived from the spectral reflectance of plants are discussed in 

Chapter 2 Section 2.8, but this chapter involved narrowband vegetation indices (NBVIs) 

derived from Hyperion data. Several studies applied NBVIs to determine the structure, 

biochemical, biophysical and physiological or stress status of vegetation in various 

habitats (Pu, Bell and English, 2015; Arellano et al. 2015; Galvao et al. 2009; Hestir et 

al. 2008; Vaiphasa et al. 2007). The main parameters measured by NBVIs include 

a. Chlorophyll Content: - used to monitor changes in green biomass, chlorophyll 

content and leaf structure. High values indicate increased chlorophyll content, 

green biomass and vegetation vigour and 

b. Primary Productivity: measure changes in the photosynthetic light use efficiency 

of plants. High values indicate reduced light use efficiency, hence reduced 

productivity. 

NBVIs overcome the saturation problem associated with broadband vegetation indices 

such as NDVI (Mutanga and Skidmore, 2004). The NBVIs and NDVI evaluated in this 

paper are listed in Table 6.1. The indices were computed and index values extracted for 

each segment in polluted and control transects.  

Table 6.1: Summary of selected vegetation indices used to investigate the impact of oil pollution 

on biodiversity. 

Index Formula Reference 

Red-Edge NDVI (RENDVI) (R750-R705)⁄(R750+R705) (Gitelson and 

Merzlyak, 1996) 

Modified Red-Edge NDVI (MRENDVI) (R750-R705)⁄(R750+R705-

2*R445) 

(Datt, 1999) 

Modified Red-Edge Simple Ratio Index 

(MRESRI) 

(R750-R445)⁄(R705+R445) (Sims and 

Gamon, 2002) 

Vogelmann Red Edge Index 1 (VREI1) R740/R720 (Vogelmann, 

Rock and Moss, 

1993) 

NDVI NIR – Red/NIR + Red (Pearson, R. L. 

and Miller, 1972) 

Photochemical Reflectance Index (PRI) (R531 – 

R570)/(R531+R570) 

(Gamon, Serrano 

and Surfus, 1997) 

Structure Insensitive Pigment Index (SIPI) (R800 – 

R445)/(R800+R445) 

(Peñuelas, Filella 

and Gamon, 

1995) 
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6.2.2 Derivation of TPH-Induced Stress-Sensitive Wavelengths 

Sensitivity analysis is a mathematical procedure, which determines how changes in levels 

of an independent variable affect changes in levels of a response variable (Alam et al. 

2016). The particular wavelength of the response variable (vegetation reflectance, in this 

study) showing the most substantial relative change due to changes in levels of the 

independent variable (soil TPH) is considered the most sensitive wavelength (Cacuci, 

Ionescu-Bujor and Navon, 2005). According to Alam et al. (2016), this procedure is 

necessary to evaluate the influence of variables and rank their significance based on their 

influence. Sensitivity analysis for both polluted and control vegetation assumed that 

environmental and edaphic conditions are homogenous and that polluted vegetation 

would be more stressed than control vegetation due to the influence of TPH in the soil. 

Vegetation response to soil TPH, expected to influence spectral reflectance formed the 

basis for identifying sensitive wavelengths (Jinru Xue and Baofeng Su, 2017). The 

sensitivity of vegetation reflectance spectrum to soil TPH was also necessary to 

differentiate between the plant stress caused by TPH concentration in the soil and other 

edaphic factors while also correcting for irradiance, leaf orientation, irradiance angle and 

shading (Carter, 1994). 

Since vegetation reflectance at the visible and near infrared (VNIR) channels generally 

increases with plant stress (Li, Ustin and Lay, 2005; Mishra et al. 2012), sensitivity bands 

to TPH-induced stress in vegetation for VNIR Hyperion wavelengths was computed by 

firstly subtracting the reflectance of control vegetation (non-stressed) from that of 

polluted (stressed vegetation). The resulting difference was normalised by further 

dividing by the reflectance of the non-stressed vegetation to establish the sensitivity of 

each wavelength to soil TPH (Carter, 1994). The formulae for computing the reflectance 

difference and sensitivity are as follows:  

R∆ = Ru – Rn,                                                   (10) 

Rs = (Ru – Rn)/Rn,                                           (11) 

Where   

Rn is reflectance of non-stressed vegetation 

Ru is reflectance of stressed vegetation 

R∆ is reflectance difference 

Rs is reflectance sensitivity. 
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Following the sensitivity analysis, the VNIR Hyperion wavelengths were ranked based 

on their sensitivity to soil TPH. The most sensitive wavelengths ranked at the top of the 

order were those with the highest sensitivity values and high reflectance difference 

values, while the least sensitive bands with sensitivity values closer to zero ranked at the 

bottom. The five most sensitive and five least sensitive wavelengths were selected and 

used in creating the normalised difference vegetation vigour index (NDVVI). These 

wavelengths were selected and combined to create an index with maximum sensitivity to 

vegetation response to soil TPH because an index performance is improved when it is 

created from created sensitive and insensitive wavelengths (Eigemeier et al. 2012). 

Besides, vegetation sensitivity to soil TPH appeared to be limited to specific wavelengths 

in the blue, red and NIR channels; hence, the NDVVI variants created from these 

channels investigated the full range of oil pollution impact on vegetation. 

6.2.3 The Normalised Difference Vegetation Vigour Index 

(NDVVI) 

 Vegetation vigour defined as active, healthy, well-balanced and robust growth of plants 

(Merriam-Webster Dictionary, 2017) is an essential environmental quality index (Melillo 

et al. 1993). Enhanced growth, extent as well as increased productivity characterise 

vigorous vegetation (Reynolds et al. 2016). Several studies on vegetation link the index 

to climate change (Melillo et al. 1993); soil erosion (Vrieling, 2006); and biological 

conservation (Lindenmayer, Margules and Botkin, 2000). Some organisations such as 

(the United States Environment Protection Agency, (USEPA), 2012; OECD, 2006) 

recommend the use of vegetation vigour index in tests to evaluate the effect of chemical 

substances such as pesticides on the growth of various plant species.  

In this study, vegetation vigour is a touchstone of vegetation productivity and biomass 

production in line with previous publications such as (Cardinale et al. 2012; David U 

Hooper et al. 2012; Cardinale et al. 2011; Vihervaara et al. 2014; Mace, Norris and Fitter, 

2012; Norris, 2012; Waide et al. 1999; Chapin et al. 2000; Xu et al. 2012; Pearlman et 

al. 2001; Cadotte, Cardinale and Oakley, 2008; Balvanera et al. 2006; Tilman, 1996; 

Naeem et al. 1994; Hector et al. 1999), which revealed strong relationship between these 

parameters and vascular plant species diversity. Tillman et al. (1996) as well as (Naeem 

et al. 1994; Hector et al. 1999; Hooper et al. 2005), found a positive relationship between 
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plant species diversity and plant productivity (measured as above ground biomass) which 

they attributed to several factors including the complementarity of resource use. 

More recently, determination of vegetation vigour has been from remotely sensed images 

using proxy vegetation indices such as the normalised difference vegetation index 

(NDVI) and net primary productivity (NPP) (Xu et al. 2012; Hector, 1998; Maselli, 2004; 

Salinas-Zavala, Douglas and Diaz, 2002). Other studies have used vegetation cover as an 

indicator of vegetation vigour and established a positive linear relationship between both 

variables (Karthikeyan, Shashikkumar and Ramanamurthy, 2010; Munyati and 

Ratshibvumo, 2011; Wiesmair, Otte and Waldhardt, 2017). With advancement in earth 

observation technology in the way of increasing spectral and spatial resolutions, 

researchers have exploited these relationships with concerted effort to identify individual 

species and estimate species diversity of a given area using spectral metrics derived from 

satellite imagery(Nagendra, 2001; Wulder, 1998; Rocchini et al. 2016; Boyd and Danson, 

2005; Warren et al. 2014; Galidaki and Gitas, 2015; Lucas et al. 2015).  

In this section, a new vegetation vigour index was created to measure precisely the 

response of vegetation to the presence of TPH in the soil, and compare how the response 

differs on polluted and control transects. The index referred to as the normalised 

difference vegetation vigour index (NDVVI) computed for each segment by normalising 

reflectance difference at the least and most sensitive Hyperion wavelengths used the 

formula  

 

NDVVI = (Ri – Rj) / (Ri + Rj),                        (12) 

Where 

Ri = reflectance at the least sensitive wavelength 

Rj = reflectance at the most sensitive wavelength 

The most sensitive wavelengths were those that exhibited a large difference in reflectance 

between polluted and control transects while the least sensitive wavelengths were those 

whose reflectance values hardly changed in the presence of TPH. Wavelengths of the 

NIR channel showed the least sensitivity to TPH consistent with previous studies, which 

revealed that average NIR reflectance, did not vary much between healthy leaves and 

stressed leaves.  (Carter and Miller, 1994; Lichtenthaler, 1996). Figure 6.2A shows 

smaller difference between NIR reflectance of polluted and control transects compared 
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to the reflectance at the visible range.With near constant reflectance at these NIR 

wavelengths, the index relies on reflectance at the most sensitive wavelengths, which 

occurred in the blue and red channels. Thus, NDVVI value is zero when reflectance at 

either the red or the blue channel is high and 1 when reflectance at these channels is low. 

The inclusion of the least sensitive wavelengths in creating the NDVVI corrects for 

reflectance from non-vegetated areas (such as bare soils and buildings, which show high 

reflectance at the NIR region). Eigemeier (2012) stated that maximising the performance 

of a vegetation index requires the inclusion in the algorithm, sensitive and insensitive 

bands to the monitored variable. Six NDVVI variants were created combining the five 

most sensitive and least sensitive Hyperion wavelengths. These were NDVVI814,437, 

NDVVI824,427, NDVVI844,447, NDVVI752,630, NDVVI773,641, and NDVVI844,630.   

6.2.4 Continuum Removal and Band Depth Analysis  

The depth of the wavelengths where radiance absorption by chlorophyll is maximal was 

using the continuum removal procedure. Continuum removal involves the normalisation 

of spectra by applying a convex hull made up of line segments over the top of the 

spectrum, which connect the local maxima in the spectrum portion of interest (Kokaly 

and Clark, 1999; Mutanga, Skidmore and Prins, 2004). The reflectance at wavelengths of 

selected absorption features was divided by the reflectance value of the convex hull at 

that wavelength to give a unit-less absorption value for chlorophyll ranging from 0 

(complete absorption) to 1 (no absorption) (Clark and Roush, 1984; Mutanga, Skidmore 

and Prins, 2004). Removing the continuum from original spectra enhances the detection 

of subtle spectral shifts, eliminate soil background and sloping effects (topography), 

minimises the influence of atmospheric and water absorptions, and provide more precise 

information on the spectral intensity and band depth (Mutanga and Skidmore, 2004; Yan 

et al. 2010). Several authors have used these absorption features to retrieve plant 

biochemical and biophysical parameters including chlorophyll, lignin, nitrogen content 

(Curran, Dungan and Peterson, 2001; Kokaly et al. 2003; Mutanga, Skidmore and Prins, 

2004).  

Continuum removal was used in this study primarily to determine the changes that 

occurred in the chlorophyll absorption features of vegetation on investigated transects. 

Since oil pollution induces stress in vegetation (Wang, Zhu and Tam, 2014b; Noomen 

and Skidmore, 2009; Li, Ustin and Lay, 2005; Baker, 1970), it is expected that changes 
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in reflectance will occur in vegetation growing on impacted sites. Carter (1993) and 

Lichtenhaler (1996) reported increased reflectance in chlorophyll and water absorption 

regions of the spectrum in stressed vegetation. Therefore, an in-depth analysis of the 

spectra at these absorption wavelengths is necessary to highlight the impact of oil 

pollution. Although several parameters such as band depth, band position, the full width 

of the absorption at half the band depth (FWHM) are derivable from the continuum 

removal process, only the band depth was considered relevant in the present study.  

Chlorophyll absorption is known to occur mainly at 430 nm and 460 nm in the blue region 

as well as 640 nm and 660 nm in the red region of visible spectrum. Selection of the edges 

of these absorption features for the continuum removal procedure captured the range of 

spectral characteristics of the vegetation reflectance. Hence, all the Hyperion 

wavelengths between 400 nm to 550 nm and between 550 nm to 750 nm were subjected 

to the procedure performed in ENVI 5.3 and transferred to MS Excel for further 

computations. The band depth of the absorption features was firstly calculated by 

subtracting the continuum removed reflectance (Rʹ) value from 1 and then normalised 

following the methods of Kokaly and Clark (1999). Normalising the band depths was 

used to minimise the influence of non-foliar factors such as atmospheric absorption on 

the reflectance. The formula for calculating the band depth (D) and normalised band 

depth (Dnorm) are as follows 

D = 1 − 𝑅′                                                                                                               (13) 

Dnorm = D Dmax⁄                                                                                                   (14) 

Where: 

Rʹ is the continuum removed reflectance value 

Dmax is the maximum band depth for the absorption feature. 

Dnorm is normalised reflectance.  

6.2.5 The Red Edge Position (REP) of Reflectance Spectra 

Red-edge position (REP) index derived from the reflectance spectra of each segment on 

both the polluted and control transects was developed to overcome the challenges 

associated with the normalised difference vegetation index (NDVI) which saturates easily 

in dense vegetation  (Gitelson et al. 2002; Clevers et al. 2002). The red edge is a slope of 

the abrupt transition between the red and near infrared (NIR) wavelengths of a vegetation 

spectrum. The slope which occupies a range of wavelengths usually between 670 nm and 
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780nm (Kanke et al. 2012) is subjected to some mathematical manipulations to derive 

the red edge position (REP). Several methods are used to determine REP, however, in 

this study, the linear interpolation method as defined by (Clevers et al. 2002; Clevers and 

Büker, 1991) and the maximum first derivative procedure (Savitzky and Golay, 1964) 

were utilised. Previous researchers successfully detected REP in vegetation spectra (For 

instance, Chen, Elvidge and Jansen, 1993; Jong and Meer, 2006; Shafr, Salleh and 

Ghiyamat, 2006), by applying these procedures. However, Gholizadeh et al. (2016) 

assessed various REP extraction techniques for estimating chlorophyll and LAI (leaf area 

index) using data from different sensors. Their results confirmed the superiority of REP 

derived from the linear interpolation method also known as the four point linear 

interpolation method over the other methods tested. 

There are numerous studies employing REP index in investigating plant biochemistry, 

health, and stress (Kanke et al. 2012; Adamczyk and Osberger, 2015; Tian et al. 2011; 

Jong and Meer, 2006; Peñuelas and Filella, 1998). These studies mostly controlled in 

experimental fields or laboratories may have limited success in field applications. The 

present study utilises field data integrated with remote sensing information to evaluate 

changes in the red edge position of oil-polluted vegetation. Peñuelas, Filella and Gamon 

(1995) and Tian et al. (2011) both found the REP strongly correlated with the chlorophyll 

content of vegetation canopy. Jong and Meer (2006) reported that chlorophyll content; 

leaf structure and leaf area index influenced the REP, which exhibited greater sensitivity 

at increased chlorophyll content. 

Earlier studies established a linear relationship between ecosystem productivity and 

species diversity (Vihervaara et al. 2014; Mace, Norris and Fitter, 2012; Norris, 2012; 

Waide et al. 1999; Chapin et al. 2000). Some researchers ascribe this relationship to the 

presence of complementary species, which maximise available resources, particularly the 

photosynthetic active radiation (PAR) (Hooper et al. 2005; Sapijanskas et al. 2014). 

Perring et al. (2015) observed that the productivity of a restored woodland in 

southwestern Australia increased with greater species number. Kanke et al. (2012) 

reported that REP correlated highly with SPAD meter readings.  

The following methods derived REP index 

1. The maximum slope of the first derivative (REPder) 
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𝑅𝐸𝑃 = max (
𝜕𝑦

𝜕𝑥
)                                                                                                  (15) 

𝜕𝑦

𝜕𝑥
=

𝑅𝑎+1 − 𝑅𝑎

𝜆𝑎+1 − 𝜆𝑎
                                                                                                                       (16) 

Where 

Ra is reflectance at λa 

Ra+1is reflectance at λa+1 

λa is wavelength at the start of the slope segment 

λa+1 is wavelength at the end of the slope segment 

 

2. Linear interpolation method:- (REPlnr) 

𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒 = 𝑅670 + 𝑅780 2                                                                                 (17)⁄  

𝑅𝐸𝑃 = 700 + 400 [
𝑅𝑟𝑒𝑑 𝑒𝑑𝑔𝑒 − 𝑅700

𝑅740 − 𝑅700
]                                                           (18) 

Reflectance at the REP derived from the two techniques mentioned above were extracted 

for each segment on polluted and control transects and compared for significant 

differences and to determine their response to TPH concentration in the soil. Furthermore, 

the indices were regressed with field data (soil TPH, chlorophyll readings taken from the 

SPAD meter as well as with vegetation abundance) to determine the pattern and strength 

of any relationships among the variables. For each model, the dependent variable was 

either REPder or REPlnr while the independent variables were soil TPH concentrations, 

SPAD chlorophyll data, vegetation frequency and abundance. The regression coefficients 

were used to determine the nature of the relationship between the dependent and 

independent variables, while the coefficient of determination (R2) was used to determine 

the strength of the relationship. Furthermore, REP indices were tested for their ability to 

correctly classify transects as polluted or control using non-parametric logistic regression 

analysis in R. This was done to assess the potential of REP indices to detect oil pollution 

when it occurs. For this analysis, the dependent variable soil TPH concentration was 

categorised into polluted (pol) and control (con), while the independent variables were 

the spectral indices REPder and REPlnr 
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6.2.6 Statistical Analysis 

The answer to the main research questions RQ2, RQ3 and RQ4 mentioned earlier 

involved testing the three hypotheses which follow 

1. That there is a difference between the reflectance of vegetation growing on 

polluted and control transects; 

2. There is a strong linear relationship between spectral metrics derived from 

Hyperion data and field measured diversity indices; 

3. That the relationship can be modelled to predict richness and diversity of vascular 

plant species in the Niger Delta region of Nigeria. 

Hyperspectral metrics derived from Hyperion data were subjected to statistical analysis 

discussed in Chapter 3 including Mann-Whitney Test (Section 3.4.1.1) and Non-

Parametric Regression (NPM, Section 3.5.1.3). the 8 different models developed from 

these metrics and shown in Table 6.2 were tested.  

Table 6.2: Characteristics of the models predicting of diversity indices, chlorophyll content and 

vegetation abundance using spectral metrics computed from Hyperion data. 

Model ID Regression Method Predictors Response 

Variables 

1A Partial Least Squares (PLS) NDVVIs Simpson’s 

Shannon’s 

Menhinick's 

Chao-1 

Chlorophyll 

Content 

Abundance 

1B ,, NBVIs 

2A Non-Parametric Multivariate Regression (NPMR) NDVVIs 

2B ,, NBVIs 

3A Non Parametric Univariate Regression (NPUR) REPder 

3B „ REPlnr 

3C Non-Parametric Logistic Regression (NPLR) REPder 

3D „ REPlnr 

The Spearman's rank correlation coefficients (r), coefficients of determination (R-

squared), residuals, biases and error values from all models were compared to identify 

the set or subset of spectral metrics best suited for species diversity estimation in a 

polluted field. 

The implementation of the best performing NDVVI-based model featured the extraction 

of spectral values of random pixels termed ‘predsites’ from the NDVVI images 

(NDVVI752,630, NDVVI814,437, NDVVI824,427, NDVVI773,641, NDVVI844,447, NDVVI844,630), 

using the Raster and GISTools packages in R (Figure 6.1). Thirty pixels selected to 

encompass all the visible land cover types (waterbody, swamp, farmland, mixed 

vegetation and forested) within the location made up in the dataset (preddata). The 
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decision to select pixels from within this location (Kporghor) is because of its polluted 

nature according to several reports of oil spills at sites across the area in the past (UNEP, 

2011). However, soil TPH concentrations are expected to be lower in the predsites than 

at polluted transects; consequently, higher species diversity values were anticipated from 

implementing the selected model. 

 

Figure 6.1: Map of NDVVI814,437 for Kporghor displaying the locations of the randomly selected 

pixels (predsites) used for evaluating the regression model. Shannon’s, Simpson’s, Menhinick’s 

and Chao-1 diversity indices were estimated for the predsites using the NDVVI variants.  

Each diversity index (Shannon's, Simpson's, Menhinick's and Chao1 index) was 

estimated separately for the predsites. Due to the absence of field data for the predsites, 

estimation accuracy was determined by correlating fitted values with corresponding 

NDVI values computed from a Landsat 8 and Sentinel-2A images of the study area. 

NDVI was selected because it is a well-known index commonly used to quantify 

vegetation performance in terms of growth and biomass (Huete, 1994; Gamon et al, 

1995). The index has been applied in several studies as a surrogate for measuring species 

diversity (Gould, 2000; de Bello et al, 2010; Parviainen, Luoto and Heikkinen, 2010). 

Since vegetation productivity increases with species diversity (Cardinale et al. 2012; 

Hooper et al. 2012; Cardinale et al. 2011; Vihervaara et al. 2014; Mace, Norris and Fitter, 

2012; Norris, 2012; Waide et al. 1999; Chapin et al. 2000; Xu et al. 2012), it is presumed 
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that the NDVI values will strongly correlate with the diversity estimates of the ‘predsites'. 

The choice of a different sensor to calculate the NDVI was to minimise bias from using 

an NDVI image calculated from Hyperion data. Both the Landsat 8 and Sentinel 2A 

images were downloaded from the USGS earth explorer tool, and the vegetation index 

computed using ENVI 5.3. Please see sections 3.4.1 and 3.4.3 for the description of 

Sentinel 2A and Landsat multispectral images respectively). Additionally, the accuracy 

of predictions was visually evaluated using very high-resolution imagery from digital 

globe freely available in Google Earth (GE, hereafter). Some researchers utilised the GE 

images as a visualisation tool for land use and land cover maps (Hu et al. 2013; Yu and 

Gong, 2012; Kaimaris et al. 2011).  

6.3 Results 

6.3.1 Correlation of Hyperion Bands with Soil TPH 

Because of the non-normality of the spectral metrics dataset, Spearman's rank correlation 

analysis was performed to determine the relationship between the Hyperion bands and 

the levels of total petroleum hydrocarbon (TPH) in the soil. The results of this analysis 

are presented in Table 6.3. Generally, the VNIR bands (426.82 nm - 721.9 nm)  positively 

correlated with soil-TPH contrary to the negative relationship observed between the 

SWIR bands (1971.76 nm -2052.45 nm) and soil TPH. This result agrees with previous 

investigations which revealed that petroleum hydrocarbon in the soil increases stress in 

vegetation and this stress is evident in increased reflectance in the VNIR and shift of the 

red-edge towards the shorter wavelengths.  A few of the highly correlating wavelengths 

also showed high sensitivity to soil-TPH levels and were utilised in developing the new 

vegetation index suggested for monitoring biodiversity in the Niger Delta region. 
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Table 6.3: Results of the correlation analysis to determine Hyperion bands that strongly 

correlated with soil TPH. All values are significant at p < 0.05 

Wavelength (nm) Hyperion Band 

Number 

Spearman’s Rank 

Correlation Coefficient 

426.82 8 0.683 

518.39 17 0.645 

620.15 27 0.537 

711.72 36 0.584 

813.48 46 0.427 

912.45 77 0.458 

983.08 84 0.355 

1537.92 139 0.397 

1638.81 149 0.427 

1749.79 160 0.345 

1971.76 182 -0.474 

 

6.3.2 Analysis of TPH-induced Stress-Sensitive Wavelengths 

The maximum, mean and minimum reflectance of the polluted and control transects is 

shown in Figure 6.2. Reflectance in the visible and NIR regions was high and low 

respectively on polluted transects while the reverse was the case on control transects. The 

greatest reflectance difference between the control and polluted transects occurred at the 

wavelength range 420 nm - 470 nm (blue channels) and 620 nm - 670 nm (red channels, 

Table 6.4). Reflectance at these wavelengths increased significantly (p < 0.05) on the 

polluted transects which due to the TPH in the soil. As chlorophyll absorption is highest 

at the wavelengths of 430 nm, 460 nm, 640 nm, and 660 nm (Noomen and Skidmore, 

2009), the spectral absorption from chlorophyll in plants was adversely affected by oil 

pollution.  
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Table 6.4: Wavelengths with maximum and minimum differences in reflectance and those least 

and most sensitive to TPH-induced stress. 

Wavelength (nm) at 

Maximum Difference 

436.99 447.17 630.32 426.8 650 

Bands 9 10 28 8 30 

Difference 195.96 170.87 123.1 122.48 102.25 

Wavelength (nm) at 

Minimum Difference 

844 813.48 752.43 823.65 732 

Bands 49 46 40 47 38 

Difference 1.79 3.49 3.67 4.11 6.22 

Stress-Sensitive         

Wavelengths (nm) 

447.17 436.99 426.8 630.32 640.5 

Bands 10 9 8 28 29 

Sensitivity 0.77 0.68 0.48 0.19 0.16 

Stress-Insensitive 

Wavelength (nm) 

844 813.48 823.65 752.43 772.78 

Bands 49 46 47 40 42 

Sensitivity 0.00087 0.0018 0.002 0.002 0.0034 

 

Median reflectance in the visible wavelengths is shown in the boxplots in Figure 6.2 B. 

They differ significantly (p < 0.05) between the polluted and control transects according 

to the M-W test (Table 6.5).  

Results of the sensitivity analysis indicate that reflectances at 440±10 nm (blue channels) 

and 640±10 nm (red channels) substantially increased (p < 0.05) in the presence of soil 

TPH. Conversely, at the wavelength range of 670 nm - 900 nm (NIR), the reflectance of 

the polluted transects decreased slightly but was not significantly different from the NIR 

reflectance of the control transects. Minimum reflectance difference (near zero 

difference) occurred at 730 nm – 830 nm (Figure 6.2 C). The highest reflectance 

sensitivity to soil TPH (Figure 6.2 D) was observed at wavelengths 440±10 nm (blue 

channels) and 640±10 nm (red channels). The least sensitive wavelengths are 730-790 

nm (bands 38-44), 800-850 nm (bands 45-49) and 910-990 nm (bands 77 to 85).  
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Figure 6.2 A: Reflectance of control (C) transects, (n=16) and polluted (P) transects (n=17) in 

Kporghor spill site measured in November 2015 by the Hyperion EO-1 sensor. The plots 

displayed are the maximum, mean and minimum reflectance of vegetation on transects at the 

VNIR region. B: Comparison of median reflectance of specific wavelengths that were observed 

to be sensitive to soil TPH concentration. Boxplots are for polluted and control transects. C: 

Reflectance difference of vegetation growing on polluted and control transects computed by 

subtracting the mean reflectance of vegetation on polluted transects (n=17) from that of control 

vegetation (n=16); D. Reflectance sensitivity to stress or relative change in reflectance computed 

by dividing the reflectance difference (Figure 2C) by the mean reflectance of the control transects. 

M-W test results show that the reflectance at the most sensitive wavelengths significantly differed 

between the polluted and control transects. 

The M-W results in Table 6.5 reveal that blue and red reflectance from control vegetation 

is significantly lower than from polluted vegetation (p < 0.05). Vegetation reflectance at 

426.8 nm (chlorophyll absorption feature in the blue range) is significantly lower (p < 

0.05) for the control than for the polluted transects. Reflectance in the NIR wavelengths 

did not differ significantly between control and polluted transects and is attributable to 

the presence of TPH in polluted transects. Earlier studies reported that oil-contaminated 

substrates exhibit increased NIR reflectance attributed to the thickness of the crude oil 

(Clark et al. 2010; Kokaly et al. 2013). Although hydrocarbon absorption features occur 

in the 1730 - 2310 nm wavelengths in the SWIR region (Kühn, Oppermann and Hörig, 

2004), in the NIR region the absorption from oil is decreased substantially leading to 

increased reflectance (Clark et al. 2010). With the increased NIR reflectance from both 

polluted and control vegetation, the characteristics of reflectance in the visible range 

differentiated between polluted and non-polluted vegetation. 
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Table 6.5: Summary of the Mann-Whitney U test results comparing the median reflectance of 

specified wavelengths from polluted and control transects. P < 0.05 

Wavelength 

(nm) 

Polluted 

(n1) 

Control 

(n2) 

Difference 

(n1-n2) 

Confidence Interval 

(95%) 

U 

 N=17 N=16  Lower 

Limit 

Upper 

Limit 

 

426.8  372.43 238.83 118.56 75.47 164.8 406 

436.99  453.35 270.36 175.62 134.52 237.25 421 

447.17  384.9 193.6 164.2 110.1 219.4 407 

630.32  771.87 637.31 124.82 91.36 154.47 420 

640.5  749.8 620.81 115.71 83.26 140.94 402 

650  772.42 633.57 114.28 59.6 154.48 396 

6.3.3 Analysis of the Normalised Difference Vegetation Vigour 

Index (NDVVI)  

NDVVI was computed for all the segments in the polluted and control transects. Figure 

6.3 shows the resulting images. The index values ranged from 0 to 1 with higher values 

shown in light grey and lower values in dark grey colours. High NDVVI values indicate 

increasing chlorophyll absorption at the blue or red wavelength which may be attributed 

to species composition, abundance and health on transects while low NDVVI values 

indicate the reverse. 
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Figure 6.3: Images of reflectance ratios of vegetation at Kporghor spill site. The general formula applied was Bi (least sensitive band) - Bj (most sensitive 

band) / (Bi+Bj). High values (dark green) represent increased chlorophyll absorption at the blue and red wavelengths while low values (red) indicate increased 

reflectance at those wavelengths. The increased reflectance at these wavelengths signifies TPH-induced stress. Thus, the index is a measure of vegetation vigour 

and health.  
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The M-W test was applied to NDVVI values extracted from segments of polluted and 

control transects to test for differences between them. Results revealed significant 

differences between the median NDVVI for the polluted and control transects (p < 0.05). 

The NDVVI variants exhibited a strong correlation with field diversity measurements 

including Shannon's and Menhinick's as well as soil TPH (albeit inversely, Table 6.6). 

The variants also compared significantly better than traditional narrowband vegetation 

indices (NBVIs, Table 6.1). NDVVI773,641 had the most robust relationship with the 

diversity indices but the weakest inverse relationship with soil TPH.   

Table 6.6: Spearman’s Rank Correlation Coefficients of NDVVI values extracted from polluted 

and control transects and field measured diversity indices in Kporghor location. P < 0.05. 

Index Shannon’s Menhinick’s Simpson’s Chao-1 TPH 

NDVVI752,630 0.65* 0.62* 0.65* 0.66* -0.54* 

NDVVI773,641 0.73* 0.7* 0.72* 0.79* -0.53* 

NDVVI814,437 0.72* 0.69* 0.67* 0.67* -0.69* 

NDVVI824,427 0.66* 0.64* 0.62* 0.59* -0.63* 

NDVVI844,447 0.64* 0.64* 0.6* 0.58* -0.68* 

NDVVI844,630 0.65* 0.61* 0.65* 0.66* -0.53* 

RENDVI 0.26 ns 0.3 ns 0.33 ns 0.32ns -0.11 ns 

MRENDVI 0.17ns 0.22 ns 0.21 ns 0.15 ns -0.44** 

MRESRI 0.17ns 0.22 ns 0.21 ns 0.15 ns -0.44** 

VREI1 0.34 ns 0.34 ns 0.39* 0.36* -0.15 ns 

REPI 0.36* 0.36* 0.36* 0.36* -0.19 ns 

PRI 0.08ns -0.05 ns -0.07 ns -0.08 ns -0.16 ns 

SIPI -0.26 ns -0.24 ns -0.26 ns -0.19 ns 0.47* 

RGRI -0.35* -0.36* -0.36* -0.4* 0.27 ns 

ARI2 -0.37* -0.48* -0.45* -0.36* 0.48* 

CRI2 0.23 ns 0.22 ns 0.23 ns 0.25 ns 0.01  ns 

 *Is significant  

   ns is non-significant 
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6.3.4 Analysis of Continuum Removed Reflectance and Band 

Depth 

6.3.4.1 Continuum Removed Reflectance  

Continuum removed reflectance (CRR) of vegetation from polluted and control transects 

showed considerable variation in the concentration of the pigment of primary interest, 

chlorophyll. Additionally, the spectra also distinguished the concentration of carotenoids 

(CaR) and anthocyanins (AnC) in polluted and controlled vegetation. Both CaR and AnC 

are stress indicators in vegetation (Hatier and Gould, 2008; Gitelson, Chivkunova and 

Merzlyak, 2009). Although there are diverse opinions on the location of maximum CaR 

absorption in the spectrum, previous studies established that this occurs between 470 nm 

to 500 nm (Chappelle, Kim and McMurtrey, 1992; Blackburn, 1998; Merzlyak et al. 

2008). Conversely, there appears to be some consensus on the absorption peak of AnC in 

the leaf spectrum. Merzlyak et al. (2008) and Gitelson et al. (2001) reported this peak as 

being around 540 nm to 550 nm.  

The CRR plots in Figures 6.4 and 6.5 clearly shows vegetation reflectance on polluted 

transects increased at the chlorophyll absorption features (around 445 nm and between 

650-700 nm) and decreased at the CaR (around 460 nm) and AnC (around 560 nm) 

absorption features. Hence, implying that oil pollution altered the pigment concentration 

in vegetation growing on impacted transects. 

 

Figure 6.4: Continuum removed reflectance (CRR) of randomly selected segments of polluted 

and control transects plotted for the chlorophyll b (Chl-b) and carotenoid (CaR) absorption 

features in the blue channel of visible spectra (400-550nm). The curves distinguished reflectance 

of vegetation on polluted and control transects. The CRR values were lower for Chl-b absorption 

and higher for CaR on control transects, and the reverse on the polluted transects  
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Figure 6.5: CRR of polluted and control segments showing the chlorophyll and AnC absorption 

in the red range (550-750nm). CRR values were lower for chlorophyll absorption, and higher for 

AnC on control transects, and the reverse on the polluted transects  

6.3.4.2 Band Depth Analysis and Comparison 

Spectral band depth (D) of the relevant wavelengths was derived by subtracting the CRR 

values from 1, and normalised band depth (Dnorm) was computed by dividing each band 

depth by the band depth at the wavelength centre. The band depth at the wavelength 

centre is the maximum band depth, hence this procedure was performed to identify any 

changes in vegetation reflectance within each absorption feature. Both datasets were 

subjected to the Mann-Whitney U to test the null hypothesis that there was no difference 

in the medians of the band depths (D) and normalised band depth (Dnorm) of absorption 

features in vegetation growing on polluted and control transects. The M-W test was 

performed separately for chlorophyll absorption features with an alternative hypothesis 

(HA1) that the median D and Dnorm of control transects are significantly higher than those 

of polluted transects. Conversely, the HA2 for testing the stress-indicating pigments (CaR 

and AnC) was that the D and Dnorm of the control transects were less than those of the 

polluted transects.  The results of these tests are displayed in Table 6.7 for chlorophyll 

absorption features and Table 6.8 for CaR and AnC.   

Chlorophyll absorption in the blue (CHB) channel was significantly higher in vegetation 

growing on control than on polluted transects as evident in the result of the M-W test (U 

= 352 for CHB1 and U = 337 for CHB2, p < 0.05). It appears that there was higher 

chlorophyll absorption in the red channel (CHR) than in the blue channel (Figure 6.14 A 

and C) in both polluted and control transects and these differed significantly (Table 6.7) 
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for the first three absorption channels namely CHR1 (630.32 nm); CHR2 (640.5 nm); and 

CHR3 (650.67 nm). However, chlorophyll absorption at the longer wavelengths (CHR4-

CHR7) of the feature was not significantly different between the polluted and control 

transects despite the maximal band depth (wavelength centre) located at 671.02 nm 

(CHR5). 

Table 6.7: Results of Mann-Whitney U test of differences in the band depths and normalised 

band depths of chlorophyll absorption features for the control and polluted transects. Band depths 

computed from subtracting the continuum removed reflectance value from 1. 

Absorption Features Chlorophyll in 

blue channels  

Chlorophyll in red channels 

CHB1 CHB2 CHR1 CHR2 CHR3 CHR4 CHR5  

Wavelength (nm) 437 447 630 641 651 661 671 

N Polluted 

(n1) 

17 17 17 17 17 17 17 

Control 

(n2) 

16 16 16 16 16 16 16 

Band Depth (D) 

Median Polluted 0.00 0.22 0.36 0.42 0.44 0.52 0.53 

Control 0.028 0.37 0.43 0.47 0.48 0.52 0.53 

Difference (n2-n1) 0.028 0.15 0.07 0.05 0.04 0 0 

CI (95%) Lower 0.003 0.02 0.036 0.02 0.02 -0.01 -0.01 

Upper 0.04 0.22 0.11 0.09 0.1 0.05 0.06 

U  352 337 369 357.5 342.5 299 296 

P < 0.05 
 

* * * * * ns ns 

Normalised Band Depth (Dnorm) 

Median Polluted 0.00 1 0.69 0.85 0.87 0.97 1 

Control 0.09 1 0.81 0.88 0.90 0.97 1 

Difference (n2-n1) 0.5 0 0.12 0.03 0.03 0 0 

CI (95%) Lower 0.00 -0 0.02 -0.00 -0.00 -0.00 -0 

Upper 0.09 0 0.15 0.14 0.134 0.00 0 

U  361 284 354 326 333 238 288 

P < 0.05 
 

* ns * ns * ns ns 

         

* = median differences are significant 

ns = not significant 

# = null hypothesis of ‘no difference in median’ accepted 

Both the band depth (D) and normalised band depth (Dnorm) analyses suggest that 

chlorophyll absorption along polluted transects differed slightly and correlated with soil 

TPH. CHB2 had the highest coefficient of -0.77, followed by CHR3, r = -0.46. 

Chlorophyll absorption in the red range did not vary greatly along polluted transects 

despite the large differences in TPH concentration in the soil. The coefficient of variation 

(CV) ranged between 9-11%, whereas in the blue range, the CV=329.9 for CHB1 and 
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CV=58.3 for CHB2. Nevertheless, there was a strong positive relationship between the 

chlorophyll absorption features and the species diversity indices along polluted transects. 

Table 6.8: Results of Mann-Whitney U test of differences in the band depths and normalised 

band depths of carotenoid and anthocyanin absorption features for control and polluted transects. 

Band depths computed by subtracting the continuum removed reflectance value from 1. 

Absorption Features Carotenoids Anthocyanins 

CAR1 CAR2 CAR3 ANT1 ANT2 

Wavelength (nm) 457 468 478 539 559 

N Polluted (n1) 17 17 17 17 17 

Control (n2) 16 16 16 16 16 

Band Depth (D) 

Median Polluted 0.37 0.12 0.08 0.00 0.06 

Control 0.27 0.26 0.23 0.003 0.05 

Difference (n2-n1) -0.1 -0.14 -0.15 0.003 -0.01 

CI (95%) Lower -0.19 -0.21 -0.2 -0.00 -0.00 

Upper -0.03 -0.06 -0.08 0.004 0.004 

U  214 192 179 279 226 

P < 0.05 
 

* * * # * 

Normalised Band Depth (Dnorm) 

Median Polluted 1 0.71 0.28 0.00 1 

Control 1 0.45 0.63 0.07 1 

Difference (n2-n1) 0 -0.26 -0.35 0.07 0 

CI (95%) Lower -0 -0.30 -0.39 -0.07 -0 

Upper 0 -0.11 -0.14 0.08 0 

U  272 145 164 302 273 

P < 0.05 
 

ns * * # ns 

* = median differences are significant 

ns = not significant 

# = null hypothesis of ‘no difference in reflectance median’ accepted 

The central wavelength for the CaR absorption feature was at 457.34 nm while that of 

AnC was at 559.09 nm. Radiance absorption at these wavelengths was significantly 

different between polluted and control transects. Results of the Mann-Whitney U test 

agreed with the alternative hypothesis that the D and Dnorm of the CaR and AnC 

absorption features were lower in the control vegetation than in the polluted vegetation. 

Thus, providing further proof of oil pollution induced stress in vegetation. The boxplots 
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in figure 6.6 D consistently show substantial differences in pigment absorption at relevant 

wavelengths between polluted and control vegetation.  

 

Figure 6.6: Illustrates the A - average band depth values (D = 1 - CRR) for control and polluted 

transects; B - the difference curve calculated by subtracting the D (polluted) from the D (control) 

and multiplied by 100 showed the difference in pigment absorption between polluted and control 

transects. Chlorophyll absorption in control vegetation was up to 300%, while that of CaR was 

down to -300% and AnC, down to -90%.  Positive differences indicate greater band depth or 

increased absorption of radiance at that wavelength; C: Average Dnorm values showing the 

magnitude of the difference in absorption between the polluted and control transects; and D: box 

plots of band depths of chlorophyll, carotenoids and anthocyanins absorption in polluted and 

control transects.  

6.3.5 Oil Pollution Effects on Red Edge Position (REP) of 

Transects 

6.3.5.1  Effects of Soil TPH on REPder and REPlnr 

The presence of TPH in the soil seemed to affect vegetation reflectance, and this effect is 

apparent in the first derivative spectra of the red edge. Original spectra of polluted 

vegetation with low diversity indices (red dashes in Figure 6.7A) showed increased 

reflectance in the red and reduced reflectance in the NIR region. The original curve 

displays a slight shift to the shorter wavelengths (also known as ‘blueshift') in vegetation 

spectra from the polluted transects, whereas reflectance from control transects shifted 

slightly to the longer wavelengths (also known as ‘redshift'). Clear differences are also 

apparent in the shape of the red edge slope of polluted and control vegetation. Figure 6.7 
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A reveals flatter slopes for polluted spectra and steeper slopes for control spectra. 

Additionally, the TPH-induced stress in vegetation which may have initiated the blueshift 

also led to a general increase in visible reflectance and particularly in the chlorophyll 

absorption features around 680 nm (Figure 6.7A). 

 

Figure 6.7: A. Original and B. first derivative reflectance curves of randomly selected segments 

from polluted and control transects. The reflectance of polluted vegetation is slightly shifted to 

shorter wavelengths while reflectance from control vegetation slightly shifts towards longer 

wavelengths. Comparison of reflectance from polluted and control transects using the Mann-

whitney test shows significant differences (p < 0.05).  
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First derivative reflectance maxima occur at 701.6 nm for both polluted and control 

vegetation. Reflectance at this wavelength is selected as the red edge position and denoted 

as REPder. Distinctively, while derivatives curves from polluted vegetation have single 

peaks, the control curves have additional peaks at 742.25 nm, 752.43 nm and 762.6 nm. 

Since each curve represents the combined reflectance of all materials on the ground 

surface covered by the 30 m X 30 m pixel, the presence of multiple peaks in control curve 

may be attributed to increased intra-specific differences in vegetation.  

The average REPlnr reflectance is 893.14 on the polluted transects, and 893.49 on the 

control transects with standard deviations of 0.15 and 0.51 respectively. Based on this 

method, REP occurred at different wavelengths for each segment however, the REP 

reflectance upheld the earlier interpretation from REPder that there’s significant 

difference between polluted and control transects. 

Reflectance at the identified REPs for all segments was subjected to the non-parametrics 

two-tailed Mann-Whitney U test for two independent samples. The null hypothesis tested 

was that REP reflectance from polluted and control transects were not significantly 

different while the alternative hypothesis was that they were significantly different. 

Results of the test are summarised in table 6.9. 

Table 6.9: Summary of the Mann-Whitney U test analysis comparing reflectance at REP from 

polluted and control transects. The REP index  is derived from two different methods using 

Hyperion data. 

Index U-Value z-Value p-Value Decision 

REPder 54 -2.936 0.03* Reject 

REPlnr 63 -2.612 0.01* Reject 

From the table, it is clear that soil TPH impacted on reflectance at the REP of polluted 

vegetation significantly regardless of the REP derivation method. For both indices, the 

U-values supports the alternative hypothesis of difference between polluted and control 

REP reflectance, hence, the null hypothesis of no difference is rejected. 



201 

 

6.3.5.2 The Relationship between REP and Selected Field 

Measurements 

Results of the non-parametric multivariate regression (NPMR) analysis of REP (REPder 

and REPlnr) with field data (soil TPH, SPAD chlorophyll data, abundance and frequency) 

are presented in Table 6.9  

Table 6.10. Regression statistics of REP on field measured data. REPder computed from the first 

derivative method whereas REPlnr computer from linear interpolation method. Both indices 

derived from Hyperion data acquired over Kporghor spill location were extracted from segments 

of polluted and control transects in the location.     

 REPder REPlnr 

Parameter R2 RSE MSE R2 RSE MSE 

Soil TPH 0.61 2.27 5.14 0.16 0.47 0.22 

Chlorophyll 0.48 2.63 6.92 0.32 0.42 0.18 

Abundance 0.32 2.99 8.94 0.01 0.51 0.26 

TPH*Chlorophyll 0.57 2.37 5.63 0.16 0.47 0.22 

TPH*Abundance 0.63 2.22 4.93 0.15 0.47 0.22 

REP indices derived from both the maximum first derivative method (REPder) and the 

linear interpolation method (REPlnr) showed a significant relationship with field data. 

Generally, the indices inversely related to soil TPH concentrations and positively related 

to the vegetation variables.  It is deducible from the results that the presence of TPH in 

the soil interfered with the biochemical parameters in vegetation and the interference 

exhibited in the changing shape of the red edge curve and position in spectra of polluted 

vegetation. Between the two indices, the REPder with an R2 of 0.61 and 0.48 had stronger 

relationships with the soil TPH concentrations and SPAD chlorophyll readings 

respectively than REPlnr.  

Scatterplots in Figure 6.9 show that both REPder and REPlnr decreased in reflectance as 

soil TPH increased. The R2 values were significant at p < 0.05. Field measured vegetation 

characteristics (abundance and SPAD chlorophyll estimates), showed a significant 

positive relationship with both indices. The regression coefficient of REPder and REPlnr 

versus chlorophyll estimates were 0.48 and 0.32 respectively, p < 0.05, although only 

REPder significantly related with abundance (R2 = 0.32, p < 0.05). However, the 

introduction of soil TPH in the relationship caused a decrease in the REP reflectance 

values as shown in the scatterplots in Figure 6.8. 
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Figure 6.8: Scatter plot, regression line and 95% confidence intervals of REP versus SPAD 

chlorophyll estimate, vegetation abundance and frequency as well as their interactions with soil 

TPH. The plots show that both REPder and REPlnr decreased in the presence of soil TPH.  

6.3.6 Modelling Species Diversity Using Hyperspectral Indices 

Predictors in models estimating the species diversity index of polluted and control 

transects included two sets of indices namely the NDVVIs and the traditional NBVIs. 

This analysis aimed to determine the performance of the new indices in estimating the 

diversity of plant species in areas impacted by oil pollution in comparison with traditional 

NBVIs. The dataset comprising measurements from polluted and control transects was 

subdivided into training and testing data using a ratio of approximately 6:4 for training 

and validation data respectively. 
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6.3.6.1 Model Calibration Using Training Data 

Partial Least Square (PLS) regression (please see Chapter 3 Section 3.5.1.3 A for 

discussion on this procedure) commenced with an initial transformation of the predictor 

datasets (6 NDVVI variants and 6 NBVIs listed in Table 6.1) into a smaller set of 

uncorrelated components with the optimum number selected from R2 value associated 

with each component. A maximum of 5 components was chosen to run the procedure; 

however, the optimum number of components varied for different response variables as 

shown in Table 6.10. For the NDVVI dataset, selection resulted in only 1 to 2 components 

which best explained the variation in the dataset, for the regression analysis. For the 

NBVIs, 1 to 4 components were used in the models. A leave-two-out procedure cross-

validated the components before selecting the optimal number. The NDVVI-based PLS 

model had larger R-squared (R2) values than the NBVI-based PLS model. Additionally, 

prediction error sum of squares (PRESS) was smaller for the NDVVI predictors than for 

the NBVIs. Thus confirming that the PLS model of NDVVI variants has greater 

predictive ability than that of traditional NBVIs. The results from model calibration are 

summarised in Table 6.11. 

Table 6.11: Calibration parameters of NDVVI and NBVI-based models used in the PLS and 

NPM regression methods. NDVVI values were computed from Hyperion wavelengths sensitive 

to oil pollution and extracted from segments of polluted and control transects while NBVIs were 

computed from Hyperion data.  

 PLS NPM 

Response Number of 

Components  

R2 PRESS F P < 

0.05 

R2 RSE 

 NDVVIs 

Shannon’s 2 0.67 12.3 17.56 * 0.71 0.61 

Simpson’s 2 0.66 1.11 16.25 * 0.69 0.17 

Menhinick’s 1 0.54 44 20.82 * 0.61 1.23 

Log(Chao-1) 2 0.6 8.69 12.75 * 0.69 0.49 

Canopy Chlorophyll 2 0.56 2181 10.92 * 0.58 9.08 

 NBVIs 

Shannon’s 3 0.39 25.28 3.38 * 0.49 0.82 

Simpson’s 1 0.3 1.71 8.23 * 0.46 0.23 

Menhinick’s 4 0.48 67.78 3.54 * 0.58 1.31 

Log(Chao-1) 3 0.50 11.74 5.35 * 0.55 0.58 

Canopy Chlorophyll 1 0.11 4355 2.12 ns 0.59 8.89 

*significant 

ns - not significant. 
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The significance of the relationship between the predictors (NDVVI variants and NBVIs) 

and the response (diversity indices) was analysed using the F-statistic. The results show 

that each diversity index statistically related to the selected NDVVI components (R2 > 

0.5, p < 0.05). Similarly, diversity indices also significantly regressed with the NBVI 

components; however as stated earlier, the R2 values were much lower (≤0.5, p < 0.05) 

except for the Chao-1 index (Table 6.11). The significant relationship observed between 

satellite-based indices (NDVVIs and NBVIs) and field measured diversity indices is in 

line with previous results. These include (Levin et al. 2007) who reported R2 as high as 

0.87 between NDVI and plant richness; (Mapfumo et al. 2016) who reported R2 values 

between 0.32 and 0.72 for NDVI and Shannon’s diversity; and (Peng et al. 2018a) who 

reported R2 values of 0.51 to 0.83 for first order hyperspectral indices and diversity 

indices including Shannon-Weiner, Pielou, Simpson, Margalef and Gleason. The 

scatterplots in Figure 6.9 show the observed versus predicted diversity values. 

 

Figure 6.9: Observed versus predicted diversity indices using PLS NDVVI-based regression 

model. There appears to be a linear relationship between both sets of data leading to the high R2 

values. This result is consistent with results from previous studies predicting species diversity 

from vegetation indices. 
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From the scatterplots in Figure 6.10, it is apparent that the NDVVI variants performance 

in estimating species diversity is comparable to results reported in other studies. The 

mechanism explaining the relationship between satellite-derived indices and field 

measured diversity indices are not yet well understood; however, judging from the results 

of this study, we infer that vegetation biochemical parameters, mainly those strongly 

influenced by variations in pigment absorption at wavelengths sensitive to soil TPH are 

essential drivers of this relationship. The scatterplot of residuals versus predicted 

diversity index from the model calibration using the training data is shown in Figure 6.10. 

These plots suggest that the PLS model provided a good fit for the data and the residuals 

generally satisfy the goodness of fit requirements with randomness, homoscedasticity and 

linearity.  

Similarly, the NDVVI-based NPM model has much smaller error values than the NBVI-

based NPM model. The NDVVI-based model performed better during calibration with 

higher R2 values (0.61–0.71 at the calibration stage) compared to NBVI-based models with 

R2 < 0.59. Residual standard error (RSE) values from model calibration are smaller for 

the NDVVI NPM model and more substantial for the NBVI model 
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Figure 6.10: Scatterplot of residuals versus predicted values from NDVVI and NBVI PLS models. The residual plots from NDVVI models generally fulfil the 

goodness of fit requirements with randomness, homoscedastic and linearity except for Chao-1.



207 

 

6.3.6.2 Model Validation Using Test Data 

Validation of the trained models was performed using the test data (n = 13, polluted = 7, 

control = 6). The predictive capability of the spectral metrics inferred from predicted R2, 

RSE, root mean square error (RMSE), bias and residual analysis of the different models 

revealed that the performance of the NDVVI-based models was uniform across both PLS 

and NPM model types. Analysis of residuals following model validation also affirms the 

superiority of NDVVI for estimating vascular plant species diversity over NBVI. The F-

statistics, p, R2, RMSE and Bias are summarised in Table 6.12 for all models.  

Table 6.12: Results of the species diversity and canopy chlorophyll estimation of investigated 

transects using two different models for each set of predictors. Models 1 and 2 are the partial least 

square (PLS) and non-parametric (NPM) regression models respectively. Letters A and B indicate the 

set of predictors (spectral metrics) used in each model, A = NDVVIs and B = NBVIs, n = 13, df = 

12); ns = not significant. 

Response Variable Model F P < 

0.05 

R2 RSE RMSE Bias 

Shannon’s Diversity 

Index 

1A 12.82 * 0.54 0.51 0.69 -11.4 

1B 1.77 ns 0.14 0.69 0.9 -16.2 

2A 13.08 * 0.54 0.5 0.5 -6.2 

2B 2.67 ns 0.2 0.67 0.94 -17.2 

Simpson’s Diversity 

Index 

1A 6.66 * 0.38 0.05 0.24 -15.9 

1B 0.11 ns 0.01 0.07 0.22 -18.1 

2A 1.163 ns 0.1 0.07 0.14 -9.2 

2B 0.09 ns 0.01 0.07 0.21 -14.9 

Menhinick’s Richness 

Index 

1A 14.32 * 0.57 1.15 1.13 -7.5 

1B 6.37 * 0.37 1.38 1.58 -21.6 

2A 5.35 * 0.33 1.42 1.32 1 

2B 7.4 * 0.4 1.34 1.31 -10.2 

Log(Chao-1) 1A 8.55 * 0.44 0.24 0.57 3.3 

1B 2.12 ns 0.16 0.3 0.58 -1.1 

2A 10.16 * 0.48 0.23 0.56 2.1 

2B 1.93 ns 0.15 0.3 0.51 3.2 

Canopy 

Chlorophyll 

Content 

1A 7.89 * 0.42 7.85 7.87 6.7 

1B 1.14 ns 0.09 9.79 9.29 4.7 

2A 10.49 * 0.49 7.36 7.59 5.5 

2B 1.64 ns 0.13 9.6 13.49 9.9 

*significant 

ns - not significant 

The NDVVI-based models (Models 1A and 2A) had the highest R2 as well as lowest RSE 

values. Although non-parametric models are generally not as powerful as parametric ones, 

the spectral NDVVI metrics derived from TPH-sensitive Hyperion wavelengths 

consistently outperformed the traditional NBVIs as estimators of species diversity in all the 
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models. Poor estimates for Simpson’s diversity index are obtained from NDVVI and 

NBVIs-based models, particularly using the NPM regression method, although the error 

values were low. From the results, the best index for estimating the Menhinick’s Richness 

index is the NDVVI variants. The R2 and RMSE values for NDVVI-based PLS model 

are 0.57 and 1.13 respectively, while for NBVIs-based PLS model, they are 0.37 and 1.58 

respectively. Generally, all the models underestimated the response variables (Shannon's, 

Simpson's, Menhinick's, Chao-1, and Canopy Chlorophyll) as evident in the negative bias 

scores, although the biases were higher for the NBVI-based models. For monitoring 

biodiversity, this effect may be an advantage as it reduces the risk of overestimating the 

vascular plant species diversity of an oil affected location or a protected area. NDVVI-

based model predictions were over 50% accurate for Shannon's and Menhinick's diversity 

indices, and less than 50% for Simpson's and Chao-1′s indices. The best predictions were 

for Menhinick's index as illustrated in the closeness of the fitted lines to the 1:1 line in all 

four models shown in Figure 6.11 for PLS models and Figure 6.12 for NPM models. In 

contrast, Simpson's index was the least accurate as the plots showed little or no 

relationship between the predicted and observed field measurements. 

 

Figure 6.11: Observed versus predicted plots for the various PLS models. For each species 

diversity index, scatterplots of observed values versus the NDVVI variants (blue) and NBVIs 

(red) predicted values are shown (n = 13). The regression equations are also shown with the R2 

values, y1 = response to NDVVI variants, y2 = response to NBVIs. The line of best fit for each 

model is plotted to compare with the 1:1 line (in black). 
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Figure 6.12: Observed versus predicted plots for the NPM models. For each species diversity 

index, scatterplots of observed values versus the NDVVI variants (blue) and NBVIs (red) 

predicted values are shown (n = 13). The regression equations are also shown with the R2 values, 

y1 = response to NDVVI variants, y2 = response to NBVIs. The line of best fit for each model is 

plotted to compare with the 1:1 line (in black). 

All models clearly distinguished between polluted and control transects with the diversity 

estimates; however, the NDVVI-based models performed better. The residual versus 

predicted scatterplot in Figure 6.13 show that the NDVVI-based model is a good fit for 

Shannon’s index and the SPAD chlorophyll estimates. However, this goodness of fit was 

absent for the other indices. 
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Figure 6.13: Scatterplots of residual versus predicted values of NDVVI -based model. Predicted 

values are from the NPM regression using test data (n = 13). The charts clearly show that the 

model was a good fit for Shannon’s diversity index and SPAD chlorophyll estimates. 

Using the model equations from the NDVVI PLS model, spatial maps of vascular plant 

species diversity were created for the investigated area (Figure 6.14).   

 

Figure 6.14: Spatial maps of vascular plant species diversity estimated from NDVVI PLS model. 

Location of control and polluted transects on the maps correspond with the estimated diversity 

index and chlorophyll content. From the images, polluted transects are seen to have low diversity 

and canopy chlorophyll values while control transects have high diversity and canopy chlorophyll 

values. This result further emphasises the linear relationship between vegetation productivity 

indicated by canopy chlorophyll content and vascular plant species diversity. 
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A glance at the maps of estimated Shannon's or Simpson's diversity and the canopy 

chlorophyll content shows that pixels with high diversity index were also high in 

canopy chlorophyll. 

6.3.6.3 Model Implementation and Evaluation Using Random Pixels 

The new dataset of derived spectral metrics (preddata) was used as predictors in the NPM 

model in order to estimate the Shannon’s, Simpson’s, Menhinick’s and Chao-1 index 

values for the predsites. Estimations were done separately for each variable, and average 

predicted values for each land cover type visible from a high-resolution image available 

on Google Earth is shown in Table 6.13. Expectedly predicted values were high for 

forests and mixed vegetation, low for swamps and waterbodies and moderate for 

farmlands. 

Table 6.13: Average diversity values predicted for randomly selected pixels according to the 

observed land cover type. N = number of 30 m pixels in each class, L8-NDVI = NDVI derived 

from Landsat 8 image and S2A-NDVI = NDVI derived from Sentinel 2A image. Due to its higher 

spatial resolution, average NDVI values were calculated using a 3 × 3 pixel window from the 

S2A-NDVI.  

Land Cover Type Farmland Forested Mixed Swamp Waterbody 

N 7 5 10 6 2 

L8-NDVI 0.17 0.2 0.18 0.13 0.11 

S2A-NDVI  0.11 0.12 0.11 0.05 0.06 

Predictor variables  

NDVVI844,447 0.48 0.57 0.49 0.29 0.27 

NDVVI814,437 0.73 0.83 0.76 0.61 0.57 

NDVVI824,427 0.5 0.58 0.51 0.3 0.28 

NDVVI752,630 0.44 0.53 0.46 0.25 0.23 

NDVVI773,641 0.71 0.80 0.73 0.56 0.53 

NDVVI844,630 0.85 0.94 0.88 0.73 0.7 

Response Variables  

Shannon’s 2.59 3.42 2.77 0.88 0.94 

Simpson’s 0.82 0.95 0.87 0.25 0.3 

Menhinick’s 3.64 5.34 4.13 1.41 1.16 

LogChao-1  2.16 2.79 2.4 1 1.06 

Canopy Chlorophyll 56.12 64.8 56.46 39.57 34.09 

NDVI values computed from both Landsat and Sentinel 2A images and extracted for the 

predsites were generally low for the different land cover types compared to the NDVVI 
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values. NDVVI values for forested pixels ranged from 0.53 to 0.94 while NDVI values 

were 0.2 and 0.12 respectively for L8-NDVI and S2A-NDVI. Similarly, NDVVI values 

were higher than NDVI values in pixels categorised as farmland and mixed. Despite the 

large margin between NDVVI and NDVI values, the pattern of vascular plant species 

diversity estimation was similar. As evident in Table 6.13, the higher the index value, the 

higher the estimated species diversity value and vice versa. 

Additional evaluation of NDVVI-based model performance involved using NDVI using 

as surrogates for the vascular plant species diversity index. Presumably, the relationship 

between NDVI values and predicted vascular species diversity indices is positively linear 

as NDVI correlates strongly with species diversity in literature. Due to the higher spatial 

resolution of the Sentinel 2A image, average NDVI values were computed for each 

segment using a 2 × 2 pixel window. The result of the correlation analysis in Table 6.14 

suggests that the estimated values have a strong linear relationship with NDVI values 

from both images. The correlation coefficients ranged from 0.73 to 0.85 for the diversity 

indices. 

Table 6.14: Spearman’s rank correlation coefficients of NDVI and estimated species diversity 

indices for predsites. All the results are significant (p < 0.05). 

Diversity Index L8-NDVI S2A-NDVI 

Shannon’s 0.77 0.78 

Simpson’s 0.73 0.75 

Menhinick’s 0.78 0.79 

Chao-1 0.84 0.84 

Visual evaluation of high-resolution Google Earth imagery (Figure 6.15) shows that most 

predicted values correspond with the land cover type on the ground surface. For instance, 

the predsites located on swamps and water bodies had low estimated values for vascular 

plant species diversity. However, the location of the predsite P2 with predicted Shannon 

diversity index of 2.68 appears to be bare soil in this image (acquired by Digital Globe in 

December 2006), the most current image acquired in January 2016 (not used due to cloud 

obstruction) shows the presence of vegetation regrowth at the location, hence the 

predicted high diversity values for the pixel. 
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Figure 6.15: A high-resolution Digital Globe 2006 true colour image of the study area extracted 

from Google Earth showing the location of predsites. This image was selected because it depicted 

the land cover types in the study area better than more recent high-resolution images. From the 

estimated Shannon's diversity index shown next to the predsites, it is evident that most of the 

predictions correspond with the visible land cover type.  

6.4 Discussion 

Among biologists, ecologists and conservationists there is firm persuasion to develop a 

standardised methodology for monitoring biodiversity at regional and global scales  

(Yoccoz, Nichols and Boulinier, 2001; Kerr and Ostrovsky, 2003; Muchoney, 2008; 

Lindenmayer and Likens, 2010; Han et al. 2014). More importantly, vulnerable 

ecosystems like the Niger Delta region of Nigeria subjected to oil pollution require 

standard and accessible methods for regular biodiversity monitoring. Conventional 

techniques are limited in several ways due to time and equipment constraints, as well as 

in coverage (usually carried out at local scales). Hence, researchers advocate for the 

integration of remote sensing tools into biodiversity monitoring programmes because of 

the advantages the technology offers (Wulder, 1998; Nagendra, 2001; Boyd and Danson, 

2005; Warren et al. 2014; Galidaki and Gitas, 2015; Lucas et al. 2015).  

Results of the analysis confirmed that the effect of oil pollution on vegetation was 

statistically significant. The characteristics of polluted vegetation reflectance and band 
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depths conformed to expected changes in the spectral signature of stressed vegetation. 

Stress indicating pigments such as anthocyanin and carotenoids contents increased in 

polluted transects but remained minimal (relative to chlorophyll pigments) in control 

transects. However, along polluted transects, decreased vegetation density and diversity 

affected vegetation reflectance, particularly at the anthocyanin and carotenoids 

absorption peaks. Apart from the spill epicentre and segment SS1 of all four polluted 

transects, where vegetation abundance depreciated substantially, anthocyanin and 

carotenoids reflectance remained relatively constant with increasing concentration of soil 

TPH. 

Furthermore, vegetation productivity a vital ecosystem service, particularly for 

inhabitants of the Niger Delta region who rely on forest resources for their livelihood, 

was shown to be vulnerable to oil pollution. The chlorophyll absorption features in 

polluted vegetation significantly dwindled in comparison to control vegetation. The 

normalisation of reflectance at these wavelengths using continuum removal revealed the 

extent of damage to photosynthetic activity in polluted vegetation. While chlorophyll 

absorption in control vegetation was as high as 0.6, in polluted vegetation, it was as low 

as -0.1, amounting to a difference of up to 300%. 

Perhaps, a clearer illustration of oil pollution impact on vegetation is the different values 

of the NDVVI from polluted and control transects. The NDVVI derived from a 

combination of TPH sensitive and TPH insensitive wavelengths from Hyperion image 

was created to measure the vigour (productivity and health) of vegetation on polluted and 

control transects for comparison. Prediction of species diversity was significantly 

improved using the new Hyperion indices when compared to the performance of 

traditional narrowband vegetation indices (NBVIs). 

6.4.1 Effect of Oil Pollution on Vegetation Reflectance 

Hydrocarbon contamination in soils interferes with the physiological processes in plants. 

The interference, which primarily causes stress in plants is usually evident in the spectral 

signature of affected plants. Similar to several studies (Akubugwo, Elebe and Osuocha, 

2016; Udeh, Nwaogazie and Momoh, 2013; Tanee and Albert, 2015; Ugboma, 2014; 

Okoye and Okunrobo, 2014), there was evidence that increased concentration of 

petroleum hydrocarbon in the soil induced changes in the soil parameters including the 
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temperature, pH, nutrients and microorganism in the investigated transects.  These 

changes caused stress in vegetation growing on polluted transects by interfering with the 

production of chlorophyll and other photosynthetic pigments that absorb solar radiation, 

and thus affected their reflectance.  

Previous studies (Smith, Steven and Colls, 2005; Bammel and Birnie, 1994) reported that 

spectral changes in vegetation occur mostly in the visible and near infrared regions as 

well as in the red-edge region (the slope between the red and near infrared regions) of the 

spectrum. The spectral changes are characterised by increased reflectance in absorption 

maxima and reduced reflectance at absorption minima. Gitelson, Buschmann and 

Lichtenthaler (1999) found that in healthy fully developed leaves, there was high 

absorption in the visible spectral range (400 nm - 700 nm) and higher reflectance as 

observed in the NIR (700 nm - 800 nm). They also observed that the red edge position of 

yellowing leaves shifted towards the shorter wavelengths. These postulations agree with 

the general increase in reflectance of polluted vegetation in the visible region and 

decrease in the NIR region followed by a shift in the red edge position towards shorter 

wavelengths (‘blue shift') observed in polluted vegetation in the present study. Li, Ustin 

and Lay (2005) reported similar changes in reflectance of vegetation under oil-induced 

stress. The implication is the decrease in the chlorophyll content of polluted vegetation 

since these pigments absorb light for photosynthesis in the visible wavelengths (Mishra 

et al. 2012). The results obtained earlier in section 4.3.4.1 where in-situ chlorophyll 

content not only decreased significantly in polluted transects (mean = 36.69) in 

comparison with control transects (mean = 55.32) but also correlated negatively (r = -

0.86) with soil TPH (Section 4.3.4.3) support this connotation. A decrease in chlorophyll 

content means reduced light absorption in known absorption maxima, which occurred at 

around 445 nm, and 680 nm in this study, leading to increased reflectance as obtained in 

the polluted vegetation. 

TPH presence in oil also amplified the reflectance difference between polluted and 

control transects in wavelengths associated with chlorophyll absorption in the blue 

(440±10 nm) and red (640±10 nm) spectral channels. These wavelengths were the most 

sensitive to TPH concentration in the soil. Chlorophyll absorption is known to occur 

within the wavelength range of 430-460 nm (chlorophyll b) and 650-680 nm (chlorophyll 

a) (Gitelson, Gritz † and Merzlyak, 2003; Carter and Miller, 1994). The identity of the 
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most sensitive wavelength 447.17 nm (Band 10), shows that TPH in the soil affected the 

absorption of chlorophyll in vegetation growing on the polluted transects. Contrarily, 

Carter and Miller (1994) found that reflectance at 420±5nm varied little with stress in 

plants, but reported increased sensitivity to plant stress for reflectance at 600 nm and 695 

nm. Although there was a significant difference in the NIR (700 nm - 900 nm) reflectance 

of polluted and control vegetation, the sensitivity analysis which is calculated using mean 

reflectance showed that this region was least sensitive to TPH-induced stress. Other 

researchers reported a similar pattern in NIR reflectance of stressed vegetation. For 

instance, Carter and Miller (1994) reported that at 730 nm, the reflectance in stressed 

plants did not significantly change while Gitelson, Buschmann and Lichtenthaler (1999) 

also found that NIR reflectance did not vary between healthy leaves and stressed leaves. 

Gitelson, Buschmann and Lichtenthaler attributed this phenomenon to the increase in the 

size and length of the assemblages in the spongy parenchyma. Moreover, (Kokaly et al. 

2013; Kühn, Oppermann and Hörig, 2004; Adamu, Tansey and Ogutu, 2015) analysed 

polluted substrates and attributed the increased NIR reflectance in polluted vegetation to 

the presence of hydrocarbons.   

Other factors may be responsible for this response. Firstly, as suggested by Rapport, 

Regier and Hutchinson (1985); Scholten and Leendertse, (1991); Li, Ustin and Lay 

(2005) and   Asner et al. (2009) there may be an increased presence of invasive species 

which are tolerant to hydrocarbon. Secondly, it may also be that the plant assemblages 

(cell walls, mesophyll cells and intercellular spaces) responsible for NIR reflectance in 

vegetation were yet to succumb to the stress caused by TPH in the soil. It is most likely 

that this was the case along polluted transects as soil TPH concentration decreased, 

thereby delaying the onset of physiological damage in plants tissues. Furthermore, 

analysis of vegetation data in section 4.3.2 provides evidence of thinning out of plants on 

polluted transects. Results of the analysis indicate that vegetation parameters 

(composition, density, abundance, diversity) suffered decrease as TPH concentrations 

increased in the soil. It appears that TPH was responsible for over 50% loss in species of 

annual plants growing on polluted transects.  

Several researchers have propounded theories on how TPH influences chlorophyll 

content in affected plants. Omosun, Markson and Mbanasor (2008); (Lopes, da Rosa-

Osman and Piedade (2009); Baruah et al. (2014) investigated the effect of crude oil on 
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plant anatomy and discovered structural deformations in the form of thickening of the 

epicuticular region, compression of the palisade and spongy parenchyma, compression 

of the vascular bundles, reduction of intercellular air spaces, distortion and reduction of 

the stomata. These changes generally inhibit chlorophyll synthesis thereby affecting plant 

growth and productivity (Baruah et al. 2014). Considering the response of Chl-a 

absorption features to soil TPH concentration, it is safe to assume that these physiological 

effects linked to oil pollution in various environments, caused a decrease in Chl-a 

production and consequently vegetation growth, health and productivity. 

6.4.2 Effect of Oil Pollution on Chlorophyll, Carotenoids and 

Anthocyanins Absorption 

Increased reflectance at chlorophyll absorption maxima and in-situ chlorophyll data from 

polluted vegetation reveal that chlorophyll absorption in polluted vegetation decreased 

by up to 300% compared to control vegetation. This reduction is significant and is bound 

to impact on not only the productivity of vegetation growing on polluted transects but 

also other living organisms by interfering with the trophic structure of the ecosystem. 

Arellano et al. (2015) reported low levels of chlorophyll in vegetation at oil-polluted sites 

in the Amazon forests which they attributed to a decrease in photosynthetic activity due 

to petroleum-induced stress. Whereas Al-Hawas et al. (2012) also observed that jojoba 

plants grown on crude oil contaminated soils suffered a significant decrease in 

chlorophyll content. Similarly, Agbogidi, Eruotor and Akparobi (2007) after 

experimenting with maize plants grown on polluted soils reported the presence of 

chlorosis in plants subjected to 20.8 mL of crude oil, which they attributed to destruction 

of chlorophyll pigments and cell injury. Earlier works by Baker (1970), Baudze and 

Kvesitadze (1997) and Odjegba and Sadiq (2002) suggested that hydrocarbons in crude 

oil cause structural and functional changes in the chloroplast that negatively affects the 

photosynthetic apparatus.  

Also, the reflectance at the red edge position (REP) which strongly correlates with 

chlorophyll content in vegetation (Tian et al. 2011; Jong and Meer, 2006; Peñuelas and 

Filella, 1998), notwithstanding the variations of ground cover, showed a similar pattern. 

The first derivative of the red edge slope illustrated the rate of change in reflectance from 

the red to the NIR regions of the spectrum. Figure 6.7 showed that vegetation growing 

on the control transects had higher reflectance increment than vegetation on polluted 
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transects. Tian et al. (2011) reported a drastic increase in reflectance of healthy plants 

within the red edge (steep slope) likely because of the presence of leaf pigments, mainly 

chlorophyll which influence radiance absorption at the red region and leaf structures 

which influence scattering of radiance at the NIR region. Thus healthier plants expectedly 

have greater reflectance at the REP (maximum first derivative of the red edge slope). 

Following the Mann-Whitney test result, the null hypothesis of equivalence was rejected, 

suggesting that there was greater REP reflectance from vegetation on control transects 

than there was from polluted vegetation. The difference may be adduced to increased 

absorption in the red wavelength and increased scattering in the NIR region which are 

spectral signatures of healthy vegetation.  

Another important spectral behaviour of the red edge slope in control vegetation is the 

observed shift towards longer wavelengths which contradicts the blue-shift (shift towards 

shorter wavelengths) observed in polluted vegetation. Frazier, Wang and Chen (2014) 

ascribed this behaviour to the widening of the chlorophyll absorption feature in response 

to the increase in leaf chlorophyll content.  

Results of sensitivity analysis also differentiated the pigments chlorophyll a (Chl-a) and 

chlorophyll b (Chl-b) response to TPH concentration in soil. The most sensitive 

wavelength in the blue range occurred at the Chl-a absorption maxima (447.17 nm) while 

the most sensitive wavelength in the red range occurred at the Chl-b absorption maxima 

(630.32 nm) (See Figures 6.4 and 6.5 in Chapter 6). Although both these wavelengths 

showed sensitivity to soil TPH concentrations, Chl-a absorption was most affected as the 

reflectance difference between polluted and controlled vegetation at that wavelength was 

up to 300%. In contrast, Sims and Gamon (2002) found that the spectral channel around 

650 nm was more sensitive to chlorophyll content in vegetation than the chlorophyll 

absorption features in the blue range. Since Chl-a is the principal pigment for 

photosynthesis, this may explain the severe effect associated with oil pollution in plants. 

Al-Hawas et al. (2012), Baruah et al. (2014) and Arellano et al. (2015) in their various 

studies reported that increasing crude oil contamination caused a significant decrease in 

the chlorophyll content which sometimes led to plant mortality in impacted vegetation. 

The continuum-removed reflectance (CRR) of vegetation from polluted and control 

transects revealed absorbance at known carotenoids (CaR) and anthocyanins (AnC) 

features in polluted and control vegetation. CaR and AnC are generally considered as 
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stress indicators in vegetation (Hatier and Gould, 2008; Gitelson, Chivkunova and 

Merzlyak, 2009). They are accessory pigments that perform protective functions during 

photosynthesis in plants. Both AnC and CaR prevent photo-inhibition and photo-damage 

in plants by absorbing the excessive incident light that would otherwise damage the 

chlorophyll pigments. Merzlyak et al. (2008) stated that AnC occurrence intensifies with 

environmental factors such as increased solar radiation, extreme temperatures, drought, 

nutrient deficiency and other stress factors. In this study, CaR absorption increased by up 

to 300% while AnC absorption increased by less than 100% in polluted vegetation. The 

negative difference in the CaR and AnC absorption features (Figure 6.6 B) signifies 

increased synthesis of these accessory pigments in polluted vegetation. Thus, increased 

AnC and CaR absorption in polluted transects suggest that the presence of soil TPH 

induced stress in polluted which was either absent or minimal in control vegetation. 

Although there are diverse opinions on the location of maximum carotenoid absorption 

in the spectrum, previous studies established that this occurs between 470 nm to 500 nm 

(Chappelle, Kim and McMurtrey, 1992; Blackburn, 1998). Contrarily, there is some 

consensus on the absorption peak of AnC in the leaf spectrum as was reported by 

Merzlyak et al. (2008) and Gitelson et al. (2001) to be around 540 nm to 550 nm. Results 

of the present study are consistent with the literature in terms of the wavelength of 

maximum absorption of AnC and CaR. The central wavelength for the anthocyanins 

absorption feature was found to be at 559.09 nm while that of carotenoids centred at 

457.34 nm.   

Band depths indicate that chlorophyll absorption in polluted vegetation did not vary 

significantly along transects but somewhat differed in their response to the concentration 

of TPH in the soil. The band depth of known chlorophyll absorption features in the blue 

channel (447.17 nm) which showed the most sensitivity to soil TPH increased as TPH 

concentration decreased along polluted transects. The decrease may be due to the higher 

species abundance observed along polluted transects (please see Section 4.3.2.4 of 

Chapter 4) or diminishing TPH effect on chlorophyll synthesis as TPH concentration 

decreased. In any case, the result is consistent with earlier reports such as Baruah et al. 

(2014); Agbogidi, Eruotor and Akpoborie (2007) and Baker (1970) who maintained that 

as the concentration of crude oil in the soil increased, the chlorophyll content in leaves 

decreased. Hence, implying that higher doses of crude oil are more damaging to plants 
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than lower doses due to increased anaerobic processes that inhibit the growth of enzymes 

necessary for synthesising chlorophyll.   

In segments along polluted transects, carotenoids (CaR) and anthocyanins (AnC) 

absorption varied greatly (coefficient of variation = 40 - 55). Interestingly, the 

anthocyanins and carotenoids correlated negatively with soil TPH rather than the 

expected positive correlation. The correlation coefficients were -0.382, -0.34, -0.19 for 

CaR1-3 respectively and -0.22 for AnC1 and 2. The result may mean that the 

concentration of TPH in the soil did not increase the production of these pigments in 

plants; however, it may also have resulted from the reduced vegetation of the polluted 

transects, particularly the spill epicentre where vegetation presence was near zero due to 

fire. From the above, we can infer that AnC and CaR spectral behaviour is dependent on 

vegetation abundance on polluted transects, and hence may not provide accurate 

information on vegetation stress. 

6.4.3 Effect of Oil Pollution on Vegetation Vigour 

The NDVVI values obtained from this study provide further evidence of the deleterious 

effect of oil pollution on vegetation. Vegetation productivity is linked to species richness 

and diversity (Cardinale et al. 2012; Hooper et al. 2012; Cardinale et al. 2011; Vihervaara 

et al. 2014; Mace, Norris and Fitter, 2012); hence these effects are likely to influence the 

biodiversity of the polluted transects. Oil contamination affects vegetation through 

various physical and chemical mechanisms. The intensity and extent of the adverse effect 

of oil on vegetation depend on the type of oil, soil type and exposure, contact method 

with vegetation, TPH concentration in the soil and the season (Hester et al. 2016; Michel 

and Rutherford, 2014; Lin and Mendelssohn, 2012). Pezeshki et al. (2000) maintained 

that the impact of oil pollution on vegetation increase with the volume of oil in contact 

with vegetation. Hester et al. (2016) noted that there is an inflexion point at which 

increased level of pollution results to irreversible damage to the plant. This pattern was 

observed on the polluted transects in the present study where vegetation characteristics 

such as taxa (species number), frequency, abundance and density increased along 

transects as TPH concentration decreased.   

Results of the species diversity and distribution analysis in Chapter Four established that 

oil pollution significantly decreased species number, frequency, abundance and density 
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of vegetation on impacted transects. Further proof of this adverse effect was evident in 

the low NDVVI values extracted from polluted transects, affirming that the physical 

changes in vegetation characteristics observed during the field study were reflected in the 

spectral behaviour and detected remotely by the Hyperion sensor. The extraction of 

higher NDVVI values from control transects than from the polluted transects resulted in 

a significant difference (p<0.05) between them. Low NDVVI values indicate decreasing 

chlorophyll absorption at the blue and red wavelength which may be attributed to reduced 

species composition, abundance and health on transects while high NDVVI values 

indicate the reverse. Since vegetation vigour characterises vegetation productivity and 

health (Munyati and Ratshibvumo, 2011), it follows that the presence of TPH in polluted 

transects adversely affected both traits in vegetation. Previous studies have shown that 

changes in vegetation productivity and species diversity are common symptoms of 

ecosystem distress. Rapport, Regier and Hutchinson (1985) noted that environmental 

stress which includes oil pollution induce changes “in the size of dominant species, 

species diversity and a shift in species dominance to opportunistic shorter-lived forms”. 

Evaluation of the importance value index (IVI) of vegetation on polluted and control 

transects (see section 4.3.2.6 of Chapter Four) supported this assertion. The IVI for herbs 

and shrubs (annual plants) was higher on polluted transects than on control transects, 

whereas more tree species had higher IVI values on control transects than on polluted 

transects (Figure 4.11).  Noomen et al. (2012) reported changes in vegetation pattern in 

polluted fields, while Robson et al. (2004) found lower diversity indices for contaminated 

sites than for uncontaminated sites.   

As vascular plants are common biodiversity indicators in the ecosystem, any condition 

that brings about drastic changes in vegetation (such as oil pollution) is bound to interfere 

with the ecosystem composition, structure and functions. The modelling results of 

vascular plants species diversity indices provide strong evidence of a relationship with 

narrowband chlorophyll-related vegetation indices. This relationship is stronger with 

NDVVI derived from hyperspectral wavelengths sensitive to soil TPH, hence, 

emphasising the need for incorporating the new index in biodiversity monitoring and 

conservation schemes. NDVVI is indicative of chlorophyll content and is hence a critical 

plant biochemical parameter for vegetation productivity and health (Baruah et al. 2014; 

Mishra et al. 2012; Curran, Dungan and Gholz, 1990). Not only did NDVVI significantly 

differ between polluted and control transects, but it also strongly correlated with the 
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vascular plants' species diversity. This result is consistent with Noomen et al. (2012) and 

Robson et al. (2004), as well as Arellano et al. (2017), Behl, Donval and Stibor (2011) 

(Arellano et al. 2017; Behl, Donval and Stibor, 2011; Carlson et al. 2007) were in 

agreement with our results. Hence, the low NDVVI values found over polluted transects 

can be attributed to reduced species composition, reduced abundance and deteriorating 

health of the vegetation.  

The need to clarify the mechanism defining relationships between vegetation reflectance 

and species diversity remains primal, and several researchers have linked it to variations 

in vegetation biochemical parameters. For instance, Asner et al. (2009) following their 

study on airborne spectranomics reported that plant species have unique chemical 

fingerprints which correspond with spectral and species diversity. The chemical 

fingerprints are exhibited via differences in photosynthetic and photoprotective pigments, 

water and leaf structure and remotely measurable. Similarly, Aneece, Epstein and Lerdau, 

(2017) observed that interspecific variability in pigment (chlorophyll, anthocyanins, and 

carotenoids) levels in plants contributed to species differentiation using spectral metrics. 

Additionally, Clark and Roberts (2012) successfully classified seven tree species using 

hyperspectral metrics derived from wavelengths sensitive to vegetation chemistry and 

structure. Given these, the conclusion is that the superior performance of the NDVVI 

variants in estimating vascular plants species diversity is due to the selection of particular 

wavelengths that were sensitive to changes in vegetation biochemical parameters 

(pigments) responding to oil pollution. This procedure not only extracted relevant 

wavelengths from hundreds of hyperspectral wavelengths that are potentially redundant 

but also reduced the presence of noise from the data.  Jacquemoud et al. (1996) stated 

that plant spectra might contain additional information unrelated to pigment 

concentration.  

High NDVVI values of predsites contrasted with the low NDVI values and suggest that 

the new index is better at detecting vegetation presence than the NDVI in oil-polluted 

regions. Due to the adverse effect of oil pollution on vegetation such as reduced growth 

(Ogbo, Zibigha and Odogu, 2009; Chima and Vure, 2014; Lin and Mendelssohn, 2012) 

and increased mortality (Kinako, 1981; Baruah and Sarma, 1996; Tanee and Albert, 

2015); the NDVVI designed to have maximum sensitivity to soil TPH, detects even sparse 

areas of vegetative growth/presence. Furthermore, the NDVVI variants successfully 
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predicted the diversity indices for the randomly selected sites from the satellite image of the 

study area. The low index values predicted for the swamps and water bodies are consistent 

with expectations. According to Orji (2013), the waterways of the Niger delta harbour 

invasive species, particularly the water hyacinth (Eichornia crassipes (Mart.) Solms). In 

their work, (Hejda, PyÅ¡ek and JaroÅ¡Ã­k, 2009) asserted that invasive species adversely 

affect species richness, diversity and composition of invaded habitats. Hence, it is not 

surprising that the diversity indices are low for those pixels even though green vegetation 

is abundant.  

Due to its ability to detect oil-induced stress in vegetation, the new NDVVI has potential 

as a spectral metric for measuring changes in ecosystem functions, an essential 

biodiversity variable as well as providing information about the condition and 

vulnerability of ecosystems, a biodiversity indicator. These are valuable information for 

effective biodiversity monitoring and protection. When incorporated in a temporal 

analysis, the NDVVI can reveal the extent of habitat degradation resulting from oil 

pollution. Since the variants were derived from remote sensing data, their application is 

standardised, scalable and repeatable making it a handy tool to achieve some of the Aichi 

2020 targets set by the United Nations Convention on Biological Diversity (CBD) 

(Convention on Biological Diversity, 2010a). At local or regional scales, routine 

application of the NDVVI over areas with oil installations will facilitate detection of oil 

seepages, unreported spills and illegal bunkering activities. In essence, the index will 

facilitate effective biodiversity monitoring and conservation by providing decision-makers 

with relevant information on areas of high or low biodiversity. This information will ensure 

the efficient management of meagre resources by reducing the frequency and scale of cost-

intensive field surveys. 

6.5 Summary 

This chapter focused on assessing the usefulness of Hyperion data (a hyperspectral sensor 

onboard NASA's EO-1 satellite) in biodiversity monitoring schemes. In other words, the 

study evaluated the performance of species diversity prediction models developed using 

spectral indices derived from Hyperion data.  Achieving this task required tackling the 

research questions RQ2, RQ3 and RQ4 (listed in Chapter 2 Section 2.11.1, page 41). The 

answer to these questions involved a diversity study of vegetation; an analysis of the 

Hyperion image and regression analysis of both data sets. Non-parametric statistics were 
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employed as the data did not fit the assumptions of a normal distribution. The preceding 

analysis and results showed strong links between concentrations of soil TPH and the 

biochemical and spectral properties of vegetation. Hyperion data analysis provided 

evidence of crucial changes in the contents of leaf pigments necessary for photosynthetic 

activities in plants, changes in vegetation health and productivity (vigour) and 

successfully predicted the species richness and diversity indices of the study area.   
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7 General Discussion, Conclusions and Future 

Research 

7.1 Introduction  

This research has investigated applications of remote sensing to biodiversity monitoring 

in oil-polluted areas within the Niger Delta region of Nigeria. As a biodiversity hotspot, 

the degradation of the Niger Delta environment due to oil pollution is of major concern 

(Oluduro, 2012; Ngoran, 2011), as it leads to the loss of livelihoods, properties and 

national revenue (Ebegbulam et al. 2013; Nwachukwu, 2015; Oshienemen et al. 2018). 

Most importantly, the youth restiveness and militancy of people in the Delta associated 

with oil pollution-induced environmental degradation led to fatalities in recent years 

(Watts, 2004; Obi, 2009; Orji, 2012; Adams and Ogbonnaya, 2014; Oshienemen et al. 

2018). Members of affected communities feel disfranchised and dissatisfied with the 

‘lacklustre efforts’ of oil companies and the Nigerian government to remedy the situation 

(Okwoche, 2011; Aliyu and Ammani, 2011; Orji, 2012; Odoeme, 2013).  

The overarching goal here was to develop tools for biodiversity monitoring, which are 

standardised, replicable, scalable and accessible to all interested parties. With vascular 

plant species as biodiversity indicators, four research questions (RQs) were investigated. 

RQ1 tested the hypothesis that oil pollution adversely affected vascular plant species 

composition (richness and diversity) and productivity (abundance and chlorophyll 

content). RQ2 hypothesised that satellite sensors could detect vascular plants 

susceptibility to oil pollution. RQ3 investigated the relationship between species diversity 

and spectral diversity metrics derived from satellite data, and finally, RQ4 sought to 

model the relationship between spectral metrics and species diversity to estimate vascular 

plants species diversity in polluted locations. 

7.2 General Discussion  

Achieving the overarching aim of this study required a three-dimensional approach. This 

included the application and evaluation of conventional field methods, analysis of 

multispectral (MS) data and analysis of hyperspectral (HS) data. The conventional 

methods provided useful field data, from which essential information including species 

abundance, richness and diversity, soil properties and chlorophyll content)  was deducted, 
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encountered serious challenges (discussed in detail in Section 7.4.1.) during application 

(vegetation survey and sample collection). Analysis of multispectral data yielded limited 

information mainly on vegetation structure and distribution but lacked a detailed 

representation of subtle changes in vegetation reflectance. The analysis of hyperspectral 

data provided an in-depth revelation of vegetation response to oil pollution by 

highlighting the changes in pigment concentration, thus overcoming the limitations of 

MS data. The preceding sections present an all-encompassing discussion on the 

processes, techniques and approaches adopted in developing remote sensing tools for 

monitoring biodiversity in oil-polluted regions. 

7.2.1 Application of Conventional Methods for Detecting Oil 

Pollution 

Laboratory analysis of physicochemical properties in soil samples collected form spill 

locations revealed extreme levels of TPH (RQ1, RO1) which, also influenced other soil 

properties including phosphorus, lead, organic matter and heterotrophic bacteria 

populations in the soil. Oil pollution increases soil acidity (pH in polluted soil range from 

6.15 to 8.02 according to Obire and Nwaubeta, 2002; Udeh, Nwaogazie and Momoh, 

2013; Wang et al. 2013) and temperature by 10 to 20 C (Akubugwo, Elebe and Osuocha, 

2016, Wang et al. 2013). The result from this study showed that the differences in pH 

and temperature of polluted and control soils were insignificant. The more significant 

effect of TPH on soil properties is in the depletion of nutrients such as phosphorus and 

nitrates in polluted soil. Both electrical conductivity and phosphorus concentration in 

polluted soil decreased substantially. This process renders the soil infertile for both 

agricultural and conservation programmes, a factor that exacerbated poverty in the region 

(United Nations Environmental Programme, 2011; Oluduro, 2012) 

7.2.2 Application of Conventional Methods for Detecting the 

Effects of Oil Pollution on Vegetation 

The study commenced with a vegetation survey to determine the vascular plant species 

diversity and create a baseline record for the study area (RQ1 and RO1). Comparing 

diversity indices of polluted and control transects revealed significant differences and 

validated the hypothesis that oil pollution adversely affects species diversity in the region. 
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Oil pollution effects on soil properties were detrimental to vegetation growth and 

productivity as significant differences were observed in frequency, abundance, richness, 

diversity and chlorophyll content of vegetation between polluted and control transects. 

Other researchers reported similar observations on oil polluted sites (Ogbo, Zibigha and 

Odogu, 2009; Chima and Vure, 2014). Some vegetation losses were immediate due to 

smothering by oil while others occurred over time due to nutrient depletion in soil 

supporting their growth consistent with previous reports (e.g. Njoku, Akinola and Oboh, 

2008; Ogbo, Zibigha and Odogu, 2009). The high number of rare plant species observed 

in the study area is consistent with reports of biological endemism of the Niger Delta 

(Emoyan, Akpoborie and Akporhonor, 2008), and re-emphasises the need for 

biodiversity monitoring using indicator species. The acquisition of spectral signatures of 

such rare or indicator species will facilitate the development of remote sensing tools for 

managing biodiversity in the Niger Delta. The decrease in ecological importance of some 

plant species following oil pollution triggered both ecosystem services and economic 

losses, and in extreme cases, species extinction. Biodiversity loss is unacceptable globally 

and has led to international treaties to protect biodiversity and the ecosystem services 

they provide such as the United Nations Convention on Biodiversity (CBD) (United 

Nations General Assembly, 2000) 

Plant lifeform was a crucial factor in determining the vegetation response to oil pollution. 

This study revealed that herbaceous perennial species were the most tolerant while 

herbaceous annuals were the most vulnerable to TPH. Several tree species observed on 

investigated transects were in secondary growth stages due to the presence of vast oil 

distribution pipelines that criss-cross the study area (United Nations Environmental 

Programme, 2011; Oluduro, 2012). The fragmentation of the ecosystem portends 

additional danger for biodiversity in the region as organisms that rely on matured and 

fully-grown tree species are forced to migrate to other areas, which may not be conducive 

for their survival, hence accelerating extinction rates and increasing poverty among their 

inhabitants. The food crop Manihot esculenta and creeping plant Paullinia pinnata were 

dominant in all locations investigated, however, certain species performed better in 

abundance on polluted transects than on control transects, which we attributed to the 

reduced competition for resources. Considering the economic importance of Manihot 

esculenta as a food and cash crop, further research into its survivability on polluted 

transects and the impact of its consumption on human health becomes pertinent. Ifemeje 
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and Egbuna (2016) showed that both the nutritional quality and shelf life of cassava fruit 

from polluted transects decreased substantially. Oil pollution triggered a process of 

resource partitioning for surviving species such that their importance value on polluted 

and control transect did not differ significantly. Ecologists have demonstrated that plants 

can extract and stabilise pollutants, which they store in their biomass (Glick, 2010; Ma et 

al. 2011). This knowledge formed the basis for the practice of phytoremediation, that is 

the removal of pollutants from soil using plant species (Wang et al. 2008; Nwaichi et al. 

2015). Herbaceous species such as Perotis indica, Kyllinga erecta, Sida cordifolia were 

revealed to have potentials for phytoremediation of polluted sites in this study. 

7.2.3 Analysis of Multispectral (MS) Data for Detecting Oil 

Pollution 

Analysis of the MS dataset proved useful for detecting the presence of TPH in the soil. 

Spectral metrics derived from high-resolution MS data revealed the adverse effect of TPH 

on soil fertility measured as phosphorus and electrical conductivity. These metrics also 

showed sensitivity to TPH as the relationship was stronger on polluted transects than on 

control transects; however, the sensitivity of band metrics was greater, possibly due to 

the influence of RGB bands on plant photosynthetic processes.  TPH influence on 

reflectance controlled the spectral diversity of the entire study area as demonstrated in 

the significant negative correlation between spectral metrics and species diversity indices 

of the study area. The increased habitat heterogeneity associated with oil spills may have 

contributed to this phenomenon. 

7.2.4 Analysis of Multispectral (MS) Data for Detecting the 

Effects of Oil Pollution on Vegetation 

Integrating remote sensing tools with field measurements yielded exciting results and 

highlighted its potentials for biodiversity monitoring. Analyses of multispectral Sentinel 

2A imagery using open-source software revealed the intricate connection between 

vegetation biochemical parameters and their spectral signatures. Beginning with a test of 

the spectral variability hypothesis (SVH), the study demonstrated its validity and 

applicability in oil-polluted areas. However, results also revealed that the SVH is 

sensitive to oil pollution effects on vegetation, given the linear relationship observed 

between spectral diversity metrics and species diversity indices on both polluted and 

control transects. On control transects, this relationship was expected because of the high 
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species diversity, whereas, on polluted transects, an inverse relationship was expected 

due to low species diversity. This interesting result was attributed to the increased habitat 

heterogeneity following vegetation removal, waterlogging, and even burning of 

contaminated surfaces (habitat disturbance). Previous studies (Arellano et al. 2015; Pysek 

and Pysek, 1989; Jan Douda et al. 2012) show that these factors, measurable via remote 

sensing, influence species diversity. On control transects, the variations in the internal 

structures of different species such as pigments and tissues that produce unique spectral 

signatures controlled the relationship between spectral metrics and species diversity 

(Heumann, Hackett and Monfils, 2015). Previous studies testing the SVH achieved 

success with one set of metrics (Warren et al. 2014; Hall et al. 2012; Rocchini, 

Hernández-Stefanoni and He 2015; Schmidtlein and Fassnacht 2017). This study, 

however, demonstrated that a combination of metrics derived from different statistical 

computations significantly strengthened the spectral diversity-species diversity 

relationship enough to estimate the Simpson’s and Shannon’s indices for the study area 

successfully.  

7.2.5 Implications for Biodiversity Monitoring in the Niger 

Delta region. 

Oil pollution in the Niger Delta region of Nigeria poses an existential threat to the people 

as well as the vast and diverse species of flora and fauna that inhabit the region. Results 

of the present study demonstrated the relevance of incorporating remote sensing 

technology in tackling critical environmental issues caused by oil pollution. The strength 

of relationships between spectral diversity metrics and field measured species diversity 

data can be exploited to develop solutions to environmental problems such as halting 

species extinction through proper monitoring and conservation policies. The peculiar 

condition of the Niger Delta region also demands alternative methods to traditional field 

survey practices that endanger lives. The SVH lends itself to several applications 

including regular inspection of ecosystem services and biodiversity. Warren et al. (2014) 

noted that plant species diversity is an essential indicator of ecosystem health, which is 

monitorable via the SVH.  

The combination of spectral metrics showing strong relationships with species richness 

and diversity measures may be useful for mapping the species distribution of a given 

ecosystem. Schmidtlein and Fassnacht (2017) successfully implemented a similar project 



230 

 

(2017) in mapping species occurrences in southern Germany using multispectral data. 

Species distribution maps enhance conservation decisions such as site prioritisation based 

on the structure and composition of plant communities revealed in the spectral variability 

of the maps (Rocchini, Chiarucci and Loiselle, 2004).  

Most importantly, the SVH is applicable in oil spill monitoring programmes to detect 

occurrences. The result of this study showed a clear distinction in species composition of 

polluted and control transects and this difference was apparent in the vegetation 

reflectance. Such definitive characterisation will enhance the monitoring of changes in 

polluted vegetation over time and space by applying the SVH over an area of interest. 

Warren et al. (2014) detected changes in species composition of a habitat subjected to 

different levels of disturbances.   

7.2.6 Analysis of Hyperspectral (HS) Data for Detecting Oil 

Pollution 

Hyperspectral indices successfully detected TPH in the soil. Sensitivity analysis revealed 

that in many wavelengths the response to oil pollution was significantly different between 

polluted and control transects. Band depths of absorption maxima of pigments, NDVVIs 

and red edge position (REP) index were inversely related to soil TPH. Greater R2 values 

existed between these indices and TPH than other field measurements including 

chlorophyll content, vegetation abundance and diversity. The strength of this relationship 

reflects the susceptibility of vegetation to TPH, which interferes with the spectral 

signature. Models of this relationship are useful for detecting spill points and estimating 

TPH concentration in the soil (Zhu et al. 2013). The REP indices successfully 

discriminated between polluted and control transects with an overall accuracy of 84%. 

7.2.7 Analysis of Hyperspectral (HS) Data for Detecting the 

Effects of Oil Pollution on Vegetation 

The development of prediction models for biodiversity monitoring in oil-polluted fields 

from satellite imagery produced two distinctive outcomes. Firstly, with proof that 

vegetation biochemical parameters are linearly related to spectral reflectance and 

intricately linked to species diversity, models based on this relationship were validated 

and implemented with reasonable success. Asner et al. (2009) and Aneece, Epstein and 

Lerdau (2017) linked the mechanism driving the species-spectral diversity relationship 
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to specific chemical fingerprints expressed as differences in plants photosynthetic and 

photoprotective pigments, water and leaf structure. Secondly, oil pollution disrupts these 

relationships substantially due to its deleterious effects (Scholten and Leendertse, 1991; 

Beaubien et al. 2008; Noomen et al. 2012; Njoku, Akinola and Oboh, 2008; Chima and 

Vure, 2014). This occurrence was apparent in the superior performance of NDVVI-based 

models for predicting species diversity and productivity. Sensitivity analysis confirmed 

that differences between polluted and control vegetation were amplified in chlorophyll 

absorption maxima in the blue (440±10 nm) and red (640±10 nm) spectral channels. 

These wavelengths were the most sensitive to TPH concentration in the soil.  Although 

abnormal levels of hydrocarbon in the soil cause detectable changes in the mineralogical 

composition of the soil, this phenomenon was not investigated in this study as spectral 

wavelength evaluated were limited to the VIS and NIR regions. 

Improving remote sensing applications for biodiversity monitoring relies on the 

availability of affordable hyperspectral and hyperspatial imagery. For low- and middle-

income countries such as Nigeria to achieve their biodiversity targets, the availability of 

free or low-cost satellite data is imperative. Such valuable resources will ensure that 

scarce funds are directed towards meeting the needs of other crucial aspects of the 

National Biodiversity Strategy and Action Plans such as creating awareness amongst the 

population on the importance of biodiversity. 

7.2.8 Monitoring Oil Pollution Impact on Vegetation in 

Kporghor Spill Area 

The new hyperspectral indices derived from the Hyperion image performed not only 

firmly in predicting the species diversity of the investigated area of study, but also much 

better than the traditional narrowband indices (NBVIs). The overall best performing 

model depended on indices that measured chlorophyll content in vegetation. This result 

is consistent with previous reports such as Asner, Martin and Suhaili (2012) as well as 

Clark and Roberts (2012), who found strong links between the spectral diversity and 

biochemical variations in vegetation. Clark and Roberts (2012) notably reported that 

hyperspectral metrics, which respond to vegetation chemistry and structure, achieved the 

highest accuracies in discriminating tree species in a tropical rainforest.  
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The study is further proof of the strong relationship between species diversity and 

vegetation productivity in an ecosystem and offers a valuable resource for biodiversity 

monitoring. Although the mechanism by which species diversity influences ecosystem 

productivity is still a subject of much debate, what is sure is that the degradation of one 

leads to the loss of the other (Chapin et al. 2000; Mace, Norris and Fitter, 2012; Mori, 

Furukawa and Sasaki, 2013). Therefore, it is imperative that a uniform standard 

procedure for monitoring biodiversity that provides valuable information to policymakers 

remains a research focus among scientists. 

The spatial map, which portrays the state of vegetation in the investigated area, is an 

essential tool for monitoring biodiversity in the Niger Delta region, as well as on a larger 

scale in areas prone to oil pollution. Considering the deleterious effects of oil pollution 

on vegetation, as reported in previous literature, and confirmed by the results of the 

present study, a combination of the derived hyperspectral metrics and baseline field study 

will provide to investigators adequate information on how much the biodiversity of the 

area is changing. These variables can be integrated into a time series analysis to detect 

oil spill sites and areas worst affected by oil pollution. Such realistic approaches to 

monitoring and preventing environmental degradation and loss of livelihood for 

inhabitants of affected areas can help ameliorate the restiveness associated with oil spill 

impacts. Change detection analysis can help to quantify in monetary terms the ecosystem 

services lost to oil pollution and environmental degradation.  

7.3 Conclusions 

This section presents the overall findings from investigating the research questions 

outlined in Chapter 2 Section 2.10.1 for each results chapter.  

7.3.1 Effect of Oil Pollution on Vascular Plant Species in Rivers 

State (RQ1 and RQ2) 

The main conclusion from this research is that oil pollution adversely affects biodiversity 

and ecosystem services in Rivers State of Nigeria (RQ1, RO1, RQ2, RO2, C-4). Evidence 

of this effect abounds in reduced vegetation physical (species abundance and diversity) 

and biochemical (leaf chlorophyll) parameters observed on polluted transects, some of 

which were measurable via remote sensing tools. Giving due consideration to these losses 

when compensatory policies are implemented is highly recommended as it will go a long 
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way in ameliorating the suffering of the indigenous population following oil spill 

incidents, thereby reducing militancy and restiveness in the Niger Delta region of Nigeria. 

Consequently, it is imperative that the rate and extent of oil spills are drastically reduced 

to avoid further damage in the Niger Delta ecosystem. Furthermore, environmental 

friendly remediation methods are encouraged to restore polluted areas to their pre-spill 

status without further damaging the vegetation. These methods include phytoremediation 

using TPH tolerant species such as revealed in this study. 

7.3.2 Spectral Diversity Metrics for Detecting Effect of Oil 

Pollution on Biodiversity (RQ2, RQ3) 

Spectral metrics from Sentinel 2A validated the SVH and revealed the adverse effect of 

TPH on vegetation (RQ2, RQ3, RO2, RO3, C-5). Models based on these metrics 

estimated soil and vegetation parameters successfully. However, the species-spectral 

diversity relationship was influenced by the presence of TPH in the soil, which 

challenged the SVH as originally proposed in the literature. The results of the present 

study imply that estimation of TPH concentration in polluted soil is possible remotely 

without going to the field to obtain soil samples. This potential is very crucial in the Niger 

Delta region of Nigeria where insecurity is a significant consideration in any field 

activity. With the successful discrimination of polluted and control vegetation using 

spectral diversity metrics, biodiversity monitoring over time and space is enhanced with 

satellite data. 

7.3.3 Species Diversity Models for Monitoring Biodiversity 

(RQ4)  

Hyperspectral data revealed subtle changes in vegetation reflectance that were 

inconspicuous in the multispectral data (RQ2, RO2 C-4). These changes may have 

resulted from oil pollution effect on pigment concentration including chlorophyll, 

anthocyanins, and carotenoids, which appeared to have interfered with vegetation spectra. 

The new index (NDVVI) derived from TPH sensitive Hyperion wavelengths 

outperformed traditional NBVIs in predicting the species diversity of the area (RQ4, 

RO4, C-6). The index provides an essential tool for monitoring biodiversity in oil-

producing areas that are always at risk of pollution thereby limiting the need for time-

consuming and cost-intensive field surveys. It also serves as a tool for early detection of 

spills when carried out routinely. The red-edge position (REP) index, also computed from 
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hyperspectral data, revealed vegetation response to oil pollution. There were obvious 

significant differences in red-edge reflectance of polluted and control vegetation 

attributable to the effect of hydrocarbon on chlorophyll absorption in the red channel of 

the spectrum. 

Furthermore, oil pollution adversely affected vegetation characteristics such as 

abundance, and reduced reflectance at the REP. Despite the linear relationship between 

REP reflectance and vegetation abundance and chlorophyll estimate, the regression 

analysis showed that REP decreased for these parameters in the presence of soil TPH. 

Finally, the REP index successfully classified investigated transects as polluted or control 

with an overall accuracy of 84% which renders it a useful tool for detecting oil spills in 

inaccessible vegetated terrestrial areas. 

7.4 Challenges  

7.4.1 Data Availability  

One of the major challenges encountered in this study was the unavailability of 

appropriate satellite data for the study area. Initially, very high-resolution data were 

intended for use; however, the prohibitive cost of acquiring this type of dataset 

discouraged their use. The Hyperion sensor acquired the only free hyperspectral data; 

however, the spatial resolution of 30 m limited its usefulness.  

7.4.2 Field Work 

The human conflicts in the study area during the fieldwork campaign also hindered data 

collection. The lack of support from the oil companies, despite a directive from the 

regulatory agency, put the fieldwork team at risk of kidnapping and other dangers. 

Attempts to collect as much as data as possible within short periods made species 

identification in the field challenging; hence photographs were taken to herbariums for 

their determination. This type of difficult conditions generally hinders academic research 

in Nigeria. It is recommended that oil companies and other corporate organisations 

support researchers as part of their social responsibility to society. Furthermore, the 

regulatory agency should enforce commensurate penalties for companies failing to 

adhere to directives to provide support for research. 
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7.4.3 Image Processing Tools 

Conscientious effort to utilise free software for most of the image processing demanded 

the acquisition of new analytical skills. Most of the resources were available online and 

through funded workshops. However, in reality, this is a severe challenge for local 

researchers or stakeholders interested in applying remote sensing tools in monitoring the 

effect of oil pollution on biodiversity. The internet connectivity and funding problems are 

a significant hindrance to assessing these important analytical skill set.   

7.5 Contribution to Knowledge  

This research provides an overview of vascular plant species composition in Rivers State. 

The vegetation survey of 20 locations in five LGAs across the State in difficult terrain 

and insecure localities present a unique dataset that fills a gap in knowledge. This species 

inventory is crucial for biodiversity conservation and management in the region. The 

research in Chapter 4 identifies, on the one hand, oil-tolerant indicator species that are 

essential for biodiversity monitoring of polluted areas and on the other hand, the 

vulnerable species requiring protection through conservation policies. Vegetation species 

with potential for phytoremediation in oil-polluted sites also were identified. 

Phytoremediation is an environmentally friendly alternative clean-up method for 

impacted locations.  

The evaluation of remote sensing tools integrated with field data revealed the mechanism 

through which oil pollution impact on vegetation productivity. The continuum removal 

and band depth analysis in Chapter 6 Section 6.3.4 demonstrated that oil pollution inhibits 

chlorophyll synthesis and radiance absorption, which triggers the production of 

photoprotective pigments such as the anthocyanins manifested in the increased band 

depth at the absorption maxima. Processing of satellite data also yielded indices (for 

instance, the normalised difference vegetation vigour index computed from TPH-

sensitive Hyperion wavelengths) that may contribute to the development of essential 

biodiversity variables (EBVs) for biodiversity monitoring. Analysis of the spectral 

variability hypothesis (SVH) revealed the limitations of its application in 

environmentally degraded highly diverse regions. The results supported the hypothesis 

that habitats with higher species diversity have higher spectral diversity, but also that 

habitat heterogeneity associated with oil pollution also supports high spectral diversity. 
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This revelation is essential for efficient monitoring and management of biodiversity at 

local, regional and global scales. Additionally, the study demonstrated that the estimation 

of soil TPH is possible with a combination of spectral metrics in prediction models. This 

may serve as a useful tool in monitoring oil pollution in hard to reach areas of the Niger 

Delta region. 

7.6 Future Research 

Based on the results of the present research, there is potential to improve biodiversity 

monitoring using satellite data. Future research projects may involve implementing the 

species diversity models in other regions subjected to oil pollution to determine species 

identification using very high spectral and spatial resolution imagery. Spectral library of 

the indicator and dominant species in the study area can be acquired using the field 

spectrometer provided the area is secured. The acquisition of spectral signatures of the 

indicator and dominant species across the Niger Delta region of Nigeria will facilitate 

biodiversity conservation and monitoring and help the country meet its National 

Biodiversity Strategy and Action Plans. An area of hyperspectral remote sensing of 

vegetation currently under-researched is the estimation of TPH from vegetation 

reflectance. With the high dimensional hyperspectral data, investigating the shortwave 

infrared (SWIR) where water and atmospheric absorption maxima occur may yield 

interesting tools for oil spill detection on forested areas. Additionally, the proximate 

chemical composition of major food crops grown in the region needs investigating to 

determine their safety for consumption, and links between these and general wellbeing 

of inhabitants determined to facilitate the provision of health care services. 
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8 Appendix 

8.1 Description of Vegetation and Biodiversity 

Measures 

8.1.1 Species Taxa 

Taxa is a measure of the counts of species occurring in each segment along investigated 

transects. It provides an estimate of the species richness and diversity of the segments. 

Determined from species inventory tally sheets. 

8.1.2 Sorenson’s Similarity Index of Transects 

Similarity index measures the degree of association or agreement of two entities or 

variables, in this case, vegetation data from polluted and control transects (Warrens, 

2008).  In this study, segments of polluted and control transects across the entire study 

area were clustered into groups based on their similarity index which, quantifies their 

level of association concerning species composition. The formula for Sөrenson’s 

similarity index (IS) is:   

𝐼𝑆 =  
2𝑀𝑊

𝑀𝐴+𝑀𝐵
∗ 100              

Where  

MW = Sum of the smaller numbers of plant species common to the control and test 

transects  

MA = the sum of all plant species in the transect A 

MB = the sum of plant species in the transect B 

8.1.3 Number of Individual Plants 

This is a measure of the abundance of each species observed per segment. The number 

of individual plants per species was determined from tally sheets 

8.1.4 Frequency 

This is the probability of a plant species occurring in a given number of segments 

(Bonham, 2013a). Frequency of species occurrence was used to detect any changes in 

vegetation composition of polluted and control transects. Vegetation frequency was 

calculated from species inventory data as:- 
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Frequency   =    
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑜𝑐𝑐𝑢𝑟𝑒𝑑

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑖𝑛𝑣𝑒𝑠𝑡𝑖𝑔𝑎𝑡𝑒𝑑
                

8.1.5 Density 

Also a measure of abundance defined as the number of individuals of a given species 

occurring in a given sample unit. Density estimate are relevant for monitoring plant 

responses to environmental disturbances (Bonham, 2013b). Density estimates for 

observed species in the study area were calculated to identify vegetation responses to oil 

pollution using the following formula:- 

Density =  
𝑛𝑢𝑚𝑏𝑒𝑟 .𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑖𝑛 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠 𝑠𝑡𝑢𝑑𝑖𝑒𝑑
       

8.1.6 Importance Value Index 

This is a measure of the ecological importance of a given species in an ecosystem. It is 

frequently used to prioritise species for conservation purposes (Zegeye, Teketay and 

Kelbessa, 2006), however, in this study, the IVI of species was used to determine the 

effect of oil pollution on vegetation structure by comparing the IVI of species on polluted 

and control transects. IVI was calculated by summing the relative values of frequency 

and density where 

Relative frequency =  
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎 𝑔𝑖𝑣𝑒𝑛 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑠𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑎𝑙𝑙 𝑠𝑝𝑒𝑐𝑖𝑒𝑠
 * 100              

And  

Relative density = 
 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑎 𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑡𝑜𝑡𝑎𝑙𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙𝑠 
 * 100          

8.1.7 Indicator Species 

Indicator species are organisms whose presence, absence or abundance provides an 

ecological indication of community or habitat types, environmental conditions or 

environmental changes (Cáceres et al. 2012). They can provide important information on 

the type and volume of environmental pollution and other stressors. A good indicator 

species is one that is both abundant in a specific type of habitat (specificity) and 

predominantly found in this type of habitat (fidelity). 

Indicator values of a species (i) at a given site (j) is calculated as 

IndValij = Specificityij * Fidelityij * 100              
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Where 

IndValij = indicator value of a given species (i) in relation to a (j) type of site 

Specificityij = proportion of sites ‘j’ in which occurred species ‘i’ 

Fidelityij = the proportion of the number of individuals (abundance) of species ‘i’ that 

occurred in site ‘j’ 

 

In this study, indicator value of species was calculated in R using the indicspecies package 

developed by De Cáceres and Jansen (2016), to identify species whose presence or 

absence reveal the occurrence of oil pollution in the study area. 

8.1.8 Species Occurrence Curve (SOC) 

This is a measure of how individuals of a species are distributed among the sampling 

units (segments). Species occurrence curve was used to visualise the distribution of 

species in polluted and control segments and to determine the most frequently occuring 

species. The curve is derived by plotting the cumulative count of species on the x-axis 

and the number of plots on the y-axis. 

8.1.9 Species Accumulation Curve (SAC) 

Provide estimations of the number of species in a given habitat and is used to compare 

the richness of different communities at comparable levels of sampling efforts (Dorazio 

et al. 2006). In this study, the SAC was plotted to illustrate the differences in the species 

richness of polluted and control transects.  

 

8.2 Description of Vegetation Indices 

8.2.1 Normalised Difference Vegetation Index (NDVI) 

The NDVI originally derived by Pearson and Miller (1972) is a non-linear transformation 

of the visible (red) and near-infrared bands of vegetation signals captured by remote 

sensors. It is useful for the assessment of vegetation characteristics such as biomass 

(AGB), leaf area index (LAI), the percentage of vegetation cover and the fraction of 

absorbed photosynthetic active radiation intercepted (fPAR) (Pettorelli et al. 2005; 

Adoki, 2012). Although factors including soil colour, atmospheric effects, illumination 

and observation geometry affect the index, it remains the most widely used vegetation 

index for analysing remotely sensed data. The NDVI can serve as a functional biotic 
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indicator in biodiversity monitoring schemes (de Bello et al, 2010) NDVI is calculated 

from the following formulae for broadband and narrowband respectively:  

NDVI =  
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                                        

(5)  

NDV I = 
(𝑅800−𝑅670)

(𝑅800−𝑅670)
                                                  

(6) 

Where 

NIR is the reflectance from the near-infrared band 

Red/R is the reflectance from the visible red band(s) 

 

8.2.2 Soil Adjusted Vegetation Index (SAVI) 

The vegetation index adjusted for soil reflectance is for use in areas of sparse vegetation. 

According to Huete (1988), the SAVI minimises “soil brightness influences from spectral 

vegetation indices involving red and near-infrared (NIR) wavelengths” using the 

parameter L. SAVI is calculated from the following formula for narrowband 

SAVI =  (1 + 𝐿) ∗
(𝑅800−𝑅670)

(𝑅800+𝑅670+𝐿)
                                           

(7) 

And for broadband 

SAVI =  𝑁𝐼𝑅 −
 𝑅𝐸𝐷

 𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
 ∗  (1 +  𝐿)                        

(8) 

Where 

R is the reflectance at the listed waveband 

NIR is the reflectance from the near-infrared band 

L is the constant 0.5 
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8.2.3 Red Edge Position (REP) 

The Red Edge Position (REP) determines spectral vegetation reflectance by correlating 

chlorophyll content with reflectance (Noomen, Van der Meer and Skidmore, 2005). It is 

the inflexion point on the slope between the red absorption and the near-infrared 

reflectance. Factors that affect plant health affect the chlorophyll content in leaves and 

lead to increased reflectance in the red region. Studies show that decreasing leaf 

chlorophyll causes the red edge position to shift towards shorter wavelengths (Noomen 

and Skidmore, 2009). Whereas increasing chlorophyll content results in REP shifting 

towards longer wavelengths in plants growing on polluted soils (Cho and Skidmore, 

2006). There are several methods for calculating REP including maximum first 

derivative, linear four-point interpolation technique, polynomial fitting technique and the 

inverted Gaussian fitting technique (Noomen et al. 2012). In this study, REP 

determination is from the maximum first derivative and linear interpolation method. The 

formula for the linear method is based on Clevers (1994) and given as 

𝑅𝐸𝑃 =  700 +  40 ∗
(𝑅𝑅𝐸𝑃−𝑅700)

(𝑅740−𝑅700)
                          

(9) 

Where  𝑅𝑅𝐸𝑃  =
𝑅670+𝑅780

2
                

(10) 

700 and 40 = constants resulting from interpolation in the 700 nm – 740 nm interval 

R = reflectance at listed waveband. 

8.2.4 Anthocyanin Reflectance Index (ARI) 

Anthocyanins are water- soluble leaf pigments that determine how plants respond to 

stress conditions in the environment. (Ustin et al. 2009). They frequently occur in higher 

plants at the epidermal and mesophyll cells and are bio-synthesised in response to soil 

contamination, extreme temperatures, pathogenic infections, nitrogen and phosphorus 

deficiencies, wounding or other environmental stress factors occurring in plants. 

Anthocyanins also screen out excess solar radiation from reaching the reaction centre. 

They are stress indicators as well as mitigators (Hatier and Gould, 2008). Together with 

chlorophyll contents in leaves, the anthocyanins provide essential information on the 
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health status of vegetation (Gitelson, Chivkunova and Merzlyak, 2009). The ARI is a 

non-destructive method of estimating the leaf anthocyanins using data from remote 

sensing. 

Researchers determine leaf anthocyanin content using both broadband and narrowband 

derived indices (Gitelson et al. 2001; Gitelson et al. 2006; Gitelson, Chivkunova and 

Merzlyak, 2009; van den Berg, Abby K and Perkins, 2005). These indices are a 

combination of reflectance values from spectral bands, which are sensitive to changes in 

the anthocyanin content in leaves. Gitelson et al. (2008) compared the anthocyanin 

estimation accuracy of a few prominent indices, and results showed that the anthocyanin 

reflectance index (ARI) and its modified version (mARI) were most successful with the 

least root mean square error (RMSE). The following equations are used to estimate both 

indices  

𝐴𝑅𝐼 =  (
1

𝑅𝑔𝑟𝑒𝑒𝑛
−

1

𝑅𝑟𝑒𝑑−𝑒𝑑𝑔𝑒
)              

(11) 

𝑚𝐴𝑅𝐼 = (
1

𝑅𝑔𝑟𝑒𝑒𝑛
−

1

𝑅𝑟𝑒𝑑−𝑒𝑑𝑔𝑒
)  ∗ 𝑅𝑁𝐼𝑅            

(12) 

Where 

Rgreen = is reflectance at the green waveband, 

Rred-edge = reflectance at the red waveband. 

RNIR = reflectance at the near infrared 

8.2.5 Carotenoid Reflectance Index (CRI) 

Carotenoids are plant pigments that help to protect plants from harmful and excessive 

solar radiation and essential for photosynthetic functions in green plants. Unhealthy 

vegetation contains higher concentrations of carotenoids, hence is an indicative measure 

of stress in plants. Carotenoids strongly absorb light in the blue band and exhibit varying 

degrees of reflectance at longer wavelengths (Gitelson et al. 2002). Several studies 

assessing the sensitivity of spectral bands to pigment content have been carried out with 

various indices suggested for estimating carotenoid content in plants (Chappelle, Kim 

and McMurtrey, 1992; Blackburn, 1998; Peñuelas and Filella, 1998) However, Gitelson 
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et al. (2002) identified the limitations in these indices and proposed the following formula 

for deriving carotenoid contents 

𝐶𝑅𝐼2 = (𝜆510
−1 ) − (𝜆700

−1 )               

(13) 

Where 

𝜆510 is reflectance at 510nm +/- 5  

𝜆700 is reflectance at 700nm +/- 7.5 

 

Other important indices relevant to measuring total petroleum hydrocarbon effect (TPH) 

effect on plant biochemical parameters include 

Pigment Specific Simple Ration (PSSR)  

Pigment Specific Normalised Difference (PSND) 

Modified Chlorophyll Absorption Ratio Index (MCARI) 

Transformed Chlorophyll Absorption Ratio Index (TCARI) 

Maximum First Derivative Spectrum (deRES) 

And so on (Zhu et al. 2013). 

8.3 Supplementary Data 

8.3.1 Laboratory Analytical Methods 

This section describes the analytical methods utilized by the International Energy 

Services Limited laboratory located at 34 Old Aba Road, Port Harcourt, Rivers State, 

Nigeria to determine the various soil physico-chemical properties. 

8.3.1.1 General Health and Safety Observations 

A. Health Safety and Environment 

 Hazards 

- Toxic chemicals 

- Glass breakage 

- Chemical burns 

- Generation of waste 

 Personal protective equipment 

All personnel must be aware of chemical handling technique. Wear the 

appropriate personal protective equipment at all times in the work area. PPEs shall 
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include laboratory coats, coverall, safety shoes, hand gloves and respiratory 

masks. 

8.3.1.2 Total Petroleum Hydrocarbons: EPA 8015 

https://www.epa.gov/sites/production/files/2015-12/documents/8015d_r4.pdf 

8.3.1.3 Determination of Arsenic Ion in Water 

A. Purpose 

   This document describes the determination of arsenic ion in water in water 

B. Scope 

   This document covers the determination of arsenic ion in fresh water, waste water and                        

sea water, associated hazards, personal protective equipment required and quality 

control. 

C. Methods 

   Atomic Absorption Graphite furnace, ASTM D 2972 

D. Summary of Method 

Water adjusted to approximately pH 8.3 is titrated with silver nitrate solution in the 

presence of potassium chromate indicator. The end point is indicated by persistence 

of brick red silver chromate color. 

E. Apparatus 

 Equipment 

- Weighing balance 

- Weighing boat 

- Magnetic stirring bar 

- Pipette filler 

- Filter paper 

- Graphite furnace 

 Glassware 

- Volumetric flask, 1L 

- Graphite tubes 

- Conical flask 

- Burette 

- Beakers 

- Glass funnel 

F. Reagents and Solutions 

 Reagents 

- Arsenic solution intermediate (1m=10µg As); Arsenic standard solution. 

Dilute 10ml of arsenic intermediate solution and 1ml of HNO3 to 100ml, 

this standard is used to prepare working standards at the same time of 

analysis. 

- Hydrogen peroxide (30%)-H202. 

- Nickel Nitrate solution –dissolve 5g of Nickel nitrate (Ni(NO3)2.6H20) in 

water and dilute to 100ml. 

https://www.epa.gov/sites/production/files/2015-12/documents/8015d_r4.pdf
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-  Nitric acid-concentration nitric acid. Nitric acid (1+9) –add 1ml of HNO3 

to 9ml of water. 

- Purified argon is the usual support gas though nitrogen may be used if 

recommended by the instrument manufacturer. 

G. Procedure 

- All glass wares should be cleaned and rinsed with HNO3 (1+1) and with 

water. 

- Add 8.0ml of filtered and acidified sample to a beaker or flask.  

- Then add 1ml of HNO3 (1+9) and 1.0ml of Nickel nitrate solution. Mix 

thoroughly and inject a measured aliquot of sample into the furnace device. 

H. Calibration 

- Prepare calibration standards by diluting stock solution at the time of 

analysis for best result, prepare these calibration standard solutions daily, or 

as required, and discard after use.  

- Prepare a blank and at least 3 calibration standard in graduated amounts in 

the appropriate range. Space the calibration standard evenly in 

concentrations from 0 to 20% greater than the highest expected value. 

- Prepare the calibration standards with same acid and at the same acid 

concentration as will result in the sample to be analysed either directly or 

after processing. 

- Beginning with the blank and working towards the highest standard, 

analyze the solutions and record the readings. Repeat the operation and 

record the readings. 

- Repeat the operations with both the calibration standards and the samples a 

number of times to get a reliable average reading for each solution.  

- Construct an analytical curve by plotting the absorbance of standards versus 

their conc. on linear graph paper. Alternatively, read direct in conc. if the 

capability is provided with instrument. 

- Prepare a new analytical curve for each series of samples or whenever a 

new Graphite Tube is used. 

 

I. Reporting Results 

Record results directly into analyst notebook before transferring to the relevant     

test/analysis result. 

 

 

8.3.1.4 Determination of Lead Ion in Water 

A. Purpose 

     This document describes the determination of lead ion in water in water 

B. Scope 

This document covers the determination of lead ion in fresh water, waste water and     

sea water, associated hazards, personal protective equipment required and quality 

control. 
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C. Methods 

     Direct Atomic Absorption ASTM D 3559 

 Summary of Method 

     Determination of lead in water/soil samples. 

D. Apparatus 

 Equipment 

- Weighing balance 

- Weighing boat 

- AAS 

- Pipette filler 

- Filter paper 

 Glassware 

- Volumetric flask, 1L 

- Pipette 

- Conical flask 

- Burette 

- Beakers 

- Glass funnel 

E. Reagents and Solutions 

 Reagents 

- Lead stock solution (1ml=1mg Pb) 

Dissolve 1.5999g of lead nitrate (Pb(NO3)2) in a mixture of 10ml of HNO3 

and 100ml of water. Dilute to 1L of water. 

(Warning: lead salts are toxic, handle with care to avoid personal 

contamination) 

- Lead standard solution (1ml=0.1mg Pb) 

Dilute 100ml of stock lead solution to 1L with HNO3 (1+499), store all 

solutions in polyethylene bottles. 

- Nitrate acid (1+499) 

Add 1 volume of HNO3 to 499 volumes of water. 

F. Procedure 

- Measure 100ml or less of the sample into a 125ml conical flask or beaker. 

- Aspirate each filtered and acidified sample and determine its absorbance to 

concentration at 283.3 nm. 

- Aspirate HNO3 (1+499) between samples. 

G. Calibration 

- Prepare 100ml each of a blank and at least four standard solutions by 

diluting the lead standard solution with HNO3 (1+499). Prepare the standard 

each time the test is to be performed. 

- Aspirate the blank and standards and record the instruments readings. 

- Aspirate HNO3 (1+499) between standards. 

- Prepare an analytical curve by plotting the absorbance versus the 

concentration for each standard on linear graph paper. 
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H. Reporting Results 

Record results directly into analyst notebook before transferring to the relevant     

test/analysis result 

 

8.3.1.5 Determination of Cadmuim Ion in Water 

A. Purpose 

     This document describes the determination of cadmuim ion in water in water 

B. Scope 

This document covers the determination of cadmuim ion in fresh water, waste water 

and     sea water, associated hazards, personal protective equipment required and 

quality control. 

C. Methods 

     Direct Atomic Absorption ASTM D 3557 

 Summary of Method 
     Determination of cadmium in water/soil samples. 

D. Apparatus 

 Equipment 

- Weighing balance 

- Weighing boat 

- AAS 

- Pipette filler 

- Filter paper 

 Glassware 

- Volumetric flask, 1L 

- Pipette 

- Conical flask 

- Burette 

- Beakers 

- Glass funnel 

E. Reagents and Solutions 

- Calcium solution: Dissolve 630 mg calcium carbonate, CaCO3, in 50 mL of 

1 + 5 HCl. If necessary, boil gently to obtain complete solution. Cool and 

dilute to 1000 mL with water. 

- Hydrochloric acid, HCl, 1%, 10%, 20% (all v/v), 1 + 5, 1 + 1, and conc. 

- Lanthanum solution: Dissolve 58.65 g lanthanum oxide, La2O3, in 250 mL 

conc HCl. Add acid slowly until the material is dissolved and dilute to 1000 

mL with water. 

- Hydrogen peroxide, 30%. 

- Nitric acid, HNO3, 2% (v/v), 1 + 1, and conc. 

- Aqua regia: Add 3 volumes conc HCl to 1 volume conc HNO3. 

- Cadmium: Dissolve 0.100 g cadmium metal in 4 mL conc HNO3. Add 8.0 

mL conc HNO3 and dilute to 1000 mL with water; 1.00 mL = 100 µg Cd. 
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-  

F. Procedure 

- Measure 100ml or less of the sample into a 125ml conical flask or beaker. 

- Aspirate each filtered and acidified sample and determine its absorbance to 

concentration at 396 nm. 

- Aspirate HNO3 (1+1) between samples. 

G. Calibration 

- Prepare 100ml each of a blank and at least four standard solutions by 

diluting the cadmuim standard solution with HNO3 (1+1). Prepare the 

standard each time the test is to be performed. 

- Aspirate the blank and standards and record the instruments readings. 

- Aspirate HNO3 (1+1) between standards. 

- Prepare an analytical curve by plotting the absorbance versus the 

concentration for each standard on linear graph paper. 

H. Reporting Results 

Record results directly into analyst notebook before transferring to the relevant     

test/analysis result 

 

8.3.1.6 Digestion of Sample for Metals Analysis with Mineral Acids and 

Heating at Atmospheric Pressure (METHOD: ASTM D 1971B) 

A. Apparatus:  

     Steam bath or hot plate 

B. Reagents and Materials: 

- Hydrochloric Acid (Sp Gr 1.19) – Concentrated Hydrochloric Acid (Hcl) 

- Nitric Acid (Sp Gr 1.42) – Concentrated Nitric Acid (HNO3) 

- Filter Paper – Fine Textured, Acid Washed, Ash-less. 

C. Procedure: 

 Preparation for liquid sample (acidification),  

- Measure 100ml of well mixed sample into a 125ml beaker or flask and add 

0.5ml of Conc HNO3. 

- If the sample has been preserved at a recommended level of 0.5ml of Conc 

HNO3 per litre of sample, the addition of acid at this step can be omitted. 

 Preparation for solid or semi-solid sample, 

-  Sample should be homogenous and solid samples should be finely ground 

(samples are first dried at <60oC, then ground and sieved through a 

20mm/10mesh sieve). The sample should not be digested as received (wet) 

- Weigh out accurately to the nearest milligram, 0.5g or otherwise and place in 

a 125ml (or larger) beaker or flask and add 100ml of distilled water and 0.5ml 

of HNO3. 

 Finishing (Digestion) 
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- Add 5ml of HCl to the beaker or flask and heat the samples on a stream bath 

or hot plate in a well ventilated hood until the volume has been reduced to 15 

to 20ml making certain that the sample does not boil. (Alternatively the 

sample mixture with acids is heated at 90oC for 2hrs) 

- When analyzing samples containing appreciable amount of solid matter, the 

actual amount of reduction in volume is left to the discretion of the analyst. 

- Cool and remove solids (filter), quantitatively transfer sample to 100ml 

volumetric flask or other suitable size and Adjust to volume. (The digested 

sample is filtered/ washed and diluted as the case may be with water to 

appropriate volume and then; 

- Proceed with assay of digested sample by atomic absorption 

spectrophotometry (flame atomization or plasma emission spectroscopy). 

 

Note: This procedure presents a digestion technique widely used for water, influent and 

effluent, sludge, soil, sediment as well as plant and animal tissue etc samples to give what 

is defined as total recoverable metals. The metals digestion procedure of the USEPA for 

total recoverable metals is similar, but uses one-half the amount of HCl that is specified 

in this practice. 

 

D. Interferences 

 In some samples, the metals of interest are bounds or occluded in a matrix that is 

impervious to dissolution by the acids. This is most frequently encountered in 

geological samples. 

 The complete dissolution of a metal may not occur due to the digestion conditions 

being insufficiently rigorous for a particular metal. In other instances, the 

chemical makeup of the sample may render the digestion acids ineffective. 

 

8.3.1.7  Total Heterotrophic Plate Count 

A. Purpose 

     This document describes the determination of Total Heterotrophic Bacteria (THB) in 

water. 

B.  Scope 

This document covers the determination of Total Heterotrophic Bacteria (THB) in 

fresh water, waste water and sea water, associated hazards, personal protective 

equipment required and quality control. 

C. Methods 

APHA 9215 B Pour Plate Method 

 Summary of Method 

Determination of total hetrotrophic bacteria (THB) water/soil samples. 

D. Apparatus 

 Equipment 

- Bags, Whirl-Pak with declorinating agent, sterile, 180-mL 

- Bags, Whirl-Pak without declorinating agent, sterile, 205-mL and 710-mL 

- Clamp, Test Tube Colony Counter, Quebec, 110 VAC, 60 Hz. 

- Colony Counter, Quebec, 220 VAC, 50 Hz 
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- Counter, hand tally 

- Germicidal ClothsHot Plate, 120 VAC, 50/60 Hz  

- Hot Plate, 240 VAC, 50/60 Hz  

- Incubator, Culture, Low-Profile, 120 VAC, 50/60 Hz 

- Incubator, Culture, Low-Profile, 220 VAC, 50/60 Hz 

- Thermometer -10 to 110 °C 

 Glassware 

- Pipets, Serological, 1 mL, sterile, disposable  

- Pipets, Serological, 10-11 mL, sterile, disposable  

- Beaker, 250-mL 

- Bottle, sample, glass, with cap, 118-mL 

- Dish, Petri, 100 x 15 mm, sterile, disposable 

- Dish, Petri, 100 x 15 mm, sterile, disposable 

E. Reagents and Solutions 

8.3.1.7.E.1 Dechlorinating Reagent Powder Pillows  

8.3.1.7.E.2 Dilution Water, Buffered, sterile, 99-mL 

8.3.1.7.E.3 Plate Count Agar (Tryptone glucose yeast agar) Tubes 

F. Procedures 

8.3.1.7.F.1 Preparation: Thoroughly mix samples using a mechanical shaker for 15 

seconds 

8.3.1.7.F.2 Dilution: serial dilution using sterile water so that the total number of 

colonies on aplate will be between 30-300. 

- Pipet 0.1 ml of diluted sample into sterile petri dish before adding  melted culture 

nmeduinm and mix carefully 

- Solid agar is melted in boiling water and maintained at temperatures of 44 to 46 

0C 

- Place solidified plates in an incubatoir 

 

G. Incubation:-  

- 350C for 48 hours 

H. Reporting Results 

Count all colonies on selected plates promptly after incubation. If count must be 

delayed temporarily, store plates at 5 to 10 °C for no more than 24 hours, but avoid 

routine delays. 

 

8.3.1.8 Determining the pH of samples 

 Apparatus 

- Electrometric titrator 

- Titration vessel  (020-mL, tall-form Berzelius beaker with a three-hole 

stopper or a 125-mL or 250-mL erlenmeyer flask with a two-hole stopper. 

- Magnetic stirrer. 

- Pipets, volumetric. 

- Flasks, volumetric, 1000-, 200-, 100-mL. 
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- Burets, borosilicate glass, 50-, 25-, 10-mL. 

- Polyolefin bottle, 1-L. 

 Reagents and Solutions 

 Reagents 

- Carbon dioxide-free water: distilled or deionized water boiled for 15 minutes 

and cooled to room temperature with pH ≥ 6.0 and conductivity <2 

µmhos/cm. 

- Potassium hydrogen phthalate solution, approximately 0.05N  

- Standard sodium hydroxide titrant, 0.1N 

- Standard sodium hydroxide titrant, 0.02N 

- Hydrogen peroxide, H2O2, 30%. 

 Solutions 

- Bromphenol blue indicator solution, pH 3.7 indicator 

- Metacresol purple indicator solution, pH 8.3 indicator 

- Phenolphthalein indicator solution, alcoholic, pH 8.3 indicator. 

- Sodium thiosulfate, 0.1M4.  

-  

 Procedure 

 Hot peroxide treatment:  

- Pipet a suitable sample into titration flasks.  

- Measure pH. If pH is above 4.0 add 5-mL increments of 0.02N sulfuric acid 

(H2SO4) to reduce pH to 4 or less.  

- Remove electrodes.  

- Add 5 drops 30% H2O2 and boil for 2 to 5 min.  

- Cool to room temperature and titrate with standard alkali to pH 8.3. 

 Potentiometric titration curve:  

- Measure sample pH.  

- Add standard alkali in increments of 0.5 mL or less, such that a change of 

less than 0.2 pH units occurs per increment. 

- After each addition, mix thoroughly but gently with a magnetic stirrer. Avoid 

splashing. Record pH when a constant reading is obtained. 

- Continue adding titrant and measure pH until pH 9 is reached.  

- Construct the titration curve by plotting observed pH values versus 

cumulative millilitres titrant added.  

- Determine acidity relative to a particular pH from the curve.  

 

 Reporting Results 

- Report pH of the endpoint used, as follows: ‘‘The acidity to pH _______ = 

_______ mg CaCO3/L.’’ If a negative value is obtained, report the value as 

negative. The absolute value of this negative value should be equivalent to the 

net alkalinity. 

8.3.1.9 Determination of Nitrate ion in water  

A. Purpose 

      This document describes the determination of Nitrate ion in water. 
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B.  Scope 

This document covers the determination of Nitrate ion in fresh water, waste water 

and sea water, associated hazards, personal protective equipment required and 

quality control. 

C. Methods 

APHA 4500 Nitrate Electrode Method 

 Summary of Method 

Determination of nitrate ion (NO3
+) water/soil samples. 

 Apparatus 

- pH meter, expanded-scale or digital, capable of 0.1 mV resolution. 

- Double-junction reference electrode. Fill outer chamber with 

(NH4)2SO4 solution. 

- Nitrate ion electrode: Carefully follow manufacturer’s instructions 

regarding care and storage. 

- Magnetic stirrer: TFE-coated stirring bar. 

 

D. Reagents and Solutions 

- Nitrate-free water: Use for all solutions and dilutions. 

- Stock nitrate solution:  

- Standard nitrate solutions: Dilute 1.0, 10, and 50 mL stock nitrate solution to 

100 mL with water to obtain standard solutions of 1.0, 10, and 50 mg NO3–

-N/L, respectively. 

- Buffer solution: Dissolve 17.32 g Al2(SO4)318H2O, 3.43 g Ag2SO4, 1.28 g 

H3BO3, and 2.52 g sulfamic acid (H2NSO3H), in about 800 mL water. 

Adjust to pH 3.0 by slowly adding 0.10N NaOH. Dilute to 1000 mL and store 

in a dark glass bottle. 

- Sodium hydroxide, NaOH, 0.1N. 

- Reference electrode filling solution: Dissolve 0.53 g (NH4)2SO4 in water 

and dilute to 100 mL. 

 

E. Procedure  

 Preparation of calibration curve:  

- Transfer 10 mL of 1 mg NO3
–-N/L standard to a 50-mL beaker, add 10 mL 

buffer, and stir with a magnetic stirrer. Immerse tips of electrodes and record 

millivolt reading when stable (after about 1 min).  

- Remove electrodes, rinse, and blot dry.  

- Repeat for 10-mg NO3
–-N/L and 50-mg NO3

–-N/L standards.  

- Plot potential measurements against NO3–-N concentration on 

semilogarithmic graph paper, with NO3–-N concentration on the logarithmic 

axis (abscissa) and potential (in millivolts) on the linear axis (ordinate). A 

straight line with a slope of +57 ±3 mV/decade at 25°C should result.  

- Recalibrate electrodes several times daily by checking potential reading of 

the 10 mg NO3–-N standard and adjusting the calibration control until the 

reading plotted on the calibration curve is displayed again. 
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 Measurement of sample:  

- Transfer 10 mL sample to a 50-mL beaker, add 10 mL buffer solution, and 

stir (for about 1 min) with a magnetic stirrer. 

- Measure standards and samples at about the same temperature. Immerse 

electrode tips in sample and record potential reading when stable (after about 

1 min). 

- Read concentration from calibration curve. 

 Precision 

- Over the range of the method, precision of ±0.4 mV, corresponding to 2.5% 

in concentration, is expected. 

 

8.3.1.10 Determination of Total Dissolved Phosphorus ion in water  

A. Purpose 

     This document describes the determination of Phosphorus ion in water. 

B. Scope 

  This document covers the determination of Phosphorus ion in fresh water, waste-

water and sea water, associated hazards, personal protective equipment required 

and quality control. 

C. Methods 

  APHA 4500 Vanadomolybdophosphoric Acid Colorimetric Method 

 Summary of Method 

       Determination of total dissolved phosphorus ion (PO4
+) water/soil samples. 

 Apparatus 

- Autoclave or pressure cooker, capable of operating at 98 to 137 kPa. 

- Hot plate: A 30- × 50-cm heating surface is adequate.  

- Safety shield.  

- Safety goggles.  

- Erlenmeyer flasks, 125-mL, acid-washed and rinsed with distilled water 

- Colorimetric equipment: One of the following is required: 

- Spectrophotometer, for use at 400 to 490 nm.  

- Acid-washed glassware 

- Filtration apparatus and filter paper 

 Reagents 

- Phenolphthalein indicator aqueous solution.  

- Strong acid solution: Slowly add 300 mL conc H2SO4 to about 600 mL 

distilled water. 

- When cool, add 4.0 mL conc HNO3 and dilute to 1 L.  

- Sodium hydroxide, NaOH, 6N.  

- Nitric acid, HNO3, conc.  

- Perchloric acid, HClO4⋅2H2O, purchased as 70 to 72% HClO4, reagent-grade.  

- Sodium hydroxide, NaOH, 6N.  

- Methyl orange indicator solution.  

- Phenolphthalein indicator aqueous solution.  

- Phenolphthalein indicator aqueous solution. 
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- Hydrochloric acid, HCl, 1 + 1. H2SO4, HClO4, or HNO3 may be substituted 

for HCl. The acid concentration in the determination is not critical but a final 

sample concentration of 0.5N is recommended. 

- Activated carbon  

- Vanadate-molybdate reagent: 

- Solution A: Dissolve 25 g ammonium molybdate, (NH4)6Mo7O24⋅4H2O, in 

300 mL distilled water.  

- Solution B: Dissolve 1.25 g ammonium metavanadate, NH4VO3, by heating 

to boiling in 300 mL distilled water. Cool and add 330 mL conc HCl. Cool 

Solution B to room temperature, pour Solution A into Solution B, mix, and 

dilute to 1 L.  

- Standard phosphate solution: Dissolve in distilled water 219.5 mg anhydrous 

KH2PO4 and dilute to 1000 mL; 1.00 mL = 50.0 µg PO43–-P. 

 Procedure 

 Preliminary Filtration 

- Filter samples for determination of dissolved reactive phosphorus, dissolved 

acid-hydrolyzable phosphorus, and total dissolved phosphorus through 0.45-

µm membrane filters. A glass fiber filter may be used to prefilter hard-to-

filter samples.  

- Wash membrane filters by soaking in 2 L distilled water for 24 h before use 

because they may contribute significant amounts of phosphorus to samples 

containing low concentrations of phosphate. 

 Preliminary Acid Hydrolysis 

- To 100-mL sample or a portion diluted to 100 mL, add 0.05 mL (1 drop) 

phenolphthalein indicator solution. If a red color develops, add strong acid 

solution dropwise, to just discharge the color. Then add 1 mL more. 

- Boil gently for at least 90 min, adding distilled water to keep the volume 

between 25 and 50 mL. Cool, neutralize to a faint pink color with NaOH 

solution, and restore to the original 100-mL volume with distilled water.  

- Prepare a calibration curve by carrying a series of standards containing 

orthophosphate through the hydrolysis step. Do not use orthophosphate 

standards without hydrolysis, because the salts added in hydrolysis cause an 

increase in the color intensity in some methods.  

- To calculate its content of acid-hydrolyzable phosphorus, determine reactive 

phosphorus in a sample portion that has not been hydrolyzed, using the same 

colorimetric method as for treated sample, and subtract.  

 Perchloric Acid Digestion 

Caution: Heated mixtures of HClO4 and organic matter may explode violently. 

Avoid this hazard by taking the following precautions:  

- Do not add HClO4 to a hot solution that may contain organic matter. 

- Always initiate digestion of samples containing organic matter with HNO3. 

Complete digestion using the mixture of HNO3 and HClO4.  

- Do not fume with HClO4 in ordinary hoods. Use hoods especially 

constructed for HClO4 fuming or a glass fume eradicator connected to a water 

pump. 

- Never let samples being digested with HClO4 evaporate to dryness. 
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- Measure sample containing the desired amount of phosphorus into a 125-mL 

erlenmeyer flask.  

- Acidify to methyl orange with conc HNO3, add another 5 mL conc HNO3, 

and evaporate on a steam bath or hot plate to 15 to 20 mL.  

- Add 10 mL each of conc HNO3 and HClO4 to the 125-mL conical flask, 

cooling the flask between additions.  

- Add a few boiling chips, heat on a hot plate, and evaporate gently until dense 

white fumes of HClO4 just appear. 

- If solution is not clear, cover neck of flask with a watch glass and keep 

solution barely boiling until it clears. If necessary, add 10 mL more HNO3 to 

aid oxidation.  

- Cool digested solution and add 1 drop aqueous phenolphthalein solution. Add 

6N NaOH 

- solution until the solution just turns pink. If necessary, filter neutralized 

solution and wash filter liberally with distilled water. Make up to 100 mL 

with distilled water.  

- Determine the PO43–-P content of the treated sample by Method C, D, or E.  

- Prepare a calibration curve by carrying a series of standards containing 

orthophosphate 

 

 Vanadomolybdophosphoric Acid Colorimetric Method 

- Sample pH adjustment: If sample pH is greater than 10, add 0.05 mL (1 

drop) phenolphthalein indicator to 50.0 mL sample and discharge the red 

color with 1 + 1 HCl before diluting to 100 mL. 

- Color removal from sample: Remove excessive color in sample by shaking 

about 50 mL with 200 mg activated carbon in an erlenmeyer flask for 5 min 

and filter to remove carbon. 

- Check each batch of carbon for phosphate because some batches produce 

high reagent blanks. 

- Color development in sample: Place 35 mL or less of sample, containing 

0.05 to 1.0 mg P, in a 50-mL volumetric flask.  

- Add 10 mL vanadate-molybdate reagent and dilute to the mark with distilled 

water. 

- Prepare a blank in which 35 mL distilled water is substituted for the sample. 

- After 10 min or more, measure absorbance of sample versus a blank at a 

wavelength of 400 to 490 nm, depending on sensitivity desired. The color is 

stable for days and its intensity is unaffected by variation in room 

temperature. 

- Preparation of calibration curve: Prepare a calibration curve by using 

suitable volumes of standard phosphate solution.  

- When ferric ion is low enough not to interfere, plot a family of calibration 

curves of one series of standard solutions for various wavelengths. This 

permits a wide latitude of concentrations in one series of determinations. 

- Analyze at least one standard with each set of samples. 
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8.3.2 Soil Properties Data (2017) 
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8.3.3 Soil Properties Data (2016) 
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8.4 Sample R codes 
8.4.1 Indicator Species for Locations 

#Calculate Indicator Species for Different Locations 

library(indicspecies) 
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#read vegetation abundance data from directory 

abd<-read.csv('abdt.csv') 

head(abd) 

dim(abd) 

 

#extract site data 

env1<-abd[,1:32] 

#extract vegetation data 

veg1<-abd[,33:195] 

#replace NA's with 0 value 

veg1[is.na(veg1)]<-0 

#check to see dataframe is okay 

head(veg1) 

head(env1) 

attach(env1) 

 

#subset dataframe by variables 

grp<-env1[,3]#groups 

grsg<-env1[,7]#segments 

grlc<-env1[,5]#locations 

 

#calculate indicator species for locations 

indval3<-multipatt(veg1,grlc,control=how(nperm=10)) 

summary(indval3) 

 

8.4.2 Spectral Diversity Hypothesis Testing 

#spectral diversity analysis 

library(np) 

library(Metrics) 

#read data files 

bdtr<-read.csv('bds4rgrtr.csv')#band metrics training data 

bdts<-read.csv('bds4rgrts.csv')#band metrics test data 

idtr<-read.csv('idx4rgrtr.csv')#index metrics training data 

idts<-read.csv('idx4rgrts.csv')#index metrics test data 

 

 

#predicting TPH from spectral metrics 

 

#band-based 

#model; calibration using training data 

Mbtpc=npregbw(formula=lgtphr~b3sd+b3sh+b3qcv+hb3+db3+b3pc3+b4mn+b4sd+b4

qcv+hb4+db4+b5sd+b5qcv+hb5+db5+b6sd+b6qcv+hb6+db6+b7sd+b7qcv+hb7+db7+

b8sd+hb8+db8+b8asd+b8aqcv+hb8a+db8a+pc3+pc4+pc5,regtype='ll',bwmethod='cv.ai

c',data=bdtr) 

mbtpc<-npreg(bws=mbtpc) 

summary(mbtpc) 

 

#validation using test data 

fttp<-predict(mbtpc,newdata=bdts) 
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write.csv(fttp,'bdtph.csv') 

rttp<-bdts$tphr-fttp 

write.csv(rttp,'brestph.csv') 

pttp<-mean((bdts$tphr-fttp)^2) 

rmtp<-rmse(bdts$tphr,fttp) 

 

#plot residual graphs 

plot(bdts$tphr,rttp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

plot(bdts$tphr,fttp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rtp3, col="blue",lwd=2) 

rtp<-cor(bdts$tphr,fttp) 

 

 

#index-based 

#model; calibration using training data 

mtp=npregbw(formula=lgtphr~arpc3+gmmn+gmsd+gmpc1+gndmn+gndsh+gndpc1+gn

dpc3+lcqcv+ndvmd+ndipc1+psmn+pssd+reimnn+reish+rp2mn+rp2sd+rp2pc1+rp2pc3

+sppc2+svsh+hsv,regtype='ll',bwmethod='cv.aic',data=idtr) 

mtpr<-npreg(bws=mtp) 

summary(mtpr) 

 

#validation using test data 

ftp<-predict(mtpr,newdata=idts) 

write.csv(ftp,'idtph.csv') 

rstp<-idts$lgtphr-ftp 

pstp<-mean((idts$lgtphr-ftp)^2) 

rmtp<-rmse(idts$lgtphr,ftp) 

 

plot(ftp,rstp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rtp2<-lm(idts$lgtphr~ftp) 

plot(idts$lgtphr,ftp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rtp2, col="blue",lwd=2) 

rtp<-(cor(idts$lgtphr,ftp)^2) 

 

#phosphorus 

#model; calibration using training data 

mpr=npregbw(formula=pr~b2sd+b2pc3+b3sd+b3pc3+b5sd+b5sh+b7sd+pc3+pc4,regty

pe='ll',bwmethod='cv.aic',data=bdtr) 

mprr<-npreg(bws=mpr) 

summary(mprr) 

 

#validation using test data 

fpr<-predict(mprr,newdata=bdts) 

rpf<-bdts$pr-fpr 

pspr<-mean((bdts$pr-fpr)^2) 
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rmpr<-rmse(bdts$pr,fpr) 

 

plot(fpr,rpf,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rpr2<-lm(bdts$pr~fpr) 

plot(bdts$pr,fpr,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rpr2, col="blue",lwd=2) 

rpr<-(cor(bdts$pr,fpr)^2) 

 

#index-based 

 

#model; calibration using training data 

Mp=npregbw(formula=pr~armn+arsd+sipi+gmsh+gmqcv+gndmn+gndmd+dgnd+lcmd

+lcpc3+mcsd+mcsh+ndvsd+ndvsh+nd2sh+psmn+pssd+pssh+pspc2+reipc3+rp2sd+svp

c2,regtype='ll',bwmethod='cv.aic',data=idtr) 

mpr<-npreg(bws=mp) 

summary(mpr) 

 

#validation using test data 

fp<-predict(mpr,newdata=idts) 

rsp<-idts$pr-fp 

psp<-mean((idts$pr-fp)^2) 

rmp<-rmse(idts$pr,fp) 

 

plot(fp,rsp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rp2<-lm(idts$pr~fp) 

plot(idts$pr,fp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rp2, col="blue",lwd=2) 

rp<-(cor(idts$pr,fp)^2) 

 

#lead 

mpb<-npregbw(formula=pbr~b2pc3+b3pc2+b4sd+b4sh+db4+b4pc1+b7sd+b8asd, 

             regtype='ll',bwmethod='cv.aic',data=bdtr) 

mpbr<-npreg(bws=mpb) 

summary(mpbr) 

 

#validation using test data 

fpb<-predict(mpbr,newdata=bdts) 

rpb<-bdts$pbr-fpb 

pspb<-mean((bdts$pbr-fpb)^2) 

rmpb<-rmse(bdts$pbr,fpb) 

 

plot(fpb,rpb,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 
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rpb2<-lm(bdts$pbr~fpb) 

plot(bdts$pbr,fpb,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rpb2, col="blue",lwd=2) 

rpb<-(cor(bdts$pbr,fpb)^2) 

 

#index-based 

mpp<-npregbw(formula=pbr~arsd+lcqcv+lcpc3+ndvsd+ndvpc1+ndvpc2+dnd2 

             +ndimn+pssd+pssh+pspc1+reimd+reipc2+rp2qcv+rp2pc2+sph+spmd+spqcv 

             +svmd+svqcv+dsv,regtype='ll',bwmethod='cv.aic',data=idtr) 

mppr<-npreg(bws=mpp) 

summary(mppr) 

 

fpp<-predict(mppr,newdata=idts) 

rspp<-idts$pbr-fpp 

pspp<-mean((idts$pbr-fpp)^2) 

rmpp<-rmse(idts$pbr,fpp) 

 

plot(fpp,rspp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rpp2<-lm(idts$pbr~fpp) 

plot(idts$pbr,fpp,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rpp2, col="blue",lwd=2) 

rpp<-(cor(idts$pbr,fpp)^2) 

 

#total organic matter 

 

#band-based 

mtm=npregbw(formula=tomr~b3sh+b4sh+b5pc2+db8+b8aqcv,regtype='ll',bwmethod='

cv.aic',data=bdtr) 

mtmr<-npreg(bws=mtm) 

summary(mtmr) 

 

ftm<-predict(mtmr,newdata=bdts) 

rstm<-bdts$tomr-ftm 

pstm<-mean((bdts$tomr-ftm)^2) 

rmtm<-rmse(bdts$tomr,ftm) 

 

plot(ftm,rstm,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rtm2<-lm(bdts$tomr~ftm) 

plot(bdts$tomr,ftm,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rtm2, col="blue",lwd=2) 

rtm<-(cor(bdts$tomr,ftm)^2) 

 

#index-based 
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mto=npregbw(formula=tomr~arsd+sipi+ccqcv+ccpc3+gmsh+gmpc3+hndv+ndvpc2+nd  

2md+ndimd+ndiqcv+ndipc2+reipc3+rp2sd+rp2sh+hrp2+rp2pc2+rp2pc3+spqcv+hspi 

+sppc3+svpc2+sv2sd+sv2md+hsv2,regtype='lc',bwmethod='cv.aic',data=idtr) 

mtom<-npreg(bws=mto) 

summary(mtom) 

 

fto<-predict(mtom,newdata=idts) 

rsto<-idts$tomr-fto 

psto<-mean((idts$tomr-fto)^2) 

rmto<-rmse(idts$tomr,fto) 

plot(fto,rsto,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rto2<-lm(idts$tomr~fto) 

 

plot(idts$tomr,fto,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rto2, col="blue",lwd=2) 

rto2 

rto<-(cor(idts$tomr,fto)^2) 

 

#predicting diversity indices from spectral metrics 

#simpson 

 

mbtr=npregbw(formula=simr~b2mn+b2md+b2pc1+b4mn+b4sd+b4md+hb4+db4+b4pc

1+b5mn+b5sd+b5md+b5qcv+b5pc1+b6sd+hb6+db6+b7sd+b7qcv+b8asd+pc3,regtype

='ll',bwmethod='cv.aic',data=bdtr) 

mbtr<-npreg(bws=mbtr) 

summary(mbtr) 

 

ftsi<-predict(mbtr,newdata=bdts) 

rssi<-bdts$simr2-ftsi 

pssi<-mean((bdts$simr2-ftsi)^2) 

rmsi<-rmse(bdts$simr2,ftsi) 

 

plot(bdts$simr2,rssi,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rsi2<-lm(bdts$simr2~ftsi) 

plot(bdts$simr2,ftsi,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rsi2, col="blue",lwd=2) 

rsi<-(cor(bdts$simr2,ftsi)^2) 

summary(rsi2) 

 

#index-based simpson 

mis=npregbw(formula=simr~arpc1+sipi+ccmn+ccsh+ccmd+ccqcv+ccpc3+gmqcv+lcm

d+hlc+ndvmd+ndvpc3+hndi+dndi+pssd+psqcv+dps+spsd+spqcv+sppc2+sv2pc2,regty

pe='ll',bwmethod='cv.aic',data=idtr) 

misi<-npreg(bws=mis) 
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summary(misi) 

 

fts<-predict(misi,newdata=idts) 

rss<-idts$simr-fts 

pss<-mean((idts$simr-fts)^2) 

rms<-rmse(idts$simr,fts) 

 

plot(fts,rss,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rs2<-lm(idts$simr~fts) 

plot(idts$simr,fts,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rs2, col="blue",lwd=2) 

rs<-cor(idts$simr,fts) 

write.csv(fts,'presim.csv') 

 

#shannon 

mstr=npregbw(formula=shar~b2mn+b2md+b2pc1+b4mn+b4sd+b4md+hb4+db4+b4pc

1+b5mn+b5sd+b5md+b5qcv+b5pc1+b6sd+hb6+db6+b7sd+b7qcv+b8asd+pc3,regtype

='ll',bwmethod='cv.aic',data=bdtr) 

mstr<-npreg(bws=mstr) 

summary(mstr) 

 

ftsh<-predict(mstr,newdata=bdts) 

rssh<-bdts$shar-ftsh 

pssh<-mean((bdts$shar-ftsh)^2) 

rmsh<-rmse(bdts$shar,ftsh) 

 

plot(ftsh,rssh,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rsh2<-lm(bdts$shar~ftsh) 

plot(bdts$shar,ftsh,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rsh2, col="blue",lwd=2) 

rsh<-(cor(bdts$shar,ftsh)^2) 

 

#index-based shannon 

msh=npregbw(formula=shar~arpc2+ccpc2+gmqcv+gmpc1+gmpc2+gndpc3+lcmd+dlc

+nd2sh+hndi+dndi+pssd+psqcv+reimd+rp2sh+h2sr+d2sr+spsd+sph+svpc1+svpc2             

+sv2qcv,regtype='ll',bwmethod='cv.aic',data=idtr) 

mish<-npreg(bws=msh) 

summary(mish) 

 

ftshr<-predict(mish,newdata=idts) 

rsshr<-idts$shar-ftshr 

psshr<-mean((idts$shar-ftshr)^2) 

rmshr<-rmse(idts$shar,ftshr) 
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plot(ftshr,rsshr,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rshr2<-lm(idts$shar~ftshr) 

plot(idts$shar,ftshr,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rshr2, col="blue",lwd=2) 

rshr<-cor(idts$shar,ftshr) 

 

#menhinick 

Mmtr=npregbw(formula=menr~b2mn+b2md+b2pc1+b4mn+b4sd+b4md+hb4+db4+b4

pc1+b5mn+b5sd+b5md+b5qcv+b5pc1+b6sd+hb6+db6+b7sd+b7qcv+b8asd+pc3,regty

pe='ll',bwmethod='cv.aic',data=bdtr) 

mmtr<-npreg(bws=mmtr) 

summary(mmtr) 

 

ftm<-predict(mmtr,newdata=bdts) 

rsm<-bdts$menr-ftm 

psm<-mean((bdts$menr-ftm)^2) 

rmm<-rmse(bdts$menr,ftm) 

 

plot(ftm,rsm,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rm2<-lm(bdts$menr~ftm) 

plot(bdts$menr,ftm,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rm2, col="blue",lwd=2) 

rm<-cor(bdts$menr,ftm) 

 

#index-based menhinick 

me<-npregbw(formula=menr~sipi+ccqcv+gmqcv+gmpc2+dgnd+lcmd+pssd+rp2pc2 

            +spsd+spqcv+svsd+svpc1,regtype='ll',bwmethod='cv.aic',data=idtr) 

mehr<-npreg(bws=me) 

summary(mehr) 

 

fme<-predict(mehr,newdata=idts) 

rsme<-idts$menr-fme 

psme<-mean((idts$menr-fme)^2) 

rmsm<-rmse(idts$menr,fme) 

 

plot(fme,rsme,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Predicted',ylab='Residual') 

abline(h=0,lty=2,col='red') 

rmms2<-lm(idts$menr~fme) 

plot(idts$menr,fme,cex.main=1.5,cex.axis=1.5,cex.lab=1.5, 

     font.lab=2,font.axis=2,family='serif',xlab='Observed',ylab='Predicted') 

abline(rmms2, col="blue",lwd=2) 

rmms<-cor(idts$menr,fme) 
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8.4.3 Distance Decay 

#distance decay in polluted and control transects using presence-absence data 

library(betapart) 

library(quantreg) 

library(vegan) 

#read vegetation data file from directory 

psc<-read.csv('pscsorted.csv') 

dim(psc) 

head(psc) 

#split data into polluted and control groups 

vcn<-split(psc,psc$Group) 

vcon<-vcn$con 

vpol<-vcn$pol 

#Extracat site data 

dim(vcon) 

sct<-vcon[,9:14] 

spl<-vpol[,9:14] 

#Extract species data 

vct<-vcon[,33:194] 

vpl<-vpol[,33:194] 

 

#read band data file from directory 

abb<-read.csv('albds.csv') 

head(abb) 

#Extract only band values 

abs<-abb[,1:74] 

#split data into polluted and control groups 

abbs<-split(abs,abs$Group) 

abcon<-abbs$Con 

abpol<-abbs$Pol 

dim(abcon) 

#Extract only band values 

abct<-abcon[,3:74] 

abpl<-abpol[,3:74] 

 

#distance analysis for control transects 

bcbt<-vegdist(abct,method='jaccard',diag=FALSE) 

vcbt<-vegdist(vct,method='jaccard',diag=FALSE) 

scds<-vegdist(sct,method='jaccard',diag=FALSE) 

 

#convert to matrix 

bcbt1<-as.matrix(bcbt) 

vcbt1<-as.matrix(vcbt) 

scds1<-as.matrix(scds) 

 

#save distances 

write.csv(bcbt1,'bcbt1.csv') 

write.csv(vcbt1,'vcbt1.csv') 

#compute similarities 



271 

 

vcsm=1-vcbt1 

btsm=1-bcbt1 

scsm=1-scds1 

 

#plot distance decay graphs 

plot(bcbt1,vcsm,cex.lab=1.5,cex.main=2,cex.axis=1.5, 

     font.lab=2,font.axis=2,family='serif', 

     xlab='Species Similarity',ylab='Spectral Distance') 

plot(bcbt1,vcbt1,cex.lab=1.5,cex.main=2,cex.axis=1.5, 

     font.lab=2,font.axis=2,family='serif', 

     xlab='Species Dissimilarity',ylab='Spectral Distance') 

plot(bcbt1,scsm) 

plot(bcbt1,scds1) 

rgcn<-cor(bcbt1,vcbt1) 

summary(rgcn) 

rgcn3<-cor(bcbt1,scds1) 

 

#distance analysis for polluted transects 

bpds<-vegdist(abpl,method='jaccard',diag=FALSE) 

vpds<-vegdist(vpl,method='jaccard',diag=FALSE) 

spds<-vegdist(spl,method='jaccard',diag=FALSE) 

 

#convert to matrix 

bpdss1<-as.matrix(bpdss) 

vpdss1<-as.matrix(vpdss) 

spds1<-as.matrix(spds) 

 

#compute similarity 

vpssm=1-vpdss1 

bpssm=1-bpdss1 

spsm=1-spds1 

 

#plot distance decay graphs 

plot(bpdss1,vpssm,cex.lab=1.5,cex.main=2,cex.axis=1.5, 

     font.lab=2,font.axis=2,family='serif', 

     xlab='Species Similarity',ylab='Spectral Distance') 

abline(rgp2,col='blue', lty=1,lwd=2) 

plot(bpds1,vpds1,cex.lab=1.5,cex.main=2,cex.axis=1.5, 

     font.lab=2,font.axis=2,family='serif', 

     xlab='Species Dissimilarity',ylab='Spectral Distance') 

 

#to regress the variables, first convert matrices to vectors 

#and combine to a single dataframe 

 

#polluted 

da1<-as.data.frame(as.vector(bpds1)) 

da2<-as.data.frame(as.vector(vpds1)) 

da3<-as.data.frame(as.vector(spds1)) 

da4<-as.data.frame(as.vector(bpsm)) 

da5<-as.data.frame(as.vector(vpsm)) 
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da6<-as.data.frame(as.vector(spsm)) 

da7<-cbind(da1,da2,da3,da4,da5,da6) 

head(da7) 

#rename columns 

colnames(da7)[1]<-'bpds' 

colnames(da7)[2]<-'vpds' 

colnames(da7)[3]<-'spds' 

colnames(da7)[4]<-'bpsm' 

colnames(da7)[5]<-'vpsm' 

colnames(da7)[6]<-'spsm' 

 

#find regression intercept (similarity at zero distance) and coefficient (decay rate) 

rgp1<-lm(da7$bpds~da7$vpsm) 

summary(rgp1) 

lines(lowess(da7$bpds,da7$vpds),col='blue') 

crp<-cor(da7$bpds,da7$vpsm,method='spearman') 

 

#control 

dc1<-as.data.frame(as.vector(bcbt1)) 

dc2<-as.data.frame(as.vector(vcbt1)) 

dc3<-as.data.frame(as.vector(scds1)) 

dc4<-as.data.frame(as.vector(btsm)) 

dc5<-as.data.frame(as.vector(vcsm)) 

dc6<-as.data.frame(as.vector(scsm)) 

dc7<-cbind(dc1,dc2,dc3,dc4,dc5,dc6) 

head(dc7) 

#rename columns 

colnames(dc7)[1]<-'bcds' 

colnames(dc7)[2]<-'vcds' 

colnames(dc7)[3]<-'scds' 

colnames(dc7)[4]<-'bcsm' 

colnames(dc7)[5]<-'vcsm' 

colnames(dc7)[6]<-'scsm' 

 

#find regression intercept (similarity at zero distance) and coefficient (decay rate) 

rgc1<-lm(dc7$bcds~dc7$vcsm) 

summary(rgc1) 

crc<-cor(dc7$bcds,dc7$vcsm,method='spearman') 

 

#plots 

attach(dc7) 

attach(da7) 

par(mfrow=c(2,2),cex.lab=2,cex.main=2,cex.axis=2, 

    font.lab=2,font.axis=2,family='serif') 

plot(bpds1,vpsm,xlab='Spectral Distance',ylab='Species Similarity') 

abline(rgp1,col='blue', lty=1,lwd=2) 

plot(bpds,vpds,xlab='Spectral Diversity',ylab='Betadiversity') 

plot(bpds,spds,xlab='Spectral Diversity',ylab='Ecosystem Diversity') 

plot(spds,vpds,xlab='Ecosystem Diversity',ylab='Betadiversity') 
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plot(dc7$bcds,dc7$vcsm,xlab='Spectral Distance',ylab='Species Similarity') 

abline(rgc1,col='blue', lty=1,lwd=2) 

plot(dc7$bcsm,dc7$vcds,xlab='Spectral Diversity',ylab='Betadiversity') 

plot(bcds,dc7$scds,xlab='Spectral Diversity',ylab='Ecosystem Diversity') 

plot(vcds,dc7$scds,xlab='Betadiversity',ylab='Ecosystem Diversity') 

max(dc7$bcds) 

max(dc7$vcsm) 
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