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Abstract

Application of Remote Sensing in the Assessment of Oil Pollution Impacts on
Biodiversity in Rivers State, Nigeria

NKkeiruka Nneti Onyia

Biodiversity loss remains a global challenge, and monitoring methods are often limited in
their coverage. Rivers State is a biodiversity hotspot because of the high number of endemic
species endangered by oil pollution. This thesis investigates the potential of integrating
remote sensing tools for monitoring biodiversity in the State using vascular plant species as
indicators. Satellite data from Hyperion, Sentinel 2A and Landsat were analysed for their
usefulness. Soil samples from polluted and control transects were analysed for total
petroleum hydrocarbon (TPH), phosphorus (P), lead (Pb), temperature, acidity, species
diversity, abundance and leaf chlorophyll concentration. Field data results showed
significant differences in all variables between polluted and control transects. Average TPH
on polluted transects was 12,296 mg/kg, and on control transects was 40.53 mg/kg. 163 plant
species of 52 families were recorded with Poaceae and Cyperaceae the most abundant.
Floristic data ordinated on orthogonal axes of soil parameters revealed that TPH strongly
influenced species occurrence (r = -0.42) and abundance (r = -0.39). Similarly, application
of the spectral variability hypothesis (SVH) revealed the underlying environmental gradient
controlling vegetation composition on polluted transects as TPH and on control transects as
P. Models of relationship between spectral metrics and soil properties estimated soil TPH
(R? = 0.45) and P (R? = 0.62) with marginal errors. Hyperion data provided better insight
into vegetation response to oil pollution. Continuum removed reflectance, band depths of
absorption maxima, red edge reflectance all significantly differed between polluted and
control vegetation. Furthermore, a new index created from TPH sensitive Hyperion
wavelengths- normalised difference vegetation vigour index (NDVVI) outperformed
traditional narrowband vegetation indices (NBV1s) in models estimating species diversity in
Kporghor. R? and RMSE values for Shannon’s index were 0.54 and 0.5 for NDVVI-based
models and 0.2 and 0.67 for NBVI-based models respectively. This research provides
evidence of oil pollution effect on vegetation composition, abundance, growth and
reflectance and outlines how this information can be used for biodiversity monitoring.
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1 Introduction

This chapter provides background information for this research, explaining the oil pollution
problem and its impact on biodiversity in the study area. It also outlines the justification for
the study and the potential contribution to remedying the myriad of social issues associated
with oil pollution in the study area.

1.1 Research Background

The Niger Delta is one of the most extensive wetlands in the world and is Africa’s largest
delta. It consists of unique ecological zones, which extend from the coastal barrier ridges,
inland to lowland rainforest zone. The well-endowed ecosystem is abundantly rich in
biodiversity with very high densities of flora and fauna (Emoyan, Akpoborie and
Akporhonor, 2008). The Niger Delta is part of the Guinean Forests Ecosystems of West
Africa classified as a biodiversity hotspot (biologically rich and threatened ecological
habitat). This region originally estimated to cover 1,300,000 km? is fragmented and most of
its tropical forest degraded due to mainly human activities. Although severely diminished
(only about 140,000 km? remains) the ecosystem harbours about 2000 endemic species from
approximately 9000 vascular plant species (Khaligian, 2012). The significant diversity of the
Niger Delta has degraded considerably due to oil-related anthropogenic activities (Agbogidi
and Ofuoku, 2006).

Oil exploration in the Niger Delta commenced since the 1950s (Aroh et al. 2010). Over the
years, the industry has expanded to include oil drilling, production, transportation, processing
and storage. Accordingly, as noted by Oyinloye and Olamiju, (2013) and other researchers,
oil production accounts for up to 96% of the Nigerian national economy. This growth has,
however, come at an enormous cost to the environment of the Niger Delta with oil spillages,
gas flaring, inappropriate waste disposal (solids and liquids), discharge of toxic chemicals,
land use changes including forest fragmentation and degradation, flooding and soil erosion,
and so on adversely impacting on the environment (Emoyan, Akpoborie and Akporhonor,
2008; Opukri and Ibaba, 2008).
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Researchers have investigated the significant impacts of the various oil spills on the
mangrove forest. Corcoran et al. (2007) reported a reduction of 26% in the mangrove forest
within the Niger Delta since the oil boom. Similarly, Osuji et al. (2004) and United Nations
Environmental Programme (UNEP, 2011) following a survey of different parts of the region
revealed the disastrous impact of oil pollution to mangrove and other vegetation ranging
from extreme stress to destruction. Several investigations such as Zabbey (2004), Osuji et al.
(2004), Nwilo and Badejo, (2005), Opukri and Ibaba, (2008), Ugochukwu and Ertel (2008)
also revealed that oil and gas operations not only cause environmental degradation in the
sensitive ecosystem, they destroy the traditional livelihood of residents, whose main
occupations are fishing and farming. Additionally, oil and gas operations affect weather
conditions, soil fertility, waterways and habitats for wildlife; cause acid rains and drastically
reduce agricultural yields. These negative impacts subsequently result in migration of

endemic fauna as well as social displacements of inhabitants of the affected areas.

In the face of these concerns, and the need to sustainably meet the increasing demand for
natural resources due to the population explosion in the region, policymakers, resource
managers, and other stakeholders must employ appropriate tools for environmental and
resource assessment, monitoring and management. As biodiversity is an essential natural
resource in the Niger Delta, its conservation is a high priority but delicate due to the
complexity of the concept and the global expectation of contracting parties to meet the targets
of many international agreements such as the United Nations Environmental Programme
Convention on Biological Diversity (UNEP-CBD). The CBD which came into force in
December 1993 demands that all contracting parties develop national strategies, plans and
programmes for the conservation and sustainable use of biological diversity (Article 6 of the
CBD). In Article 7, it reiterates that nations are obliged to develop mechanisms to identify
its components of biological diversity, monitor these components; identify processes/
activities that adversely impact on biodiversity and organise and maintain the collated data
(UNEP, 1992). Thus, it is crucial for Nigeria, a party to this convention to develop a strategic
and coherent approach to biodiversity management (identification, monitoring and
conservation) particularly in the Niger Delta region. Presently this is not the case. Firstly,
information on biodiversity across the vast and ecologically dense Niger Delta region is

fragmented, incomplete, outdated, offline or even non-existent (United Nations
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Development Programme UNDP, 2010). Different and sometimes conflicting organisations
commonly store the available data, thereby rendering data inaccessible and non-
exchangeable. The absence of reliable information has severe consequences for, not only
understanding regional biodiversity but also hampers the selection and development of
appropriate indicators for monitoring of temporal and spatial changes in ecosystems (Salem,
2003). It also hinders effective biodiversity-oriented decision making across the oil and gas
industry in Nigeria (UNDP , 2010).

To remedy this situation, researchers have explored various data acquisition methods to
determine the biodiversity status in the Niger Delta and establish links between oil
exploration and biodiversity loss in the region. These include (Environmental Resources
Managers Limited, (ERML), 1997; World Bank, 1995; Ohimain, 2003; Ohimain, 2004,
Onwuka, 2005; Olajire et al. 2005; Osuji and Ezebuiro, 2006; Agbagwa, 2008; Agbagwa
and Akpokodje, 2010; Agbagwa and Ndukwu, 2014). Most of these studies utilised
traditional methods of data collection including sampling using quadrats or transects (line,
point and Recce walk). For instance, Osuji et al. (2004) adopted a modified sampling
technique, which involved field reconnaissance surveys, grid plots and quadrants for a post-
impact assessment of oil pollution on soil, fauna and flora. Luisella and Akani (2003)
working with freshwater turtles to determine the effects of oil pollution on the community
adopted another traditional method which involved surveying, hoop traps, dip-netting and

trawling to collect specimens for their study.

Similarly, Daniel-Kalio and Braide (2002) conducted a study of the impact of accidental oil
spill on cultivated and natural vegetation in a wetland area of the Niger Delta using traditional
techniques of data collection which included the establishment of transects on the oil spill
sites and the surrounding areas. These traditional approaches to measuring biodiversity at
local scales are time-consuming, challenging, and expensive. They are also skill and
experience-dependent and often adversely affect the object and area of study. Furthermore,
the methods are spatially limited and are incapable of generating relevant data at regional
and global scales (Duro et al. 2007). With increasing global effort channeled towards

reducing biodiversity loss, it is pertinent to investigate the adverse effects of oil spills on the
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environment that may have escaped previous studies relying on traditional biodiversity

monitoring methods.

Over the years, remote sensing (RS) have increasingly become indispensable tools in the
collection, analysis and management of information about the earth’s environment and
resources. Various studies explored the application of RS in environmental management and
conservation programmes, for instance, Duro et al. (2007) who examined the potential for
integrating remote sensing in developing a national biodiversity monitoring system for
Canada that is applicable across regions and continents. Earlier researchers such as Petit et
al. (2001) had used remote sensing data to analyse change processes and project short-term
land-cover changes in Zambia. More recent studies have successfully integrated remotely
sensed data with traditional methods for the ecosystem and ecosystem service assessments
(Vihervaara et al. 2014; Andrew, Wulder and Nelson, 2014).

There is however a paucity of literature on this subject (biodiversity monitoring) that utilises
remote sensing tools in the Niger Delta region of Nigeria. A significant proportion of the
available literature on the application of RS in biodiversity-related studies is from developed
countries. The bulk of literature originating from Nigeria, report investigations in the Niger
Delta for instance, (Fagbami, Udo and Odu, 2009; Adegoke et al. 2010; Adoki, 2012;
Oyinloye and Olamiju, 2013; Kuenzer et al. 2014); but none has addressed oil pollution in
the light of these technological advancements. A thorough review of related literature has
hitherto failed to reveal a previous study that documented the species diversity index of the
study area, investigated the impact of oil pollution on biodiversity in the Niger delta utilising
RS techniques and developed prediction models using spectral metrics to estimate species
richness and diversity. These knowledge gaps are what the current study aims to address
using methods that are repeatable, scalable and accessible to interested parties. The study
adopted an integrated approach to data generation and evaluation to achieve this aim. The
integrated approach includes the use of free satellite data, open source software for image
and statistical analyses, field survey applying standard sampling methods and laboratory
analysis in an internationally certified laboratory.
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1.2 Justification of the Study
1.2.1 Crude Oil Pollution and Effects in Rivers State

Oil pollution is the contamination of any substrate such as the soil or air with materials
containing petroleum hydrocarbons. Environmental pollution is the direct or indirect
alterations of the physical, thermal, biological or radioactive properties of any part of the
environment in such a way as to create a hazard or potential hazard to health, safety and well-
being of any living species (Oyebadejo and Ugbaja, 1995). the European Union Water
Framework Directive (2000) defines pollution as the ‘direct or indirect introduction, as a
result of human activity, of substances or heat into the air, water or land which may be
harmful to human health or the quality of aquatic ecosystems or terrestrial ecosystems’(p.
L327/7). Basorun and Olamiju (2013) reported that the effects of pollution on the
environment could be immediate (primary effects) or delayed (secondary effects). While
primary effects occur immediately after contamination, for instance, the death of marine
plants and wildlife after an oil spill at sea; secondary effects are often delayed or persist in
the environment for years sometimes in negligible amounts. There are various sources of oil
pollution; however, this study limits to pollution caused by crude oil spills from damaged

pipelines.

Rivers State extends to slightly over 11000 km? in the southernmost part of the Niger Delta
region. According to the National Census in 2006, the State has a population of over 5 million
people administered in 23 local government areas (National Population Commission, 2015).
The indigenous people of Rivers State have lived in the Niger Delta region for over 500 years
in densely populated close-knit rural settings. The people are primarily farmers and anglers
who depend on the natural resources within their locality. Archaeological and historical
evidence showed that the people had a well-established social system that placed great value
on the environment from where they derived their livelihood. This social system also,
through the observance of traditions rooted in nature; ensure sustainable exploitation of
natural resources and the protection of biodiversity. For instance, forests (usually
communally owned) were not just perceived as a piece of land where trees and animals dwell,

but as an “intrinsically sacred possession” hence indiscriminate felling of trees and hunting
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animals were forbidden (The Ecumenical Council for Corporate Responsibility, (ECCR),
2010).

Before the discovery of oil, agriculture was the primary source of income for the inhabitants.
More than 44 per cent of the rural population engaged in the farming of cassava, maize, yam,
plantain, palm oil and scavenging for periwinkles, snails, mushrooms and artisanal fishing.
About 18 per cent were involved in local trading while 10 per cent were service providers
such as tailors, transporters, carpenters and so on (Alagoa and Clark, 2009). Since the 1950s,
oil exploration has been ongoing in Rivers State with Shell Petroleum Development
Company (SPDC) Nigeria Limited as the principal operators (Human Rights Watch, 1999;
Lindén and Palsson, 2013). Nigeria is the 5th highest exporter of crude oil in the world with
about 2.524 million barrels of oil exported every day (Central Intelligence Agency, 2015).
Presently all the oil comes from the Niger Delta region and accounts for 95% of the foreign
exchange earnings of the country. Consequently, the region is subject to alarming levels of
environmental pollution from oil spills and gas flaring (Oyeshola, Fayomi and Ifedayo,
2011). Qyinloye and Olamiju (2013) reported that in the 50 years of oil exploration in
Nigeria, there are records of about 6000 spill incidents discharging over 5 million barrels of

crude oil into the environment.

For several years, Rivers State was an arena of restiveness and conflict due to the impact of
oil exploration activities on the environment, health and livelihood of the host communities.
Oil spills from leaking pipelines (huge pipelines that carry oil to other parts of the country
crisscross the region); wellheads and flow stations, transportation, oil bunkering, artisanal
refineries have frequently occurred yet under-reported for decades in the Niger Delta
(Mmom and Arokoyu, 2010; United Nations Environmental Programme, 2011; Lindén and
Palsson, 2013). The influence of tides and floods further exacerbate the damage by spreading
the spillage over large areas of vulnerable ecosystems. What was once a significant wetland
IS now a region whose residents can no longer subsist on traditional fishing and farming
(United Nations Environmental Programme, 2011; Oluduro, 2012). The drilling for oil has
also led to gas flares where billions of cubic feet of gas is burnt daily.
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Incidents of human rights abuses in the form of environmental degradation abound in the
Niger Delta where the oil wealth originates. For instance, HRW (1999) documented that
barely 27 per cent of the population have access to safe potable water, while only about 30
per cent enjoy electricity, usually privately sourced. They also asserted that 90 per cent of
the populace lives below $2 a day while 80% are unemployed and about 30 per cent are
illiterate. In the same vein, a report by the Ecumenical Council for Corporate Responsibility
(ECCR) in 2010 highlighted the impact of oil and gas operations in the Niger Delta on life
expectancy in the region. From about 70 years, age has markedly dropped to 45 years. It also
reported that the delta, which was once a net food exporter now imports 80 per cent of its
food and the health and education facilities colossally dilapidated in the rural areas (The

Ecumenical Council for Corporate Responsibility, (ECCR), 2010).

This dismal situation reiterates the need for substantive change in the manner of handling
environmental issues in Nigeria. The focus needs to shift from reactive to proactive if the
2020 Aichi targets of the United Nations Convention on Biodiversity (CBD), which Nigeria
is party to, are to be met. The results of this study will provide relevant tools to support this
change and equip stakeholders with resources that will facilitate proactive management of

biodiversity.

1.2.2 Importance of Biodiversity Monitoring in the Niger Delta

Rivers State is a biodiversity hot spot with a significant concentration of various species most
of which are endemic (United Nations Development Programme, 2006; Nzeadibe et al.
2011). The depletion of these natural resources is alarming due to a combination of several
factors. In recent years, in addition to licensed oil operators, many artisanal refineries
operating illegally across the region have gained a foothold in the region. Spillages have
often occurred from oil exploration activities such as drilling, transportation, bunkering,
burst pipes and uncleansed oil spills. The growth of the oil industry resulted in an
unprecedented population explosion. A combination of both factors in concert with
institutional laxity in environmental protection “led to substantial damage to Nigeria’s
environment” (Ngoran, 2011). The implication for the environment is massive degradation

and biodiversity loss (Oluduro, 2012). Several studies report a correlation between the
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wanton environmental degradation in the Niger Delta and the rise of violent conflicts in the
region (Watts, 2004; Obi, 2009; Orji, 2012; Adams and Ogbonnaya, 2014).

The failure of regulatory agencies to enforce environmental laws that address the situation
and offer viable remedies has been appalling and definitive (Okwoche, 2011; Orji, 2012;
Odoeme, 2013). The oil companies have not helped matters due to their reluctance to own-
up to spills, engage in effective clean-up procedures or pay commensurate compensation to
victims. The oil companies also hoard the relevant data and fail to maintain their facilities
(Adujie, 2010; Duffield, 2010; Oluduro, 2012). As reported by Adujie (2010), the oil
companies have demonstrated double standards in response to environmental pollution in the
Niger Delta. For instance, in the aftermath of the Gulf of Mexico spill, oil companies
voluntarily carried out remediative actions and offered compensations to individuals and
companies even well before the effects and consequences of pollution were visible.
However, the same companies have consistently ignored and disregarded clear cases of
extreme environmental pollution and degradation leading to loss of livelihoods, poverty, and
even deaths in Niger Delta. Consequently, host communities through civil and militant
groups resort to demonstrations, attack oil installations and disrupt oil production activities
across the region. The ensuing chaos has resulted in the loss of revenues to the country of up
to 543 million dollars per day at the peak of the crises (Obi, 2009; Adujie, 2010; Orji, 2012;
Odoeme, 2013).

A comprehensive review of the Nigerian legal system by Oluduro (2012) confirmed that
there is inadequate legislation for compensating victims of oil spills and environmental
damage. He suggested that an acceptable regime is enforced to protect the environment and
inhabitants of oil-rich areas. Effective enactment of such important laws demands among
others, access to a reliable, valid data set portraying the before and after scenarios of the
impacted area. A structured monitoring programme can only obtain such data for Nigeria as

a whole and Rivers State in particular.

A well-endowed biodiversity hotspot like Rivers State in Nigeria constantly subjected to oil
spillages, biodiversity monitoring is crucial for several reasons, including the need to meet

the strategic goals of the Aichi Biodiversity Targets. However, conventional monitoring
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method such as field survey is not sufficient due to the constraints of time, equipment and
accessibility associated with the study area. Hence, the proposal for integrating remote
sensing data with field data to develop prediction models for biodiversity estimation using
vascular plants as surrogates. Moreover, the need to monitor the variations and patterns of
ecosystem processes, structures and functions demand the integration of remote sensing and
field-based management practices (Gould, 2000). Vascular plant species serve as valuable
biodiversity indicators because they are identifiable, sampled, stored or transported and
distributed over a wide range of habitats and environments (Faith and Walker, 1996). Pereira
and Cooper (2006) asserted the suitability of vascular plants species for monitoring

biodiversity.

The present study aims to investigate the most appropriate means for biodiversity monitoring
in the Niger Delta using Rivers State as a case study that will reflect the devastating impact
of oil pollution on the environment. Results will provide reliable and verifiable data for

decision making towards achieving both national and global goals.

1.3 Summary

This chapter provided a background to the problem tackled in this research and the
justification. Chapter 2 will provide a detailed review of the literature addressing the concept

of remote sensing in biodiversity monitoring.
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2 Literature Review

This chapter explores the literature on biodiversity monitoring, outlining the global history
of conservation efforts, progress and challenges. It also provides a review of biodiversity
monitoring methods, advancing from traditional field sampling practices to integrated
approaches using earth observation tools. Furthermore, relevant concepts in biodiversity
monitoring and conservation such as biodiversity indicators, essential biodiversity variables
and vegetation indices are discussed. Finally, the chapter outlines the aim and objectives of

this research as well as the thesis structure.

2.1 Timeline of Global Biodiversity Monitoring

The earth has the natural capacity to achieve and maintain a balance through the interactions
and interdependency of the various species of living organisms inhabiting it. Although
humans and other organisms (flora and fauna) depend on biodiversity for services such as
water cycle and soil formation; biological resources such as food and medicine; and social
benefits such as research, education and cultural values (Shah, 2014), the increasing pressure
on these resources have negatively interfered with nature’s balance. Pitman (1953) stated
that human activities, particularly the introduction of alien species adversely affect the

proliferation of the indigenous species and upset the equilibrium of nature.

Scientists have warned from the 1970s, that the loss of planetary biodiversity occurs at an
unprecedented rate with dire consequences for the earth and all its inhabitants.
Environmentalists from around the developed world gathered in the United States to show
support for the concept of environmental protection. The event tagged First Earth Day was
in April 1970. Also in 1971, International Institute for Environment and Development (I11ED)
was created with the mission to globally facilitate the scientific investigation, adoption and
implementation of sustainable development principles (International Institute for
Environment and Development, 1971). Following this, a United Nations Conference on the
Human Environment held in Stockholm in 1972 produced a document outlining 26 guiding
principles aimed at preserving and enhancing the human environment (United Nations
Environment Programme, 1972). A few years later, the Convention on International Trade

in Endangered Species of Wild Fauna and Flora (CITES) came into force. It aimed to protect
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endangered species by participating countries (CITES, 1975). This convention was a
significant achievement as ecologists had predicted the extinction of up to a million species

of living organisms by the year 2000 (Franco, José Luiz de Andrade, 2013).

In the 1980s and 1990s, the international community under the guidance of the United
Nations reached several milestone agreements. These include the World Conservation
Strategy (1980); the UN World Charter for Nature (United Nations, 1982); and the
Brundtland Commission Report (Brundtland Commission, 1987). The Global Environment
Facility (GEF) established in 1991 supported the protection of the global environment and
promoted environmentally sustainable development (Global Environment Facility, 2013).
With mounting evidence of increased and even irreparable degradation of ecological
systems, societal concerns triggered a series of regulatory, political and legal actions aimed
at minimising the impact of anthropogenic disturbances (Kennish, 1991). For instance, the
United Nations in June 1992 convened a Conference on Environment and Development in
Rio, also known as the Earth Summit. The principal objectives of this summit were "the
conservation of biological diversity, the sustainable use of its components and the fair and
equitable sharing of the benefits arising out of the utilisation of genetic resources”.
Governments achieving these objectives required the adoption of sustainable development
programs, which involved finding environmentally friendly alternatives to economic
development that will protect the earth's non-renewable resources. The summit produced a
plan of action document known as Agenda 21 which participating countries committed to
(United Nations, 1997).

At the turn of the century, and to mark the beginning of a new millennium, the UN General
Assembly in 2000 drafted a set of goals known as the Millennium Development Goals
(MDG), which reiterated the need for parties to incorporate the precept of sustainable
development in nation-building plans. There were set targets for various causes including the
full implementation of the Convention on Biological Diversity (CBD) by 2010 (United
Nations General Assembly, 2000). Furthermore, in April 2002, at The Hague, another
conference of parties (COP) convened by the CBD evaluated the progress of its programmes.
It focussed on achieving three additional goals namely:-controlling the distribution of

invasive species; adoption of guidelines for sharing of genetic resources and attendant
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benefits; and providing stronger economic incentives to reduce deforestation. In the same
year, a second Earth Summit held in Johannesburg prioritised five issues including
biodiversity. Participating countries agreed to reduce the extinction rate of the planet’s flora
and fauna by 2010. In order to achieve this, the UN commissioned the Millennium Ecosystem
Assessment project to “assess the consequences of ecosystem change for human wellbeing
and the scientific basis for action needed to enhance the conservation and sustainable use of
those systems and their contribution to human wellbeing” (Millennium Ecosystem
Assessment, 2005, page v). The report of the findings was approved and incorporated into
future deliberations of the global assembly. The CBD in October 2010 adopted a series of
documents including the revised and updated Strategic Plan for Biodiversity (Aichi Targets
2020, the Nagoya and the Cartagena Protocols). To mark the 20" anniversary of the Rio
Conference, the UN Conference on Sustainable Development provided a forum for the
evaluation of the achievements and shortfalls of previous Summit outcomes. Participating
countries also reaffirmed their commitment to these agreements. Besides, member States
agreed to strengthen the United Nations Environment Program and adopted the outcome

document.

Before the concern for the diversity of life and its conservation gained worldwide attention,
Meine et al. (2006) noted that ecologists and biologists together with other stakeholders
made concerted efforts to confront the issue from various angles. Promoting the sometimes
conflicting arguments not only expanded the scope of biological studies, but also "unfolded
as colonialism, the Industrial Revolution, human population growth, expansion of capitalist
and collectivist economies, and developing trade networks", thereby rapidly and significantly
transforming human, social, economic and ecological relationships. Progressively, however,
agitation for protection and conservation of natural resources; initially for their aesthetic
values and then increasingly for their genetic reserve; gained global attention. Despite these
laudable efforts, recent reports suggest that progress has been insufficient and uneven,
particularly in the area of biodiversity conservation. According to the UN Millennium
Development Goals Fact Sheet (United Nations, 2013), the target of significantly reducing
biodiversity loss by 2010 failed. In fact, despite an increase in protected areas, many more
species are at risk of extinction now than before, while the world's fisheries remain below

sustainable yields due to over-exploitation. The forests are also affected as millions of
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hectares of forested land are lost yearly to other uses, mainly urbanisation and agriculture.
Several reports from around the globe analysing remotely sensed images have depicted such
changes in land cover maps (Stow et al. 2004; Yuan et al. 2005; Shalaby and Tateishi, 2007,
Xiao et al. 2006; Petit, Scudder and Lambin, 2001). In line with this, the international
community through the Convention on Biological Diversity of the United Nations have
developed new frameworks building on previous efforts. These targets known as the Aichi
Biodiversity Targets are set to be accomplished by the year 2020 (Convention on Biological
Diversity, 2010a).

Given this background, researchers have played and continue to play a significant role as
outlined in the millennium ecosystem assessment documents, to provide the necessary data
upon which any future success will rely. Earlier in history, Wallace (1862) urged scientists
and researchers to educate society on the critical role of biological diversity in human
wellbeing and encourage its preservation for the benefit of both the present and future
generations. Carpenter et al. (2006) reiterated this position in their outline of the research
needs of the millennium assessment project. Amongst other knowledge gaps, they noted the
absence of a systematic and replicable strategy for monitoring ecosystems and biodiversity
changes and the drivers. They stressed that this information is essential "to understand the
limits and consequences of biodiversity loss and the actions needed to maintain and restore

ecosystem functions.”

2.2 Progress and Challenges

Biodiversity monitoring involves measuring species occurrence and rates of change at
different scales within an ecosystem (Yoccoz, Nichols and Boulinier, 2001). Biologists,
ecologists and other stakeholders worldwide agree on the significance of monitoring
biodiversity at different scales of time and space in the bid to curtail biodiversity loss. Han
et al. (2014) remarked that resource monitoring is the “cornerstone of biodiversity and
conservation science.” Muchoney (2008) stated that biodiversity monitoring is vital to satisfy
the series of Conventions and Protocols that have been agreed upon by parties to the
Convention on Biodiversity (CBD); the Convention on the Conservation of Migratory

Species (CMS); the Ramsar Convention (RC); the Convention on International trade in
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Endangered species (CITES), the Framework Convention on Climate Change (UNFCC) and
others. Lindenmayer and Likens (2010) outlined the advantages of biodiversity monitoring

to include

i.  the identification and assessment of threats and uncertainties;
ii. insight into eco-evolutionary dynamism and basis for scientific research and
investigations;
iii.  timely intervention when necessary to mitigate ecosystem changes that may impact
services;

iv.  relevant data pool to support legal decisions about the environment.

Perhaps, more importantly, the need for biodiversity monitoring hinges on the fact that the
ecological services that benefit humans and other organisms in a given ecosystem may
become impeded and untraceable (Dobson, 2005) in the absence of an implementable
monitoring programme. Methods adopted for biodiversity monitoring determine the quality
and quantity of data collected as well as its usage. Pettorelli et al. (2014) stated that data
should be accessible, reliable and globally relevant. Noss (1990) and Nagendra (2001)
suggested monitoring biodiversity at "multiple levels of organisation and at multiple spatial
and temporal scales" taking into consideration the various components of biodiversity.
Furthermore, Hestir et al. (2008) opined that monitoring programmes should be systematic

and comprehensive to be effective in protecting biodiversity.

There are challenges associated with biodiversity monitoring. Vihervaara et al. (2014) for
instance questions how to measure the different components of biodiversity such as
structures, functions, ecosystems, communities, species and genomes. Others argue that
since only a little proportion of life on earth is actually known; (in Wilson et al. (1996), Stork
estimated that only about 10 to 30% of the total global species numbering up to 15 million
are identified, with little or no knowledge on their distribution and biology) monitoring of
the known species is irrelevant since unknown species continue to go extinct. The lack of
consensus on the definition and scope of biodiversity (Holt, 2006), the strategy, scale and
cost also constrain effective monitoring of biodiversity. For instance, Krebs (2002) argues

that monitoring will be of scientific value when factors such as environmental variations and
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ecological processes are investigated. Other areas of discord include the prioritisation of
conservation goals, in other words, who and what should benefit from conservation efforts
(Sheil, Sayer and O'Brien, 1999), and the conflicting objectives of economic and sustainable
development. Many nationally defined conservation goals are local and usually prioritised
for effective management (Yoccoz, Nichols and Boulinier, 2001) with minimal consideration
for the role of research in informed decision making (Han et al. 2014). Sheil (2001) noted
that developing countries usually saddled with limited resources and sometimes bankruptcies
are “easily side-tracked by initiatives that promise some support.” For instance, the United
Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest
Degradation (UN REDD+) linked to the Framework for Climate Change poses a threat to
biodiversity conservation (United States Agency for International Development, 2014;
Bayrak and Marafa, 2016). This threat is due to its emphasis on forest preservation for carbon
sequestration and not necessarily for biodiversity conservation. A recent review of the
biodiversity goals and proposed monitoring methods in national REDD+ programs in 2014
revealed that few countries have mitigating plans for the impacts of the programme on
biodiversity. The review also showed that the sampled countries had commenced the
implementation of the REDD+ program at subnational levels without a defined process for
integrating data obtained at different scales for effective monitoring of biodiversity (United

States Agency for International Development, 2014).

An important area of contention in biodiversity monitoring is the selection of appropriate
indicators for assessment. Biodiversity indicators are the characteristics of the organism, and
the ecosystem that are susceptible to external stimuli and that are measurable repetitively.
Formulating a measurable set of biodiversity indicators is necessary for any meaningful
monitoring programme (Dengler, 2009). Furthermore, Dobson (2005) outlined that the lack
of a skilled workforce to conduct the necessary field collection and taxonomical
classification constrained the implementation of national monitoring programmes.
Lindenmayer and Likens (2010) who revealed that a vast majority of monitoring programs
fail to achieve their aims due to poor planning at the initial stage or lack of focus during
implementation supported this opinion. Others like Brooks et al. (2006); Mace and Baillie,
(2007); Carwadine et al. (2009) and Harrop and Pritchard, (2011) reported that political,
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financial, and institutional difficulties impede successful implementation of the CBD

decisions at national and regional levels.

In a recent review, Chandra and Idrisova (2011) observed a vast and growing disparity in the
measurable progress linked to the development status of the implementing party. They
discovered that developing economies while in acute need of urgent and thorough action to
halt biodiversity loss are least able to make meaningful progress in achieving the CBD
targets. Although there has been notable advancement in monitoring technology, a massive
database of recorded field observations as well as satellite images available; Carpenter et al.
(2006) decried the absence of a standard, uniform and integrated procedure for monitoring
biodiversity loss and ecosystem degradation across local, regional, global and temporal
scales. Pereira and Cooper (2006); Scholes et al. (2012); Pereira et al. (2013) and Han et al.
(2014) reaffirmed this in their various works. Fortunately, several national and international
organisations such as the Global Biodiversity Information Facility (GBIF), the International
Union for Conservation of Nature (IUCN), World Wildlife Fund (WWF), the Group on Earth
Observations Biodiversity Observation Network (GEO BON) and so on, are bridging this
gap. Steps taken to achieve this include digital interconnection of existing databases and
further research on biodiversity monitoring and conservation (Global Biodiversity
Information Facility, (GBIF), 2015; Scholes et al. 2012). It is imperative to mention here that
a higher percentage of the efforts and successes attained concentrate in developed countries
with extensive databases in the first place. It is also of significant implications that in the
biodiversity-rich tropics exposed to extreme biodiversity loss (Lugo, 1988), biodiversity
monitoring is minimal and conservation practices are subject to political, cultural, social and

financial considerations (Stork, 1996).

2.3 Methods of Monitoring Biodiversity

The establishment of global organisations with the goal of integrating the existing local,
national and regional databases of biodiversity facilitate the incorporation of this information
in policy and management decision-making processes. However, it is impossible to monitor
all the various life forms that inhabit any ecosystem at any given time. It is also impossible

to measure and monitor the effects of various management practices on all species
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(Lindenmayer, Margules and Botkin, 2000). Furthermore, there is the concern that
monitoring results are open to high error percentages due to several factors that are difficult
to control (Archaux, 2011).

So much has been written about the effect of sampling methods on ecological and diversity
study (Stohlgren, Falkner and Schell, 1995; Dengler, 2009). Factors such as type (quadrant
or transect), shape (rectangle or square), size (small or large) and number (few or numerous)
have been suggested, reviewed and modified by various ecologists over the years (Sattout
and Caligari, 2011). However, no single technique lends itself to universal applicability;
hence, ecologists are yet to agree on a standardised sampling method for measuring species
diversity at any habitat (Stohlgren, Falkner and Schell, 1995). In any case, the appropriate
monitoring technique suitable for any habitat (for instance-forest, grassland, wetlands,
marine or desert) depends on identifying the attributes that indicate the condition of the
habitat, the broad and specific objectives of the programme as well as the available resources
(Sattout and Caligari, 2011). These attributes may include the size and shape (diameter of
tree species, boundaries); the soil (type and nutrient status); hydrology (watercourse
configuration, flooding regime, water chemistry, water table fluctuations); composition
(communities, species composition, richness and diversity); structure (age class diversity,
horizontal and vertical structural diversity, deadwood) and dynamics of the system
(regeneration; composition, number and distribution, planting frequency). Hence different
habitats required different monitoring methods but based on structural similarities,
recommended and standardised methods are transferrable across a wide range of habitats
(Hill et al. 2005).

The most common method for monitoring biodiversity involves sampling plots. Sample plots
can be fixed or non-fixed. Random sampling is highly recommended to minimise the
presence of bias in the results. Samples of any medium are obtained from quadrants or
transect mapped along the habitat in the desired pattern (either following an apparent
physical characteristic such as precipitation gradient or following the impact of
anthropogenic activities such as oil spills). (Elzinga, Willoughby and Salzer, 1998; Musila
et al. 2005; Seak, Schmidt-Vogt and Thapa, 2012). Sample sizes range from 500 to 1000m?

depending on the habitat condition, management objectives and available resources.

34



Rondeux and Sanchez (2010) recommended that the total area sampled makeup about 10%
of the total study area and a minimum sample plot density of 1 plot per hectare.
Measurements are taken from sample plots using various tools such as traps and nets for
animals as well as through counting, visual estimation and photography for vegetation (Seak,
Schmidt-Vogt and Thapa, 2012).

2.4 Biodiversity Indicators (BIs)

Biodiversity indicators are components of an ecosystem which are selected to function as
proxies or surrogates for other members of the community. Assessment of Bls determines
changes in the ecosystem or the effect of management strategy on protected areas (Burgman
and Lindenmayer, 1998). According to Landres et al. (1988) an indicator species is "an
organism whose characteristics (e.g. presence or absence, population density, dispersion,
reproductive success) are used as an index of attributes too difficult, inconvenient, or

expensive to measure for other species or environmental conditions of interest".

Clearly, it is not practicable to monitor all the elements of biodiversity at any level or scale,
hence the need to select appropriate indicators that convey relevant information about other
components of the ecosystem (Sparrow et al. 1994; McLaren et al. 1998; Duelli and Obrist,
2003; Canterello and Newton, 2008; Dung and Webb, 2008). The planned monitoring
objectives or purposes determine the suitability of an indicator. An ideal indicator according
to Duelli and Obrist (2003) should correlate linearly with the component of the biodiversity

or entity assessed.

2.4.1 Habitat Records

Habitats are essential indicators of biodiversity due to the presence of particular
environmental parameters associated with them. A habitat is defined as a geographical entity
that supports the existence of certain species or communities, as well as, the physical
dimensions such as soil type, topography and so on of the area (Bruce et al. 2013). Habitats,

intricately link with biodiversity as the habitat heterogeneity hypothesis suggests.

The extent and status of habitats is an essential and useful measure of biodiversity and offers

several practical advantages, which include interpretation of aerial and satellite data for
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regular monitoring of status and trends. Furthermore, the phytosociological relationships
between habitat and species composition help to identify particular species assemblages in a
study transect. Bunce et al. (2013) affirmed that habitat condition relate to species
distribution and abundance. Processes that promote habitat degradation affect the
biodiversity of the habitat, and the extent of this effect is established from habitat data. Past
and ongoing investigations report severe degradation of the landscape and habitat of the
study area arising from oil exploration and related activities. This study aims to develop
remote sensing tools that can map both spatial and temporal extents of these changes.

2.4.2 Plant Species

Plant species also serve as valuable indicators because they are more easily identified,
sampled, stored or transported and distributed over a wide range of habitats and
environments (Faith and Walker, 1996). Also, Pereira and Cooper (2006) affirmed that

vascular plants are suitable indicators of biodiversity for global monitoring programmes.

2.4.3 Biodiversity Indicator Partnership

The Convention on Biological Diversity (CBD) in 2006 mandated the Biodiversity Indicators
Partnership to facilitate the development and application of biodiversity indicators in
monitoring programmes worldwide. Since the over 20 years of its existence, the BIP has
attempted to coordinate a global partnership providing the essential data, analysis and
professionalism needed for successful development of indicators for biodiversity monitoring.
Together with the partners, they have created an extensive list of indicators some of which
are fully developed globally with standardised methodologies. The Aichi 2020 targets of

focus and biodiversity indicators explored in this study are shown in Table 2.1.
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Table 2.1 The AICHI 2020 target and biodiversity indicators relevant to the present research

Target 5 By 2020, the rate of loss of all natural habitats, including forests, is
at least halved and where feasible brought close to zero, and
degradation and fragmentation is significantly reduced

Indicators Trends in extent, condition and vulnerability of ecosystems.

Extinction risk trends of habitat dependent species.

Trends in extent of selected ecosystems and habitats

Trends in the proportion of degraded/threatened habitats

Trends in fragmentation of natural habitats

Trends in the proportion of natural habitats converted.

Trends in pressures from habitat conversion, pollution, invasive
species, climate change, overexploitation and underlying drivers

2.5 Determining Species Diversity of Transects.

2.5.1 Similarity Index of Polluted and Control Transects

Prior to determining the vascular plants diversity of investigated transects, the similarity
index of polluted and control transects was evaluated.Similarity index measures the degree
of association or agreement of two entities or variables, in this case, vegetation data from
polluted and control transects (Warrens, 2008). Similarity index of pairs of segments
determines the degree of their association based on their species composition. This study
utilised the abundance-based Sorenson's similarity index. Abundance data takes into account
both commonness and rareness of species and places more weight on individuals of the
species; and hence provide more detailed information about vegetation on the sampled area
(JOSEPH et al. 2006; Chao et al. 2006). Many researchers (Sattout and Caligari, 2011;
Petrovic, Jurisic and Rajkovic, 2010) have used Sorenson's coefficient as an appropriate test
to determine the similarity between investigated units. To ensure that the sampled transects
have common features, the Sorenson's index (IS) was calculated to determine the community
similarity between segments of polluted and control transects as well as among the different

locations.

The formula for Serenson’s similarity index (IS) is:
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Is = 2% _ 100 1)
MA+MB
Where

MW = Sum of the smaller numbers of plant species common to the control and test transects
MA = the sum of all plant species in the transect A
MB = the sum of plant species in the transect B

2.5.2 Richness and Diversity Indices

Species diversity measures the diversity within a habitat or ecological community classified
as alpha, beta or gamma diversity. Alpha diversity (a-diversity) describes the number of
species present (species richness or species abundance) and the distribution pattern of the
individual members of these species (species evenness or species equitability) within an
ecological unit (Hurlbert, 1971). On the other hand, beta diversity (B-diversity) is the
summation of the differences among habitats. It measures the change in species composition
between two or more habitats within a region or between regions (Magurran, 2010). Lastly,
gamma diversity (y-diversity) also known as regional diversity is a composite of a and § —
diversities. Diversity indices were computed for each segment of polluted and control
transects in order to answer the research questions. The various indices of species diversity
include species richness which refers to the number of species present in a given area without
reference to the abundance or distribution pattern of the species , species evenness which is
the relative abundance of a species in a community. Other indices include the Simpson’s
diversity index and Shannon’ds diversity index; the Chao-1 richness index and the
Menhinick index. Detailed description of these indices and their formuylae are provided in

Appendix 8.1: Description of vegetation and biodiversity measures.

2.5.3 Beta Diversity Index of Polluted and Control Transects

Beta diversity, a term coined by R. H. Whittaker in 1960 describes ‘the extent of change in
community composition or degree of community differentiation in relation to a complex
gradient of the environment or a pattern of environments'. According to Ricotta (2012), beta

diversity quantifies the amount of variation in species composition among sampling units
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such as communities, assemblages, plots and so on. Similarly, Baselga (2012) defines beta
diversity as the ratio between regional (gamma) diversity and local (alpha) diversities. Beta
diversity values are dependent on the extent of the study area, size of the sampling units and
sampling interval (Legendre and Legendre, 2012). Quantifying the variation in species
assemblages provides relevant information for understanding the ecological and
environmental processes that influence biodiversity and ecosystem services. Beta diversity
of ecological units provides critical information on the functioning and management of
ecosystems as well as biodiversity conservation policies (Legendre, 2007). For instance, the
inference of oil pollution effect on species diversity is possible from beta diversity analysis,
which detects the variations between species composition and abundance on polluted and
control transects. Differences in the species turnover for polluted and control transects at
different locations is an indication of biodiversity response to oil pollution. The formula for
calculating beta diversity is given by Jost (2010) and based on Whittaker (1960) for

communities with equal weights (in this study, equal sampling units) is as follows

B=yv/a (2)
Where,

B = Beta diversity,
vy = Gamma diversity (diversity of the entire study area)
a = Alpha diversity (diversity of each transect, polluted and control)

2.6 Remote Sensing in Biodiversity Monitoring

Conventional biodiversity monitoring methods are constrained by local, national and
regional issues including finances, shortage of skilled staff, out of date equipment, lack of
accessibility, and further threat of habitat destruction through fieldworks, questionable
monitoring objectives and attendant errors (Stork, 1996; Powers et al. 2013). One method
that has proved a hopeful remedy to these constraints is remote sensing from space-borne or

airborne platforms.

Remote sensing is the science and art of obtaining information about an object, area or

phenomenon through the analysis of data acquired by a device that is not in direct contact
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with the target (Alcantara, 2013). Remote sensing is a viable instrument for photographing
the earth surface at regular time intervals. It affords a synoptic perspective of earth features,
which is not feasible through other means of observation. Remote sensing provides data on
large-scale patterns, trends and interactions at desired levels particularly when combined
with ground data (Schott, 2007). It generates reliable data about earth's topography and land
cover, rainfall, temperature and other climatic variables, habitats and world biomes (Noss,
1999; Boyd and Danson, 2005).

For this research, remote sensing is defined as the observation of the earth's land surface
utilising reflected or emitted electromagnetic radiation. It excludes remote sensing
applications in other fields such as in geodesy and seismology. Used in conjunction with
Geographical Information Systems (GIS), Nagendra (2001) and other researchers have
studied the application of remote sensing in understanding the patterns of species distribution
in an ecosystem. Boyd and Danson (2005) maintained that remote sensing offers
unprecedented capabilities for global forest mapping and health assessments and may be the
only practical way of monitoring earth's forested areas on a timely and consistent basis. It
also allows for the mapping of large areas efficiently and more accurately (Wulder, 1998).
Furthermore, progress in sensor technology and analytics enhance remote sensing
application in solving environmental management problems across disciplines (Galidaki and
Gitas, 2015). For biodiversity issues such as species identification and distribution, this

progress is a welcome development.

Generally, data from remote sensing combined with expert knowledge enables the
classification of landscapes and habitats based on predefined systems such as the Food and
Agriculture Organization Land Cover Classification System (LCCS) (Lucas et al. 2015).
Warren et al. (2014) observed that ecosystem heterogeneity affects species richness and
abundance, suggesting that spectral diversity correlates closely with biodiversity. The

approaches to the use of remote sensing in monitoring biodiversity are indirect and direct.

2.6.1 Indirect Remote Sensing (IRS)

IRS involves the measurement of environmental parameters as proxies of biodiversity trend

in question. Through remote sensing, indirect indicators of diversity such as land cover maps
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are analysed and combined with field data to model and predict features of biodiversity like
species composition or abundance (Turner et al. 2003; Millennium Ecosystem Assessment,
2005; Haines-Young, Potschin and Kienast, 2012). The concepts driving this approach

include

2.6.1.1 The Habitat Heterogeneity Hypothesis (HHH)

MacArthur and MacArthur (1961) proposed the hypothesis stating that increased
environmental heterogeneity increases species richness. Douda et al. (2012) stated that the
distribution of species in any habitat depends on their characteristics and environmental
requirements; hence, microhabitats support different species (niche theory). It follows that
the more heterogeneous a habitat is, the higher its species diversity index. Factors such as
topography, soil variability, habitat disturbance, landscape structure and complexity, in turn,
determine habitat heterogeneity. These factors are remotely sensed and positively correlate
with species diversity in swamp forest community (Douda et al. 2012); in a disturbed habitat
characterised by varying ecological niches (Warren et al. 2014); and in Savannah region
(Oldeland et al. 2010).

2.6.1.2 The Spectral Variation Hypothesis (SVH)

The spectral variation hypothesis proposed by Palmer et al. (2002) suggests that spectral
variations from remotely sensed images can determine plant species diversity. Palmer tested
this hypothesis in 2002 using aerial images with very high spatial resolution (1m) while
Rocchini et al. (2004) carried out similar testing using multispectral satellite image of 3m
spatial resolution. In both investigations, the possibility of estimating species diversity of the
study area based on the spectral variability of the remotely sensed images showed great
potentials (Rocchini, Chiarucci and Loiselle, 2004). Several studies have shown that the
variations in the internal structures of different species such as pigments, tissues that produce
unique spectral signatures drive the relationship between spectral variability and species
diversity at a particular area (Heumann, Hackett and Monfils, 2015). Hall et al. (2012)
demonstrated that the spectral variability explained about 30-35% of species diversity in their

study area. In the present research, the potential of both multispectral and hyperspectral
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images for predicting the diversity of species in Rivers State is investigated using Sentinel-

2 and Hyperion EO-1 images.

2.6.2 Direct Remote Sensing

Direct remote sensing involves the use of hyperspectral and hyper-spatial sensors for direct
sensing of individual organisms, species assemblages or ecological communities (Turner et
al. 2003). Presently, however, these high-resolution images are mostly commercially

available and are expensive to acquire.

2.6.3 Remote Sensing Derived Indices

A third approach involves the measurement of an ecosystem's functioning and productivity
variables to determine its species composition. Some researchers have successfully
established a positive linear relationship between species diversity and ecosystem
productivity (Waide et al. 1999). Clevers et al. (2002) and Andrew et al. (2014) confirmed
the direct measurement of plant biophysical and biochemical characteristics and changes in
these attributes by satellite sensors. These possibilities prompt the development of very high-
resolution sensors to monitor biodiversity, predict species distributions and model ecosystem
responses to environmental and anthropogenic changes (Turner et al. 2003). For instance,
Thenkabail et al. (2004b) and Adamu et al. (2014) examined varying plant responses to
certain stress factors; Blackburn and Ferwerda, (2008) measured chlorophyll concentration
from leaf reflectance; Houborg and Boegh, (2008) and Dalponte et al. (2009) in their various
studies determined the nitrogen and lignin content of leaves from reflectance data and so on.
Recent research established strong links between species richness and spectral diversity
(Warren et al. 2014; Aneece, Epstein and Lerdau, 2017; Peng et al. 2018a; Onyia, Balzter
and Berrio, 2018).

2.6.4 Limitations in Biodiversity Monitoring

A common drawback to the use of remote sensing in biodiversity monitoring is the level of
multidisciplinary cooperation and interaction needed to achieve realistic results. Regardless
of the quality of the remotely sensed data acquired, there is a primary need for local experts

including ecologists, botanists and so on to ensure accurate interpretation and classification
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of the data (Lucas et al. 2015). In addition to this, the amount of information relevant to
biodiversity retrieved from remotely sensed data depends on the size of the study area and
the resolution of the remote sensor (Nagendra 2001). The choice of the sensor will ultimately
depend on the availability of funds as data from higher resolution sensors (spectral and

spatial) cost a lot more to obtain.

A review of available literature in remote sensing shows that both very high and very low
spatial resolutions impede accurate interpretation of the images. For instance, Boyd and
Danson (2005) explained that coarse spatial resolution imagery might provide inaccurate
results when applied in a local context but are acceptable in large area studies. Conversely,
finer spatial resolution imagery suitable for local area studies is less likely to generate
accurate maps when extrapolated to regional or national scales. Furthermore, Malingreau
and Tucker (1988) reported that the utilisation of higher resolutions satellite imagery is
constrained by high cost, large volumes, delay in the acquisition, and particularly in the

tropics; cloud cover and dense smoke from forest fires.

Although remote sensing is an effective means of spatial and temporal classification of
vegetation and land cover types, there are still accuracy problems with attempts at species
identification (Hu et al. 2008). Nonetheless, as different species of plants respond differently
to light in the electromagnetic spectrum, the near infrared, middle infrared and thermal
infrared bands are recommended for species discrimination. Other factors such as ground
surface and understory components, canopy gaps, stand density and crown size, which
contribute to spectral variation (Treitz et al. 1992; Eastwood et al. 1997), are unaccounted
for adequately. Information on lower vegetation strata, such as herbs or shrubs is lost when
optical sensors are utilised due to their inability to penetrate through the top canopy of
vegetation.

Other challenges to the use of remote sensing in studying tropical forests as noted by Jusoff
and Ibrahim (2009) include sensor design and accuracy, algorithm development and
availability of baseline ecological and taxonomical data. Jusoff and Ibrahim (2009) also
pointed out that the data supplied by remote sensing imagery are very complex and hence

require complex and sophisticated procedures to extract the relevant information. The
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availability of such skills in developing nations is a significant constraint in effective natural
resource management. A further obstacle as noted by Lucas et al. (2015) is the absence of a
standardised, systematic approach to the classification of habitats from remotely sensed data
that applies to all transects.

There are also limitations associated with sensor design. According to Carlson et al. (2007),
land managers and scientists require a comprehensive understanding of species distribution
on a scale commensurate with conservation, management and policy development programs
to produce maps with less than 0.5km resolution. Such fine scaled biodiversity maps provide
a baseline for temporal and spatial change assessment of landscape and evaluation of
management decisions. They argue that these maps are defined better with high-resolution
imagery as past efforts using Landsat data characterised by medium to coarse spatial
resolution (>30m pixels), multispectral (<10 bands) data have failed to fully capture

landscape, species and canopy-level diversity in monitored forests.

More recently, Mairota et al. (in press) identified several challenges associated with remote
sensing application in biodiversity monitoring to include image processing, interpretation,
integration with other data sources and timely application of results to management
endeavours. Thenkabail et al. (2004) stated that the older generation of satellite sensors
perform poorly in studies involving complex biophysical characteristics of plants and
vegetation. They opined that higher spectral and spatial resolutions allow improved
interpretation of remotely sensed data over and above that obtainable from lower resolutions.
Their study comparing four different sensors namely- Hyperion (hyperspectral); IKONOS
(hyper-spatial); ALI (multispectral), and ETM+ (Landsat) showed that the hyperspectral
sensors had higher overall accuracies for individual vegetation types than the others did. Hu
et al. (2008) agree that high-resolution remote sensing provides better details in species and
spectral signature differentiation. For instance, hyperspectral data can provide near accurate
information on particular characteristics of vegetation such as biochemical properties,
biomass, leaf area index, stress, management impacts, and pigment contents. These factors
are crucial for successful biodiversity monitoring and conservation strategies (Hu et al. 2008;
Jusoff and Ibrahim, 2009; Thenkabail et al. 2013).
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2.7 Essential Biodiversity Variables (EBVS)

An Essential Biodiversity Variable (EBV) is a measurement required for the study, reporting
and management of biodiversity change (Pereira et al. 2013). They are standardised
measurements and observations necessary to calculate indicator transformations necessary
to derive biodiversity indicators. For instance, EBVs such as species population, abundance

and distribution provide information for many indicators including: -

I.  Trends in extent of selected biomes, ecosystems and habitats
ii.  Trends in abundance and distribution of selected species
iii.  Coverage of protected areas
iv.  Change in status of threatened species

v.  Trends in genetic diversity

These, in turn, provide information on the status of the habitat. EBVs like biodiversity
indicators provide information on the changes and the impact of these changes on
ecosystems, species, genes and ecosystem services. EBVs are scalable (allowing for large-
scale generalisations), measurable (using various techniques including remote sensing),
feasible and are widely applicable across regions, sensitive to change over time and relevant
to the CBD targets (Pereira et al. 2013).

The concept of EBVs recently evolved following the failure of the CBD parties to meet the
2010 targets. Compounding this was the lack of a global, harmonised system for biodiversity
monitoring and data acquisition. The Group on Earth Observations- Biodiversity
Observation Network (GEO BON) spearheaded the exercise to develop these variables to
form the basis of monitoring programmes worldwide. According to Pereira et al. (2013), the
EBVs does for biodiversity what other observation initiatives such as the Global Observation
System for Climate (GCOS) developed Essential Climate Variables ( ECVs) and the
Essential Ocean Variables (EOVs) developed by the Global Ocean Observing Systems
(GOOS) does for global environment. Being a new concept and still in development, few
studies exist on the application of EBVs in biodiversity monitoring schemes. The present
research integrated the measurement of relevant EBVs to achieve its general aim. The
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following EBVs measured through in-situ observations and remote sensing, were assessed

to determine the impact of oil pollution on biodiversity in the study area

i.  species abundance and distribution (vegetation inventory data)
ii.  species traits (leaf chlorophyll data)
iii.  community composition (polluted and control transects)

iv.  ecosystem structure (differences between polluted and control transects)

2.8 Vegetation Indices (VIs)

Photosynthetic and protective processes involving pigments such as chlorophylls,
carotenoids, and anthocyanins drive plant life cycles. These pigments generally absorb and
convert solar radiation to the chemical energy needed for plant productivity through a process
known as photosynthesis. According to Thenkabail et al. (2013), every plant species
produces a unique spectral signature, which is dependent on the proportion of these pigments
within the cell chloroplast. Additionally, the physiological status of the plant at the time of

measurement also influences the plant spectral signature.

Vegetation indices are mathematical expressions derived from the spectral reflectance of
plant materials on the earth's surface. They are functions of the reflectance in visible and
near-infrared (NIR) spectral bands. Generally, leaf pigments including chlorophyll,
carotenoids and anthocyanins absorb significant radiation at the visible light range (VI1S, 400
nm -700 nm) while reflecting near-infrared light (NIR, 700 nm -1300 nm) (Huete, 2012).
The abrupt transition between both spectral signatures is the red edge. Water, on the other
hand, have moderate absorptions at the shortwave-infrared (SWIR, 1300 nm -2100 nm)
bands (Huete, 2012). Many researchers use satellite-based vegetation indices to detect
(Adamu, Tansey and Ogutu, 2015), explain (Bhandari, Kumar and Singh, 2012), estimate
(Barati et al. 2011) various environmental phenomena.

Spectral reflectance signatures correlate well with biophysical and biochemical vegetation
parameters (Arellano et al. 2015; Thenkabail and Lyon, 2016). Additionally, VIs are
incorporated in models developed for estimating, monitoring, mapping and analysing

ecosystem structures such as vegetation cover and species composition as well as functions
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such as productivity and biomass (for instance, Pu, Bell and English, 2015; Bargain et al.
2013; Gong et al. 2003; Arellano et al. 2015). They are hence, essential tools in retrieving
information about the state, biogeochemical composition and structure of an ecosystem
(Huete, 1988; Jargensen, Mortensen and Ohlsson, 2003; Alcantara, 2013).

Spectral Vs are designed to minimise the effect of external influences like solar irradiance,
changes due to atmospheric effects or variations in soil background optical properties on
vegetation reflectance (Gilabert et al. 2002). VIs derived from variations in spectral
reflectance measured by hyperspectral and multispectral sensors contribute to biodiversity
assressment at different spatial (Rocchini, Chiarucci and Loiselle, 2004) and temporal
(Martinis et al, 2018) scales.

Several vegetation indices were analysed for their ability to detect oil pollution effects on
biodiversity and these include the Normalised Difference Vegetation Index (NDVI); the Soil
Adjusted Vegetation Index (SAVI); the Red Edge Position (REP); the Anthocyanin
Reflectance Index (ARI) and the Carotenoid Reflectance Index (CRI). Detail descriptions of
these indices and their formulae are provided in appendix 8.2; Description of vegetatiojn

indices.

2.9 Plant Biophysical Parameters

These critical plant characteristics and processes interact with the environment and control
ecological functions in various habitats. They are useful in ecological research and are
important indicators of biodiversity assessment, monitoring and management (Pereira et al.
2013). They strongly influence the spectral signatures of plants and hence are measurable
through remote sensing. Measurement of these parameters are either at individual plant levels
or canopy levels. At canopy level, optical properties of leaves, leaf angle distribution,
biomass and canopy structure influence reflectance whereas concentrations of pigments
(chlorophyll, carotenoids, anthocyanins); moisture content, leaf area and so on determine
leaf reflectance. Studies show that these parameters are affected by the presence of
hydrocarbons in the soil (Rosso et al. 2005). The plant biophysical and biochemical
parameters examined in the present study to determine the impact of oil pollution on plant

biodiversity include.
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2.9.1 Chlorophyll Content (CC)

Chlorophyll is a group of green pigments that capture light, which provides the energy for
the process of photosynthesis in plants and other organisms. They are located in the
chloroplast and directly proportional to the absorption of photosynthetic light. It is an
essential indicator of the overall physiological state of a plant/vegetation (Gitelson, Gritz and
Merzlyak, 2003; Wu et al. 2008). Chlorophyll plays a significant role in the process of
photosynthesis through which plants manufacture their food and grow; hence, the total CC
in healthy growing plants is expectedly higher than the content in dead or unhealthy plants
(le Maire, Frangois and Dufréne, 2004; Wu et al. 2008). Investigations have evidenced a
correlation between the presence of hydrocarbon compounds and the percentage content of
chlorophyll in leaves (Baruah et al. 2014), making CC a good indicator of the physiological

state of vegetation growing on hydrocarbon-polluted soil.

Other studies prove that chlorophylls strongly influence reflectance in the red and blue
wavelength, with maximum absorption occurring in the 660 nm — 680 nm regions. However,
empirical studies based on reflectance between 550 nm to 700 nm show higher accuracy in
estimating CC in several species of leaves (Gitelson et al. 2002; Wu et al. 2008). CC
estimation can be done at leaf-level using ratios of three or more bands (Gitelson, Gritz ¥
and Merzlyak, 2003; le Maire, Francois and Dufréne, 2004) or at canopy level using factor
analysis, artificial neural networks and stepwise multiple regression. However, individual
leaf measurements calibrate measurements at higher canopy or ecosystem levels (Mielke,
Schaffer and Schilling, 2012). Although vegetation species have a similar spectral response,
differences in leaf internal structure and presence of other pigments affect leaf reflectance of
different species at similar wavelengths (Mielke, Schaffer and Schilling, 2012). For this
study, chlorophyll content was determined using a hand-held chlorophyll meter and

computed using chlorophyll related vegetation indices.
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2.10 Research Questions and Objectives

The main aim of this research is to determine the impact of oil pollution on vascular plants
species used as biodiversity proxies, by analysing remotely sensed hyperspectral and
multispectral data and validated with field data To achieve this, the research sought answers

to the following questions:-

2.10.1 Research Questions (RQ)

RQ1. Has oil pollution affected the vascular plants' species diversity index of the study
area?

RQ2. Are vascular plants species susceptible to oil pollution and does this affect their
biochemical parameters?

RQ3. Isthere any relationship between spectral diversity metrics and vascular plant species
diversity measured in the field?

RQ4. Can this relationship be modelled to estimate the diversity of vascular plants on oil-
polluted transects?

2.10.2 Research Objectives (RO)

RO1. To determine the vascular plant species diversity index of the study area and
investigate the effect of oil pollution on the biodiversity of the study area using
vascular plants as indicators (RQ1)

RO2. To investigate the effect of oil pollution on plant biochemical parameters with focus
on leaf chlorophyll content (RQ2)

RO3. To test the validity of the spectral variation hypothesis in estimating species diversity
of the study area (RQ3)

RO4. To develop prediction models for vascular species diversity in oil-polluted areas

(RQ4).

2.11 Thesis Structure

The arrangement of the chapters in this thesis may be visualised as an ice cream cone in the

way the research questions listed in section 2.10.1 are tackled. Beginning with the
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determination of oil pollution effect on soil and vegetation of the entire Rivers State, the
thesis narrows in scope to investigating the spectral changes in vegetation characteristics
detected by multispectral satellite sensor, and then focuses on determining the impact of oil
pollution on vegetation biochemical parameters using hyperspectral data from a subset of the
study area. Figure 2.1 portrays the relevant connections and the general direction of the
research. The thesis commences in Chapter 1 with an introduction to the oil pollution
problem in the study area and justification of the study. In Chapter 2, a general discussion on
previous literature related to this research is presented with emphasis on remote sensing

applications in biodiversity monitoring.

Chapter 3 provides a description of the methodology and datasets utilised in this research as
well as the sources and characteristics of various satellite data. In this chapter, the
geomorphological and ecological parameters of the study area are presented to provide the
reader with a proper perspective of the connections between oil pollution and biodiversity

loss. Finally, the various statistical tools employed in data analyses are explained.

Chapter 4 presents the answer to the first research question (RQ1) in section 2.10.1. The
vascular plant species diversity in Rivers State is determined, and the impact of oil pollution
on the soil and vegetation parameters is revealed from field data. Chapter 5 subjects the
spectral variation hypothesis to test and evaluates its usefulness for detecting the impact of
oil pollution on vascular plants species diversity. Chapter 5 marks the introduction of satellite
data in answer to the second and third research questions (RQ2 and RQ3) and outlines the

specific data and methods employed are outlined.

Chapter 6 provides a detailed evaluation of oil pollution impact on vegetation biochemical
parameters, specifically chlorophyll and how this influences vegetation reflectance at various
wavelengths. The higher spectral resolution of the Hyperion image proves suitable for this
analysis; however, the scarcity of the dataset constrained its application to only a subset of
the study area. Models derived from relationships among several variables are used to

estimate species diversity on transects in answer to the fourth research question (RQ4).

Chapter 7 provides a general discussion, which ties together the results of the investigations

completed in Chapters 4 to 6 in order to make valid conclusions. The challenges encountered
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in this research, contributions to knowledge as well as recommendations for future work are

also presented.

2.12 Summary

This chapter provided a review of related literature, with emphasis on the application of
remote sensing in biodiversity monitoring, the research questions and objectives and the
thesis structure. Chapter 3 will discuss the general methodology and data sets used in this

research as well as descriptions of the study area.
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Chapter 2
Literature Review

and

Research Questions

Chapter 1
Introduction
and
Justification
Chapter 3
Methods and
Data
Soil data
Vegetation data
Statistical tools
Chapter 4
—_— Species Distribution and Diversity

Oil Pollution Effects on Soil and Vegetation

Satellite data (Sentinel 24)
Image analysis tools (ESA SNAP)
Statistical tools

Vegetation data

Chapter 5
Effects of Oil Pollution on the
Spectral Variation Hypothesis

Chapter 7
Discussions
»| Contributions

Satellite data (Hyperion)

Vegetation data
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Image analysis tools (ENVI, R) Jor Kporghor 1
Leaf chlorophyll data Location
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Chapter 6

Species Diversity Models for
Monitoring Biodiversity

Figure 2.1: Thesis structure reveals interconnections among chapters, in line with research questions

Conclusion

and objectives. Data and main procedures performed in each chapter shown in italics.
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3 Methodology

This chapter aims to provide an overview of the methodology and datasets employed in this
research. The chapter details the preliminary steps taken to access polluted locations and the
difficulties encountered. A description of the study area, field sampling method and
laboratory analysis follows. Furthermore, the chapter explains the attributes of the satellite
data utilised and the various computational procedures applied. Although this chapter gives
an overview of the general methodology of this research, specific methods applied to unique

datasets are discussed in subsequent result chapters.

3.1 Description of the Study Area

Rivers State is located between latitude 4.75° North and longitude 6.83° East in the eastern
part of the Niger Delta, on the oceanward extension of the Benue trough (Figure 3.1). It
occupies an area approximately 11,077 km? of the delta described as constructive and fed
mainly with sediments from the heavily-laden (about 330,000 cm®annum) River Niger
originating from Guinea travelling through Mali, Niger, Benin Republic and Northern
Nigeria (Netherlands Engineering Consultants, 1959). The Delta also receives sediments
from the Benue River, albeit to a lesser degree. Rivers State is bounded on the South by the
Atlantic Ocean, to the North by Imo, Abia and Anambra States, to the East by Akwa Ibom
State and to the West by Bayelsa and Delta States. It receives some of the highest rainfall in
the world of up to 3000mm annually (Omo-Irabor et al. 2011). The temperature ranges from
20° to 30° C during the day. The Intertropical Front wind originates from the meeting point
of humid air masses of the Gulf of Guinea and dry air masses from the north continuously
blow over the delta, resulting in high levels of humidity of up to 75% (Elenwo and Akankali,
2014). The area is also characterised by high cloud cover, which invariably affects the quality

of satellite data obtained at certain times of the year (Omo-Irabor et al. 2011).
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ecological zones and waterbodies (rivers and creeks).

Figure 3.1 Map of Rivers State showing the location of investigated spill transects (Polluted

and non-polluted i.e. control),
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In line with the rest of the delta geomorphology, Rivers State consists of alluvial deposits of
sands, silts and clays deposited during the late Miocene-Pliocene times. Coarse sands and
gravels underlie parts of the area while fine sands and clays underlie other areas (United
Nations Environmental Programme, 2011). The landscape of the area is generally flat with
altitude ranging between 6 to 14m above sea level. Investigated transects located in various
local government areas fall in the coastal plain and freshwater ecological zone populated by
forest tree species, mangrove, palms, shrubs, ferns, lianas and so on, however, the rainforest
is degraded with fewer trees as observed during the field work. Vegetation around spill
transects is variable with evidence of fire occurrence within 30 m radius of the spill epicentre
at one of the polluted locations in Kporghor. Other features include untarred roads which is
part of the oil companies right of way (ROW), vegetated land (natural and farmed) and bare

soil.

Records from the Nigerian Oil  Spill  Monitor  website  (NOSDRA,
2015)(https://oilspillmonitor.ng) indicate that the spills occurred between July to December
2015 with sabotage being the leading cause. Sabotage of oil pipelines is the typical method
by which crude oil is illegally extracted or diverted. It involves exploding dynamites near
pipelines, loosening valves, cutting the pipes, drilling holes in the pipes to fit taps, applying
corrosive substances all in the bid to access the crude oil (Adishi et al. 2017). The extracted
crude is either sold in the black market or locally refined for personal use. Estimated spill
volumes reported range from 46 barrels to over 5000 barrels (at Egbalor and Kporghor2,
there was no data on the volume of spill). Consequently, between July and December, 2015
(about six months) over 10,641 barrels of crude oil was spilt into the vulnerable ecosystem

of Rivers State in the Niger Delta region of Nigeria.
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Figure 3.2 Field photo showing the extent of fire damage on the vegetation of the study
transect. Cause of the fire is unknown and was not reported in the initial impact assessment
conducted by the joint investigation team.

3.2 Ecology of the Study Area

Rivers State is characterised by four biodiversity important vegetation zones, namely, the
lowland rainforests, freshwater swamp forests, mangrove forests, and barrier island forests.
Ebeku (2006) reported that these zones form a critical component of the ecosystem on which
the economy and livelihood of the inhabitants depend. According to the World Bank (1995)

classification, the vegetation zones include

1. The lowland rainforests (LRF) which represents the coastal plains. The World Bank
(1995) reported that the study area was predominantly vegetated by these forests. The
rain forest is characterized by up to four strata of trees growing up to 50 m tall (Izah,
2018). However, as pointed out by Ugochukwu and Ertel (2008), large chunks of this
forest has been taken over by agricultural lands. The vegetation found in this
ecological zone are mostly used for timber, tannins, fuelwood, fences, furniture, saw
wood, particle board, poles and traditional medicine (Nuga and Offodile 2010).

2. The freshwater swamp forests (FSF) occurs between the lowland and mangrove
forests. It can be subdivided into two ecosystems
a. The rarely flooded riverbank levees most of which is converted to farmlands

supporting trees, palms and shrub species.
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b. The flooded back swamps, which support very diverse plants species.

This ecological zone represents an important biodiversity area, providing habitat for
endangered and rare wildlife (Igu and Marchant, 2017). It is also a source of
freshwater supply for inhabitants as well fuel, food, medicine, construction and
textile materials (Izah, 2018; Igu and Marchant, 2017).

3. The mangrove forest (MGF) is characterised by a dense network of inundated creeks
and supports the growth of a variety of mangrove and other tree species. The
ecological zone comprises of estuarine and marine ecosystems which are separated
by barrier islands. Both habitats are predominantly populated by mangrove tree

species.

4. The barrier island forest (BIF) which gradually demarcates the coastal zones and the
estuarine mangroves. The forest is vegetated by a range of diverse flora and fauna
species. The zone is bounded by the mangrove swamps inland and beach strand on
the seaside. It is also characterised by four ecozones namely ridge-top rainforest with
similar characteristics as the LRF, freshwater swamp forest between the ridges,

brackish-water swamp forest and the beach strand.

Each of these zones harbours distinct variations in flora and fauna essentially in response to
the hydrological variations (Abam, 2001). The dominant species, their habits and

ecological zone(s) in which they occur are shown in Table 3.1.
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Table 3.1: List of dominant species occurring in the different ecological zones of Rivers
State of Nigeria. LRF = Lowland Rainforest; FSF = Freshwater Swamp Forest; MGF =
Mangrove Forest and BIF = Barrier Island Forest

Species name

Agelea oblique

Albizia adianthifolia
Alchornea cordifolia
Alstonia boonei
Anthocliesta vogelii
Antidesma vogelianum
Avicennia africana
Berlinia spp

Bligha sapida

Bombax buonopozense
Borassus aethiopum
Ceiba pentandra
Chassalia spp

Cleispholis patens
Cynometra megalophylla
Dacryodes edulis
Dalbergia ecastaphyllum
Dichrostachys cinerea
Dryopteris spp

Eichornia crassipies
Elaeis guineensis
Entandrophragma cylindricum
Entradrophragma angolensis
Funtumia elastica
Harungana madagascariensis
Irvingia gabonensis
Languncularia racemosa
Lophira alata

Lovoa trichilioides
Macaranga bacteri
Machaerium lunatum
Milicia excelsa

Millettia griffoniana
Musanga cecropioides
Nypa fruticans

Pandanus spp

Paullinia pinnata
Pentaclethra macrophylla
Piptadeniastrum africanum
Psychotria manii
Pycnanthus angolensis
Raphia spp

Rhizophora spp

Sterculia tragacantha
Symphonia globulifera
Terminalia ivorensis
Terminalia superba
Treculia Africana
Triplochiton scleroxylon
Uapaca heudelotii

Family name

Connaraceae
Fabaceae
Euphorbiaceae
Apocyanaceae
Gentianaceae
Euphorbiaceae
Acanthaceae
Caesalpiniaceae
Sapindaceae
Malvaceae
Arecaceae
Bombacaceae
Rubiaceae
Annonaceae
Fabaceae
Burseraceae
Papilionoideae
Fabaceae
Dryopteridaceae
Pontederiaceae
Arecaceae
Meliaceae
Meliaceae
Apocynaceae
Clusiaceae
Irvingiaceae
Combretaceae
Ochnaceae
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The well-endowed ecosystem is abundantly rich in biodiversity with very high densities of
flora and fauna (Emoyan, Akpoborie and Akporhonor, 2008). The mangrove and freshwater
swamp forests of the Niger Delta are the largest in Africa and the third largest in the world
spanning about 70,000 km?. However, large chunks of the forests are lost to extensive
logging, fragmentation for oil exploration and agriculture. This ecosystem is under threat
from unsustainable farming systems such as slash-and-burn practices, shifting cultivation
and bush burning, indiscriminate hunting and poaching as well as over-exploitation of
fisheries resources (Zabbey, 2004; United Nations Development Programme, 2006).
Pollutants generated by a multiplicity of oil and gas related activities have exacerbated these
threats, including seismic operations, drilling operations and production operations (United
Nations Environmental Programme, 2011; Emoyan, Akpoborie and Akporhonor, 2008).
Several other studies (United Nations Development Programme, 2006; Emoyan, Akpoborie
and Akporhonor, 2008; Ugochukwu and Ertel, 2008; Lindén and Palsson, 2013) documented
the negative impact of oil exploration and exploitation on the Niger Delta environment. In
the 2011 report on the environment of Ogoniland in Rivers State, the UNEP disclosed that
oil pollution has destroyed the mangrove ecosystem, which had served as spawning areas for
fish, thereby affecting the fish yield (United Nations Environmental Programme, 2011). The
report also highlighted the effect of oil pollution on the productivity of valuable cash and
food crops, vegetation and the introduction of invasive alien species. Despite the critical role
biodiversity plays in maintaining and sustaining the livelihood of the present and future

generations in the region, the rate of biodiversity loss remains very high.

Contrary to the United Nations Environmental Programme Convention on Biodiversity
(UNEP-CBD) demands in Articles 6 and 7; there is continued absence of a standardised
environmental monitoring and surveillance systems to capture these occurrences and provide
data for effective management decisions (Emoyan, Akpoborie and Akporhonor, 2008). Also,
where these data exist, it is fragmented, incomplete, outdated, off-line and often inaccessible
(United Nations Development Programme, 2010). This study evaluates the suitability of
remote sensing and GIS applications in biodiversity monitoring in oil-polluted locations.
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3.3 Sampling Methods
3.3.1 Access to Oil Spill Transect

Oral and written communication with stakeholders in the community, the Nigeria
Department for Petroleum Resources (DPR) and Shell Petroleum Development Company
(SPDC) Nigeria Limited was initiated to obtain the needed permission to access the spill
transects. The DPR authorised the project instructing the oil companies to render assistance
and access to available data where necessary. Community leaders particularly the members
of the youth forum offered both the guides and access to polluted and control locations for

sample collection and vegetation survey.

Arrangements with the Michael Okpara University of Agriculture, Umudike department of
Environmental Toxicology and the Forestry Research Institute of Nigeria (FRIN), Umuahia

provided facilities and literature for species identification.

3.3.2 Field Observations (FO)
3.3.2.1 Global Positioning System (GPS)

Numerous sites were marked for sampling, however, only few were accessible. Global
Positioning System (GPS) devices Oregon 550T were used to identify the spill epicentres
and sample points at both polluted and control transects in various locations. Sampled
transects were predetermined from the Nigeria Oil Spill Monitor website and were located
to within 3 m using the GPS. Accessing some selected locations was constrained by the
difficult terrain, vegetation and insecurity. However, the support of the local community was
invaluable in facilitating the field work. Once the polluted and control transects were
identified, the GPS coordinates were recorded and was utilised in identifying the

corresponding pixels in the satellite image for correlation and validation with field data.

3.3.2.2 Transect Establishment (TE)

Vegetation sampling involved the line-intercept method discussed in Cummings and Smith
(2000). Due to the unique circumstances prevailing at the study area during this campaign,

the line intercept method offered the most potential at capturing adequate field data to
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determine species composition and abundance (Kercher, Frieswyk and Zedler, 2003).
Cummings and Smith (2000) and Buckland et al. (2007) agree that vegetation sampling
based on the line intercept method although less intensive than quadrant based sampling
methods, provide sufficient data to determine relative estimates of vegetation frequency,
coverage, abundance and other relevant vegetation characteristics. Furthermore, according
to Cummings and Smith (2000) and Kercher et al. (2003), the line intercept method offers a
handy tool for detecting community transition (such as ecotones) or ecological gradients in
habitats. It adapts well for investigating the relationships between changes in floristic

compositions and environmental variables with little room for errors.

The investigation occurred at ten oil spill locations in the Rivers State of Nigeria. Most of
the spills emanated from damaged pipelines that criss-cross the landscape of the Niger Delta;
however, a few occurred at oil well locations and wellhead sites. Accessibility to oil wells
and wellheads was unavailable; hence, the field survey occured on the more easily accessible
pipeline spill locations. Table 3.1 shows the location of polluted and control transects
investigated. Spill epicentres were identified from the Nigerian oil spill monitor website and
located using GPS devices. Unhindered access to spill locations determined its selection for
sampling whereas certain attributes of polluted transects such as proximity to roads and
company right of ways were considered in locating control transects in an attempt to
minimize the between sample errors. Additionally, control transects were selected based on
distance from the spill locations.

Transects were 100 m long and transverse the polluted locations in order to study the effect
of crude oil on vegetation composition. Polluted transects labelled A, B, C and D originated
from epicentres of spill locations (SSO) and proceeded in the four cardinal directions
respectively. Location of the control transects was random in unpolluted areas but within the
same locations as the oil spills. The randomisation of control transects was to minimise error
from bias. In addition to the spill epicentre, SSO, each transect was subdivided into five
segments of 20 m length labelled SS1 to SS5. These segments numbering SS1 to SS5
corresponded with increasing distance from the spill epicentre (SEC). For instance, SS1
started from the SEC (SS0) and ended at 20m from the SEC. SS2 was from 20m to 40m; SS3

was from 40m to 60m; SS4 was from 60m to 80m and SS5 was from 80m to 100m. For each

61



segment, species richness and diversity (alpha) values, vegetation abundance, leaf
chlorophyll content and the total petroleum hydrocarbon (TPH) concentration in the soil
were recorded. However, to correct for spatial autocorrelation effects, analysis of data

involved alternate segments on each transect including the SSOs.
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Table 3.2 Locations of the investigated polluted and control transects in the Rivers State of Nigeria. Also shown are the type of facility,
date of spill and volume of the spill in barrels. Oil spill data source https://oilspillmonitor.ng

NOSDRA ID Location LGA Date Latitude Longitude Volume (cbm) Facility

49636 Alimini Emokua 04/07/2016 5.056672 6.703269 42 Pipeline
Control 1 5.050888 6.718027
Control 2 5.0519 6.716672

41981 Amuruto Abua-Odual 17/12/2015 4.731917 6.432667 803.586 Pipeline
Control 1 4.718925 6.44518
Control 2 4.725071 6.439931

52553 Anyu Abua-Odual 17/11/2016 4.842944 6.468194 20.1 Pipeline
Control 1 4.812299 6.43763
Control 2 4.86774 6.493655

45420 Egbalor Eleme 12/08/2015 4.7906111 7.178528 Unknown Pipeline
Control 1 4.79906 7.173313
Control 2 4.798188 7.175265

41405 Kporghor Tai 12/09/2015 4.718553 7.225111 137.4 Pipeline
Control 1 4.711046 7.227604
Control 2 4.710883 7.22987

52014 Kporghor 2 Tai 16/10/2016 4.7148611 7.225333 Unknown Pipeline
Control 1 4.705858 7.221231
Control 2 4.720984 7.217364

37708 Obua Abua-Odaul 22/08/2015 4.934889 6.479278 7.31 Pipeline
Control 1 4.941858 6.473319
Control 2 4.930635 6.487469

37791 Omoigwor Emuohua 31/08/2015 4.95364 6.837996 150.4 Pipeline
Control 1 4.962524 6.837512
Control 2 4.96662 6.83611

41640 Umukpobu Emuohua 11/09/2015 4.954519 6.808028 101.3 Pipeline
Control 1 4.956759 6.798752
Control 2 4.95705 6.801251

37378 Rumuekpe Emuohua 16/08/2015 5.025361 6.692444 190.8 Pipeline
Control 1 5.023084 6.701912
Control 2 5.015748 6.68483
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Figures 3.3 and 3.4 are illustrations of the transect establishment in the study area.

Klimini SpilliPoint

Egbalor Spill Point

Figure 3.3 Pre-spill digital globe image of investigated polluted locations in the study area.
Al. Alimini, B1. Amuruto, C1. Egbalor spill points in Rivers State, Nigeria. Bold red lines
illustrate transects transversing the spill epicenter. Image downloaded from Google Earth,
A2, B2 and C2 were images acquired few days after the oil spill during the post-impact
assessment. Images downloaded from the www.oilspillmonitor.ng; A3, B3 and C3 are field
photos of same locations acquired during the field campaign.
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Figure 3.4: A sketch of transects and investigated segments. Each transect measured 100 m
from the spill epicentre, and each segment was 20 m in length. Although sampling was on
all the segments shown, statistical analysis included data from only segments SS1, SS3 and
SS5 as well as the segment overlaying the spill epicentre (SS0).

The nature of the polluted transects varied widely. At a few locations like Kporghor and
Anyu, there is clear evidence of fire incidence following the discharge of crude oil on the
surface. At other locations, such as Egbalor, Omoigwor and Amuruto, vegetation on polluted
transects consist mainly of mixed annuals and perennials with few tree species. At others,
there was a visible ring of vegetation demarcating the epicentre from the surrounding areas.
Other landscape features include mostly untarred roads, which form part of individual oil
companies right of way (ROW) for oil pipelines, abandoned farmlands and excavated gutters

about four meters wide usually installed as containment measures after the spill.

Based on preliminary reports by a joint team of investigators, and available on the Nigerian
Oil Spill Monitor website (https://oilspillmonitor.ng) most of the spills were because of

pipeline vandalism by oil thieves. The spills occurred between August 2015 to November
2016 with up to 5054 barrels of crude oil discharged into the environment in Amuruto, Abua-
Odual LGA (see Table 3.1 for estimated spill volume for other sites). The area impacted by
the spill varied from 0.001 km? at Alimini to 2.22 km? at Omoigwor. Initial containment
measures implemented by the host companies involved the use of booms, dykes, pits,
trenches and natural depressions. This study investigated spills on lands, even though spills

occurred on different habitats, to maintain optimum similarity of transects.

3.3.2.3 Soil Sample Collection (SC)

Soil sample collection was carried out in two phases. The first set from transects in Kporghor
land second set from the other locations during the second phase of the field study. A total

of 210 samples were analysed in the laboratory for various physicochemical properties.
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Samples were obtained at 30 cm depths from the spill epicentre and 20 m intervals along
each transect. At each segment including the spill epicentre, three samples were obtained and
mixed, and a composite sample scooped into sterilised and labelled brown air-tight glass
bottles to control further chemical reactions. These were stored in a plastic box filled with

ice packs for transportation to the laboratory for chemical analysis.

3.3.2.4 Vegetation Survey (VS)

A comprehensive vegetation survey was carried out at the polluted and control transects.
Inventory of all vascular plant species present on transects was done with the aid of prepared
tally sheets and local experts. Tally sheets listing indigenous species and photographs were
taken to the field to help in species identification with consideration given to the type and
shape of leaf, margin, apex and base of each species Also considered were the arrangement
of leaves and leaflets on the petioles. Previous reports of common species in the Niger Delta
area such as Ubom (2010); Agbagwa and Ekeke (2011) provided material for tally sheets.
Photographs of unknown plants were taken to the Herbariums of the Forestry Research
Institute of Nigeria, Umuahia and the Michael Okpara University of Agriculture Umudike
both in Abia State, Nigeria for identification.

Occurrence and number of individuals for each species was recorded per segment of transects
starting from the spill epicentre. Plants that occurred within 500cm on both sides of the
transect lines were included in the count (Figure 3.5). The data was used to determine several
phytosociological characteristics such as abundance, density and importance value index of
species; and vascular plants species indices including the similarity, richness, evenness and

diversity.
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Psychotria
nigerica plant
inventoried during
sampling

Manihot
esculenta  also
inventoried

Fibre tape used for
measuring
transects and
segments

Figure 3.5: An example of a counted individual plant species occurring along a transect.
3.3.2.5 Insitu Chlorophyll Data using SPAD-502 Chlorophyll Meter (ICM)

The proportion of chlorophyll in leaves is a good indicator of the physiological status of
vegetation. Laboratory determination of chlorophyll is often, expensive, time-consuming and
destructive, the Soil Plant Analysis Development (SPAD-502) chlorophyll meter offers an
alternative which has been reported to provide relatively accurate values that are proportional
to the chlorophyll content in leaves (Ling, Huang and Jarvis, 2011).

The SPAD-502 meter is a portable device that facilitates rapid and accurate measurement in
the field without needing to detach the leaves from the plant. Previous researchers (Uddling,
Gelang-Alfredsson and Piikki, 2007; Rodriguez and Miller, 2000) have successfully
documented the conversion of SPAD-502 values to absolute chlorophyll measurements.
However, the procedures appear to be sensitive to interspecies differences such as shape and
size of leaves. In the light of this constraint and due to the number of species investigated in
this research the SPAD-502 readings were used directly in all the statistical analysis.
Chlorophyll measurements occurred during the first phase of the fieldwork for only the
Kporghor 1 location. Average readings were taken for all the plants present in segments
along polluted transects, but on control transects with increased vegetation density, 20 plants
were randomly sampled in each segment. Plants selected for sampling were those that
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appeared unaffected by the presence of TPH in the soil. For each plant, four readings were
obtained from the midpoint of fully developed healthy leaves located within reach, which is
the best position to collect the chlorophyll readings from plant leaves (Hoel, 1998; Arellano
et al. 2015). Leaves of tall trees were pulled down using elongated poles, but care was taken
to cause only minimal damage during measurements. The device performs an automatic

calculation for average measurements used in further data analysis.

3.3.3 Laboratory Analysis of Soil Samples (LAS)

Soil samples collected from the Kporghor 1 during the first phase of the fieldwork were
stored and transported to the laboratory in appropriate media. The samples were analysed in
an internationally accredited laboratory for soil physicochemical properties. These include
total petroleum hydrocarbon (TPH), total organic carbon (TOC), heavy metals, nutrients,
electrical conductivity, pH and temperature. Other parameters analysed include the total
heterotrophic bacteria (THB) and total organic matter (TOM). Likewise, soil samples
collected during the second phase of the fieldwork under similar conditions of storage and
transportation were subjected to fewer tests, following preliminary results that showed no
significant difference in some soil properties between polluted and control transects. Thus

for these samples, only the TPH, TOM, Phosphates and Lead concentrations were tested.

The methods used followed international standards documented in the American Public
Health Association (APHA, 2005) 20" Edition and the American Society for Testing and
Material (ASTM, 2010). Details of the methodology employed in the soil analysis are
provided in the appendix (Appendix 3.3). Figure 3.6 presents a flowchart of the overarching
research methodology.

68



Leaf Chlorophyll

i Landsat 8 OLI ;

Soil Sampling and
Analysis

TPH

Lead

Phosphorus

Organic Matter
Organic Carbon

pH

Temperature

C-4; RQ1; RO1

C-4; C-5; RQ1;

RQ2; RO1; RO2

Test for Differences

in Polluted and Control

Statistical Analyses

> Non-Parametric Univariate

Tr
Mann Whitney U test
Kruskal Wallis Test

Dunn's Test

C-4; C-5; C-6; RQ1; RQ2;
RQ3; RO1; RO2; RO3

Regression
of Field
Data on Soil
TPH

C-4; RQ1

Regression Analyses
Partial Least Squares

Non-Parametric Multivanate
Non-Parametric Logistic

Regression
of Spectral
Metrics on [ J——»
Soil TPH

Quantile Regression

C-4; C-5; C-6; RQ1; RQ2;
RQ3; RO1; RO2; RO3

Field Data |7]

Regression
of Spectral
Metrics on

C-5; C-6;
RQ2; RO3

Prediction Models
Calibration
Validation
Implementation

C-5; C-6;
RQ4; RO4

Mecasurements : - % Continuum Removal®
Datasets from Satellite 2. Band Depth Analysis*
Imagery and Field Work £ Extraction of Red
< Edge P: . ’
2 Vegetation Survey Py l\‘:g‘c‘!.:;:';’:d“ k3 /\_lmo\phcnc c:»n-:clmn
= | Species Richness g ("Iliuialmn . 2 [\)in;: ::;:\'al
o 3 e IS5 ) = g 15 estri|
= | Species Diversity Derivation of Spectral £ Resampling**
= | Vegetation Abundance g a
£ | Evenness : — Metrics & Mosiacking"*
| importance Value l\}?:.],omwry Suatsties C-3; C-5; C-6; RQ2; RO2. EAsoRewing
= | Index (IVI) iy . -
% e -5; H 3
+ | Indicator Species A\‘iufh:\n ¢ C-6; RQ2; RO2
& Variance
2 Maximum
9
= Minimum
5
8

Outputs
Spatial Maps
Tables

Equations

Figure 3.6: Flowchart of research methodology. Procedures and processes are enclosed in squares while inputs and outputs are enclosed in
parallelograms. Methods enclosed in ovals indicate the start and end processes. The chapters (C), research questions (RQ) and objectives (RO) linked
to each method are shown in bold. The single asterisk (*) denotes procedures carried out on Hyperion data using ENVI 5.3 while double
asterisks (**) are procedures performed on Sentinel 2A dataset in ESA-SNAP
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3.4 Satellite Data (SD)

A combination of multispectral (Sentinel-2 and Landsat 8) and hyperspectral (Hyperion
EOL1) data employed in this research are available and freely downloadable from the USGS
data distribution tool, earth explorer. The Hyperion acquires 16 bits, 30 meters spatially
resolved data in 220 discrete narrow-bands between the spectral range of 400 and 2500 nm.
Although the Hyperion captures about 75 times more data than the Landsat from a similar
area (Kuenzer et al. 2014), Landsat offers a vast database of the earth’s surface over several
years which facilitates the identification and mapping of temporal changes in the study area
(Roy et al. 2014). The images were subjected to pre-processing algorithms using available
software such as QGIS. R, ArcGIS and ENVI. Various broadband and narrowband indices
were extracted and statistically correlated with the field data to identify any relationships in
line with the objectives of the study.

3.4.1 Sentinel-2A Image Acquisition and Processing (S2AD)

The Multi-Spectral Imager (MSI) sensor on board the Sentinel 2A satellite acquired the
images used in this analysis. The Sentinel-2A satellite launched on the 23" of June 2015 is
one of the fleets of satellites owned by the European Commission (EC), in partnership with
the European Space Agency (ESA). It is designed to provide imagery that supports
environmental monitoring under the EC/ESA’s Copernicus programme. An optical sensor
named multi-spectral imager (MSI) on-board the satellite acquires images in 13 spectral
bands with wavelengths ranging from 443-2190nm. The spectral bands include three visible
(Red, Green and Blue), one near infrared (NIR), and three short-wave infrared (SWIR)
bands. As an added advantage, the MSI also has three red-edge bands, which are useful for
differentiating crop types and detecting vegetation stress and one coastal aerosol band useful
for atmospheric correction (http://www.esa.int//Copernicus/Sentinel-2). For the present
study, however, only eight bands relevant for vegetation analysis were used. These were the
visible (bands 2, 3 and 4), NIR (band 8) and red-edge bands (bands 5, 6, 7 and 8A). The
bands, bandwidths, central wavelengths and spatial resolution of the Sentinel 2A image

relevant to this study are shown in Table 3.2.
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Table 3.2: Spectral and spatial resolution of Sentinel-2A image

Sentinel-2A bands Band Bandwidth Central Resolution
Number  (nm) Wavelength (m)
(nm)
Blue 2 65 490 10
Green 3 35 560 10
Red 4 30 665 10
Vegetation Red Edge 5 15 705 20
Vegetation Red Edge 6 15 740 20
Vegetation Red Edge 7 20 783 20
NIR 8 115 842 10
Vegetation Red Edge 8A 20 865 20

Spatially, the Sentinel-2A images have a swath width of 290km and a resolution of 10 m
(VNIR), 20 m (Red-edge and SWIR) and 60 m (atmospheric correction bands). These are
some of the best spatial resolutions for freely available satellite data. Six level 1C processed
images (geometric and radiometrically corrected) were downloaded from the Copernicus
Services Data Hub (https://cophub.copernicus.eu/) to cover the study area. These images
acquired between 29" December 2016 and 5™ January 2017 and downloaded as 100 by 100

km? granules were selected based on cloudy pixel percentage.

The identity of downloaded and processed images are as follows:-

COPERNICUS/S2/20161229T095402_20161229T100805_T31NHF
COPERNICUS/S2/20161229T095402_20161229T100805_T32NKK
COPERNICUS/S2/20161229T095402_20161229T100805_T32NKM
COPERNICUS/S2/20170105T094401_20170105T095718_T32NKL
COPERNICUS/S2/20170105T094401_20170105T095718_T32NLK
COPERNICUS/S2/20170105T094401_20170105T095718_T32NLL

Each image was atmospherically corrected and subjected to image analysis (band analysis,
vegetation index computation and derivation of spectral metrics) before performing further
geo-processing procedures including resampling, mosaicking and clipping, in order to retain
as much original information in the pixel texture as possible. Rocchini et al.(2016) observed
that the image analysis that involves smoothing processes could cause a loss of vital
information. Resampling was done to downscale the pixel resolution of the various bands to

10 m. Resampling is a geometric process that transforms an original image to a suitable
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image. This procedure was necessary in order to perform further image processing on the
ESA SNAP platform as well as to achieve uniformity in the results. Upsampling performed
in SNAP used the bilinear interpolation method which is highly recommended for satellite
data. Mosaicking was performed to combine the different granules that cover the extent of
the study area, and clipping was performed to extract the exact extent image of the study area
from the mosaic. The clipped images for the various sentinel 2A bands are shown in Figure
3.7
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Figure 3.7: raster image of the mosaicked and clipped bands of Sentinel 2A data. Pixel
reflectance values range from 0 to 4000
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All the analyses were performed in the ESA image-processing platform for sentinel data
(ESA SNAP) including the atmospheric correction using the Sen2cor plugin tool in ESA
SNAP software for image processing. The Sen2cor plugin tool is a level 2A processor used
to remove atmospheric effects from sentinel 2A level 1C images. The processor computes
surface reflectance from the top of the atmosphere reflectance values in the level 1C images.
Details of the procedure are documented and available at the ESA SNAP website

(http//www.step.esa.int/main/third-party-plugins-2/sen2cor).

3.4.2 Hyperion EO-1 Image Acquisition and Processing (HSD)

Following the observed shortcoming of broadband sensors in capturing discrete scene
information, hyperspectral imagery was a welcome development in the field of remote
sensing of vegetation. It has the added advantage of differentiating spectrally similar
materials. Several researchers have investigated its application in identifying plant species
and communities, as well as detecting the biophysical and biochemical characteristics of
vegetation with more accuracy (Thenkabail et al. 2004a; Blackburn and Ferwerda, 2008;
Houborg and Boegh, 2008).

3.4.2.1 Description of the Hyperion EO-1 Dataset

The Hyperion sensor was on board the Earth Orbiter 1 (EO-1) spacecraft of NASA’s New
Millennium Program (NMP) launched on 21 November 2000. The sensor provides
radiometrically calibrated spectral data acquired by a push broom system in single frames
measuring 7.65 km (cross track) by 185 km long (along-track). The Hyperion image
acquisition was from a NADIR position and altitude of 705 km. The image consists of pixels,
which approximate 30 m by 30 m regions on the ground. For each pixel location, the sensor
acquired data in 242 spectral channels ranging from 400 nm to 2500 nm and a resolution of
10 nm. There are, however, only 196 useful and calibrated bands (Thenkabail et al. 2013;
Datt et al. 2003) while the others due to the effect of bad detectors (also known as bad pixels)
are set to zero during the level 1 processing. The calibrated bands include VNIR bands 8-57
(427.55 nm to 925.85 nm); SWIR bands 79 to 224 (932.72 nm — 2395.53 nm). Furthermore,
due to the strong absorption of water vapour and oxygen at wavelengths ranging from 1356

nm - 1417 nm, 1820 nm - 1932 nm and >2395 nm, as well as the overlap of wavelengths in
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the VNIR (band 56 and 57) and SWIR (77 and 78) regions, the list of useful bands was
limited to 176 (Datt et al. 2003).

On acquisition, the Hyperion image passes two levels of pre-processing, namely level 0 and
level 1. The Hyperion data are downlinked to a ground station and then sent to the Goddard
Space Flight Centre (GSFC) for the initial processing. Level 1 processing involves the
removal of image artefacts, which occur in the SWIR namely SWIR echo and SWIR smear,
bad pixel replacements, dark pixel subtraction, radiometric calibration and image quality
assessment (Barry, 2001; Pal and Porwal, 2015). The fully processed level 1 product is
written in a16-bit signed integer with units of radiance (W/m?/um/sr) times a factor of 40 for
the VNIR bands (1-70) and a factor of 80 for the SWIR bands (71-242).

The Hyperion image used for this study was a Level 1T (in GeoTIFF format) downloaded
from the USGS website (https://earthexplorer.usgs.gov). The image was acquired on the 23™
of November 2015 by the Hyperion sensor on board the Earth Observation (EO1) satellite
following the submission of a data acquisition request (DAR) form. Due to its narrow swath

width (7.65 km), only one investigated polluted location in Kporghor fell within the image.

3.4.2.2 Pre-processing of Hyperion Image

Despite the level 1 processing of the Hyperion image, noise and other artefacts remain and
these arise from several factors which include atmospheric disturbances and internal sensor
defects (Scheffler and Karrasch, Oct 17, 2013; Adler-Golden et al. 2013). Various entities in
the atmosphere such as water vapour, aerosols and clouds interfere with the electromagnetic
radiation reflected from the surface and measured by the sensor in space. Equipment defects
occur due to the failure of one or more components during image acquisition. Previous
studies have investigated several ways of correcting these defects in order to produce an
image with a very high signal-to-noise ratio (SNR). Some of these methods have resulted in
modified data with amplified noise; however, the general aim of pre-processing the Hyperion
image is to generate high-quality bands that provide meaningful information to the user. In

this study the following pre-processing steps were performed on the raw Hyperion image:
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1. Original Hyperion image sub-setting to the Kporghor spill site. The resulting image
had 68 columns and 66 lines, a total of 4,488 pixels and approximately 134 km? in
area.

Removal of smile effect

Radiometric Calibration and Atmospheric Correction

Noise reduction; minimum noise fraction transformation applied.

Destriping to remove scan lines

S T

Masking of non-vegetated areas in the image

There procedures where undertaken using different versions of the environment for
visualising images (ENVI) image analysis software package from Exelis Inc., (now Harris

Geospatial Solutions).

3.4.2.3 Hyperion Image Subset

The region of interest tool (ROI) in ENVI 5.3 was used to select the Kporghor spill epicentre
(SEC) and the surrounding areas as well as the location of the control transects. Recorded
coordinates of the SEC from the fieldwork in February 2016 identified the relevant points in

the image.

A new region labelled KporghorSA in Figure 3.8 B was used to extract corresponding data
from the raw Hyperion image EO1H1880562015327110PR_MTL_L1T.TXT to reduce data
volume and processing time. Designated bad bands (121-126; 167-180; 222-224) known to
correspond with strong water vapour absorption were removed following suggestions from
Datt et al. (2003) before the subset routine. Figure 3.8 B shows the subset area (red dot in
map B) and examples of a useful Hyperion band (D) and others with different artefacts (C.

stripes also known as scan lines; E. Noise).
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Figure 3.8: Examples of useful and uninformative bands of the Hyperion image. The noisy
data was eliminated through the Minimum Noise Fraction Transformation (MNFT) while
the scan lines (stripes) were removed following the method of Datt et al. (2003).

3.4.2.4 Atmospheric Correction

The image subset was radiometrically and atmospherically corrected using the Fast Line-of-
sight Atmospheric Analysis of Hypercubes (FLAASH) module in ENVI 4.4. The FLAASH
module incorporates the MODTRAN radiation transfer code developed by Spectral Sciences
Inc. (Burlington, MA, USA). The algorithm involves the accurate derivation of atmospheric
properties such as surface pressure, water vapour column, oxygen, carbon dioxide, aerosol
and cloud overburdens which are incorporated into a correction matrix to convert sensor
detected radiance measurements into surface reflectance values (Felde et al. 2003). The
technique develops from a standard equation that incorporates at-sensor spectral radiance for
each pixel, from the mid-infrared (IR) through the ultra-violet (UV) wavelengths with
thermal emission omitted; and flat, Lambertian materials or their equivalents (Lépez-Serrano
et al. 2016). The equation is as follows:

Ap Bp,
L=(rops) + (Tos) 3
1—p,S * 1—p,S la ®

Where:
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p is the pixel surface reflectance

Pe is an average surface reflectance for the pixel and the surrounding region

S is the spherical albedo of the atmosphere

La is the radiance backscattered by the atmosphere

A and B are surface independent coefficients that vary with atmospheric and geometric
conditions.

The first term in equation (13) corresponds to the radiance reaching the surface while the
second term measures the radiance backscattered by the atmosphere into the sensor. The
difference between these radiances is attributed to the adjacency effect (radiance
contributions from neighbouring pixels) caused by atmospheric scattering. The values for
A, B, S and L. are derived from MODTRAN calculations that incorporate user-supplied
parameters such as data type, sensor, sensor altitude, solar and viewing geometry. This
information was extracted from the metadata file supplied with the Hyperion image.
FLAASH generates other results that are not relevant in the present study such as a water
vapour look-up-table (LUT), a cloud mask for identifying cloud-containing pixels in a scene
and aerosol scale height. They are, however, employed in the correction matrix to solve for

the pixel surface reflectance (p) in all the sensor channels.

Following the atmospheric correction, the number of good Hyperion bands reduced from
175 to 164. Eleven (11) bands displayed only missing data: bands 120, 127-133 and 165, 166
and 181. It appears that these bands were affected by strong water vapour absorption. Figure

3.9 shows the spectral profile of sampled polluted and control pixels.
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A. Spectral Profile of Raw Hyperion Image B. Spectral Profile of FLAASH Corrected Hyperion Image
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Figure 3.9: The spectral profile of sampled pixels from polluted and control transects
illustrated the influence of FLAASH atmospheric correction module on surface reflectance.
Atmospheric interference elimination significantly reduced the at-sensor radiance values in
the VNIR region while also portraying the robust absorption features in the SWIR region
(3.9 B).

3.4.2.5 Removal of Smile Effect

Images acquired by pushbroom instruments such as the Hyperion EO-1 suffer from a line
curvature artefact known as the smile or frown effect (Dadon, Ben-Dor and Karnieli, 2010).
This effect is attributed to the spatial misalignment of wavelength and bandwidth that occur
during the dispersion of the slit-acquired image over straight rows of detector grid in the
wavelength dimension (Dadon, Ben-Dor and Karnieli, 2010). An across-track shift from a
centre wavelength characterises the spatial misalignment (Gersman et al. 2008). Arellano et
al. (2015) reported that these centre wavelength shifts vary across the VNIR and SWIR
regions. In the VNIR bands, the shifts range from 2.6 to 3.5 nm, while in the SWIR bands,
they are less than 1 nm. The smile artefact affects the proper retrieval of surface reflectance
due to the presence of strong atmospheric absorption features in the spectrum. Gersman et
al. (2008) pointed out that ignoring this effect alters pixel spectral values and cause an error

in subsequent applications.

The smile effect in the Hyperion image was not apparent in any of the individual bands; it
was however detected using the first component of a minimum noise fraction transformation

(MNFT). The first eigenimage (MNF-1) portrayed a brightness gradient only visible in the
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VNIR bands and not detected in the SWIR region. Several studies (including (Goodenough
et al. 2003; Datt et al. 2003; Dadon, Ben-Dor and Karnieli, 2010) have used the MNF-1 as
an indicator of smile effect in Hyperion image. Correction of the smile effect in the image
was performed by the cross-track illumination correction (CTIC) package provided in ENVI.
The CTIC approach was selected firstly for simplicity and because of the limited Hyperion
data available for analysis. Dadon et al. (2010) evaluated the performance of CTIC in
removing smile and reported that it compared favourably with their proposed method across
varying scenes. A spectral subset of the radiance image (containing only the calibrated VNIR
bands) was subjected to the CTIC and to the MNF transformation to check for the presence
of the smile effect in the first eigenimage (MNF-1). The CTI corrected MNF-1, as well as
the pre-CTIC image, are shown in Figure 3.10; the smile effect in A, MNF-1 of VNIR bands;
B: MNF-1 of CTI-corrected VNIR bands and C: the spectral profile of corrected and

uncorrected pixels from the polluted and control transects.

Effect of Cross Track Illumination Correction (CTIC) on Smile in Hyperion Image N
C
Spectral Profile of a Polluted Pixel in the VNIR Region A
IR A A D TpTTTTTETTTs
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- == Control CTIC Pixel A | i
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Figure 3.10: The effect of the CTIC performed in ENVI 5.3 shows that the smile effect
evident in the MNF-1 of transformed VNIR bands (3.10 A) was successfully removed (3.10
B). The spectra of sampled pixels from the polluted (x, y: 1005.46, 3407.50) and control
transects (X, y: 973.25, 3398.3) as illustrated in figure 3.10 C show minor differences in the
basic spectral features of the image, thus satisfying the requirement for maintaining spectral
fidelity of the image after the removal of the smile effect (Goodenough et al. 2003).
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3.4.2.6 Noise Reduction

Noise reduction was performed on the image using the Minimum Noise Fraction
Transformation (MNFT). This procedure aimed to select the components that maximised the
signal to noise ratio and eliminate noisy components. Green et al. (1988) and Buddhiraju and
Porwal (2015) reported that MNFT was more effective at noise and dimensionality reduction
because it produces a set of images arranged in order of decreasing information content and
increasing noise fraction. The MNF is a linear transformation involving two distinct principal
components analysis (PCA) rotations and a noise-whitening step. The covariance matrix of
estimated noise is used to decorrelate and rescale noise in the data, a procedure known as
noise whitening. The transformed data with unit noise variance and uncorrelated bands is
further subjected to a standard principal component analysis (Buddhiraju and Porwal, 2015).
The first few MNF components have large eigenvalues and coherent eigenimages, while the
last few components have near unity eigenvalues and noise dominated images (Galidaki and
Gitas, 2015). Selection of viable components involved visual inspection of all 164 MNF
components in conjunction with eigenvalues and scree plot. Pal and Porwal (2015) suggested
that a visual inspection of the MNF images was necessary to ensure the retention of relevant

information during noise removal.

In total, 7 MNF components with eigenvalues ranging from 7.03 (MNF7) to 100.4 (MNF1)
were selected. These 7 MNF components make up 67% of the variability in the data.
Although it would have been reasonable to select more components to explain up to 90% of
data variability, this was not done as the rest of the components (MNF8 to MNF 164) did not
present any discernible information and hence were discarded. The selected components
were inversely transformed through the same MNF procedure to its original spectral space.
This procedure also available in ENVI 5.3 was performed using the statistics obtained from
the forward MNF procedure. Figure 3.11 shows the spectra of both reflectance images with

minimal difference in the spectral information.
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A. Spectral Profile of Reflectance Iimage Before MNFT B. Spectral Profile of Reflectance Image After MNFT
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Figure 3.11: Spectral profile of MNF transformed image shows that the process did not
significantly affect the reflectance values of the original image except for the non-zero
minimum values and the removal of some strong water absorption bands in the SWIR region
(1396nm-1487nm).

The MNFT appeared to have effectively removed both noise and scan lines from the
Hyperion Image. Figure 3.12 illustrates the difference between pre-MNFT and post-MNFT
images. There is a remarkable increase in the signal-to-noise ratio (SNR) of the highlighted

bands following the MNFT procedure.

Figure 3.12: Various effects of the minimum noise fraction transformation (MNFT) on the
Hyperion bands. The images on the top row are pre-MNFT showing the presence of noise
and stripes in the bands listed. The bottom row shows post-MNFT images with most of the
noise and stripes removed. The post-MNFT images clearly show increase SNR in the bands
listed following the MNFT procedure.
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3.4.2.7 Band Selection

A total of 164 bands were selected for analysis. As stated earlier, the Hyperion image has
242 channels; however, only 196 bands are calibrated and useful. Further pre-processing
reduced the number of valid bands to 164. Table 3.3 below shows the summary of the unused

bands and reasons as well as those selected for analysis.

Table 3.3: List of discarded and selected Hyperion bands used in the study. In total, 164 bands were
utilised to derive the statistical model

Hyperon Bands Wavelength Range (nm)  Reason
A. Unused Bands

1-7 355.95-416.64 Uncalibrated and values set to zero

225-242 2405.6-2577.08 during L1 processing and subsequently
removed

71-76 851.92-902.26 Uncalibrated SWIR due to overlap with
VNIR bands, values set to zero

58-70 935.58-1057.68 Uncalibrated VNIR due to overlap with
SWIR bands, values set to zero

77-79 912.45-932.64 Removed during pre-processing due to
overlap with VNIR bands 56-58

120-126 1346.25-1406.84 Strong water vapour absorption

167-180 1820.48-1951.57 Strong water vapour absorption

222-224 2375.3-2395.5 Strong water vapour absorption

B. Used Bands

8-57 426.8-925.41

80-119 942.73- 1336.15

134-164 1487-1790

182-224 1971-2395

Total used bands 164

The selected bands were subjected to minimum noise fraction transformation procedure, and
from the results, the first 7 MNF components were selected and used for the inverse
transformation back to the original spectral space.

3.4.3 Landsat Data (LSD)

The Landsat-series was launched by the USGS in March 1984 and remain in operation for
over 30 years. Landsat data offer a record of the earth’s terrestrial surface and changes over

time at local, regional and global scales (Roy et al. 2014). The Landsat series offer a massive
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database of systematic remotely sensed images for use in determining the spatial and
temporal changes that have occurred in the study area during this period. The Landsat based
sensor acquires imagery at 30m spatial resolution from 6 to 8 spectral bands including a
thermal band. Many researchers have applied Landsat data to investigate the status and
dynamics of ecosystems at local, regional and global scales. Biodiversity evaluation in
forests (Dymond, Mladenoff and Radeloff, 2002; Thenkabail et al. 2004a), agricultural lands
(Kuenzer and Knauer, 2013) and several other ecosystems has been carried out. In general,
Landsat data is highly recommended for mapping and monitoring vegetation and land cover
changes (Roy et al. 2014).

A Landsat 8 OLI surface reflectance image downloaded from the USGS data download
website (earth explorer) was utilised in this study. The image acquired by the OLI sensor
onboard the Landsat 8 satellite provides information over nine bands ranging from 435 nm
to 1384 nm in 16 bits. The Landsat Surface Reflectance image downloaded was already
processed to a Level 2 product, hence needed only a spatial subset to the study area before
computation of broadband indices in ENVI 5.3. The Level 2 product measured the fraction
of incoming solar radiation reflected from the earth’s surface to the Landsat sensor (United
States Geological Survey, USGS, 2016) hence; atmospheric interferences are removed at

level 2 pre-processing. The index computed from the Landsat data was NDVI.

3.5 Data Analysis
3.5.1 Statistical Analysis (STA)

Analysis of field and satellite data required several statistical packages. These packages
include Statistical Package for the Social Sciences, (SPSS), R-Packages vegan, LabDSV,
Betapart and np, Paleontological Statistics Software Package, (PAST) and Microsoft Excel
(Excel). Excel and SPSS were used for preliminary exploratory analyses and determine the
characteristics of the data (mean, median, variance, standard deviation and so on).
Furthermore, relationships among the environmental variables (for instance the relationship
between total petroleum hydrocarbon and phosphorus in the soil) and between soil properties
and floristic data were examined through correlation and regression analysis. Analysis of

non-parametric data was by the R package (np) whereas the PAST software supported the
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computation of species diversity and other multivariate analysis including principal

component and correspondence analyses.

The general null hypothesis tested in this study was that there was no difference in TPH,
vegetation characteristics (taxa, frequency, abundance, and density), species diversity and

vegetation reflectance of polluted and control transects.

Three datasets analysed in this study were the species inventory data, the soil parameters
data obtained from the laboratory analysis of soil samples and the spectral data derived from
various remotely sensed images. For each ecosystem component (polluted or control), these
datasets were grouped by segments of corresponding transects. Exploratory analysis of the
soil dataset identified the centre and spread of the variables on polluted and control transects,
as well as the relationship among soil parameters, which helped determine the effect of oil
pollution on other soil parameters such as phosphorus, electric conductivity, pH and so on.
The analysis performed with the floristic data determined firstly, the similarity and diversity
status of polluted and control transects, identified the relationship between soil parameters
and floristic characteristics such as taxa (species number), abundance, richness, and diversity
and evaluate relationships between these characteristics and spectral metrics derived from

satellite imagery.

The Anderson-Darling test for normality performed on the datasets revealed a non-normal
distribution of the datasets. The Anderson-Darling test compares the empirical cumulative
distribution function of the sample data with the expected normal equivalent. Due to the non-
normal distribution of both datasets, and failure to obtain appropriate transformation that met
the assumptions of parametric multivariate analysis (such as the Levene’s test for
homogeneity), non-parametric statistical procedures including Mann-Whitney, Kruskal-
Wallis one-way analysis of variance (K-W) and non-parametric regressions were employed

in the statistical analysis.

Further multivariate analytical procedures including ordination were used to infer the
presence of and then subsequently identify the environmental variables that significantly
affect floristic composition on transects. This was achieved by investigating the strength of
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association among species and their habitats (polluted or unpolluted) using the canonical

correspondence analysis.

After confirming the similarity of the polluted and control transects across all 20 locations
(ten polluted and ten control) using the Sorenson’s Similarity Index, the dissection of the
field data was carried out for the two eco-systems components encountered in the study area.
These are the polluted and unpolluted (control) transects. Attributes investigated for each

component included: -

I.  Soil parameters: Mean and median values, standard deviation, test for differences
(Mann-Whitney, Kruskal-Wallis, Dunn’s test with Bonferroni correction) between
polluted and control transects and regression with vegetation data.

ii.  Vegetation data:

Species number (taxa), number of individual plants, frequency, abundance, density;
Relative frequency, relative abundance, relative density and important value index;
Species occurrences, accumulation and abundance distribution curves

Species richness, evenness, dominance, diversity indices and beta diversity;

Regression with soil parameters.

YV V.V V V VY

Test for differences between polluted and control vegetation using Mann-Whitney,

Kruskal-Wallis, Dunn’s test with Bonferroni correction.

iii.  Leaf chlorophyll data: Mean and median values, test for differences in means,
correlation and regression with soil parameters. Test for differences between polluted
and control vegetation using Mann-Whitney, Kruskal-Wallis, Dunn’s test with

Bonferroni correction.

3.5.1.1 Mann-Whitney U Test (M-W Test)

The M-W test is a non-parametric statistical model, which test for differences in the medians
of two groups (Das, 2009). The null hypothesis is that it is equally likely that a randomly
selected value from polluted samples will be less than or greater than a randomly selected
value from the control transects. For all tests, the type | error (the probability of rejecting the

null hypothesis when it is true) was controlled at o= 0.05. All tests evaluated the impact of
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oil pollution on various parameters including field-measured data and spectral metrics

derived from satellite images by comparing between polluted and control transects.

3.5.1.2 Kruskal-Wallis Test (K-W Test)

The Kruskal-Wallis one-way analysis of variance by ranks was employed to test the null
hypothesis of no difference in median values of more than two independent samples (Wallis
and Kruskal, 1952). It compared samples from segments of polluted and control transects,
and significant result from the omnibus test was subjected to pairwise multiple-comparisons
of mean rank sums using the Dunn’s test. Dunn’s test identified which samples differed
significantly. The Bonferroni correction procedure adjusted the p values, which controlled
family-wise error that may lead to false discoveries. The Bonferroni adjustment divides the

overall alpha (0.05) by the total number of multiple tests (Dunn, 1964).

3.5.1.3 Regression Methods (RM)

The potential of independent variables (soil properties and spectral metrics) to estimate the
species richness and diversity of the study area was assessed using non-parametric statistics.
Vegetation indices such as the normalised difference vegetation index (NDV1) are commonly
used to predict species richness and diversity (Gould, 2000; Peng et al. 2018b; Kamaljit
Bawa et al. 2002; Mohammadi and Shataee, 2010; Mapfumo et al. 2016; Heumann, Hackett
and Monfils, 2015). Each diversity index was modelled as a function of the independent
variables (for instance spectral metrics and vegetation indices derived from the satellite
images). Partial least square regression (PLS) and non-parametric multivariate regression
(NPM) procedures were employed to model the relationship between independent variables
and the response (for instance, Shannon’s, Simpson’s, Menhinick’s and Chao-1lindices).
These regression models were selected because they are not limited by assumptions of data
distribution common with parametric regression procedures. Model performance was
evaluated based on the coefficient of determination, residual errors and graphical residual
analysis. In all the models, the null hypothesis was that there was no relationship between

the independent and response variables.
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A. Partial Least Squares Regression (PLS)

PLS technique performs multivariate regression without the restrictions associated with the
standard regression methods. It is particularly useful when predictor variables outnumber
response variables and when there is high multicollinearity between the predictor variables.
The procedure transforms the predictor data into a smaller set of uncorrelated components
and performs least square regression on these components instead of the original data. PLS
is adequate for the analysis of hyperspectral data (Asner and Martin, 2011; Heumann,
Hackett and Monfils, 2015) due to high multicollinearity of the wavelengths. Selection of
the optimum number of components depends on the coefficient of determination (R?) which
refers to how much of the variance in the predictors and between the predictors and response
is explained by each component. For highly correlated predictors, it is normal for fewer

components to appear in the model.

B. Non-Parametric Regression (NPM)

NPM regression analysis was performed to account for any violations of the assumptions
about the distribution of the data. Non-parametric methods allow the modelling of densities
and local polynomial regression on both continuous and categorical data which do not
necessarily follow any pre-defined distribution (Albek, 2003). Hayfield and Racine (2008)
(Hayfield and Racine, 2008) developed the np package in R used for this analysis. The
procedure commences with the selection of optimum bandwidths estimated from second-
order Gaussian kernel densities. The bandwidth objects are then assigned to an appropriate
regression function, which determines the fitting of the curve and calculates the fitted,
predicted and error values. The np package has a multi-start function, which helps to avoid
errors that occur in the presence of local minima. Since the NPM relies on kernel density
estimation, choosing the smoothing parameter (bandwidth) is very crucial. In this study,
optimum bandwidths were selected using the Akaike information criterion (AIC), which
provides an unbiased estimation that minimises the expected Kullback-Leibler divergence
(Hurvich, Simonoff and Tsai, 1998). Three NPM procedures employed in the statistical
analysis in this study were Multivariate Regression (NPMR) which models the relationship
among one or more response variables and multiple predictor variables; Univariate

Regression (NPUR) which models the relationship between one response variable and one
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predictor variable and Logistic Regression (NPLR) which models the relationship between
the predicted probability of a binary response variable (usually categorical) and one or more
predictor variables. All three procedures are extensively discussed in Hayfield and Racine
(2008). For model validation purposes, original dataset was randomly sub-divided into
training data and test data in the ratio of 6:4. The training data used to calibrate the models
while the test data used for model validation. Evaluation of model performance was based

on the type and the predictors used.

3.5.2 Vegetation Data Analysis (VDA)
3.5.2.1 Species Taxa

Taxa is a measure of the counts of species occurring in each segment along investigated
transects. It provides an estimate of the species richness and diversity of the segments.

Determined from species inventory tally sheets.

3.5.2.2 Sorenson’s Similarity Index of Transects

Similarity index measures the degree of association or agreement of two entities or variables,
in this case, vegetation data from polluted and control transects (Warrens, 2008). In this
study, segments of polluted and control transects across the entire study area were clustered
into groups based on their similarity index which, quantifies their level of association

concerning species composition. The formula for Serenson’s similarity index (IS) is:

s = 2" _ 100 (4)
MA+MB

Where

MW = Sum of the smaller numbers of plant species common to the control and test transects
MA = the sum of all plant species in the transect A

MB = the sum of plant species in the transect B

3.5.2.3 Number of Individual Plants

This is a measure of the abundance of each species observed per segment. The number of

individual plants per species was determined from tally sheets
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3.5.2.4 Frequency

This is the probability of a plant species occurring in a given number of segments (Bonham,
2013a). Frequency of species occurrence was used to detect any changes in vegetation
composition of polluted and control transects. Vegetation frequency was calculated from

species inventory data as:-

number of segments in which species occured
Frequency = 5)

number of segments investigated

3.5.2.5 Density

Also a measure of abundance defined as the number of individuals of a given species
occurring in a given sample unit. Density estimate are relevant for monitoring plant
responses to environmental disturbances (Bonham, 2013b). Density estimates for observed
species in the study area were calculated to identify vegetation responses to oil pollution

using the following formula:-

number .of individuals of the species in all the segments

Density = (6)

Total number of segments studied

3.5.2.6 Importance Value Index

This is a measure of the ecological importance of a given species in an ecosystem. It is
frequently used to prioritise species for conservation purposes (Zegeye, Teketay and
Kelbessa, 2006), however, in this study, the IV of species was used to determine the effect
of oil pollution on vegetation structure by comparing the VI of species on polluted and
control transects. V1 was calculated by summing the relative values of frequency and density
where

frequency of a given species N

Relative frequency = 7
q y sum frequency of all species )
And
. . number of individuals of a species
Relative density = *100 (8)

totalnumber of individuals
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3.5.2.7 Indicator Species

Indicator species are organisms whose presence, absence or abundance provides an
ecological indication of community or habitat types, environmental conditions or
environmental changes (Céceres et al. 2012). They can provide important information on the
type and volume of environmental pollution and other stressors. A good indicator species is
one that is both abundant in a specific type of habitat (specificity) and predominantly found
in this type of habitat (fidelity).

Indicator values of a species (i) at a given site (j) is calculated as

IndValij = Specificity;; * Fidelityij; * 100 9)

Where

IndValjj = indicator value of a given species (i) in relation to a (j) type of site

Specificityi; = proportion of sites ‘j” in which occurred species ‘i’

Fidelityij = the proportion of the number of individuals (abundance) of species ‘i’ that
occurred in site ‘j’

In this study, indicator value of species was calculated in R using the indicspecies package
developed by De Céaceres and Jansen (2016), to identify species whose presence or absence

reveal the occurrence of oil pollution in the study area.

3.5.2.8 Species Occurrence Curve (SOC)

This is a measure of how individuals of a species are distributed among the sampling units
(segments). Species occurrence curve was used to visualise the distribution of species in
polluted and control segments and to determine the most frequently occuring species. The
curve is derived by plotting the cumulative count of species on the x-axis and the number of
plots on the y-axis.

3.5.2.9 Species Accumulation Curve (SAC)

Provide estimations of the number of species in a given habitat and is used to compare the
richness of different communities at comparable levels of sampling efforts (Dorazio et al.
2006). In this study, the SAC was plotted to illustrate the differences in the species richness
of polluted and control transects.
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3.5.2.10 Beta-diversity of Transects

This was determined in R using the betapart package developed by Baselga and Orme
(2012). Beta diversity is a measure of variation in species composition of two or more
ecological units. Beta diversity is usually partitioned into two components namely species
turnover and species nestedness. The species turnover component measures the degree at
which species observed in one site are replaced by different species at another site (Baselga
et al. 2018). On the other hand, species nestedness describes the absence of species in one,
but not another site. Both components of beta diversity were analysed in this study to evaluate
the changes on species composition of polluted transects. The presence-absence data was
used for this analysis as recommended by Baselga and Orme (2012). Beta diversity analysis
was performed to compare vegetation on polluted and control transects across the entire
study area and for each location. A multivariate analysis of group dispersion was performed
using the betadisper function in the r package, vegan developed by Oksanen et al. (2018).
The analysis which test for the homogeneity of variances of both groups (polluted and
control) was aimed at isolating the effect of soil TPH on species composition of polluted
transects by evaluating the differences in distances of group members to the group centroid.
According to Anderson, Ellingsen and McArdle, (2006), betadisper function is important for

comparing betadiversity among classes or factors.

35.2.11 Canonical Correspondence Analysis

Species occurrence and distribution are a function of environmental variables. To evaluate
the impact of the environmental variables particularly the TPH concentrations on the species
composition and distribution, canonical correspondence analysis was performed. Canonical
correspondence analysis (CCA) is a multivariate ordination method used to detect the
influence of environmental variables on biological assemblages of species (Braak and
Verdonschot, 1995). CCA reveals synthetic environmental gradients from ecological data
sets that determine habitat preferences of species. Hejcmanova-Nezerkovd and Hejcman
(2006) applied CCA to reveal the environmental variable most affecting the structure of
woody vegetation. In this study, the procedure was carried out to determine the

environmental variable that most influences species occurrence and abundance. The soil
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parameters that exhibited strong relationship (0.5 < r <-0.5) with taxa and number of

individuals were selected as environmental variables.

3.6 Summary

This chapter presented the datasets and methods applied in this research. Attributes of the
satellite datasets including the spatial and spectral resolutions, sensors, acquisition dates and
pre-processing steps were outlined. The statistical and computational procedures performed
were also discussed. Chapter 4 presents the results obtained from answering the first research

question.
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4 Species Distribution and Diversity in Rivers State
and the Effects of Oil Pollution

This chapter addresses the first and second research questions (RQ1 and RQ2 in Section
2.10.1,). Therefore, the objective is to determine the vascular plant species diversity index of
the study area and to investigate the impact of oil pollution on the characteristics, diversity
and biophysical parameters of vascular plant species as surrogates for biodiversity. To
achieve this objective, a hierarchy of hypotheses were tested in the following order

Ho: Observed differences in TPH concentration and vegetation of polluted and control
transects are random and not significant

Hi: Observed differences in the TPH concentration and vegetation of polluted and control
transects are not random and are significant

Sub-hypotheses:

H1a: The difference in the TPH concentration of polluted and control transects is significant;
Hip: The difference in characteristics of vegetation on polluted and control transects is
significant;

Hic: The difference in the vascular plant species diversity of polluted and control transects is
significant.

Hia: The difference in the biophysical parameter of vegetation on polluted and control
transects is significant.

4.1 Methodology

The methodology for this chapter is elaborated in Chapter 3 and includes field observation
(FO, section 3.3.2), analysis of soil samples (LAS, section 3.3.3), and data analysis (STA
and VDA, section 3.4).Results

4.1.1 Soil Analysis

4.1.1.1 The Physicochemical Properties of Soil Samples

Results of laboratory analysis to determine the physicochemical properties of samples
collected from investigated transects for comparison between polluted and control are

illustrated in Figure 4.1 From the chart, soil samples from transects in Amuruto appear to
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have the highest TPH concentrations of nearly 100,000 mg/kg of soil. This may be due to
the estimated volume of the spill (5054 barrels) reported at the Nigerian oil spill monitor
website (https://oilspillmonitor.ng/#/41981.2015/LAR/183/492) of which only 332 barrels

were recovered.
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Figure 4.1: Box plots showing the differences in the concentrations of total petroleum hydrocarbons
(TPH), phosphorus (P), lead (Pb) and total organic matter (TOM) in samples collected from various
locations in the study area. The locations are Al (Alimini), Am (Amuruto), Ay (Anyu), Eg (Egbalor),
Kp and Kp2 (Kporghor 1 and 2 respectively), Ob (Obua), Om (Omoigwor) and Ru (Rumuekpe).

Other highly polluted transects appeared located in Kporghor 2 and Rumuekpe. Although
there was no estimated crude oil volume for Kporghor 2; about 1200 barrels was reportedly
spilt at the Rumuekpe location. Locations with the least soil TPH concentrations were

Alimini, Anyu and Kporghor.

94


https://oilspillmonitor.ng/#/41981.2015/LAR/183/492

The relationship among the soil properties was investigated to determine their independence
or correlation with one another. The scatterplots in Figure 4.2 confirm the presence of
correlation between the concentrations of TPH, Phosphorus and Lead. While Lead increased
with TPH (r = 0.71), Phosphorus exhibited an inverse relationship with TPH as seen in the

negative correlation coefficient result (r = -0.69).
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Figure 4.2: Joint distribution of soil parameters showing a strong positive correlation between Pb (a
heavy metal) and TPH, and a strong negative relationship between phosphorus (a soil nutrient) and
TPH. Conversely, TOM has a weak correlation with TPH, P and Pb

The strong relationship between these variables signifies the critical effect of crude oil
pollution in the environment. Considering that phosphorus, for example, is an essential soil
nutrient that promotes vegetation growth, this result suggests that floristic differences

between polluted and control transects may be attributable to the presence of TPH in the soil.

Preliminary analysis of soil properties from the polluted and control soil samples in Kporghor
1 location (Appendix 4.1) showed there was little variation in the soil acidity and soil
temperature. While pH values ranged from 4 to 4.9; the mean soil temperature was 29.1 on
polluted transects and 29 on the control transects. There were, however, significant

differences (p<0.05) in the total petroleum hydrocarbons (TPH) concentration, electrical
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conductivity (EC), soil nutrients (Phosphorus, P) and heavy metals (Lead, Pb) content in
polluted and control transects from Kporghor. The heavy metals tested for and detected in
the soil samples include lead (Pb), cadmium (Cd) and arsenic (As). Both Cd (Mean = 2.35
mg/kg) and As (<0.001 mg/kg) levels were negligible and very much below the
Environmental Guidelines and Standards for the Petroleum Industry in Nigeria (EGASPIN)
intervention values. The EGASPIN intervention values for Cd = 100 mg/kg and As = 200
mag/kg.

Similarly, the total organic carbon (TOC), total organic matter (TOM) and total heterotrophic
bacteria (THB) content were also significantly different for the polluted and control transects.
Across the entire study area comprising ten spill locations and ten control locations, four soil
properties were tested. These were TPH, Phosphorus, Lead and TOM. Median Pb values
varied significantly (H = 139.02, N = 210, DF =19, p<0.05) for the polluted (39.15 mg/kg)
and control (2.14 mg/kg) transects. Levels of Pb in soil samples from several segments of
polluted transects were above the EGASPIN intervention values whereas this was not the
case in control transects. Mean and median Pb values are 27.76 mg/kg (S.E. = 2.04) and 19.7

mg/kg of soil respectively across investigated transects.

Soil nutrients availability represented by the phosphorus (P) content in the soil also varied
among polluted and control transects in all investigated locations. The mean and median
values for P was 10.09 mg/kg (S.E =0.54) and 6.94 mg/kg respectively. On polluted
transects, median P was 4.69mg/kg while on control transects it was 17.49 mg/kg. Kruskal-
Wallis analysis of variance (K-W) results (H = 146.17, N = 210, DF =19, p < 0.05) show that
these values were significantly different. The result is similar to that of the total organic
matter (TOM) content in the soil which showed significant differences among polluted and
control transects (H = 5.66, N = 210, Df = 19, p<0.05). Following the significant results of
the omnibus K-W tests of these properties and rejection of the null hypothesis of no
difference in the mean ranks, a non-parametric post-hoc analysis using the Dunn's test with
Bonferroni adjustment was performed to determine which transects differed significantly.
The results are tabulated in Table 4.1 with significant p-values shown as red asterisks.

Table 4.1: Results of Dunn's pairwise multiple comparison tests with Bonferroni adjustment. The
results indicate that at six out of ten locations, the phosphorus content was significantly different
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between polluted and control transects. Conversely, the lead content of soil samples differed
significantly between polluted and control transects at only four locations. Although the omnibus test
for TOM was significant, the observed difference is between groups (locations). Significant values
(p < 0.05) are shown as red asterisks (*). Titles are derived from the first two letters of location names
and P or C representing polluted or control transect respectively. For instance, AIC is Alimini control
transects.

P AIC AmC AyC EgC Kp2C KpC ObC OmC RuC UmC
AlIP 027 - - - - - - - - -
AmP * * - - - - - - - -
AyP 010 = * - - - - - - -
EgP 025 * * * - - - - - -
Kp2P 052 * 0.07 010 0.09 - - - - -
Kpp * * * * * * - - - _
ObP 1.00 0.10 026 038 032 100 * - - -
OmP 036 * * 0.07 006 1.00 * 028 - -
RUP * * * * * 035 * * * -
UmP 031 = * 0.06 * 1.00 = 024 * 0.11
Pb AIC AmC AyC EgC Kp2C KpC ObC OmC RuC UmC
AIP * - - - - - - - - -
AmP 0.26 0.06 - - - - - - - -
AyP 1.00 0.33 009 - - - - - - -
EgP 1.00 0.77 022 049 - - - - - -
Kp2P  0.34 0.08 * * * - - - - -
KpP 1.00 1.00 1.00 100 100 0.28 - - - -
ObP 0.06 * * * * * * - - -
OmP * * * * * * * * - -
RuP 1.00 031 008 019 009 * 043 * 0.46 -
*

UmP 1.00 1.00 1.00 100 1.00 1.00 0.07 1.00 0.08

4.1.1.2 Total Petroleum Hydrocarbon (TPH) in Polluted and Control

Transects

The average concentration of TPH in polluted and control transects across investigated areas
are shown in Figure 4.3. The boxplots depict the minimum, " quartile, median, """ quartile
and maximum values of TPH at the different locations as well as the 95% confidence
intervals of the median values and outliers. The highest concentration of TPH (>99000
mg/kg) occurred in samples from the Amuruto spill epicentre. In Figure 4.3A raw TPH
values used in plotting the bars demonstrate a considerable difference in TPH concentrations
in polluted and control transects. Overall mean and median TPH values for polluted transects
were 12,692 and 3933 mg/kg respectively, while for the control, the values were 40.53 and
36.50 mg/kg respectively. In Figure 4.3B, the raw TPH data was transformed to its common
logarithm and plotted to highlight the reference line, which signifies the average
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recommended Environmental Guidelines and Standards for the Petroleum Industry in
Nigeria (EGASPIN) intervention value of different components of petroleum hydrocarbon
in the soil. EGASPIN intervention values (mg/kg of soil) documented for different aromatic
hydrocarbons that make up crude oil range from 1 for Benzene to 130 for Toluene
(Department of Petroleum Resources, (DPR), 2002). Figure 4.3B reveals that TPH
concentration in polluted transects is well above EGASPIN intervention values. Although
lower TPH values were observed in control transects, these values were just within the
borderline of intervention values and also above the target values of 0.05 mg/kg for the

various petroleum hydrocarbon components.

TPH concentrations in polluted and control transects were compared for significant
differences using the Kruskal-Wallis test. The omnibus test was significant; hence the null
hypothesis of ‘no difference in samples' was rejected. A post-hoc analysis was then
performed to determine which locations were affected. Interesting, significant differences
between polluted and control transects only occurred at three out of ten locations. this
suggests that the observed differences were not statistically significant, however, when
segments of polluted and control transects were compared, the results reflected significant
differences in soil TPH concentrations particularly between spill epicentres (SS0s) and

control segments.
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Figure 4.3: Total petroleum hydrocarbons levels in soil samples from polluted and control transects
(N=210). Bar charts were plotted using A: raw TPH values and B: transformed (common log) values.
The coloured reference lines on chart B illustrates the average EGASPIN intervention value for A:
Ethylbenzene = 50mg/kg (1.669 on the log scale); B. Phenol = 40 mg/kg (1.6); C. Toluene = 130
mg/kg (2.11) and D. Xylene = 25 mg/kg (1.4). TPH levels in polluted transects were well over the
recommended intervention value, whereas levels in control 1 transects were borderline.

4.1.1.3 Total Petroleum Hydrocarbon (TPH) in Segments Along Polluted
Transects.

There appears to be a trend of decreasing TPH concentration as the distance from the spill

epicentre (SS0) increased along polluted transects (Figure 4.4). For instance, the average

TPH level at SS1 (0-20m from SS0) was 7659 mg/kg; SS3 (40-60m from SS0): 3375 mg/kg;

and at SS5 (80-100m from SS0): 2571 mg/kg. Performing Kruskal-Wallis analysis of

variance for TPH in segments of polluted transects revealed significant differences in the
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values. (N = 130, H = 170.9, p < 0.05). The result was further subjected to multiple

comparisons using Dunn's test to identify the segments significantly different.

TPH (ing/kg)
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Figure 4.4: A comparison of average TPH levels at the spill centre and segments SS1, SS3 and SS5
along polluted transects A, B, C and D (N = 130). Lines on the box show the 1%, median and '™
quartiles. The coloured box is the confidence interval at 95% for the median value.

The results in Table 4.2 showed that the TPH concentration in SS5 as determined by the
distance from SSO along polluted transects was significantly different from SSO and SS1 but
not with SS3. There were no significant differences among SS0O, SS1 and SS3 suggesting

that regardless of TPH concentration, the detrimental effects of oil pollution remains

significant in areas up to 60 m from the spill epicentre.

Table 4.2: A Dunn's multiple comparison tests to determine the significance of the rank mean
differences in soil TPH along polluted transects (SS0, SS1, SS3 and SS5). P values were adjusted

using the Bonferroni method

Ho (Null Hypothesis)

SS0=SS1
SS0 = SS3
SS0 =SS5
SS1=SS3
SS1 =SS5
SS3 =SS5

Dunn’s Test Statistic

1.16
2.37
3.71
1.92
4.04
212

100

P-value
(Adjusted)
1
0.18
<0.05
0.55
<0.05
0.34

Decision

Accept
Accept
Reject
Accept
Reject
Accept



4.1.1.4 Other Soil Parameters along Polluted Transects in Kporghor

Data from Kporghor 1spill location show certain soil properties like temperature and pH
were nearly constant along polluted transects. Nevertheless, the soil phosphorus (P) appears
to increase with increasing distance from the spill epicentre (SEC), whereas the heavy metals
(Lead and Cadmium) appear to decrease with distance from the SEC. Similarly, the Total
Organic Matter (TOM), Total Organic Carbon (TOC) and Total Heterotrophic Bacteria
(THB) where higher in the segments closer to the SEC (SS1 and 3) than the segment further
away from the SEC (SS5). The result generally confirms the relationship between soil TPH

and other parameters as previously shown in the joint distribution chart in Figure 4.2.

Although there is no apparent correlation between TPH and soil properties such as pH,
temperature and nitrates, there was a clear negative correlation between TPH and P (r = -
0.69) TOC and P (r =-0.423). TPH also positively correlated with TOC (r = 0.878); THB (r
=0.941); TOM (r =0.496) and EC (r = 0.368), but correlated negatively with Cd (r = -0.333).

4.1.2 Vegetation Analysis

The Anderson-Darling test for normality of the floristic dataset was 1.619 for the polluted
transects and 1.526 for the control transects. The p-value for both results was less than 0.05;
hence the null hypothesis of population normality was rejected. Furthermore, due to the
excessive skewness of the data (skewness = 6.01) as well as the occurrence of non-positive
values (0), exponential, lognormal, Weibull, gamma, log-logistic distributions could not be
fitted to the data. Moreover, the box-cox transformation procedures (lambda values ranged
from -2 to 2) performed produced distributions which failed the goodness of fit test.

Consequently, non-parametric procedures were applied to the data set.

In total, 163 plant species belonging to 52 families were recorded on investigated transects.
There were 37 families on polluted, and 52 on control (non-polluted) transects. In all the
locations, Poaceae was the most abundant family with 19 species. Cyperaceae followed with
13 species, then Euphorbiaceae and Leguminoceae with ten species each. Other families
with over five members were Asteraceae, eight; Arecaceae and Fabaceae, seven each;

Malvaceae and Rubiaceae, six each and Sterculiaceae, five. Species-wise, polluted transects
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had fewer species than control transects. The number of species on polluted transects was 93

and was substantially lower than the 154 observed on control transects.

Annual herbs dominated on polluted transects with 48 species, followed by shrubs (11), trees
(18), climbers (4) and trailers (2). Similarly, herbs dominated on control transects with 73
species but was followed by trees with 42 species. Other lifeforms present were shrubs (17),
climbers (7), and trailers (4). The tree species were at various stages of secondary growth on
polluted transects while on the control, they were mostly fully matured. The sum of counts
of individual plants across the entire study area was 4245 (1264 individual plants at the

polluted transects and 2657 individual plants at the control transects).

Table 4.3 lists the 52 families comprising trees, shrubs, herbs, climbers and trailers
inventoried in the study area. The dominant family based on individual count was Poaceae,
which had 627 plants and formed 16.89% of the total population. Euphorbiaceae with 410
(11.04%) followed closely. Other dominating families by numbers were Cyperaceae, 346;
Leguminosae, 246; Asteraceae, 226; Arecaceae, 222; Rubiaceae, 193; and so on (see Table
4.3).

On the other hand, the rarest family encountered at the field was Anthyriaceae, which had
only one individual observed in Kporghor polluted transect B. Other rare families included
Cecropiaceae, 3; Rutaceae, 3; Dracaenaceae, 4; and Lamiaceae, 5 (Table 4.3). These five
families together made up less than 0.5% of the total population of plants observed across

the entire state.
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Table 4.3: List of plant families observed in the field with their life forms, taxa and abundance

Family
Acanthaceae
Amaranthaceae
Amaryllidaceae
Anacardiaceae
Apocynaceae
Araceae
Arecaceae
Asclepiadaceae
Asteraceae
Bignoniaceae
Bombacaceae
Boraginaceae
Burseraceae
Caricaceae
Cecropiaceae
Chrysobalanaceae
Combretaceae
Commelinaceae
Convolvulaceae
Costaceae
Cucurbitaceae
Cyperaceae
Dioscoreaceae
Dracaenaceae
Ebenaceae
Euphorbiaceae
Fabaceae
Gentianaceae
Lamiaceae
Leguminosae
Malvaceae
Meliaceae
Moraceae
Moringaceae
Orchidaceae
Passifloraceae
Phyllanthaceae
Poaceae
Pteridaceae
Rubiaceae
Rutaceae
Sapindaceae
Solanaceae
Sterculiaceae
Verbenaceae
Zingerberaceae

Life Form
Herb
Herb
Herb
Tree
Herb
Tree

Climber
Herb
Tree
Tree
Herb
Tree
Tree
Tree

Shrub
Tree
Herb

Trailer
Herb

Climber
Herb

Climber
Tree

Tree(Threatened)
Shrub
Tree
Tree
Herb
Herb
Herb
Tree
Tree
Tree
Herb
Herb
Tree
Herb
Herb
Herb
Tree
Tree
Herb
Herb
Herb
Herb
Herb

Species

PRORPRPNRPRORERRPRERRPENMNRPRoOESRNMNEBERREPNMEMORRPNMRRRPMRRPNORNONERE AN
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Individuals
12
126
8
22
40
97
222
15
226
31
10
55
25
47
3
7
17
5
89
103
15
346
40
4
17
410
99
26
5
246
115

26
12
49

627
72
193

135

50
28

% of Total population
0.32
3.39
0.22
0.57
1.08
2.61
5.98
0.40
6.09
0.84
0.27
1.48
0.67
1.27
0.08
0.19
0.46
0.13
2.40
2.77
0.40
9.32
1.08
0.11
0.46
11.05
2.67
0.70
0.13
6.63
3.10
0.16
0.70
0.32
1.32
0.22
0.24
16.89
1.94
5.20
0.08
3.64
0.13
1.35
0.75
0.16



4.1.2.1 Similarity Index of Polluted and Control Transects

The Sorenson similarity index results computed for the investigated transects are shown
in Table 4.4 All the values are over 0.6 except at Kporghor 2, Amuruto and Rumuekpe,
which had index values of 0.42, 0.45 and 0.48 respectively. The results confirm the
similarity of polluted and control transects in terms of floristic composition hence

validating the comparison of both sites for effects of oil pollution

Table 4.4: Sorenson's similarity index values for polluted and control transects across the study
area. Titles are derived from the first two letters of location names and P or C representing
polluted or control transect respectively. For instance, AIC is Alimini control transect.

AIC AmC AyC EgC Kp2C KpC ObC OmC RuC UmC
AP 071 027 043 048 037 023 048 031 044 038
AmP 035 045 029 043 047 017 052 031 03 027
AyP 035 041 086 052 047 027 071 054 048 054
EgP 035 032 029 07 042 023 038 062 041 038
Kp2P 029 032 036 043 042 013 038 038 03 035
KpP 012 014 025 026 016 093 019 015 011 0.2
ObP 029 041 043 039 042 013 067 046 037 046
OmP 053 05 032 048 068 017 033 077 048 042
RuUP 041 041 043 048 042 027 043 038 048 027
UmP 041 05 039 043 053 02 043 062 033 092

4.1.2.2 Characteristics of Vegetation in the Study Area

The LabDSV package in R language was used to examine the characteristics of the
vegetation dataset. Firstly, Figure 4.5 shows the box plots of species number (taxa),
frequency, abundance and density of vegetation for different locations investigated. The
first and ™" quartiles, the medium as well as the minimum and maximum values of these
characteristics are illustrated in the plots. The notches on the boxes approximate 95%
confidence interval (CI) for the median value of each characteristic. According to
Chambers and Brown (1983), non-overlap of box notches indicate significantly different
median values that are likely from different populations. The reverse is the case for

overlapping notches.
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Figure 4.5: Boxplots of vegetation characteristics for various locations in the study area. Both
taxa and frequency do not appear significantly different across the locations; however, the least
number of species (taxa) was recorded for Kporghor. Surprisingly, Kporghor had the most species
abundance and density among all investigated locations.

As the boxes illustrate, taxa and frequency of vegetation on locations overlap at the
notches, suggesting that there are no significant differences in these characteristics among
the different locations. Likewise, abundance and density overlap at the notches for almost
all the locations except for Kporghor 1 providing further evidence of the similarity of the

investigated locations in terms of floristic composition.
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The cumulative empirical density function (CEDF) of species occurrences was plotted

using the vegetation dataset (Figure 4.6).
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Figure 4.6: Plots of the histograms and cumulative empirical density functions (CEDF) of species
occurrences and mean abundance. The curves reveal that most of the 163 species occurred in only
about 50 segments out of the 210 segments surveyed and where they occurred, the abundance
was also very low.

The graph shows that about 54 species occurred in less than ten plots while about 91% of
the total species (149) occurred in 50 plots or less. Only three species (Adianthum vogelli
(Adivogt), Gomphrena celosioides (Gomcelh) and Chloris pilosa (Chlpilh) out of 163
occurred in over half of the 210 plots. The rarest species were those that occurred in fewer
than five plots. These include the tree species Albizia adiantifolia (Albadit) and Capsicum
frutescens (Capfrut) as well as the herbaceous species Aframonum melagueta (Afrmelh)
and Solenostemo monstachyus (Solmonh). This result suggests that most of the species
were rare or infrequent in occurrence and underscores the need for effective monitoring

of biodiversity in the Niger Delta. Besides, the abundance distribution curve offers a
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visual expression of the species richness and species evenness of the study area. The

steepness of the slope portrays a large margin between high and low abundant species.

The number of species per plot ranged from 1 to 35, with mean and median taxa of 17
and 13 species respectively. The larger mean value portrays the positive skew of the
dataset suggesting that a significant number of plots had fewer species occurrences
(Figure 4.7). On the other hand, the total number of individuals per species per plot ranged
from 1 to 47. The mean and median values are 21 and 16 respectively, also indicating a
positive skew in the dataset. Mean abundance plot of each species reveals that the most
abundant species were herbaceous and occurred an average of two times per plot although
there were only a few of such species (Acacia kamerunensis (Acakams) and Millettia
macrophylla (Milmacs). Generally, 148 species out of 163 had an average abundance of
1.5 individuals or less per plot.
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Figure 4.7: Histograms and Cumulative Empirical Density Functions (CEDF) of species and the
total number of individuals per segment. The steepness of curves for taxa and number of
individuals reveal sharp differences among the segments. It appears that in segments with over
20 species, there was a gradual decrease in evenness whereas, in segments with less than 20
species, the decrease in evenness is more pronounced.
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Further analysis proved that the frequency of species occurrence did not necessarily
correlate with species abundance. A low Spearman's correlation coefficient of 0.3 was
computed for these characteristics. The abundance versus occurrence plot in Figure 4.8A
reveals that the most abundant species such as Milmacs was among the least frequent
species while the more frequent species such as Costus afer (Cosafes) was among the
least abundant in the study area. On the other hand, only one species Manihot esculenta

(Manescs) showed both high abundance and frequency values.

In contrast, there was a strong positive correlation between total abundance and number
of species per segment. The correlation coefficient of 0.97 confirms the strength of this

relationship as illustrated in Figure 4.8B.

B.
= [Tmmac
f\i - o O
r=0.3 w r=0.97 oo
o Lo
o0 R4
O o000
Q0 O OO
e oo 0 o
- | 3 - o 00 00O
- o o oo
o o oo
o 000 O ]
° 00 00 O O
8 @ _H!. 3 | COO0 O
= o o g ] o0 O
= * o Acrziz o o o
R e ° 2 oo o
5 ° z 2 .
= @ E = 0o ©
< 00: 9 ° — o % o o
= -T k=] - o0 OO
E - S S ° © 8 o _ o 0000
= Barnig o o ° = oo & °
- oo =] % oo - — COBO0D o
&0 0000 ©
25%¢0° o o 5 - 0000
— {= alale] (=]
(o] ?:' %00 @ @ - oC00 @
- =3 %D o o0 -3 [=1=1-1 =3
- o D oo Sho, o000
o CQQ% 0@ %o & @ o Cosafe oo
Lo . o W, -
Pypdif o, "o 000 o ’ ogg
%o @ oo
o Impcyl e
—_ —il cemsemncn Rpoi P O -
T T T T T T T T T T
0 20 40 60 80 100 10 20 30 40
Number of Plots Number of Species/Segment

Figure 4.8: Scatterplots of A. abundance versus occurrence of species in the study area, and B.
total individuals versus the number of species per segments. There is an apparent correlation
among the variables; however, the relationship becomes much stronger within segments. Hence,
it indicates the presence of a determining factor in the segments that affect both the number and
abundance of species of individual segments.
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4.1.2.3 Comparison of Vegetation Characteristics on Polluted and
Control Transects.

Generally, 11 species on the polluted transect occurred in at least 30 segments out of 130

while on control transects, 15 species occurred in 30 segments out of 80. The most

common species on polluted transects was Ageratum conyzoides (Ageconh), and on

control transects, it was Manihot esculenta (Manescs). At soil TPH levels greater than

50,000mg/kg; only two species, namely Costus afer (Cosafes) and Chloris pilosa

(Chlpilh), both annual plants occurred up to six times.

Significant differences were apparent in vegetation characteristics measured from
polluted and control transects. The bar charts in figures 4.9A show that median taxa and
frequency of vegetation on polluted transects are considerably lower than those of control
transects at all the locations. However, this is not the case with abundance and density
(Figure 4.9B) as the median values are only slightly different, although, they were higher

in control transects.

The species number (taxa) indicates the total number of unique species occurring on
transects at the time of the investigation. Anyu had the highest taxa of 28 and 52 on
polluted and control transects respectively. The median taxa value for polluted and

control segments were 9 (n=130) and 28 (n=80) respectively.

As mentioned previously, the floristic data did not meet with the assumptions of
parametric statistics, hence a non-parametric procedure that is, the Kruskal-Wallis one-
way analysis of variance by ranks procedure (K-W) was performed to test the significance
of the differences in species composition of transects. The results of the analysis showed
that these differences were significant (H = 170.03, DF = 19, p-value < 0.05) for taxa; (H
= 169.49, DF =19, p = <0.05) for frequency; (H = 76.05, DF = 19, p-value = <0.05) for
abundance and (H = 81, DF = 19, p-value = <0.05) for density. This procedure was
followed by a post-hoc analysis using Dunn's-test for multiple comparisons of
independent samples. The results are shown in Table 4.5 for taxa and abundance. The
differences observed for taxa (and frequency) are not significant at all the studied
locations. For instance, there was no significant difference between polluted and control
transects in Egbalor, Kporghor2, Kporghor and Rumuekpe locations.
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For abundance, the post-hoc results revealed that the differences observed was between
locations and not within. In other words, the abundance (and density values) were not

significantly different between polluted and control transects across the study location.

Table 4.5: Dunn's test to compare the mean rank of taxa and abundance on polluted and control
transects. The p-values show significant differences in the taxa of polluted and control transects
at six locations. However, there is no significant difference for abundance values from polluted
and control transects within locations. Significant values (p < 0.05) are shown as red asterisks
(*).Titles are derived from the first two letters of location names and P or C representing polluted
or control transect respectively. For instance, AIC is Alimini control transect.

Taxa AIC AmC AyC EgC Kp2C KpC ObC OmC RuC
AIC  * - - - - - - - -
AmC 039 * - - - - - - -

AyC 039 * * - - - - - -
EgC 012 * * 009 - - - - -
Kp2C 1.00 060  * 1.00 008 - - - -
KpC 021 * * 016  * 1.00 - - -
obc  * * * * * 018 * - -
omc  * * * * * * * * -
RuC 100 023  * 1.00 * 100 081 100 017
UmC 094 014  * 074  * 100 051 1.00 0.0

Abun  AIC AmC AyC EgC Kp2C KpC ObC OmC RuC
AIC 1.00 - - - - - - - -
AmC 1.00 1.00 - - - - - - -
AyC 1.00 1.00 048 - - - - - -
EgC 1.00 1.00 1.00 1.00 - - - - -
Kp2C 100 1.00 0.38 0.08 1.00 - - - -
KpC 1.00 1.00 1.00 1.00 1.00 1.00 - - -

ObC 1.00 1.00 1.00 0.55 1.00 * 1.00 - -
OmC 1.00 1.00 1.00 1.00 1.00 * 1.00 1.00 -
RuC 1.00 1.00 020 * 0.90 * 0.44 1.00 1.00
UmC 1.00 1.00 1.00 0.44 1.00 * 1.00 1.00 1.00

Species frequency data reflects the number of segments each species occurred in. The
frequency of species occurrence was highest at control transects across the entire study
area. Highest frequency values for control transects were recorded at Kporghor2 with 34
species occurring 259 times and a total frequency of 7.34%. Conversely, lowest
frequency values were recorded for polluted transects at Alimini (17 species occurring
81 times, total frequency =2.47%). While for control transects, lowest frequency values
were observed at Kporghor (33 species occurred 163 times with total frequency = 4.62%).
Median frequency value for polluted transects was 18.35%, while on control transects, it

was 58%. Average species frequency per segment in control transects was 0.15, while for
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polluted it was a mere 0.05. The results show that species frequency values as taxa were
higher on control transects than on polluted transects. Further analysis using the Kruskal-
Wallis test to compare these values was performed, and the results were similar to that
obtained for taxa (Table 4.5) which showed significant differences between polluted and

control transects at most of the locations.

Vegetation abundance on polluted transects appeared lower than on control transects.
Median values were 1.27 plants per occurrence on control transects and 1.19 on polluted
transects. The difference is not significant when subjected to Kruskal-Wallis test.
Likewise, the median density of plants on polluted transects was 0.09 plants/m? while at

the control transects it was 0.21 plants/m?. These values were not significantly different.

4.1.2.4 Characteristics of Vegetation in Segments along Polluted
Transects
In addition to the inter-transect differences between the polluted and control transects,
there were also observable differences along transects that corresponded to decreasing
levels of soil TPH. Firstly, the species number (taxa) appear to increase with a decrease
in soil TPH. For instance, median taxa at spill epicentres with median TPH concentration
of 10490 mg/kg of soil is 3, while at SS1 (20m from spill point) with median TPH
concentration of 6028 mg/kg, median taxa = 7. Furthermore, at SS3, (60 m from spill
point) median TPH concentration decrease to 1849 mg/kg and median taxa increase
slightly to 10, while at SS5 (100 m from spill point), median TPH concentration = 721
mg/kg, median taxa = 13. Contrastingly, median taxa on control segments = 28 and
median TPH concentration in soil = 36.5 mg/kg. A similar pattern is observed in
vegetation frequency, abundance and density. The occurrence of species along polluted
transects became more frequent, abundant and dense as soil TPH concentration decrease.
These results clearly show the effect of varying levels of soil TPH on vegetation
characteristics. As the boxplots of taxa, frequency, abundance and density values for
segments on polluted transects in Figure 4.10 illustrate, median values for each

characteristic increased with a decrease in soil TPH concentration.
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Figure 4.10: Boxplots of taxa, frequency, abundance and density values for segments on polluted
transects and control segments (SSC) for comparison. For each characteristic, the median values
increase with a decrease in soil TPH concentration. The occurrence of species along polluted
transects increased in frequency, abundance and density with decreasing TPH. The notched boxes
illustrate the confidence interval of the values and the absence of overlap between SSO values and
other segments suggest significant differences.

To determine the actual effect of TPH on these characteristics, an omnibus Kruskal-
Wallis test was performed on the data with a significant result suggesting that at least one

of the medians was from a different sample. Table 4.6 highlights the result of the Kruskal-
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Wallis test for taxa, frequency, abundance and density of segments along polluted

transects.

Table 4.6: Kruskal-Wallis omnibus test results for differences in the mean rank of taxa,
frequency, abundance and density of vegetation along polluted transects. The results show
significant differences in all the characteristics leading to a post-hoc analysis using Dunn's test.

Variable H DF P Decision
Taxa 169.11 4 <0.05 Reject
Frequency  167.36 4 <0.05 Reject
Abundance  62.55 4 <0.05 Reject
Density 69.31 4 <0.05 Reject

Rejection of the null hypothesis led to a post-hoc Dunn's test to determine the relationship
between concentrations of TPH and vegetation characteristics. The results reveal that SSO
(with the highest median TPH concentration on polluted transects differed significantly
with SS3 and SS5 in all the characteristics, but not with SS1. An earlier result from
section 4.3.1.3 which revealed a significant difference in TPH concentration of segments
SS0 and SS5. However, it appears that taxa and frequency were more affected by
increasing TPH along transects than abundance and density. This effect is evident in the
absence of significant differences in vegetation abundance and density among segments
except between SSO and SS5.

4.1.2.5 Importance Value Index of Species

Importance value index (IVVI) of naturally occurring species across the study transects
was calculated to determine the species that contributed most to the ecosystem structure
and function. VI further provided insight into the tolerance level of various species to
the presence of petroleum hydrocarbon and heavy metals in the soil. For this analysis, the
importance function in R package Labdsv was used to determine the importance value of
the various species in the study area. The weighted average (WA) value of soil TPH
weighted by species abundance on segments was initially computed to reveal the most
tolerant and most vulnerable species. Table 4.7 lists the most tolerant and most
susceptible species along with the WA scores. Interestingly, the most tolerant species
were herbs, mainly Perotis indica (Perindh) which can tolerate over 67,000 mg/kg of
TPH in the soil. The last letter in species code name indicates the life form of the species,
s = shrub, h = herb, ¢ = climber/creeper, t = tree). Other tolerant species include Albizia
adiantifolia (Albadit), Kyllinga erecta (Kylereh), Sida cordifolia (Sidcorh) and
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Andropogon tectorum (Andtech). The most susceptible species was Terminalia catappa
(Tercatt), Synedrella nodiflora (Synnodh), Oldenlandia corymbosa (Oldcorh), Albizia
zygia (Albzygt) and Psychotria nigerica (Psynigs).

Table 4.7: Weighted average scores of soil TPH concentration in investigated transects showing

species most susceptible and most tolerant to oil pollution. The last letter in species code name
indicates the life form of the species, s = shrub, h = herb, ¢ = climber/creeper, t = tree).

Most Susceptible Most Tolerant

Species Code WA scores of Species Code WA scores of
TPH (mg/kg) TPH (mg/kg)

Tercatt 16.5 Perindh 67940.25

Synnodh 19.2 Albadit 61232.8

Oldcorh 25.9 Kylereh 22048.08

Albzygt 26.25882 Sidcorh 16728.76

Psynigs 26.53333 Andtech 14470.86

Similarly, the species with the highest importance value indices on both polluted and
control transects were mostly shrubs, herbs and climbers and his contrasted clearly with
tree species, which exhibited low importance index values. The ten most important
species in the study area are Manihot esculenta (Manescs), IV = 33.21; Paullinia pinnata
(Paupinc), IVI = 23.95; Elaeis guineensis (Elaguit), IVl = 19.86; Cocos nucifera
(Cocnuct), VI = 18.49; Chloris pilosa (Chlpilh), IVl = 15.94; Ageratum conyzoides
(Ageconh), IVI = 15.82; Alchornea cordifolia (Alccors), IVI = 14.46; Carica papaya
(Carpapt), IVI = 13.79 and Gomphrena celosioides (Gomcelh), IVI = 13.67. VI values
showed susceptibility to soil TPH as certain species with high VI values on control
transects appear to decline on polluted transects. These species include Phyllanthus
amarus (Phyamah), IVI = 4.2 and 8.04 respectively on polluted and control transects;
Axonopus compressus (Axocomph), 1VI = 3.66 and 7.73; Adianthum vogelli (Adivogh),
IVI = 3.71 and 7.53; Spermacoce verticillata (Speverh), IVI = 2.66 and 7.4; Blighia
sapida (Blisapht), IVl = 1 and 7.21; Calopogonium mucunoides (Calmuc), IVI = 2.17
and 7.12; Cyperus haspan (Cyphash), IVI = 0 and 6.92; Cyperus esculentus (Cypesch),
IVI =0 and 6.62; Millettia macrophylla (Milmacs), IVl = 1.5 and 2.25.

Conversely, the most critical species on polluted transects were equally important on
control transects. However, a few species were more abundant on polluted transects.

These were Ageratum conyzoides (Ageconh), Carica papaya (Carpapt), Bulbophyllum
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barbigerum (Bulbarh), Ipomoea involucrata (Ipoinvc), Scleria verrucosa (Sclverh),

Oplismenus burmanii (Oplburh) and Desmodium triflorum (Destrih).

Figure 4.11 is a scatterplot of IV of species on polluted and control transects. The plots

show that fewer species on polluted than on control transects scored IVI > 5.

Additionally, several species with IV1 values > 5 on control transects declined in value

on polluted transects.
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Figure 4.11 Scatterplot of IV values for species on polluted and control transects. Highest IVI
values were obtained for most shrubs, followed by herbs on both transects, whereas, lowest IVI
values were obtained for trees. The last letter in species code name indicates the life form of the
species, s = shrub, h = herb, ¢ = climber/creeper, t = tree).

Indicator species was determined for each location, and the result plotted in Figure 4.12.

Interestingly, no two sites had the same indicator species contrary to expectations

considering that all the sites were located within the same ecological zone. The indicator

species were not necessarily dominant in their habitats; however, they showed a

preference for particular environments based on their importance values. For instance,
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Figure 4.12 Indicator species at different locations investigated. The species with highest indicator values on polluted transects include Kylereh (Kyllinga
erecta) at Kporghor 2; and Perindh (Perotis indica) at Amuruto. On control tranestc, indicator values were much higher with Pipafrt (Piptadeniastrum
africanum) and Panlaxh (Panicum laxum) dominating in Obua and Kporghor 2 respectively. All the locations had different indicator species, which is a pointer
to the species diversity and high turnover (beta-diversity) of the study area.
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Carluts, (Carpolobia lutea,) a shrub with high indicator value in Kporghor exhibited a
preference for non-polluted transects whereas Lepowac (Lepistemon owariense), a
creeping plant with moderate indicator value at Egbalor showed a preference for polluted
transects.

4.1.3 Species Diversity Analysis

4.1.3.1 Species Richness and Diversity on Investigated Transects

Many indices were used to calculate the diversity of both the polluted and control
transects across the entire study area. These included those for estimating species
diversity such as Shannon's (H) and Simpson's (D), those for estimating species richness
such as Menhinick's index (M) and Chao-1 (CH) indices; and for estimating the evenness
of species (EV) distribution and species dominance (DM). The analysis was performed
using PAST software using the abundance data of all inventoried species. Table 4.8
summarises the results of the diversity analysis, shows the median value for each index,
and transect at different locations. From the table, it is clear that there are differences in

the diversity values for vegetation on polluted transects and control transects.

Table 4.8 Summary of diversity analysis using PAST for polluted and control transects

Location Transect Shannon’s Simpson’s Chao-1 Menhinick’s Evenness

Alimini Polluted  1.89 0.84 10.33 2.33 0.96
Control 3.18 0.96 72.25 4.63 0.95
Amuruto  Polluted 2.3 0.9 31.33 3.05 0.97
Control 331 0.96 82.13 4.93 0.96
Anyu Polluted 2.4 0.91 28 3.32 0.97
Control 3.53 0.97 78.94 5.42 0.94
Egbalor Polluted  2.08 0.88 19.33 2.83 0.96
Control 3.2 0.96 67.22 4.53 0.91
Kporghor  Polluted 2.2 0.88 17 2.83 0.92
Control 2.82 0.92 28.31 3.26 0.82
Kporghor2 Polluted  2.49 0.91 42 3.33 0.98
Control 3.43 0.96 87.8 5.08 0.94
Obua Polluted  1.95 0.86 19.5 2.65 0.97
Control 3.23 0.96 70.6 4.76 0.92
Omoigwor Polluted 251 0.91 315 3.18 0.95
Control 3.38 0.96 88.8 5.08 0.93
Rumuekpe Polluted 2.4 0.91 46 3.32 0.98
Control 3.29 0.96 128.3 4.93 0.94
Umukpok  Polluted  2.25 0.89 24.25 3 0.97
u Control 3.36 0.96 77.22 5.03 0.94
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Generally, for all the indices computed, control transects exhibited higher richness and
diversity values than polluted transects at all locations. Among polluted transects,
Menhinick's richness index ranged from 2.33 to 3.33 while Shannon diversity values
ranged from 0 to 2.93 computed for Rumuekpe. Among control transects, species
richness (Menhinick's Index) ranged from 3.26 to 5.42, and Shannon'’s index ranged from
1.87 to 3.6. Zero index values were mostly obtained on spill epicentres in Kporghor and

Alimini, where fire incidence wholly removed the vegetation.

Species accumulation curve (Figure 4.13) showed that species richness for polluted
transects was lower than for polluted transects and that species accumulated more rapidly
in control segments than in polluted segments. Although the sample sizes varied for
polluted (n = 130) and control (n = 80) segments, the curves show that at a comparable
sample size of 50, the species richness for polluted segments was 87 (SD = 3.72) while
that of control segments was 154 (SD = 1.99)
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Figure 4.13 Species accumulation curves comparing the species richness on polluted and control
transects in the study area. Curves show that species richness and the rate of accumulation (the
rate at which new species were observed in segments) was higher on control transects than on
polluted transects.
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The Anyu control transects had the highest Shannon index of 3.6. Similar patterns were
observed for other diversity indices, Simpson's and Chao-1 as evident in Figure 4.14.

Both indices were higher for control transects than for polluted transects.
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Figure 4.14 Violin plots of A. Shannon's, B. Simpson's and C. Chao-1 diversity indices on
polluted and control transect. The density plots with long tails show the non-normal distribution
of variables, further justifying the use of non-parametric statistics for data analysis. For all
indices, median values are higher on control transects than on polluted transect. Index values on
polluted transects exhibited more variability than control transects except in Chao-1 which
showed a reverse with more variability in values obtained from control transects.

Species dominance was not strongly exhibited on investigated transects though it
appeared to be slightly more present on polluted transect than on control transects. This
difference was significant between transects at only four sites namely Alimini, Amuruto,
Anyu and Obua. By far, the most dominant species encountered across the entire study
area was Manihot esculenta (DM = 0.99). Four other species which dominated
investigated transects include Paullinia pinnata (DM = 0.57),  Chloris pilosa (DM =
0.56), Ageratum conyzoides (DM = 0.47) and Costus afer (DM, 0.46) which were all
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herbs and shrubs. Species dominance also varied by location as different species
exhibited dominance at different locations. Figure 4.15 displays the dominant species at

each location.
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Figure 4.15 Boxplot of vascular plant species dominance at investigated polluted locations in the
study area.

While the dominance of species was very low across the study area, evenness was high
and slightly higher on polluted transects. Median evenness on polluted transects was 0.97
while on control transects, it was 0.94, and the difference appeared significant when
subjected to a Kruskal-Wallis test (H = 95.54, DF=19, P-value < 0.05). However, a post-
hoc analysis revealed that the significant difference was between rather than within

locations.

Apart from evenness, other evaluated diversity and richness indices showed a
considerable difference between polluted and control transects at various locations and

are illustrated in Figure 4.16.
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Figure 4.16 Results of post-hoc analysis using Dunn's test plotted against locations to illustrate
the significance level of differences in diversity indices between polluted and control transects.
All indices were significantly different at Alimini (Al), Amuruto (Am), Anyu (Ay) and Obua
(Ob). At Umukpoku, only Shannon's and Menhinick's indices were significantly different
between polluted and control transects.

4.1.3.2 Species Richness and Diversity on Segments of Polluted
Transects

The average index value of segments from polluted transects (A, B, C and D) from the

diversity analysis performed in the PAST package is shown in Table 4.9. There is an

observed pattern of increase in index values as the distance from spill epicentre (SEC)

increased. Vascular plant species diversity indices (Shannon's, Simpson's, Chao-1, and

Menhinick's) appeared to respond to varying TPH concentrations.

Table 4.99 Summary of diversity analysis using PAST for segments along polluted transects with
control segments for comparison.

Index Segments (SS) on Polluted Transects Segments on
Control Transects
SSO SS1 SS3 SS5 SSC
Shannon’s 1.1 2.04 2.27 2.57 3.32
Simpson’s 0.67 0.86 0.89 0.92 0.96
Chao-1 6 18.5 23.63 38.35 78.47
Menhinick’s 1.73 2.67 3.01 3.47 4.87
Evenness 1 0.97 0.96 0.96 0.94
Dominance 0.33 0.14 0.11 0.08 0.04
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Box plot of results (Figure 4.17) for vascular plant species diversity indices further
highlight the general pattern of increasing values along polluted transects as TPH levels
declined. However, a reverse trend is observed for evenness and dominance as these

indices appeared to decrease with increasing TPH concentration in soil.
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Figure 4.17 Boxplot of diversity indices along segments (SS) of polluted transects. There is a
clear pattern of increasing diversity index values as the distance from the spill epicentre (SEC)
increases. The increasing distance also corresponds with declining TPH concentration in the soil.
On the other hand, both dominance and evenness decreased as TPH concentration in the soil
decreased.
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4.1.3.3 Beta Diversity of Investigated Transects

The beta diversity polluted and control transects across the entire study area and for each
location was calculated, and the results are summarised in Table 4.10. Beta diversity of
polluted transects across the entire study area was quite high, (0.59) suggesting that
transects were somewhat dissimilar in species composition. Similarly, on control
transects, beta diversity values were also high (0.53) though slightly lower than polluted

transects confirming the high biodiversity of the Niger Delta.or.
Table 4.10 Beta diversity of investigated transects calculated using Sorensen’s dissimilarity
index

Beta diversity Turnover Nestedness

Polluted  Control Polluted Control Polluted Control

Study Area 0.59 0.53 0.56 0.51 0.06 0.02
Alimini 0.4 0.23 0.36 0.22 0.14 0.04
Amuruto 0.38 0.2 0.33 0.15 0.07 0.05
Anyu 0.44 0.22 0.36 0.2 0.1 0.02
Egbalor 0.41 0.2 0.37 0.17 0.15 0.03
Kporghor 0.36 0.18 0.3 0.12 0.1 0.09
Kporghor2 0.25 0.13 0.23 0.11 0.12 0.02
Obua 0.4 0.22 0.31 0.19 0.1 0.03
Omoigwor 0.33 0.12 0.23 0.11 0.11 0.03
Rumuekpe 0.47 0.39 0.34 0.27 0.11 0.05
Umukpoku 0.39 0.14 0.32 0.12 0.09 0.02

Furthermore, results show that species turnover was consistent in determining the beta
diversity of transects. Nestedness of species was higher in polluted transects than in
control transects implying that oil pollution may have caused the disappearance of some
vascular plant species from segments along polluted transects. Beta dispersion analysis
to determine the effect of pollution on species composition showed significant differences
in the species composition of polluted and control transects. The results of the analysis

are shown in Figure 4.18.
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Figure 4.18 Plots of distances of polluted and control segments from centroids. The non-metric
dimensional scale plot in A. shows that the vegetation composition of polluted and control
transects differ. In B, the box plots show that polluted transects vary significantly in their species
composition across the entire study area.

Both plots show that polluted transects differed in species composition with control
transects, although, there appeared to be other underlying factors in addition to soil TPH
that may have caused this. However, the boxplot of the distance of segments to the
centroids (Figure 4.18B) showed that polluted transects were more dissimilar in species
composition than control transects. An analysis of variance (ANOVA) test performed on
the distances (N = 210, DF= 1 and 208, F = 57.73, p < 0.05) showed significant
differences.

Within locations, comparison of pairs of segments using Sorenson's index revealed that
species composition on oil spill epicentres (SS0s) completely differed from other
segments with larger dissimilarity values obtained on polluted transects. Average beta
diversity values among segments on polluted transects were 0.64 (SS0); 0.6 (SS1 and
SS3); and 0.56 (SS5) while on control transects it was 0.56. An omnibus test comparing
the differences in beta diversity among segments was significant; hence a post-hoc
analysis using Dunn’s test was performed. Although the result showed that beta diversity
differences were only significant at p < 0.05 between SSO and SS5 as well as SSC; it
suggests a linear relationship between TPH in soils and beta diversity. The presence and
strength of any relationship between beta diversity components and soil TPH was tested
using a linear regression model in R. The results of the procedure confirms that soil TPH
positively influenced both the species turnover component of beta diversity and the

nestedness as summarised in Table 4.11
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Table 4.11 Summary of the linear regression analysis to determine the relationship between beta
diversity components and soil TPH. For each variable, N = 210, DF = 1 and 208, p-value < 0.05

Variable F R-squared RSE Equation

Beta diversity 106.6 0.34 0.13 Beta diversity = 0.06 + 0.09 (LogTPH)
Turnover 90.88 0.3 0.12 Turnover = 0.05 + 0.08(LogTPH)
Nestedness 48.39 0.2 0.07 Nestedness = 0.02 + 0.04(LogTPH)

4.1.4 In-Situ Leaf Chlorophyll Data Analysis

Data measured using the SPAD (Soil Plant Analysis Development)-502 chlorophyll
meter are summarised in Table 4.12 below. The results show that estimated chlorophyll
contents of vegetation on the control transects were higher than chlorophyll estimates of
vegetation on polluted transects. The mean SPAD values for the control transects were
over 55 while the means from polluted transects were less than 40.

Table 4.12 Summarised chlorophyll data measured using a SPAD-502 chlorophyll meter taken
from Kporghor spill location. The means of the data obtained from the control transects are higher
than those obtained from the polluted transects. Similarly, the maximum values are also higher
in control transects than in the polluted transects.

Transect  Transect Transect Transect Control Control

A B C D 1 2
Minimum 21.1 26.5 25.4 26.3 39.9 42.1
1st Quartile 33.49 33.8 34 32.8 46.6 48.9
Median 38.5 41.49 35.4 38.2 49.8 52.7
Mean 39.33 40.52 36.98 39.22 55.32 55.06
3rd Quartile 46.7 45.6 39.8 44 58.1 57.5
Maximum 65.7 56.5 58.2 66.3 111 96.4

4.1.4.1 Leaf Chlorophyll Data from Polluted and Control Transects in
Kporghor
The SPAD measured chlorophyll content of vegetation on investigated transects reveals
the variation in the data readings from both the control and polluted transects. For
instance, the SPAD chlorophyll measured in vegetation on polluted transects ranged from
21 to 68, with a median value of 36.06; while on control transects, values ranged from
39.9 to 111 with median = 50.33 The wider range of data readings from vegetation on
the control transects connotes a wider species variation as previously noted in the species
number (taxa). A Mann-Whitney test performed on the data showed a significant

difference between chlorophyll content in vegetation from polluted and control transects.
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The one-tailed test showed that SPAD chlorophyll estimates on polluted transects were

significantly less than control transects (N = 31, W = 214, p < 0.05).

4.1.4.2 Leaf Chlorophyll Data from Segments along Polluted Transects

SPAD-502 chlorophyll meter reading also showed significant variations in segments
along polluted transects as is evident in the boxplot in Figure 4.19 It appears that the
values were increasing as the distance from the spill epicentre increased; further proof
that the TPH levels in the soil affected the chlorophyll content of vegetation growing on
the segments. The median values for the segments were SS1 = 32.45; SS3 = 35.17; and
SS5 = 42.95. An omnibus Kruskal-Wallis test showed significant differences among the
segments (H = 13.05, DF =4, p< 0.05), however, following a multiple comparison Dunn's
test, the significant difference was between SS1 and SS5. The spill epicentre at Kporghor
was excluded from the analysis due to the absence of vegetation within the segment
(SS0). There were differences in the SPAD chlorophyll values estimated for SS1 and
SS3, but these differences were not significant (p < 0.05). Likewise, between SS3 and

SS5, there was no significant difference in the SPAD chlorophyll estimates.
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Figure 4.19 Boxplot of SPAD-502 chlorophyll meter readings from segments along polluted
transects. Higher readings suggesting higher chlorophyll content were obtained from vegetation
growing on segments further away from the spill epicentre (not shown in the graph).
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4.1.4.3 Effect of Oil Pollution on Leaf Chlorophyll Data

Estimated chlorophyll content in vegetation strongly correlated with soil parameters. The
relationship was inverse with soil TPH, Lead and TOC but positive with Phosphorus. The
corrgram plot in Figure 4.20 illustrates the nature of relationships.
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Figure 4.20: A corrgram illustrating the correlation ratios of various soil parameters and the
SPAD-502 chlorophyll data obtained from the study transects. The colour and intensity of
shading define the pattern and magnitude of the relationship between the variables. The red pies
represent the negative correlation while the blue coloured pies illustrate positive correlations.
Carbon-related parameters (TPH, TOC and THB) and the heavy metal (Lead) correlated
negatively while TOM and Cadmium had weak positive correlations with the leaf chlorophyll
data. Conversely, Phosphorus (soil nutrient) had strong positive correlations with the leaf
chlorophyll data.
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Additionally, a comparison of the average chlorophyll concentration of selected plant
species namely Manihot esculenta, Vossia cuspidata and Ficus mucuso on polluted and
control transects using the Kruskal-Wallis test (H = 126.23, DF = 17, p-value < 0.05)
showed that differences were significant. Post-hoc analysis revealed that interspecific
differences in chlorophyll content were not significant, however intraspecific differences
between polluted and control transects were significant for all species. This may be
attributed to the effect of oil pollution. Results of the post hoc analysis are shown in Table
4.13.

Table 4.13: Dunn's test to compare the mean rank of SPAD chlorophyll in selected species on
polluted and control transects. The p-values show significant differences in the estimated
chlorophyll content of Ficus mucuso (Fm) and Vossia cuspidata (Vc) on polluted transects A
(TA), B (TB), C (TC) and D (TD) and control transects C1 and C2. However, there is no
significant difference in chloropyll content of Manihot esculentus (Me) on polluted and control
transects. Significant values (p < 0.05) are shown as red asterisks (*). Variable names are a
combination of transects label and first letters of plants genus and species names eg C1Me refers
to Manihot esculentus on control 1 transect.

ClMe ClFm Clvc C2Me C2Fm C2Vc

TAMe 0851 ~* * 0.1 * *
TAFm 1 * * 0361 * *
TAvce * * * * * *
TBMe 0.824 ~* * 0.096 * *
TBFm 1 * 0263 1 * 0.162
TBvec 1 0868 1 1 0425 1
TCMe 1 * * 0.818 * *
TCFm 1 0172 1 1 0076 1
TCve 1 * * 0.488 * *
TDMe 1 * 0103 1 * 0.061
TDFm 1 * 0202 1 * 0.123
TDvc 0.857 ~* * 0.1 * *

4.1.5 Effects of Environmental Variables on Species
Occurrence

Species occurrence and distribution are a function of environmental variables. To
evaluate the impact of the environmental variables particularly the TPH concentrations
on the species composition and distribution, the canonical correspondence analytical
(CCA) procedure was employed. The CCA was performed using species abundance data

from all transects investigated. The procedure was carried out to determine the
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environmental variable that most influences species occurrence and abundance. The soil
parameters that exhibited strong relationship ( 0.5 < r <-0.5) with taxa and number of
individuals were selected as environmental variables and these were total petroleum
hydrocarbon (TPH, r = -0.74 and -0.76), phosphorus (P, r = 0.7 and 0.72) and lead (Pb,
r=-0.74 and -0.78).

Results from the canonical correspondence analysis produced strong associations among
the vegetation data and the environmental variables. While the first CCA axis represented
39.2% of the total variance in the data and associated with increasing TPH and Lead and
decreasing phosphorus, the second CCA axis accounts for 24.89% of the total variance
in the data and associates with decreasing TPH. The plot of the two axes shown in Figure
421 A and B successfully partitioned the study area into polluted microhabitat
(characterised by high levels of TPH and lead and low levels of phosphorus and TOM)
and unpolluted microhabitats. The distribution of vegetation in these microhabitats
showed that the nutrient-rich unpolluted portion supported over 60% of the species while
40% occurred on the polluted/contaminated portion. The ordination of species on these
axes revealed the optimal conditions and the effect of changes in these conditions for
species occurrence and abundance. For instance, the most common life forms of species
populating the polluted microhabitat are herbs and shrubs while trees preferred

unpolluted fertile microhabitats.

Moreover, the plot revealed that certain species thrived in polluted transects scoring high
IVI values and WAScores but absent in control transects. These species were labelled as
TPH-tolerant species as they thrived in polluted soils. 65 species that populated the
unpolluted microhabitat and were absent in the polluted microhabitat were labelled as
TPH-sensitive species due to their low WA scores (less than 60 mg/kg) and the
requirement of good soil conditions to thrive. However, due to their absence or minimal

presence on polluted transects, their IVI values ranged from 1 to 1.75.

130



6
AmBSS3 .. @ AmASSO

* AmASSI
41 _~TPH
AmDSS3
o » AMASS3~
«AmDSSS
o
" < P
S o ___Pb
d =N =
oy o —
e, —
]
7 -6 5 4 3 3
-
~
(&
-2
TOM ® « AYCSS1 @ Polluted Segments

31 * *KpBSSI

Control Segments
@ Vascular Plant
P iRsso Species
-S4
«KpASSO
6’ KpC2sss
CCA-1=49%

Figure 4.21A Plot of the first two axes of the CCA result scaled to display segments. The first CCA axis associates with increasing TPH and the second CCA
axis associates with increasing TOM. The length of the tri-plots shows that both soil TPH and P were dominant gradients affecting species distribution. The
plot successfully apportioned the ordinated space into polluted and unpolluted microhabitats which also correspond with particular species populating each
microhabitat
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Species populating the centre of the plot are those present in both polluted and unpolluted

microhabitats and were labelled ‘adaptable species’. Table 4.14 shows examples of each

group of species.

Table 4.14: Examples of Most TPH tolerant species, most TPH-sensitive species and most
adaptable species that thrived at the center of the plot.

Code-name  Species name

TPH-Tolerant Species

Acakams Acacia kamerunensis
Albadit Albizia adiantifolia
Desscoh Desmodium scorpiurus
Diosmic Dioscorea smilacifolia
Kylereh Kyllinga erecta
Perindh Perotic indica

TPH-Sensitive Species

Chralbt Chrysophyllum albidum
Dramant Dracaena mannii

Pipafrt Piptadeniastrum africanum
Funelat Funtimia elastic

Spomont Spondias mombin

Colhiss Cola hispida

Scodulh Scoparia dulcis

Solmonh Solenostemo monstachyus
Boraett Borassus aethiopum

Tettet Tetrapleura tetraptera
Dalecas Dalbergia ecastaphyllum
Asyganh Asystasia gangetica
Malcorh Malvastrum coromandelianum
Setmegh Setaria megaphylla
Albzygt Albizia zygia

Cyphash Cyperus haspan

Cosspeh Costus spectabilis

Ancdifh Anchomanes difformis

Adaptable Species

Voscus Vossia cuspidata
Chlpilh Chloris pilosa
Alccors Alchornea cordifolia
Sidcorh Sida cordifolia
Ageconh Ageratum conyzoides
Andtech Andropogon tectorum
Phyamah Phyllanthus amarus
Eleindh Eleiss indica
Tricorh Triumfetta cordifolia
Phynirh Phyllanthus niruri
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Lifeform

Shrub
Tree
Herb
Creeper
Herb
Herb

Tree
Tree
Tree
Tree
Tree
Shrub
Herb
Herb
Tree
Tree
Shrub
Herb
Herb
Herb
Tree
Herb
Herb
Herb

Shrub
Herb
Shrub
Herb
Herb
Herb
Herb

Herb
Herb
Herb

VI

NEFE DN

2.42
1.33

1.25
4.38
5.2

2.25

2.25
4.87
1.17
14

1.75
4.36
6.92
1.50
5.79

6.56
15.94
14.46
6.36
15.82
4.75
12.24

4.89
7.3
5.79

WAScore

4480
61232.8
1440.7
1679.5
22048.8
67940.25

55.5
42.8
45.4
47

35.8
38.5
59

46.3
54.7
52.8
34.1
48.6
48.6
27.2
26.3
41

40

45.4

1301.1
8564.9
2009.5
16728.8
7566.8
14470.9
1196.9

9797.8
548
11673.3



These species appear to have been affected by the presence of TPH in the soil as IVI
values decreased on polluted transects. The low abundance of the species mentioned
above (abundance class 2 and 3) may be attributed to their decreased population on
polluted transects. This decimation is also evident in the vast difference between

corresponding IV1 values on polluted and control transects.

The correlation coefficient of the first two CCA axes 2 (associated with increasing TPH
and elevation respectively), and vegetation characteristics show that both TPH and
elevation influenced the distribution and composition of species in the study area. Table
4.13 how that taxa, frequency of species occurrence and diversity decreased with

increasing TPH as well as elevation.

Table 4.15 Rank correlation coefficient (r) between relevant variables and CCA axes 1-3. TPH
= total petroleum hydrocarbon, Pb = lead, P = phosphorus, TOM =total organic matter, taxa, the
frequency of species occurrence, number of individuals and Shannon's diversity.

Variable CCA-1 CCA-2 CCA-3
TPH 0.61 0.22 -0.06
TOM -0.23 0.12 0.34
Taxa -0.42 -0.13 0.04
Frequency -0.36 -0.26 -0.06
Individuals -0.39 -0.18 0.03
Shannon’s -0.36 -0.1 0.02

4.2 Discussion

4.2.1 Oil Pollution at Spill Locations in Rivers State

The high levels of petroleum hydrocarbon (TPH) recorded in soil samples collected from
identified spill points and along polluted transects confirm that oil spill incidents polluted
the land surrounding the area. The levels of TPH extracted from soil samples were in
varying amounts and higher than the EGASPIN intervention values for different
components of hydrocarbons. The high average TPH concentration from polluted
transects (12692 mg/kg) clearly distinguishes them from the control transects which had
an average TPH of 40.53 mg/kg. These results are comparable to those previously
reported for soil samples extracted from polluted sites across the Niger Delta. For
instance, Alinnor, Ogukwe and Nwagbo, (2014) obtained mean TPH concentration of up
to 5199.52mg/kg from polluted soil in five communities in the Rivers State of Nigeria.
Also, Ibezue (2013) reported high concentrations of TPH (up to 13949.42mg/kg) for soil
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samples from spillage sites in Gokana Local Government Area of Rivers State similar to

the TPH content of 16063mg/kg measured from the spill epicentre in Kporghor location.

The significant difference between observed TPH concentration in polluted and control
transects a noted in earlier investigations. Osuji and Nwoye (2007) reported as low as
0.6mg/kg of TPH in the control sample and between 3400-6800mg/kg from polluted soil
samples. Tanee and Albert (2015) also reported TPH levels of about 27.90mg/Kkg in soil
samples collected from their control site and about 542mg/kg measured at the polluted
site. Other environmental factors may have contributed to the high TPH concentrations
observed in polluted transects. For instance, the topography of investigated locations may
have enhanced the retention of crude oil at the spill points and the almost steady migration
of oil along polluted transects. Elevation of polluted transects did not vary at each location
except at Rumuekpe where it ranged from 16 to 17 m. Previous studies such as Seibert,
Stendahl and Sgrensen (2007); Zhang et al. (2012b) and Bockheim et al. (2014) have
reported topographical influences on soil properties for different biomes. The observed
high levels of petroleum hydrocarbon in samples from polluted transects in Kporghor
location gives an insight on the quantity absorbed into the soil as well as the effectiveness
of the containment measure implemented by the company despite over 60% of the total

spilt amount recovered.

4.2.2 Effect of Oil Pollution on Soil Parameters

Increased concentration of petroleum hydrocarbon increased soil acidic (pH) and
temperature values. Whereas some researchers report that oil pollution leads to increased
soil pH (Obire and Nwaubeta, 2002; Udeh, Nwaogazie and Momoh, 2013; Wang et al.
2013); others showed that oil pollution in soil tends to increase soil acidity (lower pH
values). For instance, Osuji and Nwoye (2007) and Akubugwo, Elebe and Osuocha
(2016) reported a significant decrease in the pH of polluted soils. Similarly, Baruah et al.
(2011) analysed crude oil contaminated soil in North East India and found that the
contaminated soils were slightly more acidic (pH = 5.8+0.3) than the uncontaminated
soils (pH = 6.4%0.2), although, they did not clarify if the difference in pH values was
significant. The increased acidity of polluted soils was attributed on the one hand to the
formation of organic acids by microorganisms responsible for the biodegradation of
hydrocarbons, and on the other hand to the non-removal of leachates from the crude oil
polluted substrate (Das and Chandra, 2011). Furthermore, while Wang et al. (2013)
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reported a significant decrease in the temperature values of polluted soil samples
collected from the Momoge Wetland in China. Akubugwo, Elebe and Osuocha (2016)
reported the reverse for polluted soil in Khana area of Rivers State Nigeria.

Soil samples collected from Kporghor spill location, however, did not show this trend.
Although there was a slight increase in the pH and temperature of soil samples obtained
from the polluted transects, the increase was not statistically significant. The mean pH
and temperature values of polluted samples were 4.33 and 29.1°C while that of control
samples were 4.2 and 29°C respectively. This result compared favourably with those
posited by Okonokhua et al. (2007), Tanee and Albert (2015). TPH concentration in soil
influenced soil fertility status. Soil electrical conductivity (EC) used as to indicate soil
fertility (determines the cation exchange capacity, organic matter level, drainage
conditions and other subsoil characteristics of the soil) showed a significant difference in
polluted and control transects at the Kporghor spill location. Mean EC values were 10.36
puS/cm and 29.85 uS/cm respectively. The values were comparable to those reported by
Benka-Coker and Ekundayo (1995); Okonokhua et al. (2007); Tanee and Albert (2015)
for studies conducted on polluted soils in the Niger Delta region. Benka-Coker and
Ekundayo (1995) reported EC range of 35-54 uS/cm from the soil sample collected at a
depth of 15-30 cm within the heavily impacted zone and range of 27-68 uS/cm at similar
depth for the unimpacted zone. Tanee and Albert (2015) likewise reported lower values
of 6.33 uS/cm and 10.33 uS/cm for polluted and unpolluted soil respectively. Osuji and
Nwoye (2007) in their appraisal of the impact of petroleum hydrocarbons on soil fertility
in Owaza reported very high EC values (688 uS/cm for polluted and >1890 uS/cm for
control soil samples). The extremely high EC value reported by Osuji and Nwoye may
have been due to the agricultural use of the land. Other factors that affect soil EC not
analysed in the current research are soil texture and particle size, cation exchange capacity
of the soil and depth of topsoil. However, Ayotamuno et al. (2006) and Akubugwo et al.
(2016) reported significantly higher EC values for polluted soils (p < 0.05); Although
evidence from previous reports as well as the current research suggest a negative
relationship between soil TPH and EC; a correlation analysis of the soil parameters data
showed that EC had a weak positive correlation (r = 0.146; p = 0.434) with TPH

concentration in soil.
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The increased TPH in the soil also influenced soil nutrients. The nitrate content of soil
samples analysed in the current research was negligible (< 0.02 mg/kg) for both polluted
and control transects in Kporghor spill location. In contrast, Tanee and Albert (2015)
reported very high nitrate values (132.36 mg/kg and 95.57 mg/kg for polluted and
unpolluted soils respectively) and Udeh, Nwaogazie and Momoh (2013) posited high
nitrate values of 22.06 mg/100g for uncontaminated soil. However, Benka -Coker and
Ekundayo (1995) reported lower nitrate values of 0.3 mg/kg and 0.9 mg/kg for impacted
and unimpacted sites respectively. Obire and Nwaubeta (2002) and Osuji and Nwoye
(2007) also reported lower figures for nitrate in polluted than in control soil samples. The
reported decrease in nitrate contents of polluted soils indicates inhibition of nitrification
in polluted soils due to the effect of competition from petroleum compounds (Rasche,
Hyman and Arp, 1990; John, Ntino and Essien, 2016).

Phosphorus values of polluted and control transects showed significant differences.
Caravaca and Roldan (2003) reported available P values of 32 mg/kg for control and 28
mg/kg for contaminated soils obtained from semiarid Mediterranean conditions.
Similarly, Wang et al. (2013) in their analysis found that crude oil reduced the available
phosphorus concentrations in impacted soils (P = 30 mg/kg at control and 13.9 + 2.8
mg/kg at polluted sites). They also observed significant differences in phosphorus
concentrations at different seasons for the polluted soils. Ugboma (2014) and Akubugwo
et al. (2016) in their various studies reported that available phosphorus in polluted soil
samples was significantly lower than that in samples obtained from the control site. These
results were consistent with those obtained in the present study, which showed lower
concentrations of phosphorus in polluted transects than in the control transects. The
median phosphorus content in soil samples from polluted transects was 4.69 mg/kg while
from the control transects it was 17.59 mg/kg. These values were very low compared to
the mean P value of 75.62 mg/kg, and 103.12 mg/kg reported by Tanee and Albert (2015)
for polluted and control soils respectively. The higher P values reported by Tanee and
Albert (2015) for soil collected from a similar ecological area may be due to the lower
TPH levels of the polluted soil as well as the season of collection. Wang et al. (2013)
reported that seasonal variation significantly affected phosphorus availability in the soil

in Momoge, China.

137



Decreasing phosphorus levels in polluted soils may be linked to the presence of
hydrocarbons stimulating the growth of oil-degrading micro-organisms and hence
increasing the utilisation of available phosphorus (Atlas, 1981; Eneje, Nwagbara and
Uwumarongie-llori, 2012; Wang et al. 2013). The negative correlation (r = -0.423, p <
0.05) between phosphorus and total organic carbon (TOC) levels in Kporghor
investigated transects supports this assertion. Nevertheless, some studies have shown
available phosphorus to be higher in polluted soil than in the unpolluted soil (Essien and
John, 2011).

Low total organic carbon (TOC) values obtained from control transects contrasted with
Osuji and Nwoye (2007); Atuma and Ojeh (2013) whom both observed higher levels of
TOC in control samples than in polluted samples. The values are, however, consistent
with other studies including Obire and Nwaubeta (2002); Essein and John (2011);
Marinescu et al. (2010); Wang et al. (2013); Udoh and Chukwu (2014) who reported a
significant increase in TOC content of polluted soil which they attributed to the presence

of carbonaceous substances in the soil.

Values for total organic matter (TOM) content of soil samples varied considerably across
the entire study area and between polluted and control transects. The difference between
polluted and control transects was also significant. Higher levels of TOM in soil samples
from control transects may be attributed to the increased presence of vegetation since
most soil organic matter originate from living and decomposing plant tissues (Bot and
Benites, 2005).

Total heterotrophic bacteria (THB) counts differed significantly between the polluted and
control transects with the highest levels (5.63*106 CFU/ml) recorded at the spill epicentre
in Kporghor spill location. The mean THB count on polluted transects was 106 CFU/ml
and 14.3*106 CFU/mI on control transects. These values agreed with those reported by
Obire and Nwaubeta (2002); Okoye and Okunrobo (2014) for spill sites in the Niger Delta
region of Nigeria. The reduced THB counts observed in the polluted transects may be
connected to the inhibition of microbial and enzymatic activities in the (Okoye and
Okunrobo, 2014; Alrumman, Standing and Paton, 2015). Conversely, the natural
conditions of the unpolluted control transects may have supported normal microbial

growth and activities.

138



The heavy metals investigated and detected in the soil samples collected from the study
area were lead and cadmium. The values for lead ranged from 2.16 to 163 mg/kg in the
polluted transects while in control transects lead values were less than 13.2 mg/kg.
Although these amounts were higher than those documented by Benka-Coker and
Ekundayo (1995) in their study of a heavily impacted spill site in the Niger Delta, they
are consistent with results obtained by Udoh and Chukwu (2014); Fatoba et al. (2016)
for similar sites. Other investigations such as Kisic et al. (2009) for contaminated soil in
Croatia and Fu, Cui and Zang, (2014) for oil-polluted soil in Shengli Oilfield, China also
yielded comparable results. Heavy metal contamination in the polluted transects may
have been due to the oil spill as crude oil have been identified to contain heavy metals
such as lead, cadmium, zinc, nickel and so on (Kisic et al. 2009; Dickson and Udoessien,
2012; Fu, Cui and Zang, 2014), however, it may also have been from other sources. For
instance, the high values recorded for polluted transect (C) in Kporghor spill location
may have been because of the application of pesticide and bio-solids on the cassava farm
intersected by transect. Wuana and Okieimen (2011) reported that about 10% of approved
chemicals utilised in the production of pesticides contained lead and other metals.

In summary, crude oil pollution in Rivers State exerted deleterious effects on the physical,
chemical and biological properties of the soil. The presence of petroleum hydrocarbon
in the soil led to reduced levels of beneficial parameters such as electrical conductivity,
phosphorus, organic matter and microbial population. This effect contributed to the
stripping of nutrients from polluted transects and might have also accounted for the
reduced vegetation growth and abundance on these transects as evidenced in the present
research. Chong et al, (2017) asserted that the efficiency of soil nutrient absorption by
plants is controlled by soil properties, hence, nutrient deficiency invariably leads to
reduced vegetation productivity. However, other factors which were not explored in this
research may have also contributed to the depletion of soil nutrients, for instance the

disturbance history of polluted transects.

4.2.3 Effect of Oil Pollution on Vegetation

Osam, Wegwu and Uwakwe (2011), UNEP (2011), Lindén and Palsson (2013); Tanee
and Albert (2015) previously reported the devastating effect of oil pollution on the
ecosystem flora and fauna. The vegetation on and around polluted transects responded to

the presence of TPH in the soil by the thinning out of plants and outright disappearance
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of some species. Oil pollution in soil impedes the growth of plants (Ogbo, Zibigha and
Odogu, 2009; Chima and Vure, 2014). This effect is attributed to the unavailability of
essential soil nutrients such as nitrogen and oxygen to the plants (Njoku, Akinola and
Oboh, 2008; Ogbo, Zibigha and Odogu, 2009). Furthermore, oil constituents block
stomata and intercellular spaces (Baker, 1970) thereby reducing transpiration rates and

consequently plant uptake of nutrients (Novak and Vidovic, 2003).

Statistical analysis of the floristic data showed significant differences between polluted
and control transects in the study area. The taxa, frequency, abundance and density results
were all higher in control transects than in the polluted transects, though, a few species
were observed only on polluted transects and not on the control transects. A total of 163
plant species belonging to 52 families were inventoried across investigated transects. The
ratio of species to families corresponds with those obtained from several studies on
species composition and diversity in the Niger Delta region such as Tanee and Albert
(2015); Daniel, Jacob and Udeagha, (2015); Ubom, (2010) and Agbagwa and Ekeke
(2011). For instance, Ubom (2010) recorded 339 plant species belonging to 88 families
in the forests and homestead gardens in the Niger Delta. Agbagwa and Ekeke (2011)
reported that 90 plant species belonging to 40 families for Bonny Local government area
in Rivers State, Nigeria. Furthermore, Daniel, Jacob and Udeagha, (2015) documented
38 species belonging to 22 families for trees in the Abam Itak sacred forest in the Cross
River State of Nigeria.

The taxonomical distribution of vegetation in the current study is consistent with those
submitted in previous studies. For instance, Onyekwelu, Mosandl and Stimm (2013)
reported that Euphorbiaceae, Mimosoideae (Leguminosae), Sterculiaceae, Meliceae and
Apocyanaceae were the dominant families in the two natural forest they investigated.
Similarly, Jacob et al. (2015) also identified Fabaceae, Leguminosae and Sapotaceae as

the dominant families in their survey of sacred forest in South Eastern Nigeria.

Floristic data revealed that average species composition on polluted transects were about
34% while it was over 66% on the control transects suggesting a deficit of over 30% of
species in oil-polluted transects. The results further indicate that shrubs, herbs and
creepers suffered more losses than trees, which implies that not only do species differ in
their sensitivity to oil pollution, but also the lifeforms of the plant species determine their

susceptibility to the impact of oil pollution (EI-Nemr, 2006). Similar observations were
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made by Kinako (1981) who reported a species loss of at least 50% in oil-polluted habitats
as well as Baruah and Sarma (1996) who following their study found that 80% of plant
species were lost in crude oil spill sites in the Rudrasagar oil field. They also observed
that annual plants were the most affected. The abundance and density of species on the
investigated transects were different for the polluted and control transects. These results
were consistent with those reported by Nkwocha and Duru (2010); Tanee and Albert
(2015) who affirmed that oil spill impacted negatively on the abundance and density of
vegetation in the Niger Delta region. Additionally, Lin and Mendelssohn (2012) also
reported significantly lower levels of life above ground biomass (a measure of
abundance) at oil-impacted sites than at reference sites in their study of the impacts of an
oil spill on vegetation structure in coastal salt marshes of the northern part of the Gulf of

Mexico.
Based on the 1VI, the most valuable species in the study area are:-

i.  Manihot esculenta (Manescs),

ii.  Paullinia pinnata (Paupinc),

iii.  Elaeis guineensis (Elaguit),

iv.  Cocos nucifera (Cocnuct),

v.  Chloris pilosa (Chlpilh),

vi.  Ageratum conyzoides (Ageconh),
vii.  Alchornea cordifolia (Alccors),
viii.  Carica papaya (Carpapt), and

iX.  Gomphrena celosioides (Gomcelh).

These species were equally present at both the polluted and control transects and appeared
to have been more tolerant to oil spill impact than the other species. Interestingly, these
highly tolerant species are all perennials. Burk (1977) and Cowell (1971) both observed
that perennial species were less affected by an oil spill in a freshwater marsh and salt
marsh respectively. The reason may be that some perennials such as Manihot esculenta,
Chloris pilosa, have well-developed rhizomes which allow the plants to perennate during
the crucial stages of oil inundation. Maslova (2014) studied the structure and metabolism
of underground shoots in perennial rhizome-forming plants and reported that rhizomes in
grassy perennials were extremely adept at self-restoration apparently through vegetative

propagation. Additionally, some of these tolerant species were characterised by deep tap
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roots (for instance Elaeis guineensis, Cocos nucifera, Alchornea cordifolia) with capacity

for nutrient extraction from deeper soil layers (Don Santos and Wenzel, 2007).

As the results suggest, several species which declined in V1 values or absent on polluted
transects were present on control transects, a phenomenon attributable to the secondary
effects of an oil spill such as fire destroying vegetation or use of damaging oil recovery
methods. However, since the most susceptible species (herbaceous annuals) were well
represented on control transects but absent or significantly reduced on polluted transects,
it is more likely that the presence of TPH adversely affected species diversity. This
phenomenon is an indication of poor growth conditions expedited by oil pollution. These
results compared favourably with Nwoko et al. (2007); Lin and Mendelssohn (2012) and
Oyedeji et al. (2012) who found that plant population remarkably decreased in oil-
contaminated soils. They asserted that this decrease is due to the intoxication of the soil
microenvironment by crude oil, which interferes with the availability of essential
nutrients as well as the plant uptake and utilisation of nutrients (Novak and Vidovi¢,
2003). In summary, therefore, oil pollution has adversely affected the vegetation of the
area through outright loss of species as well as through reduced abundance of the

surviving species on polluted transects.

4.2.4 Effect of Oil Pollution on Species Diversity

The Niger delta harbours a vast number of diverse living organisms and is a biodiversity
hot spot (United Nations Development Programme, 2010; Nzeadibe et al. 2011).
However, there continues to be an increasing threat to the rich biodiversity of this region
due to ongoing oil production and related activities. Several reports show that oil
pollution causes a decrease in species diversity of both long-lived woody species and
shorter-lived herbaceous species through several processes, which include rendering soil
nutrients unavailable for plant use (John, Ntino and Essien, 2016; Wang et al. 2013;
Eneje, Nwagbara and Uwumarongie-llori, 2012; Atlas, 1981). The diversity of the study
area reflected a similar pattern as observed for the tropical forest ecosystems. Vasilyevich
(2009) reviewed several papers written on species diversity of plants in the tropical
rainforest and reported species density of 0.03 to 0.25/m? for the Peruvian Amazonia;
0.14 /m? in Australia and 0.1/m? in Southern Africa. These results compared favourably

with the average species density of 0.1/m? obtained from the current study area.
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The diversity indices obtained for the entire study transects were similarly high
(Simpson's = 0.95 and Shannon's = 3.22) but differed significantly between polluted and
control transects. Although several studies have enunciated the inadequacy of species
richness as an indicator of species diversity, results from the current research showed a
strong positive correlation among the richness (Menhinick's) and diversity (Simpson's
and Shannon's) indices evaluated. Despite the high diversity values, there were
significant differences in the phytosociological characteristics of vegetation on the
polluted and control transects due to the influence of hydrocarbon in the soil. However,
other factors may have also induced these changes, for instance, Connell (2008)
summarised in his paper on diversity in tropical rainforests and coral reefs that
intermediate disturbances, equal chance and gradual change explain the differences in the
diversity of tropical rainforests. Furthermore, Huston (1979) asserted that under non-
equilibrium conditions, species diversity is altered by variations in the focus and intensity
of competitive interaction among communities. He, therefore, opined that intense
competition, particularly for nutrients and energy, would result in low diversity and vice

versa.

The results from this study suggests that the presence of hydrocarbon in the soil induced
nutrient loss and intensified competition among the surviving species of plants, induced
species loss and consequently decreased the diversity of vascular plants on polluted
transects. This interpretation is inferred from the recorded differences in the vascular
plant species diversity of polluted and control transects. However, despite the
conscientious effort to select locations with greater environmental similarity, the
possibility that other extraneous factors may have contributed to the observed phenomena
remains. Interestingly, the control transects showed higher richness indices (Menhinick's)
whereas the polluted transects had higher evenness values. Evenness values for polluted
transects ranged from zero to one, while on control it ranged from 0.5 to 0.97. Although
these values were not significantly different, the higher evenness of polluted transects
may be due to the general reduction in the population of individual plants occurring on
those transects. The results of the current research show that species evenness negatively
correlated with the number of individual plants in polluted transects (r = -0.37, p < 0.05).
For polluted transects, this observation supports the hypothesis that plants community

diversity stabilises functional properties such as equitability during ecological
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disturbances such as fires, or nutrient perturbation caused by oil pollution (McNaughton,
1977).

The relationship between the two components of diversity and their suitability for
measuring diversity has been a subject of interest among ecologists over the years. Some
studies show a positive correlation between species evenness and species richness
(Soininen, Passy and Hillebrand, 2012), thereby supporting the use of one or the other as
a diversity measure, others show the reverse or no relationship between the two (Stirling
and Wilsey, 2001; Gosselin, 2006; Jost, 2010; Zhang et al. 2012a). In the present
research, the two indices weakly related across all investigated transects, however, the
relationship between diversity, richness and evenness on the control transects was
significantly positive (r > 0.5, p < 0.05; n = 80). Hence, either richness or evenness index
could serve as a surrogate for diversity in unpolluted transects.

Among segments of polluted transects, evenness correlated negatively with species
richness and may have contributed more to the diversity index of these transects. While
evenness showed a consistent and directional response to a decreasing TPH gradient, the
richness indices appeared stable after certain levels of TPH. Also, along the polluted
transects, the pattern of species diversity seems to follow the TPH gradient in the soil.
Results from the data showed that both the Simpson's and Shannon's indices increased
significantly as the TPH levels in the soil decreased from one segment to another. Thus,
it is inferred that the presence of TPH created a microenvironment, which caused changes
in the diversity of vegetation along, transects. Cao and Zhang (1997) reported a similar
phenomenon in their study of tree species diversity of tropical rainforest vegetation in
Xishuangbanna, South-west China. They discovered that trees species diversity between
different samples of the same forest types varied depending on the microenvironment of

the forests.

Moreover, the scale of services derived from the ecosystem (which serves as the primary
means of livelihood for the local people), is dependent on its functional diversity and
productivity. In other words, the more functionally diverse an ecosystem is, the more
productive it will be in providing essential ecosystem services for the maintenance of
biogeochemical processes and human welfare. It then follows that changes in either
variable will bring about losses in the productivity and services derived from the

ecosystem. For instance, certain either economically important plant species that showed
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higher importance value index (V1) at control transects were seen to have disappeared
or significantly reduced in IVI on polluted transects. These species include Millettia
macrophylla, Phyllanthus amarus, Albizia zygia, Blighia sapida, Ipomoea involucrata,
Manihot esculenta, Carpolobia lutea, Setaria megaphylla, Newbouldia laevis and so on.
The IUCN has listed Millettia macrophylla in Red List of Threatened Species (IUCN,
2014) as vulnerable whereas Edu et al. (2015) reported Phyllanthus amarus as scarce in
a hydrocarbon-impacted site in Rivers State, Nigeria following their investigation. Loss
of these species, some of which are perennial plants in the rainforest ecological zone may
instigate the loss of essential ecosystem services they support or provide. Previous studies
have revealed a linear relationship between biodiversity and ecosystem service provisions
such as nutrient cycles, biomass production and transfer (Cardinale et al. 2012,
Flombaum and Sala, 2007; David U Hooper et al. 2012; Hector et al. 1999). A similar
relationship was observed in the current research as there was a decrease in the
chlorophyll estimates on polluted transects in comparison with control transects. The
chlorophyll content in plants plays a crucial role in photosynthesis, which in turn
determines primary productivity of biomass (McKendry, 2002; Beadle and Long, 1985).

Curiously and as reported in previous studies (Zak et al. 2003; Liu et al. 2008; Eisenhauer
et al. 2010), all the diversity indices (Shannon's, Simpson's, richness and evenness)
correlated positively with soil microbial population (in this case, total heterotrophic
bacteria) on the control transects. However, the reverse was observed on polluted
transects as results showed a strong negative correlation between the diversity indices
and THB population in the soil. Although this discrepancy may be due to the limited
scope of the microbial analysis performed in this study as most of the previous
investigations analysed various microbes including fungal, bacterial and protozoan
populations. Nevertheless, it is apparent that processes are occurring belowground which
substantially affected by the presence of petroleum hydrocarbon in the soil. Under ideal
conditions, soil microbial population will do well in a soil characterised by neutral pH,
balanced moisture and aeration, temperatures below 400C and adequate nutrients
(Nitrogen, Phosphorus, Potassium, Sulphur and so on) (Ng et al. 2012), but oil pollution
in the study area has adversely affected these parameters. Since soil microorganisms
largely control ecosystem functions (Eisenhauer et al. 2010; Steinauer et al. 2015), it
follows then that any factor that adversely affects microbial population will also affect

the services derivable from such ecosystems. The evidence from the present research
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supports these previous results and shows how soil microbial communities respond to the

anthropogenic activities that are changing the ecological landscape.

4.3 Summary

This chapter investigated the effect of oil pollution on the distribution and diversity of
vascular plant species in the Rivers State of Nigeria. Comparison of soil and vegetation
data from polluted and control (unpolluted) transects across 20 locations support the
working hypothesis that oil pollution adversely abundance and diversity of vascular plant
species. Specifically, evidence from the data suggests the rejection of the null hypothesis
of no difference in the vegetation characteristics and diversity of polluted and control
transects. The results revealed that soil and vegetation-related variables were significantly

different between polluted and control transects.

Additionally, results showed that soil parameters beneficial to vegetation growth were
also adversely affected by oil pollution in the study area. Results from the present
investigation also insinuate that oil pollution impact negatively on nature and diversity of
ecosystem services derived from the environment. The evidence of this effect is apparent
in the reduced productivity (measured as chlorophyll content) and diversity of polluted

transects.

Chapter 5 presents the results of incorporating satellite data in monitoring oil pollution
effects on vegetation. The chapter assessed the validity of the spectral variation
hypothesis by measuring changes in spectral metrics in response to soil TPH

concentration.
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5 Spectral Diversity Metrics for Detecting Effect
of Oil Pollution on Biodiversity

An article from this chapter is has been accepted for publication by Elsevier as a chapter
in a remote sensing book ‘Hyperspectral Remote Sensing’ and a second article was
published in MDPI Remote Sensing journal

This chapter introduces the integration of remotely sensed data with field data for
detecting oil pollution impact on biodiversity. The spectral variability hypothesis (SVH)
was tested to determine the suitability of spectral diversity metrics derived from Sentinel
2A data for biodiversity monitoring in oil-polluted locations. In answering RQ3, which
investigates the relationship between species diversity and spectral diversity, the
following hypotheses are tested.

a) There is a significant difference between vegetation spectra from polluted and

control transects.
b) There is a significant linear relationship between spectral diversity metrics and

field measured variables (thereby validating the SVH).

Validation of the spectral variation hypothesis is tackled from two perspectives
i.  The spectral variation associated with changes in soil properties due to oil
pollution
ii.  Spectral variation associated with changes in vegetation abundance, species
richness and diversity

Additionally, the chapter presents an overview of the SVH as well as specific methods
and datasets utilised in the analysis. A non-parametric multivariate regression analysis
performed in R studio (please see Chapter 3 Section 3.5.1.3b) was used to determine the
relationship between spectral diversity metrics and the listed variables (soil properties

and species richness and diversity),

5.1 Overview of the Spectral Variability Hypothesis

The Spectral Variability Hypothesis (SVH) proposed by Palmer et al. (2002) asserts that
the spatial heterogeneity of plant species positively correlates with spectral diversity of
remotely sensed images. Spectral diversity, on the one hand, is determined by the extent
of variation in reflectance values of corrected images. Plants, like other materials on the
earth surface, reflect radiation from the sun uniquely for different species. The shape of

the spectrum is dependent on the optical properties of the plants, which in turn are
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controlled by biophysical and biochemical factors such as cellular structure, leaf
anatomy, pigment concentrations and moisture content. According to Clevers et al.
(2002), control of leaf reflectance is by pigments (chlorophyll a and b, 3-carotene and so
on) in the visible (VIS); the cellular structure in the near-infrared (NIR) and moisture
content in the short-wave infrared (SWIR) regions of the electromagnetic spectrum.
Variations in these properties induced by plant response to environmental stress, such as

oil pollution manifest in the spectral signatures acquired by satellite sensors in orbit.

Plants response to environmental stress has been well-studied (Sewelam et al. 2014) as
well as the adverse effect of such stressors to plant productivity (Anjum, 2015).
Environmental stresses that affect plants are biotic and abiotic. Abiotic factors include
natural and human-made conditions such as air pollution, heavy metal contamination of
soil, oil spills, fire incidents and so on. All these variables also result in biodiversity loss
globally (Arellano et al. 2015; Pysek and Pysek, 1989).

Oil spills release hydrocarbons in the soil which displace oxygen and nutrients and
adversely affect plant growth and productivity (Scholten and Leendertse, 1991; Beaubien
et al. 2008; Noomen et al. 2012). Zhang et al. (2007) investigated the effect of lubricating
oil pollution on mangrove species in Hong Kong and reported that the hydrocarbons
induced the formation of excessive free radicals in plant cells. These radicals caused
oxidative stress by impairing biological processes that enhance growth and productivity
in plant seedlings. In their work at a leakage site in Central Bohemia, Czechoslovakia
(present-day Czech Republic) Pysek and Pysek (1989) noted a decrease in the growth

and number of individual plants present on contaminated sites.

Species diversity on the other hand is recognised as an ecosystem status indicator by
global organisations such as Group on Earth Observation (GEO BON), the World
Climate Research Programme (WRCP), the International Geosphere-Biosphere Program
(IGBP) and the |Committee on Earth Observation systems (CEOS) (Rocchini et al. 2016).
Past studies show links between species diversity and ecosystem productivity such that
loss of the former threatens the goods and services derived from the latter (Vihervaara et
al. 2014; Mace, Norris and Fitter, 2012; Norris, 2012; Chapin et al. 2000; Waide et al.
1999). Similarly, Pereira and Cooper (2006) observed that species diversity determines
ecosystem functioning and type of ecosystem services provided at the local, regional or

global scale. Remote sensing is used in biodiversity monitoring to estimate plant species

148



diversity using very high spectral and spatial resolution images that are analysed for
spectral diversity and habitat heterogeneity (Block et al. 2016; Heumann et al. 2014; Hall
etal. 2011; Saatchi et al. 2008 and so on). Hence, the SVH represents a valuable resource
that integrates spectral and field data for detecting various effects of oil pollution on the

ecosystem.

5.2 Sentinel 2A Data Analysis

This section presents the specific tools, procedures and dataset employed in investigating
the research questions addressed in this chapter.

5.2.1 Scale Matching Satellite Image and Study Area

Sentinel 2A image was spatially scaled to match the sampling units of the field survey.
Rocchini et al. (2010) suggested that appropriately scaling imagery resolution with
species data was essential for implementing the SVH. Similarly, Small (2004) and
Rocchini (2007) noted that matching the field sampling units with the spatial resolution
of an image will enhance the detection of sub-pixel variability and strengthen the
relationship between species diversity and spectral variability. Also, Turner et al. (2003)
and Chen and Henebry (2009) suggested that the calculation of spectral variability is

enhanced when several pixels cover the spatial dimension of sampling units.

The region of interest tool in ENVI 5.3 was used to create vector polygons of each
segment on investigated transects. Each segment of 20 m corresponded to 2 x 10 m pixels
of the Sentinel 2A image; however, a 2 x 2-pixel window was used in this analysis to
incorporate information from the surrounding area. Although the total area of the pixel
window was more than the sampling units (segments), this was not considered a
limitation since incorporating spectral information of landscape surrounding sampling
units improve the performance of models linking species to spectral diversity (Parviainen,
Luoto and Heikkinen, 2009; Rocchini et al. 2010). In total, 210 x 4 pixels (equivalent to
an area of 84,000 square meters) were used to test the spectral variability hypothesis in

this study.
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5.2.2 Spectral Diversity Metrics from Bands

The study utilised only eight bands out of the original 13 bands of the Sentinel-2A
imagery, these were bands 2 = blue; 3 = green; 4 =red; 5- 7, 8A = red edge and 8 = near
infrared (NIR). A vector layer of polygons representing segments of investigated
transects as overlaid on the pre-processed satellite imagery. For each segment measuring
20m in length, four pixels were identified to encompass it. The reflectance of individual

Sentinel-2A bands was then extracted from these four pixels.

Evaluating the reliability of the spectral variability hypothesis required each pixel
considered a distinct species; thus perceiving spectral diversity as the diversity of the
pixels in each spectral band computed from procedures involving the centre and spread
of the band reflectance values. Other metrics computed to reflect the spectral
heterogeneity of the Sentinel 2A data included the Simpson's and Shannon’s diversity
indices. Spectral diversity computation adopted different approaches from literature, and
the performance of various metrics for validating the SVH was compared.

Metrics computed from the mean, standard deviation, Shannon and Simpson’s indices of
the pixels followed the method outlined in Warren et al. (2014). Two additional metrics
defined as spectral heterogeneity (SH) and quartile-based coefficient of variation (QCV)
derived from the methods of Hall et al. (2012) and Heumann, Hackett and Monfils (2015)
respectively, emerged from the Sentinel 2A bands. SH is the mean difference between
the mean of each 2 x 2-pixel window overlaying a segment and the mean of all 2 x 2-
pixel windows on each transect (overlaying five segments in total). QCV is a non-
parametric approach that measures the dispersion of data around a centre (median value)
by taking the ratio of the interquartile range to the median of the data set (IQR/Median).

Further spectral metrics computed from the original 8 Sentinel-2A bands include those
obtained by principal component analysis (PCA) which is a mathematical algorithm that
transforms high dimensional and correlated data to lower dimension and uncorrelated
components. Data reduction involves identifying the direction (eigenvectors) of the most
variance in the data (Ringnér, 2008). The Sorenson’s similarity index (I1S) of band was
subtracted from one to determine spectral distances. These statistics were calculated

using reflectance values of eight bands from the four pixels overlaying the investigated
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segments. In total 56 band indices were derived from the eight Sentinel-2A bands utilised.

Table 5.1 presents a list of derived metrics.

Table 5.1: Spectral indices derived from the Sentinel -2A bands used in the study. Band
reflectance of four pixels overlaying each segment provided data for this analysis.

Band
2 (Blue)

3 (Green)

4 (Red)

5-7, 8A(Red Edge)

8 (NIR)

PC1
PC2
PC3

Statistic

Mean

Standard deviation

Spectral heterogeneity
Quiartile coefficient of
variation

Shannon’s Index

Simpson’s Index

Sorenson’s Similarity Index
Mean

Standard deviation

Spectral heterogeneity
Quiartile coefficient  of
variation

Shannon’s Index

Simpson’s Index

Sorenson’s Similarity Index
Mean

Standard deviation

Spectral heterogeneity
Quartile coefficient of
variation

Shannon’s Index

Simpson’s Index

Sorenson’s Similarity Index
Mean

Standard deviation
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5.2.3 Spectral Diversity Metrics from Vegetation Indices (VIs)

Vegetation indices useful for detecting the chlorophyll content, primary productivity and
vegetation stress in plants extracted from the original bands of the Sentinel-2A image are
listed in Table 5.2. Metrics derived from VIs include the mean, standard deviation,

Shannon's and Simpson's diversity indices, which were used in further analyses.

Table 5.2: Summary of selected vegetation indices used in evaluating the spectral variation
hypothesis (SVH).

Parameter Index Formula Reference
Chlorophyll ~ Canopy Chlorophyll Band8 — Band5 (Pu, Gong and Yu,
Content Index (CClI) Band8 + Band4 2008)
Normalised Difference Band8 — Band4 (Tucker, 1979; Rouse et
Vegetation Index Band8 + band4 al. 1974)
(NDVI)
Red Edge Position 2 Band5 — Band4 (le Maire, Frangois and
Band5 + Band4 Dufréne, 2004)
Primary Soil Adjusted Vegetation =~ Band8 — Band4 (Huete, 1988)
Productivity  Index (SAVI) Band8 + Band4 + L
+ 1)
Leaf Anthocyanin 1 1 (Gitelson, Gritz 1 and
Pigments Reflectance Index (ARI) Band3 Bands Merzlyak, 2003)
Structure Insensitive Band 8 — Band 1 (Pefiuelas and Filella,
Pigment Index (SIPI) Band 8 — Band 4 1998)

5.2.4 Statistical Analysis

The correlation of each spectral metric with each species diversity measure identified the
most sensitive metrics to oil pollution. Following the Spearman’s Rank Correlation (SRC)
of the data, metrics with large coefficient values (r > +0.2) were selected and further
tested for significance at alpha = 0.05 using the Student T-test. A p-value less than 0.05
implies that there is sufficient evidence to conclude that there is a significant linear
relationship between the spectral metric and the particular field-measured variable and
that the relationship is replicable. Selected spectral metrics were grouped according to
their sources (Sentinel 2A bands or vegetation indices) and regressed with field data to
establish the strength of any relationships amongst the variables using a non-parametric

regression model (NPM) described in section 3.5.1.3B.

The regression analysis was performed to investigate the possibility that the MSI detected
changes in vegetation reflectance caused by oil pollution. Firstly, the spectral diversity of

polluted transects should vary significantly with that of non-polluted transects. The
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rationale for this presumption is the documented effects of oil pollution on vegetation,
which includes the decrease in plant productivity and loss of vulnerable plant species,
thereby reducing spectral diversity. Secondly, species diversity indices measured from
the field were expected to regress linearly and positively with spectral diversity metrics
(particularly on control transects) in line with the spectral variability hypothesis. Finally,
selected spectral diversity metrics were predictors in models designed to test the SVH
and estimate vascular plant species diversity in the study area. Metrics were selected
based on the strength of their relationships with the diversity indices and the variance
inflation factor (VIF). The VIF adopted to correct for collinearity in the explanatory
variables was determined in R using the car package. Only metrics with VIF < 10 were
selected for the models. Prediction modelling involved a non-parametric multivariate
regression (NPMR) analysis using the np package in R. Two groups of spectral metrics
namely, band-based (those derived from Sentinel 2A bands) and index-based (those
derived from common vegetation indices) were used in models to estimate vascular plant
species diversity. The dataset was randomly subdivided into training and test (validation
data) using a ratio of 7:3 respectively. Thus, the training data contained 150 observations
and the test data contained 60 observations. Regression coefficients derived from the
calibration process were applied to the test data for validation. Assessment of model
performance was by comparing the adjusted coefficient of determination values
(Adj.R2), root mean square error (RMSE) and predicted square error (PSE) of both band-

based and index-based models.

The presence of spatial autocorrelation among data points was acknowledged in this
study and was minimized by the selection of alternate segments on investigated transects.
However, the spatial structure of the field data aggregated over transects and locations

may lead to model over fit. The models and parameters are listed in Table 5.3.

Table 5.3: Parameters of models used to estimate soil properties and other response variables
from spectral diversity metrics computed using A. sentinel 2A bands 2 to 8A and B. common
vegetation indices

Model ID Predictors Response Variables
1A Band-Based Selected spectral metrics 1. Soil properties
Metrics from Sentinel 2A bands 2. Species diversity
2 to 8A with -0.3 <r > 3. Vegetation abundance
0.3
1B. Index-Based Selected spectral metrics 1. Soil properties
Metrics from vegetation indices 2. Species diversity
with -0.3<r>0.3 3. Vegetation abundance
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Spectral distance (Sorenson's) computed for pairwise segments using their reflectance
values was plotted against species similarity to determine the presence of any relationship
(distance-decay) and assess the validity of the SVH for estimating beta diversity of
transects. Distance decay describes the inverse relationship between the similarity of a
pair of observations and their geographical distance. According to Nekola and White
(1999), distance decay of biological similarity is an essential element of ecological theory
and biodiversity conservation. The pattern of this relationship and rates of change are
indicators of the presence of a determinant factor such as an underlying environmental
gradient or plant dispersal habits and so on. Steinbauer et al. (2012) pointed out that the
rate at which species similarity decreases with geographical distance provides a measure
of species turnover and beta-diversity. In line with this argument, both the pattern and
rates of distance decay were expected to differ between polluted and control transects due
to the impact of oil pollution, and segments along polluted transects as the concentration

of TPH decreased from the spill epicentre.

Spectral distance decay rates were computed for each segment using Sentinel 2A bands
(2 to 8 and 8A\) reflectance values in a 2 by 2-pixel window. Due to the observed impact
of oil pollution on vegetation, the distance decay rates should be higher on polluted
transects than on control transects. This expectation followed Morlon et al. (2008)
assertion that the distance decay relationship is sensitive to environmental variability,
spatial distribution and autocorrelation. Hence, the difference in distance decay rates of
polluted and control transects is an indication of oil pollution impact on species
composition of transects. The distance decay relationship was estimated from quantile
regression models as described by Rocchini (2010). In Rocchini and Cade (2008), they
argued that quantile regression was a more competent tool for modelling distance decay
relationships for ecological data characterised by a large number of zeros. As the
quantiles (percentage points) are regressed, the coefficients (intercept and decay rate) are
more representative of the variability in the dataset. Cade and Noon (2003) attributed the
heteroscedasticity of ecological data to complex environmental interactions that
influence ecosystem components. Furthermore, quantile regression models are non-
parametric; thus, they are better suited to analyse the data set used for this study. Seven
quantiles (also known as the tau) ranging from 0.3 to 0.9 were used to subset the data for
the quantile regression analysis. The higher taus were selected because, at lower quantiles

(0.1 and 0.2), the relationship between the variables was fragile due to the high number
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of zero values. The distance and similarity computations were performed on a total (N)
of 210 segments, whereas the quantile regression involved the two semi-matrices derived
from the previous computation. Each semi-matrix of pair-wise distance (spectral bands)
or similarity (species composition) values of all 210 segments comprised (N*(N-1)/2) =
21945 elements.

Similarly, the community variability hypothesis (CVH) suggested by Schmidtlein and
Fassnacht (2017) was tested by correlating the fitted values from models predicting
species diversity using spectral distances and the original species diversity data. R? values
indicate the performance of spectral distance in estimating species diversity as suggested
by the community variability hypothesis. Quantile regression procedure was performed

in R using the quantreg package developed by Koenker et al. (2018).

5.3 Results

5.3.1 The Relationship between Spectral Diversity Metrics and
Soil Properties

Results of the correlation analysis between spectral metrics and field data revealed the
environmental gradient pervading in each microhabitat (polluted and control). On
polluted transects, band-based metrics significantly correlated with TPH and negatively
with Phosphorus, (r > 0.2, p < 0.05). Conversely, Phosphorus concentrations strongly
correlated with spectral diversity metrics on control transects, while TPH showed no
discernible relationship with the metrics. This result supports the earlier results discussed
in Chapter 4 Section 4.3.1.1 and illustrated in Figure 4.2 (joint distribution of soil
parameters) which showed a strong negative relationship between soil TPH and
Phosphorus. The inference here is that the debilitating effect of oil pollution such as
increased patchiness following vegetation removal controls spectral diversity on polluted
transects, whereas vegetation abundance and diversity enhanced by increased
concentrations of soil nutrients (phosphorus) influence spectral diversity on control

transects.

The regression analysis performed on the entire dataset was in answer to the second
research question (RQ2) which investigates how spectral metrics respond to oil pollution.
Since the preliminary results revealed strong relationships between spectral diversity
metrics and field data from polluted transects, this pattern of association was expected to
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be consistent across the entire study area not just on polluted transects, thus proving that
the spectral diversity metrics were sensitive to oil pollution. Results of the regression
analysis in Table 5.4 revealed that the most sensitive band metrics were those derived
from the green, red and near infra-red channels (Sentinel 2A bands 3, 4, and 8
respectively) while sensitive index metrics are the chlorophyll-related indices (NDV1 and
SAVI) and SIPI which is a stress indicator. Table 5.4 summarises the results of the
regression analysis of spectral diversity metrics and soil properties. The R?values ranged
from 0.59 to 0.99 except for the blue and ARI2 metrics. Overall, band-metrics showed
more sensitivity to soil TPH than index-metrics, which may be due to the strong influence

of the visible light spectrum (Red, Green and Blue) on plant photosynthetic processes.

Table 5.4: Results summary of regression of spectral diversity metrics on soil properties showing
the R? and RSE values. Explanatory variables were spectral metrics computed from individual
Sentinel 2A bands (Table 5.1) and selected vegetation indices listed in Table 5.2.

Spectral TPH P Pb TOM
metrics
from

R? RSE R? RSE R? RSE R? RSE
Blue 0.13 17318 0.16 7.19 0.08 28.15 0.31 2.62
Green 099 <0.01 0.12 7.32 0.07 28.45 0.42 2.45
Red 0.99 <0.01 0.23 6.88 0.15 27.14 03 4.01

RedEdgel 0.66 10781 0.2  6.99 0.13 27.45 088 1.1

Red Edge2 0.7 9915 0.11 7.38 0.08 28.34 0.18 2.82
Red Edge3 0.77 8777 0.13 7.29 0.15 2723 0.66 1.86
NIR 0.84 7408 0.19 7.08 0.12 277 052 222
Red Edge4 059 11319 0.12 7.35 011 27.74 041 242
PCof bands 0.9 5886 0.69 4.43 048 2154 034 254

CClI 0.65 11055 0.6 5 0.1 2936 0.75 1.39
NDVI 0.75 9614 0.21 6.85 01 295 023 237
REP2 0.64 11109 0.18 6.98 0.1 2935 0.78 1.27
SAVI 0.74 9598 0.21 6.85 0.1 2947 079 124
ARI2 0.1 17613 0.25 6.69 032 2567 08 12

SIPI 081 8119 0.38 6.09 043 2343 083 111

5.3.2 The Relationship between Spectral Metrics and Species
Diversity

Median values of band-based spectral metrics from polluted transects were higher than
those of the control transects. The exception were SH metrics and all metrics computed
from band 8 (NIR) reflectance with higher median values in control transects (Table5.5);

however, the differences were not significant. Due to the increased RGB reflectance

observed on polluted transects, the larger median values of polluted metrics were
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expected. Similarly, the decreased NIR reflectance of polluted transects may have
contributed to the reduced median values of polluted metrics in comparison to control
metrics.

Table 5.5: Median values of some spectral metrics computed from Sentinel 2A bands showed
higher values on polluted transects. The SH metrics and all metrics computed from band 8 (NIR)
reflectance (in bold) showed higher median values in control than in polluted transects although
the differences were not significant.

Bands  Mean Spectral Heterogeneity 1% Principal Component
Control Polluted Control Polluted Control Polluted

2 16625 16785  0.03 -0.78 -0.21 -0.04

3 1516 1529 -0.17 -0.54 0.37 0.42

4 13575 14025 -0.11 -1.52 -0.27 0.19

5 15435 1618 -0.39 -2.22 -0.13 0.28

6 22175 22295  -0.32 -2.11 0.33 0.36

7 24555 2462 0.31 -0.43 0.36 0.38

8 2205 2199 -0.18 -3.58 0.38 0.37

8A 2595 2598 -1.58 -2.76 443 445

Correlation analysis showed linear relationships between band-based spectral diversity
metrics and field measured vascular plant species diversity on both polluted transects and
non-polluted transects. However, while strong and negative relationship prevailed on
polluted transects; on control transects, they were mostly positive. This contradicted the
expected strong and positive relationship on control transects. The results of the
Spearman’s Rank Correlation analysis are illustrated in Figure 5.1. Plots were charted
based on the metric derivation method so as to identify the best performing metric. Each
dot represents the r-value of a band metric versus the indicated species index on the X-
axis. Dots in green are from control transects and those in red are from polluted transects.
Labels on X-axis are a combination of index (Sm = Simpson, Sh = Shannon, Me =
Menhinick’s and Ch = Chao-1) and transect group (Con = Control, Pol = Polluted). The
plots show that most spectral metrics correlated positively with indices on control

transects and negatively with indices on polluted transects. The strongest positive
relationships (r > 0.3) on control transects were from metrics based on the mean, median
and PC1 of bands whereas the strongest inverse relationships (r < -0.4) observed on
polluted transects were from metrics based on the spectral heterogeneity of bands.
Furthermore, the plots reveal that the best metrics were those computed from M, SD, PC1
and SH.
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Figure 5.1: Dot plot of correlation coefficient (r) values of band-based spectral metrics and species diversity indices. The plot titles indicate the method of metric derivation.
Each dot represents the r-value of a band metric versus the indicated species index on the X-axis. Dots in green are from control transects while those in red are from polluted
transects. The plots show that most spectral metrics correlated positively with indices on control transects and negatively with indices on polluted transects. Labels on X-axis
are a combination of index (Sm = Simpson, Sh = Shannon, Me = Menhinick’s and Ch = Chao-1) and transect group (Con = Control, Pol = Polluted)
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Results of the NPM regression analysis using derivatives of bands and indices reveal
strong relationships with the field measured diversity indices (R2 values ranged from
0.19 to 0.98). The most robust relationships were found on control transects and involved
metrics from both Sentinel 2A bands and vegetation indices. This strong relationship is
however, seen to depreciate across the study area when analysed with data from polluted
and control transects. This suggests the sensitivity of the spectral metrics to the presence
of soil TPH. Overall, the Simpson’s index was the most sensitive variable with R2 values
greater than 0.5 for both metrics sets except those derived from SIPI (R2 = 0.3). The
weakest relationships were between Chao-1 index and other spectral metrics (Figure 5.2).
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Figure 5.2: Boxplots of R-square values from regressing species diversity indices with spectral diversity
metrics computed from Sentinel 2A bands and vegetation indices. Band-based metrics are coloured blue
and Index-based metrics are in orange. R-square values are compared for band and index-based metrics as
well as among the study area, polluted transects and control transects. The plots show that stronger
relationships were present on control transects than on polluted transects which in turn influenced a general
weakening of this relationship across the study area. Overall, the Simpson’s index was the most sensitive
variable with R-square values greater than 0.5 for both metrics sets except those derived from SIPI (R-
square = 0.3).

The most robust relationships occurred between Simpson’s diversity index and metrics
derived from the PC of bands (R? = 0.91) across the study area, Blue band (R? = 0.89) on
polluted transects and SIPI (R? = 0.98) on control transects. In contrast, the weakest
relationships were observed between Chao-1 richness index and spectral metrics from
NDVI (R? = 0.05) across the study area, REP2 (R? = 0.07) on polluted transects and CCl

(R? = 0.07) on control transects. Spectral metrics derived from the PC of bands
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consistently exhibited a strong relationship with all the field diversity indices with R?
values well over 0.5 except for Chao-1 index. Both Shannon’s and Menhinick’s indices
associated strongly with the transformed band metrics (PC of bands) and chlorophyll-
based index (CCI) whereas Chao-1 richness index did not.

In terms of metrics performance, it appears that band-based metrics were more sensitive
to diversity indices than the index-based metrics across the study area. However, when
analysed separately, index-based metrics performed better on control transects whereas

band-based metrics were better on polluted transects. The boxplots in Figure 5.3 shows
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Figure 5.3: Boxplots of R? values illustrating the performance of metrics from individual bands
and vegetation indices on polluted and control transects and across the entire study area. The plots
show that the metrics were sensitive to the presence of TPH in the soil as strong relationships
observed on control transects were weakened across the study area. The x-axis band labels are B
= Blue, G = Green, R = Red, RE1 = Red Edge 1; RE2 = Red Edge 2; RE3 = Red Edge 3; NIR =
Near Infrared; RE4 = Red Edge 4; PCB = Principal Components of Bands.

that that the various spectral metrics performed better on control transects than on
polluted transects. It appears that the metrics derived from stress indicating VIs (ARI and

SIPI) were most sensitive to the presence of soil TPH.
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5.3.3 Distance Decay Relationship on Transects

The results of the distance decay modelling of the relationship between spectral distance
and species similarity on transects are summarised in Table 5.6. The spectral distance
was computed from Sorenson's index using the vegdist function of the R-package vegan.
Table 5.6: Quantile regression results of distance decay models of Sentinel 2A bands versus

vascular plants species similarity values on polluted and control transects.

Transects Quantiles Intercept Intercept Intercept Decay Decay Decay

(Taus 7) Cl(95%) CI(95%) Rate Rate Rate ClI
Lower Upper Cl (95%)
(95%)  Upper

Lower

Polluted 0.3 0.06 0.058 0.062 -0.08 -0.087 -0.073
N =16900 0.4 0.08 0.077 0.083 -0.13  -0.141  -0.119
DF=16898 0.5 0.11 0.106 0.114 -0.21  -0.224  -0.196
0.6 0.16 0.146 0.154 -0.31  -0.304 -0.276
0.7 0.22 0.186 0.194 -0.47 -0426  -0.394
0.8 0.27 0.254 0.266 -0.61 -0.600 -0.560
0.9 0.41 0.36 0.38 -0.99 -0.929 -0.851
Control 0.3 0.12 0.118 0.122 -0.1 -0.112  -0.088
N=6400 0.4 0.14 0.137 0.143 -0.14 -0.152 -0.128
DF =6398 0.5 0.16 0.157 0.163 -0.17  -0.183  -0.157
0.6 0.18 0.175 0.185 -0.22  -0.236  -0.204
0.7 0.22 0.210 0.230 -0.32  -0.349 -0.291
0.8 0.37 0.345 0.395 -0.77 -0.846 -0.694
0.9 0.58 0.560 0.600 -1.3 -1.378 -1.222

Species similarity inversely related to spectral distance on polluted and control transects;
however, contrary to expectations, the rate of distance decay was generally higher on
control transects than on polluted transects. At each tau (1), the intercept (Species
similarity when distance = 0) was higher for control transects than for polluted transect
while the rate of decay (decrease in species similarity by 1 unit increase in spectral
distance) varied at different t for each group of transects. For instance, at t = 0.5, 0.6 and
0.7, distance decay rates were higher on polluted transects whereas they were higher on
control transects at the rest of the quantiles (t = 0.3, 0.4, 0.5, 0.8 and 0.9). An analysis of
deviance results testing for differences in the regression estimates across quantiles
revealed significant differences (F = 543.1 and 219.66 respectively for polluted and
control transects, p < 0.05). Additionally, a test of the regression coefficients of transects
using the two sample T-test showed that decay rates on both polluted and control transects
were not significantly different (T-value = -0.31, DF = 10, p = 0.765). In like manner,
intercept values (species similarity when distance = 0) were not significantly different for
polluted and control transects (T-value = 1.04, DF = 10, p = 0.32).
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Maximum similarity values predicted for polluted transects at the 0.9 quantile was 0.37
while on control transects it was 0.58. Furthermore, the 95% confidence intervals show
that these values were significantly different. The quantile regression plots in Figure 5.4
reveal the pattern of the relationship between spectral distance and species similarity. The
scatterplots (Figure 5.4 Al and B1) clearly show that on polluted transects, several

segments had much lower compositional similarity than control transects
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Figure 5.4: Quantile regression plots of A: polluted and B: control transects. Al and B1 are
scatterplots of spectral distance versus species similarity using different regression models. Red
dashed line is computed from ordinary least square regression, solid green line from quantile
regression at tau = 0.5 (median) while the solid black lines are quantile regression at six different
taus (1= 0.3, 0.4, 0.6, 0.7, 0.8, 0.9). The points within the scatterplot represent pair-wise spectral
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distances and species similarity distances between 210 segments. Figures A2 and B2 are the
intercepts while A3 and B3 are the distance decay curves.

At spectral distance = 0 (intercept, Figures 5.4 A2 and B2), species similarity values were
much higher at all quantiles on control transects than on polluted transects, however, as
spectral distance increased, similarity values decreased. From the distance decay curves
(Figures 5.4 A3 and B3), it appears the rate of decay on polluted transects was relatively
constant for all quantiles, however on control transects, the rate of decay initially lower
than polluted transect suddenly increases after t = 0.7 (the steepness of the curve increases
significantly after T = 0.7). Low R? values obtained from correlating species distance and
predicted values from the spectral distance model did not agree with the community
variability hypothesis. However, the models appeared to perform better on control
transects (R? = 0.17 ) than on polluted transects (R? = 0.12).

5.3.4 Estimating Soil Properties using
Spectral Metrics

Soil properties including TPH, P, Pb and TOM were estimated from the spectral metrics
using non-parametric models. Two model types (Table 5.3) based on band metrics and
index metrics as predictors were used and compared for their accuracy. The selected
metrics regressed linearly with soil properties in both models; however, the index-based
metrics outperformed the band-based metrics in estimating soil properties. Furthermore,
TPH and phosphorus were better estimated than Lead and TOM. The R? values for the
test data were 0.35 and 0.31 respectively for TPH and phosphorus estimated using band
metrics whereas, R? values were 0.45 and 0.62 respectively for TPH and phosphorus
estimated using index metrics. Result of the regression analysis are summarised in table
5.7.
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Table 5.7: : Performance summary of models estimating soil properties using spectral
diversity metrics computed from Sentinel 2A bands and vegetation indices. The
combined dataset from polluted and control transects (N = 210) were employed in this
analysis. The dataset was subdivided into training (n = 150) and test (n = 60) data.
Explanatory variables (EV) for each model was a combination of all band-based or index-
based metrics which showed a strong correlation (r > £0.2) with the response variables.

Response Variable
LogwTPH

Phosphorus

Lead

TOM

Parameter
No. of EV
R? (Train)
R? (Test)
F

RMSE
PSE

No. of EV
R2 (Train)
RZ (Test)
F

RMSE
PSE

No. of EV
R2 (Train)
R? (Test)
F

RMSE
PSE

No. of EV
R? (Train)
R? (Test)
F

RMSE
PSE

Band Metrics
13

0.5
0.35
30.76*
0.79
0.62

9

0.49
0.31
26.18*
6.92
47.86
8

0.36
0.1
2.35ns
24.95
622.57
5

0.26
0.06
3.74ns
3.83
14.63

Index Metrics
22

0.8
0.45
47.09*
0.72
0.51
22
0.702
0.62
93.99*
5.04
25.4
21
0.54
0.11
7.19*
29.24
855.2
25
0.82
0.07
4.79*
3.79
14.38

The residual graphs in figure 5.5 demonstrate that the models for estimating Lead and

TOM were not good fits for the dataset despite the high R? values obtained from

calibrating the model with training data.
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Figure 5.5: Graphical plots of residuals from model validation using test data. Model parameters
are from the regression of spectral diversity metrics (A = band metrics and B = index metrics) on
soil properties using test data (n = 60). The residual plots from band-based models estimating
TPH, phosphorus and Lead meet the goodness-of-fit assumptions of linearity, randomness and
homoscedasticity. For the index-based models, only the TPH residual plot met the assumptions.
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5.3.5 Estimating Species Diversity Using Spectral Metrics

The SVH was tested using the spectral metrics that strongly correlated with the diversity
measures (r >+0.2) and a VIF < 10. The results in Table 5.8 show the R? values of training
data and adjusted R? values test data, RMSE and PSE of validation data sets for both
models.

Table 5.8: Performance summary of models estimating species richness and diversity
using spectral diversity metrics computed from Sentinel 2A bands and vegetation indices.
The combined dataset from polluted and control transects (N = 210) were employed in
this analysis. The dataset was subdivided into training (n = 150) and test (n = 60) data.
Explanatory variables (EV) for each model was a combination of all band-based or index-
based metrics which showed a strong correlation (r > +£0.2) with the response variables.

Response variable Parameter Band Index
Metrics Metrics
Simpson’s No of EV 9 11
R? (Train) 0.82 0.63
Adj. R? (Test) 0.49 0.32
F 54.84* 28.35*
RMSE 0.05 0.25
PSE 0.002 0.06
Shannon’s No of EV 8 6
R? (Train) 0.36 0.41
RZ (Test) 0.18 0.29
F 12.81* 22.82*
RMSE 0.68 0.63
PSE 0.47 0.4
Menhinick’s No of EV 7 6
R? (Train) 0.29 0.57
R? (Test) 0.19 0.31
F 14.26* 27.12*
RMSE 111 1.03
PSE 1.23 1.07
LogioChao-1 No of EV 5 10
R? (Train) 0.41 0.32
R? (Test) 0.02 0.07
F 1.04ns 4.13*
RMSE 0.45 0.42
PSE 0.2 0.18

The results demonstrate that both sets of metrics performed well during model calibration
with training data, but underperformed at model validation. For instance, among diversity
indices, Simpson’s index is the most predictable with higher R? values (0.82) obtained
from calibrating models with band-based metrics and R? = 0.63 obtained from model
calibration with index metrics. However, at validation, the adjusted R-square values were

less than 0.5 for both sets of metrics, band-based metrics (Adj.R? = 0.49) and index-based
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metrics (Adj.R? = 0.32). For this index, band-based metrics were better estimators.
Similar patterns were observed for Shannon’s and Menhinick’s indices with reduced
Adj.R? values, although, index-based metrics outperformed band-based metrics as
estimators of these indices. The least performing models were those that estimated the
Chao-1 index. Despite high R? values at calibration, the models did not perform well at
validation (results show no relationship among the variables). Graphical plots of
residuals from model validation using test data are shown in Figure 7. Model parameters
are from regression of spectral diversity metrics (A = band metrics and B = index metrics)

on species diversity indices using test data (n = 60).
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Figure 5.6: Graphical plots of residuals from model validation using test data. Model parameters
are from the regression of spectral diversity metrics (A = band metrics and B =
species diversity indices using test data (n = 60). The residual plots from both band and index-
based metrics meet the goodness-of-fit assumptions of linearity, randomness and

homoscedasticity except for abundance.
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5.4 Discussion

The concept of the spectral variability hypothesis as proposed by Palmer (2002) provides
ecologists with an essential tool for biodiversity monitoring and conservation in the Niger
Delta region, without the need for labour intensive and time-consuming field work
(Heumann, Hackett and Monfils, 2015). Understanding and modelling the relationship
between spectral diversity metrics and local species richness or diversity measures
provide decision makers with preliminary information on conservation priorities,
particularly in cases were indicator species co-occur with rare or threatened species
(cross-taxon surrogacy, (Rocchini, Hernandez-Stefanoni and He, 2015). Spectral
variation hypothesis has been used severally to estimate species diversity and distribution
in different landscapes and ecosystems. Hall et al. (2012) reported that the area of the site
might influence spectral variation of large sites; however, this phenomenon is not
expected to occur within similar sized sample sites, as is the case in this study. The
relationship between spectral variables and species diversity are usually weak with R?
values ranging from 0.2 to 0.6 (Hall et al. 2012), however the present study reveals that
a combination of various derivatives of spectral bands strongly associate with field data.
Rocchini, Hernandez-Stefanoni and He (2015) stated that R? values of up to 0.5 could be
considered valid to estimate species diversity from spectral variation, thus, providing an
integrated and efficient method for monitoring vascular plant species diversity at a
regional and global scale.

5.4.1 Spectral Diversity Metrics for Estimating TPH in the Soil

Environmental transformations have a significant effect on species diversity at both local
and large scales. In the Niger Delta, oil exploration activities including forest
fragmentation for pipelines, fire occurrence and flooding that occur following oil
pollution have a bearing on the diversity of vascular plant species of the region. Newbold
et al. (2015) and Paz-Kagan et al. (2017) reported that land use changes affected both
alpha and beta diversity at the regional scale because they alter the environment and

induce loss of biodiversity and ecosystem services.

The combination of the metrics to estimate soil properties was successful for TPH and
phosphorus. A clear pattern of decreasing spectral diversity with increasing TPH

concentrations signifies that oil pollution reduced species diversity, which in turn
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decreased the spectral diversity of the location. This pattern was most evident for metrics
derived from the green and red bands as well as from chlorophyll related indices. The
sensitivity of these metrics to the presence of soil TPH is attributable to the known
deleterious effects of oil pollution on vegetation. Studies investigating this phenomenon
(Ogbo, Zibigha and Odogu, 2009; Chima and Vure, 2014; Njoku, Akinola and Oboh,
2008; Wang, Zhu and Tam, 2014a; Naidoo and Naidoo, 2018) reported that hydrocarbons
in the soil hinder uptake of plant nutrients, damage plant cellular structures, inhibit
photosynthesis and transpiration as well as cause plant mortality (please see Chapter 4

Section 4.4.3 for discussion on the effects of oil pollution on vegetation).

Furthermore, Zhu et al. (2013); Noomen et al. (2009); Li, Ustin and Lay (2005)
documented that oil pollution induced stress in vegetation and changes in leaf pigments
and structure. Vegetation stress is characterised by decreased absorption of solar radiation
at chlorophyll absorption maxima (around 600 nm) and increased absorption of
anthocyanins (AnC) and carotenoids (CaR). Leaf chlorophyll content measured in the
field using the SPAD-502 chlorophyll meter showed significant differences between
polluted and control vegetation. Mean chlorophyll concentration was 39.01 and 55.19
respectively on polluted and control transects. Merzlyak et al. (2008) reported increased
ANC occurrence in vegetation subjected to stress. These changes affect plant growth and
health; quality and quantity of photosynthetic pigments, mainly chlorophyll; thickness of
leaves and overall plant productivity, thereby increasing the variability of reflectance in
the green channel (Warren et al. 2014), as well as in the red channel since maximum
chlorophyll absorption occurs at the red band (Noomen, Van der Meer and Skidmore,
2005). Spectral diversity metrics from chlorophyll related indices were also seen to
associate strongly with soil TPH concentration. Adamu, Tansey and Ogutu (2018)
affirmed that these indices were sensitive to changes in leaf chlorophyll content and
internal structures and were able to discriminate polluted sites from non-polluted sites.
The superior predictive performance of index-based metrics may be attributed to the
enhanced spectral information vegetation indices provide. Vegetation indices are
designed to maximise information from green vegetation while suppressing reflectance
from other sources such soil and water, unlike band reflectance that consist of optical
properties of vegetation and surrounding material (Zhu et al. 2013). The results of the

present study imply that TPH presence in the soil can be detected and the approximate
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concentration estimated from spectral metrics without incurring additional costs of soil

sample collection and chemical analysis.

The relationship observed between the spectral distance, and species similarity provides
evidence of the impact of oil pollution on vegetation in the Niger Delta region of Nigeria.
Species similarity was much lower on polluted transects than on control transects, thus
fulfilling the competitive exclusion principle of niche theory which states that two species
with identical niches cannot coexist in the same habitat (Abrams, 1983). This
phenomenon is particularly apparent at spill epicentres (SS0) of different locations where
very few species remained; hence, most of the pair-wise similarity values were zero for
this segment. The implication is that even for species resilient to the direct effects of oil
pollution such as Perotis indica (Perindh), which can tolerate TPH concentrations of up
to 60,000 mg/kg of soil (please see Chapter 4 Section 4.3.2.5), increased competition for
diminished resources presents a threat to their existence. The increased TPH
concentration on polluted transects appeared to have triggered some form of resource
partitioning among extant species as their importance value index (IVI, a measure of
species frequency and abundance) on polluted and control transects were not significantly
different. The scatterplot of VI values (Figure 4.11) revealed that the most valuable
species were almost equally important on both transects. Resource partitioning is an
ecological concept that refers to the differential use of limited resources by similar species
(Griffin and Silliman, 2011). Vascular plant species growing on polluted transects may
have differed in their nutrient uptake, rooting depth or light use, for instance, Kahmen et

al. (2006) reported that plants could differ in the forms of nitrogen they prefer.

Regression of species similarity at upper quantiles of spectral distances demonstrates the
presence of an environmental factor that influenced species composition and richness on
different segments. Unlike at lower quantiles where the regression line is nearly flat,
suggesting a lack of relationship, the gradient of the regression line at upper quantiles
(0.7 to 0.9) was steeper (Figure 5.4 Al) and depicted the expected inverse relationship
between spectral distance and species similarity (distance decay). Although it is difficult
to identify the environment variables influencing species composition in the study area
from spectral distances, the input of field data of soil TPH concentrations support the
conclusion that oil pollution is one of the most influencing environmental factors. This

conclusion is supported by higher decay rates of species similarity observed on polluted
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transects compared to control transects. Tovo and Favretti (2018) recently suggested that

steeper curves symbolise the presence of rare species in sampled sites

5.4.2 Spectral Diversity Metrics for Estimating Species
Richness and Diversity

Spectral diversity metrics correlated inversely with field measured vascular plant species
diversity on polluted transects and positively on control transects. The coefficient of
variation (CV) for metrics of polluted transects were larger than CV of metrics of control
transects, and suggest that polluted pixels were more diverse than control pixels, but it is
also a reflection of the higher beta diversity of polluted transects as observed earlier in
Chapter 4, Section 4.3.3.3. In this case, the spectral metrics do not depict vascular plant
species diversity but rather the heterogeneity of investigated transects. The reason for this
is not far-fetched since oil pollution accentuated habitat heterogeneity by creating patches
where TPH susceptible species used to grow. Additionally, the weak positive correlation
between the individual spectral metrics and species diversity indices of control transects
is ascribable to the homogeneity of segments of control transects in terms of species
composition and distribution patterns. Since the SVH relies on habitat heterogeneity, it
follows that its application is limited in densely vegetated forests with little or no

disturbance.

Despite the observed aberrations, a combination of spectral diversity metrics successfully
estimated the species richness and diversity of investigated locations with high R? values
obtained between the observed and predicted index values. The result was consistent with
previous studies testing the SVH such as Warren et al. (2014); Hall et al. (2012);
Rocchini, Hernandez-Stefanoni and He (2015); Schmidtlein and Fassnacht (2017). As
observed with soil TPH estimation, index-based metrics outperformed band-based
metrics in estimating species richness and diversity indices of investigated transects. The
stronger association between spectral metrics and species diversity indices was more
apparent on polluted transects than on control transects. Perhaps, the above emanates
from the increased heterogeneity of polluted transects induced by oil pollution and
evident in the higher beta diversity values obtained for polluted locations. However,
variability in the species composition of the different locations (beta diversity) did not
provide a better association with spectral diversity than the alpha diversity measures of

segments. Hence, the community variability hypothesis (CVH) suggested by Schmidtlein
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and Fassnacht (2017) involving the use of beta diversity values instead of species count

did not improve the performance of the SVH.

The use of spectral distance as a metric to determine beta-diversity of transects yielded
exciting results. Several studies reviewed in Rocchini, Herndndez-Stefanoni and He
(2015) demonstrated that spectral distances are more reliable for summarising the beta-
diversity of sites as it takes into account the habitat heterogeneity. Despite the low R?
values between the two variables (spectral distance and beta-diversity), the results
revealed that the spectral distance better explained species composition on control
transects than on polluted transects. The reason may be ascribable to the issue of scale,
as noted by Palmer et al. (2002), the relationship between spectral variation and species
richness is scale dependent. Regardless of spatial scale, distance decay plots of species
dissimilarity wversus spectral distance showed that beta-diversity increased with
increasing spectral distance at all scales (control, polluted and study area). This result is

consistent with other studies reported in Rocchini, Hernandez-Stefanoni and He (2015).

5.5 Summary

This chapter investigated the spectral variation hypothesis t's potential for detecting oil
pollution effects on vegetation characteristics species diversity using spectral diversity
metrics derived satellite data. Metrics computed using Sentinel 2A bands and vegetation
indices proved sensitive to changes in soil properties and vegetation characteristics
following oil pollution. The strength of the relationship resulted in successfully
estimating species richness and diversity values of investigated transects. Also, spectral
metrics displayed high potential for estimating the concentration of total petroleum
hydrocarbon (TPH) in the soil. Chapter 6 will focus the investigation on a subset of the
study area and utilises a hyperspectral data set to develop models for predicting species

diversity on polluted transects.
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6 Species Diversity Models for Monitoring
Biodiversity

(Two articles from Chapter 6 were published in a remote sensing journal ‘Remote
Sensing Special Issue’ and presented at a remote sensing conference in /GARSS 2018".)

The third research questions (RQ3) addressed in chapter 5 identified the nature of
relationships among oil pollution, species diversity and vegetation reflectance. Having
established in Chapter 4 the effect of oil pollution on vegetation abundance and diversity,
this chapter investigates how strongly and in which wavelengths the changes in
vegetation parameters and species composition influenced reflectance from the polluted
transects. Accomplishing this task required spectral metrics created from Hyperion
wavelengths, which were used to answer research questions RQ3 and RQ4, (section
2.10.1)

The Hyperion image analysed in this chapter helped to determine the impact of oil
pollution on vegetation, species richness and diversity. Spectral signatures of vegetation
from polluted and control transects revealed the Hyperion wavelengths that responded to
the presence of TPH in the soil. These sensitive wavelengths produced indices that
measured vegetation vigour of polluted and control transects. Moreover, the application
of the continuum removal procedure on spectra of polluted and control vegetation
generated the band depths of chlorophyll absorption features. Background soil effect on
vegetation reflectance was removed by computing the red edge position using different
methods and extracting the REP values for each segment on polluted and control
transects. Regression models determined the capability of derived spectral metrics to
discriminate polluted from unpolluted sites and to predict various diversity indices of
vegetation on investigated transects. The statistical procedures performed on datasets are
discussed in Chapter 3 Section 3.5.1.

6.1 Hyperspectral Remote Sensing of Biodiversity

The application of remote sensing technology in biodiversity monitoring has been an area
of considerable research in the recent past, for instance (Johnson, Hay and Rogers, 1998;
Nagendra, 2001; Carlson et al. 2007). Several studies have combined remote sensing and
field data to determine the spatial and temporal distributions of biodiversity (Wilfong,
Gorchov and Henry, 2009; Foody and Cutler, 2003). Motivated by the need to devise a
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standardised methodology for monitoring biodiversity at regional and global scales and
to overcome some limitations of conventional monitoring methods such as in situ field
surveys; researchers have developed integrated methods using remote sensing and field
data (Yoccoz, Nichols and Boulinier, 2001; Kerr and Ostrovsky, 2003; Muchoney, 2008;
Lindenmayer and Likens, 2010; Han et al. 2014). The Group on Earth Observations
Biodiversity Observation Network (GEO BON) have spearheaded these efforts leading

to the development of the essential biodiversity variables (EBVS).

Although there are inherent challenges associated with integrated schemes, studies
(Clevers et al. 2002; Andrew, Wulder and Nelson, 2014; Guyon et al. 2011), confirm that
they provide useful information on the response of biodiversity to natural and
anthropogenic changes. While some studies investigated the link between spectral
diversity and species diversity through the biochemical diversity of vegetation (Asner et
al. 2008), others used land cover classifications derived from multispectral sensors such
as Landsat to estimate the species diversity of the area of interest (Gould, 2000). Critics
of the land cover approach describe it as inadequate for collecting fine-scale detail of
vegetation structure and chemistry due to the coarse spectral and spatial resolution
(Carlson et al. 2007; Gould, 2000) of multispectral sensors.

Generally, mapping of species diversity estimates are empirically supported by defining
the relationship between variation in spectral signal and variation in species or habitat
diversity (Rocchini, Hernandez-Stefanoni and He, 2015; Aneece, Epstein and Lerdau,
2017; Foody and Ajay Mathur, 2004; Wilfong, Gorchov and Henry, 2009) and in some
cases, variations in pigment concentrations (Féret and Asner, 2014; Asner and Martin,
2011; Asner et al. 2009). However, this procedure may not be enough if the Aichi 2020
targets are achievable. There is a need to develop methodologies that estimate species
diversity against the backdrop of environmental pressures such as oil pollution. Such
methods will not only reveal the state of the ecosystem following impact (for instance,

biodiversity change) but also reveal ecosystem resilience to particular external pressure.

Hyperspectral data not only measure vegetation biochemical and biophysical properties
including water content, leaf pigments, nitrogen, cellulose and lignin concentrations
(Guyon et al. 2011; Zhang, 2010; Curran, 1989; Jacquemoud et al. 1996), but also how
these parameters vary across the ecosystem (Carlson et al. 2007; Asner et al. 2009). The

Hyperion sensor onboard NASA's Earth Observation-1 satellite is an example of a
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hyperspectral satellite mission (Ortenberg, 2012). It was the first satellite hyperspectral
sensor launched onboard the Earth Orbiter-1 platform by the United States National
Aeronautics and Space Administration (NASA) New Millennium Program (NMP).

The Hyperion acquire 16 bits, 30 meters spatially resolved data in 220 discrete narrow-
bands between the spectral range of 400 and 2500 nm. The sensor capture about 75 times
more data than multispectral sensors from a similar area, hence providing a large volume
of data that need advanced analytical skills and techniques (Kuenzer et al. 2014). As oil
pollution induces stress in vegetation, invokes changes in leaf pigments and structure
(Wang, Zhu and Tam, 2014b; Noomen and Skidmore, 2009; Li, Ustin and Lay, 2005;
Baker, 1970); these changes affect the spectral pattern of reflectance from different plant
species. Hyperion data is reliable for detecting this subtle variation in reflectance.
Arellano et al. (2015) used Hyperion data to map vegetation in the Amazon impacted by
oil pollution. Other studies utilised Hyperion imagery for classification of
vegetation/forests types and landscape (Yang et al. 2016; Deék et al. 2017; Friedel et al.
2018). Although the Hyperion sensor is decommissioned, other space-borne imaging
spectrometers such as the Hyperspectral Environment and Resource Observer (HERO)
and Environmental Mapping and Analysis Program (EnMAP) will provide needed data

for similar applications.

Investigating the effect of oil pollution on vegetation using Hyperion data followed two
strategies. The first strategy was the identification of wavelengths sensitive to TPH
concentration in the soil and second was the comparison of reflectance at these
wavelengths for significant differences between polluted and control transects.
Sensitivity analysis differentiated between plant stress caused by TPH concentration in
the soil and other factors while also correcting for irradiance, leaf orientation, irradiance
angle and shading (Carter, 1993). Due to the strong association between polluted and
control transects as shown in Chapter 4 section 4.2.2.1, and the congruity of
geomorphological and ecological processes on both transects (Abam, 2001; Ugochukwu
and Ertel, 2008; Adegbehin and Nwaigbo, 1990; Osuji, Adesiyan and Obute, 2004); any
significant reflectance difference between the polluted and control transects is
attributable to soil TPH.
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6.2 Hyperion Data Analysis

This section presents the specific tools, procedures and dataset employed in investigating

the research questions addressed in this chapter.

6.2.1 Narrowband Vegetation Indices (NBVI1s)
Vegetation indices derived from the spectral reflectance of plants are discussed in
Chapter 2 Section 2.8, but this chapter involved narrowband vegetation indices (NBVISs)
derived from Hyperion data. Several studies applied NBVIs to determine the structure,
biochemical, biophysical and physiological or stress status of vegetation in various
habitats (Pu, Bell and English, 2015; Arellano et al. 2015; Galvao et al. 2009; Hestir et
al. 2008; Vaiphasa et al. 2007). The main parameters measured by NBVIs include
a. Chlorophyll Content: - used to monitor changes in green biomass, chlorophyll
content and leaf structure. High values indicate increased chlorophyll content,
green biomass and vegetation vigour and
b. Primary Productivity: measure changes in the photosynthetic light use efficiency
of plants. High values indicate reduced light use efficiency, hence reduced

productivity.

NBVIs overcome the saturation problem associated with broadband vegetation indices
such as NDVI (Mutanga and Skidmore, 2004). The NBVIs and NDV1 evaluated in this
paper are listed in Table 6.1. The indices were computed and index values extracted for
each segment in polluted and control transects.

Table 6.1: Summary of selected vegetation indices used to investigate the impact of oil pollution
on biodiversity.

Index Formula Reference
Red-Edge NDVI (RENDV|) (R750-R7o5)/(R75o+R705) (Gitelson and
Merzlyak, 1996)
Modified Red-Edge NDVI (MRENDVI) (R7s0-R70s/(R7s0+R705-  (Datt, 1999)
2*Russ)
Modified Red-Edge Simple Ratio Index (R7so-Rass)(R70stRass) (Sims and
(MRESRI) Gamon, 2002)
VVogelmann Red Edge Index 1 (VREI1) R740/R720 (Vogelmann,
Rock and Moss,
1993)
NDVI NIR — Red/NIR + Red (Pearson, R. L.
and Miller, 1972)
Photochemical Reflectance Index (PRI) (Rsa1 — (Gamon, Serrano
R570)/(R531+R570) and SUFfUS, 1997)
Structure Insensitive Pigment Index (SIPI) (Rsoo — (Pefiuelas, Filella
Raas)/(Reoo+Raas) and Gamon,
1995)
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6.2.2 Derivation of TPH-Induced Stress-Sensitive Wavelengths

Sensitivity analysis is a mathematical procedure, which determines how changes in levels
of an independent variable affect changes in levels of a response variable (Alam et al.
2016). The particular wavelength of the response variable (vegetation reflectance, in this
study) showing the most substantial relative change due to changes in levels of the
independent variable (soil TPH) is considered the most sensitive wavelength (Cacuci,
lonescu-Bujor and Navon, 2005). According to Alam et al. (2016), this procedure is
necessary to evaluate the influence of variables and rank their significance based on their
influence. Sensitivity analysis for both polluted and control vegetation assumed that
environmental and edaphic conditions are homogenous and that polluted vegetation

would be more stressed than control vegetation due to the influence of TPH in the soil.

Vegetation response to soil TPH, expected to influence spectral reflectance formed the
basis for identifying sensitive wavelengths (Jinru Xue and Baofeng Su, 2017). The
sensitivity of vegetation reflectance spectrum to soil TPH was also necessary to
differentiate between the plant stress caused by TPH concentration in the soil and other
edaphic factors while also correcting for irradiance, leaf orientation, irradiance angle and
shading (Carter, 1994).

Since vegetation reflectance at the visible and near infrared (VNIR) channels generally
increases with plant stress (Li, Ustin and Lay, 2005; Mishra et al. 2012), sensitivity bands
to TPH-induced stress in vegetation for VNIR Hyperion wavelengths was computed by
firstly subtracting the reflectance of control vegetation (non-stressed) from that of
polluted (stressed vegetation). The resulting difference was normalised by further
dividing by the reflectance of the non-stressed vegetation to establish the sensitivity of
each wavelength to soil TPH (Carter, 1994). The formulae for computing the reflectance

difference and sensitivity are as follows:
Ra=Ru—Rn, (10)
Rs = (Ru— Rn)/Rn, (11)

Where

Rn is reflectance of non-stressed vegetation
Ru is reflectance of stressed vegetation

Ra is reflectance difference

Rs is reflectance sensitivity.
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Following the sensitivity analysis, the VNIR Hyperion wavelengths were ranked based
on their sensitivity to soil TPH. The most sensitive wavelengths ranked at the top of the
order were those with the highest sensitivity values and high reflectance difference
values, while the least sensitive bands with sensitivity values closer to zero ranked at the
bottom. The five most sensitive and five least sensitive wavelengths were selected and
used in creating the normalised difference vegetation vigour index (NDVVI). These
wavelengths were selected and combined to create an index with maximum sensitivity to
vegetation response to soil TPH because an index performance is improved when it is
created from created sensitive and insensitive wavelengths (Eigemeier et al. 2012).
Besides, vegetation sensitivity to soil TPH appeared to be limited to specific wavelengths
in the blue, red and NIR channels; hence, the NDVVI variants created from these
channels investigated the full range of oil pollution impact on vegetation.

6.2.3 The Normalised Difference Vegetation Vigour Index
(NDVVI)

Vegetation vigour defined as active, healthy, well-balanced and robust growth of plants
(Merriam-Webster Dictionary, 2017) is an essential environmental quality index (Melillo
et al. 1993). Enhanced growth, extent as well as increased productivity characterise
vigorous vegetation (Reynolds et al. 2016). Several studies on vegetation link the index
to climate change (Melillo et al. 1993); soil erosion (Vrieling, 2006); and biological
conservation (Lindenmayer, Margules and Botkin, 2000). Some organisations such as
(the United States Environment Protection Agency, (USEPA), 2012; OECD, 2006)
recommend the use of vegetation vigour index in tests to evaluate the effect of chemical

substances such as pesticides on the growth of various plant species.

In this study, vegetation vigour is a touchstone of vegetation productivity and biomass
production in line with previous publications such as (Cardinale et al. 2012; David U
Hooper et al. 2012; Cardinale et al. 2011; Vihervaara et al. 2014; Mace, Norris and Fitter,
2012; Norris, 2012; Waide et al. 1999; Chapin et al. 2000; Xu et al. 2012; Pearlman et
al. 2001; Cadotte, Cardinale and Oakley, 2008; Balvanera et al. 2006; Tilman, 1996;
Naeem et al. 1994; Hector et al. 1999), which revealed strong relationship between these
parameters and vascular plant species diversity. Tillman et al. (1996) as well as (Naeem

et al. 1994; Hector et al. 1999; Hooper et al. 2005), found a positive relationship between

179



plant species diversity and plant productivity (measured as above ground biomass) which

they attributed to several factors including the complementarity of resource use.

More recently, determination of vegetation vigour has been from remotely sensed images
using proxy vegetation indices such as the normalised difference vegetation index
(NDVI) and net primary productivity (NPP) (Xu et al. 2012; Hector, 1998; Maselli, 2004;
Salinas-Zavala, Douglas and Diaz, 2002). Other studies have used vegetation cover as an
indicator of vegetation vigour and established a positive linear relationship between both
variables (Karthikeyan, Shashikkumar and Ramanamurthy, 2010; Munyati and
Ratshibvumo, 2011; Wiesmair, Otte and Waldhardt, 2017). With advancement in earth
observation technology in the way of increasing spectral and spatial resolutions,
researchers have exploited these relationships with concerted effort to identify individual
species and estimate species diversity of a given area using spectral metrics derived from
satellite imagery(Nagendra, 2001; Wulder, 1998; Rocchini et al. 2016; Boyd and Danson,
2005; Warren et al. 2014; Galidaki and Gitas, 2015; Lucas et al. 2015).

In this section, a new vegetation vigour index was created to measure precisely the
response of vegetation to the presence of TPH in the soil, and compare how the response
differs on polluted and control transects. The index referred to as the normalised
difference vegetation vigour index (NDVVI) computed for each segment by normalising
reflectance difference at the least and most sensitive Hyperion wavelengths used the

formula

NDVVI = (Ri — Rj) / (Ri + Rj), (12)

Where
Ri = reflectance at the least sensitive wavelength
Rj = reflectance at the most sensitive wavelength

The most sensitive wavelengths were those that exhibited a large difference in reflectance
between polluted and control transects while the least sensitive wavelengths were those
whose reflectance values hardly changed in the presence of TPH. Wavelengths of the
NIR channel showed the least sensitivity to TPH consistent with previous studies, which
revealed that average NIR reflectance, did not vary much between healthy leaves and
stressed leaves. (Carter and Miller, 1994; Lichtenthaler, 1996). Figure 6.2A shows
smaller difference between NIR reflectance of polluted and control transects compared
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to the reflectance at the visible range.With near constant reflectance at these NIR
wavelengths, the index relies on reflectance at the most sensitive wavelengths, which
occurred in the blue and red channels. Thus, NDVVI value is zero when reflectance at
either the red or the blue channel is high and 1 when reflectance at these channels is low.
The inclusion of the least sensitive wavelengths in creating the NDVVI corrects for
reflectance from non-vegetated areas (such as bare soils and buildings, which show high
reflectance at the NIR region). Eigemeier (2012) stated that maximising the performance
of a vegetation index requires the inclusion in the algorithm, sensitive and insensitive
bands to the monitored variable. Six NDVVI variants were created combining the five
most sensitive and least sensitive Hyperion wavelengths. These were NDVVlg14437,
NDVVlg24,427, NDVVlga4,447, NDVV 752,630, NDVV 1773 641, and NDVVlg44,630.

6.2.4 Continuum Removal and Band Depth Analysis

The depth of the wavelengths where radiance absorption by chlorophyll is maximal was
using the continuum removal procedure. Continuum removal involves the normalisation
of spectra by applying a convex hull made up of line segments over the top of the
spectrum, which connect the local maxima in the spectrum portion of interest (Kokaly
and Clark, 1999; Mutanga, Skidmore and Prins, 2004). The reflectance at wavelengths of
selected absorption features was divided by the reflectance value of the convex hull at
that wavelength to give a unit-less absorption value for chlorophyll ranging from 0
(complete absorption) to 1 (no absorption) (Clark and Roush, 1984; Mutanga, Skidmore
and Prins, 2004). Removing the continuum from original spectra enhances the detection
of subtle spectral shifts, eliminate soil background and sloping effects (topography),
minimises the influence of atmospheric and water absorptions, and provide more precise
information on the spectral intensity and band depth (Mutanga and Skidmore, 2004; Yan
et al. 2010). Several authors have used these absorption features to retrieve plant
biochemical and biophysical parameters including chlorophyll, lignin, nitrogen content
(Curran, Dungan and Peterson, 2001; Kokaly et al. 2003; Mutanga, Skidmore and Prins,
2004).

Continuum removal was used in this study primarily to determine the changes that
occurred in the chlorophyll absorption features of vegetation on investigated transects.
Since oil pollution induces stress in vegetation (Wang, Zhu and Tam, 2014b; Noomen
and Skidmore, 2009; Li, Ustin and Lay, 2005; Baker, 1970), it is expected that changes
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in reflectance will occur in vegetation growing on impacted sites. Carter (1993) and
Lichtenhaler (1996) reported increased reflectance in chlorophyll and water absorption
regions of the spectrum in stressed vegetation. Therefore, an in-depth analysis of the
spectra at these absorption wavelengths is necessary to highlight the impact of oil
pollution. Although several parameters such as band depth, band position, the full width
of the absorption at half the band depth (FWHM) are derivable from the continuum
removal process, only the band depth was considered relevant in the present study.

Chlorophyll absorption is known to occur mainly at 430 nm and 460 nm in the blue region
as well as 640 nm and 660 nm in the red region of visible spectrum. Selection of the edges
of these absorption features for the continuum removal procedure captured the range of
spectral characteristics of the vegetation reflectance. Hence, all the Hyperion
wavelengths between 400 nm to 550 nm and between 550 nm to 750 nm were subjected
to the procedure performed in ENVI 5.3 and transferred to MS Excel for further
computations. The band depth of the absorption features was firstly calculated by
subtracting the continuum removed reflectance (R’) value from 1 and then normalised
following the methods of Kokaly and Clark (1999). Normalising the band depths was
used to minimise the influence of non-foliar factors such as atmospheric absorption on
the reflectance. The formula for calculating the band depth (D) and normalised band

depth (Dnorm) are as follows
D=1-R' (13)

Dnorm = D/Dmax (14)

Where:

R’ is the continuum removed reflectance value

Dmax IS the maximum band depth for the absorption feature.
Dnorm is normalised reflectance.

6.2.5 The Red Edge Position (REP) of Reflectance Spectra

Red-edge position (REP) index derived from the reflectance spectra of each segment on
both the polluted and control transects was developed to overcome the challenges
associated with the normalised difference vegetation index (NDV1) which saturates easily
in dense vegetation (Gitelson et al. 2002; Clevers et al. 2002). The red edge is a slope of
the abrupt transition between the red and near infrared (NIR) wavelengths of a vegetation
spectrum. The slope which occupies a range of wavelengths usually between 670 nm and
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780nm (Kanke et al. 2012) is subjected to some mathematical manipulations to derive
the red edge position (REP). Several methods are used to determine REP, however, in
this study, the linear interpolation method as defined by (Clevers et al. 2002; Clevers and
Buker, 1991) and the maximum first derivative procedure (Savitzky and Golay, 1964)
were utilised. Previous researchers successfully detected REP in vegetation spectra (For
instance, Chen, Elvidge and Jansen, 1993; Jong and Meer, 2006; Shafr, Salleh and
Ghiyamat, 2006), by applying these procedures. However, Gholizadeh et al. (2016)
assessed various REP extraction techniques for estimating chlorophyll and LAI (leaf area
index) using data from different sensors. Their results confirmed the superiority of REP
derived from the linear interpolation method also known as the four point linear

interpolation method over the other methods tested.

There are numerous studies employing REP index in investigating plant biochemistry,
health, and stress (Kanke et al. 2012; Adamczyk and Osberger, 2015; Tian et al. 2011;
Jong and Meer, 2006; Pefiuelas and Filella, 1998). These studies mostly controlled in
experimental fields or laboratories may have limited success in field applications. The
present study utilises field data integrated with remote sensing information to evaluate
changes in the red edge position of oil-polluted vegetation. Pefiuelas, Filella and Gamon
(1995) and Tian et al. (2011) both found the REP strongly correlated with the chlorophyll
content of vegetation canopy. Jong and Meer (2006) reported that chlorophyll content;
leaf structure and leaf area index influenced the REP, which exhibited greater sensitivity

at increased chlorophyll content.

Earlier studies established a linear relationship between ecosystem productivity and
species diversity (Vihervaara et al. 2014; Mace, Norris and Fitter, 2012; Norris, 2012;
Waide et al. 1999; Chapin et al. 2000). Some researchers ascribe this relationship to the
presence of complementary species, which maximise available resources, particularly the
photosynthetic active radiation (PAR) (Hooper et al. 2005; Sapijanskas et al. 2014).
Perring et al. (2015) observed that the productivity of a restored woodland in
southwestern Australia increased with greater species number. Kanke et al. (2012)

reported that REP correlated highly with SPAD meter readings.

The following methods derived REP index

1. The maximum slope of the first derivative (REPder)
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REP = max (a_y) (15)

0x
d Rss1—R
_y — a+1 a (16)
ox /1a+1 - /1a
Where
Ra is reflectance at Aa
Ra-+1is reflectance at Aa+1
Lais wavelength at the start of the slope segment
Aa+1 1S wavelength at the end of the slope segment
2. Linear interpolation method:- (REPInr)
Ryeq edge = Re70 + Rygo/2 17)
R —R
REP = 700 + 400 [ rededge 700] (18)
R740 - R7OO

Reflectance at the REP derived from the two techniques mentioned above were extracted
for each segment on polluted and control transects and compared for significant
differences and to determine their response to TPH concentration in the soil. Furthermore,
the indices were regressed with field data (soil TPH, chlorophyll readings taken from the
SPAD meter as well as with vegetation abundance) to determine the pattern and strength
of any relationships among the variables. For each model, the dependent variable was
either REPder or REPInr while the independent variables were soil TPH concentrations,
SPAD chlorophyll data, vegetation frequency and abundance. The regression coefficients
were used to determine the nature of the relationship between the dependent and
independent variables, while the coefficient of determination (R?) was used to determine
the strength of the relationship. Furthermore, REP indices were tested for their ability to
correctly classify transects as polluted or control using non-parametric logistic regression
analysis in R. This was done to assess the potential of REP indices to detect oil pollution
when it occurs. For this analysis, the dependent variable soil TPH concentration was
categorised into polluted (pol) and control (con), while the independent variables were

the spectral indices REPder and REPInr
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6.2.6 Statistical Analysis

The answer to the main research questions RQ2, RQ3 and RQ4 mentioned earlier

involved testing the three hypotheses which follow

1. That there is a difference between the reflectance of vegetation growing on
polluted and control transects;

2. There is a strong linear relationship between spectral metrics derived from
Hyperion data and field measured diversity indices;

3. That the relationship can be modelled to predict richness and diversity of vascular

plant species in the Niger Delta region of Nigeria.

Hyperspectral metrics derived from Hyperion data were subjected to statistical analysis
discussed in Chapter 3 including Mann-Whitney Test (Section 3.4.1.1) and Non-
Parametric Regression (NPM, Section 3.5.1.3). the 8 different models developed from

these metrics and shown in Table 6.2 were tested.

Table 6.2: Characteristics of the models predicting of diversity indices, chlorophyll content and
vegetation abundance using spectral metrics computed from Hyperion data.

Model ID Regression Method Predictors  Response
Variables

1A Partial Least Squares (PLS) NDVVIs Simpson’s

1B " NBVIs Shannon’s

2A Non-Parametric Multivariate Regression (NPMR) NDVVIs Menhinick's

2B " NBVIs Chao-1

3A Non Parametric Univariate Regression (NPUR) REPder Chlorophyll

3B ’ REPInr Content

3C Non-Parametric Logistic Regression (NPLR) REPder Abundance

3D v REPInr

The Spearman's rank correlation coefficients (r), coefficients of determination (R-
squared), residuals, biases and error values from all models were compared to identify
the set or subset of spectral metrics best suited for species diversity estimation in a

polluted field.

The implementation of the best performing NDVVI-based model featured the extraction
of spectral values of random pixels termed ‘predsites’ from the NDVVI images
(NDV V752,630, NDVVlg14,437, NDVVlg24,427, NDVV 773 641, NDVV lg4s,447, NDVV lg44 630),
using the Raster and GISTools packages in R (Figure 6.1). Thirty pixels selected to
encompass all the visible land cover types (waterbody, swamp, farmland, mixed
vegetation and forested) within the location made up in the dataset (preddata). The
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decision to select pixels from within this location (Kporghor) is because of its polluted
nature according to several reports of oil spills at sites across the area in the past (UNEP,
2011). However, soil TPH concentrations are expected to be lower in the predsites than
at polluted transects; consequently, higher species diversity values were anticipated from

implementing the selected model.
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Figure 6.1: Map of NDV Vg4 437 for Kporghor displaying the locations of the randomly selected
pixels (predsites) used for evaluating the regression model. Shannon’s, Simpson’s, Menhinick’s
and Chao-1 diversity indices were estimated for the predsites using the NDVVI variants.

Each diversity index (Shannon's, Simpson's, Menhinick's and Chaol index) was
estimated separately for the predsites. Due to the absence of field data for the predsites,
estimation accuracy was determined by correlating fitted values with corresponding
NDVI values computed from a Landsat 8 and Sentinel-2A images of the study area.
NDVI was selected because it is a well-known index commonly used to quantify
vegetation performance in terms of growth and biomass (Huete, 1994; Gamon et al,
1995). The index has been applied in several studies as a surrogate for measuring species
diversity (Gould, 2000; de Bello et al, 2010; Parviainen, Luoto and Heikkinen, 2010).
Since vegetation productivity increases with species diversity (Cardinale et al. 2012;
Hooper et al. 2012; Cardinale et al. 2011; Vihervaara et al. 2014; Mace, Norris and Fitter,
2012; Norris, 2012; Waide et al. 1999; Chapin et al. 2000; Xu et al. 2012), it is presumed
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that the NDVI values will strongly correlate with the diversity estimates of the ‘predsites'.
The choice of a different sensor to calculate the NDVI was to minimise bias from using
an NDVI image calculated from Hyperion data. Both the Landsat 8 and Sentinel 2A
images were downloaded from the USGS earth explorer tool, and the vegetation index
computed using ENVI 5.3. Please see sections 3.4.1 and 3.4.3 for the description of
Sentinel 2A and Landsat multispectral images respectively). Additionally, the accuracy
of predictions was visually evaluated using very high-resolution imagery from digital
globe freely available in Google Earth (GE, hereafter). Some researchers utilised the GE
images as a visualisation tool for land use and land cover maps (Hu et al. 2013; Yu and
Gong, 2012; Kaimaris et al. 2011).

6.3 Results
6.3.1 Correlation of Hyperion Bands with Soil TPH

Because of the non-normality of the spectral metrics dataset, Spearman’s rank correlation
analysis was performed to determine the relationship between the Hyperion bands and
the levels of total petroleum hydrocarbon (TPH) in the soil. The results of this analysis
are presented in Table 6.3. Generally, the VNIR bands (426.82 nm - 721.9 nm) positively
correlated with soil-TPH contrary to the negative relationship observed between the
SWIR bands (1971.76 nm -2052.45 nm) and soil TPH. This result agrees with previous
investigations which revealed that petroleum hydrocarbon in the soil increases stress in
vegetation and this stress is evident in increased reflectance in the VNIR and shift of the
red-edge towards the shorter wavelengths. A few of the highly correlating wavelengths
also showed high sensitivity to soil-TPH levels and were utilised in developing the new

vegetation index suggested for monitoring biodiversity in the Niger Delta region.
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Table 6.3: Results of the correlation analysis to determine Hyperion bands that strongly
correlated with soil TPH. All values are significant at p < 0.05

Wavelength (nm)  Hyperion Band Spearman’s Rank
Number Correlation Coefficient

426.82 8 0.683

518.39 17 0.645

620.15 27 0.537

711.72 36 0.584

813.48 46 0.427

912.45 77 0.458

983.08 84 0.355

1537.92 139 0.397

1638.81 149 0.427

1749.79 160 0.345

1971.76 182 -0.474

6.3.2 Analysis of TPH-induced Stress-Sensitive Wavelengths

The maximum, mean and minimum reflectance of the polluted and control transects is
shown in Figure 6.2. Reflectance in the visible and NIR regions was high and low
respectively on polluted transects while the reverse was the case on control transects. The
greatest reflectance difference between the control and polluted transects occurred at the
wavelength range 420 nm - 470 nm (blue channels) and 620 nm - 670 nm (red channels,
Table 6.4). Reflectance at these wavelengths increased significantly (p < 0.05) on the
polluted transects which due to the TPH in the soil. As chlorophyll absorption is highest
at the wavelengths of 430 nm, 460 nm, 640 nm, and 660 nm (Noomen and Skidmore,
2009), the spectral absorption from chlorophyll in plants was adversely affected by oil

pollution.
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Table 6.4: Wavelengths with maximum and minimum differences in reflectance and those least
and most sensitive to TPH-induced stress.

Wavelength at 436.99 447.17 630.32 426.8 650
Maximum Difference

Bands 9 10 28 8 30
Difference 195.96 170.87 123.1 122.48 102.25
Wavelength at 844 813.48 752.43 823.65 732
Minimum Difference

Bands 49 46 40 47 38
Difference 1.79 3.49 3.67 4.11 6.22
Stress-Sensitive 447.17 436.99 426.8 630.32 640.5
Wavelengths (nm)

Bands 10 9 8 28 29
Sensitivity 0.77 0.68 0.48 0.19 0.16
Stress-Insensitive 844 813.48 823.65 752.43 772.78
Wavelength (nm)

Bands 49 46 47 40 42
Sensitivity 0.00087 0.0018 0.002 0.002 0.0034

Median reflectance in the visible wavelengths is shown in the boxplots in Figure 6.2 B.
They differ significantly (p < 0.05) between the polluted and control transects according
to the M-W test (Table 6.5).

Results of the sensitivity analysis indicate that reflectances at 440+10 nm (blue channels)
and 640+10 nm (red channels) substantially increased (p < 0.05) in the presence of soil
TPH. Conversely, at the wavelength range of 670 nm - 900 nm (NIR), the reflectance of
the polluted transects decreased slightly but was not significantly different from the NIR
reflectance of the control transects. Minimum reflectance difference (near zero
difference) occurred at 730 nm — 830 nm (Figure 6.2 C). The highest reflectance
sensitivity to soil TPH (Figure 6.2 D) was observed at wavelengths 440+10 nm (blue
channels) and 640+10 nm (red channels). The least sensitive wavelengths are 730-790
nm (bands 38-44), 800-850 nm (bands 45-49) and 910-990 nm (bands 77 to 85).
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Figure 6.2 A: Reflectance of control (C) transects, (n=16) and polluted (P) transects (n=17) in
Kporghor spill site measured in November 2015 by the Hyperion EO-1 sensor. The plots
displayed are the maximum, mean and minimum reflectance of vegetation on transects at the
VNIR region. B: Comparison of median reflectance of specific wavelengths that were observed
to be sensitive to soil TPH concentration. Boxplots are for polluted and control transects. C:
Reflectance difference of vegetation growing on polluted and control transects computed by
subtracting the mean reflectance of vegetation on polluted transects (n=17) from that of control
vegetation (n=16); D. Reflectance sensitivity to stress or relative change in reflectance computed
by dividing the reflectance difference (Figure 2C) by the mean reflectance of the control transects.
M-W test results show that the reflectance at the most sensitive wavelengths significantly differed
between the polluted and control transects.

The M-W results in Table 6.5 reveal that blue and red reflectance from control vegetation
is significantly lower than from polluted vegetation (p < 0.05). Vegetation reflectance at
426.8 nm (chlorophyll absorption feature in the blue range) is significantly lower (p <
0.05) for the control than for the polluted transects. Reflectance in the NIR wavelengths
did not differ significantly between control and polluted transects and is attributable to
the presence of TPH in polluted transects. Earlier studies reported that oil-contaminated
substrates exhibit increased NIR reflectance attributed to the thickness of the crude oil
(Clark et al. 2010; Kokaly et al. 2013). Although hydrocarbon absorption features occur
in the 1730 - 2310 nm wavelengths in the SWIR region (Kiihn, Oppermann and Horig,
2004), in the NIR region the absorption from oil is decreased substantially leading to
increased reflectance (Clark et al. 2010). With the increased NIR reflectance from both
polluted and control vegetation, the characteristics of reflectance in the visible range

differentiated between polluted and non-polluted vegetation.
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Table 6.5: Summary of the Mann-Whitney U test results comparing the median reflectance of
specified wavelengths from polluted and control transects. P < 0.05

Wavelength Polluted Control Difference Confidence Interval U
(nm) (n1) (n2) (n1-n2) (95%0)
N=17 N=16 Lower Upper
Limit Limit
426.8 372.43 238.83 118.56 75.47 164.8 406
436.99 453.35 270.36 175.62 134.52 237.25 421
447.17 384.9 193.6 164.2 110.1 219.4 407
630.32 771.87 637.31 124.82 91.36 154.47 420
640.5 749.8 620.81 115.71 83.26 140.94 402
650 772.42 633.57 114.28 59.6 154.48 396

6.3.3 Analysis of the Normalised Difference Vegetation Vigour
Index (NDVVI)

NDVVI was computed for all the segments in the polluted and control transects. Figure
6.3 shows the resulting images. The index values ranged from 0 to 1 with higher values
shown in light grey and lower values in dark grey colours. High NDVVI values indicate
increasing chlorophyll absorption at the blue or red wavelength which may be attributed
to species composition, abundance and health on transects while low NDVVI values

indicate the reverse.
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Figure 6.3: Images of reflectance ratios of vegetation at Kporghor spill site. The general formula applied was Bi (least sensitive band) - Bj (most sensitive
band) / (Bi+Bj). High values (dark green) represent increased chlorophyll absorption at the blue and red wavelengths while low values (red) indicate increased
reflectance at those wavelengths. The increased reflectance at these wavelengths signifies TPH-induced stress. Thus, the index is a measure of vegetation vigour
and health.
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The M-W test was applied to NDVVI values extracted from segments of polluted and
control transects to test for differences between them. Results revealed significant
differences between the median NDV VI for the polluted and control transects (p < 0.05).
The NDVVI variants exhibited a strong correlation with field diversity measurements
including Shannon's and Menhinick’s as well as soil TPH (albeit inversely, Table 6.6).
The variants also compared significantly better than traditional narrowband vegetation
indices (NBVIs, Table 6.1). NDVVl773641 had the most robust relationship with the
diversity indices but the weakest inverse relationship with soil TPH.

Table 6.6: Spearman’s Rank Correlation Coefficients of NDV VI values extracted from polluted
and control transects and field measured diversity indices in Kporghor location. P < 0.05.

Index Shannon’s Menhinick’s  Simpson’s Chao-1  TPH
NDVV 752,630 0.65* 0.62* 0.65* 0.66* -0.54*
NDVV 1773641 0.73* 0.7* 0.72* 0.79* -0.53*
NDVV lg14,437 0.72* 0.69* 0.67* 0.67* -0.69*
NDVVlg24,427 0.66* 0.64* 0.62* 0.59* -0.63*
NDVVls44,447 0.64* 0.64* 0.6* 0.58* -0.68*
NDVVlsss,630 0.65* 0.61* 0.65* 0.66* -0.53*
RENDVI 0.26™ 0.3™ 0.33™ 0.32™ -0.11™
MRENDVI 0.17™ 0.22" 0.21m 0.15™ -0.44**
MRESRI 0.17™ 0.22" 0.21m™ 0.15™ -0.44**
VREI1 0.34™ 0.34™ 0.39* 0.36* -0.15™
REPI 0.36* 0.36* 0.36* 0.36* -0.19™
PRI 0.08" -0.05™ -0.07m™ -0.08™ -0.16™
SIPI -0.26™ -0.24™ -0.26™ -0.19™ 0.47*
RGRI -0.35* -0.36* -0.36* -0.4* 0.27™
ARI2 -0.37* -0.48* -0.45* -0.36* 0.48*
CRI2 0.23™ 0.22™ 0.23™ 025 ™ 001 ™

*|s significant
ns is non-significant
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6.3.4 Analysis of Continuum Removed Reflectance and Band
Depth

6.3.4.1 Continuum Removed Reflectance

Continuum removed reflectance (CRR) of vegetation from polluted and control transects
showed considerable variation in the concentration of the pigment of primary interest,
chlorophyll. Additionally, the spectra also distinguished the concentration of carotenoids
(CaR) and anthocyanins (AnC) in polluted and controlled vegetation. Both CaR and AnC
are stress indicators in vegetation (Hatier and Gould, 2008; Gitelson, Chivkunova and
Merzlyak, 2009). Although there are diverse opinions on the location of maximum CaR
absorption in the spectrum, previous studies established that this occurs between 470 nm
to 500 nm (Chappelle, Kim and McMurtrey, 1992; Blackburn, 1998; Merzlyak et al.
2008). Conversely, there appears to be some consensus on the absorption peak of AnC in
the leaf spectrum. Merzlyak et al. (2008) and Gitelson et al. (2001) reported this peak as
being around 540 nm to 550 nm.

The CRR plots in Figures 6.4 and 6.5 clearly shows vegetation reflectance on polluted
transects increased at the chlorophyll absorption features (around 445 nm and between
650-700 nm) and decreased at the CaR (around 460 nm) and AnC (around 560 nm)
absorption features. Hence, implying that oil pollution altered the pigment concentration

in vegetation growing on impacted transects.
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Figure 6.4: Continuum removed reflectance (CRR) of randomly selected segments of polluted
and control transects plotted for the chlorophyll b (Chl-b) and carotenoid (CaR) absorption
features in the blue channel of visible spectra (400-550nm). The curves distinguished reflectance
of vegetation on polluted and control transects. The CRR values were lower for Chl-b absorption
and higher for CaR on control transects, and the reverse on the polluted transects

194



1.04 o Chlorophyll
‘?."' Absorption
Feature

0.8

0.6
Anthocyanin

Continuum Removed Reflectance

Absorption
0.41 Feature
0.2- Control
........... Polluted
0.0 - - . - v . v
539 580 610 640 670 700 730

Wavelength (nm)

Figure 6.5: CRR of polluted and control segments showing the chlorophyll and AnC absorption
in the red range (550-750nm). CRR values were lower for chlorophyll absorption, and higher for
ANC on control transects, and the reverse on the polluted transects

6.3.4.2 Band Depth Analysis and Comparison

Spectral band depth (D) of the relevant wavelengths was derived by subtracting the CRR
values from 1, and normalised band depth (Dnorm) Was computed by dividing each band
depth by the band depth at the wavelength centre. The band depth at the wavelength
centre is the maximum band depth, hence this procedure was performed to identify any
changes in vegetation reflectance within each absorption feature. Both datasets were
subjected to the Mann-Whitney U to test the null hypothesis that there was no difference
in the medians of the band depths (D) and normalised band depth (Dnorm) Of absorption
features in vegetation growing on polluted and control transects. The M-W test was
performed separately for chlorophyll absorption features with an alternative hypothesis
(Ha1) that the median D and Dnorm Of control transects are significantly higher than those
of polluted transects. Conversely, the Ha> for testing the stress-indicating pigments (CaR
and AnC) was that the D and Dnorm Of the control transects were less than those of the
polluted transects. The results of these tests are displayed in Table 6.7 for chlorophyll
absorption features and Table 6.8 for CaR and AnC.

Chlorophyll absorption in the blue (CHB) channel was significantly higher in vegetation
growing on control than on polluted transects as evident in the result of the M-W test (U
= 352 for CHB1 and U = 337 for CHB2, p < 0.05). It appears that there was higher
chlorophyll absorption in the red channel (CHR) than in the blue channel (Figure 6.14 A
and C) in both polluted and control transects and these differed significantly (Table 6.7)
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for the first three absorption channels namely CHR1 (630.32 nm); CHR2 (640.5 nm); and
CHR3 (650.67 nm). However, chlorophyll absorption at the longer wavelengths (CHR4-
CHRY7) of the feature was not significantly different between the polluted and control
transects despite the maximal band depth (wavelength centre) located at 671.02 nm
(CHR5).

Table 6.7: Results of Mann-Whitney U test of differences in the band depths and normalised
band depths of chlorophyll absorption features for the control and polluted transects. Band depths
computed from subtracting the continuum removed reflectance value from 1.

Absorption Features Chlorophyll in Chlorophyll in red channels
blue channels
CHB1 CHB2 CHR1 CHR2 CHR3 CHR4 CHR5

Wavelength (nm) 437 447 630 641 651 661 671
N Polluted 17 17 17 17 17 17 17
(n1)
Control 16 16 16 16 16 16 16
(n2)

Band Depth (D)
Median Polluted  0.00 0.22 0.36 0.42 0.44 0.52 0.53
Control 0.028 0.37 0.43 0.47 0.48 0.52 0.53
Difference  (n2-nl) 0.028 0.15 0.07 0.05 0.04 0 0
Cl (95%) Lower 0.003 0.02 0.036 0.02 0.02 -0.01 -0.01
Upper 0.04 0.22 0.11 0.09 0.1 0.05 0.06

U 352 337 369 3575 3425 299 296
P <0.05 * * * * * ns ns
Normalised Band Depth (Dnorm)

Median Polluted 0.00 1 0.69 0.85 0.87 0.97 1
Control 0.09 1 0.81 0.88 0.90 0.97 1

Difference  (n2-nl) 0.5 0 0.12 0.03 0.03 0 0

CI (95%) Lower 0.00 -0 0.02 -0.00 -0.00 -0.00 -0
Upper 0.09 0 0.15 0.14 0.134 0.00 0

U 361 284 354 326 333 238 288

P <0.05 * ns * ns * ns ns

* = median differences are significant
ns = not significant
# = null hypothesis of ‘no difference in median’ accepted

Both the band depth (D) and normalised band depth (Dnorm) analyses suggest that
chlorophyll absorption along polluted transects differed slightly and correlated with soil
TPH. CHB2 had the highest coefficient of -0.77, followed by CHR3, r = -0.46.
Chlorophyll absorption in the red range did not vary greatly along polluted transects
despite the large differences in TPH concentration in the soil. The coefficient of variation
(CV) ranged between 9-11%, whereas in the blue range, the C\VV=329.9 for CHB1 and
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CV=58.3 for CHB2. Nevertheless, there was a strong positive relationship between the

chlorophyll absorption features and the species diversity indices along polluted transects.

Table 6.8: Results of Mann-Whitney U test of differences in the band depths and normalised
band depths of carotenoid and anthocyanin absorption features for control and polluted transects.
Band depths computed by subtracting the continuum removed reflectance value from 1.

Carotenoids

Absorption Features Anthocyanins

CAR1 CAR2 CAR3  ANT1 ANT?2
Wavelength (nm) 457 468 478 539 559
N Polluted (nl) 17 17 17 17 17
Control (n2) 16 16 16 16 16
Band Depth (D)
Median Polluted 0.37 0.12 0.08 0.00 0.06
Control 0.27 0.26 0.23 0.003 0.05
Difference  (n2-nl) -0.1 -0.14 -0.15 0.003 -0.01
Cl (95%) Lower -0.19 -0.21 -0.2 -0.00 -0.00
Upper -0.03 -0.06 -0.08 0.004 0.004
U 214 192 179 279 226
P <0.05 * * * # *
Normalised Band Depth (Dnorm)
Median Polluted 1 0.71 0.28 0.00 1
Control 1 0.45 0.63 0.07 1
Difference (n2-n1) 0 -0.26 -0.35 0.07 0
Cl (95%) Lower -0 -0.30 -0.39 -0.07 -0
Upper 0 -0.11 -0.14 0.08 0
U 272 145 164 302 273
P <0.05 ns * * # ns

* = median differences are significant
ns = not significant
# = null hypothesis of ‘no difference in reflectance median’ accepted

The central wavelength for the CaR absorption feature was at 457.34 nm while that of
AnC was at 559.09 nm. Radiance absorption at these wavelengths was significantly
different between polluted and control transects. Results of the Mann-Whitney U test
agreed with the alternative hypothesis that the D and Dnorm of the CaR and AnC
absorption features were lower in the control vegetation than in the polluted vegetation.

Thus, providing further proof of oil pollution induced stress in vegetation. The boxplots
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in figure 6.6 D consistently show substantial differences in pigment absorption at relevant

wavelengths between polluted and control vegetation.
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Figure 6.6: lllustrates the A - average band depth values (D = 1 - CRR) for control and polluted
transects; B - the difference curve calculated by subtracting the D (polluted) from the D (control)
and multiplied by 100 showed the difference in pigment absorption between polluted and control
transects. Chlorophyll absorption in control vegetation was up to 300%, while that of CaR was
down to -300% and AnC, down to -90%. Positive differences indicate greater band depth or
increased absorption of radiance at that wavelength; C: Average Dnom values showing the
magnitude of the difference in absorption between the polluted and control transects; and D: box

plots of band depths of chlorophyll, carotenoids and anthocyanins absorption in polluted and
control transects.

6.3.5 Oil Pollution Effects on Red Edge Position (REP) of
Transects

6.3.5.1 Effects of Soil TPH on REPder and REPInr

The presence of TPH in the soil seemed to affect vegetation reflectance, and this effect is
apparent in the first derivative spectra of the red edge. Original spectra of polluted
vegetation with low diversity indices (red dashes in Figure 6.7A) showed increased
reflectance in the red and reduced reflectance in the NIR region. The original curve
displays a slight shift to the shorter wavelengths (also known as ‘blueshift') in vegetation
spectra from the polluted transects, whereas reflectance from control transects shifted
slightly to the longer wavelengths (also known as ‘redshift'). Clear differences are also

apparent in the shape of the red edge slope of polluted and control vegetation. Figure 6.7
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A reveals flatter slopes for polluted spectra and steeper slopes for control spectra.
Additionally, the TPH-induced stress in vegetation which may have initiated the blueshift
also led to a general increase in visible reflectance and particularly in the chlorophyll
absorption features around 680 nm (Figure 6.7A).
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Figure 6.7: A. Original and B. first derivative reflectance curves of randomly selected segments
from polluted and control transects. The reflectance of polluted vegetation is slightly shifted to
shorter wavelengths while reflectance from control vegetation slightly shifts towards longer
wavelengths. Comparison of reflectance from polluted and control transects using the Mann-
whitney test shows significant differences (p < 0.05).
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First derivative reflectance maxima occur at 701.6 nm for both polluted and control
vegetation. Reflectance at this wavelength is selected as the red edge position and denoted
as REPder. Distinctively, while derivatives curves from polluted vegetation have single
peaks, the control curves have additional peaks at 742.25 nm, 752.43 nm and 762.6 nm.
Since each curve represents the combined reflectance of all materials on the ground
surface covered by the 30 m X 30 m pixel, the presence of multiple peaks in control curve

may be attributed to increased intra-specific differences in vegetation.

The average REPInr reflectance is 893.14 on the polluted transects, and 893.49 on the
control transects with standard deviations of 0.15 and 0.51 respectively. Based on this
method, REP occurred at different wavelengths for each segment however, the REP
reflectance upheld the earlier interpretation from REPder that there’s significant
difference between polluted and control transects.

Reflectance at the identified REPs for all segments was subjected to the non-parametrics
two-tailed Mann-Whitney U test for two independent samples. The null hypothesis tested
was that REP reflectance from polluted and control transects were not significantly
different while the alternative hypothesis was that they were significantly different.
Results of the test are summarised in table 6.9.

Table 6.9: Summary of the Mann-Whitney U test analysis comparing reflectance at REP from

polluted and control transects. The REP index is derived from two different methods using
Hyperion data.

Index U-Value z-Value p-Value Decision
REPder 54 -2.936 0.03* Reject
REPInr 63 -2.612 0.01* Reject

From the table, it is clear that soil TPH impacted on reflectance at the REP of polluted
vegetation significantly regardless of the REP derivation method. For both indices, the
U-values supports the alternative hypothesis of difference between polluted and control

REP reflectance, hence, the null hypothesis of no difference is rejected.
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6.3.5.2 The Relationship between REP and Selected Field
Measurements

Results of the non-parametric multivariate regression (NPMR) analysis of REP (REPder
and REPInr) with field data (soil TPH, SPAD chlorophyll data, abundance and frequency)

are presented in Table 6.9

Table 6.10. Regression statistics of REP on field measured data. REPder computed from the first
derivative method whereas REPInr computer from linear interpolation method. Both indices
derived from Hyperion data acquired over Kporghor spill location were extracted from segments
of polluted and control transects in the location.

REPder REPInr
Parameter R? RSE MSE R? RSE MSE
Soil TPH 0.61 2.27 5.14 0.16 0.47 0.22
Chlorophyll 0.48 2.63 6.92 0.32 0.42 0.18
Abundance 0.32 2.99 8.94 0.01 0.51 0.26
TPH*Chlorophyll  0.57 2.37 5.63 0.16 0.47 0.22
TPH*Abundance 0.63 2.22 4.93 0.15 0.47 0.22

REP indices derived from both the maximum first derivative method (REPder) and the
linear interpolation method (REPInr) showed a significant relationship with field data.
Generally, the indices inversely related to soil TPH concentrations and positively related
to the vegetation variables. It is deducible from the results that the presence of TPH in
the soil interfered with the biochemical parameters in vegetation and the interference
exhibited in the changing shape of the red edge curve and position in spectra of polluted
vegetation. Between the two indices, the REPder with an R? of 0.61 and 0.48 had stronger
relationships with the soil TPH concentrations and SPAD chlorophyll readings
respectively than REPInr.

Scatterplots in Figure 6.9 show that both REPder and REPInr decreased in reflectance as
soil TPH increased. The R? values were significant at p < 0.05. Field measured vegetation
characteristics (abundance and SPAD chlorophyll estimates), showed a significant
positive relationship with both indices. The regression coefficient of REPder and REPInr
versus chlorophyll estimates were 0.48 and 0.32 respectively, p < 0.05, although only
REPder significantly related with abundance (R?> = 0.32, p < 0.05). However, the
introduction of soil TPH in the relationship caused a decrease in the REP reflectance

values as shown in the scatterplots in Figure 6.8.
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Figure 6.8: Scatter plot, regression line and 95% confidence intervals of REP versus SPAD
chlorophyll estimate, vegetation abundance and frequency as well as their interactions with soil
TPH. The plots show that both REPder and REPInr decreased in the presence of soil TPH.

6.3.6 Modelling Species Diversity Using Hyperspectral Indices

Predictors in models estimating the species diversity index of polluted and control
transects included two sets of indices namely the NDVVIs and the traditional NBVIs.
This analysis aimed to determine the performance of the new indices in estimating the
diversity of plant species in areas impacted by oil pollution in comparison with traditional
NBVIs. The dataset comprising measurements from polluted and control transects was
subdivided into training and testing data using a ratio of approximately 6:4 for training

and validation data respectively.
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6.3.6.1 Model Calibration Using Training Data

Partial Least Square (PLS) regression (please see Chapter 3 Section 3.5.1.3 A for
discussion on this procedure) commenced with an initial transformation of the predictor
datasets (6 NDVVI variants and 6 NBVIs listed in Table 6.1) into a smaller set of
uncorrelated components with the optimum number selected from R? value associated
with each component. A maximum of 5 components was chosen to run the procedure;
however, the optimum number of components varied for different response variables as
shown in Table 6.10. For the NDVVI1 dataset, selection resulted in only 1 to 2 components
which best explained the variation in the dataset, for the regression analysis. For the
NBVIs, 1 to 4 components were used in the models. A leave-two-out procedure cross-
validated the components before selecting the optimal number. The NDVVI-based PLS
model had larger R-squared (R?) values than the NBVI-based PLS model. Additionally,
prediction error sum of squares (PRESS) was smaller for the NDVVI predictors than for
the NBVIs. Thus confirming that the PLS model of NDVVI variants has greater
predictive ability than that of traditional NBVIs. The results from model calibration are

summarised in Table 6.11.

Table 6.11: Calibration parameters of NDVVI and NBVI-based models used in the PLS and
NPM regression methods. NDVVI values were computed from Hyperion wavelengths sensitive
to oil pollution and extracted from segments of polluted and control transects while NBVIs were
computed from Hyperion data.

PLS NPM
Response Number of R? PRESS F P < R? RSE
Components 0.05
NDVVIs
Shannon’s 2 0.67 12.3 1756 * 0.71 0.61
Simpson’s 2 0.66 111 16.25 * 0.69 0.17
Menhinick’s 1 0.54 44 2082 * 061 1.23
Log(Chao-1) 2 0.6 8.69 1275 * 0.69 0.49
Canopy Chlorophyll 2 0.56 2181 1092 * 0.58 9.08
NBVIs
Shannon’s 8 0.39 25.28 3.38 * 0.49 0.82
Simpson’s 1 0.3 171 8.23 * 046 0.23
Menhinick’s 4 0.48 67.78 3.54 * 058 1.31
Log(Chao-1) 3 0.50 11.74 5.35 * 0.55 0.58
Canopy Chlorophyll 1 0.11 4355 2.12 ns 0.59 8.89

*significant
ns - not significant.
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The significance of the relationship between the predictors (NDVVI variants and NBVIs)
and the response (diversity indices) was analysed using the F-statistic. The results show
that each diversity index statistically related to the selected NDVVI components (R? >
0.5, p < 0.05). Similarly, diversity indices also significantly regressed with the NBVI
components; however as stated earlier, the R? values were much lower (<0.5, p < 0.05)
except for the Chao-1 index (Table 6.11). The significant relationship observed between
satellite-based indices (NDVVIs and NBVIs) and field measured diversity indices is in
line with previous results. These include (Levin et al. 2007) who reported R? as high as
0.87 between NDVI and plant richness; (Mapfumo et al. 2016) who reported R? values
between 0.32 and 0.72 for NDVI and Shannon’s diversity; and (Peng et al. 2018a) who
reported R? values of 0.51 to 0.83 for first order hyperspectral indices and diversity
indices including Shannon-Weiner, Pielou, Simpson, Margalef and Gleason. The

scatterplots in Figure 6.9 show the observed versus predicted diversity values.
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Figure 6.9: Observed versus predicted diversity indices using PLS NDVVI-based regression
model. There appears to be a linear relationship between both sets of data leading to the high R?
values. This result is consistent with results from previous studies predicting species diversity
from vegetation indices.
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From the scatterplots in Figure 6.10, it is apparent that the NDVV|1 variants performance
in estimating species diversity is comparable to results reported in other studies. The
mechanism explaining the relationship between satellite-derived indices and field
measured diversity indices are not yet well understood; however, judging from the results
of this study, we infer that vegetation biochemical parameters, mainly those strongly
influenced by variations in pigment absorption at wavelengths sensitive to soil TPH are
essential drivers of this relationship. The scatterplot of residuals versus predicted
diversity index from the model calibration using the training data is shown in Figure 6.10.
These plots suggest that the PLS model provided a good fit for the data and the residuals
generally satisfy the goodness of fit requirements with randomness, homoscedasticity and

linearity.

Similarly, the NDVVI-based NPM model has much smaller error values than the NBVI-
based NPM model. The NDVVI-based model performed better during calibration with
higher R? values (0.61-0.71 at the calibration stage) compared to NBVI-based models with
R? < 0.59. Residual standard error (RSE) values from model calibration are smaller for
the NDVVI NPM model and more substantial for the NBVI model
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6.3.6.2 Model Validation Using Test Data

Validation of the trained models was performed using the test data (n = 13, polluted = 7,
control = 6). The predictive capability of the spectral metrics inferred from predicted R?,
RSE, root mean square error (RMSE), bias and residual analysis of the different models
revealed that the performance of the NDVVI-based models was uniform across both PLS
and NPM model types. Analysis of residuals following model validation also affirms the
superiority of NDVVI for estimating vascular plant species diversity over NBVI. The F-
statistics, p, R?, RMSE and Bias are summarised in Table 6.12 for all models.

Table 6.12: Results of the species diversity and canopy chlorophyll estimation of investigated
transects using two different models for each set of predictors. Models 1 and 2 are the partial least
square (PLS) and non-parametric (NPM) regression models respectively. Letters A and B indicate the
set of predictors (spectral metrics) used in each model, A = NDVVIs and B = NBVIs, n = 13, df =
12); ns = not significant.

Response Variable Model F P< R? RSE RMSE Bias
0.05
Shannon’s Diversity 1A 12.82 * 054 051 0.69 -11.4
Index 1B 1.77 ns 0.14  0.69 0.9 -16.2
2A 13.08 * 0.54 0.5 0.5 -6.2
2B 2.67 ns 0.2 0.67 0.94 -17.2
Simpson’s Diversity 1A 6.66 * 0.38 0.05 0.24 -15.9
Index 1B 0.11 ns 0.01 0.07 0.22 -18.1
2A 1.163 ns 0.1 0.07 0.14 -9.2
2B 0.09 ns 0.01  0.07 0.21 -14.9
Menhinick’s Richness 1A 14.32 * 0.57 1.15 1.13 -7.5
Index 1B 6.37 * 0.37 1.38 1.58 -21.6
2A 5.35 * 0.33 1.42 1.32 1
2B 74 * 0.4 1.34 1.31 -10.2
Log(Chao-1) 1A 8.55 * 044 0.24 0.57 3.3
1B 2.12 ns 0.16 0.3 0.58 -1.1
2A 10.16 * 048 0.23 0.56 21
2B 1.93 ns 0.15 0.3 0.51 3.2
Canopy 1A 7.89 * 0.42 7.85 7.87 6.7
Chlorophyll 1B 1.14 ns 0.09 9.79 9.29 4.7
Content 2A 10.49 * 0.49 7.36 7.59 55
2B 1.64 ns 0.13 9.6 13.49 9.9
*significant

ns - not significant

The NDVVI-based models (Models 1A and 2A) had the highest R? as well as lowest RSE
values. Although non-parametric models are generally not as powerful as parametric ones,
the spectral NDVVI metrics derived from TPH-sensitive Hyperion wavelengths
consistently outperformed the traditional NBVIs as estimators of species diversity in all the
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models. Poor estimates for Simpson’s diversity index are obtained from NDVVI and
NBVIs-based models, particularly using the NPM regression method, although the error
values were low. From the results, the best index for estimating the Menhinick’s Richness
index is the NDVVI variants. The R? and RMSE values for NDVVI-based PLS model
are 0.57 and 1.13 respectively, while for NBVIs-based PLS model, they are 0.37 and 1.58
respectively. Generally, all the models underestimated the response variables (Shannon's,
Simpson's, Menhinick's, Chao-1, and Canopy Chlorophyll) as evident in the negative bias
scores, although the biases were higher for the NBVI-based models. For monitoring
biodiversity, this effect may be an advantage as it reduces the risk of overestimating the
vascular plant species diversity of an oil affected location or a protected area. NDVVI-
based model predictions were over 50% accurate for Shannon's and Menhinick's diversity
indices, and less than 50% for Simpson's and Chao-1's indices. The best predictions were
for Menhinick’s index as illustrated in the closeness of the fitted lines to the 1:1 line in all
four models shown in Figure 6.11 for PLS models and Figure 6.12 for NPM models. In
contrast, Simpson's index was the least accurate as the plots showed little or no

relationship between the predicted and observed field measurements.
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Figure 6.11: Observed versus predicted plots for the various PLS models. For each species
diversity index, scatterplots of observed values versus the NDVVI variants (blue) and NBVIs
(red) predicted values are shown (n = 13). The regression equations are also shown with the R?
values, y1 = response to NDVVI variants, y2 = response to NBVIs. The line of best fit for each
model is plotted to compare with the 1:1 line (in black).
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Figure 6.12: Observed versus predicted plots for the NPM models. For each species diversity
index, scatterplots of observed values versus the NDVVI variants (blue) and NBVIs (red)
predicted values are shown (n = 13). The regression equations are also shown with the R? values,
y1 = response to NDVVI variants, y2 = response to NBVIs. The line of best fit for each model is
plotted to compare with the 1:1 line (in black).

All models clearly distinguished between polluted and control transects with the diversity
estimates; however, the NDVVI-based models performed better. The residual versus
predicted scatterplot in Figure 6.13 show that the NDVVI-based model is a good fit for
Shannon’s index and the SPAD chlorophyll estimates. However, this goodness of fit was

absent for the other indices.
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Figure 6.13: Scatterplots of residual versus predicted values of NDVVI -based model. Predicted
values are from the NPM regression using test data (n = 13). The charts clearly show that the
model was a good fit for Shannon’s diversity index and SPAD chlorophyll estimates.

Using the model equations from the NDVVI PLS model, spatial maps of vascular plant

species diversity were created for the investigated area (Figure 6.14).
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Figure 6.14: Spatial maps of vascular plant species diversity estimated from NDVVI PLS model.
Location of control and polluted transects on the maps correspond with the estimated diversity
index and chlorophyll content. From the images, polluted transects are seen to have low diversity
and canopy chlorophyll values while control transects have high diversity and canopy chlorophyll
values. This result further emphasises the linear relationship between vegetation productivity
indicated by canopy chlorophyll content and vascular plant species diversity.
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A glance at the maps of estimated Shannon's or Simpson's diversity and the canopy
chlorophyll content shows that pixels with high diversity index were also high in

canopy chlorophyll.

6.3.6.3 Model Implementation and Evaluation Using Random Pixels

The new dataset of derived spectral metrics (preddata) was used as predictors in the NPM
model in order to estimate the Shannon’s, Simpson’s, Menhinick’s and Chao-1 index
values for the predsites. Estimations were done separately for each variable, and average
predicted values for each land cover type visible from a high-resolution image available
on Google Earth is shown in Table 6.13. Expectedly predicted values were high for
forests and mixed vegetation, low for swamps and waterbodies and moderate for
farmlands.

Table 6.13: Average diversity values predicted for randomly selected pixels according to the
observed land cover type. N = number of 30 m pixels in each class, L8-NDVI = NDVI derived
from Landsat 8 image and S2A-NDVI = NDVI derived from Sentinel 2A image. Due to its higher
spatial resolution, average NDVI values were calculated using a 3 x 3 pixel window from the
S2A-NDVI.

Land Cover Type Farmland Forested Mixed Swamp Waterbody
N 7 5 10 6 2
L8-NDVI 0.17 0.2 0.18 0.13 0.11
S2A-NDVI 0.11 0.12 0.11 0.05 0.06
Predictor variables

NDVV lga4,447 0.48 0.57 0.49 0.29 0.27
NDVVlg14,437 0.73 0.83 0.76 0.61 0.57
NDV Vg4 427 0.5 0.58 0.51 0.3 0.28
NDV V1752630 0.44 0.53 0.46 0.25 0.23
NDVVI773641 0.71 0.80 0.73 0.56 0.53
NDVVlga4630 0.85 0.94 0.88 0.73 0.7
Response Variables

Shannon’s 2.59 3.42 2.77 0.88 0.94
Simpson’s 0.82 0.95 0.87 0.25 0.3
Menhinick’s 3.64 5.34 4.13 141 1.16
LogChao-1 2.16 2.79 24 1 1.06
Canopy Chlorophyll 56.12 64.8 56.46 39.57 34.09

NDVI values computed from both Landsat and Sentinel 2A images and extracted for the

predsites were generally low for the different land cover types compared to the NDVVI
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values. NDVVI1 values for forested pixels ranged from 0.53 to 0.94 while NDVI values
were 0.2 and 0.12 respectively for L8-NDVI and S2A-NDVI. Similarly, NDVVI values
were higher than NDV1 values in pixels categorised as farmland and mixed. Despite the
large margin between NDVVI and NDVI values, the pattern of vascular plant species
diversity estimation was similar. As evident in Table 6.13, the higher the index value, the

higher the estimated species diversity value and vice versa.

Additional evaluation of NDVVI-based model performance involved using NDVI using
as surrogates for the vascular plant species diversity index. Presumably, the relationship
between NDV I values and predicted vascular species diversity indices is positively linear
as NDVI correlates strongly with species diversity in literature. Due to the higher spatial
resolution of the Sentinel 2A image, average NDVI values were computed for each
segment using a 2 x 2 pixel window. The result of the correlation analysis in Table 6.14
suggests that the estimated values have a strong linear relationship with NDVI values
from both images. The correlation coefficients ranged from 0.73 to 0.85 for the diversity

indices.

Table 6.14: Spearman’s rank correlation coefficients of NDVI and estimated species diversity
indices for predsites. All the results are significant (p < 0.05).

Diversity Index L8-NDVI S2A-NDVI
Shannon’s 0.77 0.78
Simpson’s 0.73 0.75
Menbhinick’s 0.78 0.79
Chao-1 0.84 0.84

Visual evaluation of high-resolution Google Earth imagery (Figure 6.15) shows that most
predicted values correspond with the land cover type on the ground surface. For instance,
the predsites located on swamps and water bodies had low estimated values for vascular
plant species diversity. However, the location of the predsite P2 with predicted Shannon
diversity index of 2.68 appears to be bare soil in this image (acquired by Digital Globe in
December 2006), the most current image acquired in January 2016 (not used due to cloud
obstruction) shows the presence of vegetation regrowth at the location, hence the
predicted high diversity values for the pixel.
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Figure 6.15: A high-resolution Digital Globe 2006 true colour image of the study area extracted
from Google Earth showing the location of predsites. This image was selected because it depicted
the land cover types in the study area better than more recent high-resolution images. From the
estimated Shannon's diversity index shown next to the predsites, it is evident that most of the
predictions correspond with the visible land cover type.

6.4 Discussion

Among biologists, ecologists and conservationists there is firm persuasion to develop a
standardised methodology for monitoring biodiversity at regional and global scales
(Yoccoz, Nichols and Boulinier, 2001; Kerr and Ostrovsky, 2003; Muchoney, 2008;
Lindenmayer and Likens, 2010; Han et al. 2014). More importantly, vulnerable
ecosystems like the Niger Delta region of Nigeria subjected to oil pollution require
standard and accessible methods for regular biodiversity monitoring. Conventional
techniques are limited in several ways due to time and equipment constraints, as well as
in coverage (usually carried out at local scales). Hence, researchers advocate for the
integration of remote sensing tools into biodiversity monitoring programmes because of
the advantages the technology offers (Wulder, 1998; Nagendra, 2001; Boyd and Danson,
2005; Warren et al. 2014; Galidaki and Gitas, 2015; Lucas et al. 2015).

Results of the analysis confirmed that the effect of oil pollution on vegetation was
statistically significant. The characteristics of polluted vegetation reflectance and band
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depths conformed to expected changes in the spectral signature of stressed vegetation.
Stress indicating pigments such as anthocyanin and carotenoids contents increased in
polluted transects but remained minimal (relative to chlorophyll pigments) in control
transects. However, along polluted transects, decreased vegetation density and diversity
affected vegetation reflectance, particularly at the anthocyanin and carotenoids
absorption peaks. Apart from the spill epicentre and segment SS1 of all four polluted
transects, where vegetation abundance depreciated substantially, anthocyanin and
carotenoids reflectance remained relatively constant with increasing concentration of soil
TPH.

Furthermore, vegetation productivity a vital ecosystem service, particularly for
inhabitants of the Niger Delta region who rely on forest resources for their livelihood,
was shown to be vulnerable to oil pollution. The chlorophyll absorption features in
polluted vegetation significantly dwindled in comparison to control vegetation. The
normalisation of reflectance at these wavelengths using continuum removal revealed the
extent of damage to photosynthetic activity in polluted vegetation. While chlorophyll
absorption in control vegetation was as high as 0.6, in polluted vegetation, it was as low

as -0.1, amounting to a difference of up to 300%.

Perhaps, a clearer illustration of oil pollution impact on vegetation is the different values
of the NDVVI from polluted and control transects. The NDVVI derived from a
combination of TPH sensitive and TPH insensitive wavelengths from Hyperion image
was created to measure the vigour (productivity and health) of vegetation on polluted and
control transects for comparison. Prediction of species diversity was significantly
improved using the new Hyperion indices when compared to the performance of
traditional narrowband vegetation indices (NBVIS).

6.4.1 Effect of Oil Pollution on Vegetation Reflectance

Hydrocarbon contamination in soils interferes with the physiological processes in plants.
The interference, which primarily causes stress in plants is usually evident in the spectral
signature of affected plants. Similar to several studies (Akubugwo, Elebe and Osuocha,
2016; Udeh, Nwaogazie and Momoh, 2013; Tanee and Albert, 2015; Ugboma, 2014;
Okoye and Okunrobo, 2014), there was evidence that increased concentration of

petroleum hydrocarbon in the soil induced changes in the soil parameters including the
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temperature, pH, nutrients and microorganism in the investigated transects. These
changes caused stress in vegetation growing on polluted transects by interfering with the
production of chlorophyll and other photosynthetic pigments that absorb solar radiation,
and thus affected their reflectance.

Previous studies (Smith, Steven and Colls, 2005; Bammel and Birnie, 1994) reported that
spectral changes in vegetation occur mostly in the visible and near infrared regions as
well as in the red-edge region (the slope between the red and near infrared regions) of the
spectrum. The spectral changes are characterised by increased reflectance in absorption
maxima and reduced reflectance at absorption minima. Gitelson, Buschmann and
Lichtenthaler (1999) found that in healthy fully developed leaves, there was high
absorption in the visible spectral range (400 nm - 700 nm) and higher reflectance as
observed in the NIR (700 nm - 800 nm). They also observed that the red edge position of
yellowing leaves shifted towards the shorter wavelengths. These postulations agree with
the general increase in reflectance of polluted vegetation in the visible region and
decrease in the NIR region followed by a shift in the red edge position towards shorter
wavelengths (‘blue shift') observed in polluted vegetation in the present study. Li, Ustin
and Lay (2005) reported similar changes in reflectance of vegetation under oil-induced
stress. The implication is the decrease in the chlorophyll content of polluted vegetation
since these pigments absorb light for photosynthesis in the visible wavelengths (Mishra
et al. 2012). The results obtained earlier in section 4.3.4.1 where in-situ chlorophyll
content not only decreased significantly in polluted transects (mean = 36.69) in
comparison with control transects (mean = 55.32) but also correlated negatively (r = -
0.86) with soil TPH (Section 4.3.4.3) support this connotation. A decrease in chlorophyll
content means reduced light absorption in known absorption maxima, which occurred at
around 445 nm, and 680 nm in this study, leading to increased reflectance as obtained in

the polluted vegetation.

TPH presence in oil also amplified the reflectance difference between polluted and
control transects in wavelengths associated with chlorophyll absorption in the blue
(440£10 nm) and red (640+£10 nm) spectral channels. These wavelengths were the most
sensitive to TPH concentration in the soil. Chlorophyll absorption is known to occur
within the wavelength range of 430-460 nm (chlorophyll b) and 650-680 nm (chlorophyll
a) (Gitelson, Gritz T and Merzlyak, 2003; Carter and Miller, 1994). The identity of the
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most sensitive wavelength 447.17 nm (Band 10), shows that TPH in the soil affected the
absorption of chlorophyll in vegetation growing on the polluted transects. Contrarily,
Carter and Miller (1994) found that reflectance at 420+5nm varied little with stress in
plants, but reported increased sensitivity to plant stress for reflectance at 600 nm and 695
nm. Although there was a significant difference in the NIR (700 nm - 900 nm) reflectance
of polluted and control vegetation, the sensitivity analysis which is calculated using mean
reflectance showed that this region was least sensitive to TPH-induced stress. Other
researchers reported a similar pattern in NIR reflectance of stressed vegetation. For
instance, Carter and Miller (1994) reported that at 730 nm, the reflectance in stressed
plants did not significantly change while Gitelson, Buschmann and Lichtenthaler (1999)
also found that NIR reflectance did not vary between healthy leaves and stressed leaves.
Gitelson, Buschmann and Lichtenthaler attributed this phenomenon to the increase in the
size and length of the assemblages in the spongy parenchyma. Moreover, (Kokaly et al.
2013; Kuhn, Oppermann and Horig, 2004; Adamu, Tansey and Ogutu, 2015) analysed
polluted substrates and attributed the increased NIR reflectance in polluted vegetation to

the presence of hydrocarbons.

Other factors may be responsible for this response. Firstly, as suggested by Rapport,
Regier and Hutchinson (1985); Scholten and Leendertse, (1991); Li, Ustin and Lay
(2005) and Asner et al. (2009) there may be an increased presence of invasive species
which are tolerant to hydrocarbon. Secondly, it may also be that the plant assemblages
(cell walls, mesophyll cells and intercellular spaces) responsible for NIR reflectance in
vegetation were yet to succumb to the stress caused by TPH in the soil. It is most likely
that this was the case along polluted transects as soil TPH concentration decreased,
thereby delaying the onset of physiological damage in plants tissues. Furthermore,
analysis of vegetation data in section 4.3.2 provides evidence of thinning out of plants on
polluted transects. Results of the analysis indicate that vegetation parameters
(composition, density, abundance, diversity) suffered decrease as TPH concentrations
increased in the soil. It appears that TPH was responsible for over 50% loss in species of

annual plants growing on polluted transects.

Several researchers have propounded theories on how TPH influences chlorophyll
content in affected plants. Omosun, Markson and Mbanasor (2008); (Lopes, da Rosa-
Osman and Piedade (2009); Baruah et al. (2014) investigated the effect of crude oil on
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plant anatomy and discovered structural deformations in the form of thickening of the
epicuticular region, compression of the palisade and spongy parenchyma, compression
of the vascular bundles, reduction of intercellular air spaces, distortion and reduction of
the stomata. These changes generally inhibit chlorophyll synthesis thereby affecting plant
growth and productivity (Baruah et al. 2014). Considering the response of Chl-a
absorption features to soil TPH concentration, it is safe to assume that these physiological
effects linked to oil pollution in various environments, caused a decrease in Chl-a
production and consequently vegetation growth, health and productivity.

6.4.2 Effect of Oil Pollution on Chlorophyll, Carotenoids and
Anthocyanins Absorption

Increased reflectance at chlorophyll absorption maxima and in-situ chlorophyll data from
polluted vegetation reveal that chlorophyll absorption in polluted vegetation decreased
by up to 300% compared to control vegetation. This reduction is significant and is bound
to impact on not only the productivity of vegetation growing on polluted transects but
also other living organisms by interfering with the trophic structure of the ecosystem.
Arellano et al. (2015) reported low levels of chlorophyll in vegetation at oil-polluted sites
in the Amazon forests which they attributed to a decrease in photosynthetic activity due
to petroleum-induced stress. Whereas Al-Hawas et al. (2012) also observed that jojoba
plants grown on crude oil contaminated soils suffered a significant decrease in
chlorophyll content. Similarly, Agbogidi, Eruotor and Akparobi (2007) after
experimenting with maize plants grown on polluted soils reported the presence of
chlorosis in plants subjected to 20.8 mL of crude oil, which they attributed to destruction
of chlorophyll pigments and cell injury. Earlier works by Baker (1970), Baudze and
Kvesitadze (1997) and Odjegba and Sadiq (2002) suggested that hydrocarbons in crude
oil cause structural and functional changes in the chloroplast that negatively affects the

photosynthetic apparatus.

Also, the reflectance at the red edge position (REP) which strongly correlates with
chlorophyll content in vegetation (Tian et al. 2011; Jong and Meer, 2006; Pefiuelas and
Filella, 1998), notwithstanding the variations of ground cover, showed a similar pattern.
The first derivative of the red edge slope illustrated the rate of change in reflectance from
the red to the NIR regions of the spectrum. Figure 6.7 showed that vegetation growing

on the control transects had higher reflectance increment than vegetation on polluted
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transects. Tian et al. (2011) reported a drastic increase in reflectance of healthy plants
within the red edge (steep slope) likely because of the presence of leaf pigments, mainly
chlorophyll which influence radiance absorption at the red region and leaf structures
which influence scattering of radiance at the NIR region. Thus healthier plants expectedly
have greater reflectance at the REP (maximum first derivative of the red edge slope).
Following the Mann-Whitney test result, the null hypothesis of equivalence was rejected,
suggesting that there was greater REP reflectance from vegetation on control transects
than there was from polluted vegetation. The difference may be adduced to increased
absorption in the red wavelength and increased scattering in the NIR region which are

spectral signatures of healthy vegetation.

Another important spectral behaviour of the red edge slope in control vegetation is the
observed shift towards longer wavelengths which contradicts the blue-shift (shift towards
shorter wavelengths) observed in polluted vegetation. Frazier, Wang and Chen (2014)
ascribed this behaviour to the widening of the chlorophyll absorption feature in response

to the increase in leaf chlorophyll content.

Results of sensitivity analysis also differentiated the pigments chlorophyll a (Chl-a) and
chlorophyll b (Chl-b) response to TPH concentration in soil. The most sensitive
wavelength in the blue range occurred at the Chl-a absorption maxima (447.17 nm) while
the most sensitive wavelength in the red range occurred at the Chl-b absorption maxima
(630.32 nm) (See Figures 6.4 and 6.5 in Chapter 6). Although both these wavelengths
showed sensitivity to soil TPH concentrations, Chl-a absorption was most affected as the
reflectance difference between polluted and controlled vegetation at that wavelength was
up to 300%. In contrast, Sims and Gamon (2002) found that the spectral channel around
650 nm was more sensitive to chlorophyll content in vegetation than the chlorophyll
absorption features in the blue range. Since Chl-a is the principal pigment for
photosynthesis, this may explain the severe effect associated with oil pollution in plants.
Al-Hawas et al. (2012), Baruah et al. (2014) and Arellano et al. (2015) in their various
studies reported that increasing crude oil contamination caused a significant decrease in

the chlorophyll content which sometimes led to plant mortality in impacted vegetation.

The continuum-removed reflectance (CRR) of vegetation from polluted and control
transects revealed absorbance at known carotenoids (CaR) and anthocyanins (AnC)

features in polluted and control vegetation. CaR and AnC are generally considered as
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stress indicators in vegetation (Hatier and Gould, 2008; Gitelson, Chivkunova and
Merzlyak, 2009). They are accessory pigments that perform protective functions during
photosynthesis in plants. Both AnC and CaR prevent photo-inhibition and photo-damage
in plants by absorbing the excessive incident light that would otherwise damage the
chlorophyll pigments. Merzlyak et al. (2008) stated that AnC occurrence intensifies with
environmental factors such as increased solar radiation, extreme temperatures, drought,
nutrient deficiency and other stress factors. In this study, CaR absorption increased by up
to 300% while AnC absorption increased by less than 100% in polluted vegetation. The
negative difference in the CaR and AnC absorption features (Figure 6.6 B) signifies
increased synthesis of these accessory pigments in polluted vegetation. Thus, increased
ANnC and CaR absorption in polluted transects suggest that the presence of soil TPH
induced stress in polluted which was either absent or minimal in control vegetation.
Although there are diverse opinions on the location of maximum carotenoid absorption
in the spectrum, previous studies established that this occurs between 470 nm to 500 nm
(Chappelle, Kim and McMurtrey, 1992; Blackburn, 1998). Contrarily, there is some
consensus on the absorption peak of AnC in the leaf spectrum as was reported by
Merzlyak et al. (2008) and Gitelson et al. (2001) to be around 540 nm to 550 nm. Results
of the present study are consistent with the literature in terms of the wavelength of
maximum absorption of AnC and CaR. The central wavelength for the anthocyanins
absorption feature was found to be at 559.09 nm while that of carotenoids centred at
457.34 nm.

Band depths indicate that chlorophyll absorption in polluted vegetation did not vary
significantly along transects but somewhat differed in their response to the concentration
of TPH in the soil. The band depth of known chlorophyll absorption features in the blue
channel (447.17 nm) which showed the most sensitivity to soil TPH increased as TPH
concentration decreased along polluted transects. The decrease may be due to the higher
species abundance observed along polluted transects (please see Section 4.3.2.4 of
Chapter 4) or diminishing TPH effect on chlorophyll synthesis as TPH concentration
decreased. In any case, the result is consistent with earlier reports such as Baruah et al.
(2014); Agbogidi, Eruotor and Akpoborie (2007) and Baker (1970) who maintained that
as the concentration of crude oil in the soil increased, the chlorophyll content in leaves

decreased. Hence, implying that higher doses of crude oil are more damaging to plants
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than lower doses due to increased anaerobic processes that inhibit the growth of enzymes

necessary for synthesising chlorophyll.

In segments along polluted transects, carotenoids (CaR) and anthocyanins (AnC)
absorption varied greatly (coefficient of variation = 40 - 55). Interestingly, the
anthocyanins and carotenoids correlated negatively with soil TPH rather than the
expected positive correlation. The correlation coefficients were -0.382, -0.34, -0.19 for
CaR1-3 respectively and -0.22 for AnCl and 2. The result may mean that the
concentration of TPH in the soil did not increase the production of these pigments in
plants; however, it may also have resulted from the reduced vegetation of the polluted
transects, particularly the spill epicentre where vegetation presence was near zero due to
fire. From the above, we can infer that AnC and CaR spectral behaviour is dependent on
vegetation abundance on polluted transects, and hence may not provide accurate

information on vegetation stress.

6.4.3 Effect of Oil Pollution on Vegetation Vigour

The NDV VI values obtained from this study provide further evidence of the deleterious
effect of oil pollution on vegetation. Vegetation productivity is linked to species richness
and diversity (Cardinale et al. 2012; Hooper et al. 2012; Cardinale et al. 2011; Vihervaara
et al. 2014; Mace, Norris and Fitter, 2012); hence these effects are likely to influence the
biodiversity of the polluted transects. Oil contamination affects vegetation through
various physical and chemical mechanisms. The intensity and extent of the adverse effect
of oil on vegetation depend on the type of oil, soil type and exposure, contact method
with vegetation, TPH concentration in the soil and the season (Hester et al. 2016; Michel
and Rutherford, 2014; Lin and Mendelssohn, 2012). Pezeshki et al. (2000) maintained
that the impact of oil pollution on vegetation increase with the volume of oil in contact
with vegetation. Hester et al. (2016) noted that there is an inflexion point at which
increased level of pollution results to irreversible damage to the plant. This pattern was
observed on the polluted transects in the present study where vegetation characteristics
such as taxa (species number), frequency, abundance and density increased along

transects as TPH concentration decreased.

Results of the species diversity and distribution analysis in Chapter Four established that

oil pollution significantly decreased species number, frequency, abundance and density
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of vegetation on impacted transects. Further proof of this adverse effect was evident in
the low NDVVI values extracted from polluted transects, affirming that the physical
changes in vegetation characteristics observed during the field study were reflected in the
spectral behaviour and detected remotely by the Hyperion sensor. The extraction of
higher NDVVI1 values from control transects than from the polluted transects resulted in
a significant difference (p<0.05) between them. Low NDVVI1 values indicate decreasing
chlorophyll absorption at the blue and red wavelength which may be attributed to reduced
species composition, abundance and health on transects while high NDVVI values
indicate the reverse. Since vegetation vigour characterises vegetation productivity and
health (Munyati and Ratshibvumo, 2011), it follows that the presence of TPH in polluted
transects adversely affected both traits in vegetation. Previous studies have shown that
changes in vegetation productivity and species diversity are common symptoms of
ecosystem distress. Rapport, Regier and Hutchinson (1985) noted that environmental
stress which includes oil pollution induce changes “in the size of dominant species,
species diversity and a shift in species dominance to opportunistic shorter-lived forms”.
Evaluation of the importance value index (IVI1) of vegetation on polluted and control
transects (see section 4.3.2.6 of Chapter Four) supported this assertion. The 1V for herbs
and shrubs (annual plants) was higher on polluted transects than on control transects,
whereas more tree species had higher VI values on control transects than on polluted
transects (Figure 4.11). Noomen et al. (2012) reported changes in vegetation pattern in
polluted fields, while Robson et al. (2004) found lower diversity indices for contaminated

sites than for uncontaminated sites.

As vascular plants are common biodiversity indicators in the ecosystem, any condition
that brings about drastic changes in vegetation (such as oil pollution) is bound to interfere
with the ecosystem composition, structure and functions. The modelling results of
vascular plants species diversity indices provide strong evidence of a relationship with
narrowband chlorophyll-related vegetation indices. This relationship is stronger with
NDVVI derived from hyperspectral wavelengths sensitive to soil TPH, hence,
emphasising the need for incorporating the new index in biodiversity monitoring and
conservation schemes. NDV VI is indicative of chlorophyll content and is hence a critical
plant biochemical parameter for vegetation productivity and health (Baruah et al. 2014;
Mishra et al. 2012; Curran, Dungan and Gholz, 1990). Not only did NDV VI significantly

differ between polluted and control transects, but it also strongly correlated with the
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vascular plants' species diversity. This result is consistent with Noomen et al. (2012) and
Robson et al. (2004), as well as Arellano et al. (2017), Behl, Donval and Stibor (2011)
(Arellano et al. 2017; Behl, Donval and Stibor, 2011; Carlson et al. 2007) were in
agreement with our results. Hence, the low NDVV|1 values found over polluted transects
can be attributed to reduced species composition, reduced abundance and deteriorating

health of the vegetation.

The need to clarify the mechanism defining relationships between vegetation reflectance
and species diversity remains primal, and several researchers have linked it to variations
in vegetation biochemical parameters. For instance, Asner et al. (2009) following their
study on airborne spectranomics reported that plant species have unique chemical
fingerprints which correspond with spectral and species diversity. The chemical
fingerprints are exhibited via differences in photosynthetic and photoprotective pigments,
water and leaf structure and remotely measurable. Similarly, Aneece, Epstein and Lerdau,
(2017) observed that interspecific variability in pigment (chlorophyll, anthocyanins, and
carotenoids) levels in plants contributed to species differentiation using spectral metrics.
Additionally, Clark and Roberts (2012) successfully classified seven tree species using
hyperspectral metrics derived from wavelengths sensitive to vegetation chemistry and
structure. Given these, the conclusion is that the superior performance of the NDVVI
variants in estimating vascular plants species diversity is due to the selection of particular
wavelengths that were sensitive to changes in vegetation biochemical parameters
(pigments) responding to oil pollution. This procedure not only extracted relevant
wavelengths from hundreds of hyperspectral wavelengths that are potentially redundant
but also reduced the presence of noise from the data. Jacquemoud et al. (1996) stated
that plant spectra might contain additional information unrelated to pigment

concentration.

High NDV VI values of predsites contrasted with the low NDVI values and suggest that
the new index is better at detecting vegetation presence than the NDVI in oil-polluted
regions. Due to the adverse effect of oil pollution on vegetation such as reduced growth
(Ogbo, Zibigha and Odogu, 2009; Chima and Vure, 2014; Lin and Mendelssohn, 2012)
and increased mortality (Kinako, 1981; Baruah and Sarma, 1996; Tanee and Albert,
2015); the NDV VI designed to have maximum sensitivity to soil TPH, detects even sparse

areas of vegetative growth/presence. Furthermore, the NDVVI variants successfully
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predicted the diversity indices for the randomly selected sites from the satellite image of the
study area. The low index values predicted for the swamps and water bodies are consistent
with expectations. According to Orji (2013), the waterways of the Niger delta harbour
invasive species, particularly the water hyacinth (Eichornia crassipes (Mart.) Solms). In
their work, (Hejda, PyAjek and JaroAjA-k, 2009) asserted that invasive species adversely
affect species richness, diversity and composition of invaded habitats. Hence, it is not
surprising that the diversity indices are low for those pixels even though green vegetation

is abundant.

Due to its ability to detect oil-induced stress in vegetation, the new NDVVI has potential
as a spectral metric for measuring changes in ecosystem functions, an essential
biodiversity variable as well as providing information about the condition and
vulnerability of ecosystems, a biodiversity indicator. These are valuable information for
effective biodiversity monitoring and protection. When incorporated in a temporal
analysis, the NDVVI can reveal the extent of habitat degradation resulting from oil
pollution. Since the variants were derived from remote sensing data, their application is
standardised, scalable and repeatable making it a handy tool to achieve some of the Aichi
2020 targets set by the United Nations Convention on Biological Diversity (CBD)
(Convention on Biological Diversity, 2010a). At local or regional scales, routine
application of the NDVVI over areas with oil installations will facilitate detection of oil
seepages, unreported spills and illegal bunkering activities. In essence, the index will
facilitate effective biodiversity monitoring and conservation by providing decision-makers
with relevant information on areas of high or low biodiversity. This information will ensure
the efficient management of meagre resources by reducing the frequency and scale of cost-

intensive field surveys.

6.5 Summary

This chapter focused on assessing the usefulness of Hyperion data (a hyperspectral sensor
onboard NASA's EO-1 satellite) in biodiversity monitoring schemes. In other words, the
study evaluated the performance of species diversity prediction models developed using
spectral indices derived from Hyperion data. Achieving this task required tackling the
research questions RQ2, RQ3 and RQ4 (listed in Chapter 2 Section 2.11.1, page 41). The
answer to these questions involved a diversity study of vegetation; an analysis of the

Hyperion image and regression analysis of both data sets. Non-parametric statistics were
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employed as the data did not fit the assumptions of a normal distribution. The preceding
analysis and results showed strong links between concentrations of soil TPH and the
biochemical and spectral properties of vegetation. Hyperion data analysis provided
evidence of crucial changes in the contents of leaf pigments necessary for photosynthetic
activities in plants, changes in vegetation health and productivity (vigour) and

successfully predicted the species richness and diversity indices of the study area.
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7 General Discussion, Conclusions and Future
Research

7.1 Introduction

This research has investigated applications of remote sensing to biodiversity monitoring
in oil-polluted areas within the Niger Delta region of Nigeria. As a biodiversity hotspot,
the degradation of the Niger Delta environment due to oil pollution is of major concern
(Oluduro, 2012; Ngoran, 2011), as it leads to the loss of livelihoods, properties and
national revenue (Ebegbulam et al. 2013; Nwachukwu, 2015; Oshienemen et al. 2018).
Most importantly, the youth restiveness and militancy of people in the Delta associated
with oil pollution-induced environmental degradation led to fatalities in recent years
(Watts, 2004; Obi, 2009; Orji, 2012; Adams and Ogbonnaya, 2014; Oshienemen et al.
2018). Members of affected communities feel disfranchised and dissatisfied with the
‘lacklustre efforts’ of oil companies and the Nigerian government to remedy the situation

(Okwoche, 2011; Aliyu and Ammani, 2011; Orji, 2012; Odoeme, 2013).

The overarching goal here was to develop tools for biodiversity monitoring, which are
standardised, replicable, scalable and accessible to all interested parties. With vascular
plant species as biodiversity indicators, four research questions (RQs) were investigated.
RQ1 tested the hypothesis that oil pollution adversely affected vascular plant species
composition (richness and diversity) and productivity (abundance and chlorophyll
content). RQ2 hypothesised that satellite sensors could detect vascular plants
susceptibility to oil pollution. RQ3 investigated the relationship between species diversity
and spectral diversity metrics derived from satellite data, and finally, RQ4 sought to
model the relationship between spectral metrics and species diversity to estimate vascular

plants species diversity in polluted locations.

7.2 General Discussion

Achieving the overarching aim of this study required a three-dimensional approach. This
included the application and evaluation of conventional field methods, analysis of
multispectral (MS) data and analysis of hyperspectral (HS) data. The conventional
methods provided useful field data, from which essential information including species
abundance, richness and diversity, soil properties and chlorophyll content) was deducted,
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encountered serious challenges (discussed in detail in Section 7.4.1.) during application
(vegetation survey and sample collection). Analysis of multispectral data yielded limited
information mainly on vegetation structure and distribution but lacked a detailed
representation of subtle changes in vegetation reflectance. The analysis of hyperspectral
data provided an in-depth revelation of vegetation response to oil pollution by
highlighting the changes in pigment concentration, thus overcoming the limitations of
MS data. The preceding sections present an all-encompassing discussion on the
processes, techniques and approaches adopted in developing remote sensing tools for

monitoring biodiversity in oil-polluted regions.

7.2.1 Application of Conventional Methods for Detecting Oil
Pollution

Laboratory analysis of physicochemical properties in soil samples collected form spill
locations revealed extreme levels of TPH (RQ1, RO1) which, also influenced other soil
properties including phosphorus, lead, organic matter and heterotrophic bacteria
populations in the soil. Oil pollution increases soil acidity (pH in polluted soil range from
6.15 to 8.02 according to Obire and Nwaubeta, 2002; Udeh, Nwaogazie and Momoh,
2013; Wang et al. 2013) and temperature by 1° to 2° C (Akubugwo, Elebe and Osuocha,
2016, Wang et al. 2013). The result from this study showed that the differences in pH
and temperature of polluted and control soils were insignificant. The more significant
effect of TPH on soil properties is in the depletion of nutrients such as phosphorus and
nitrates in polluted soil. Both electrical conductivity and phosphorus concentration in
polluted soil decreased substantially. This process renders the soil infertile for both
agricultural and conservation programmes, a factor that exacerbated poverty in the region

(United Nations Environmental Programme, 2011; Oluduro, 2012)

7.2.2 Application of Conventional Methods for Detecting the
Effects of Oil Pollution on Vegetation

The study commenced with a vegetation survey to determine the vascular plant species
diversity and create a baseline record for the study area (RQ1 and RO1). Comparing
diversity indices of polluted and control transects revealed significant differences and

validated the hypothesis that oil pollution adversely affects species diversity in the region.
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Oil pollution effects on soil properties were detrimental to vegetation growth and
productivity as significant differences were observed in frequency, abundance, richness,
diversity and chlorophyll content of vegetation between polluted and control transects.
Other researchers reported similar observations on oil polluted sites (Ogbo, Zibigha and
Odogu, 2009; Chima and Vure, 2014). Some vegetation losses were immediate due to
smothering by oil while others occurred over time due to nutrient depletion in soil
supporting their growth consistent with previous reports (e.g. Njoku, Akinola and Oboh,
2008; Ogbo, Zibigha and Odogu, 2009). The high number of rare plant species observed
in the study area is consistent with reports of biological endemism of the Niger Delta
(Emoyan, Akpoborie and Akporhonor, 2008), and re-emphasises the need for
biodiversity monitoring using indicator species. The acquisition of spectral signatures of
such rare or indicator species will facilitate the development of remote sensing tools for
managing biodiversity in the Niger Delta. The decrease in ecological importance of some
plant species following oil pollution triggered both ecosystem services and economic
losses, and in extreme cases, species extinction. Biodiversity loss is unacceptable globally
and has led to international treaties to protect biodiversity and the ecosystem services
they provide such as the United Nations Convention on Biodiversity (CBD) (United
Nations General Assembly, 2000)

Plant lifeform was a crucial factor in determining the vegetation response to oil pollution.
This study revealed that herbaceous perennial species were the most tolerant while
herbaceous annuals were the most vulnerable to TPH. Several tree species observed on
investigated transects were in secondary growth stages due to the presence of vast oil
distribution pipelines that criss-cross the study area (United Nations Environmental
Programme, 2011; Oluduro, 2012). The fragmentation of the ecosystem portends
additional danger for biodiversity in the region as organisms that rely on matured and
fully-grown tree species are forced to migrate to other areas, which may not be conducive
for their survival, hence accelerating extinction rates and increasing poverty among their
inhabitants. The food crop Manihot esculenta and creeping plant Paullinia pinnata were
dominant in all locations investigated, however, certain species performed better in
abundance on polluted transects than on control transects, which we attributed to the
reduced competition for resources. Considering the economic importance of Manihot
esculenta as a food and cash crop, further research into its survivability on polluted

transects and the impact of its consumption on human health becomes pertinent. Ifemeje
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and Egbuna (2016) showed that both the nutritional quality and shelf life of cassava fruit
from polluted transects decreased substantially. Oil pollution triggered a process of
resource partitioning for surviving species such that their importance value on polluted
and control transect did not differ significantly. Ecologists have demonstrated that plants
can extract and stabilise pollutants, which they store in their biomass (Glick, 2010; Ma et
al. 2011). This knowledge formed the basis for the practice of phytoremediation, that is
the removal of pollutants from soil using plant species (Wang et al. 2008; Nwaichi et al.
2015). Herbaceous species such as Perotis indica, Kyllinga erecta, Sida cordifolia were

revealed to have potentials for phytoremediation of polluted sites in this study.

7.2.3 Analysis of Multispectral (MS) Data for Detecting Oil
Pollution

Analysis of the MS dataset proved useful for detecting the presence of TPH in the soil.
Spectral metrics derived from high-resolution MS data revealed the adverse effect of TPH
on soil fertility measured as phosphorus and electrical conductivity. These metrics also
showed sensitivity to TPH as the relationship was stronger on polluted transects than on
control transects; however, the sensitivity of band metrics was greater, possibly due to
the influence of RGB bands on plant photosynthetic processes. TPH influence on
reflectance controlled the spectral diversity of the entire study area as demonstrated in
the significant negative correlation between spectral metrics and species diversity indices
of the study area. The increased habitat heterogeneity associated with oil spills may have
contributed to this phenomenon.

7.2.4 Analysis of Multispectral (MS) Data for Detecting the
Effects of Oil Pollution on Vegetation

Integrating remote sensing tools with field measurements yielded exciting results and
highlighted its potentials for biodiversity monitoring. Analyses of multispectral Sentinel
2A imagery using open-source software revealed the intricate connection between
vegetation biochemical parameters and their spectral signatures. Beginning with a test of
the spectral variability hypothesis (SVH), the study demonstrated its validity and
applicability in oil-polluted areas. However, results also revealed that the SVH is
sensitive to oil pollution effects on vegetation, given the linear relationship observed
between spectral diversity metrics and species diversity indices on both polluted and
control transects. On control transects, this relationship was expected because of the high
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species diversity, whereas, on polluted transects, an inverse relationship was expected
due to low species diversity. This interesting result was attributed to the increased habitat
heterogeneity following vegetation removal, waterlogging, and even burning of
contaminated surfaces (habitat disturbance). Previous studies (Arellano et al. 2015; Pysek
and Pysek, 1989; Jan Douda et al. 2012) show that these factors, measurable via remote
sensing, influence species diversity. On control transects, the variations in the internal
structures of different species such as pigments and tissues that produce unique spectral
signatures controlled the relationship between spectral metrics and species diversity
(Heumann, Hackett and Monfils, 2015). Previous studies testing the SVH achieved
success with one set of metrics (Warren et al. 2014; Hall et al. 2012; Rocchini,
Hernandez-Stefanoni and He 2015; Schmidtlein and Fassnacht 2017). This study,
however, demonstrated that a combination of metrics derived from different statistical
computations significantly strengthened the spectral diversity-species diversity
relationship enough to estimate the Simpson’s and Shannon’s indices for the study area

successfully.

7.2.5 Implications for Biodiversity Monitoring in the Niger
Delta region.

Oil pollution in the Niger Delta region of Nigeria poses an existential threat to the people
as well as the vast and diverse species of flora and fauna that inhabit the region. Results
of the present study demonstrated the relevance of incorporating remote sensing
technology in tackling critical environmental issues caused by oil pollution. The strength
of relationships between spectral diversity metrics and field measured species diversity
data can be exploited to develop solutions to environmental problems such as halting
species extinction through proper monitoring and conservation policies. The peculiar
condition of the Niger Delta region also demands alternative methods to traditional field
survey practices that endanger lives. The SVH lends itself to several applications
including regular inspection of ecosystem services and biodiversity. Warren et al. (2014)
noted that plant species diversity is an essential indicator of ecosystem health, which is
monitorable via the SVH.

The combination of spectral metrics showing strong relationships with species richness
and diversity measures may be useful for mapping the species distribution of a given

ecosystem. Schmidtlein and Fassnacht (2017) successfully implemented a similar project
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(2017) in mapping species occurrences in southern Germany using multispectral data.
Species distribution maps enhance conservation decisions such as site prioritisation based
on the structure and composition of plant communities revealed in the spectral variability
of the maps (Rocchini, Chiarucci and Loiselle, 2004).

Most importantly, the SVH is applicable in oil spill monitoring programmes to detect
occurrences. The result of this study showed a clear distinction in species composition of
polluted and control transects and this difference was apparent in the vegetation
reflectance. Such definitive characterisation will enhance the monitoring of changes in
polluted vegetation over time and space by applying the SVH over an area of interest.
Warren et al. (2014) detected changes in species composition of a habitat subjected to

different levels of disturbances.

7.2.6 Analysis of Hyperspectral (HS) Data for Detecting Oil
Pollution

Hyperspectral indices successfully detected TPH in the soil. Sensitivity analysis revealed
that in many wavelengths the response to oil pollution was significantly different between
polluted and control transects. Band depths of absorption maxima of pigments, NDVVIs
and red edge position (REP) index were inversely related to soil TPH. Greater R? values
existed between these indices and TPH than other field measurements including
chlorophyll content, vegetation abundance and diversity. The strength of this relationship
reflects the susceptibility of vegetation to TPH, which interferes with the spectral
signature. Models of this relationship are useful for detecting spill points and estimating
TPH concentration in the soil (Zhu et al. 2013). The REP indices successfully

discriminated between polluted and control transects with an overall accuracy of 84%.

7.2.7 Analysis of Hyperspectral (HS) Data for Detecting the
Effects of Oil Pollution on Vegetation

The development of prediction models for biodiversity monitoring in oil-polluted fields
from satellite imagery produced two distinctive outcomes. Firstly, with proof that
vegetation biochemical parameters are linearly related to spectral reflectance and
intricately linked to species diversity, models based on this relationship were validated
and implemented with reasonable success. Asner et al. (2009) and Aneece, Epstein and

Lerdau (2017) linked the mechanism driving the species-spectral diversity relationship
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to specific chemical fingerprints expressed as differences in plants photosynthetic and
photoprotective pigments, water and leaf structure. Secondly, oil pollution disrupts these
relationships substantially due to its deleterious effects (Scholten and Leendertse, 1991,
Beaubien et al. 2008; Noomen et al. 2012; Njoku, Akinola and Oboh, 2008; Chima and
Vure, 2014). This occurrence was apparent in the superior performance of NDVVI-based
models for predicting species diversity and productivity. Sensitivity analysis confirmed
that differences between polluted and control vegetation were amplified in chlorophyll
absorption maxima in the blue (440+10 nm) and red (640+10 nm) spectral channels.
These wavelengths were the most sensitive to TPH concentration in the soil. Although
abnormal levels of hydrocarbon in the soil cause detectable changes in the mineralogical
composition of the soil, this phenomenon was not investigated in this study as spectral
wavelength evaluated were limited to the VIS and NIR regions.

Improving remote sensing applications for biodiversity monitoring relies on the
availability of affordable hyperspectral and hyperspatial imagery. For low- and middle-
income countries such as Nigeria to achieve their biodiversity targets, the availability of
free or low-cost satellite data is imperative. Such valuable resources will ensure that
scarce funds are directed towards meeting the needs of other crucial aspects of the
National Biodiversity Strategy and Action Plans such as creating awareness amongst the

population on the importance of biodiversity.

7.2.8 Monitoring Oil Pollution Impact on Vegetation in
Kporghor Spill Area

The new hyperspectral indices derived from the Hyperion image performed not only
firmly in predicting the species diversity of the investigated area of study, but also much
better than the traditional narrowband indices (NBVIs). The overall best performing
model depended on indices that measured chlorophyll content in vegetation. This result
Is consistent with previous reports such as Asner, Martin and Suhaili (2012) as well as
Clark and Roberts (2012), who found strong links between the spectral diversity and
biochemical variations in vegetation. Clark and Roberts (2012) notably reported that
hyperspectral metrics, which respond to vegetation chemistry and structure, achieved the

highest accuracies in discriminating tree species in a tropical rainforest.

231



The study is further proof of the strong relationship between species diversity and
vegetation productivity in an ecosystem and offers a valuable resource for biodiversity
monitoring. Although the mechanism by which species diversity influences ecosystem
productivity is still a subject of much debate, what is sure is that the degradation of one
leads to the loss of the other (Chapin et al. 2000; Mace, Norris and Fitter, 2012; Mori,
Furukawa and Sasaki, 2013). Therefore, it is imperative that a uniform standard
procedure for monitoring biodiversity that provides valuable information to policymakers

remains a research focus among scientists.

The spatial map, which portrays the state of vegetation in the investigated area, is an
essential tool for monitoring biodiversity in the Niger Delta region, as well as on a larger
scale in areas prone to oil pollution. Considering the deleterious effects of oil pollution
on vegetation, as reported in previous literature, and confirmed by the results of the
present study, a combination of the derived hyperspectral metrics and baseline field study
will provide to investigators adequate information on how much the biodiversity of the
area is changing. These variables can be integrated into a time series analysis to detect
oil spill sites and areas worst affected by oil pollution. Such realistic approaches to
monitoring and preventing environmental degradation and loss of livelihood for
inhabitants of affected areas can help ameliorate the restiveness associated with oil spill
impacts. Change detection analysis can help to quantify in monetary terms the ecosystem

services lost to oil pollution and environmental degradation.

7.3 Conclusions

This section presents the overall findings from investigating the research questions

outlined in Chapter 2 Section 2.10.1 for each results chapter.

7.3.1 Effect of Oil Pollution on Vascular Plant Species in Rivers
State (RQ1 and RQ?2)

The main conclusion from this research is that oil pollution adversely affects biodiversity
and ecosystem services in Rivers State of Nigeria (RQ1, RO1, RQ2, RO2, C-4). Evidence
of this effect abounds in reduced vegetation physical (species abundance and diversity)
and biochemical (leaf chlorophyll) parameters observed on polluted transects, some of
which were measurable via remote sensing tools. Giving due consideration to these losses

when compensatory policies are implemented is highly recommended as it will go a long
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way in ameliorating the suffering of the indigenous population following oil spill
incidents, thereby reducing militancy and restiveness in the Niger Delta region of Nigeria.
Consequently, it is imperative that the rate and extent of oil spills are drastically reduced
to avoid further damage in the Niger Delta ecosystem. Furthermore, environmental
friendly remediation methods are encouraged to restore polluted areas to their pre-spill
status without further damaging the vegetation. These methods include phytoremediation

using TPH tolerant species such as revealed in this study.

7.3.2 Spectral Diversity Metrics for Detecting Effect of Oil
Pollution on Biodiversity (RQ2, RQ3)

Spectral metrics from Sentinel 2A validated the SVH and revealed the adverse effect of
TPH on vegetation (RQ2, RQ3, RO2, RO3, C-5). Models based on these metrics
estimated soil and vegetation parameters successfully. However, the species-spectral
diversity relationship was influenced by the presence of TPH in the soil, which
challenged the SVH as originally proposed in the literature. The results of the present
study imply that estimation of TPH concentration in polluted soil is possible remotely
without going to the field to obtain soil samples. This potential is very crucial in the Niger
Delta region of Nigeria where insecurity is a significant consideration in any field
activity. With the successful discrimination of polluted and control vegetation using
spectral diversity metrics, biodiversity monitoring over time and space is enhanced with

satellite data.

7.3.3 Species Diversity Models for Monitoring Biodiversity
(RQ4)
Hyperspectral data revealed subtle changes in vegetation reflectance that were
inconspicuous in the multispectral data (RQ2, RO2 C-4). These changes may have
resulted from oil pollution effect on pigment concentration including chlorophyll,
anthocyanins, and carotenoids, which appeared to have interfered with vegetation spectra.
The new index (NDVVI) derived from TPH sensitive Hyperion wavelengths
outperformed traditional NBVIs in predicting the species diversity of the area (RQ4,
RO4, C-6). The index provides an essential tool for monitoring biodiversity in oil-
producing areas that are always at risk of pollution thereby limiting the need for time-
consuming and cost-intensive field surveys. It also serves as a tool for early detection of

spills when carried out routinely. The red-edge position (REP) index, also computed from
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hyperspectral data, revealed vegetation response to oil pollution. There were obvious
significant differences in red-edge reflectance of polluted and control vegetation
attributable to the effect of hydrocarbon on chlorophyll absorption in the red channel of

the spectrum.

Furthermore, oil pollution adversely affected vegetation characteristics such as
abundance, and reduced reflectance at the REP. Despite the linear relationship between
REP reflectance and vegetation abundance and chlorophyll estimate, the regression
analysis showed that REP decreased for these parameters in the presence of soil TPH.
Finally, the REP index successfully classified investigated transects as polluted or control
with an overall accuracy of 84% which renders it a useful tool for detecting oil spills in

inaccessible vegetated terrestrial areas.

7.4 Challenges
7.4.1 Data Availability

One of the major challenges encountered in this study was the unavailability of
appropriate satellite data for the study area. Initially, very high-resolution data were
intended for use; however, the prohibitive cost of acquiring this type of dataset
discouraged their use. The Hyperion sensor acquired the only free hyperspectral data;
however, the spatial resolution of 30 m limited its usefulness.

7.4.2 Field Work

The human conflicts in the study area during the fieldwork campaign also hindered data
collection. The lack of support from the oil companies, despite a directive from the
regulatory agency, put the fieldwork team at risk of kidnapping and other dangers.
Attempts to collect as much as data as possible within short periods made species
identification in the field challenging; hence photographs were taken to herbariums for
their determination. This type of difficult conditions generally hinders academic research
in Nigeria. It is recommended that oil companies and other corporate organisations
support researchers as part of their social responsibility to society. Furthermore, the
regulatory agency should enforce commensurate penalties for companies failing to

adhere to directives to provide support for research.
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7.4.3 Image Processing Tools

Conscientious effort to utilise free software for most of the image processing demanded
the acquisition of new analytical skills. Most of the resources were available online and
through funded workshops. However, in reality, this is a severe challenge for local
researchers or stakeholders interested in applying remote sensing tools in monitoring the
effect of oil pollution on biodiversity. The internet connectivity and funding problems are

a significant hindrance to assessing these important analytical skill set.

7.5 Contribution to Knowledge

This research provides an overview of vascular plant species composition in Rivers State.
The vegetation survey of 20 locations in five LGAs across the State in difficult terrain
and insecure localities present a unique dataset that fills a gap in knowledge. This species
inventory is crucial for biodiversity conservation and management in the region. The
research in Chapter 4 identifies, on the one hand, oil-tolerant indicator species that are
essential for biodiversity monitoring of polluted areas and on the other hand, the
vulnerable species requiring protection through conservation policies. Vegetation species
with potential for phytoremediation in oil-polluted sites also were identified.
Phytoremediation is an environmentally friendly alternative clean-up method for
impacted locations.

The evaluation of remote sensing tools integrated with field data revealed the mechanism
through which oil pollution impact on vegetation productivity. The continuum removal
and band depth analysis in Chapter 6 Section 6.3.4 demonstrated that oil pollution inhibits
chlorophyll synthesis and radiance absorption, which triggers the production of
photoprotective pigments such as the anthocyanins manifested in the increased band
depth at the absorption maxima. Processing of satellite data also yielded indices (for
instance, the normalised difference vegetation vigour index computed from TPH-
sensitive Hyperion wavelengths) that may contribute to the development of essential
biodiversity variables (EBVs) for biodiversity monitoring. Analysis of the spectral
variability hypothesis (SVH) revealed the limitations of its application in
environmentally degraded highly diverse regions. The results supported the hypothesis
that habitats with higher species diversity have higher spectral diversity, but also that

habitat heterogeneity associated with oil pollution also supports high spectral diversity.
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This revelation is essential for efficient monitoring and management of biodiversity at
local, regional and global scales. Additionally, the study demonstrated that the estimation
of soil TPH is possible with a combination of spectral metrics in prediction models. This
may serve as a useful tool in monitoring oil pollution in hard to reach areas of the Niger

Delta region.

7.6 Future Research

Based on the results of the present research, there is potential to improve biodiversity
monitoring using satellite data. Future research projects may involve implementing the
species diversity models in other regions subjected to oil pollution to determine species
identification using very high spectral and spatial resolution imagery. Spectral library of
the indicator and dominant species in the study area can be acquired using the field
spectrometer provided the area is secured. The acquisition of spectral signatures of the
indicator and dominant species across the Niger Delta region of Nigeria will facilitate
biodiversity conservation and monitoring and help the country meet its National
Biodiversity Strategy and Action Plans. An area of hyperspectral remote sensing of
vegetation currently under-researched is the estimation of TPH from vegetation
reflectance. With the high dimensional hyperspectral data, investigating the shortwave
infrared (SWIR) where water and atmospheric absorption maxima occur may Yield
interesting tools for oil spill detection on forested areas. Additionally, the proximate
chemical composition of major food crops grown in the region needs investigating to
determine their safety for consumption, and links between these and general wellbeing

of inhabitants determined to facilitate the provision of health care services.
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8 Appendix

8.1 Description of Vegetation and Biodiversity
Measures

8.1.1 Species Taxa

Taxa is a measure of the counts of species occurring in each segment along investigated
transects. It provides an estimate of the species richness and diversity of the segments.

Determined from species inventory tally sheets.

8.1.2 Sorenson’s Similarity Index of Transects

Similarity index measures the degree of association or agreement of two entities or
variables, in this case, vegetation data from polluted and control transects (Warrens,
2008). In this study, segments of polluted and control transects across the entire study
area were clustered into groups based on their similarity index which, quantifies their
level of association concerning species composition. The formula for Serenson’s
similarity index (IS) is:

2MwW
MA+MB

IS = * 100

Where

MW = Sum of the smaller numbers of plant species common to the control and test
transects

MA = the sum of all plant species in the transect A

MB = the sum of plant species in the transect B

8.1.3 Number of Individual Plants

This is a measure of the abundance of each species observed per segment. The number

of individual plants per species was determined from tally sheets

8.1.4 Frequency

This is the probability of a plant species occurring in a given number of segments
(Bonham, 2013a). Frequency of species occurrence was used to detect any changes in
vegetation composition of polluted and control transects. Vegetation frequency was

calculated from species inventory data as:-
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number of segments in which species occured

Frequency =
g y number of segments investigated

8.1.5 Density

Also a measure of abundance defined as the number of individuals of a given species
occurring in a given sample unit. Density estimate are relevant for monitoring plant
responses to environmental disturbances (Bonham, 2013b). Density estimates for
observed species in the study area were calculated to identify vegetation responses to oil

pollution using the following formula:-

number .of individuals of the species in all the segments

Density =

Total number of segments studied

8.1.6 Importance Value Index

This is a measure of the ecological importance of a given species in an ecosystem. It is
frequently used to prioritise species for conservation purposes (Zegeye, Teketay and
Kelbessa, 2006), however, in this study, the IV of species was used to determine the
effect of oil pollution on vegetation structure by comparing the 1V of species on polluted
and control transects. 1Vl was calculated by summing the relative values of frequency
and density where

frequency of a given species N

Relative frequency = 100

sum frequency of all species
And

. . number of individuals of a species
Relative density = — *100
totalnumber of individuals

8.1.7 Indicator Species

Indicator species are organisms whose presence, absence or abundance provides an
ecological indication of community or habitat types, environmental conditions or
environmental changes (Céaceres et al. 2012). They can provide important information on
the type and volume of environmental pollution and other stressors. A good indicator
species is one that is both abundant in a specific type of habitat (specificity) and
predominantly found in this type of habitat (fidelity).

Indicator values of a species (i) at a given site (j) is calculated as

IndValij = Specificity;j * Fidelity;j * 100
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Where

IndValjj = indicator value of a given species (i) in relation to a (j) type of site
Specificityj; = proportion of sites ‘j” in which occurred species ‘i’

Fidelityij = the proportion of the number of individuals (abundance) of species ‘i’ that
occurred in site ‘j’

In this study, indicator value of species was calculated in R using the indicspecies package
developed by De Caceres and Jansen (2016), to identify species whose presence or

absence reveal the occurrence of oil pollution in the study area.

8.1.8 Species Occurrence Curve (SOC)

This is a measure of how individuals of a species are distributed among the sampling
units (segments). Species occurrence curve was used to visualise the distribution of
species in polluted and control segments and to determine the most frequently occuring
species. The curve is derived by plotting the cumulative count of species on the x-axis

and the number of plots on the y-axis.

8.1.9 Species Accumulation Curve (SAC)

Provide estimations of the number of species in a given habitat and is used to compare
the richness of different communities at comparable levels of sampling efforts (Dorazio
et al. 2006). In this study, the SAC was plotted to illustrate the differences in the species
richness of polluted and control transects.

8.2 Description of Vegetation Indices
8.2.1 Normalised Difference Vegetation Index (NDVI)

The NDVI originally derived by Pearson and Miller (1972) is a non-linear transformation
of the visible (red) and near-infrared bands of vegetation signals captured by remote
sensors. It is useful for the assessment of vegetation characteristics such as biomass
(AGB), leaf area index (LAI), the percentage of vegetation cover and the fraction of
absorbed photosynthetic active radiation intercepted (fPAR) (Pettorelli et al. 2005;
Adoki, 2012). Although factors including soil colour, atmospheric effects, illumination
and observation geometry affect the index, it remains the most widely used vegetation

index for analysing remotely sensed data. The NDVI can serve as a functional biotic
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indicator in biodiversity monitoring schemes (de Bello et al, 2010) NDVI is calculated

from the following formulae for broadband and narrowband respectively:

_ (NIR—Red)
NDVI = (NIR+Red)
(5)
R —R
NDV | = (Rgoo—Re70)
(Rgoo—Re70)
(6)
Where

NIR is the reflectance from the near-infrared band
Red/R is the reflectance from the visible red band(s)

8.2.2 Soil Adjusted Vegetation Index (SAVI)

The vegetation index adjusted for soil reflectance is for use in areas of sparse vegetation.
According to Huete (1988), the SAVI minimises “soil brightness influences from spectral
vegetation indices involving red and near-infrared (NIR) wavelengths” using the
parameter L. SAVI is calculated from the following formula for narrowband

savi= (1 + L) * (Rgoo—Re70)

(Rgoo+Re70+L)
(7)
And for broadband
RED
savi= NIR — * (1 + L)
NIR+ RED + L
(8)
Where

R is the reflectance at the listed waveband
NIR is the reflectance from the near-infrared band
L is the constant 0.5
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8.2.3 Red Edge Position (REP)

The Red Edge Position (REP) determines spectral vegetation reflectance by correlating
chlorophyll content with reflectance (Noomen, Van der Meer and Skidmore, 2005). It is
the inflexion point on the slope between the red absorption and the near-infrared
reflectance. Factors that affect plant health affect the chlorophyll content in leaves and
lead to increased reflectance in the red region. Studies show that decreasing leaf
chlorophyll causes the red edge position to shift towards shorter wavelengths (Noomen
and Skidmore, 2009). Whereas increasing chlorophyll content results in REP shifting
towards longer wavelengths in plants growing on polluted soils (Cho and Skidmore,
2006). There are several methods for calculating REP including maximum first
derivative, linear four-point interpolation technigue, polynomial fitting technique and the
inverted Gaussian fitting techniqgue (Noomen et al. 2012). In this study, REP
determination is from the maximum first derivative and linear interpolation method. The

formula for the linear method is based on Clevers (1994) and given as

REP = 700 + 40 % £rer—R700)
(R740—R700)

©9)

R +R
Where RREP - —6702 780

(10)

700 and 40 = constants resulting from interpolation in the 700 nm — 740 nm interval

R = reflectance at listed waveband.

8.2.4 Anthocyanin Reflectance Index (ARI)

Anthocyanins are water- soluble leaf pigments that determine how plants respond to
stress conditions in the environment. (Ustin et al. 2009). They frequently occur in higher
plants at the epidermal and mesophyll cells and are bio-synthesised in response to soil
contamination, extreme temperatures, pathogenic infections, nitrogen and phosphorus
deficiencies, wounding or other environmental stress factors occurring in plants.
Anthocyanins also screen out excess solar radiation from reaching the reaction centre.
They are stress indicators as well as mitigators (Hatier and Gould, 2008). Together with

chlorophyll contents in leaves, the anthocyanins provide essential information on the

241



health status of vegetation (Gitelson, Chivkunova and Merzlyak, 2009). The ARI is a
non-destructive method of estimating the leaf anthocyanins using data from remote

sensing.

Researchers determine leaf anthocyanin content using both broadband and narrowband
derived indices (Gitelson et al. 2001; Gitelson et al. 2006; Gitelson, Chivkunova and
Merzlyak, 2009; van den Berg, Abby K and Perkins, 2005). These indices are a
combination of reflectance values from spectral bands, which are sensitive to changes in
the anthocyanin content in leaves. Gitelson et al. (2008) compared the anthocyanin
estimation accuracy of a few prominent indices, and results showed that the anthocyanin
reflectance index (ARI) and its modified version (mARI) were most successful with the

least root mean square error (RMSE). The following equations are used to estimate both

indices
ARl = (—— ——=
Rgreen Rred—edge
(11)
1 1
mARI = ( - ) * Ryir
Rgreen Rred—edge
(12)
Where

Rgreen = is reflectance at the green waveband,
Rred-edge = reflectance at the red waveband.
Rnir = reflectance at the near infrared

8.2.5 Carotenoid Reflectance Index (CRI)

Carotenoids are plant pigments that help to protect plants from harmful and excessive
solar radiation and essential for photosynthetic functions in green plants. Unhealthy
vegetation contains higher concentrations of carotenoids, hence is an indicative measure
of stress in plants. Carotenoids strongly absorb light in the blue band and exhibit varying
degrees of reflectance at longer wavelengths (Gitelson et al. 2002). Several studies
assessing the sensitivity of spectral bands to pigment content have been carried out with
various indices suggested for estimating carotenoid content in plants (Chappelle, Kim
and McMurtrey, 1992; Blackburn, 1998; Pefiuelas and Filella, 1998) However, Gitelson
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et al. (2002) identified the limitations in these indices and proposed the following formula

for deriving carotenoid contents

CRI2 = (A51p) — (A750)
(13)

Where
As1o is reflectance at 510nm +/- 5
A700 is reflectance at 700nm +/- 7.5

Other important indices relevant to measuring total petroleum hydrocarbon effect (TPH)

effect on plant biochemical parameters include

Pigment Specific Simple Ration (PSSR)

Pigment Specific Normalised Difference (PSND)

Modified Chlorophyll Absorption Ratio Index (MCARI)
Transformed Chlorophyll Absorption Ratio Index (TCARI)

Maximum First Derivative Spectrum (deRES)

And so on (Zhu et al. 2013).

8.3 Supplementary Data
8.3.1 Laboratory Analytical Methods

This section describes the analytical methods utilized by the International Energy
Services Limited laboratory located at 34 Old Aba Road, Port Harcourt, Rivers State,
Nigeria to determine the various soil physico-chemical properties.

8.3.1.1 General Health and Safety Observations
A. Health Safety and Environment

e Hazards
- Toxic chemicals
- Glass breakage
- Chemical burns
- Generation of waste
e Personal protective equipment

All personnel must be aware of chemical handling technique. Wear the
appropriate personal protective equipment at all times in the work area. PPEs shall
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include laboratory coats, coverall, safety shoes, hand gloves and respiratory
masks.

8.3.1.2 Total Petroleum Hydrocarbons: EPA 8015

https://www.epa.gov/sites/production/files/2015-12/documents/8015d r4.pdf

8.3.1.3 Determination of Arsenic lon in Water
A. Purpose

This document describes the determination of arsenic ion in water in water
B. Scope

This document covers the determination of arsenic ion in fresh water, waste water and
sea water, associated hazards, personal protective equipment required and quality
control.

C. Methods

Atomic Absorption Graphite furnace, ASTM D 2972
D. Summary of Method

Water adjusted to approximately pH 8.3 is titrated with silver nitrate solution in the
presence of potassium chromate indicator. The end point is indicated by persistence
of brick red silver chromate color.

E. Apparatus

e Equipment
- Weighing balance
- Weighing boat
- Magnetic stirring bar
- Pipette filler
- Filter paper
- Graphite furnace

e Glassware
- Volumetric flask, 1L
- Graphite tubes
- Conical flask
- Burette
- Beakers
- Glass funnel