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Abstract

Sensorineural hearing loss (SNHL) is a common hearing disorder or deafness which accounts for

about 90% of the reported hearing loss. Magnetic resonance imaging (MRI) has been found to be an

effective neuroimaging technique for detecting SNHL. However, manual detection methods, mainly

based on the visual inspection of MRI, are cumbersome, time-consuming and need skilled super-

vision. Hence, there is a great need for the development of a computer-aided detection system for

fast, accurate and automated detection of SNHL. This paper presents a new method for automated

diagnosis of SNHL through brain MR images. Fast discrete curvelet transform is employed for

image decomposition. The features are extracted from various decomposed subbands at different

scales and orientations. A set of discriminant features is then derived using PCA+LDA algorithm.

A hybrid classifier is suggested using extreme learning machine and Jaya optimization with muta-

tion (MJaya-ELM) to distinguish hearing loss images from healthy MR images which overcomes the

drawbacks of traditional ELM and other learning algorithms for single layer feedforward neural net-

work. The concept of mutation has been introduced to conventional Jaya optimization (MJaya) for

improving the global search ability of the solutions by providing additional diversity. The proposed

system has been evaluated on a well-studied database. The comparison results demonstrate that

the proposed scheme outperforms the existing schemes in terms of overall accuracy and sensitivity

over different classes. The effectiveness of the proposed MJaya-ELM algorithm is also compared

with its counterparts such as PSO-ELM, DE-ELM, and Jaya-ELM, and the results indicate the

superiority of MJaya-ELM.
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Extreme learning machine (ELM), Jaya optimization with mutation (MJaya)

1. Introduction

Sensorineural hearing loss (SNHL) is a common hearing disorder, the root of which lies in

vestibulocochlear nerve, inner ear, and central auditory processing system [1]. The hearing disorder

can be either due to heredity or acquired and is caused because of several external factors like

trauma, noise, infection, etc. Generally, SNHL can be of three types such as neural hearing loss,5

sensory hearing loss and both [2, 3]. The diagnosis methods for SNHL mostly involve conventional

diagnostic techniques such as Weber test and Rinne test [4]. Research on SNHL [5, 6] show that

it degenerates the brain tissues and this atrophy can easily be detected from the brain magnetic

resonance (MR) images. However, the manual detection of this disease with the assistance of MRI

scanning is unpredictable, cumbersome and time-consuming.10

In past few years, significant efforts have been made to detect SNHL using computer vision

and AI techniques. For instance, Ikawa [7] has used Auditory brainstem response (ABR) indexing

for the diagnosis of hearing problems and brain functioning. He has employed 1D discrete wavelet

multiresolution analysis to reconstruct a waveform from a distorted waveform with low PSNR value.

Monzack et al. [8] have utilized the live confocal imaging techniques to trace the relationship between15

hair cell phagocytosis and sensorineural hearing loss. Nayak et al. [9] have proposed a new method

which combines 2D discrete wavelet transform (DWT), probabilistic principal component analysis

(PCA) and AdaBoost with random forests for pathological brain detection. In [10], the authors

have suggested an approach for pathological brain detection which employs DWT, Kernel PCA

and least squared support vector machine (LS-SVM) for feature extraction, feature reduction, and20

classification respectively. Wright et al. [11] have suggested an imaging technique on mouse cochlea

which utilizes the confocal imaging methods followed by 3D analysis using the Imaris software.

Wang et al. [12] have proposed an approach for SNHL detection which exploits fractional Fourier

transform (FRFT) for extraction of salient features. The Levenberg-Marquardt (LM) algorithm

is applied for training the single hidden layer feedforward network (SLFN) classifier. Vasta et25

al. [13] have employed Markov random fields (MRF) and Naïve Bayesian Classifier (NBC). Later,

Zhang et al. [14] have used stationary wavelet entropy (SWE) and SLFN for unilateral hearing

loss detection. Chen et al. [15] have recently developed an approach utilizing DWT features and

generalized eigenvalue proximal SVM (GEPSVM) classifier. In another contribution, Wang et

al. [16] have combined wavelet entropy (WE) and directed acyclic graph based SVM (DAG-SVM)30
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for identification of unilateral hearing loss. Liu et al. [17] have introduced an automated model based

on wavelet packet decomposition (WPD) and LS-SVM for detection of left and right sensorineural

hearing loss.

The key observations from the aforementioned literature are summarized as follows. DWT has

become a significant choice for feature extraction in most of the earlier approaches although it35

fails to capture directional features. DWT can capture features in limited directions which might

not sufficient to extract accurate edge information from MR images where edges are often curved.

Further, earlier studies [12, 14, 16, 17] mostly include feedforward neural network (FNN) and SVM

as classifiers. FNN, in general, uses gradient-based approaches such as backpropagation and LM for

training the parameters which pose several critical issues like slower convergence, getting trapped40

at local minima, and overfitting. SVM overcomes these problems of gradient descent learning,

however, suffers from high computational complexity.

In this paper, we have made an effort to develop an approach which aims at mitigating the

above issues. The main contributions of our work are outlined as follows.

(a) We exploit unequally spaced fast Fourier transform based fast discrete curvelet transform45

(FDCT-USFFT) to extract multi-directional features from the MR images.

(b) We employ PCA+LDA method to derive a reduced and more discriminant feature set.

(c) We introduce the concept of mutation to traditional Jaya optimization (MJaya) to alleviate a

large number of generations and search delay as well as improve the global search capability of

the solutions.50

(d) To overcome the issues caused by conventional classifiers, we use extreme learning machine

(ELM) in the current study which provides good generalization performance at faster learning

speed. Besides, we develop a novel learning algorithm for SLFN by hybridizing ELM with

MJaya (MJaya-ELM) which primarily focuses on improving the generalization performance of

standard ELM.55

The remainder of this paper is structured as follows. We provide the descriptions of the ma-

terials used for simulation in Section 2. The proposed methodology is detailed in Section 3. The

experimental results and comparisons are presented in Section 4. Eventually, we conclude this pa-

per in Section 5. For the ease of reading, the acronyms used in this paper are defined in Table A.1

(please refer to the appendix).60
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2. Materials

The study includes 49 subjects among which 14 cases belong to right-sided hearing loss (RHL),

20 cases belong to healthy controls (HC), and 15 cases belong to left-sided hearing loss (LHL).

The sample MRI scans from three different categories of hearing loss are shown in Figure 1. The

considered dataset is moderate sized and the results obtaining from it is convincing. This study65

was approved by the Ethics Committee of Southeast University, and a signed informed consent

form was obtained from every subject prior to entering this study.

We utilized a clinical audiometer to perform pure tone audiometry with six different octave

frequencies (0.25, 0.5, 1, 2, 4 and 8 kHz) in order to measure the pure tone average (PTA) and

reflect hearing performance. All patients were diagnosed with unilateral hearing loss (UHL) with70

hearing deficit in either unilateral ear (PTA ≥ 40 dB) and normal hearing in both ears (PTA ≤

25 dB). The patients included were all right-handed and their ages are between 41 and 60. For

each patient, the hearing loss was sudden and persistent. None of them used a hearing aid on the

impaired ear. Table 1 shows the parametric details of the dataset.

(a) Healthy controls (b) Left-sided hearing loss (c) Right-sided hearing loss

Figure 1: Different categories of hearing loss MR images

Table 1: Subject characteristics
Parameter HC RHL LHL
Age (year) 53.6 ± 5.4 53.9 ± 7.6 51.7 ± 9.6
Duration of disease - 14.2 ± 14.9 17.6 ±17.3
Gender (f\m) 12 \ 8 8 \ 6 7\ 8
Level of education 11.5±3.2 12.1±2.4 12.5±1.7
PTA of right ear (dB) 21.3±2.2 80.9±17.4 20.4±4.2
PTA of left ear (dB) 22.2± 2.1 21.8±3.2 78.1±17.9
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3. Proposed methodology75

In this section, we discuss the proposed methodology for automated detection of SNHL. As

shown in Figure 2, there are four major steps involved in detection process: (i) preprocess the MR

hearing loss images based on brain extraction tool (BET) (ii) extract the salient features based on

FDCT-USFFT, (iii) derive the reduced and significant features based on PCA+LDA method, and

(iv) classify the images based on a novel MJaya-ELM algorithm. Each step is described in detail80

in the following.

Figure 2: Detailed block diagram of the proposed approach

3.1. Preprocessing

For preprocessing, we have used the FMRIBS Software Library (FSL) v5.0. The skull is sepa-

rated from the brain tissues using the brain extraction tool (BET). Further, with the help of FLIRT
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and FNIRT tools, the preserved brains were normalized to a standard Montreal Neurological Insti-85

tute (MNI) template. Gaussian kernel is then used to perform smoothing of the normalized brain

images. The most distinctive slice (around 40th slice) has been utilized to conduct the experiments

as per the instruction of experienced neurologists. The results obtained from BET in three different

planes are illustrated in Figure 3. It is worth mentioning here that the axial MR images (shown in

middle of the figure) are taken into consideration for feature extraction.

Figure 3: BET results
90

3.2. Feature extraction

Due to the notable characteristics like time-frequency localization and multiresolution, the

wavelet transform has been extensively applied for feature extraction. It shows better perfor-

mance in capturing 1D singularities; however, it fails to capture 2D singularities (line, curves,

etc.) from the images. The line singularity issue is resolved by ridgelet transform (RT), but it95

could not effectively deal with the curve singularities. In contrary, the first-generation curvelet

transform efficiently handles 2D singularities. The salient characteristics of curvelet transform as

a feature extraction tool are– multiresolution, high directional selectivity, anisotropy and localiza-

tion, and therefore it has gained considerable attention from researchers in recent years [18, 19].

More recently, second-generation curvelet transform is introduced to overcome the problems faced100

by the standard curvelet transform such as the unclear geometry of ridgelets and more time-

consuming [20, 21].

Let g be a 2D signal, then the curvelet transform can be stated via inner product as

C(α, β, γ) = ⟨g, ϕα,β,γ⟩ (1)

Here, ϕα,β,γ indicates the curvelet basis function, α, γ, and β denote the scale, position, and

direction (orientation) parameter respectively. The curvelet transform decomposes the image into
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a number of windows at various scales and orientations. The discrete form of curvelet transform105

for an Cartesian array g[x1, y1] with 0 ≤ x1, y1 < n is defined as

CD(α, β, γ) =
∑

0≤x1,y1<n

g[x1, y1]ϕD
α,β,γ [x1, y1] (2)

where, ϕD
α,β,γ indicates a digital curvelet waveform. The proposed approach makes use of second-

generation curvelet transform, also called as fast discrete curvelet transform (FDCT), for deriving

features from MR images. There exist two procedures to implement FDCT such as wrapping

based FDCT (FDCT-WR) and unequally spaced fast Fourier transform based FDCT (FDCT-110

USFFT). In contrast to first generation curvelets, these two procedures are fast, simple, and less

redundant. In this study, we have considered FDCT-USFFT as the feature extractor since it

provides proper discretization of the continuous definition. In addition, compared to other relevant

image transforms, FDCT-USFFT has the capability to capture multi-directional features which are

essential for MR image classification.115

Feature vector generation. To generate the feature vector, at first we have decomposed the MR

images using FDCT-USFFT. Then, the coefficients of different subbands at each scale α and ori-

entation β are collected. The number of scales (s) for an image with size nr × nc is decided as [20]

s = ⌈log2(min(nr, nc))− 3⌉. (3)

For example, s is computed as 5 for an MR image with resolution 256×256. Another parameter,

the number of orientations (or angles) (L) at coarsest level is set as 16. With these settings, FDCT-

USFFT generates 32, 32 and 64 angles at scale 2, 3 and 4 respectively. It is well-known that curvelet

at angle β and β + π generates similar information. Therefore, we have discarded the coefficients

of the symmetric subbands at scale 2, 3 and 4 which on the other hand helps in removing the120

redundant features from the original feature set. The final feature vector is then obtained by

collecting a set of largest coefficients from the chosen subbands. The steps involved in the feature

extraction method are described in Algorithm 1.

3.3. Feature reduction

It has been observed that the dimension of the resultant feature vector is relatively large than125

the number of samples that we consider in this study. Feature reduction methods help in reducing

computational burden, visualizing data and improving the classification performance. In the past
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Algorithm 1 Feature extraction using FDCT-USFFT method
Input: Input image: g[x1, y1]; 0 ≤ x1, y1 < n, L, s

Output: Feature vector Fv

1: Apply 2D FFT on input g[x1, y1] and generate its Fourier coefficients ĝ[n1, n2] as

ĝ[n1, n2] =
n−1∑

x1,y1=0

g[x1, y1]e
−i2π(n1x1+n2y1)/n; −n/2 ≤ n1, n2 < n/2

2: For each scale and angle pair (α, β), interpolate ĝ[n1, n2] to generate sample values ĝ[n1, n2 −

n1 tan θβ]

3: Perform multiplication of the interpolated object ĝ with the parabolic window Ũα

g̃α,β[n1, n2] = ĝ[n1, n2 − n1 tan θβ]Ũα, ĝ[n1, n2]

4: Obtain the discrete curvelet coefficients CD(α, β, γ) by applying inverse 2D FFT to each g̃α,β

5: Discard the symmetric subbands from each scale except first and last scale

6: Collect v largest coefficients from each of the chosen subband and construct a feature vector Fv

decades, PCA and linear discriminant analysis (LDA) have attracted tremendous attention from

researchers for feature dimensionality reduction. While applying LDA on a high dimensional and

small sample size problem, the within-scatter matrix (Sw) becomes always singular [22, 23] and in130

this case, at least D + C (where D indicates the dimension of the feature vector and C indicates

the number of classes) number of samples is required to confirm that the Sw is not singular which

is not achievable practically in general. To address this issue, we have employed an approach

called PCA+LDA [23], where we at first employ PCA to reduce a D-dimensional data to an M -

Algorithm 2 Feature reduction using PCA+LDA
Require: Input feature matrix: F of size N ×D (N : number of training samples)

Ensure: Reduced feature matrix: F̂ of size N × l

◃ Functions pca(.) and lda(.) denote PCA and LDA methods respectively

1: Choose a dimension M ◃ PCA method

2: F′(N ×M)← pca(F,M)

3: Select a dimension l ◃ LDA method

4: F̂(N × l)← lda(F′, l)

5: Output the reduced matrix F̂
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dimensional data and then LDA is applied to reduce to a l-dimensional data, l << M < D. The135

overall steps of PCA+LDA method are listed in Algorithm 2.

3.4. Classification using MJaya-ELM

To overcome the limitations of standard gradient-based learning schemes, Huang et al. [24]

have proposed a simple non-iterative learning paradigm (called as ELM) for single-hidden layer

feedforward neural networks (SLFNs). Because of its faster learning ability, ELM has been applied140

in a wide range of applications [25]. ELM tends to reach the smallest training error as well as

the smallest norm of the output weights. It is well-known from Bartlett’s theory [26] that for

feedforward neural networks arriving at smaller training error, the smeller the norm of the output

weight is, the better generalization performance of the networks tend to acquire. ELM needs only

one hyperparameter (i.e., output weights) to determine mathematically as the hidden biases and145

input weights are generated randomly. It is noted here that the Moore-Penrose (MP) generalized

inverse operation is usually used to determine the output weights.

Let N be the number of training samples (xi, yi), where xi = [xi1, xi2, . . . , xil]
T ∈ Rl and

yj = [yi1, yi2, . . . , yiC ]
T ∈ RC , hn be the number of hidden neurons and ϕ(.) be a limiting function.,

then the basic ELM algorithm is enumerated in three-steps as follows.150

1. Randomly initialize the input weights and biases (hwz ,bz), z = 1, 2, . . . , hn

2. Calculate the hidden layer output matrix H

3. Calculate the output weight matrix ow = H†Y

where, H† denotes the MP generalized inverse of matrix H. The size of H, ow and Y are N × hn,

hn × C and N × C respectively.155

ELM poses two major issues because of the random generation of hidden biases and input

weights [27]: (i) it needs more hidden neurons and (ii) it causes an ill-conditioned hidden layer

output matrix H. These issues cause ELM to respond slowly on unknown testing data and induce

poor generalization performance. The conditioning of a matrix can be measured by a well-known

metric called 2-norm condition number and is defined in Section 4. A few pieces of works have been160

proposed in the literature to address the issues of standard ELM [27, 28, 29, 30, 31, 32]. In these

works, several meta-heuristic techniques such as genetic algorithms (GA), differential evolution

(DE) and PSO, are hybridized with ELM to optimize its hidden node parameters, while the MP

generalized inverse is employed to find the output weights. These meta-heuristic approaches involve

hyperparameter tuning as their performances are strongly influenced by the hyperparameters. In165
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this paper, we have hybridized ELM with a recent meta-heuristic technique called Jaya which in

general does not require any hyperparameter tuning in the optimization process.

Jaya is a simple optimization scheme proposed by Rao [33]. “Jaya” is a Sanskrit word which

means “victory”. Unlike other optimization schemes, Jaya is not dependent on any algorithm-

specific parameters. The principle behind Jaya is that it always pulls the solution towards the best

solution by avoiding the worst solution. Hence, the solution update equation requires both the best

and worst solution and is defined as

P ′
j,d(k) = Pj,d(k) + r1,d(k)(Pbest,d(k)− |Pj,d(k)|)− r2,d(k)(Pworst,d(k)− |Pj,d(k)|) (4)

where, Pj,d(k) indicates the value of the dth variable for the jth solution during kth iteration,

Pbest,d(k) and Pworst,d(k) denote the value of dth variable for the best and worst candidate solu-

tion during kth iteration, n indicates the number of candidate solutions (i.e., j = 1, 2, . . . , n), m

indicates the number of variables (i.e., d = 1, 2, . . . ,m), k indicates the iteration number (i.e.,

k = 1, 2, . . . ,MAXitr), MAXitr is the maximum number of iterations, and r1,d(k) and r2,d(k) are

the two random numbers in the range [0, 1] for dth variable at iteration k. The second term in

Eq. 4 pulls the solution towards the best solution and the third term pushes the solution away

from the worst solution. For a minimization problem, the final decision is made using the following

condition [34].

Pj,d(k + 1) =


P ′
j,d(k) if f(P ′

j,d(k)) < f(Pj,d(k))

Pj,d(k) otherwise
(5)

The prime objective of all candidate solutions of Jaya algorithm in each iteration is only to find

better solution compared to the previous worst value and this behavior delineates that all candidates

of Jaya algorithm are suffering from lack of strong determination and dedication to quickly track

the global best solution [34]. In order to control this phenomenon, we have introduced a polynomial

mutation operator to Jaya algorithm (MJaya). The mutation operator provides additional diversity

and thereby, improving the search toward the global best solution. Let P be a solution and the

mutated solution P ′ is given by

P ′ =


P + [2 ∗ rand(.)]

1
µ+1 − 1 if r ≤ 0.5

P + 1− [2 ∗ (1− rand(.))]
1

µ+1 if r > 0.5

(6)

where, r is a random number in the range [0,1] and µ is the user-defined mutation variable. In

MJaya, we select a random candidate solution and add some random perturbation to it by a
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mutation probability. The overall steps involved in the proposed MJaya algorithm are outlined in170

Algorithm 3.

Algorithm 3 Proposed MJaya algorithm
1: Initialize a set of random candidate solutions (Pj)

2: Calculate the fitness of each solution

3: Find the best candidate solution (Pbest) and worst candidate solution (Pworst)

4: while (t < MAXitr) do

5: for each candidate solution do

6: Modify the solution using Eq. (4)

7: Update the solution if the modified solution is better than previous solution using Eq. (5)

8: end for

9: Compute the fitness of each updated solution

10: Update Pbest and Pworst

11: Initialize r11, r12, mp, and µ ◃ Mutation

12: Select a random candidate solution (Prnd)

13: if (r11 < mp) then

14: if (r12 ≤ 0.5) then

15: P ′
rnd = Prnd + [2 ∗ rand1(.)]

1
µ+1 − 1

16: else

17: P ′
rnd = Prnd + 1− [2 ∗ (1− rand2(.))]

1
µ+1

18: end if

19: if (f(P ′
rnd) is better than f(Prnd)) then

20: Prnd = P ′
rnd

21: if (f(P ′
rnd) is better than f(Pbest)) then

22: Pbest = P ′
rnd

23: end if

24: end if

25: end if

26: end while

27: Return Pbest

In the above algorithm, the parameters r11, r12, rand1(.), rand2(.) represent four different

11



random numbers in the range [0,1], rnd denotes a random number between 1 to n (where n is the

number of candidate solutions), mp indicates the mutation probability, and µ dictates the mutation

variable.175

MJaya-ELM is a hybridization of ELM and MJaya optimization in which MJaya is employed

to determine the optimal values of the input weights and hidden biases. In this study, we have

also verified the effectiveness of Jaya-ELM algorithm which is a hybridization of ELM and standard

Jaya algorithm. MJaya searches the global optima with the support of both the norm of the output

weights and the root-mean-squared error (RMSE) to improve the generalization performance. The180

main motive is to ameliorate the convergence performance by minimizing the norm of the output

weights and adjusting the solutions in a specified range. Besides, MJaya algorithm attempt to

establish a well-conditioned and compact SLFN. The proposed MJaya-ELM algorithm is detailed

as follows.

(a) Randomly initialize candidate solutions in the population, each solution consists of a set of

input weights and hidden biases in the range [-1,1] as

Pj =
[
hw11, h

w
12, . . . , h

w
1l, h

w
21, h

w
22, . . . , h

w
2l, h

w
hn1, h

w
hn2, . . . , h

w
hnl, b1, b2, . . . , bhn

]
(7)

(b) For each solution, compute ow (ow = H†Y) and fitness on the validation set as

f() =

√√√√√ Nv∑
i=1
||

hn∑
z=1

owz ϕ(h
w
z · xi + bz)− yi||22

Nv
(8)

where, Nv indicates the number of validation samples.185

(c) Find the best candidate solution Pbest and worst candidate solution Pworst.

(d) Modify each solution using Eq.( 4).

(e) Check whether the solutions go beyond the search space i.e., [-1, 1]

P ′
j,d(k) =


−1 if P ′

j,d(k) < −1

+1 if P ′
j,d(k) > +1

(9)

(f) Calculate the fitness of modified solutions and check the following condition to find the solution

for next generation

Pj(k + 1) =


P ′
j(k)

(
|f(Pj(k))− f(P ′

j(k))| < ϵf(Pj(k)) and ||owP ′
j
|| < ||owPj

||
)

Pj(k) otherwise
(10)
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where, f(Pj(k)) and f(P ′
j(k)) are the fitness of candidate solution j and its corresponding190

modified solution respectively, ||owPj
|| and ||owP ′

j
|| represent the norm of the output weights of

solution j and its modified solution respectively, and ϵ > 0 denotes a user-defined tolerance

rate.

(g) Update Pbest and Pworst.

(h) Initialize two random numbers r11 and r12, mutation probability mp and a user-defined param-195

eter µ.

(i) Select a random solution from the updated candidate solutions and apply mutation to it (using

steps 13 to 25 in Algorithm 2), and update the solution if there is better solution.

(j) Repeat (d)-(i) until the maximum number of iterations reached. Eventually, obtain the optimal

input weights and hidden biases.200

The proposed method tends to achieve a smaller norm of the output weight as we decide the

optimal solution using Eq. (10). The lower the norm value of output weights is, the lower is its

corresponding condition value of H. Summarizing, the benefits of the proposed MJaya-ELM are:

(i) it generates a well-condition matrix, (ii) it provides a lower norm value, and (iii) it offers greater

generalization performance with a compact SLFN architecture.205

4. Results and discussion

All the programs were developed using MATLAB 2017a and were run on a PC with 16 GB RAM,

3.5 GHz processor, and Windows 10 OS. In order to derive fair comparisons, we kept the statistical

set up similar to the competent schemes. That is, we used 5-fold stratified cross-validation strategy

in this study and repeated the procedure for 10 times [14, 15]. In each trial, out of 5 folds, three210

folds are used for training, one fold each for validation and testing.

To facilitate the performance comparison between our proposed approach and other competent

approaches, several evaluation metrics such as sensitivity (Se), specificity (Sp), precision (Pr) and

overall accuracy (Ao), are taken into consideration. Moreover, we used two additional measures

such as norm and 2-norm condition number to evaluate the proposed classifier and its counterparts.

The 2-norm condition number of the matrix H is calculated as

K2(H) =

√
λmax(HTH)

λmin(HTH)
(11)

where, λmin(H
TH) and λmax(H

TH) are the smallest and largest eigenvalues of matrix HTH.
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The result of preprocessing is illustrated in Figure 4. Figure 4(a) shows a sample LHL MR

image and Figure 4(b) depicts its corresponding brain extracted image. It can be observed that

the BET tool efficiently removes the skull and other unwanted areas from the MR image.

(a) Original scanning image (b) Brain extracted image

Figure 4: Sample LHL MR image and its preprocessing result obtained from BET

215

Next, we derived the features from the preprocessed images using FDCT-USFFT decomposition.

We set the parameter s to 5 based on Eq. (3) and L to 16 since the results were found ideal with

these values. Figure 5 depicts the FDCT-USFFT decomposed subbands at different scales and

angles for an LHL MR image with s and L values 5 and 16 respectively. It is observed that a

total of 130 subbands are obtained using FDCT-USFFT decomposition, out of which 66 subbands220

(excluding 64 symmetric subbands) are taken into account for feature extraction. To construct

the feature vector, we collected v largest coefficients from each selected subband rather than all

coefficients. The v value was determined experimentally as 20 and therefore, the dimension of the

feature vector is 1320 which is relatively larger than the number of samples.

Thereafter, we employed PCA+LDA algorithm to reduce the dimensionality of the feature

vector and obtain a more discriminative feature set. The value of M is set to N − 1, where N

is the number of training samples. The value of l is computed using a well-known measure called

normalized cumulative sum variance (NCSV) [21] which is defined as

NCSV (a) =

a∑
j=1

λ(j)

M∑
j=1

λ(j)

, 1 ≤ a ≤M (12)

where, λ(j) represents the eigenvalue of the jth feature and M denotes the total number of the225
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(a) Sample MR image (b) FDCT decomposed subbands

Figure 5: Illustration of a sample hearing loss image and its FDCT coefficients at different scales and orientations

eigenvectors (features) sorted in descending order. A threshold value was manually set and the

number of features (for instance l) for which the NCSV value surpasses the threshold were selected.

In this study, the threshold value was empirically set as 0.95 and the reduced number of features

(l) was obtained as 2.

Eventually, the proposed MJaya-ELM algorithm is employed to perform classification. The230

performance of MJaya-ELM is compared with its counterparts such as PSO-ELM, DE-ELM, Jaya-

ELM, and standard ELM. For fair comparison purpose, we used the same number of iterations

(i.e., 30) and population size (i.e., 20) in all these methods. The inputs to all the methods were

normalized into the range [-1,1] and the sigmoid function was used as the activation function. The

value of ϵ in Eq. (10) was set to 0.02. The parameters mp and µ were set to 0.5 and 20 respectively.235

The parameters of DE and PSO were set as follows. In PSO-ELM, c1 and c2 were set to 2, while

in DE-ELM, the scaling factor (F ) and crossover rate (Cr) were set as 0.8 and 0.7 respectively.

Table 2 shows the performance comparisons among all the classifiers in terms of classification

accuracy, number of hidden neurons, norm of output weights, and condition number. It is observed

that the proposed MJaya-ELM classifier achieves greater classification accuracy than its counter-240

parts with only two neurons. The proposed method also obtains the smallest norm and condition

number compared to others which ensures better generalization performance. It can also be noticed

that the standard ELM yields the smallest accuracy and requires more hidden neurons in compari-

son to others. A competitive performance is noticed among PSO-ELM, DE-ELM, and Jaya-ELM

methods, however, an improved performance is observed with MJaya-ELM when compared with245
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Table 2: Performance comparisons of the proposed classifier with its competent methods
Classifiers Ao (%) hn ||ow|| Condition number (K2)
ELM 96.94 4 56.0127 3.4217e+03
PSO-ELM 97.96 2 13.6560 14.9558
DE-ELM 98.78 2 9.1835 11.3077
Jaya-ELM 98.57 2 9.4641 11.9539
MJaya-ELM (Proposed) 99.18 2 6.3225 7.7380

Table 3: Fold-wise statistical results for MJaya-ELM method
Run Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Total Ao(%)

R-1 3/4/3 3/4/2 3/4/3 3/4/3 3/4/3 15/20/14 100.00
3/4/3 3/4/2 3/4/3 3/4/3 3/4/3 15/20/14
10 (10) 9 (9) 10 (10) 10 (10) 10 (10) 49 (49)

R-2 3/4/3 2/4/3 3/4/2 3/4/3 3/4/3 14/20/14 97.96
3/4/3 3/4/3 3/4/2 3/4/3 3/4/3 15/20/14
10 (10) 9 (10) 9 (9) 10 (10) 10 (10) 48 (49)

R-3 3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14 100.00
3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14
9 (9) 10 (10) 10 (10) 10 (10) 10 (10) 49 (49)

R-4 3/4/3 3/4/3 3/4/1 3/4/3 3/4/3 15/20/13 97.96
3/4/3 3/4/3 3/4/2 3/4/3 3/4/3 15/20/14
10 (10) 10 (10) 8 (9) 10 (10) 10 (10) 48 (49)

R-5 3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14 100.00
3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14
9 (9) 10 (10) 10 (10) 10 (10) 10 (10) 49 (49)

R-6 3/4/2 3/4/3 3/4/3 3/4/3 3/4/2 15/20/13 97.96
3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14
9 (9) 10 (10) 10 (10) 10 (10) 9 (10) 48 (49)

R-7 3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14 100.00
3/4/2 3/4/3 3/4/3 3/4/3 3/4/3 15/20/14
9 (9) 10 (10) 10 (10) 10 (10) 10 (10) 49 (49)

R-8 3/4/3 3/4/2 3/4/3 3/4/3 3/4/3 15/20/14 100.00
3/4/3 3/4/2 3/4/3 3/4/3 3/4/3 15/20/14
10 (10) 9 (9) 10 (10) 10 (10) 10 (10) 49 (49)

R-9 3/4/2 3/4/3 3/4/2 3/4/3 3/4/3 15/20/13 97.96
3/4/3 3/4/3 3/4/2 3/4/3 3/4/3 15/20/14
9 (10) 10 (10) 9 (9) 10 (10) 10 (10) 48 (49)

R-10 3/4/3 3/4/3 3/4/3 3/4/3 3/4/2 15/20/14 100.00
3/4/3 3/4/3 3/4/3 3/4/3 3/4/2 15/20/14
10 (10) 10 (10) 10 (10) 10 (10) 9 (9) 49 (49)

Total 149/200/137 99.18
150/200/140
486 (490)
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Jaya-ELM. To draw fair comparisons, the number of hidden neurons were kept similar for PSO-

ELM, DE-ELM and Jaya-ELM classifiers. The overall accuracy of the standard ELM with only two

neurons was also evaluated and found significantly smaller as compared to others, i.e., 80.00%. It

is evident from the results that the concept of mutation to conventional Jaya optimization ensures

better performance.250

The results of correctly predicted samples in each fold obtained by the proposed MJaya-ELM

method are tabulated in Table 3. In the table, a/b/c represents the correctly classified samples for

class LHL, HC and RHL respectively, whereas a/b/c (in bold font) indicates the total number of

samples in each fold. It is worth mentioning here that a total of 490 samples (150 LHL, 200 HC,

and 140 RHL) are possible with 10 repetitions of 5-fold cross-validation strategy. The proposed255

system is able to correctly classify 486 samples (149 LHL, 200 HC, and 137 RHL) which accounts

an overall accuracy of 99.18%.

The confusion matrices of the proposed MJaya-ELM, Jaya-ELM, DE-ELM, PSO-ELM and

standard ELM methods are illustrated in Table 4, 6, 8, 10, and 12 respectively. The TP (true

positive), TN (true negative), FP (false positive), FN (false negative) values, and the performance260

metrics computed using these four parameters for all the classifiers are listed in Table 5, 7, 9, 11,

and 13. It is evident from the tables that the proposed MJaya-ELM obtains superior performance

than its counterparts such as Jaya-ELM, DE-ELM, PSO-ELM and standard ELM. However, a

competitive performance is observed with DE-ELM and Jaya-ELM.

Table 4: Confusion matrix of proposed MJaya-ELM method
Predicted class

LHL HC RHL

Target class
LHL 149 1 0
HC 0 200 0

RHL 2 1 137

Table 5: Results of classification for MJaya-ELM method
Class TP TN FP FN Se (%) Sp (%) Pr (%) Acc (%)
LHL 149 338 2 1 99.33 99.41 98.68 99.39
HC 200 288 2 0 100.00 99.31 99.01 99.59
RHL 137 350 0 3 97.86 100.00 100.00 99.39

17



Table 6: Confusion matrix of Jaya-ELM method
Predicted class

LHL HC RHL

Target class
LHL 150 0 0
HC 3 196 1

RHL 3 0 137

Table 7: Results of classification for Jaya-ELM method
Class TP TN FP FN Se (%) Sp (%) Pr (%) Acc (%)
LHL 150 334 6 0 100.00 98.24 96.15 98.78
HC 196 290 0 4 98.00 100.00 100.00 99.18
RHL 137 349 1 3 97.86 99.71 99.28 99.18

Table 8: Confusion matrix of DE-ELM method
Predicted class

LHL HC RHL

Target class
LHL 149 0 1
HC 0 200 0

RHL 3 2 135

Table 9: Results of classification for DE-ELM method
Class TP TN FP FN Se (%) Sp (%) Pr (%) Acc (%)
LHL 149 337 3 1 99.33 99.11 98.03 99.18
HC 200 288 2 0 100.00 99.31 99.01 99.59
RHL 135 349 1 5 96.43 99.71 99.26 98.78

Table 10: Confusion matrix of PSO-ELM method
Predicted class

LHL HC RHL

Target class
LHL 143 4 3
HC 0 198 2

RHL 0 1 139

Table 11: Results of classification for PSO-ELM method
Class TP TN FP FN Se (%) Sp (%) Pr (%) Acc (%)
LHL 143 340 0 7 95.33 100.00 100.00 98.57
HC 198 285 5 2 99.00 98.28 97.54 98.57
RHL 139 345 5 1 99.29 98.57 96.53 98.78
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Table 12: Confusion matrix of ELM method
Predicted class

LHL HC RHL
Target class LHL 147 1 2

HC 0 196 4
RHL 7 1 132

Table 13: Results of classification for ELM method
Class TP TN FP FN Se (%) Sp (%) Pr (%) Acc (%)
LHL 147 333 7 3 98.00 97.94 95.45 97.96
HC 196 288 2 4 98.00 99.31 98.99 98.78
RHL 132 344 6 8 94.29 98.29 95.65 97.14

4.1. Comparison with state-of-the-art schemes265

An overall comparative analysis has been made with the state-of-the-art schemes and the results

are tabulated in Table 14. The parameter Sc
e in the table represents the sensitivity over the class c.

It is observed that the proposed scheme achieves higher sensitivity and overall accuracy than the

existing schemes. The proposed system yields a sensitivity value of 99.33%, 100.00%, and 97.86%

over class LHL, HC, and RHL respectively. From these results, it can be deduced that the proposed270

scheme is promising for detection of SNHL.

Table 14: Performance comparison with state-of-the-art approaches
Reference Scheme S1

e (%) S2
e (%) S3

e (%) Ao (%)

Yang et al. [16] WE + DAG-SVM 94.00 97.00 93.57 95.10

Wang et al. [12] FRFT + PCA + SLFN 94.00 96.54 94.29 95.10

Chen et al. [15] DWT + PCA + GEPSVM 95.33 96.00 95.71 95.71

Liu et al. [17] WPD + LS-SVM 95.33 95.00 96.43 95.51

Vasta et al. [13] WE + MRF + NBC - - - 91.02

Zhang et al. [14] SWE + SLFN 95.33 97.00 94.29 95.71

Proposed scheme FDCT + PCA+LDA + MJaya-ELM 99.33 100.00 97.86 99.18

5. Conclusions and future research directions

In this paper, we have developed an automated system for classification of hearing loss MR

images. The fast discrete curvelet transform has been used for image decomposition. The feature

vectors are then constructed by collecting the biggest coefficients from the selected subbands. A275
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mutation operator is introduced into traditional Jaya optimization (MJaya) to enhance the global

search ability of the candidate solutions. A hybrid MJaya and ELM method (MJaya-ELM) is

proposed to perform classification which ensures better generalization performance than its coun-

terparts. The proposed scheme has been validated on a well-studied hearing loss dataset and its

performance is compared with the state-of-the-art approaches. The results demonstrate the supe-280

riority of the proposed scheme in terms of overall accuracy and other performance measures. In

addition, it is noticed that the introduction of mutation concept in MJaya-ELM ameliorates the

classification performance significantly.

The limitation of the proposed work is that the system has been validated on a small dataset and

its performance may deteriorate with a larger and diverse dataset. Hence, the efficacy of the system285

needs to be verified over a larger dataset. In future, we intend to investigate the applicability of the

proposed methodology for the classification of other medical images. Further, the effectiveness of

the proposed MJaya-ELM method could be evaluated on real-world binary/multiclass classification

and regression problems. Contemporary meta-heuristic algorithms could also be hybridized with

ELM to optimize its hidden node parameters.290
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