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Abstract - The visual analysis of Cardiotocographic (CTG) 

examinations is a very subjective process. The accurate detection 

and segmentation of the fetal heart rate (FHR) features and their 

time correlation with the uterine contractions (UC) allow a better 

diagnostic and the possibility of anticipation of many problems 

related to fetal distress. This paper presents a diagnostic aid 

system based on digital signal processing techniques to detect and 

segment changes in the FHR and the uterine tone signals 

automatically. The FHR baseline detection is proposed after pre-

processing filtering. The detection line is an auxiliary signal 

based on the Baseline and a moving average. The Hilbert 

Transform is then used with adaptive threshold techniques for 

identifying fiducial points on the signals. For an antepartum 

validation database, i.e., exams collected before labor, the 

positive predictivity value (PPV) found is 96.80% for the FHR 

decelerations, and 96.18% for the FHR accelerations. For an 

intrapartum validation database, the PPV found was 91.31% for 

the uterine contractions, 94.01% for the FHR decelerations, and 

100% for the FHR accelerations. For the whole set of exams, 

PPV and SE were both 100% for the identification of FHR DIP II 

and prolonged decelerations. 

 

Index Terms- Hilbert Transform, Fetal Heart Rate (FHR), 

Uterine Contractions (UC), Cardiotocography (CTG). 

1. INTRODUCTION 

Fetal Medicine aims to monitor and determine actions 

to provide fetus wellbeing. Cardiotocography (CTG) is an 

exam applied before or during labor to monitor simultaneously 

FHR and UC based on Doppler ultrasound and toco sensors, 

making it possible to identify fetal cardiovascular or 

neurological risky situations or pathologies [1]. 

The heart rate is a relevant signal for the analysis of not 

only the cardiovascular system but also the influence of the 

autonomous nervous system for the body circadian rhythms. 

Because of that, the development of different approaches for 

computerized diagnostic systems are constantly present in the 

literature [2-4]. 

According to the American Congress of Obstetricians 

and Gynecologists (ACOG), common problems found during 

the analysis of Electronic Fetal Monitoring (EFM) are the poor 

inter observer and intra observer diagnostics reliability and the 

high rates of false-positives in visual interpretation [5].  

In this scenario, different digital signal processing 

techniques have been used to extract information from these 

signals: wavelets [6]; fuzzy inference systems [7]; artificial 

neural networks (ANN) [8], [9], and also the application of 

combined techniques of ANN with other signal processing 

tools, such as multi resolution Principal Component Analysis 

(PCA) [10]. Nonlinear analysis with entropies and other 

metrics has also been proposed as possible new metrics for the 

fetal heart rate analysis [11]. 

The FHR can be monitored in many different ways, 

each one with advantages and drawbacks [12]. For example, 

the fetal scalp ECG is precise and consistent but an invasive 

technique (and it is available only after ‘crowning’). More 

recently, the Phonocardiography (PCG) has been used as a 
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 2 

simple and reliable FHR detector based on the recording of the 

heart beat sounds and the Hilbert Transform (HT) can be used 

for instantaneous frequency detection and effective noise 

reduction [13]. ECG instantaneous energy using HT has also 

been considered for heart sound segmentation [14].  

Nevertheless, the CTG can be considered a gold 

standard examination for the FHR detection [15]. Doppler 

sensors have similar accuracy to that of fetal abdominal ECG 

and can also be used in many different clinical situations [16]. 

Dawes [17] developed an algorithm for the FHR 

analysis based on low-pass frequency filters to obtain the 

baseline and identify accelerations and decelerations. This 

algorithm was used in the System 8000, a commercial 

software which is now discontinued. Mantel [18] improved 

some aspects of Dawes’ algorithm, for example in the 

beginning of the recording and the detection of changes of the 

baseline.  

Daumer and Neiss presented the Delayed Moving 

Window (DMW) [19], a patented algorithm commercially 

used in CTGOnline system [20]. It intends to be a general tool 

to detect drifts, jumps and outliers in time series, and it can be 

used as an online alarm system.  

This work presents a complete computerized CTG 

analysis system based on a group of techniques, which 

includes pre-processing filtering, and the use of the Hilbert 

Transform with adaptive threshold as a detector of changes of 

the time series. The FHR and UC’s most important 

characteristics, such as the FHR baseline, detection and 

segmentation of FHR accelerations and decelerations, 

detection and segmentation of UC and the relationship in time 

between UC and FHR decelerations are all obtained 

automatically. In case of the detection of abnormal or 

suspicious CTG traces a set of alarms and warnings is 

proposed. 

2. MATERIALS AND METHODS 

2.1. Development Environment and Data Acquisition 

The system was developed using Matlab scripting 

language. Data were acquired using a GE Corometrics 250CX 

Series Cardiotocographer, based on pulsed Doppler with a 

pulse repetition frequency of 4 kHz in single ultrasound mode 

and uses autocorrelation technique. The equipment pre-

processes and sends two 4 Hz time series (FHR and UC) to the 

diagnostic aid system. The equipment itself has a set of 

threshold alarms to indicate loss of detection and persistent 

bradycardia (that could be the detection of maternal heart rate) 

and can optionally monitor 3-lead maternal ECG and maternal 

pulse oximetry [21]. 

2.1.1. Database 

Two databases from Trium Analysis Online GmBH 

were evaluated. The characteristics are presented in Table I. 

 

The pre-classification procedure was performed by 3 

experienced Obstetricians from MEAC-UFC and divided in 

two steps. First, they marked each CTG trace individually. 

After that, they compared their results and defined by 

consensus the presence of each UC occurrence and FHR 

change and classification. 

Fetal outcome information, such as umbilical cord 

blood acid-base analysis and Apgar score were not available 

for both databases. Therefore, the system was validated only 

according to the medical staff pre-classification. 

2.2. CTG Features Extraction 

TABLE I 

CTG-I AND CTG-A DATABASE CHARACTERISTICS. 

Characteristic CTG-I CTG-A 

Type of CTG Intrapartum Antepartum 

Number of exams 32 100  

Training dataset (exams) 16  50  

Validation dataset (exams) 16  50  

Average Duration (minutes) 220 200  

Stand. Dev Duration (minutes) 134 140 

Maximum Duration (minutes) 38 39 

Minimum Duration (minutes) 906 466 
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 3 

The diagram presented in Fig. 1 shows the sequence of 

steps necessary to obtain the full computerized CTG analysis 

system. In this example, the CTG trace contains 1000 seconds 

(4.000 samples) and was extracted from the 0227251 exam. In 

Fig. 1-a is presented the CTG trace (FHR and UC signals). 

The first task is to evaluate the signal basal behavior for both 

monitored signals. The baseline determination is then 

presented in Fig. 1-b. The baseline must keep the same level 

even in the presence of FHR accelerations and decelerations 

and must change only after a long term change. After that, in 

Fig. 1-c the detection line is calculated, which is an auxiliary 

signal following the FHR behavior used for detection and 

segmentation of significant changes in time. The Hilbert 

Transform output is shown in Fig 1-d, where the minimum 

and maximum peaks correspond to the beginning and ending 

of FHR accelerations. The same approach is used for the 

detection and segmentation of FHR deceleration and uterine 

contractions (UC signal). Finally, in Fig. 1-e the complete 

analysis of FHR and UC is presented and the existence of 

simultaneous occurrences can be evaluated. 

For a better representation, let us consider X(t) as the 

FHR time series containing N samples {X(1),X(2),...,X(N)}. 

The baseline is named as Y(t) and the detection line is Z(t). For 

the uterine contractions, let us consider X’(t) as the original 

time series, the baseline as Y’(t) and the detection line Z’(t). 

 

2.2.1. Pre-processing Module 

Because of the external sensors, both FHR and UC 

signals can present noise and may contain zeroes when there is 

a loss of detection. In normal exams, zeroes are sporadic and 

can be discarded from the original signals during a pre-

processing phase.  

In case of ectopic values, such as abrupt changes in the 

signal, must be treated as noise and corrected. This is 

implemented comparing each sample X(i) with the next one 

X(i+1). If the difference between them is higher than a 

threshold α=20 bpm, then the X(i+1) sample is replaced with 

an average from X(i) and X(i+2). 

If the loss of signal is more than 5 seconds (20 

samples), the trace analysis is suspended and the software 

displays this information to the medical staff as a warning.  

For uterine contractions signal X’(t), a similar approach is 

 
Fig. 1. Computerized CTG System step-by-step block diagram . The CTG trace interval was extracted from the 0227251 exam: (a) the original FHR and UC 

signals after the preprocessing phase; (b) Baseline signal determination; (c) Detection line signal following the original signal behavior; (d) Hilbert Transform. 
The same approach is used to detect FHR deceleration and uterine contractions (UC signal). In (e) is presented the system output for FHR and UC. 
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 4 

performed, considering that CTG equipment has two different 

external sensors, zeroes or ectopic samples detection are not 

related to the ones found for FHR monitoring.  

After this first phase, we must calculate two new signals: 

the baseline and the detection line.  

 

2.2.2. Baseline Determination 

FHR baseline level is an important parameter for 

clinical analysis and its determination is a field of study in 

itself. It is considered in order to detect fetal bradycardia or 

tachycardia. 

This work presents a new automatic method to 

determine the FHR baseline based on guidelines definitions 

and medical staff orientation. The FHR baseline is defined in 

the literature as the average of the FHR trace considering a 5 

to 10 minutes intervals. This process must exclude 

decelerations, accelerations and periods of high long term 

variability [5].  

The proposed technique to determine the baseline 

signal Y(t) is presented: 

I. Firstly, the average µ is calculated for each k-samples 

windows of the original signal X(t) (k is equivalent to 

Δts=10 minutes [2]). The windowed signal W(t) is 

generated, as presented in Eq. (1) and (2): 

k

iX
kp

pi







1

)(

             (1) 

 





1)( kp

piiW             (2) 

  where p is the loop reference index, starting on 

p=0.5*k (considering a tolerance interval of 5 minutes in the 

beginning of the original signal) with increments of k samples 

(p=p+k) for each loop. 

II. A first baseline reference is then determined as the first 

sample of W(t). This reference will be considered in the 

next steps to detect baseline changes. 

III. After determining W(t) for the whole FHR trace, a new 

loop is executed with a k-samples window comparing 

the baseline reference with each of the W(t) samples. 

The variable p’ is considered as the loop reference 

index starting on p’=0.5*k with unitary increments 

(p’=p’+1). 

IV. Two conditions must be satisfied to consider a baseline 

change: 

 Condition 1: the system checks if the absolute 

difference between the baseline reference value 

and each of W(t) sample is greater than β1=5 bpm 

[5].  

 Condition 2: if condition 1 is satisfied, then the 

system must analyze if this difference remains 

greater than β1 for more than Δtc=6 minutes (1440 

samples).  

V. If condition 2 is satisfied, then a new baseline reference 

value is determined equals to the last sample of the 

W(t) window. 

VI. Finally, for each p’, a baseline sample Y(p’) is 

determined as the average of the k-samples window of 

the original signal X(t) as presented in Eq. 3: 

k

iX

pY

kp

pi







1'

'

)(

)'(  (3) 

The parameter Δtc was determined during the training 

phase and a discussion about its value is presented in the 

Discussion Section. 

In each baseline reference determination, the system 

records the new value in the database and monitors it in case 

of occurrence of tachycardia or bradycardia [5]. In this second 

case, the system warns the medical staff about the possibility 

of the maternal heart rate is being detected instead of the FHR. 
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 5 

 

In Fig. 2, a baseline change is presented during the 

exam 0208432. The time axis visual analysis shows that the 

duration of the FHR change was longer than 600 seconds (10 

minutes). 

It is also important to determine the uterine tonus 

baseline because this signal has no absolute basal value and 

may change with maternal position adjustments. This is the 

main cause of false positives and false negatives of the UC 

detection.  

A particular reference must be established for every 

single examination. The proposed technique is based on the 

amplitude threshold β2=10mmHg and it is not necessary to 

verify the duration of the change.  

 

2.2.3. Detection Line Determination 

The second signal to be determined is the Detection 

Line, Z(t), which can be considered as a low pass filter of the 

original signal based on the previously calculated baseline. 

In the beginning, Z(t) is equal to the baseline Y(t) until 

there is a significant change in the original signal X(t) higher 

than the trigger γ1. When this happens, the Z(t) is calculated as 

the moving average of X(t) with window length Δtmm1. For the 

proposed system these parameter values are γ1 = 10 bpm and 

Δtmm1 = 60 seconds. For the UC signal, the considered values 

are γ2 = 10 mmHg and Δtmm2 = 60 seconds. 

The proposed values were determined according to the 

medical staff evaluation and the results obtained for the 

training datasets. 

When the difference between the averaged value and 

the baseline is lower than the trigger levels, Z(t) is equal to 

Y(t) again. This process is performed for the complete CTG 

traces. 

Fig. 1-c presents an example of detection line for the 

FHR signal, calculated after the baseline determination and 

Fig. 3 presents the UC detection line trace. 

 

2.2.4. Filter and Detection 

After determining the detection line, its Hilbert 

Transform is calculated. The application of this filter on the 

signal f(t) results in one analytic signal, which is, by 

definition, a signal without negative frequency components in 

its spectrum. Because of this, the complex to real convergence 

process can be done only considering the real part of this 

signal [22]. This signal processing technique has been 

successfully used because of its mathematical properties for 

different applications, such as signal and image processing 

[23].  

Other important properties that must be considered to 

analyze its performance as a good detector of the fiducial 

points in the original time series are the orthogonality property 

and the energy analysis [24]. 

The Hilbert Transform )(ˆ tf of one function )(tf  can 

be expressed as 
















 






d

t

f
Ptf

)(1
)(ˆ            (4) 

 

when the integral exists. Because of the pole in τ = t, it 

may not be possible to calculate the integral equation. The P 

term in front of the integral represents the use of the Cauchy 

principal value technique, which increases the number of 

functions for which the integral in the equation exists [17]. 

 

2.2.5. CTG Signals Segmentation 

The signal is segmented to determine the begin and the 

end of the changes and also their maximum and minimum 

values. 

 
Fig. 2.  Change of baseline level through 0208432  exam. The duration of the 

change lasts more than the defined threshold. 
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 6 

In Fig. 3 an example of uterine contraction detection 

and segmentation is presented. Each contraction is associated 

with a pair of fiducial points. Firstly, a negative amplitude 

peak followed by a positive amplitude peak are found. These 

peaks correspond to the beginning and ending of the 

contraction, while the zero cross on the Hilbert transform 

signal represents the maximum value in the original signal. 

For the FHR signal, a similar analysis can be performed.  

 

Negative changes, FHR decelerations, for example, 

will result in a positive peak followed by a negative peak on 

the Hilbert transform signal and the minimum is the zero 

cross. 

To minimize the probability of false positives, the 

proposed system uses also an adaptive threshold technique 

originally designed to detect QRS complexes in ECG exams 

described in [25] and [26]. Three different thresholds are 

proposed: ξac and ξdec for the FHR accelerations and 

decelerations, respectively, and ξcont for the uterine 

contractions, which initial values are presented in Table II. 

These parameters are adjusted using the general expression 







21

21 ]1[][
][






kRkRe
k  ,                       (5) 

where τ1 and τ2 are relative weights, Re[k] is an 

amplitude (absolute value) estimation based on the k
th

  

occurrence of the change, which also depends on the value of 

ξ[k - 1]; R[k - 1] is the magnitude (absolute value) of the (k-

1)
th

 change, and ψ, 0 < ψ < 1, is a percentage factor chosen 

empirically [25]. 

The detection of the change in the time series is only 

considered if the filtered signal’s peaks are greater than the 

respective adaptive threshold value. 

 

A FHR trace with two decelerations, two accelerations 

and their respective detection and segmentation based on the 

Hilbert Transform can be seen in Fig. 4. 

 

2.2.6. Deceleration Classification 

Uterine contractions can affect fetal blood oxygenation, 

causing a heart rate deceleration. Therefore, as mentioned 

before, it is necessary to establish a temporal relationship 

between the FHR and the uterine contractions, especially 

during FHR decelerations.  

 

 

The automatic classification of decelerations is a 

necessary task for a computerized CTG system, since their 

visual classification by the medical staff is subjective, hence 

not very robust and, at times inaccurate.  

The method is directly obtained from the previous 

phase. When the system detects a FHR deceleration, it saves 

the beginning and ending points in time and the minimum 

value. 

 
Fig. 4.  Example of a detection and segmentation of FHR signal during a 

CTG exam (0643162).  

TABLE II 

SET OF ADAPTIVE PARAMETERS AND RESPECTIVE INITIAL VALUES 

Parameter Value 

ξac 10 bpm 
ξdec 10 bpm 

ξcont 5 mmHg 

 

 

 
 

Fig. 3.  Uterine contractions segmentation during 2232241 exam. The Hilbert 
transform helps detect the beginning, ending and maximum points. The 

segmentation bars are traced slightly before and after the detection. 
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 7 

After that, the system checks if there are any uterine 

contractions already detected during this interval with a 

tolerance window of ε (ε=10 seconds) and it was determined 

according to the medical staff definition. 

If there are no uterine contractions, the deceleration 

duration is calculated and is classified as variable or 

prolonged. If there is a contraction, its fiducial points are 

compared with the deceleration fiducial points, allowing the 

classification as DIP I or DIP II. 

 

Fig. 5 presents an example of simultaneous occurrence 

of changes in both monitored signals during the 1105411 

exam. The system detects a late deceleration (fetal distress). 

An early deceleration was detected during the 0827261 

exam and is presented in Fig. 6. This kind of deceleration is 

physiological and does not indicate fetal health problems. 

 

  

 

TABLE II 

CTG SYSTEM SET OF ALARMS AND WARNINGS 

Abnormality Criteria Alarm/Warning 

Fetal Tachycardia Y(t) > 160bpm User message 

(optional sound alarm) 

Fetal Bradycardia Y(t) < 110bpm User message 

(optional sound alarm) 

FHR Loss of 

Detection 

X(t)=0 

Interval > 5s 

User message 

(optional sound alarm) 

UC Loss of 

Detection 

X’(t)=0 

Interval > 10s 

User message 

(optional sound alarm) 

Early 

Deceleration 

Deceleration mirrored 

with uterine contraction 

User message 

Late 

Deceleration 

Deceleration minimum 

after UC peak 

User message 

(optional sound alarm) 

Prolonged 

Deceleration 

2 min. < Dec. Duration 

< 10 min. 

User message 

Absence of FHR 

Acceleration 

No FHR acceleration 

detection 

User message 

 

 

 

 

 

 
Fig. 6.  Detection of a FHR DIP-I deceleration during 0827261 exam 

Deceleration occurs mirrored with uterine contraction.  

 
Fig. 5.  Detection of a FHR DIP-II deceleration during 2232241 exam. 

Deceleration nadir occurs after uterine contraction peak.  
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 8 

A prolonged deceleration detected during the 1105411 

exam is presented in Fig. 7. This can be related to different 

maternal or fetal abnormal condition and the exam must be 

considered as indeterminate or abnormal [5]. 

 

2.1.1. Alarms and Warnings 

Based on the extracted CTG parameters for each exam, 

a set of alarms and warnings based on [5] is proposed in Table 

II. 

3. RESULTS  

In this section, the results obtained for the validation 

datasets are presented and the DMW technique [19] (a 

patented commercial and CE approved computerized CTG) 

was considered a reference method for comparison purposes.  

Baseline Determination Results 

The baseline level can vary several times during a CTG 

recording. Therefore, all the levels found by the reference and 

the proposed methods were compared for each exam.  

The comparison showed no significant difference 

(p<0.05) between the compared baseline levels for 75% and 

83% in CTG-A and CTG-I validation databases, respectively. 

Detection and Classification Results 

The detection and classification results for the proposed 

and the reference methods are presented for both the CTG-I 

and CTG-A validation databases, considering the previously 

marked values identified by the medical staff.  

The considered indices were the sensitivity (SE), for 

the evaluation of false negatives, and the positive predictivity 

value (PPV), evaluating the occurrence of false positives.  

The results obtained are presented in Table III, which is 

divided in four groups of results. 

In the first group (CTG-I General Results), the 

proposed system achieved 93.05% of PPV and 91.31% of SE 

for the uterine contractions, during labor, while the reference 

method achieved SE 76.18% and PPV 81.63%. No FHR 

accelerations false positives were found by the proposed 

method, resulting in 100% (PPV) and 95.45% (SE). The 

reference method achieved 77.27% (SE) and 94.45% (PPV). 

The second group of results presents the FHR 

decelerations classification for the CTG-I validation database. 

For the prolonged deceleration, both methods achieved 100% 

for SE and PPV indices. On the other hand, the lowest SE 

value, 40%, was found for the reference method when 

classifying DIP-I decelerations, with the occurrence of false 

negatives. 

The third group presents the CTG-A validation dataset 

results. Considering the FHR acceleration classification, for 

the proposed method SE was 94.70% and PPV was 97.16%, 

while for the reference method SE was 88.22% and PPV was 

96.84%. 

Finally, the last group in Table III is the deceleration 

classification for the CTG-A validation database. For the 

variable deceleration, the proposed system SE was 92.78% 

and PPV was 96.90%, while for the reference system SE was 

92.51% and PPV was 95.57%. The reference method missed 

one prolonged deceleration while the proposed system 

detected all of them. 

 
Fig. 7.  Detection of a FHR prolonged deceleration during 1105411 exam, 

which is not related to the uterine contractions and is non-reassuring.  
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 9 

4. DISCUSSION 

The presented results show robustness of the system 

when submitted to artifact noises in rather severe conditions, 

producing low levels of false positives and false negatives for 

both antepartum and intrapartum databases.  

The baseline determination is a critical task since the 

following steps are based on it. As the parameters β1  and Δts 

follow the medical guidelines, the Δtc  is the main tuning 

parameter that may influence the system SE and PPV results. 

If it is chosen a value smaller than Δtc, the signal baseline may 

follow any transient changes and it will increase the false 

negative rates. If it the value is greater than Δtc, it can miss a 

real baseline change and increase false positive rates.  

When compared the proposed FHR baseline with the 

reference method, both signals presented a similar overall 

behavior in all CTG traces, even during the intervals when the 

statistical significance could not be determined. 

During Z(t) determination phase, if the trigger γ1 is 

smaller than the selected value, the system may consider 

normal oscillations as acceleration or deceleration and this 

will increase false positive rates. On the other hand, if γ1 is 

greater than the selected value, the false negative rates may 

increase and real FHR changes are not going to be detected. A 

similar discussion applies for the UC signal parameters. If γ2 is 

smaller than the selected value, the system may found UC 

false positives and if it is greater than the selected value, the 

system can miss a real uterine contraction.  

Following the same discussion, for the deceleration 

classification task, if the parameter ε is smaller than the 

proposed value, the system may classify an early deceleration 

as a late one. On the contrary, if it is greater than the selected 

value, late deceleration may be classified as an early one. 

 For the acceleration and uterine contraction detection, 

the proposed method achieved better results than the reference 

system. Both methods achieved similar results when analyzing 

variable decelerations. 

An important contribution of the proposed technique is 

the classification of DIP-II and Prolonged FHR deceleration, 

which are indicative of fetal distress. The proposed system 

achieves 100% for both SE and PPV indices. Besides, when 

compared to the reference method, the proposed system 

improved the classification rates. This indicates not only a 

good performance in FHR decelerations, but for the system 

classification capability as a whole.  

Finally, the system achieves low levels of false 

positives and false negatives rates not only for FHR 

accelerations and variable decelerations detection but also for 

the deceleration classification task. 

5. CONCLUSIONS 

Fetal monitoring using CTG is being widely used by 

Obstetricians and Gynecologists because it is a non-invasive, 

TABLE III 

DETECTION AND CLASSIFICATION RESULTS FOR THE CTG-I AND CTG-A VALIDATION DATASETS  

FOR THE PROPOSED AND REFERENCE METHODS - SE AND PPV INDICES 

Description Marked Detected 

Proposed 

Method 

SE 

Proposed 

Method 

PPV 

Proposed 

Method 

Detected 

Reference 

Method 

SE 

Reference 

Method 

PPV 

Reference 

Method 

CTG-I – General  Results 

UC 403 410 93.05% 91.31% 373 76.18% 81.63% 

FHR Acel  22 21 95.45% 100% 18 77.27% 95.45% 

FHR Dec (total) 117 111 88.89% 94.01% 116 75.21% 93.16% 

CTG-I – Deceleration Classification 

Variable 78 75 89.74% 93.58% 93 87.17% 93.58% 

DIP I 25 22 80.00% 92.00% 12 40.00% 92.00% 

DIP II 12 12 100% 100% 9 66.67% 91.66% 

Prolonged 2 2 100% 100% 2 100% 100% 

CTG-A – General Results 

UC 0 0 -- -- -- -- -- 

FHR Acel 603 596 95.02% 96.18% 551 88.22% 96.84% 

FHR Dec (total) 294 282 92.85% 96.80% 301 92.51% 95.57% 

CTG-A – Deceleration Classification 

Variable 291 279 92.78% 96.90% 299 92.78% 95.53% 

DIP I 0 0 -- -- -- -- -- 

DIP II 0 0 -- -- -- -- -- 

Prolonged 3 3 100% 100% 2 66% 100% 
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 10 

easy to implement, low cost examination. 

This paper presents a new method to automatically 

detect and segment changes in FHR and UC signals, based on 

a set of pre-processing techniques, with fixed and adaptive 

thresholds and the time domain analysis provided by the 

Hilbert transform. It detects and classifies the existence of 

simultaneous FHR decelerations and uterine contractions, 

resulting in high levels of sensitivity (SE) and positive 

predictivity value (PPV) indices for the considered databases, 

both before and during labor.  

The clinical impact of the proposed system is to allow 

the possibility of reduction on the level of subjectivity of the 

CTG analysis and help improve the diagnostic accuracy.  

Future works may consider the use of other approaches 

to detect transient changes in the original signals, such as 

Wavelets, to compare with the proposed technique. 
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