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G. Ceribella14, Y. Chai14, A. Chilingaryan22, S. Cikota6, S. M. Colak15, U. Colin14, E. Colombo1,

J. L. Contreras9, J. Cortina25, S. Covino3, V. D’Elia3, P. Da Vela17, F. Dazzi3, A. De Angelis16,

B. De Lotto2, M. Delfino15,27, J. Delgado15,27, D. Depaoli13, F. Di Pierro13, L. Di Venere13, E. Do

Souto Espiñeira15, D. Dominis Prester6, A. Donini2, D. Dorner18, M. Doro16, D. Elsaesser5,

V. Fallah Ramazani19, A. Fattorini5, G. Ferrara3, D. Fidalgo9, L. Foffano16, M. V. Fonseca9,

L. Font20, C. Fruck14, S. Fukami21, R. J. Garcı́a López1, M. Garczarczyk12, S. Gasparyan22,
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91191 Gif-sur-Yvette, France

90Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK

91Department of Physics, The George Washington University, 725 21st Street NW, Washington,

DC 20052, USA

92Astronomy, Physics, and Statistics Institute of Sciences (APSIS), The George Washington Uni-

10



versity, Washington, DC 20052, USA

93Inter-University Institute for Data-Intensive Astronomy, Department of Astronomy, University

of Cape Town, Private Bag X3, Rondebosch 7701, South Africa

94GEPI, Observatoire de Paris, PSL University, CNRS, 5 Place Jules Janssen, 92190 Meudon,

France
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Long-duration gamma-ray bursts (GRBs) originate from ultra-relativistic jets launched from1

the collapsing cores of dying massive stars. They are characterised by an initial phase of2

bright (typical observed fluxes 10−7 − 10−3 erg cm−2 s−1) and highly variable (�1 second)3

radiation in the 0.1-1 MeV band that is likely produced within the jet and lasts from millisec-4

onds to minutes, known as the prompt emission. Following the prompt emission, the interac-5

tion of the ultra-relativistic jet with the external medium generates external shocks, respon-6

sible for the so-called afterglow emission, which lasts from days to months, and occurs over7

a broad energy range, including the soft X-ray, optical and radio bands1–5. The origin of the8

afterglow emission is explained and modeled as synchrotron radiation from the shock accel-9

erated electrons6–9. Recently, the Major Atmospheric Gamma Imaging Cherenkov (MAGIC)10

telescopes revealed for the first time intense, long-lasting emission between 0.2 and 1 TeV11

from GRB 190114C10. Here we present the results of our multi-frequency observational cam-12

paign, and study the evolution in time of the GRB emission across 17 orders of magnitude in13

energy, from 5× 10−6 up to 1012 eV. We find that the broadband spectral energy distribution14

is double-peaked, with the TeV emission constituting a distinct spectral component that has15

power comparable to the synchrotron component. This component is associated with the16

afterglow, and is satisfactorily explained by inverse Compton upscattering of synchrotron17

photons by high-energy electrons. The inclusion of TeV observations in GRB studies gives18

additional information to pinpoint the conditions of the source.19

We find that the inferred conditions required to explain the presence of the TeV component20

and its temporal behaviour are not atypical. Our results support the possibility that inverse21

14



Compton emission is commonly produced in GRBs.22

On 14 January 2019, following an alert from the Neil Gehrels Swift Observatory (hereafter23

Swift) and the Fermi satellites, MAGIC observed and detected radiation up to at least 1 TeV from24

GRB 190114C. Before the MAGIC detection, GRBs have been detected only at much lower25

energies, . 100 GeV. A hint for the presence of ∼TeV emission (& 650 GeV) was found by26

the Milagrito experiment from observations of GRB 970417A11. GeV emission has been27

detected first by CGRO/EGRET in a handful of cases, and more recently by AGILE/GRID28

and Fermi/LAT (see 12 for a recent review).29

Detection of TeV radiation opens a new window in the electromagnetic spectrum for the30

study of GRBs10. Its announcement13 triggered an extensive campaign of follow-up observations.31

Owing to the relatively low redshift z = 0.4245±0.0005 (see Methods) of the GRB (corresponding32

to a luminosity distance of ∼ 2.3 Gpc) a comprehensive set of multi-wavelength data could be33

collected. We present observations gathered from instruments onboard six satellites and 15 ground34

telescopes (radio, submm and NIR/optical/UV and very high energy gamma-rays; see Methods)35

for the first ten days after the burst. The frequency range covered by these observations spans more36

than 17 orders of magnitude, from 1 to∼ 2× 1017 GHz, the most extensive to date for a GRB. The37

light curves of GRB 190114C at different frequencies are shown in Fig. 1.38

The prompt emission of GRB 190114C was simultaneously observed by several space mis-39

sions (see Methods), covering the spectral range from 8 keV to∼ 100 GeV. The prompt light curve40

shows a complex temporal structure, with several emission peaks (Methods; Extended Data Fig. 1),41

15



Figure 1: Multi-wavelength light curves of GRB 190114C. Energy flux at different wavelengths,

from radio to gamma-rays, versus time since the BAT trigger time T0 = 20:57:03.19 UT on 14

January 2019. The light curve for the energy range 0.3-1 TeV (green circles) is compared with

light curves at lower frequencies. Those for VLA (yellow square), ATCA (yellow stars), ALMA

(orange circles), GMRT (purple filled triangle), and MeerKAT (purple empty triangles) have been

multiplied by 109 for clarity. The vertical dashed line marks approximately the end of the prompt

emission phase, identified with the end of the last flaring episode. For the data points, vertical bars

show the 1-σ errors on the flux, while horizontal bars represent the duration of the observation.
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with total duration ∼ 25 s (see dashed line in Fig. 1) and total radiated energy Eγ,iso = (2.5 ± 0.1)42

×1053 ergs 14 (isotropic equivalent in the energy range 1-10000 keV). During the time of inter-burst43

quiescence at t ∼ [5 − 15] seconds and after the end of the last prompt pulse at t & 25 s, the flux44

decays smoothly, following a power law in time F ∝ tα, with α10−1000keV = −1.10± 0.01 14. The45

temporal and spectral characteristics of this smoothly varying component support an interpretation46

in terms of afterglow synchrotron radiation14, 15, making this one of the few clear cases of afterglow47

emission detected in the band 10 − 104 keV during the prompt emission phase. The onset of the48

afterglow component is then estimated to occur around t ∼ 5− 10 s 14, 15, implying an initial bulk49

Lorentz factor between 300 and 700 (Methods).50

After about one minute from the start of the prompt emission, two additional high-energy51

telescopes began observations: MAGIC and the XRT, onboard Swift. The XRT and MAGIC light52

curves (1-10 keV, blue data points in Fig. 1, and 0.3-1 TeV, green data points, respectively) de-53

cay with time as a power law, and display the following decay rates: αX ∼ −1.36 ± 0.02 and54

αTeV ∼ −1.51± 0.04. The 0.3-1 TeV light curve shown in Fig. 1 was obtained after correcting for55

attenuation by the extragalactic background light (EBL)10. The TeV-band emission is observable56

until∼ 40 minutes, which is much longer than the nominal duration of the prompt emission phase.57

The NIR-optical light curves (square symbols) show a more complex behaviour. Initially, a fast58

decay is seen, where the emission is most likely dominated by the reverse shock component16.59

This is followed by a shallower decay, and subsequently a faster decay at ∼ 105 s. The latter be-60

haviour is not atypical, but is usually seen at earlier times and indicates that the characteristic61

synchrotron frequency νm is crossing the optical band (Extended Data Fig. 11). The relatively62
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late time where the break appears in GRB 190114C would then imply a very large value63

of νm, placing it in the X-ray band at ∼ 102 s.. The millimeter light curves (orange symbols)64

also show an initial fast decay where the emission is dominated by the reverse shock, followed by65

emission at late times with nearly constant flux (Extended Data Fig. 10).66

The spectral energy distributions (SEDs) of the radiation detected by MAGIC are shown in67

Fig. 2, where the whole duration of the emission detected by MAGIC is divided into five time in-68

tervals. For the first two time intervals, observations in the GeV and X-ray bands are also available.69

During the first time interval (68-110 s, blue data points and blue confidence regions), Swift/XRT-70

BAT and Fermi/GBM data show that the afterglow synchrotron component is peaking in the X-ray71

band. At higher energies, up to .GeV, the SED is a decreasing function of energy, as supported72

by the Fermi/LAT flux between 0.1 and 0.4 GeV (see Methods). On the other hand, at even higher73

energies, the MAGIC flux above 0.2 TeV implies a spectral hardening. This evidence is indepen-74

dent from the EBL model adopted to correct for the attenuation (Methods). This demonstrates that75

the newly discovered TeV radiation is not a simple extension of the known afterglow synchrotron76

emission, but rather a separate spectral component that has not been clearly seen before.77

The extended duration and the smooth, power-law temporal decay of the radiation detected78

by MAGIC (see green data points in Fig. 1) suggest an intimate connection between the TeV79

emission and the broadband afterglow emission. The most natural candidate is synchrotron self-80

Compton (SSC) radiation in the external forward shock: the same population of relativistic elec-81

trons responsible for the afterglow synchrotron emission Compton upscatters the synchrotron pho-82
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tons, leading to a second spectral component that peaks at higher energies. TeV afterglow emission83

can also be produced by hadronic processes such as synchrotron radiation by protons accelerated84

to ultra-high energies in the forward shock17–19. However, due to their typically low efficiency85

of radiation5, reproducing the luminous TeV emission as observed here by such processes would86

imply unrealistically large power in accelerated protons10. TeV photons can also be produced via87

the SSC mechanism in internal shock synchrotron models of the prompt emission. However, nu-88

merical modeling (Methods) shows that prompt SSC radiation can account at most for a limited89

fraction ( <∼ 20%) of the observed TeV flux, and only at early times (t . 100 s). Henceforth, we90

focus on the SSC process in the afterglow.91

SSC emission has been predicted for GRB afterglows9, 12, 18, 20–27. However, its quantitative92

significance for the latter was uncertain, as the SSC luminosity and spectral properties depend93

strongly on poorly constrained physical conditions in the emission region (e.g., the magnetic field94

strength). The detection of the TeV component in GRB 190114C and the availability of broad95

band observations offer the opportunity to investigate the relevant physics at a deeper level. A hint96

of SSC component might have been detected in very bright GRBs, such as GRB 130427A.97

The GRB 130427A extended emission with photons up to ∼ 100 GeV is hardly modeled by98

synchrotron processes, suggesting a different origin of the photons28–30.99

With this aim, we model the full data set (from radio band to TeV energies, for the first week100

after the explosion) as synchrotron plus SSC radiation, within the framework of the theory of af-101

terglow emission from external reverse-forward shocks. The detailed modeling of the broadband102
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Figure 2: Broadband spectra in the time interval 68-2400 s. Five time intervals are consid-

ered: 68-110 s (blue), 110-180 s (yellow), 180-360 s (red), 360-625 s (green), 625-2400 s (pur-

ple). MAGIC data points have been corrected for attenuation caused by the Extragalactic Back-

ground Light. Data from other instruments are shown for the first two time-intervals: Swift/XRT,

Swift/BAT, Fermi/GBM, and Fermi/LAT. For each time interval, LAT contour regions are shown

limiting the energy range to the range where photons are detected. MAGIC and LAT contour re-

gions are drawn from the 1-σ error of their best-fit power law functions. For Swift data, the regions

show the 90% confidence contours for the joint fit XRT-BAT obtained fitting to the data a smoothly

broken power law. Filled regions are used for the first time interval (68-110 s, blue color).
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Figure 3: Modeling of the broadband spectra in the time intervals 68-110 s and 110-180 s.

Thick blue curve: modeling of the broadband data in the synchrotron and SSC afterglow scenario.

Thin solid lines: synchrotron and SSC (observed spectrum) components; dashed lines: SSC if in-

ternal γ-γ opacity is neglected. For the adopted parameters, see the Text. Empty circles show the

observed MAGIC spectrum, i.e. not corrected by attenuation caused by the Extragalactic Back-

ground Light. Contour regions and data points as in Fig. 2.
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emission and its evolution with time is presented in Section Methods. We discuss here the impli-103

cations for the early time (t < 2400 s), high energy (> 1 keV) emission. Information inferred from104

late time optical data, allows to identify the peak of the synchrotron component visible in the X-ray105

band at ∼ 100 s as the characteristic frequency νm. The soft spectra (photon index ΓTeV < −2) in106

the 0.2-1 TeV energy range (see Extended Data Table 1) constrain the peak of the SSC component107

to be below this energy range. The relatively small ratio between the spectral peak energies of the108

SSC (ESSC
p . 200 GeV) and synchrotron (Esyn

p ∼ 10 keV) components implies a relatively low109

value for the minimum Lorentz factor of the electrons (γm ∼ 2 × 103). This value is inconsistent110

with the observation of the synchrotron peak at & keV energies, leading to the conclusion that111

Klein-Nishina (KN) scattering effects and/or internal opacity caused by γ-γ pair production have112

a substantial impact on the spectra. We find that in order to explain the soft spectrum detected by113

MAGIC, it is necessary to invoke KN-regime scattering for the electrons radiating at the spectral114

peak as well as internal γ-γ absorption.115

While both effects tend to become less important with time, the spectral index in the 0.2-116

1 TeV band remains constant in time (or possibly evolves to softer values; Extended Data Table 1).117

This implies that the SSC peak energy is moving to lower energies and crossing the MAGIC energy118

band. This places robust constraints on the minimum energy of the electrons: γm = (1− 5)× 104.119

The energy at which attenuation by internal pair production becomes important indicates that the120

bulk Lorentz factor is ∼120-140 at 100 s.121

An example of the theoretical modeling in this scenario is shown in Fig. 3 (blue solid curve,122
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see Methods for details). The dashed line shows the SSC spectrum when internal absorption is123

neglected. The thin solid line shows the model spectrum including EBL attenuation, in comparison124

to MAGIC observations (empty circles).125

We find that acceptable models of the broadband SED can be obtained if the conditions at the126

source are the following: the initial kinetic energy of the blastwave is Ek & 2×1053 erg (isotropic-127

equivalent). At least a fraction ξe ∼ 0.1 in number of the electrons swept up from the external128

medium are efficiently injected into the acceleration process, and carry a fraction εe∼ 0.05− 0.15129

of the energy dissipated at the shock. The acceleration mechanism produces an electron population130

characterized by a non-thermal energy distribution, described by a power law with index p ∼131

2.4− 2.5, injection Lorentz factor γm = 104 − 5× 104 and maximum Lorentz factor γe,max ∼ 107
132

(at ∼ 100 s). The magnetic field behind the shock conveys a fraction εB∼ (0.05 − 1) × 10−3 of133

the dissipated energy. At t ∼ 100 s, corresponding to R ∼ (6 − 8) × 1016 cm, the density of the134

external medium is n > 1 cm−3, and the magnetic field strength is B ∼ 0.1 − 10 Gauss. The135

latter implies that the magnetic field was efficiently amplified from values of a few µGauss that are136

typical of the unshocked ambient medium, due to plasma instabilities or other mechanisms5.137

The blastwave energy inferred from the modeling is comparable to the amount of energy138

released in the form of radiation during the prompt phase. The prompt emission mechanism must139

then have dissipated and radiated no more than half of the initial jet energy, leaving the other half140

available for the afterglow phase. The modeling of the broadband data also allows us to infer141

how the total energy is shared between the synchrotron and the SSC components. SSC would be142
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2-3 times more energetic than synchrotron if internal γ-γ absorption is neglected, but the latter143

substantially affects SSC such that the resultant power in the two components are comparable.144

We estimate that the energy in the synchrotron and SSC component are ∼ 6.5 × 1051 erg and145

∼ 1.0×1052 erg respectively in the time interval 68-110 s, and∼ 9.6×1051 erg and∼ 1.6×1052 erg146

respectively in the time interval 110-180 s. Thus, previous studies of GRBs may have been missing147

a significant fraction of the energy emitted during the afterglow phase that is essential for its148

understanding.149

Finally, we note that the values of the afterglow parameters inferred from the modeling fall150

within the range of typical values inferred from broadband (radio-to-GeV) afterglow studies. This151

points to the possibility that SSC emission in GRBs may be a relatively common process that does152

not require special conditions to be produced with power similar to synchrotron radiation. Not153

surprisingly, the inferred parameters imply that the energy density of the radiation field is154

much larger than the energy density of the magnetic field18, 20, i.e. εe > εB). The SSC com-155

ponent may then be detectable in other relatively energetic GRBs (and might have been already156

detected in past events 28–30), as long as the redshift is low enough to avoid severe attenuation by157

the EBL.158
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Methods159

Prompt emission observations On 14 January 2019, the prompt emission from GRB 190114C160

triggered several space instruments, including Fermi/GBM31, Fermi/LAT32, Swift/BAT33, Super-161

AGILE34, AGILE/MCAL34, KONUS/Wind35, INTEGRAL/SPI-ACS36, and Insight/HXMT37. The162

prompt emission light curves from AGILE, Fermi, and Swift are shown in Fig. 1 and in Extended163

Data Fig. 1, where the trigger time T0 (here and elsewhere) refers to the BAT trigger time164

(20:57:03.19 UT). The prompt emission lasts approximately for 25 s, where the last flaring emis-165

sion episode ends. Nominally, the T90, i.e. the time interval during which a fraction between 5%166

and 95% of the total emission is observed, is much longer (> 100 s, depending on the instrument14),167

but is clearly contaminated by the afterglow component (Fig. 1) and does not provide a good mea-168

sure of the actual duration of the prompt emission. A more detailed study of the prompt emission169

phase is reported in 14.170

AGILE (The Astrorivelatore Gamma ad Immagini LEggero 38) could observe GRB 190114C until171

T0+330 s, before it became occulted by the Earth. GRB 190114C triggered the Mini-CALorimeter172

(MCAL) from T0−0.95 s to T0+10.95 s. The MCAL light flux curve in Fig. 1 has been produced173

using two different spectral models. From T0−0.95 s to T0+1.8 s, the spectrum is fitted by a174

power law with photon index Γph = -1.97+0.47
−0.70 (dN/dE ∝ EΓph) From T0+1.8 s to T0 + 5.5 s175

the best fit model is a broken power law with Γph,1 = −1.87+0.54
−0.19, Γph,2 = −2.63+0.07

−0.07, and176

break energy Eb =756+137
−159 keV. The total fluence in the 0.4−100 MeV energy range is F =177

1.75×10−4 erg cm−2. The Super-AGILE detector also detected the burst, but the large off-axis178

angle prevented any X-ray imaging of the burst, as well as spectral analysis. Panels a, d, and e179
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Extended Data Figure 1: Prompt emission light curves for different detectors. The differ-

ent panels show light curves for: a, SuperAGILE (20-60 keV); b, Swift/BAT (15-150 keV); c,

Fermi/GBM (10-1000 keV); d, AGILE/MCAL (0.4-1.4 MeV); e, AGILE/MCAL (1.4-100 MeV);

f, Fermi/LAT (0.1-10 GeV). The light curve of AGILE/MCAL is split into two bands to show the

energy dependence of the first peak. Error bars show the 1-σ statistical errors.
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in Extended Data Fig. 1 show the GRB 190114C light curves acquired by the Super-AGILE de-180

tector (20 − 60 keV) and by the MCAL detector in the low- (0.4 − 1.4 MeV) and high-energy181

(1.4− 100 MeV) bands.182

Fermi/GBM At the time of the MAGIC observations there are indications that some of the de-183

tectors are partially blocked by structure on the Fermi Spacecraft that is not modeled in the GBM184

detectors’ response. This affects the low-energy part of the spectrum 39. For this reason, out of cau-185

tion we elected to exclude the energy channels below 50 keV. The spectra detected by the Fermi-186

Gamma-ray Burst Monitor (GBM)40 during the T0+68 s to T0+110 s and T0+110 s to T0+180 s187

intervals are best described by a power law model with photon index Γph = −2.10 ± 0.08 and188

Γph = −2.05 ± 0.10 respectively (Fig. 2 and Fig. 3). The 10-1000 keV light curve in Extended189

Data Fig. 1 (panel c) was constructed by summing photon counts for the bright NaI detectors.190

Swift/BAT The 15 − 350 keV mask-weighted light curve of the Burst Alert Telescope (BAT 41)191

shows a multi-peaked structure that starts at T0−7 s (Extended Data Fig. 1, panel b). The 68−110 s192

and 110 − 180 s spectra shown in Figs. 2 and 3 were derived from joint XRT-BAT fit. The best-193

fitting parameters for the whole interval (68 − 180 s) are: column density NH = (7.53+0.74
−1.74) ×194

1022 cm−2 at z = 0.42, in addition to the galactic value of 7.5×1019 cm−2, low-energy photon index195

Γph,1 = −1.21+0.40
−1.26, high-energy spectral index Γph,2 = −2.19+0.39

−0.19, peak energy Epk > 14.5 keV.196

Errors are given at 90% confidence level.197

Fermi/LAT The Fermi Large Area Telescope (LAT)42 detected a gamma-ray counterpart since the198

prompt phase43. The burst left the LAT FoV at T0+150 s and remained outside the LAT field of199
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view until T0+8600 s. The count light curve in the energy range 0.1-10 GeV is shown in Extended200

Data Fig. 1 (panel f). The LAT spectra in the time bins 68–110 s and 110–180 s (Figs. 2 and 3)201

are described by a power law with pivot energies of, respectively, 200 MeV and 500 MeV, photon202

indices Γph(68 − 110) = −2.02 ± 0.95 and Γph(110 − 180) = −1.69 ± 0.42, and corresponding203

normalisations of N0,68−110 = (2.02 ± 1.31) × 10−7 ph MeV−1cm−2 s and N0,110−180 = (4.48 ±204

2.10) × 10−8 ph MeV−1cm−2 s. In each time-interval, the analysis has been performed limited to205

the energy range where photons have been detected. The LAT light curve integrated in the energy206

range 0.1-1 GeV is shown in Fig. 1.207

MAGIC We used the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) standard soft-208

ware 44 and followed the steps optimised for the data taking under moderate moon illumination45
209

to analyse the data. The spectral fitting is performed by a forward-folding method assuming a210

simple power law as for an intrinsic spectrum taking into account of the Extragalactic Background211

Light (EBL) effect using the model of Domı́nguez et al.46. Extended Data Table 1 shows the fitting212

results for various time bins (the pivot energy is chosen to minimise the correlation between nor-213

malisation and photon index parameters). The data points shown in both Fig. 2 and 3 are obtained214

from the observed excess rates in estimated energy whose fluxes are evaluated in true energy using215

effective time and a spill-over corrected effective area obtained as a resultant of the best fit.216

The time resolved analysis hints to a possible spectral evolution from hard to soft values.217

Although we can not exclude that the photon indexes are compatible with a constant value of218

∼ −2.5 up to 2400 s. The signal and background in the considered time bins are both in the low-219

count Poisson regime. Therefore, the correct treatment of the MAGIC data provided here includes220
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Time bin Normalisation Photon index Pivot energy

[ seconds after T0 ] [ TeV−1 cm−2 s−1 ] [GeV]

62 - 90 1.95+0.21
−0.20 · 10−7 −2.17 +0.34

−0.36 395.5

68 - 180 1.10+0.09
−0.08 · 10−7 −2.27 +0.24

−0.25 404.7

180 - 625 2.26+0.21
−0.20 · 10−8 −2.56 +0.27

−0.29 395.5

68 - 110 1.74+0.16
−0.15 · 10−7 −2.16 +0.29

−0.31 386.5

110 - 180 8.59+0.95
−0.91 · 10−8 −2.51 +0.37

−0.41 395.5

180 - 360 3.50+0.38
−0.36 · 10−8 −2.36 +0.34

−0.37 395.5

360 - 625 1.65+0.23
−0.23 · 10−8 −3.16 +0.48

−0.54 369.1

625 - 2400 3.52+0.47
−0.47 · 10−9 −2.80 +0.48

−0.54 369.1

62 - 2400 (Nominal MC) 1.07+0.08
−0.07 · 10−8 −2.51 +0.20

−0.21 423.8

62 - 2400 (Light scale +15% MC) 7.95+0.58
−0.56 · 10−9 −2.91 +0.23

−0.25 369.1

62 - 2400 (Light scale -15% MC) 1.34+0.09
−0.09 · 10−8 −2.07 +0.18

−0.19 509.5

Extended Data Table 1: MAGIC spectral fit parameters for GRB 190114C. For each time

bin, columns represent a) start time and end time of the bin; b) normalisation of the EBL-

corrected differential flux at the pivot energy with statistical errors; c) photon indices with

statistical errors; d) pivot energy of the fit (fixed).
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along with the use of the Poisson statistic also the systematic errors. To estimate the main source221

of systematic error caused by our imperfect knowledge of the absolute instrument calibration and222

the total atmospheric transmission we vary the light-scale in our Monte Carlo (MC) simulation223

as suggested in previous studies44. The result is reported in the last two lines of Extended Data224

Table 1 and in Extended Data Fig. 2.225

The systematic effects deriving from the choice of one particular EBL model were also stud-226

ied. The analysis performed to obtain the time integrated spectrum was repeated employing other227

three models47–49 to deconvolve the effect of the EBL from the spectral data. The contribution to228

the systematic error on the photon index caused by the uncertainty on the EBL model is σα =+0.10
−0.13229

which is smaller than the statistical error only (1 standard deviation) as already seen in a previous230

work10. On the other hand the contribution to the systematic error on the normalisation, due to231

choice of the EBL model, is only partially at the same level of the statistical error (1 standard232

deviation) σN =+0.30
−0.08 ×10−8. The chosen EBL model returns a lower normalisation with respect233

to two of the other models and very close to the rest 47.234

The MAGIC energy flux light curve that is presented in Fig. 1 was obtained by integrating235

the best fit spectral model of each time bin from 0.3 to 1 TeV, in the same manner as a previous236

publication10. The value of the fitted time constant reported here differs less than two standard237

deviation from the one previously reported10. The difference is due to the poor constraints on the238

spectral fit parameters of the last time bin, which influences the light curve fit.239
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Extended Data Figure 2: MAGIC time integrated spectral energy distributions in the time

interval 62-2400 s after T0. The green (yellow, blue) points and band show the result with the

nominal (+15%, -15%) light scale MC, defining the limits of the systematic uncertainties.
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X-ray afterglow observations240

Swift/XRT The Swift X-Ray Telescope (XRT) started observing 68 s after T0. The source light241

curve50 was taken from the Swift/XRT light curve repository 51 and converted into 1-10 keV flux242

(Fig. 1) through dedicated spectral fits. The combined spectral fit XRT+BAT in Figs. 2 and 3 has243

been described above.244

XMM-Newton and NuSTAR The XMM-Newton X-ray Observatory and the the Nuclear Spec-245

troscopic Telescope Array (NuSTAR) started observing GRB 190114C under DDT ToOs 7.5 hours246

and 22.5 hrs (respectively) after the burst. The XMM-Newton and NuSTAR absorption-corrected247

fluxes (see Fig. 1) were derived by fitting the spectrum with XSPEC adopting the same power law248

model, with absorption in our Galaxy and at the redshift of the burst.249

NIR, Optical and UV afterglow observations250

Light curves from the different instruments presented in this section are shown in Extended Data251

Fig. 3.252

GROND The Gamma-ray Burst Optical/Near-infrared Detector (GROND52) started observations253

3.8 hours after the GRB trigger, and the follow-up continued until January 29, 2019. Image re-254

duction and photometry were carried out with standard IRAF tasks 53, as described in 54, 55. JHKs255

photometry was converted to AB magnitudes to have a common flux system. Final photometry is256

given in Extended Data Table 2.257
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Extended Data Figure 3: NIR/Optical/UV observations GRB 190114C. Energy flux at different

frequencies, as a function of the time since the initial burst T0. The flux has been corrected for

extinction in the host and in our Galaxy. The contribution of the host galaxy and its companion

has been subtracted. Fluxes have been rescaled (except for the r filter). The change in decay rate

at ∼ 3× 103 s is caused by the transition from the fast cooling to the slow cooling regime.
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GTC The BOOTES-2 ultra-wide field camera 56, took an image at the GRB 190114C location,258

starting at 20:57:18 UT (30 s exposure time) (see Extended Data Fig. 4). The Gran Canarias259

Telescope (GTC) equipped with the OSIRIS spectrograph57 started observations 2.6 hr post-burst.260

The grisms R1000B and R2500I were used covering the wavelength range 3,700-10,000 Å (600 s261

exposure times for each grism). The GTC detects a highly extinguished continuum, as well as CaII262

H and K lines in absorption, and [OII], Hβ , and [OIII] in emission (see Extended Data Fig. 5), all263

roughly at the same redshift z = 0.4245±0.0005 58. Comparing the derived rest-frame equivalent264

widths (EWs) with the work by 59, GRB 190114C clearly shows higher than average, but not265

unprecedented, values.266

HST The Hubble Space Telescope (HST) imaged the afterglow and host galaxy of GRB 190114C267

on 11 February and 12 March 2019. HST observations clearly reveal that the host galaxy is spiral268

(Extended Data Fig. 6). A direct subtraction of the epochs of F850LP observations yields a faint269

residual close to the nucleus of the host (Extended Data Fig. 7). From the position of the residual270

we estimate that the burst originated within 250 pc of the host galaxy nucleus.271

LT The robotic 2-m Liverpool Telescope (LT60) slewed to the afterglow location at UTC 2019-272

01-14.974 and on the second night, from UTC 2019-01-15.814 and acquired images in B, g, V , r,273

i and z bands (45 s exposure each in the first night and 60 s in the second). Aperture photometry274

of the afterglow was performed using a custom IDL script with a fixed aperture radius of 1.5′′.275

Photometric calibration was performed relative to stars from the Pan-STARRS1 catalogue61.276
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TGROND AB magnitude

(s) g′ r′ i′ z′ J H Ks

14029.94 ± 335.28 19.21 ± 0.03 18.46 ± 0.03 17.78 ± 0.03 17.33 ± 0.03 16.78 ± 0.05 16.30 ± 0.05 16.03 ± 0.07

24402.00 ± 345.66 19.50 ± 0.04 18.72 ± 0.03 18.05 ± 0.03 17.61 ± 0.03 17.02 ± 0.05 16.53 ± 0.05 16.26 ± 0.08

102697.17 ± 524.01 20.83 ± 0.06 20.00 ± 0.04 19.30 ± 0.04 18.87 ± 0.03 18.15 ± 0.05 17.75 ± 0.06 17.40 ± 0.09

106405.63 ± 519.87 20.86 ± 0.05 19.98 ± 0.03 19.34 ± 0.03 18.88 ± 0.03 18.17 ± 0.06 17.75 ± 0.06 17.34 ± 0.09

191466.77 ± 751.37 21.43 ± 0.07 20.61 ± 0.03 19.97 ± 0.03 19.52 ± 0.03 18.77 ± 0.06 18.28 ± 0.06 17.92 ± 0.14

275594.19 ± 747.59 21.57 ± 0.07 20.88 ± 0.04 20.31 ± 0.04 19.87 ± 0.04 19.14 ± 0.07 18.57 ± 0.06 18.26 ± 0.21

366390.74 ± 1105.79 21.87 ± 0.07 21.17 ± 0.04 20.62 ± 0.03 20.15 ± 0.03 19.43 ± 0.06 18.89 ± 0.06 18.46 ± 0.15

448791.55 ± 1201.33 21.90 ± 0.08 21.27 ± 0.04 20.79 ± 0.04 20.33 ± 0.03 19.66 ± 0.07 18.97 ± 0.07 18.55 ± 0.18

537481.41 ± 1132.16 22.02 ± 0.09 21.52 ± 0.05 21.00 ± 0.04 20.55 ± 0.03 19.87 ± 0.07 19.20 ± 0.07 18.83 ± 0.17

794992.63 ± 1200.69 22.14 ± 0.04 21.51 ± 0.03 21.05 ± 0.04 20.71 ± 0.05 20.31 ± 0.13 19.79 ± 0.14 19.59 ± 0.41

1226716.84 ± 1050.15 22.17 ± 0.04 21.59 ± 0.04 21.26 ± 0.04 20.97 ± 0.04 20.34 ± 0.12 19.95 ± 0.11 19.40 ± 0.34

Extended Data Table 2: GROND photometry. TGROND in seconds after the BAT trigger.

The AB magnitudes are not corrected for the Galactic foreground reddening.

UTC Instrument Filter Exposure (s) Magnitude

2019-01-14.975 LT/IO:O g 45 19.08±0.06

2019-01-14.976 LT/IO:O r 45 18.22±0.02

2019-01-14.977 LT/IO:O i 45 17.49±0.02

2019-01-14.978 LT/IO:O z 45 17.12±0.02

2019-01-14.979 LT/IO:O B 45 19.55±0.15

2019-01-14.980 LT/IO:O V 45 18.81±0.08

2019-01-15.814 LT/IO:O r 60 19.61±0.05

2019-01-15.818 LT/IO:O z 60 18.70±0.06

2019-01-15.820 LT/IO:O i 60 19.04±0.04

2019-01-15.823 LT/IO:O g 60 20.96±0.17

Extended Data Table 3: Liverpool Telescope observations. Magnitudes are SDSS AB-”like”

for ugriz, Vega-”like” for BV and are not corrected for Galactic extinction.
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Extended Data Figure 4: The CASANDRA-2 at the BOOTES-2 station all-sky image. The

image (30s exposure, unfiltered) was taken on Jan 14, 20:57:18 U.T. At the GRB190114C location

(circle) no prompt optical emission is detected simultaneously to the gamma-ray photons (which

started to arrive at 20:57:03 U.T.) See main text.
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Extended Data Figure 5: The GTC (+OSIRIS) spectrum. The normalised spectrum of the

GRB 190114C optical afterglow on Jan 14, 23:32:03 UT, taken with the R1000B and R2500I

grisms. The emission lines of the underlying host galaxy are noticeable, besides the Ca II absorp-

tion lines in the afterglow spectrum (all of them are labelled). The cyan dotted line represents the

noise. See main text.
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Extended Data Figure 6: Three-colour image of the host of GRB 190114C with the HST. The

host galaxy is a spiral galaxy, and the green circle indicates the location of the transient close to its

host nucleus. The image is 8 ′′ across, north is up and east to the left.
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Extended Data Figure 7: F850LP imaging of GRB 190114C taken with the HST. Two epochs

are shown (images are 4 ′′ across), as well as the result of the difference image. A faint transient

is visible close to the nucleus of the galaxy, and we identify this as the late time afterglow of the

burst.

NTT The ESO New Technology Telescope (NTT) observed the optical counterpart of GRB 190114C277

under the extended Public ESO Spectroscopic Survey for Transient Objects (ePESSTO) using the278

NTT/EFOSC2 instrument in imaging mode 62. Observations started at 04:36:53 UT on 2019 Jan-279

uary 16 with the g, r, i, z Gunn filters. Image reduction was carried out by following the standard280

procedures63.281

OASDG The 0.5 m remote telescope of the Osservatorio Astronomico “S. Di Giacomo” (OASDG),282

located in Agerola (Italy) started observations in the opticalRc-band 0.54 hours after the burst. The283

afterglow of GRB 190114C was clearly detected in all the images.284

NOT The Nordic Optical Telescope (NOT) observed the optical afterglow of GRB 190114C with285

the Alhambra Faint Object Spectrograph and Camera (AlFOSC) instrument. Imaging was obtained286
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in the griz filters with 300 s exposures, starting at Jan 14 21:20:56 UT, 24 minutes after the BAT287

trigger. The normalised spectrum (Extended Data Fig. 8) reveals strong host interstellar absorption288

lines due to Ca H & K and Na I D, which provided a redshift of z = 0.425.289

REM The Rapid Eye Mount telescope (REM) performed optical and NIR observations with290

the REM 60 cm robotic telescope equipped with the ROS2 optical imager and the REMIR NIR291

camera64. Observations were performed starting about 3.8 hours after the burst in the r, and J292

bands and lasted about one hour.293

Swift/UVOT The Swift UltraViolet and Optical Telescope (UVOT65) began observations at T0+54294

seconds in the UVOT v band. The first observation after settling started 74 s after the trigger for295

150 s in the UVOTwhite band66. A 50 s exposure with the UV grism was taken thereafter, followed296

by multiple exposures rotating through all seven broad and intermediate-band filters until switching297

to only UVOT’s clear white filter on 2019-01-20. Standard photometric calibration and methods298

were used for deriving the aperture photometry67, 68. The grism zeroth order the data were reduced299

manually69 to derive the b-magnitude and error.300

VLT The STARGATE collaboration used the Very Large Telescope (VLT) and observed GRB 190114C301

using the X-shooter spectrograph. Detailed analysis will be presented in forthcoming papers. A302

portion of the second spectrum is shown in Extended Data Fig. 9, illustrating the strong emission303

lines characteristic of a strongly star-forming galaxy, whose light is largely dominating over the304

afterglow at this epoch.305
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Extended Data Figure 8: The NOT/AlFOSC spectrum. The NOT/AlFOSC spectrum obtained at

a mid-time 1 hr post-burst. The continuum is afterglow dominated at this time, and shows strong

absorption features of Ca II and Na I (in addition to telluric absorption).
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UTC t-t0 (d) Filter Exposure (s) Magnitude (AB)

2019-01-14.89127 0.0183 g 1× 300 17.72±0.03

2019-01-14.89512 0.0222 r 1× 300 16.93±0.02

2019-01-14.89899 0.0260 i 1× 300 16.42 ±0.04

2019-01-14.90286 0.0299 z 1× 300 16.17 ±0.04

2019-01-23.8896 9.0167 i 6× 300 21.02±0.05

Extended Data Table 4: Nordic Optical Telescope/AlFOSC observations. Magnitudes are

in the SDSS AB system and are not corrected for Galactic extinction.

Extended Data Figure 9: The VLT/X-shooter spectrum. The visible light region of the VLT/X-

shooter spectrum obtained approximately 3.2 d post-burst, showing strong emission lines from the

star-forming host galaxy.
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Magnitudes of the underlying galaxies The HST images show a spiral or tidally disrupted galaxy306

whose bulge is coincident with the coordinates of GRB 190114C. A second galaxy is detected at an307

angular distance of 1.3′′, towards the North East. The SED analysis was performed with LePhare308

70, 71 using an iterative method that combined both the resolved photometry of the two galaxies309

found in the HST and VLT/HAWK-I data and the blended photometry from GALEX and WISE,310

where the spatial resolution was much lower. Further details will be given in a paper in preparation311

(de Ugate Postigo et al.). The estimated photometry, for each object and their combination, is given312

in Extended Data Table 5.313

Optical Extinction The optical extinction toward the line of sight of a GRB is derived assuming314

a a power law as intrinsic spectral shape72. Once the Galactic extinction (EB−V = 0.0173) is taken315

into account and the fairly bright host galaxy contribution is properly subtracted, a good fit to the316

data is obtained with the LMC recipe and AV = 1.83 ± 0.15. The spectral index β (Fν ∝ νβo)317

evolves from hard to soft across the temporal break in the optical light-curve at about 0.5 days,318

moving from βo,1 − 0.10± 0.12 to βo,2 − 0.48± 0.15.319

Radio and Sub-mm afterglow observations320

The light curves from the different instruments is shown in Extended Data Fig. 10.321

ALMA The Atacama Large Millimetre/Submillimetre Array (ALMA) observations are reported322

in Band 3 (central observed frequency of 97.500 GHz) and Band 6 (235.0487 GHz), between 2019323

January 15 and 2019 January 19. Data were calibrated within CASA (Common Astronomy Soft-324

ware Applications, version 5.4.074) using the pipeline calibration. Photometric measurements were325

43



Filter Host Companion Combined

Sloan u 23.54 25.74 23.40

Sloan g 22.51 23.81 22.21

Sloan r 22.13 22.81 21.66

Sloan i 21.70 22.27 21.19

Sloan z 21.51 21.74 20.87

2MASS J 20.98 21.08 20.28

2MASS H 20.68 20.82 20.00

2MASS Ks 20.45 20.61 19.77

Extended Data Table 5: Observations of the host galaxy. For each filter, the estimated

magnitudes are given for the host galaxy of GRB 190114C, the companion and the com-

bination of the two objects.
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Extended Data Figure 10: Radio and sub-mm observations GRB 190114C: energy flux at dif-

ferent frequencies, from 1.3 GHz to 670 GHz, as a function of the time since the initial burst T0.
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also performed within CASA. ALMA early observations at 97.5 GHz are taken from 16.326

ATCA The Australia Telescope Compact Array (ATCA)oObservations were made with the ATCA327

4 cm receivers (band centres 5.5 and 9 GHz), 15 mm receivers (band centres 17 and 19 GHz), and328

7 mm receivers (band centres 43 and 45 GHz). ATCA data were obtained using the CABB con-329

tinuum mode 75 and reduced with the software packages MIRIAD 76 and CASA 74 using standard330

techniques. The quoted errors are 1σ, which include the RMS and Gaussian 1σ errors.331

GMRT The upgraded Giant Metre-wave Radio Telescope 77 (UGMRT) observed on 17th January332

2019 13.44 UT (2.8 days after the burst) in band 5 (1000-1450 MHz) with 2048 channels spread333

over 400 MHz. GMRT detected a weak source with a flux density of 73±17 µJy at the GRB334

position 78. The flux should be considered as an upper limit, as the contribution from the host79 has335

not been subtracted.336

MeerKAT The new MeerKAT radio observatory 80, 81 observed on 15 and 18 January 2019, with337

DDT requested by the ThunderKAT Large Survey Project 82. Both epochs used 63 antennas and338

were done at L-band spanning 856 MHz and centered at 1284 MHz. MeerKAT flux estimation339

was done by finding and fitting the source with the software PyBDSF v.1.8.15 83.Adding the RMS340

noise in quadrature to the flux uncertainty leads to final flux measurements of 125±14 µJy/beam341

on 15 January and 97±16 µJy/beam on 18 January. The contribution from the host galaxy79 has342

not been subtracted. Therefore, these measurements provide a maximum flux of the GRB.343

JCMT SCUBA-2 Sub-millimeter Sub-millimeter observations were performed simultaneously344

at 850µm and 450µm on three nights using the SCUBA-2 continuum camera84. GRB 190114C345
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Start Date and Time End Date and Time Frequency Flux
GHz mJy

1/16/2019 6:47:00 1/16/2019 10:53:00 5.5 1.92±0.06

9 1.78±0.06

18 2.62±0.26

1/18/2019 1:45:00 1/18/2019 11:18:00 5.5 1.13±0.04

9 1.65±0.05

18 2.52±0.27

44 1.52±0.15

1/20/2019 3:38 1/20/2019 10:25:00 5.5 1.78±0.06

9 2.26±0.07

18 2.30±0.23

Extended Data Table 6: Observations by ATCA. Start and end date and times (UTC) of

the observations, frequency, and flux (1σ error).

UT Date Time since Time on Typical Typical 850µm RMS 450µm RMS
trigger source 225 GHz CSO elevation density density
(days) (hours) Opacitya (degrees) (mJy/beam) (mJy/beam)

2019-01-15 0.338 1.03 0.026 39 1.7 9.2

2019-01-16 1.338 1.03 0.024 39 1.6 8.4

2019-01-18 3.318 0.95 0.031 37 1.7 11.4

Extended Data Table 7: JCMT SCUBA-2 sub-millimeter observations of GRB 190114C.

aThe CSO 225 GHz tau measures the zenith atmospheric attenuation.
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Extended Data Figure 11: Radio to X-rays SED at different epochs. The synchrotron frequency

νm crosses the optical band, moving from higher to lower frequencies. The break between 108 and

1010 Hz is caused by the self-absorption synchrotron frequency νsa. Optical (X-ray) data have been

corrected for extinction (absorption).

was not detected on any of the individual nights. Combining all the SCUBA-2 continuum camera84
346

observations, the RMS background noise is 0.95 mJy/beam at 850µm and 5.4 mJy/beam at 450µm347

at 1.67 days after the burst trigger.348

Prompt emission model for the early time MAGIC emission In the standard picture the prompt349

sub-MeV spectrum is explained as a synchrotron radiation from relativistic accelerated electrons in350

the energy dissipation region. The associated inverse Compton component is sensitive to the details351

48



of the dynamics: e.g. in the internal shock model if the peak energy is initially very high and the352

IC component is suppressed due to Klein-Nishina (KN) effects, the peak of the IC component353

may be delayed and become bright only at late times when scatterings occur in Thomson regime.354

Simulations showed that magnetic fields required to produce the GeV/TeV component are rather355

low85, εB ∼10−3. In this framework the contribution of the IC component to the observed flux356

at early times (62-90 s, see Extended Data Table 1) does not exceed ∼ 20%. Alternatively, if the357

prompt emission originates in reprocessed photospheric emission, the early TeV flux may arise358

from IC scatterings of thermal photons by freshly heated electrons below the photosphere at low359

optical depths. Another possibility for the generation of TeV photons might be the IC scattering of360

prompt MeV photons by electrons in the external forward shock region where electrons are heated361

to an average Lorentz factor of order 104 at early times.362

Afterglow model Synchrotron and SSC radiation from electrons accelerated at the forward shock363

has been modelled within the external shock scenario 7, 8, 20, 25, 86. The results of the modeling are364

overlaid to the data in Fig. 3, and Extended Data Figs. 11 and 12.365

We consider two types of power law radial profiles n(R) = n0R
−s for the external environ-366

ment: s = 0 (homogeneous medium) and s = 2 (wind-like medium, typical of an environment367

shaped by the stellar wind of the progenitor). In the last case, we define n0 = 3 × 1035A? cm−1.368

We assume that electrons swept up by the shock are efficiently accelerated into a PL distribution369

described by spectral index p: dN/dγe ∝ γ−pe , where γe is the electron Lorentz factor. We call370

νm the characteristic synchrotron frequency of electrons with Lorentz factor γm, νc the cooling371

frequency, and νsa the synchrotron self-absorption frequency.372
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Extended Data Figure 12: PRELIMINARY - Modeling of the broadband light curves. Model-

ing of forward shock emission (solid curves) is compared to observations, at different frequencies

(see legend). This is for s = 0. The new modeling for s = 2 will be added.

The early time optical emission (up to ∼ 1000 s) and radio emission (up to ∼ 105 s) are373

most likely dominated by reverse shock radiation 16. Detailed modeling of this component is not374

discussed in this work, where we focus on forward shock radiation.375

The XRT flux (Fig. 1, blue data points) decays as FX ∝ tαX with αX = −1.36 ± 0.02. If376

νX > max(νm, νc), the X-ray light curve is predicted to decay as t(2−3p)/4, that implies p ∼ 2.5.377

Another possibility is to assume νm < νX < νc for the whole observing time, which implies a slow378

cooling regime and p = 2.1−2.2 to explain the temporal decay. A broken power law fit provides a379

better fit (5.3× 10−5 probability of chance improvement), with a break occurring around 4× 104 s380
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and decay indices αX,1 ∼ −1.32±0.03 and αX,2 ∼ −1.55±0.04. This behaviour can be explained381

if the electrons are in a slow cooling regime at the time of the break, and assuming p = 2.7 for382

s = 0, and p = 2.4 − 2.5 for s = 2. In both cases, the temporal break can be explained by the383

frequency νc crossing the XRT band.384

From ∼ 2 × 103 s the optical light curve starts displaying a shallow decay in time (with385

temporal index poorly constrained, between -0.5 and -0.25), followed by a steepening around386

8 × 104 s, when the temporal decay becomes similar to the decay in X-ray band, suggesting that387

after this time the X-ray and optical band lie in the same part of the synchrotron spectrum. If the388

break is interpreted as the synchrotron characteristic frequency νm crossing the optical band, after389

the break the observed temporal decay requires a very steep value of p ∼ 3 for s = 0 and a value390

between p = 2.4 and p = 2.5 for s = 2. This interpretation implies (independently of the density391

profile of the external medium and on the cooling regime of the electrons) that νm is in the X-ray392

band at 102 s:393

νm(t = 8× 104 ) = 3× 1018 Hz

(
t

100 s

)−1.5

= 1014 Hz . (1)

The SED at∼100 s is indeed characterised by a peak in between 5-30 keV (Fig. 3), that we interpret394

as the characteristic synchrotron frequency νm. Observations at 1 GHz provide information on395

the location of the synchrotron self-absorption frequency, that is located at νsa∼ 1 GHz at396

105 s (Extended Data Fig. 11).397

Summarizing, in a wind-like scenario X-ray and optical emission and their evolution in time398

can be explained if p = 2.4− 2.5, the emission is initially in fast cooling regime and transitions to399

a slow cooling regime around 3 × 103 s. The optical spectral index at late times is predicted to be400
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(1− p)/2 ∼ −0.72, in agreement with observations. νm crosses the optical band at t ∼ 8× 104 s,401

explaining the steepening of the optical light curve and the flattening of the optical spectrum.402

The X-ray band initially lies above (or close to) νm, and the break frequency νc starts crossing403

the X-ray band around 2 − 4 × 104 s, producing the steepening in the decay rate (the cooling404

frequency increases with time for s = 2). In this case, before the temporal break, the decay rate405

is related to the spectral index of the electron energy distribution by αX,1 = (2 − 3p)/4 ∼ −1.3,406

for p ∼ 2.4− 2.5. Well after the break, this value of p predicts a decay rate αX,1 = (1− 3p)/4 =407

−1.55−1.62. Overall, this interpretation is also consistent with the fact that the late time (t > 105 s)408

X-ray and optical light curves display similar temporal decays (Fig.1), as they lie in the same part409

of the synchrotron spectrum (νm < νopt < νX < νc).410

Alternatively, assuming a homogeneous density medium, observations can be modeled if411

νc > νm at all times, implying that the emission is always produced in a slow cooling regime to be412

completed with the details of the s = 0 modeling.413

We now add to the picture the information brought by the TeV detection. The modeling414

is built with reference to the MAGIC flux and spectral indices derived considering statistical errors415

only (see Extended Data Table 1 and green data points in Extended Data Fig. 2). The light curve416

decays in time as t−1.51 and the photon index is consistent within∼ 1σ with Γph,TeV ∼ −2.5 for417

the entire duration of the emission, although there is evidence for an evolution from harder418

(∼ −2) to softer (∼ −2.8) values. In the first broadband SED (Fig. 3, upper panel), LAT obser-419

vations provide strong evidence for the presence of two separated spectral peaks.420

52



Assuming Thomson scattering, the SSC peak is given by:421

νSSC
peak ' 2 γ2

eν
syn
peak (2)

while in KN regime, the SSC peak should be located at:422

hνSSC
peak ' 2 γe Γme c

2/(1 + z) (3)

where γe = min(γc, γm). The synchrotron spectral peak is located at Esyn
peak ∼ 10 keV, while423

the peak of the SSC component must be below Essc
peak . 100 GeV to explain the MAGIC photon424

index. Both the KN and Thomson scattering regimes imply γe . 103. This small value faces425

two problems: i) if the bulk Lorentz factor Γ is larger than 150 (that is a necessary condition to426

avoid strong γ-γ opacity, see below), a small γm translates into a small efficiency of the electron427

acceleration, with εe < 0.05, ii) the synchrotron peak energy can be located at Esyn
peak ∼ 10 keV428

only for B Γ & 105 G.429

These calculations show that γ-γ opacity likely plays an role in shaping the observed peak430

energy of the SSC spectrum87, 88.431

For a gamma-ray photon with energy Eγ , the τγγ opacity is:432

τγγ(Eγ) = σγγ (R/Γ)nt(Eγ) , (4)

where nt = Lt/(4 π R
2 cΓEt) is the density of target photons in the comoving frame, Lt is the433

luminosity andEt = (me c
2)2 Γ2/Eγ/(1+z)2 is the energy of target photons in the observer frame.434

Target photons for photons with energy Eγ = 0.2− 1 TeV and for Γ ∼ 120− 150 have energies in435

the range 4− 30 keV. When γ − γ absorption is relevant, the emission from the pairs can give436

a non-negligible contribution to the radiative output.437
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To properly model all the physical processes that are shaping the broad band radia-438

tion, we build a numerical code that solves the evolution of the electron distributions and439

derive the radiative output taking into account the following processes: synchrotron and440

SSC losses, adiabatic losses, γ − γ absorption, emission from the pairs, and synchrotron441

self-absorption89–92. We find that for the parameters assumed in the proposed modeling (see442

below), the contribution from pairs to the emission is negligible.443

The MAGIC photon index (Extended Data Table 1) and its evolution with time constrains in444

any case the SSC peak energy to be not much higher than 1 TeV: in general the internal opacity445

decreases with time and KN effects become less relevant. A possible softening of the spectrum446

with time, as the one suggested by the observations, requires that the spectral peak decreases with447

time and crosses the MAGIC energy range. As the SSC spectrum is very broad around the peak,448

KN and/or opacity still need to play a role also at late times (∼ 2000 s) in order to explain soft449

photon indices ΓTeV < −2 (Extended Data Table 1). In the slow cooling regime, the SSC peak450

evolves to higher frequencies for a wind-like medium and decreases very slowly (νSSC
peak ∝ t−1/4)451

for a constant-density medium (both in KN and Thomson regimes). In fast cooling regime the452

evolution is faster (νSSC
peak ∝ t−1/2 − t−9/4 depending on medium and regime).453

We model the broadband observations considering both s = 0 and s = 2. The results are454

shown in Extended Data Fig. 12. We find that the fast temporal decay rate of the TeV light455

curve can be more easily explained in a homogeneous medium.456

The results of the broad band modeling is shown in Fig.3, and Extended Data Figs. 11 and457
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12 where model curves are overlaid to observations. The model curves shown in these figures458

have been derived using the following parameters: εe =??, εB =??, ξe =??, p =??, n0? =??, and459

Ek =??. Using the constraints on the afterglow onset time (taft
peak ∼ 5 − 10 s from the smooth460

component detected during the prompt emission) the initial bulk Lorentz factor is constrained to461

assume values Γ0 ∼ 300 and Γ0 ∼ 700 for s = 2 and s = 0, respectively.462
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List of Figures797

Figure 1 Multi-wavelength light curves of GRB 190114C. Energy flux at different798

wavelengths, from radio to gamma-rays, versus time since the BAT trigger time799

T0 = 20:57:03.19 UT on 14 January 2019. The light curve for the energy range 0.3-800

1 TeV (green circles) is compared with light curves at lower frequencies. Those801

for VLA (yellow square), ATCA (yellow stars), ALMA (orange circles), GMRT802

(purple filled triangle), and MeerKAT (purple empty triangles) have been multi-803

plied by 109 for clarity. The vertical dashed line marks approximately the end of804

the prompt emission phase, identified with the end of the last flaring episode. For805

the data points, vertical bars show the 1-σ errors on the flux, while horizontal bars806

represent the duration of the observation. . . . . . . . . . . . . . . . . . . . . . . 16807
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Figure 2 Broadband spectra in the time interval 68-2400 s. Five time intervals808

are considered: 68-110 s (blue), 110-180 s (yellow), 180-360 s (red), 360-625 s809

(green), 625-2400 s (purple). MAGIC data points have been corrected for attenu-810

ation caused by the Extragalactic Background Light. Data from other instruments811

are shown for the first two time-intervals: Swift/XRT, Swift/BAT, Fermi/GBM, and812

Fermi/LAT. For each time interval, LAT contour regions are shown limiting the813

energy range to the range where photons are detected. MAGIC and LAT contour814

regions are drawn from the 1-σ error of their best-fit power law functions. For Swift815

data, the regions show the 90% confidence contours for the joint fit XRT-BAT ob-816

tained fitting to the data a smoothly broken power law. Filled regions are used for817

the first time interval (68-110 s, blue color). . . . . . . . . . . . . . . . . . . . . . 20818

Figure 3 Modeling of the broadband spectra in the time intervals 68-110 s and819

110-180 s. Thick blue curve: modeling of the broadband data in the synchrotron820

and SSC afterglow scenario. Thin solid lines: synchrotron and SSC (observed821

spectrum) components; dashed lines: SSC if internal γ-γ opacity is neglected. For822

the adopted parameters, see the Text. Empty circles show the observed MAGIC823

spectrum, i.e. not corrected by attenuation caused by the Extragalactic Background824

Light. Contour regions and data points as in Fig. 2. . . . . . . . . . . . . . . . . . 21825
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Figure 1 Prompt emission light curves for different detectors. The different pan-826

els show light curves for: a, SuperAGILE (20-60 keV); b, Swift/BAT (15-150 keV);827

c, Fermi/GBM (10-1000 keV); d, AGILE/MCAL (0.4-1.4 MeV); e, AGILE/MCAL828

(1.4-100 MeV); f, Fermi/LAT (0.1-10 GeV). The light curve of AGILE/MCAL is829

split into two bands to show the energy dependence of the first peak. Error bars830

show the 1-σ statistical errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26831

Figure 2 MAGIC time integrated spectral energy distributions in the time inter-832

val 62-2400 s after T0. The green (yellow, blue) points and band show the result833

with the nominal (+15%, -15%) light scale MC, defining the limits of the system-834

atic uncertainties. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31835

Figure 3 NIR/Optical/UV observations GRB 190114C. Energy flux at different836

frequencies, as a function of the time since the initial burst T0. The flux has been837

corrected for extinction in the host and in our Galaxy. The contribution of the host838

galaxy and its companion has been subtracted. Fluxes have been rescaled (except839

for the r filter). The change in decay rate at ∼ 3× 103 s is caused by the transition840

from the fast cooling to the slow cooling regime. . . . . . . . . . . . . . . . . . . 33841

Figure 4 The CASANDRA-2 at the BOOTES-2 station all-sky image. The image842

(30s exposure, unfiltered) was taken on Jan 14, 20:57:18 U.T. At the GRB190114C843

location (circle) no prompt optical emission is detected simultaneously to the gamma-844

ray photons (which started to arrive at 20:57:03 U.T.) See main text. . . . . . . . . 36845
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Figure 5 The GTC (+OSIRIS) spectrum. The normalised spectrum of the GRB 190114C846

optical afterglow on Jan 14, 23:32:03 UT, taken with the R1000B and R2500I847

grisms. The emission lines of the underlying host galaxy are noticeable, besides848

the Ca II absorption lines in the afterglow spectrum (all of them are labelled). The849

cyan dotted line represents the noise. See main text. . . . . . . . . . . . . . . . . . 37850

Figure 6 Three-colour image of the host of GRB 190114C with the HST. The host851

galaxy is a spiral galaxy, and the green circle indicates the location of the transient852

close to its host nucleus. The image is 8 ′′ across, north is up and east to the left. . 38853

Figure 7 F850LP imaging of GRB 190114C taken with the HST. Two epochs are854

shown (images are 4 ′′ across), as well as the result of the difference image. A faint855

transient is visible close to the nucleus of the galaxy, and we identify this as the856

late time afterglow of the burst. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39857

Figure 8 The NOT/AlFOSC spectrum. The NOT/AlFOSC spectrum obtained at a858

mid-time 1 hr post-burst. The continuum is afterglow dominated at this time, and859

shows strong absorption features of Ca II and Na I (in addition to telluric absorption). 41860

Figure 9 The VLT/X-shooter spectrum. The visible light region of the VLT/X-861

shooter spectrum obtained approximately 3.2 d post-burst, showing strong emis-862

sion lines from the star-forming host galaxy. . . . . . . . . . . . . . . . . . . . . . 42863
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Figure 10 Radio and sub-mm observations GRB 190114C: energy flux at different864

frequencies, from 1.3 GHz to 670 GHz, as a function of the time since the initial865

burst T0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45866

Figure 11 Radio to X-rays SED at different epochs. The synchrotron frequency867

νm crosses the optical band, moving from higher to lower frequencies. The break868

between 108 and 1010 Hz is caused by the self-absorption synchrotron frequency869

νsa. Optical (X-ray) data have been corrected for extinction (absorption). . . . . . . 48870

Figure 12 PRELIMINARY - Modeling of the broadband light curves. Modeling871

of forward shock emission (solid curves) is compared to observations, at different872

frequencies (see legend). This is for s = 0. The new modeling for s = 2 will be873

added. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50874
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