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Key Points: 

• We investigate saucer-shaped sill growth using finite element simulation, with 
comparison to natural and modelled sills. 

• Isotropic elastic properties variation of the host rock causes only minor change in overall 
sill geometry. 

• Magma pressure profiles within the sill are important in propagation rate, but have little 
effect on final sill geometry. 

• Geometries of sills emplaced during mild horizontal shortening closely match the profiles 
of natural saucer-shaped sills.  
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Abstract 
Near-surface igneous sills commonly exhibit saucer-like shapes, formed due to interaction with 
the Earth’s surface once some critical sill length is reached relative to its depth. Sill geometry has 
been strongly linked to the host material conditions, particularly in terms of the elastic properties 
and shear cohesion of the host rock, operating as primary controls on sill geometry. Here we 
conduct dynamic numerical simulations for sill growth in the near surface, in which we vary the 
host rock properties, magma pressure profile internal to the sill ∆𝑃𝑃, and the externally applied 
tectonic stress 𝜎𝜎𝑟𝑟, to consider their contributions to sill geometry. We find that elastic properties 
alone have little impact on sill geometry. Saucer shapes reflect the additive stress components of 
the magma overpressure within the sill, and the tectonic stress, controlled by the locus of the 
maximum energy release rate 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚. Initially 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚 is in-plane with the sill, but deflects to ~25° 
at a critical base length 𝑟𝑟𝑐𝑐 relative to depth, due to interaction between the sill and the free 
surface. Increasing 𝜎𝜎𝑟𝑟 decreases this angle and increases 𝑟𝑟𝑐𝑐 of the sill. ∆𝑃𝑃 controls sill growth 
rate, but has little effect on overall geometry. Host rock cohesion and elastic properties control 
the absolute magnitudes of 𝜎𝜎𝑟𝑟 required to affect a change in sill geometry. 
 

Plain Language Summary 
Horizontal magma pathways – sills – are a crucial part of volcanic plumbing systems, acting as 
potential feeder conduits to volcanic eruptions, and as magma storage systems. Saucer-shaped 
sills, which exhibit a flat inner region and inclined outer region, are a common type of magma 
pathway in the shallow crust. Models for saucer-shaped sills, both as physical analogue models, 
or numerical simulations, typically under-predict the length of the inner flat region, and over-
predict the outer inclined region; models are typically too short and too steep. Here we use 
numerical simulation to investigate parameters that may control sill shape. We find that the 
dominant controls on sill shape are the competing effects of: (1) bending of the rocks above the 
sill, which promotes a transition to inclined growth, typically at ~25°; and (2) plate tectonic 
shortening, which serves to decrease the angle of incline, towards 0° when the horizontal force is 
high. Increasing the applied horizontal tectonic force can produce sills that are up to five times 
longer in the inner region, before growing as inclined sills at ~5°. This matches very closely with 
observations of natural sills, indicating that tectonic forces are an important consideration in the 
growth of sills. 
 

1 Introduction 
Igneous sills have played a primary role in the formation of Earth’s oceanic crust (Maclennan, 
2018) and the growth of evolved continental crust (Jackson et al., 2019). Sills have been shown 
to represent an important part of the plumbing system in volcanically active regions (Amelung et 
al., 2000; Sigmundsson et al., 2010) and in ancient systems (Leat, 2008; Muirhead et al., 2014). 
Sills are common in association with horizontally-layered sedimentary rocks (e.g., in basin 
settings), and typically considered as initially flat-lying intrusions that are parallel to bedding, 
representative of extension (mode I) cracks. This association between sills and horizontal 
layering has led to numerous models that invoke layering as the primary cause of sills; typically 
involving a vertical feeder dyke that instantaneously transitions to a layer-parallel sill at some 
layer interface (Kavanagh et al., 2006; Galland et al., 2009; Gudmundsson, 2011). 
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Gudmundsson (2011) summarises three mechanisms for plane-deflection in such cases: 
(1) Cook-Gordon delamination, in which tensile stress ahead of the ascending dyke tip causes the 
horizontal interface to open, and eventually being intruded; (2) stress barriers, in which the 
principal stresses are rotated by layers of varying mechanical properties; and (3) elastic 
mismatch, whereby dykes ascending through materials with a low Young’s Modulus may meet a 
material of high Young’s Modulus, causing deflection (e.g., Kavanagh et al., 2006). Notably, in 
all such models, it is assumed that the ambient stress state for sills is a modified form of that 
required for dyke emplacement; either the maximum compressive stress, 𝜎𝜎1, is vertical, with the 
intermediate and minimum principal stresses (𝜎𝜎2 and 𝜎𝜎3 respectively) being horizontal, or the 
principal stresses are equal. This inference is important as it requires the maximum and 
minimum principal stresses to switch, to facilitate the transition from vertical dyke emplacement 
to horizontal sill emplacement. As an alternative, horizontal extension and dyke emplacement 
could occur if 𝜎𝜎1 and 𝜎𝜎3 are horizontal; forming sills would, therefore, require the maximum and 
intermediate principal stresses to switch (e.g., Walker, 2016; Stephens et al., 2017). Although the 
effect of an ambient tectonic stress state has been investigated for dyke growth for several 
decades (e.g., King Hubbert and Willis, 1957; Maccaferri et al., 2010), few studies have focused 
on the tectonic stress state control on sill propagation and geometry (see Bunger et al., 2008). 

Although sills are typically considered as layer-parallel and horizontal, sills that cut 
bedding are observed, at a range of scales (metre to kilometre), including: (1) gently 
transgressive sills inferred to relate to horizontal shortening (tectonic) strains, which 
accommodate mode I-II extensional-shear opening (Fig. 1; Walker, 2016; Walker et al., 2017; 
Stephens et al., 2017, 2018); and (2) saucer-shaped sills, defined by a broadly convex profile that 
consists of a flat inner region, with transgressive flanks (Fig. 1; Malthe-Sorenssen et al., 2004; 
Planke et al., 2005; Polteau et al., 2008; Hansen et al., 2011). In the latter case, the characteristic 
saucer shape, with transition from a flat to inclined sill, is typically related to asymmetry in sill-
tip stress during propagation, due to inflation-induced bending of the overburden (Malthe-
Sorenssen et al., 2004; Galland et al., 2009). Other proposed mechanisms for saucer-shaped sill 
formation include the depth-dependent increase in Young’s Modulus 𝐸𝐸 (Hansen, 2015), or shear 
failure of the overburden (Haug et al., 2017,2018). Analogue models (Galland et al., 2009; 
Galland and Scheibert, 2013) and numerical simulations of sill growth (Chen et al., 2017) using 
isotropic host materials, have demonstrated that the saucer shape is a fundamental geometry. 

Transition from the flat inner region to inclined outer region of natural saucer-shaped sills 
(e.g., Figs. 1 and 2) typically occurs at some critical radius length scale (𝑟𝑟𝑐𝑐) relative to the initial 
depth of emplacement (𝐻𝐻), typically where 𝑟𝑟𝑐𝑐 > 3𝐻𝐻 (Fig. 3). The incline section of natural sills 
typically rises at an angle 𝜃𝜃 < 30° (Fig. 1), which initiates at a low angle and increases in dip 
towards the extremities, defining a convex profile (Figs. 1-3). By contrast, and in general, most 
modelled saucer-shaped sills differ from natural sills in three critical ways: (1) 𝑟𝑟𝑐𝑐 ≪ 3𝐻𝐻 (Galland 
et al., 2009); (2) 𝜃𝜃 ≥ 30° (Haug et al., 2017); and (3) sill incline profiles are concave, with 𝜃𝜃 
initially steep, before decreasing at distance from the sill centre (Malthe-Sorenssen et al., 2004; 
Galland et al., 2009; Haug et al., 2017,2018). 

Although recent models for saucer-shaped sills have investigated the role of layering in 
controlling sill geometry (e.g., Chen et al., 2017), few studies have investigated the role of 
tectonic stress as a geometric control (see e.g., Bunger et al., 2008).  Here we use axisymmetric 
finite element (FE) simulations to consider the effects of the magma pressure profile within sills, 
and of horizontal stress on sill growth rate, dimensions, and geometry. To isolate the effect of 
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these parameters from those of layer-controls, we use an isotropic host material. We show that 
deviatoric stress (here, where 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦 ≠ 𝜎𝜎𝑧𝑧𝑧𝑧) is important in controlling intrusion geometry. 

 
 

 
Figure 1. Natural sill geometries. (A) Flat to gently-transgressive sills in the San Rafael Sub-
Volcanic Field, Utah USA, cuts the formation boundary separating Carmel Formation mudstones 
and siltstones below, and Entrada Formation sandstones and siltstones above (Stephens et al., 
2018). (B) The Golden Valley saucer-shaped sill, South Africa, emplaced at ~2.4 km depth into 
Permian-Triassic age, sub-horizontal sedimentary rocks (Polteau et al., 2008). The distance 
between the white stars is ~7 km (GoogleEarth image; map data: © CNES/Airbus, © 
Landsat/Copernicus, © 2019 Digital Globe). (C) Saucer-shaped sills in the Faroe-Shetland 
Basin, imaged in seismic datasets (after Moy and Imber, 2009; Moy, 2010). Left-hand image is a 
3D two-way-time (TWT) map of the sill top reflector. Middle and right-hand images are 2D top-
sill time structure and dip-azimuth maps respectively. 
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Figure 2. Conceptual 2D cross-section illustrating the dimensions and main components of a 
saucer-shaped sill. Profiles for the Golden Valley Sill and Tulipan Sill (after Galland et al., 2009) 
are reflected about the centre point for illustration purposes. 
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Figure 3. Comparison of natural and modelled sill profiles. Axes of sill radius 𝑟𝑟 and depth ℎ are 
normalized to the depth of emplacement 𝐻𝐻 of the initial sill, for comparison (see Bunger et al., 
2008). Profiles shown are for analogue experiments of (A) Galland et al. (2009) and (B) Bunger 
et al. (2008), and numerical result of (C) Hansen (2015) and Haug et al., (2017). Panel (D) shows 
all datasets together. Solid black profiles are for the Golden Valley Sill and Tulipan Sill, as 
labelled in D.   
 

2 Background and Methods 

2.1 Previous analytical and numerical models for sills 

There is a rich history of study into the emplacement of dykes and the dyke to sill 
transition, via analogue experiments (Johnson and Pollard, 1973; Takada, 1990; Menand 
and Tait, 2002; Menand et al., 2010; Kavanagh et al., 2015, 2018; Pollard and Townsend, 
2018), and numerical models (Pollard, 1973; Gudmundsson, 2011; Barnett and 
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Gudmundsson, 2014; Townsend et al., 2017).It has long been proposed that the geometry 
of dykes and hydraulic fractures is strongly controlled by the ambient regional stress field 
(e.g., Anderson, 1936; King Hubbert and Willis, 1957; Sibson, 2000; Maccaferri et al., 
2010). Dykes are commonly inferred to represent magma-filled mode I (extension) 
fractures that accommodate crustal extension. The dyke plane in such a model lies 
parallel to the vertical plane containing 𝜎𝜎1 and 𝜎𝜎2, and therefore normal to 𝜎𝜎3. In contrast, 
if sills represent extension fractures, the plane containing 𝜎𝜎1 and 𝜎𝜎2 should be horizontal, 
and with a vertical 𝜎𝜎3 axis. Dykes and sills are commonly found in close spatial 
association, and it is assumed in many cases that dykes feed sills, even if the dyke is not 
observed. 

Several mechanisms have been proposed for dyke to sill transition, such as the 
level of neutral buoyancy (Francis 1982), the effect of dyke-related volume increase on 
local stresses (Anderson, 1936; Wyrick et al., 2015) and several layer-related controls 
such as weak interfaces or contrasting layer properties (Kavanagh et al., 2006; 
Gudmundsson, 2011), and weak host rocks (Schofield et al., 2012). No studies have 
reproduced sills from dykes at a level of neutral buoyancy; rather, on reaching such a 
level, dykes propagate laterally but remain vertical (Lister and Kerr, 1991; Takada, 
1999). Layering is typically considered the most important control on dyke to sill 
transition. In most cases, models for sills are conducted in initially isotropic conditions 
(i.e., no layering, and no applied stress), with the exception that the sill is typically seeded 
at some initial depth by a material interface (Galland et al., 2009) or existing crack 
(Bunger et al., 2008), or the sill already exists in the model (which is the case for our 
simulations). Initial stresses in the models are typically hydrostatic (i.e. 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜎𝜎𝑧𝑧𝑧𝑧, 
where 𝜎𝜎𝑧𝑧𝑧𝑧 is the vertical stress, 𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑦𝑦𝑦𝑦 are the horizontal stresses) rather than 
lithostatic (𝑃𝑃𝐿𝐿 = 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜈𝜈

1−𝜈𝜈
𝜎𝜎𝑧𝑧𝑧𝑧, where 𝜈𝜈 is Poisson’s ratio, the ratio of lateral to 

axial strain; 𝜎𝜎𝑧𝑧𝑧𝑧 = 𝜌𝜌𝑟𝑟𝑔𝑔𝑔𝑔, where 𝜌𝜌𝑟𝑟 is the rock density, 𝑔𝑔 is the gravitational constant 
9.81 𝑚𝑚/𝑠𝑠2, and 𝑧𝑧 is the depth). A hydrostatic case is valid if either 𝜈𝜈 = 0.5, or the 
deviatoric stress has been removed by creep. Considering the association of dykes as 
feeders to sills, and the general association of dykes with horizontal extension, this lack 
of an applied tectonic stress within models is notable.  

Figure 3 shows sill profile results from a number of analogue studies (Bunger et 
al., 2008; Galland et al., 2009) and numerical studies (Hansen, 2015; Haug et al., 2018), 
with comparison to examples of well-constrained natural sill geometries. Galland et al., 
2009 used silica powder and vegetable oil as the host rock and magma analogues 
respectively. Bunger et al., (2008) used glass or polymethyl methacrylate (PMMA) as the 
rock analogue, and glycerine-water as the magma analogue. Their tests involved a 
deviatoric stress, applied as a crack-parallel radial stress during sill growth, and 
introduced a dimensionless parameter χ to consider scaling, where 𝜒𝜒 = 𝜎𝜎𝑟𝑟√𝐻𝐻/𝐾𝐾𝑐𝑐; 𝜎𝜎𝑟𝑟 is 
the horizontal stress in excess of 𝑃𝑃𝐿𝐿, 𝐻𝐻 is the initial depth of the sill, and 𝐾𝐾𝑐𝑐 is the fracture 
toughness of the material. The fracture toughness 𝐾𝐾𝑐𝑐 was 1.3 and 0.6 MPa m1/2 for their 
PMMA and glass respectively. Bunger et al. (2008) showed that the application of a 
radial compressive stress during analogue sill models, in which 𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦 > 𝜎𝜎𝑧𝑧𝑧𝑧 reduced 
the effect of anisotropic stress ahead of the propagating tip, producing saucer-shaped sills 
with inclines 30° > 𝜃𝜃 > 5°, more closely resembling natural saucer-shaped sills (Fig. 3). 
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Haug et al., (2017) simulated static cracks in a homogenous Mohr-Coulomb material 
(Fig. 3C); individual plots show the damage associated with cracks of different starting 
lengths, each with a starting depth 𝐻𝐻 = 2𝑘𝑘𝑘𝑘 and sill thickness 𝑇𝑇 = 50𝑚𝑚. Hansen (2015) 
calculated inflation sequences (𝐼𝐼𝐼𝐼) for elastic displacements above (𝐷𝐷𝑈𝑈) and below (𝐷𝐷𝐿𝐿) a 
sill intrusion centre line for isotropic host rocks as a function of the depth-dependent 
increase in Young’s Modulus 𝐸𝐸, where 𝐼𝐼𝐼𝐼 = 𝑓𝑓 𝐷𝐷𝑈𝑈+𝐷𝐷𝐿𝐿

2
; 𝑓𝑓 is simply a multiplication factor 

used to vary 𝐼𝐼𝐼𝐼. Results are shown for his models as a function of 𝑓𝑓, with a magma 
overpressure 𝑃𝑃𝑜𝑜 = 10𝑀𝑀𝑀𝑀𝑀𝑀 (Fig. 3C). However, in general we note that for modelled sills 
(1) the critical sill radius  𝑟𝑟𝑐𝑐 is too short, (2) 𝜃𝜃 is too high, and (3) the sill profiles are 
mostly concave (Fig. 3). 

2.2 The Model 

We employ a dynamic model that allows a sill to determine its own path through the crust 
as it extends over time. Three mutually dependent physical processes are involved in the 
sill intrusion process: (1) elastic deformation of the host rock, which varies as a function 
of the rock elastic properties, the overburden tectonic stresses, and the magma 
overpressure distribution within the sill; (2) fracture of the host rock; and (3) viscous flow 
of magma through the fracture. These are represented by partial differential equations 
which we solve here via the finite element (FE) method, using the commercial software 
package COMSOL Multiphysics v5.3. An advantage of this method is that it is 
particularly well suited for solving complex, strongly-coupled, globally-connected 
problems. In addition, and unlike several previous models for sills, our models represent 
dynamic simulations of growing sills, rather than static-sill-related stress or strain. 

Our sill models are simulated in axisymmetric space (Fig. 4). An initial sill 
intrusion is introduced at a depth 𝑧𝑧 = 𝐻𝐻 (Fig. 4; nomenclature is summarized in Table 1). 
The lithostatic pressure (𝑃𝑃𝐿𝐿) is assumed to be known and hydrostatic (𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜎𝜎𝑦𝑦𝑦𝑦 = 𝜎𝜎𝑧𝑧𝑧𝑧). 
Therefore, only the unknown deviation from the lithostatic stress state, Δ𝜎𝜎𝑖𝑖𝑖𝑖, is calculated 
in the simulation. The actual stress is the sum of the two components: 

𝜎𝜎𝑖𝑖𝑖𝑖 = Δ𝜎𝜎𝑖𝑖𝑖𝑖 + 𝑃𝑃𝐿𝐿𝛿𝛿𝑖𝑖𝑖𝑖          Eq. 1 

where the indices 𝑖𝑖, 𝑗𝑗 = 𝑥𝑥,𝑦𝑦, 𝑧𝑧 and 𝛿𝛿𝑖𝑖𝑖𝑖 is the identity tensor (1 if 𝑖𝑖 = 𝑗𝑗 and 0 otherwise). 
Compressive stress here is reckoned positive; tensile stress is negative. This separation of 
the stress state into two components allows better representation of the conditions at the 
sill tip, which is critical for modelling the evolution of sills. In general, the magma 
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pressure in the sill and the applied tectonic stress will enhance the stress at the sill tip, 
whereas the lithostatic pressure will not. 

 

 

Figure 4. The model set-up. (A) Sills are modelled in an axisymmetric space with radius 
16𝐻𝐻 and depth 8𝐻𝐻. The top surface is unbounded. (B) Cross section of the model radius 
showing structured squared-noded mesh in the region of the sill, and unstructured mesh 
to move the model boundaries far from the sill. (C) Example of the square-noded mesh 
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with initial sill (red-shaded region) at depth 𝐻𝐻 with starting thickness 𝑤𝑤𝑜𝑜 = 1
50
𝐻𝐻, and 

starting length 5𝑤𝑤𝑜𝑜. 

Symbol Description Units 

𝜎𝜎𝑟𝑟 Radial stress in excess to lithostatic pressure MPa 

𝐻𝐻 Initial depth of the sill km 

𝑤𝑤𝑜𝑜 Initial sill thickness km 

𝑧𝑧 Depth km 

𝑟𝑟𝑐𝑐  Sill critical radius (transition from flat to inclined) m 

𝜃𝜃 Sill incline angle ° 

𝐶𝐶 Host rock shear cohesion MPa 

𝜎𝜎𝑇𝑇 Host rock tensile strength MPa 

𝜈𝜈 Host rock Poisson’s ratio  

𝐸𝐸𝑟𝑟  Initial host rock Young’s Modulus GPa 

𝐾𝐾𝑐𝑐 Host rock fracture toughness MPa m1/2 

𝜌𝜌𝑟𝑟 Host rock density g/cm3 

𝜌𝜌𝑚𝑚 Magma density  

𝐾𝐾𝑓𝑓 Magma Bulk Modulus GPa 

𝜇𝜇 Magma viscosity Pa s 

𝑃𝑃𝐿𝐿  Lithostatic stress MPa 

𝑃𝑃𝑜𝑜 Magma source pressure MPa 

Δ𝑃𝑃 Magma overpressure distribution MPa 

Table 1. List of parameters and terms used in This Study 
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2.3 Failure Criteria 

The sill intrusion process is analogous to the growth of a crack filled with a pressurised 
fluid (Anderson, 1936; King Hubbert, 1951; Bunger et al, 2008). Here it is assumed that 
the stress state near the sill (crack) tip cannot be resolved accurately, partly because the 
appropriate lower length scale cannot be resolved in a computationally tractable model 
without adaptive meshing schemes (e.g., Shen and Lew, 2014), which would be more 
difficult to employ for an evolving crack along which a fluid flows, but also because the 
exact nature of the local crack tip conditions is not well understood. For example, heating 
due to the magma may lead to localised non-linearity (e.g. viscoplasticity; Souche et al., 
2019), thermoporoelasticity (Zoback, 2007, p. 83), and water vaporisation in wet rocks 
(e.g., Pollard et al., 1975; Schofield et al., 2010; Galland et al., 2019), and the true 
dimensions of a tip lag region cannot be resolved. The stress at the sill tip is expected to 
be considerably larger than the stress resolved in a discrete continuum model with a fixed 
mesh size. Sill propagation depends on the maximum stress, and the finite resolution of 
the model only averages the stress over a region comparable in size to the sill thickness. 
Here it is assumed that the actual stress at the sill tip is proportional to the stresses at the 
tip resolved in the model through a constant 𝛼𝛼 > 1, such that the actual locally enhanced 
stresses at the sill tip are given by: 

𝜎𝜎𝑖𝑖𝑖𝑖
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛼𝛼Δ𝜎𝜎𝑖𝑖𝑖𝑖

𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑃𝑃𝐿𝐿𝛿𝛿𝑖𝑖𝑖𝑖          Eq. 2 

The 𝛼𝛼 constant therefore represents a calibration between the FE model and a real 
material. Two failure criteria for the rock at the sill tip are adopted. For brittle tensile 
fracture, we assume that failure occurs when: 

𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑇𝑇          Eq. 3 

where 𝜎𝜎3 is the minimum compressive stress (where principal stresses 𝜎𝜎3 ≤ 𝜎𝜎2 ≤ 𝜎𝜎1) and 
𝜎𝜎𝑇𝑇 < 0 is the tensile failure strength of the material. Using Equation 1 gives the 
equivalent condition in the model as: 

Δ𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡 = 1

𝛼𝛼
(𝜎𝜎𝑇𝑇 − 𝑃𝑃𝐿𝐿) .        Eq. 4 

To induce sill growth in the model, a fixed source-overpressure 𝑃𝑃𝑜𝑜 is applied to the root 
of the initial intrusion at 𝑧𝑧 = 0 (Fig. 4). In general, the overpressure is not known, as the 
value required to initiate sill intrusion depends on the depth at which this occurs, the 
precise physical conditions at the sill tip (for instance tip geometry, and temperature) and 
the fracture toughness of the rock. In this model, the choice of 𝑃𝑃𝑜𝑜 can be made arbitrarily 
without affecting the final outcome; it is simply a reference stress against which the 
relative magnitude of the other stresses in the model are defined. When no tectonic stress 
is applied, the observed stress required to initiate tensile failure in the model will 
therefore be proportional to this overpressure, i.e. Δ𝜎𝜎3

𝑡𝑡𝑡𝑡𝑡𝑡 = −𝛽𝛽𝑃𝑃𝑜𝑜, where 𝛽𝛽 is a constant. 
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The sill starts at a depth 𝐻𝐻 so that at first failure Equation 4 gives a sill tip stress 
enhancement factor of 𝛼𝛼 = (𝜌𝜌𝑔𝑔𝑔𝑔−𝜎𝜎𝑇𝑇)

𝛽𝛽𝑃𝑃𝑜𝑜
, and the tensile failure condition becomes: 

Δ𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡 = 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹(𝑧𝑧)         Eq. 5 

where 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹(𝑧𝑧) = −𝛽𝛽𝑃𝑃𝑂𝑂 �
𝜌𝜌𝜌𝜌𝜌𝜌−𝜎𝜎𝑇𝑇
𝜌𝜌𝜌𝜌𝜌𝜌−𝜎𝜎𝑇𝑇

�, which reduces as the sill climbs towards the free 
surface (at 𝑧𝑧 = 0). The FE superscript is used to indicate properties that are calibrated for 
the FE simulation. They are not to be confused with the actual physical parameter itself, 
although these are used to determine the parameter in the FE simulation relative to the 
chosen magma overpressure 𝑃𝑃𝑜𝑜. 

Although the sill generally extends as a mode I crack, the rock at the sill tip may 
also fail by micro-cracking along lines of shear according to the Mohr-Coulomb 
relationship 

𝜏𝜏𝑓𝑓 = 𝜎𝜎𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝐶𝐶 ,         Eq. 6 

where the failure shear stress 𝜏𝜏𝑓𝑓 depends on the cohesive strength 𝐶𝐶, the angle of internal 
friction 𝜙𝜙, and the normal stress 𝜎𝜎𝑛𝑛 acting on the plane. The optimal slip condition is: 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,        Eq. 7 

where the maximum shear stress 𝜏𝜏max is 

𝜏𝜏𝑚𝑚𝑚𝑚𝑚𝑚 = 1
2
�𝜎𝜎1

𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡� = 𝛼𝛼

2
�Δ𝜎𝜎1

𝑡𝑡𝑡𝑡𝑡𝑡 − Δ𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡� ,     Eq. 8 

and the hydrostatic stress 𝑃𝑃max is 

𝑃𝑃𝑚𝑚𝑚𝑚𝑚𝑚 = 1
2
�𝜎𝜎1

𝑡𝑡𝑡𝑡𝑡𝑡 + 𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡� = 𝛼𝛼

2
�Δ𝜎𝜎1

𝑡𝑡𝑡𝑡𝑡𝑡 + Δ𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡� + 𝑃𝑃𝐿𝐿 .     Eq. 9 

Therefore, the Mohr-Coulomb condition is written as: 

1
2

(1 − sinϕ)Δσ1
𝑡𝑡𝑡𝑡𝑡𝑡 − 1

2
(1 + 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)Δ𝜎𝜎3

𝑡𝑡𝑡𝑡𝑡𝑡 = 1
𝛼𝛼

(𝑃𝑃𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) .   Eq. 10 

As in the tensile failure case, this is also scaled relative to the overpressure. For an 
assumed friction angle of 𝜙𝜙 = 30𝑜𝑜, this gives 

1
4
�Δ𝜎𝜎1

𝑡𝑡𝑡𝑡𝑡𝑡 − 3Δ𝜎𝜎3
𝑡𝑡𝑡𝑡𝑡𝑡�  = 𝜏𝜏𝑓𝑓𝐹𝐹𝐹𝐹(𝑧𝑧)       Eq. 11 

where 𝜏𝜏𝑓𝑓𝐹𝐹𝐹𝐹(𝑧𝑧) = 𝛽𝛽𝑃𝑃𝑜𝑜 �
𝜌𝜌𝜌𝜌𝜌𝜌+√3𝐶𝐶
2(𝜌𝜌𝜌𝜌𝜌𝜌−𝜎𝜎𝑇𝑇)

�.   

The critical failure stresses for determining the initial growth and onset of 
climbing for a sill are those determined at the starting depth 𝐻𝐻. Given that typically 𝜎𝜎𝑇𝑇 ≪
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𝜌𝜌𝜌𝜌𝜌𝜌, the ratio of the shear failure stress to the tensile failure stress, 𝜓𝜓, can be expressed 
for a general friction angle as 

𝜓𝜓(𝐻𝐻) =
𝜏𝜏𝑓𝑓
𝐹𝐹𝐹𝐹(𝐻𝐻)

𝜎𝜎𝑓𝑓
𝐹𝐹𝐹𝐹(𝐻𝐻) ≈ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + � 𝐶𝐶

𝜌𝜌𝜌𝜌𝜌𝜌
� 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.      

 Eq. 12 

This factor is a function of depth and determines whether the shear (small 𝜓𝜓) or tensile 
(large 𝜓𝜓) failure criteria is dominant. 

 

2.4. The damage model 

Rock fracture is simulated by a crack-band damage model (e.g., Bazant and Oh, 1983), 
whereby the damage parameter 0 ≤ 𝐷𝐷 ≤ 1 characterises the level of fracture at a point, 
with 𝐷𝐷 = 0 representing fully intact rock and 𝐷𝐷 = 1 representing completely failed rock. 
This method allows the sill to determine its own path, without placing prescriptions on its 
growth. Damage typically only occurs in elements adjacent to the sill tip where the stress 
is enhanced (by factor 𝛼𝛼). The damage parameter evolves according to: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑘𝑘𝐷𝐷          Eq. 13 

where the rate constant is 𝑘𝑘𝐷𝐷 = 1000 𝑠𝑠−1 if either failure condition (Equation 5 or 11) is 
satisfied in the tip region, and zero otherwise. The value of 𝐷𝐷 is capped so it cannot 
exceed one. The choice of the rate constant is not important, as long as it is large enough 
to ensure that fluid flow dictates the sill growth rate, not the rate of damage. The damage 
affects the linear elastic analysis through adaptation of the Young’s modulus 𝐸𝐸 (e.g., 
Heap et al., 2010) such that 

𝐸𝐸 = 𝐸𝐸𝑟𝑟(1 − 𝐷𝐷) ,         Eq. 14 

where 𝐸𝐸𝑟𝑟 is the modulus of the unfractured rock. This means that the fractured rock has 
no mechanical stiffness once it has failed, i.e. it represents the interior of a crack. The 
failure conditions, Equations 5 and 11, are determined using stresses calculated directly 
from the strains using the undamaged modulus, 𝐸𝐸𝑟𝑟. This is necessary as the reduced 
modulus of Equation 14 causes the stresses in a damaged region to decrease causing 
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failure to halt, whereas the strains increase (as the crack opens) allowing failure to 
continue.  

 

2.5. Magma pressure and fluid flow 

We assume that the magma exhibits laminar flow down a naturally-evolving pressure 
gradient in accordance with standard lubrication theory (e.g., Rubin, 1995) such that the 
fluid flux is given by 

𝑗𝑗𝑖𝑖 = − 𝑤𝑤2

12𝜇𝜇
�𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

− 𝜌𝜌𝑎𝑎𝑖𝑖�        
 Eq. 15 

where 𝑤𝑤 is the width of the magma channel and 𝜇𝜇 is the magma viscosity (Witherspoon 
et al., 1980; Chen et al., 2017) and the only non-zero contribution from the acceleration is 
that due to gravity such that  𝑎𝑎𝑧𝑧 = −𝑔𝑔. We define the total pressure as 𝑃𝑃𝑚𝑚 = 𝑃𝑃𝐿𝐿 + Δ𝑃𝑃. 
Mass conservation requires an incompressible fluid satisfies: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝜕𝜕(𝑤𝑤𝑗𝑗𝑖𝑖)
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

� 𝑤𝑤
3

12𝜇𝜇
∂Δ𝑃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

�        Eq. 16 

This stiff system is difficult to implement numerically and it is more practical to consider 
the magma as a slightly compressible fluid such that 

𝜕𝜕Δ𝑃𝑃
𝜕𝜕𝜕𝜕

= 𝐾𝐾𝑓𝑓
𝑤𝑤
� 𝜕𝜕
𝜕𝜕𝑥𝑥𝑖𝑖

�𝜂𝜂𝜂𝜂
3

12𝜇𝜇
∂Δ𝑃𝑃
𝜕𝜕𝑥𝑥𝑖𝑖

� − 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� ,       Eq. 17 

where 𝐾𝐾𝑓𝑓 is the bulk modulus of the fluid and the parameter 𝜂𝜂 is zero until an element is 
fully damaged, at which point it is set to unity. The introduction of 𝜂𝜂 therefore restricts 
the fluid flow to the damaged (intrusion) zone. The magma overpressure 𝜂𝜂Δ𝑃𝑃𝛿𝛿𝑖𝑖𝑖𝑖 is added 
to the stress state of the simulation, where here 𝜂𝜂 ensures that the overpressure Δ𝑃𝑃 is only 
applied to the magmatic region. A positive (upward) body force of 𝑓𝑓𝑧𝑧 = 𝜂𝜂Δ𝜌𝜌𝜌𝜌 is also 
added directly to the magmatic body, to model the buoyancy force of the magma, where 
Δ𝜌𝜌 = 𝜌𝜌𝑟𝑟 − 𝜌𝜌𝑚𝑚 is the difference between the density of the rock (𝜌𝜌𝑟𝑟) and that of the 
magma (𝜌𝜌𝑚𝑚). A positive buoyancy acts to widen the channel and increase flow to the tip. 
Rubin (1995) has shown that this makes only a small contribution relative to the magma 
overpressure for intrusions such as those considered in this paper which only rise a 
distance of the order of a kilometre or so through the crust. 

The growth of the sill is strongly coupled to the magma pressure and host rock 
elasticity (cf. Pinel et al., 2017) through the dependence of the channel width 𝑤𝑤(𝜖𝜖3) on 
the elastic opening of the channel, where 𝜖𝜖3 is the maximum (elongation) principal strain 
in the damaged (sill) region. The magma flows to accommodate this strain and fill the 
enlarged channel (note then that the strain refers to the channel opening, and not the 
magma). The exact conditions that drive magma through intrusions are not fully 
understood. Two common approaches in modelling are: (i) constant flux of magma from 
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the source and (ii) constant magma pressure at the source. These two bounding cases are 
both explored here.  

Rubin (1995) derived the profile for the pressure along a 2D vertical dike for 
constant source pressure. For short intrusions (<1km) they ignored buoyancy, and as such 
we consider the analysis is equally valid for 2D horizontal sills. That study postulated the 
presence of a cavity at the intrusion tip, and investigated the effect of the pressure in that 
region. It was shown that such an intrusion propagates with a velocity proportional to its 
length; hence constant source pressure is consistent with an exponentially increasing 
intrusion length that can be attributed to an ever-widening channel. This is considered to 
be unrealistic for longer dikes (>1km in height) and it is assumed that the availability of 
magma is limited once the vertical extent of the intrusion exceeds this length scale: i.e. 
the model proposes a switch from constant source pressure to constant flux. 

For constant magma flux, the intrusion velocity will decrease over time. This is 
consistent with the concept of an intrusion eventually halting due to cooling and 
solidification, whereas the accelerating growth of a constant source pressure intrusion 
would be unlimited in this respect. This suggests that these two cases are extreme 
examples which define the limits of what is likely to be physically correct. Here, we 
consider both cases by describing the channel width as 𝑤𝑤 = 𝑤𝑤0(𝜖𝜖0 + 𝜖𝜖3), where 𝑤𝑤0 is a 
characteristic channel width; the choice of this parameter is not important geometrically, 
and simply determines the time scale. For constant flux it is assumed that the channel 
opening is fairly insensitive to strain, such that 𝜖𝜖0 = 1. This effectively leads to a 
constant source flux model and is consistent with a sill that has a blunt tip of width 𝑤𝑤0 
(even if there were to be a sharp tipped cavity ahead of the magma). Constant source 
pressure is modelled with 𝜖𝜖0 = 0, which is equivalent to the source pressure model of 
Rubin (1995). The difference in the pressure profiles generated by the two models is 
illustrated and discussed in section 4.2, but sensitivity analysis (see supplementary files) 
shows that both models generate very similar sill profiles; i.e. the sill path is insensitive 
to the magma pressure distribution. For this reason, only the constant flux model is used 
in the calculation of subsequent results. This model is selected as it produces a sill that 
propagates slower as it gets longer, as opposed to the constant source pressure model, 
which as predicted (Rubin,1995), has an exponentially increasing growth rate, which is 
not considered to be physically probable.  

 

2.6. Simulation parameters 

The model has been implemented using the commercial FE software package COMSOL 
Multiphysics v5.3. Linear 4-noded square elements of side length 𝑤𝑤𝑜𝑜 = 1

50
𝐻𝐻 (Fig. 4) are 

employed for all three physical processes, where 𝐻𝐻 is the initial depth of the intrusion. 
The simulations are axisymmetric and conducted within a large domain 8𝐻𝐻 deep by 16𝐻𝐻 
radius to avoid boundary effects (Fig. 4; see supplementary files for sensitivity tests of 
the domain size). An initial horizontal rectangular intrusion of width 𝑤𝑤𝑜𝑜 and radius 5𝑤𝑤𝑜𝑜 
is introduced at the depth of 𝐻𝐻. The Young’s modulus (𝐸𝐸𝑟𝑟) of the rock is taken as 1 GPa, 
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with a Poisson’s ratio (𝜈𝜈) of 0.4, to simulate a weak mudstone (Hobbs et al., 2002), which 
is a common host for basaltic sills (Mark et al., 2019). Sensitivity tests for these 
parameters, in the range 𝐸𝐸𝑟𝑟 of 1-100 GPa, and 𝜈𝜈 of 0.1-0.5, show that only the upper 
extreme values (i.e., 𝐸𝐸 = 100𝐺𝐺𝐺𝐺𝐺𝐺 and/or 𝜈𝜈 = 0.5) result in any appreciable difference in 
sill geometry (see supplementary files). Magma viscosity (𝜇𝜇) is constant at 106 Pa⋅s and 
the bulk modulus of the magma (𝐾𝐾𝑓𝑓) is 0.1 GPa, in accordance with calculations for 
shallow (2 km) magmas with volatiles (Huppert and Woods, 2002). The rock tensile 
strength (𝜎𝜎𝑇𝑇) is –3 MPa, and the Mohr-Coulomb parameters are a shear cohesion (𝐶𝐶) and 
an angle of internal friction (𝜙𝜙) of 30°. The rock density (𝜌𝜌𝑟𝑟) is 2.5 g/cm3 and the magma 
density (𝜌𝜌𝑚𝑚) is 2.3 g/cm3. This value for magma density would be reasonable for high 
silica-content magmas, but low for basaltic melts (Stolper and Walker, 1980; Bottinga et 
al., 1982); notably the ‘magma’ in our model has not traversed the column of denser crust 
and mantle lithosphere at depth, and we consider that a relatively low density is justified 
here. To simulate tectonic stress in the model, a horizontal strain 𝜖𝜖𝑟𝑟 = (1−𝜈𝜈)𝜎𝜎𝑟𝑟

𝐸𝐸𝑟𝑟
 is applied 

to the outer radius of the simulation, where 𝜎𝜎𝑟𝑟 is the applied horizontal tectonic stress 
excess to the lithostatic pressure. In our simulations, 𝜎𝜎𝑟𝑟 is applied in the range of 0-5 
MPa via a horizontal radial contraction. 

 We take a reference magmatic overpressure (𝑃𝑃𝑜𝑜) of 5 MPa, with the two failure 
conditions defined by Equations 5 and 11. The failure stress required to induce tensile 
failure at the tip of the initial intrusion in the FE model (𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹(𝐻𝐻) = −𝛽𝛽𝑃𝑃𝑜𝑜) is –6 MPa with 
this overpressure, giving 𝛽𝛽 = 1.2. At a depth of 𝐻𝐻 = 2𝑘𝑘𝑘𝑘, 𝑃𝑃𝐿𝐿 is 50 MPa giving a stress 
enhancement factor at the crack tip of 𝛼𝛼 = 50+3

6
≈ 9. This implies that the actual stresses 

at the sill tip required to activate tensile fracture are roughly nine times higher than those 
resolved in the simulation. This is to be expected given the actual tip shape may be much 
sharper than we can simulate here, and shows how this approach mitigates the 
approximation incurred by not modelling the sill tip in detail. The applied source pressure 
𝑃𝑃𝑜𝑜 is constant in our models, with constant flux or pressure conditions enforced as stated 
in section 2.5, though it should be noted that neither the magma pressure, nor the magma 
flux should be expected to remain constant in nature (Rivalta, 2010; Schopa and Annen, 
2013; Kavanagh et al., 2015); here, we generate variable pressure decay profiles, which 
are strongly coupled to the modelled sill growth. 

 The critical stress in the FE model required to instigate Mohr-Coulomb failure at 
the chosen overpressure in the absence of an applied tectonic stress is found to be 3.8 
MPa, compared with –6 MPa required to induce tensile failure. The critical value of 𝜓𝜓, 
defined by Equation 15, at which both shear and tensile failure are equally likely in the 
absence of tectonic stress is therefore 𝜓𝜓 = 3.8

6
= 0.63.  The value of this parameter 

depends on the ratio of 𝐶𝐶
𝜌𝜌𝜌𝜌𝜌𝜌

. We therefore consider two cases which cover the expected 
range of this parameter (Haug et al, 2018): (1) with a lower shear strength of 𝐶𝐶= 8 MPa, 
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and 𝐻𝐻 = 2km, giving 𝐶𝐶
𝜌𝜌𝜌𝜌𝜌𝜌

= 0.16 and 𝜓𝜓 = 0.63 (Fig. 4); and (2) with a higher shear 

strength of 𝐶𝐶= 20 MPa, and 𝐻𝐻 = 1km, giving 𝐶𝐶
𝜌𝜌𝜌𝜌𝜌𝜌

= 0.8 and 𝜓𝜓 = 1.19 (Fig. 5). 

3 Results 

3.1. Magma pressure distribution along the sill 

As noted above, sill growth in the models is determined by the distribution of maximum 
stress at the sill tip. The model is fully coupled in that the damage depends on the stress; 
the stress depends on the pressure distribution in the sill; the pressure distribution in the 
sill depends on the elastic deformation of the host material; and the elastic deformation 
depends on the stress, ad infinitum. In section 2.5, two magma flow models were 
introduced: (i) constant source flux and (ii) constant source pressure. The two produce 
similar sill profiles (Fig. 5C) but different pressure distributions (Fig. 5A) and radically 
different propagation rate characteristics (Fig. 5D). Figure 5A shows the two magma 
overpressure distributions (Δ𝑃𝑃) within a flat intrusion subjected to zero tectonic stress. 
The constant source pressure at the root of the sill is fixed at 𝑃𝑃𝑜𝑜 = 5𝑀𝑀𝑀𝑀𝑀𝑀; Δ𝑃𝑃 therefore 
refers to pressure within the conduit. The pressure drop along the sill causes magma to 
flow towards the tip. The pressure profile is convex for case (i) constant source flux and 
concave for case (ii) constant source pressure and comparable with Rubin (1995) (i.e., 
their figure 6, although this is for 2D planar sills not the axisymmetric sills modelled 
here). It can be seen that a small negative pressure has developed at the tip of the 
intrusion for case (i) and a much larger negative pressure for case (ii). This indicates that 
the sill crack grows at the tip faster than magma can readily accommodate the increase in 
volume, causing the magma to be sucked in to the tip region (cf. Rubin, 1995). The 
negative pressure will act to close the crack tip, but it is held open by the much more 
significant action of the positive pressure in the sill behind it. Alternatively, this could be 
considered a condition for separation of the fracture front and the magma front, i.e. the 
crack grows faster than the sill producing a tip cavity, which is not possible in this model 
but may occur in scaled analogue models and nature (e.g., Rubin, 1993; Liss et al., 2002; 
Kavanagh et al., 2006; Bunger et al., 2008). Figure 5C shows that the sill profiles are not 
strongly influenced by the pressure distribution (a fact that is independently verified by 
the energy release rate model in section 4.2), with only a slightly shorter critical radius 𝑟𝑟𝑐𝑐 
for the constant source pressure model. The time scale in Figure 5D is normalised so that 
both sill models reach about 5 km in length at the same time. In practice the constant 
source pressure model is three orders of magnitude faster than the constant flux model. 
The constant source pressure model exhibits exponential growth, as expected (Rubin, 
1995). The constant flux model exhibits a constant volumetric growth rate, such that the 
magma volume increases linearly with time, commensurate with the sill radius increasing 
as 𝑡𝑡

1
3 for self-similar sill shapes. Given the small difference between the sill profiles 

resulting from the two models, the constant flux model is adopted for the rest of the 
paper, as a slowing sill growth rate seems more probable than an accelerating one. 
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Figure 5. Magma pressure profile within the sill. (A) Examples of magma pressure 
profiles along the intrusion before it begins to climb. (B) Elastic stored energy 𝑈𝑈 plotted 
against projected sill area 𝐴𝐴 from the sill propagation simulation with zero tectonic stress. 
(C) Comparison of constant source flux versus constant source pressure profiles for sills 
emplaced where 𝜎𝜎𝑟𝑟 = 0 & 5𝑀𝑀𝑀𝑀𝑀𝑀. (D) Crack length versus normalised time, showing the 
exponential growth rate of the constant source pressure model, and the constant 
volumetric growth rate associated with the constant flux model. 

3.2. Material properties 

To calibrate the simulation results against reality it is necessary to determine the 
effective fracture toughness of the rock in the FE model.  This can be calculated from the 
critical energy release rate, 𝐺𝐺𝑐𝑐. This method avoids the need to consider the details of the 
stress field around the sill tip. The critical energy release is defined as 𝐺𝐺𝑐𝑐 = 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, where 𝑈𝑈 
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is the total change in elastic energy associated with an increase in the crack area 𝐴𝐴. The 
energy release rate in the simulations was constant, indicated by the constant slope in the 
𝑈𝑈 versus 𝐴𝐴 plot in Fig. 5B. This shows that the magma pressure distribution evolved to 
keep the stress intensity 𝐾𝐾 at the crack tip constant, i.e. 𝐾𝐾 = 𝐾𝐾𝐶𝐶. This indicates that the 
sill growth is controlled by the toughness of the rock rather than the viscosity of the 
magma. The assumption that intrusions grow under constant 𝐾𝐾𝐶𝐶 is supported by the crack 
length versus thickness calculations of Scholz (2010) for dykes and veins (from Schultz 
et al., 2008, and references therein). The effective (mode I or II) fracture toughness 
𝐾𝐾𝐶𝐶  can be inferred from the standard elastic relationship (Zehnder, 2012) 

𝐺𝐺𝑐𝑐 = 𝐾𝐾𝐶𝐶
2

𝐸𝐸𝑟𝑟
           Eq. 18 

yielding 𝐾𝐾𝐶𝐶𝐹𝐹𝐹𝐹 = 26 𝑀𝑀𝑀𝑀𝑀𝑀 √𝑚𝑚, where the FE superscript has again been employed to 
demonstrate that this is a simulation parameter not a physical one. This is verified via a 
second method. We also use the stress intensity factor for a penny-shaped crack in an 
infinite solid subjected to a varying internal pressure distribution 𝐾𝐾𝐼𝐼 = 4

√𝜋𝜋𝜋𝜋
∫ 𝑃𝑃(𝑟𝑟)

√𝑎𝑎2−𝑟𝑟2
𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎

0  
(Sneddon, 1946) to generate an estimate for the stress intensity at the sill tip, where 𝑎𝑎 is the 
current crack length. The constant flux pressure profile in Fig. 5A yields a constant value 
for the stress intensity factor during the extension of 𝐾𝐾𝐼𝐼 = 𝐾𝐾𝐶𝐶𝐹𝐹𝐹𝐹 = 25 𝑀𝑀𝑀𝑀𝑀𝑀 √𝑚𝑚 hence the 
two methods for calculating 𝐾𝐾𝐶𝐶𝐹𝐹𝐹𝐹  are in good agreement. 

Figure 6 shows profile plots which summarise the effect of a range of material 
properties for sills emplaced at 2 km, in which rock and magma properties, including 
𝐶𝐶,𝐸𝐸,𝜙𝜙, 𝜈𝜈,𝑎𝑎𝑎𝑎𝑎𝑎 𝜌𝜌𝑚𝑚 are set as individual variables. In each case the material parameters are 
as described in Section 2.6, with the exception of the displayed parameter. In all cases, the 
sills propagated as a flat sheet to some critical radius (𝑟𝑟𝑐𝑐), before climbing upwards towards 
the surface. The variation of each material parameter generally imposes a minor control on 
the geometry in terms of 𝑟𝑟𝑐𝑐 (~1.25H +/– 0.1H), and sill incline 𝜃𝜃 (~23° +/– 2°). Figure 6A 
shows that increasing the host rock Young’s Modulus can result in a flattening of the sill 
incline on the order of ~5° from 𝐸𝐸 = 1 GPa and 50 GPa; 𝑟𝑟𝑐𝑐 is also seen to increase by 0.25H 
across this range in 𝐸𝐸.  Young’s modulus also has an effect on the sill thickness and roof 
uplift (Fig. 7), with increases in 𝐸𝐸 decreasing the thickness of the sill and amount of uplift 
as it propagates (Fig. 7C versus 7E). Sill thickness and surface uplift are not significantly 
affected by magma buoyancy. Numerous numerical tests were also conducted to explore 
the influence of other parameters, including the magma bulk modulus and mesh size (𝒘𝒘𝒐𝒐 =
� 𝟏𝟏
𝟏𝟏𝟏𝟏𝟏𝟏

, 𝟏𝟏
𝟓𝟓𝟓𝟓

, 𝟏𝟏
𝟐𝟐𝟐𝟐
�𝑯𝑯), but none of these parameters significantly affected the overall sill profile 

geometry. 
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Figure 6. Sensitivity analysis for host rock properties, and magma buoyancy. 
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Figure 7. Model results for variable magma buoyancy and Young’s modulus. (A-C) Results for 
variable magma buoyancy where 𝐸𝐸 = 1𝐺𝐺𝐺𝐺𝐺𝐺. (C-E) Model results where magma is buoyant 
compared to the host rock, with 𝐸𝐸 set at 1, 10, and 50 GPa. 

3.3. Tectonic stress 

Figures 8 and 9 show simulation results for sills emplaced at 2 km and 1 km respectively; 
in both cases the key variable is 𝜎𝜎𝑟𝑟. In both experiments, sills intruded under lithostatic 
conditions resulted in the initial growth of a flat sill until some critical radius 𝑟𝑟𝑐𝑐 (1.81-
1.25H: Table 2, Figs. 8-11), after which the sill climbed at a consistent angle 𝜃𝜃 of ~23-
24°. Increasing 𝜎𝜎𝑟𝑟  in both experiments resulted in an increase in 𝑟𝑟𝑐𝑐, to a maximum of 
~5𝐻𝐻, and a decrease in 𝜃𝜃, to ~1° (Table 2, Figs. 8-11). In the lower shear strength case 
( 𝐶𝐶
𝜌𝜌𝜌𝜌𝜌𝜌

= 0.16 and 𝜓𝜓 = 0.63), increasing 𝜎𝜎𝑟𝑟 above 4 MPa resulted in the onset of a 

decrease in 𝑟𝑟𝑐𝑐 and an increase in 𝜃𝜃 (Figs. 8, 10A, and 11A,B). Increasing 𝐶𝐶
𝜌𝜌𝜌𝜌𝜌𝜌

 and 𝜓𝜓 
appears to delay the onset of this transition beyond the range of 𝜎𝜎𝑟𝑟 magnitudes tested here 
(Figs. 9, 10B, and 11C,D). 

Figure 9 demonstrates a transition in the overall sill profile as a function of 𝜎𝜎𝑟𝑟. 
For experiments with relatively low host cohesion (Fig. 9A), sills emplaced where 𝜎𝜎𝑟𝑟 <
4𝑀𝑀𝑀𝑀𝑀𝑀 show a concave profile in which 𝜃𝜃 decreases as the length of climb 𝑎𝑎𝑐𝑐 increases; 
the curve of the profile is a 4th-5th order polynomial. Where 𝜎𝜎𝑟𝑟 ≥ 4𝑀𝑀𝑀𝑀𝑀𝑀, sills show a 
convex profile, in which 𝜃𝜃 increases with increasing length 𝑎𝑎𝑐𝑐; the curve simplifies to a 
3rd order polynomial. For experiments with a relatively higher cohesion host, and at 
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shallower depth, the transition from convex to concave occurs later, with only the 𝜎𝜎𝑟𝑟 =
5𝑀𝑀𝑀𝑀𝑀𝑀 sill showing a concave form. 

 
C/⍴gh=0.16; ψ=0.63; H=2 km 

   

𝜎𝜎r (Mpa)  base length (m) rc/H θ (°) χ 𝛕𝛕max (Mpa) 
0.0 3625 1.81 22.8 0.0 0.00 
0.5 4490 2.24 13.7 0.9 0.25 
1.0 5667 2.83 9.8 1.7 0.50 
2.0 7281 3.64 5.3 3.4 1.00 
3.0 9500 4.75 2.6 5.2 1.50 
4.0 10240 5.12 1.4 6.9 2.00 
4.5 6906 3.45 2.9 7.7 2.25 
5.0 3708 1.85 4.7 8.6 2.50       

      
C/⍴gh=0.8; ψ=1.19; H= 1km 

   

𝜎𝜎r (Mpa)  base length (m) rc/H θ (°) χ 𝛕𝛕max (Mpa) 
0.0 2500 2.50 23.9 0.0 0.00 
0.3 3583 3.58 15.4 0.5 0.15 
0.6 4333 4.33 11.1 1.0 0.30 
1.2 5458 5.46 8.4 2.1 0.60 
2.4 7167 7.17 4.0 4.1 1.20 
5.0 9083 9.08 1.9 8.6 2.50 

Table 2. Summary of sill length scale and geometric parameters for numerical tests with variable 
𝜎𝜎𝑟𝑟 conducted in this study. 
 



Confidential manuscript submitted to JGR Solid Earth 

 

 
Figure 8. Numerical simulation results for sills seeded at 2 km 𝜓𝜓 = 0.63 and 𝐶𝐶

𝜌𝜌𝜌𝜌𝜌𝜌
= 0.16, where 

𝜎𝜎𝑟𝑟 is (A) 0.0 MPa, (B) 0.5 MPa, (C) 2.0 MPa, (D) 4.0 MPa, and (E) 4.5 MPa. The sill is shown in 
red; the colour key for stress is consistent for all of the simulations displayed. Note that the stress 
is the perturbation only. 
 
 

Figure 9. Numerical simulation results for sills seeded at 1 km 𝜓𝜓 = 1.19 and 𝐶𝐶
𝜌𝜌𝜌𝜌𝜌𝜌

= 0.8, where 
𝜎𝜎𝑟𝑟 is (A) 0.0 MPa, (B) 1.2 MPa, and (C) 5.0 MPa. The sill is shown in red; the colour key for stress 
is consistent for all of the simulations displayed. Note that the stress is the perturbation only. 
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Figure 10. Simplified profiles for simulated sills (this study: vertical plane, radius only) for (A) 
sills seeded at 2 km 𝜓𝜓 = 0.63 and 𝐶𝐶

𝜌𝜌𝜌𝜌𝜌𝜌
= 0.16, and (B) sills seeded at 1 km 𝜓𝜓 = 1.19 and 𝐶𝐶

𝜌𝜌𝜌𝜌𝜌𝜌
=

0.8. Shaded region shows the general field of results for PMMA host analogue models of Bunger 
et al., (2008). 
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Figure 11. Summary plots of measured critical base length 𝑟𝑟𝑐𝑐 (A and C) and incline angle 𝜃𝜃 (B 
and D) for simulated sills (this study). Results measured from plots in Bunger et al., (2008) are 
shown for comparison; grey region shows the range of their 𝜒𝜒 values. Note that the values for 𝜎𝜎𝑟𝑟 
only correspond to our study. 
 
 

4 Discussion 

4.1. Comparison with analogue models 

Bunger et al., (2008) conducted analogue experiments for sill intrusion, monitoring the 
axisymmetric crack radius and height over time as pressurised fluid was pumped into the 
crack at a fixed rate. Two materials were selected for the analogue rock (Glass and 
PMMA) with glycerine or glucose solution for the analogue magma. The sill was 
initiated from a flaw of 6 mm radius machined at the end of the injection tube, with 
sample depths in the range of 12 to 30 mm, i.e. 𝑟𝑟

𝐻𝐻
 = 0.2 to 0.5 initially. The effect of a 

horizontal stress, equivalent to 𝜎𝜎𝑟𝑟, on sill profiles was investigated. They introduced a 
dimensionless parameter 𝜒𝜒 as a means to define scale-independent factors affecting sill 
profiles  
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𝜒𝜒 = 𝜎𝜎𝑟𝑟√𝐻𝐻
𝐾𝐾𝑐𝑐

          Eq. 19 

where in the case of Bunger et al., (2008) 𝐾𝐾𝐶𝐶  is specifically the mode I fracture toughness 
𝐾𝐾𝐼𝐼𝐼𝐼 of the host material. 

To compare the simulation results with the analogue model of Bunger et al (2008) 
it is necessary to determine the effective fracture toughness of the rock in the FE model, 
𝐾𝐾𝑐𝑐𝐹𝐹𝐹𝐹 .  This functional form of the failure stress is given by 𝛫𝛫𝐶𝐶𝐹𝐹𝐹𝐹 = 𝐴𝐴𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹√𝐻𝐻, where the 
initial depth of the sill, 𝐻𝐻, is the characteristic length scale for the problem, 𝐴𝐴 is a 
constant geometric factor, and 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹  is the tensile failure stress in the FE model. It was 
shown in section 3.2 that 𝐾𝐾𝐶𝐶𝐹𝐹𝐹𝐹 = 26 𝑀𝑀𝑀𝑀𝑀𝑀√𝑚𝑚, yielding a value of 𝐴𝐴 = 0.097 for our 
chosen FE mesh. Thus, given 𝜎𝜎𝑓𝑓𝐹𝐹𝐹𝐹(𝐻𝐻) = −𝛽𝛽𝑃𝑃𝑜𝑜, we can write the effective 𝜒𝜒 value 
determined from the FE model as 

𝜒𝜒𝐹𝐹𝐹𝐹 = 𝐵𝐵 𝜎𝜎𝑟𝑟
𝑃𝑃0

          Eq. 20 

where 𝐵𝐵 = 1
𝐴𝐴𝐴𝐴

= 8.6 is a dimensionless constant. This shows that the ratio of the applied 
tectonic stress to the magma overpressure determines the large-scale evolution of the sill. 
The constant 𝐵𝐵 allowsthe results of the FE simulations to be quantitatively compared with 
the results of Bunger et al., (2008) for a given value of the 𝜒𝜒 parameter.  

To generate results comparable with the analogue model of Bunger et al., (2008), 
the effects of lithostatic pressure and buoyancy are removed from the simulation, and 
failure of the host material is limited to mode I tensile fracture. The results are shown for 
PMMA and glass in Figure 12. It can be seen that the slopes of the sills are in very good 
agreement between the two models, although the difference in horizontal section length 
prior to this is considerable. There are a number of potential explanations for this 
difference: (1) the horizontal section in the analogue results is typically of the order of the 
initial flaw size (0.2 < 𝑟𝑟

𝐻𝐻
< 0.5) suggesting that there is little to no horizontal growth in 

their models; (2) the analogue cracks initiate from a machined notch of finite thickness 
which may not induce an initial horizontal crack; (3) the analogue cracks are not 
completely axisymmetric; (4) the fracture is seen to extend ahead of the fluid in the 
analogue case, possibly due to the action of capillary forces which are not significant at 
the km scale; and (5) the FE model requires a finite perturbation in the stress to 
destabilise horizontal sill growth. 
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Figure 12. Sill profiles for simulations conducted without lithostatic pressure and buoyancy, and 
with failure limited to mode I tensile fracture. The range of 𝜒𝜒 values are chosen for comparison 
to analogue results from Bunger et al., (2008) for (A) glass and (B) PMMA hosts. 

 

The FE model of Equation 20 provides scaling behaviour for a blunt sill and 
predicts that the value of 𝜒𝜒𝐹𝐹𝐹𝐹=8.6 corresponds most closely with the Tulipan Sill (see Fig 
10A) for which it is expected that the tectonic stress has the same value as the magma 
source overpressure (𝜎𝜎𝑟𝑟 = 𝑃𝑃𝑜𝑜). The overpressure is not known accurately, but values of 
0.5 to 6 MPa have been estimated elsewhere (Gudmundsson, 2012) with an average of 3 
MPa and a maximum of 9 MPa. The higher end of this scale (≥ 3 MPa) would appear to 
be a reasonable differential relative to a lithostatic pressure of 50 MPa at a depth of 2km, 
as one would expect it to be larger than natural variations in the hydrostatic stress state 
(Suppe, 1985).   

Using the expression of Bunger et al., (2008) from Equation 18, with a typical 
fracture toughness for sandstones at about 2 km depth of roughly 3 𝑀𝑀𝑀𝑀𝑀𝑀 √𝑚𝑚 (Stoeckhert 
et al, 2016) predicts an applied tectonic stress of around 0.6 MPa for a value of 𝜒𝜒 = 8.6. 
This is at the lower end of the expected range given above, and is a very small stress in 
comparison to the additionally imposed lithostatic pressure of 50 MPa. This analysis is 
based on a crack tip that is sharp, whereas in reality the tip of the sill would not be as 
sharp as a crack. The FE model does not assume a sharp sill tip, leading to the more 
realistic value of 3-9 MPa predicted by Equation 20. 

   

4.2. Energy release rates for different sill geometries 

The intrusion simulations have shown that the model is quite insensitive to the material 
input parameters, with the sill incline 𝜃𝜃 demonstrating a strong preference for a particular 
orientation at a given tectonic stress. This suggests the elastic driving force due to the 
presence of the free surface and the tectonic stress are the primary controls on saucer-type 
sill shape. Here we employ a different method to separately explore and verify this 
response. The energy release rate of pressurised intrusion-like cracks as a function of 
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their geometry and the pressure distribution within them is investigated for a fixed range 
of shapes. The axisymmetric sill geometry for a sill at depth 𝐻𝐻 is now described in terms 
of just three parameters, illustrated in Figure 2: the radius of the flat section of the sill, 𝑟𝑟𝑐𝑐, 
the length of the inclined section of the sill, 𝑎𝑎𝑐𝑐, and the climb angle of this section, 𝜃𝜃. The 
normalised energy release rate is determined for different geometries and loading 
conditions for host rock with a Poisson ratio 𝜈𝜈 = 0.3. A sill is expected to propagate in 
the direction which maximises the energy release rate.  

 

4.2.1 Effect of internal pressure distribution 

It has been shown in the FE model of section 3.1 that different boundary conditions at the 
magma source results in different internal pressure distributions in the magma (e.g., Fig. 
5A). However, the resulting sill profile is only weakly affected. This is investigated by 
proposing three different pressure distributions, each with smooth gradients; we do not 
consider abrupt pressure changes along the length of the sill, which would reflect 
significant viscosity variation within the conduit, which has been shown to have a marked 
effect on intrusion growth and geometry (Pollard and Johnson, 1973). We use the 
parameter 0 ≤ 𝑠𝑠 ≤ 1 to denote the location along the sill, with 𝑠𝑠 = 0 at the root (at 𝑟𝑟 =
0), increasing linearly over the total sill length of 𝑟𝑟𝑐𝑐 + 𝑎𝑎𝑐𝑐, to 𝑠𝑠 = 1 at the tip. The pressure 
distributions are: (1) constant pressure, 𝑝𝑝(𝑠𝑠) = 𝑃𝑃0; (2) linearly decaying pressure, 𝑝𝑝(𝑠𝑠) =
3𝑃𝑃0(1 − 𝑠𝑠); and (3) quadratic pressure decay, 𝑝𝑝(𝑠𝑠) = 6𝑃𝑃0(1 − 𝑠𝑠)2. The pre-factors have 
been chosen to keep the total force roughly similar between cases. These are expected to 
cover the extreme range of expected pressure distributions, with the quadratic pressure 
distribution being closest to that observed in the constant flux model (see Figure 5A), and 
a constant pressure being closest to that postulated for the constant source pressure 
model. 

A sill is expected to grow at an inclined angle 𝜃𝜃 once the energy release rate is no 
longer maximum along the horizontal (𝜃𝜃 = 0𝑜𝑜). Figure 13A shows the normalised energy 
release rate, 𝐺̅𝐺𝑃𝑃 = 𝐸𝐸𝑟𝑟

𝑃𝑃𝑜𝑜2𝐻𝐻
𝐺𝐺, as a function of 𝜃𝜃 for 𝑟𝑟𝑐𝑐 = 1.5𝐻𝐻, a length at which the modelled 

sills are seen to initiate an incline. The energy release rate peaks at about 25-30o 
suggesting this is the angle at which the sill would climb if there were no other forces 
acting on it (e.g., buoyancy forces). This is also typically the angle found in the sill 
simulations in the case of zero applied tectonic stress (Figs. 10 and 11). The angle of 
inclination is largely insensitive to the pressure distribution, which explains the 
insensitivity of the simulation to the various parameters that might affect this, such as 
buoyancy forces, magma bulk modulus, and the magma permeability tensor. 

 Figure 13B shows the change in the normalised energy release rate, 𝐺̅𝐺𝑃𝑃, when a 
flat sill begins to climb at 25° as a function of its flat section length; a positive energy 
change indicates that the switch is energetically favourable. It can be seen that the 
energetics for a switch are favourable for 𝑟𝑟𝐶𝐶 = 0.8𝐻𝐻 for the quadratic pressure 
distribution, rising to 𝑟𝑟𝐶𝐶 = 1.15𝐻𝐻 for the constant pressure distribution. In the FE model 
a sill length of 𝑟𝑟𝐶𝐶 = 1.5𝐻𝐻 is typically seen for zero tectonic stress (Fig. 11). This suggests 
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that there is a finite energy barrier to be overcome to switch to inclined growth in the FE 
model, probably due to the sill having a blunt tip. In practice, there will also be localised 
stabilisation of horizontal natural sills due to host rock mechanical layering (e.g., Mudge, 
1968; Johnson and Pollard, 1973; Burchardt, 2008). 

In summary, the energy release rate calculations show that, in a linear elastic 
body, an axisymmetric sill will grow horizontally until its length exceeds 0.8-1.15 times 
its depth, which is dependent on the magma pressure distribution within the sill. In the 
absence of a tectonic stress, the sill will then climb at roughly 25-30o to the horizontal 
(Figs. 8-11). This is consistent with the naturally evolving sill profiles resulting from the 
case (i) and case (ii) magma flow models, which are largely insensitive to the form of the 
pressure distribution (Fig. 5).  
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Fig. 13. Calculated energy release rates for the modelled sills. (A) Energy release rate for three 
different pressure distributions for a sill of base length 𝑟𝑟𝐶𝐶 = 1.5𝐻𝐻 growing at an inclined angle 𝜃𝜃. 
(B) Change in energy release rate when a crack changes from growing horizontally to an inclined 
angle of 25o as a function of the flat section length, 𝑟𝑟𝐶𝐶

𝐻𝐻
. (C) Normalised energy release rate for 

cracks of length 𝑟𝑟𝑐𝑐 = 1.5𝐻𝐻 subject to a remotely applied stress σr and no internal pressure. (D) 
The 𝐹𝐹(𝜃𝜃, 𝑟𝑟𝑐𝑐

𝐻𝐻
) function of Equation 21 for incline angle 𝜃𝜃 for two different sill base lengths. 

 

4.2.2 Effect of tectonic stress 
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A constant horizontal stress 𝜎𝜎𝑟𝑟 was applied to the remote vertical boundary, and the 
internal pressure on the crack removed. The applied stress will lead to a stress 
concentration at the crack tip, which if compressive will hinder the growth of the crack, 
and if tensile will assist its growth. The net differential stress (above lithostatic) is 
assumed to remain tensile, i.e. the pressure in the sill always acts to open the crack. 
Figure 10C shows the effect of the applied stress on the normalised energy release rate, 
𝐺̅𝐺𝑟𝑟 = 𝐸𝐸𝑟𝑟

𝜎𝜎𝑟𝑟2𝐻𝐻
𝐺𝐺, for a crack of length 𝑟𝑟𝐶𝐶 = 1.5𝐻𝐻 for different inclination angles 𝜃𝜃=15o, 30 o, 

45 o and 60 o as a function of the inclined sill length 𝑎𝑎𝑐𝑐. The lines are almost linear such 
that Equation 18 suggests that the normalised stress intensity at the sill tip due to the 
tectonic stress is 

𝐾𝐾𝑟𝑟
σr√𝐻𝐻

= 𝐹𝐹 �𝜃𝜃, 𝑟𝑟𝑐𝑐
𝐻𝐻
��ℎ

𝐻𝐻
         Eq. 21 

where ℎ = 𝑎𝑎𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 is the height of the sill tip above its starting depth. This means that the 
applied stress has little effect on a horizontal sill, but that a compressive stress can 
stabilise horizontal sill growth by reducing the stress intensity at the sill tip as it starts to 
rise.  This equation implies that the applied stress has greater effect as the sill grows 
towards the surface.  This analysis does not identify how the mix of tensile and shear 
loading changes at the tip, with the contribution from the shear component expected to 
increase as the angle of incline gets larger. 

Figure 13D shows the dimensionless pre-factor 𝐹𝐹 �𝜃𝜃, 𝑟𝑟𝑐𝑐
𝐻𝐻
� for two different sill base 

lengths. This shows the expected result that a tensile differential tectonic stress (𝜎𝜎𝑟𝑟 < 0) 
will act to drive an intrusion to climb at or near 90o, as this assists the stress intensity at 
the sill tip most at this angle. In compression (𝜎𝜎𝑟𝑟 > 0), the reverse is the case, with the 
applied stress decreasing the stress intensity at the sill tip most effectively at 90o, hence 
driving the crack towards 0o as this reduces the stress intensity the least, allowing sills to 
continue to grow at these low angles.  

 These findings are summarised in the schematic illustration of Figure 14, which 
demonstrates that the differential stress (beyond lithostatic) at the tip of an inclined sill 
comes from two main contributions: 

(1) The internal magma pressure ∆𝑃𝑃 generates the majority of the stress that 
fractures the host rock, and drives the sill forward. The stress intensity at the sill tip is 
proportional to the magma overpressure times the root length, in which the characteristic 
length is the starting depth. It has been shown that in a lithostatic stress state, the 
asymmetric stress field at the tip drives the sill to climb at an incline of about 25𝑜𝑜 to the 
horizontal (Fig. 14A). This is the typical sill angle observed in models for sills conducted 
in the absence of a tectonic stress (e.g., Galland et al., 2009). 

(2) The imposition of a horizontal tectonic stress creates an additional stress field 
that is superimposed on the tip (Fig. 14B), with the stress intensity proportional to the 
applied stress times the root of the height above the initial sill. If the differential tectonic 
stress is compressive (𝜎𝜎𝑟𝑟 > 0) then it has been shown that the stresses at the sill tip are 
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reduced, with the maximum reduction applying to vertical intrusions and the minimum 
reduction for horizontal intrusions. A compressive applied tectonic stress therefore drives 
the sill to a shallower angle of incline, and a tensile tectonic stress drives the intrusion 
towards higher angles of incline. 

 

 

Fig. 14. Schematic illustration of the competing sill tip stress contributions: (A) the internal 
magma pressure has been shown to drive the sill towards the surface at an angle of about 25𝑜𝑜 to 
the horizontal once it has exceeded a length of 𝑟𝑟𝑐𝑐 ≈ 𝐻𝐻. This is the dominant stress in driving the 
sill forwards. (B) A compressive applied differential tectonic stress (above lithostatic) acts to 
reduce the tensile stress at the sill tip caused by the magma pressure. The reduction is minimal in 
the horizontal plane (as shown) and hence acts to lower the angle of inclination of the sill. 

 

5 Conclusions 

Our numerical simulations of saucer-shaped sills show that sill geometry is generally insensitive 
to the host rock elastic properties and shear cohesion. Sill geometry is instead controlled by the 
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competing contributions of the magma pressure profile within the crack, and the magnitude of 
tectonic stress. We applied two end-member magma flow models – constant source flux and 
constant source pressure – which produce very different magma pressure profiles within the 
conduit. Pressure distribution in the sill has little effect on the growth path of a sill, but results in 
markedly different propagation rates as a function of the sill length: sill growth slows as length 
increases in the case of constant flux, whereas constant source pressure models show an 
exponential increase in growth rate. In both cases, magma pressure within the sill drives growth, 
initially as a flat plane. On reaching a critical base length radius, relative to the emplacement 
depth, growth transitions to an inclined sheet, following the angle of maximum energy release 
rate at 25-30° to the horizontal. Compressive tectonic stresses subdue the effect of asymmetric 
tip stress generated by interaction with the free surface, allowing the sill to grow as a flat plane 
for greater lateral distances, and reducing the angle of incline once it exceeds its critical base 
length. Our results are in good agreement with analogue models of fluid-filled cracks presented 
by Bunger et al., (2008), indicating this is a scalable phenomenon. In our simulations, sills are 
most closely matched to natural examples, when the magnitude of tectonic stress above 
lithostatic is equal to the magma overpressure within the sill; applied tectonic stresses above or 
below this value result in steeper sills.  
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