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ABSTRACT

The Cassini mission entered the Grand Finale phase in April 2017 and executed 22.5 highly inclined,

close-in orbits around Saturn before diving into the planet on September 15th 2017. Here we present

our analysis of the Cassini Grand Finale magnetometer (MAG) dataset, focusing on Saturn’s internal

magnetic field. These measurements demonstrate that Saturn’s internal magnetic field is exceptionally

axisymmetric, with a dipole tilt less than 0.007 degrees (25.2 arcsecs). Saturn’s magnetic equator was

directly measured to be shifted northward by ∼ 0.0468 ± 0.00043 (1σ) RS , 2820 ± 26 km, at cylindrical

radial distances between 1.034 and 1.069 RS from the spin-axis. Although almost perfectly axisym-

metric, Saturn’s internal magnetic field exhibits features on many characteristic length scales in the

latitudinal direction. Examining Br at the a = 0.75 RS , c = 0.6993 RS isobaric surface, the degree 4 to

11 contributions correspond to latitudinally banded magnetic perturbations with characteristic width

∼ 15◦, similar to that of the off-equatorial zonal jets observed in the atmosphere of Saturn. Saturn’s

internal magnetic field beyond 60◦, in particular the small-scale features, are less well constrained by

the available measurements, mainly due to incomplete spatial coverage in the polar region. Magnetic

fields associated with the ionospheric Hall currents were estimated and found to contribute less than

2.5 nT to Gauss coefficients beyond degree 3. The magneto-disk field features orbit-to-orbit variations

between 12 nT and 15.4 nT along the close-in part of Grand Finale orbits, offering an opportunity to

measure the electromagnetic induction response from the interior of Saturn. A stably stratified layer

thicker than 2500 km likely exists above Saturn’s deep dynamo to filter out the non-axisymmetric

internal magnetic field. A heat transport mechanism other than pure conduction, e.g. double diffusive

convection, must be operating within this layer to be compatible with Saturn’s observed luminosity.

The latitudinally banded magnetic perturbations likely arise from a shallow secondary dynamo action

with latitudinally banded differential rotation in the semi-conducting layer.

Keywords: Saturn, interior — Magnetic fields — Geophysics

1. INTRODUCTION

Intrinsic magnetic field is a fundamental property of

a planet. Not only is it a key factor in determining

the electromagnetic environment of a planetary body,

it also serves as a key diagnostic of the interior struc-

ture and dynamics of the host planet (Stevenson 2003,

2010). A strong planetary-scale magnetic field most
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likely originates from dynamo action within the planet,

the operation of which requires a large volume of elec-

trically conducting fluid and “fast” and complex fluid

motions (Steenbeck et al. 1966; Steenbeck & Krause

1966; Parker 1955; Krause & Rädler 1980; Roberts &

Stix 1971; Roberts & King 2013). For gas giant dy-

namos, metallic hydrogen is the electrically conducting

fluid, secular cooling drives “fast” fluid motions, while

the rapid background rotation promotes the generation

of large-scale magnetic fields (Christensen 2010). The

warm interior conditions of the present-day Jupiter and
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Saturn makes the transition from molecular to metallic

hydrogen a gradual process: the electrical conductivity

rises rapidly yet continuously from negligible values in

the 1-bar atmosphere to significant values in the Mbar

region (Weir et al. 1996; Liu et al. 2008). The transi-

tion from magnetohydrodynamics (MHD) in the deep

dynamo to hydrodynamics in the outer layers inside gas

giants is also likely to be gradual (Cao & Stevenson

2017a). It is generally believed that the transition from

hydrodynamics to MHD underlies the transition from

100 m/s rapid zonal flows in the non-conducting outer

layer to cm/s−mm/s slow deep dynamo flows inside the

gas giants (Kaspi et al. 2018; Guillot et al. 2018). How-

ever, the physical mechanism of this dynamical transi-

tion, in particular that at mid-to-high latitudes, remains

unknown. On the other hand, although fluid motions

in the semi-conducting layer may not be able to sus-

tain dynamo action on their own, they could modify the

deep dynamo generated magnetic field and produce ob-

servable features outside the planet such as magnetic

perturbations spatially correlated with deep zonal flows

(Gastine et al. 2014; Cao & Stevenson 2017a) and time

variation of the magnetic field (secular variation) (Moore

et al. 2019).

Saturn’s magnetic field has been measured in-situ by

four space missions, Pioneer 11 (Smith et al. 1980;

Acuna & Ness 1980), Voyager 1 (Ness et al. 1981),

Voyager 2 (Ness et al. 1982; Connerney et al. 1982),

and Cassini (Dougherty et al. 2005; Burton et al. 2009;

Cao et al. 2011, 2012; Dougherty et al. 2018). These

measurements revealed an almost perfectly axisymmet-

ric, dipole dominant internal magnetic field with non-

negligible north-south asymmetry (Dougherty et al.

2018) and a highly dynamic magnetosphere filled with

periodic phenomena whose frequencies are close to the

rotational frequency of Saturn (Andrews et al. 2012;

Provan et al. 2018, 2019b). The periodic magnetic per-

turbations in Saturn’s magnetosphere are referred to

as Planetary Period Oscillations (PPOs). The search

for departures from perfect axisymmetry in the internal

magnetic field of Saturn is of great interest, since it could

yield the true rotation period of the deep interior (see

current values derived from different measurements and

methods: Anderson & Schubert 2007; Read et al. 2009;

Mankovich et al. 2019; Militzer et al. 2019) and provide

key constraints on the dynamo process inside Saturn.

However, this search is complicated by the existence

of ionospheric and field-aligned currents (FACs) at Sat-

urn, which feature both PPO and non-PPO components

(Hunt et al. 2014, 2015, 2018). Here we would like to

stress that the deep dynamo layer of Saturn rotates very

much like that of a solid body from the view of observers

in an inertial frame, since the expected cm/s − mm/s
differential rotation is only about one part in a million

when compared to the ∼ 10 km/s background rotation.

Among the existing measurements, those from the

Grand Finale phase of the Cassini mission (Table 1,

Figs. 1 - 4) are the most sensitive to the internal mag-

netic field due to their proximity to the planet and the

highly inclined orbit. So far, the analysis of Saturn’s

internal magnetic field has been mostly restricted to the

traditional Gauss coefficients representation, in which

the internal planetary magnetic field is expressed as a

function of the Gauss coefficients (gmn , h
m
n ) with

Br,θ,φ(r, θ, φ) =
∑
n

∑
m

[gmn f
g
r,θ,φ(r, θ, φ)+hmn f

h
r,θ,φ(r, θ, φ)]

(1)

where the functional form of fg,hr,θ,φ can be easily found

(e.g., Eqns. 3 - 5 in Dougherty et al. 2018) and repro-

duced in Appendix A for convenience. An equivalent

and likely more fundamental representation of the in-

ternal magnetic field of a planet is the Green’s function

which maps the internal magnetic field from the dynamo

surface (or the planetary surface) to the field outside

(e.g. Gubbins & Roberts 1983; Backus et al. 1996; John-

son & Constable 1997):

Bobsr,θ,φ(r, θ, φ) =

∫ 2π

0

∫ π

0

BrDr (θ′, φ′)Gr,θ,φ(µ) sin θ′dθ′dφ′,

(2)

here BrDr is the radial component of the magnetic field at

the dynamo surface (a spherical surface with r = rD in

the traditional geophysical formulation, see next para-

graph for non-sphericity of isobaric surface inside Sat-

urn), Bobsr,θ,φ are three components of the magnetic field

measured above the “dynamo surface”, and µ is the co-

sine of the angle between the position vectors r̂ and r̂′

(see Appendix B for more details). The Green’s function

not only yields an equivalent description of the internal

magnetic field, it also admits a simple and straightfor-

ward physical interpretation: it describes how sensitive

the magnetic field measured outside the planet is to the

field at different locations on the dynamo surface. The

Green’s function has been applied to analyzing the mag-

netic field of the Earth (e.g. Johnson & Constable 1997;

Jackson et al. 2007), Mars (Purucker et al. 2000; Moore

& Bloxham 2017), and Jupiter (Moore et al. 2017).

Saturn is the most oblate planet in the solar system,

with a measured flattening f = (a − c)/a = 9.8% at

the 1-bar surface, where a and c are the equatorial ra-

dius and polar radius respectively. The flattening of the

interior isobaric surface decreases as the pressure level

increases (e.g., see Fig. 2 in Cao & Stevenson 2017b).

According to the latest Saturn interior model (Militzer
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et al. 2019) constrained by the Cassini Grand Finale

gravity measurements (Iess et al. 2019), the flattening

of the isobaric surface decreases to 6.76% at a = 0.75RS
and 5.88% at a = 0.65RS . The isobaric surfaces of gi-

ant planets are not perfect ellipsoids due to their non-

uniform density. The fractional deviation from ellip-

soids ∆r/r, however, are on the order of 10−3 or less for

Jupiter and Saturn (e.g., see Fig. 2 in Cao & Stevenson

2017b; Militzer et al. 2019), two orders of magnitude

smaller than the dominant elliptical flattening. Thus,

we treat the “dynamo surface” as ellipsoids when evalu-

ating the properties of Saturn’s internal magnetic field.

Here we report our analysis of the Cassini Grand Fi-

nale MAG dataset, focusing on Saturn’s internal mag-

netic field. It should be noted that the solution of Sat-

urn’s internal magnetic field were obtained with spheri-

cal basis function, such as the spherical harmonics and

the Green’s functions on a sphere. However, the non-

spherical shape of Saturn’s “dynamo surface” was ex-

plicitly considered when evaluating the properties of the

resultant internal magnetic field. We have extended the

analysis presented in Dougherty et al. (2018) in several

ways: i) MAG data from the last 12.5 Cassini Grand

Finale orbits are analyzed here together with those pre-

sented in Dougherty et al. (2018), ii) an explicit search

for internal non-axisymmetry is carried out, iii) the ef-

fect of incomplete spatial coverage is demonstrated with

regularized inversion, and iv) Green’s functions were em-

ployed in addition to the traditional Gauss coefficients in

constructing models of Saturn’s internal magnetic field,

v) ionospheric current and their associated magnetic

field are evaluated with a simple axisymmetric model,

and vi) search for electromagnetic induction from the

interior of Saturn and orbit-to-orbit varying “internal”

field is carried out. In section 2, we present the main

characteristics of the trajectory of Cassini Grand Finale

orbits and the MAG measurements. In section 3, we

present the directly measured position of Saturn’s mag-

netic equator and its spatial variations. In section 4,

we present the sensitivity of Cassini Grand Finale MAG

measurements to Saturn’s axisymmetric internal mag-

netic field at depth. In section 5, we present inversion

of Saturn’s axisymmetric internal magnetic field with

different methods. In section 6, we present a search

for electromagnetic induction from the interior of Sat-

urn. In section 7, we present the orbit-to-orbit vari-

ations in Saturn’s “internal” quadrupole magnetic mo-

ments. In section 8, we present a search for internal non-

axisymmetry in Saturn’s magnetic field. In section 9, we

discuss the constraints and implications on Saturn’s in-

terior structure and dynamics. Section 10 presents a

summary and outlook.

2. CASSINI GRAND FINALE TRAJECTORY AND

MAG MEASUREMENTS
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Figure 1. Trajectory of typical Cassini Grand Finale or-
bits. In panel A, the trajectory of Rev 291 from apoapsis
to apoapsis is projected onto the meridional plane in which
Z is along the spin-axis direction and ρ is in the cylindrical
radial direction. Panel B shows the close-in part of the tra-
jectory from three Cassini Grand Finale orbits in the same
projection. For the blue-red color-coded trajectory, the red
part is when the measured magnetic field strength > 10,000
nT . The dashed line shows r = 0.75 RS . Panels C shows
the trajectory in latitude local time projection.

The Grand Finale phase of the Cassini mission con-

sists of 22.5 highly inclined, close-in orbits around Sat-

urn between Apr 23rd 2017 (apoapsis time of first Grand

Finale orbit Rev 271) and Sep 15th of 2017 (periapsis

time of the last orbit Rev 293). Each Grand Finale or-

bit took ∼ 6.5 Earth days, with periapsis in the gap

between Saturn and the inner edge of the D-ring and

apoapsis near the orbit of Titan (Fig. 1). The trajectory

and magnetic field measurements from selected Cassini

Grand Finale orbits are shown in Figs. 1 - 4. Table 1

lists the periapsis information of all Cassini Grand Fi-

nale orbits including time, periapsis distance, altitude,

latitude, and local time. Fig. 1 shows the trajectory of

a few typical Cassini Grand Finale orbits (the specific

orbit shown in panel A is Rev 291, the ones shown in

panels BC are Revs 271, 276, 292). The orbits featured



4 Cao et al.

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

P
er

ia
ps

is
 D

is
ta

nc
e 

[R
S

]

-10

-5

0

5

10

P
er

ia
ps

is
 L

at
itu

de
 [d

eg
]

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Rev Number

10.5

11

11.5

12

12.5

13

13.5

P
er

ia
ps

is
 L

oc
al

 T
im

e 
[h

r]

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Local Noon

Planetary Equator

A

B

C

Figure 2. Characteristics of the trajectory of Cassini Grand
Finale orbits. Panel A shows the periapsis distance from the
center of Saturn, panel B shows the periapsis latitude while
panel C shows the periapsis local time as a function of the
orbit (Rev) number.

inclination ∼ 62◦, the periapsis distance from the center

of Saturn varied between 1.064 RS and 1.02 RS (1 RS
= 60268 km), the periapsis latitudes were -6.2◦ ± 1◦

except that of the dive-in orbit which was ∼ 10◦, the

periapsis local times were about ±1 hour around local

noon (Fig. 2).

Fig. 3 shows the measured magnetic field strength

and the azimuthal component along one Cassini Grand

Finale orbit, Rev 291, from apoapsis to apoapsis. It can

be seen that the measured field strength ranges from <

2 nT to > 20,000 nT . Thus, all four dynamical ranges of

the fluxgate magnetometer (Dougherty et al. 2004) were

activated during a Cassini Grand Finale orbit. During

the Grand Finale phase, the highest dynamical range of

the fluxgate magnetometer, range 3, which can measure

field above 10,000 nT and up to 44,000 nT with a digi-

tization of 5.4 nT were activated for the first time since

the Cassini Earth Swing-by (Southwood et al. 2001).

The minimum field strength along this orbit, 1.74 nT ,
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Figure 3. Characteristics of the magnetic field measure-
ments along a typical Cassini Grand Finale orbit from apoap-
sis to apoapsis (shown here is Rev 291). The top panel shows
the total amplitude of the magnetic field, and the bottom
panel shows the azimuthal component, which exhibits vari-
ous magnetospheric features, including Auroral FACs, Intra-
D ring FACs, Planetary Period Oscillations (PPOs), and
Enceladus fluxtube crossing.

was recorded during the crossing of the magnetodisk on

the nightside (Fig. 3).

To transform the vector magnetic field measurements

from the spacecraft coordinate to an astronomical coor-

dinate (e.g. the Saturn centered coordinate), the atti-

tude of the spacecraft needs to be known to high preci-

sion. For example, the spacecraft attitude needs to be

known to better than 0.25 milliradian (mrad) for the

vector magnetic field to be known to within 5 nT from

the true values near the periapsis. The star tracker on-

board Cassini was suspended intermittently during the

Grand Finale orbits, which we refer to as Star ID sus-

pensions. Table 2 lists the timing of the Star ID suspen-

sions along each Grand Finale Orbit. The attitude of the

spacecraft during the Star ID suspensions were recon-

structed using information from the gyroscopes onboard

(see Burk 2018, for more information). Spacecraft rolls

around two different spacecraft axes were designed and

carried out along four Grand Finale orbits: Revs 272,

273, 284, 285. These spacecraft rolls enabled in-flight

calibration of range 3 of the fluxgate magnetometer.
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Table 1. Periapsis information of the Cassini Grand Finale orbits

Rev Num Periapsis Date UTC Time Radial Altitudea Latitude Local Time

Distance [RS ] [km] [deg] [hr]

271 26 Apr 2017 2017-116T09:03:34 1.048203 2963.16 -5.296 13.135

272 02 May 2017 2017-122T19:42:15 1.047782 2939.30 -5.364 13.054

273 09 May 2017 2017-129T06:16:39 1.044115 2719.79 -5.429 12.974

274 15 May 2017 2017-135T16:45:20 1.043232 2667.90 -5.486 12.894

275 22 May 2017 2017-142T03:14:28 1.043970 2713.47 -5.535 12.812

276 28 May 2017 2017-148T14:26:22 1.063769 3910.65 -5.717 12.738

277 04 Jun 2017 2017-155T01:42:28 1.063580 3901.04 -5.793 12.659

278 10 Jun 2017 2017-161T12:53:15 1.055669 3427.14 -5.907 12.581

279 17 Jun 2017 2017-167T23:55:43 1.054660 3367.97 -5.974 12.501

280 23 Jun 2017 2017-174T10:57:42 1.055312 3409.05 -6.047 12.422

281 29 Jun 2017 2017-180T22:14:15 1.060773 3740.92 -6.160 12.345

282 06 Jul 2017 2017-187T09:35:23 1.060853 3747.78 -6.239 12.266

283 12 Jul 2017 2017-193T20:48:00 1.046322 2875.56 -6.366 12.185

284 19 Jul 2017 2017-200T07:54:43 1.045308 2816.82 -6.456 12.104

285 25 Jul 2017 2017-206T18:59:19 1.045589 2835.97 -6.539 12.024

286 01 Aug 2017 2017-213T06:09:10 1.047326 2943.12 -6.632 11.945

287 07 Aug 2017 2017-219T17:23:16 1.047682 2967.09 -6.725 11.864

288 14 Aug 2017 2017-226T04:23:03 1.027228 1737.60 -6.826 11.779

289 20 Aug 2017 2017-232T15:23:00 1.026304 1684.73 -6.924 11.696

290 27 Aug 2017 2017-239T02:18:10 1.025832 1659.24 -7.026 11.613

291 02 Sep 2017 2017-245T13:13:00 1.026003 1672.41 -7.126 11.531

292 09 Sep 2017 2017-252T00:09:45 1.026560 1709.06 -7.229 11.448

293 15 Sep 2017 2017-258T10:31:41.755 1.020827 1443.63 9.559 10.749
aAltitude here is defined as the minimum distance to the 1-bar spheroid with a = 60268km, c = 54364km.

The absolute scale of the fluxgate magnetometer was de-

termined via comparing the simultaneous measurements

carried out by the fluxgate magnetometer (Southwood

et al. 2001) and the helium magnetometer (Smith et al.

2001) during the Earth Swing-by.

Fig. 3B shows the measured azimuthal component,

Bφ, along Rev 291 which remains within ± 50 nT and

exhibits various magnetospheric features including the

auroral FACs (Hunt et al. 2014, 2015, 2018), low-latitude

(intra-D ring) FACs (Dougherty et al. 2018; Khurana

et al. 2018; Provan et al. 2019a; Hunt et al. 2019), cross-

ing of the Enceladus fluxtube (Sulaiman et al. 2018), and

PPOs (Provan et al. 2019b). Fig. 4 shows the total am-

plitude and all three components of the measured field in

the Saturn centered KRTP coordinate within ± 4 hours

of the periapsis along Rev 291. KRTP is a right-handed

spherical polar coordinate, with its origin at the cen-

ter of mass of Saturn, the polar axis (zenith reference)

being the spin axis of Saturn, rotating at the IAU Sys-

tem III rotation rate of Saturn, while r, θ, and φ denote

radial, meridional, and azimuthal directions. The Ence-

ladus fluxtube crossing, auroral FACs, and the intra-D

ring FACs are better delineated in this zoomed-in ver-

sion. The radial and meridional components exhibit a

dipolar geometry, with Br being positive (negative) in

the northern (southern) hemisphere while Bθ remains

positive. The peak field strength is not encountered at

the periapsis but at mid-latitude in the southern hemi-

sphere. The overall features of the measured magnetic

field are highly repeatable from orbit to orbit, although
the magnetospheric features such as auroral FACs and

intra-D ring FACs do exhibit orbit to orbit variations

(Provan et al. 2019a; Hunt et al. 2019).

3. SATURN’S MAGNETIC EQUATOR POSITION

AND ITS SPATIAL VARIATIONS

The highly inclined nature of the Cassini Grand Finale

orbits enabled direct determination of Saturn’s magnetic

equator positions, defined as where the cylindrical radial

component of the magnetic field, Bρ, vanishes. Fig. 5

displays the measured magnetic equator positions pro-

jected onto the ρ − Z plane, where ρ is distance from

the spin-axis of Saturn and Z is distance from the plane-

tary equator of Saturn defined by the center of mass with

northward being positive. Other than the Cassini Grand

Finale measurements, the predictions from the Cassini
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Table 2. Star ID (SID) suspension time along the Cassini Grand Finale Orbits

Rev Num First SID suspension Second SID suspension

271 2017-116T08:35:19.000 to 09:54:57.854 None

272 2017-122T14:55:09 to 17:59:27 2017-122T18:19:40 to 20:53:22

273 2017-128T18:37:17 to 23:35:19 2017-129T03:53:09 to 08:51:11

274 2017-135T16:23:28 to 19:28:00 None

275 2017-142T02:52:31 to 05:57:03 None

276 2017-148T13:54:12 to 16:37:24 None

277 2017-155T00:28:33 to 02:10:50 None

278 2017-161T12:32:51 to 16:10:04 None

279 2017-167T23:47:12 to 168T01:09:29 None

280 2017-174T10:37:32 to 14:14:45 None

281 2017-180T20:04:55 to 23:46:13 None

282 2017-187T09:06:11 to 10:03:09 None

283 2017-193T19:22:30 to 19:47:22 2017-193T20:13:51 to 22:21:18

284 2017-199T20:13:24 to 200T01:11:02 2017-200T05:30:20 to 10:27:58

285 2017-206T14:12:54 to 17:17:12 2017-206T17:38:06 to 20:18:02

286 2017-213T05:27:28 to 06:57:03 None

287 2017-219T15:51:03 to 16:20:43 2017-219T16:48:11 to 18:43:33

288 2017-226T02:51:54 to 03:21:09 2017-226T04:12:29 to 2017-226T06:12:09

289 2017-232T15:06:47 to 15:52:50 None

290 2017-239T00:44:31 to 04:07:28 None

291 2017-245T12:44:47 to 14:18:00 None

292 2017-251T23:43:37 to 252T02:06:37 None

293 2017-258T10:11:19 to End of Mission None

11 model (Dougherty et al. 2018) and the Cassini Saturn

Orbital Insertion (SOI) measurements are shown in Fig.

5 as well. It can be seen that Saturn’s magnetic equator

is consistently displaced northward from the planetary

equator. The measurements and the model predictions

further demonstrate that the northward displacement

of the magnetic equator, ZMagEq, is not constant but

varies as a function of ρ. Along the Grand Finale or-

bits where ρ ∼ 1.05RS , the displacement is ∼ 2820 km

(0.0468 RS). Along SOI, the spacecraft crossed the mag-

netic equator twice near ρ ∼ 2.5RS , where the displace-

ment of the magnetic equator is ∼ 2300 km (0.0382 RS).

The data-model comparison strongly suggests the ax-

isymmetric part of the internal magnetic field is respon-

sible for the majority of the observed spatial variations

in ZMagEq.

In addition to the axisymmetric variations of ZMagEq

with ρ, multiple origins of perturbations in Bρ (e.g.

the PPOs and non-axisymmetric internal magnetic

moments such as g11 and h11) could cause additional

ZMagEq variations. Near the magnetic equator crossing

along the Grand Finale orbits, the relationship between

the vertical displacement from the magnetic equator,

∆ZMagEq = Z −ZMagEq, and Bρ can be approximated

as

∆ZMagEq [km] = 1.395 [km/nT ] ·Bρ [nT ]. (3)

Thus, a magnetic perturbation in Bρ of about 7.2 nT

would cause a displacement of the magnetic equator po-

sition by about 10 km. It should be noted that if such

magnetic perturbations are of internal dipole origin (cor-

responding to g11 and h11), the corresponding Bφ would

be about 3.6 nT .

The measured peak-to-peak variations of ZMagEq at

similar ρ are less than 18 km along the Grand Finale or-

bits. If the observed variations are caused by the inter-

nal non-axisymmetric dipole moments, the correspond-

ing dipole tilt would be less than 0.01◦. A dipole tilt

much larger than 0.01 degrees can be safely ruled out

by the data (Fig. 6).

Here we carried out an explicit search for m=1 non-

axisymmetric patterns in the measured magnetic equa-

tor positions in addition to the variations with ρ. We

first removed a degree-5 polynomial fit of the measured

ZMagEq with 1/ρ:

ZMagEq(ρ) =0.215932/ρ5 − 0.600580/ρ4

+ 0.651408/ρ3 − 0.331803/ρ2

+ 0.084854/ρ+ 0.029170,

(4)
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Figure 4. Characteristics of the magnetic field measure-
ments along a typical Cassini Grand Finale orbit within ±
4 hours around periapsis (shown here is Rev 291). The top
panel shows the total amplitude of the magnetic field, the
radial and meridional component, while the bottom panel
shows the azimuthal component, which exhibits various mag-
netospheric features.

in which both ZMagEq and ρ are in the units of RS . A

degree-5 polynomial fit yields an adequate description of

the mean position of the magnetic equator without in-

troducing additional spatial variations. Then we search

for a sin(φ+φ0) pattern in the residual magnetic equa-

tor positions ∆ZMagEq (Fig. 6). Here φ is the east

longitude in the spherical polar Saturn centered coor-

dinate with a certain fixed rotation rate. We searched

the possible range of rotation periods from 10h30m00s

to 10h55m00s. The results are presented in Figs. 7 & 8.

Interestingly, we find that the residual magnetic equa-

tor position can be ordered into a sin(φ+φ0) pattern at

three different rotation periods, 10h31m32s, 10h34m14s,

and 10h49m30s. The period 10h34m14s is almost iden-

tical to the internal rotation period of Saturn derived

by Read et al. (2009) by considering the Arnol’d sec-

ond stability criterion with the observed wind profile on

Saturn. The “best” ordering, judged by the amplitude

of the pattern and the root-mean-square (RMS) resid-
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Figure 5. Saturn’s magnetic equator positions, defined as
where the cylindrical radial component of the field vanishes
(Bρ = 0), as measured along the Cassini Grand Finale or-
bits and the Cassini Saturn Orbital Insertion (SOI). The ex-
pected magnetic equator position based on the axisymmetric
Cassini 11 model is over-plotted using the grey trace. It can
be seen that Saturn’s magnetic equator position varies as
a function of distance from the spin-axis. The Cassini 11
model under predicts the measured magnetic equator posi-
tions by about 20 km near ρ = 1.035, the closest sets of
measurements to the spin-axis.
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degree-5 polynomial fitting, ZMagEq [RS ] =0.215932/ρ5 −
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ual, is at a period of 10h49m30s, close to the dominant

northern PPO period - strangely no sign of southern

PPO period (Provan et al. 2019b). It should be noted

that the peak amplitude of the sin(φ+φ0) pattern is less
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than 6 km (thus the peak-to-peak variation is less than

12 km), translating into a dipole tilt of 0.0065◦ only.

We will return to the search for internal non-

axisymmetry with explicit modeling of the non-

axisymmetric magnetic moments based on the vector

magnetic field measurements in section 8. The analysis

so far has established that Saturn’s internal magnetic

field is exceptionally axisymmetric.

4. THE SENSITIVITY OF CASSINI GRAND

FINALE MAG MEASUREMENTS TO SATURN’S

INTERNAL MAGNETIC FIELD AT DEPTH

Before proceeding to build models of Saturn’s inter-

nal magnetic field from the Grand Finale MAG mea-

surements, we first utilize the Green’s function to for-

ward calculate the sensitivity of the Grand Finale MAG

measurements to Saturn’s internal magnetic field at

the “dynamo surface”, adopted as the a = 0.75 RS ,

c = 0.6993 RS isobaric ellipsoid here. Estimation of the

local magnetic Reynolds number Rm guided the choice

of dynamo surface for Saturn. Local Rm is defined as

Rm = UconvHσ/η, here Uconv is the convective velocity,

Hσ =
∣∣σ/dσdr ∣∣ is the conductivity scale-height, η = 1/µ0σ

is the local magnetic diffusivity, where µ0 is the magnetic

permeability and σ is the local electrical conductivity.

According to the Saturn interior electrical conductivity

model of Liu et al. (2008), local Rm reaches order 1

(10) at this depth if the convective velocity is on the

order of 1 mm/s (cm/s). Thus, downward continua-

tion of the potential field to this depth seems appropri-

ate. Downward continuation of the potential field from

the surface to certain depth inside the planet is only

valid when there are no toroidal electrical currents in-

between. Thus, downward continuation to depth much

deeper than the a = 0.75 RS isobaric surface cannot be

guaranteed since local dynamo action is expected to be-

come important around this depth. Viewing the down-

ward continued internal field around this depth would

be most relevant for deciphering internal dynamics.

Due to the highly axisymmetric nature of Saturn’s in-

ternal magnetic field, the Green’s function can be inte-

grated in the azimuthal direction first and the mapping

from the field at depth to the measurements along the

spacecraft trajectory reduces to

Bobsr,θ,φ(r, θ) =

∫ π

0

BrDr (θ′)Ḡr,θ,φ(µ) sin θ′dθ′ (5)

where the overbar denotes azimuthal integration. It can

be easily shown that Ḡφ = 0: axisymmetric current-free

magnetic field has no azimuthal component.

Instead of switching to the confocal ellipsoidal coordi-

nates to re-derive the Green’s function, here we simply

compute the Green’s function for two different spheri-

cal surfaces, r′ = 0.75 RS and r′ = 0.6993 RS , which

bracket the a = 0.75 RS isobaric surface. Qualita-

tively, the Green’s function for the a = 0.75 RS iso-

baric surface is expected to be close to G0.75RS

r,θ near

the equator and approach G0.6993RS

r,θ towards the poles.

Fig. 9 shows the azimuthally-integrated, area-weighted

Green’s function, Ḡr,θ sin θ′, for three locations along

a typical Cassini Grand Finale trajectory (these loca-

tions are marked with blue crosses in Fig. 1B), which

illustrates the sensitivity of the MAG measurements to

Saturn’s internal magnetic field at depth.

Taking the Green’s function at the r′ = 0.75 RS
surface for example, at periapsis along the trajectory

(Fig. 9A), Bobsr is mostly sensitive to B0.75RS
r around

similar latitude (−5◦) with a half-amplitude-half-width

(HAHW) of∼ 20 degrees in latitude. On the other hand,

Bobsθ is mostly sensitive to B0.75RS
r at -22◦ and +12◦ lat-

itude. At mid-latitude (30◦) along the trajectory, Bobsr

is mostly sensitive to B0.75RS
r at similar latitude (28.5◦)
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with HAHW of 25 degrees, while Bobsθ is mostly sen-

sitive to B0.75RS
r at 4◦ and 47◦ latitude (Fig. 9B). At

high latitude (−60◦) along the trajectory, Bobsr is mostly

sensitive to B0.75RS
r at somewhat lower latitude (−50◦)

with good sensitivity until −80◦ latitude, while Bobsθ is

most sensitive to B0.75RS
r around −67◦ with good sen-

sitivity until −80◦ and even higher latitude (Fig. 9C).

It should be noted that Ḡr,θ sin θ′ is always zero at the

poles due to the area factor sin θ′.

This forward calculation illustrates that MAG mea-

surements along the Cassini Grand Finale trajectory

are sensitive to Saturn’s magnetic field at depth to very

high latitudes (±80◦). However, the Green’s function is

fairly wide in latitude near the polar region. This in-

dicates that although the large-scale magnetic field at

high-latitude should be well determined, the small-scale

magnetic field beyond 60◦ may not be uniquely deter-

mined.

5. SATURN’S INTERNAL MAGNETIC FIELD

FROM THE CASSINI GRAND FINALE MAG

MEASUREMENTS

Now we move on to retrieve Saturn’s internal mag-

netic field from the Grand Finale MAG measurements.

Although the Gauss coefficients are convenient mathe-

matical tools to describe the magnetic field outside their

source region, the physical quantity is the profile of Sat-

urn’s internal magnetic field at the dynamo surface and

at the planetary surface. If there exist spatially local-

ized features in the magnetic field near the spacecraft

trajectory (e.g. a magnetic spot or a latitudinal flux

band near the equator), the physical magnetic features

could be well resolved by the MAG measurements yet

the Gauss coefficients needed to represent the features

might be uncertain and non-unique. This is because

the Gauss coefficients are defined with respect to global

functions which also depend on the field elsewhere on

the globe. Thus, uncertainties and uniqueness of the so-
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lution should be evaluated in real space (e.g. evaluating

the uncertainties and uniqueness in retrieved Br at the

dynamo surface) rather than in the Gauss coefficients

space, in particular when there is incomplete or uneven

spatial coverage.

In addition to the internal magnetic field generated

by the MHD dynamo process in the deep interior, three

categories of physical sources contribute to the MAG

measurements along the spacecraft trajectory: magne-

tospheric currents (e.g. magnetodisk, magnetopause,

magnetotail currents, and FACs), ionospheric currents,

and electromagnetic induction response from the interior

of Saturn. Along the close-in part of the trajectory (e.g.

r < 2.5RS), magnetospheric contributions other than

those from the adjacent FACs would appear as an ex-

ternal field and can easily be separated from the internal

field given their different radial dependence. Moreover,

existing analytical formulas for the magnetodisk field

(Connerney et al. 1983; Giampieri & Dougherty 2004)

allow a physics-based modeling. The magnetodisk field

can be well approximated by a uniform BZ field around

12 nT (Bunce et al. 2007) along the closest part of the

Grand Finale orbits.

The ionospheric contributions, however, will appear

as “internal” field in the MAG measurements since the

main conducting layer of the ionosphere, estimated to

be ∼ 1100 km above the 1-bar level (Müller-Wodarg

et al. 2006), lies below the trajectory of the Cassini

Grand Finale orbits. Given the highly variable nature of

Saturn’s ionosphere from radio occultation and in-situ

measurements (Kliore et al. 2014; Wahlund et al. 2018;

Persoon et al. 2019), we do not expect the ionospheric

contributed magnetic field to be stable with time, which

provides one way of separating ionospheric contributions

from deep dynamo contributions. In addition, we have

made explicit estimations of the amplitude and profile

of ionospheric contributed magnetic field at the top of

the ionosphere and along the Cassini trajectory (see Ap-

pendix C). We found that their biggest contribution is

to the axial dipole, which could amount to 6 nT . Their

contributions to Gauss coefficients beyond degree-3 are

expected to be less than 2.5 nT (see Table 7 in Ap-

pendix C). Their impact on determining the deep dy-

namo magnetic field of Saturn can thus be explicitly

assessed. The magnetospheric and ionospheric field, in

particular their time variations, will induce additional

internal magnetic field by setting up eddy currents in

the conducting layer inside Saturn. For a time-varying

signal with frequency close to the rotational frequency

of Saturn or the orbital frequency of the Cassini Grand

Finale orbits, the induction response will occur around

0.86 RS given our current understanding of Saturn’s in-

terior electrical conductivity profile (Liu et al. 2008; Cao

& Stevenson 2017a; Dougherty et al. 2018). We will

present our search for the induced internal field from

the time-varying magnetodisk field in section 6.

We first average the original 32 Hz MAG measure-

ments using a 10-sec window, keeping in mind that the

raw attitude information from Star Trackers or gyro-

scopes were obtained once every 4 seconds. The contri-

butions from the magnetodisk current are then deter-

mined orbit-by-orbit with the analytical formula given

in Giampieri & Dougherty (2004) as the basis func-

tion. The determination of the magnetodisk field uti-

lizes only MAG measurements with total field strength

between 400 nT and 10000 nT , corresponding approx-

imately to radial distance between 1.5 RS and 3.8 RS .

These measurements are less affected by the determina-

tion of the small-scale internal magnetic field, thus offer-

ing better separation of internal and external magnetic

field. Furthermore, only field amplitude were employed

to derive the magnetodisk field, reducing the effects of

high-latitude field aligned currents. Table 3 lists the pa-

rameters of the magnetodisk field for each Grand Finale

orbit, from a non-linear least-square fitting procedure

based on the Levenberg-Marquardt method (Levenberg

1944; Marquardt 1963). The value of magnetodisk field

at the equator of Saturn, BZ , along each orbit is listed

in Table 3 as well. It can be seen that the magnetodisk

BZ field varied between 12 nT and 15.4 nT along the

Grand Finale orbits.

5.1. Inversion of Saturn’s axisymmetric internal

magnetic field with Gauss coefficients

representation

After removal of the magnetodisk field, we solve for

Saturn’s axisymmetric internal magnetic field with the

traditional Gauss coefficients representation first. Since

we are only seeking an axisymmetric internal field solu-

tion at this step, which has zero contribution to the az-

imuthal field Bφ, only (Br, Bθ) from the measurements

were adopted. Excluding Bφ has no effect on the model

solutions but does affect the values of the reported RMS

residual.

We tested two different data selection (DS) criteria:

1) only selecting measurements with |B| > 10000nT ,

which approximately corresponds to r < 1.5RS along

the Grand Finale orbits; 2) selecting all measurements

with r < 3RS , which approximately corresponds to

|B| > 1274nT . Criterion 1 avoids measurements dur-

ing the crossing of the high latitude FACs (Dougherty

et al. 2018) whilst criterion 2 extends the data to the

maximum latitude coverage.

5.1.1. Un-regularized inversion
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Table 3. Parameters of the magnetodisk field and the corre-
sponding surface BZ along the Cassini Grand Finale orbits.
Here a and b are the radial distance of the inner and outer
edge of the magnetodisk from the center of Saturn respec-
tively, D is the vertical half thickness of the magnetodisk,
and µ0I is the surface current amplitude, see Connerney
et al. (1983); Giampieri & Dougherty (2004); Bunce et al.
(2007) for more details. In our analysis, only µ0I were var-
ied while a, b, and D were fixed, due to the insensitivity
of the MAG measurements inside 3 RS to the later three
parameters.

Rev Num a b µ0I D Surface BZ

[RS ] [RS ] [nT ] [RS ] [nT ]

271 6.5 20 48.1 2.5 12.2

272 6.5 20 47.8 2.5 12.1

273 6.5 20 57.4 2.5 14.5

274 6.5 20 49.2 2.5 12.4

275 6.5 20 60.9 2.5 15.4

276 6.5 20 53.8 2.5 13.6

277 6.5 20 48.2 2.5 12.2

278 6.5 20 54.8 2.5 13.9

279 6.5 20 51.2 2.5 12.9

280 6.5 20 47.7 2.5 12.1

281 6.5 20 57.0 2.5 14.4

282 6.5 20 51.3 2.5 13.0

283 6.5 20 52.7 2.5 13.3

284 6.5 20 51.0 2.5 12.9

285 6.5 20 56.5 2.5 14.3

286 6.5 20 56.9 2.5 14.4

287 6.5 20 55.3 2.5 14.0

288 6.5 20 57.5 2.5 14.5

289 6.5 20 60.5 2.5 15.3

290 6.5 20 59.3 2.5 15.0

291 6.5 20 56.4 2.5 14.2

292 6.5 20 57.2 2.5 14.5

293 6.5 20 47.6 2.5 12.0

The forward linear problem can be formulated as

data = Gmodel, (6)

in which data represents MAG measurements with the

magnetodisk field removed, model represents the Gauss

coefficients, and G represents the matrix expression of

equation (1). In un-regularized inversion, we seek to

minimize the data-model difference

|data−Gmodel|2 , (7)

without placing explicit constraints on the behavior of

the model.

We monotonically increase the maximum spherical

harmonic (SH) degree, nmax, of the axisymmetric inter-

nal field model and examine the behavior of the data-

model fit. Both the RMS residual and the vector resid-

ual at each data point are evaluated. This exercise aims

at revealing the minimum spectral content required by

the measurements.

Table 4 lists the Gauss coefficients from the un-

regularized inversion with the two different data selec-

tion criteria, while Fig. 10 shows the RMS residual.

It can be seen that although the RMS residuals cor-

responding to the two different data selection criteria

behave slightly differently, the resulted model solutions

from the two data selection criteria are almost identi-

cal. This indicates the FACs do not have a significant

impact on the internal field modeling given the Grand

Finale trajectory. Table 4 also shows that the Gauss

coefficients beyond degree 3 are on the order of 100 nT

or less, significantly smaller than those of degrees 1 - 3.

Table 4. Gauss coefficients of the un-regularized inversion
of Saturn’s axisymmetric internal magnetic field with two
different data selection (DS) criteria.

nmax = 3 nmax = 3 nmax = 6 nmax = 6 nmax = 9 nmax = 9

[nT ] DS 1 DS 2 DS 1 DS 2 DS 1 DS 2

g01 21120 21127 21156 21150 21139 21139

g02 1522 1527 1591 1586 1578 1576

g03 2218 2223 2300 2291 2255 2255

g04 116 108 82 77

g05 77 71 −9 −9

g06 49 45 −3 −8

g07 −100 −100

g08 −36 −39

g09 −55 −54
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Figure 10. Root-mean-square (RMS) residual from the
un-regularized axisymmetric inversion. Only (Br, Bθ) were
adopted in this analysis. The two different traces represent
two different data selection criteria.
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The RMS residual in the un-regularized inversion de-

creases monotonically with the maximum SH degree,

with a few distinct features: 1) the RMS residual drops

by more than an order of magnitude from nmax = 2 to

nmax = 3, 2) the RMS residual remains roughly con-

stant (∼ 10 nT ) between nmax = 6 and nmax = 8, 3)

the RMS residual decreases by more than a factor of two

from nmax = 8 to nmax = 9.

Fig. 11 shows the vector residuals as a function of

time from periapsis along the S/C trajectory for Rev

283 to Rev 292, with the contribution from the mean

magnetodisk field being over-plotted (thick black dashed

lines). The behavior along all other orbits are quite sim-

ilar. It can be seen that the vector residuals from the

un-regularized degree-3 model feature larger amplitude

and larger spatial-scale in the northern hemisphere while

the vector residuals from the un-regularized degree-6

model features mostly north-south symmetric oscilla-

tions. The residuals from the un-regularized degree-9

model are broadly consistent with the average magne-

todisk field, except within [-20, +10] minutes around the

periapsis.

Given that the un-regularized degree-9 model fits the

measurements reasonably well except very close to the

periapsis, why not take it as a new basis solution of Sat-

urn’s internal magnetic field? To answer this question,

we examine the magnetic perturbations associated with

Gauss coefficients above degree 3 at the a = 0.75 RS ,

c = 0.6993 RS isobaric ellipsoidal surface. As shown

in Fig. 12, when evaluated at the a = 0.75 RS iso-

baric surface, ∆Br associated with the degree 4 - 9 co-

efficients of the un-regularized degree-9 model features

3.75 times higher values above 60◦ latitude compared

to those within ± 60◦ latitude. Moreover, the frac-

tional amplitude of the small-scale field perturbations

∆Br(n > 3)/|B(n ≤ 3)| above 60◦ are about 2.5 times

larger than that within ±60◦. Given that the Cassini

spacecraft did not go much beyond ±60◦ latitude dur-

ing the Grand Finale phase, the model field behavior

beyond ±60◦ latitude is likely to be neither justified

nor uniquely determined by the measurements. Thus,

we turn to the regularized inversion technique (Holme

& Bloxham 1996; Gubbins 2004) to construct internal

field models for Saturn that not only fit the Cassini mea-

surements but are also well-behaved. Here, we define

“well-behaved” in the sense that the fractional ampli-

tude of the small-scale field perturbations beyond 60◦

are similar to that within ± 60◦. This definition of

“well-behaved” is a subjective choice, but it is a rea-

sonable one given the available measurements.

5.1.2. Regularized inversion

In regularized inversion, in addition to seeking models

that fit the data, constraints are placed on the behavior

and properties of the model. This can be formulated as

minimizing

|data−Gmodel|2 + γ2 |Lmodel|2 , (8)

here γ is a tunable damping parameter controlling the

relative importance of model constraints and data-model

misfit, while L represents the particular form of con-

straint on the model. Here we seek to minimize the sur-

face integrated power in the radial flux,
∫
B2
r (n > 3)dΩ,

at r = 0.6993RS . Since we expect the regularization

to mainly constrain the behavior of the magnetic field

above ±60◦ latitude, we set the regularization radius to

0.6993 RS , the polar radius of the a = 0.75 RS isobaric

surface. Thus, the model constraint is

L =
n+ 1√
2n+ 1

(
Rp
rdamp

)n+2

(9)

for n > 3 and L = 0 for n ≤ 3, in which Rp is the

radius of the planet and rdamp is the damping radius at

which the constraints are placed. Here, Rp = RS , and

rdamp = 0.6993 RS .

Fig. 13 displays the Gauss coefficients and ∆Br(n >

3)/|B(n ≤ 3)| at the a = 0.75 RS , c = 0.6993 RS el-

lipsoidal surface from a survey of regularized inversion

with different damping parameters. The preferred so-

lution is highlighted using thick red traces in both pan-

els. Compared to the un-regularized degree-9 model, our

preferred solution features ∆Br/|B| with similar ampli-

tude beyond ±60◦ and within ± 60◦. Moreover, Fig. 13

shows that the model Br are broadly similar within ±
60◦.

This preferred solution constructed from the entire

Grand Finale dataset is very similar to the Cassini 11

model (Dougherty et al. 2018) derived from 9 of the

first 10 Grand Finale orbits in the profile of Br and in

the Gauss coefficients (see Table 5 for the Gauss coeffi-

cients). We refer to this newly constructed model as the

Cassini 11+ model.

5.2. Inversion of Saturn’s internal magnetic field with

Green’s function

5.2.1. The eigenvectors of the inverse problem formulated
with Green’s function

In addition to the traditional Gauss coefficients repre-

sentation, the inverse problem for the internal magnetic

field can be formulated with Green’s function represen-

tation. In this formulation, the model in

data = Gmodel (10)
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Figure 11. Component residuals, (∆Br,∆Bθ), from the un-regularized degree 3, degree 6, and degree 9 models along Rev 283
to Rev 292 within ± 4 hours of the periapsis. In each panel, thick black dashed line represents contribution from the mean
magnetodisk field.

Table 5. Gauss Coefficients of newly derived Cassini 11+
model compared to that of the Cassini 11 model (Dougherty
et al. 2018)

[nT ] Cassini 11 Cassini 11+

g01 21140 21141

g02 1581 1583

g03 2260 2262

g04 91 95

g05 12.6 10.3

g06 17.2 17.4

g07 −59.6 −68.8

g08 −10.5 −15.5

g09 −12.9 −24.2

g010 15 9.0

g011 18 11.3

g012 −2.8

g013 −2.4

g014 −0.8

is the profile of Br at the dynamo surface, and G is

the matrix expression of equation (2). For simplicity,

we choose Br at rd = 0.6993 RS , same as the damping

radius in our regularized inversion, as the model here.

Each eigenvector of the inverse problem is a profile of

axisymmetric Brdr as a function of latitude, which we de-

note as Brdi , here i is the order of the eigenvector. Here

we emphasize that the eigenvectors here are not stan-

dard predetermined functions but depend on the specific

trajectory of the measurements.

The final solution is a weighted sum of the eigenvectors

of different order

Brdr =
∑
i

βiB
rd
i , i = 1, 2, ... (11)

here βi are the weights of the eigenvector. Both

βi and Bi can be computed with the singular-value-

decomposition (SVD) (e.g. Jackson 1972; Connerney

1981; Aster et al. 2013, also see Appendix B).

We choose the Gauss-Legendre quadrature points with

180 grids in the latitudinal direction to ensure high-

precision integration for smooth functions. In Fig. 14,

we show the first six eigenvectors in parameter space de-

rived along the trajectory of the Cassini Grand Finale

orbits. It can be seen that all eigenvectors feature zero

Brdr at the poles, in contrast to the m = 0 associated

Legendre functions (the basis functions for axisymmet-

ric Gauss coefficients) which all peak at the poles. It

becomes immediately clear that with the given trajec-

tory, the Green’s function method seeks solutions with



14 Cao et al.

-6

-4

-2

0

2

4

6

 B
r @

 a
=

0.
75

 R
S [n

T
]

−80 −60 −40 −20 0 20 40 60 80

Latitude [deg]

Un−regularized degree−9 model
104

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 B
r/|B

| @
 a

=
0.

75
 R

S

−80 −60 −40 −20 0 20 40 60 80

Latitude [deg]

A

B
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un-regularized degree-9 model. It can be seen that in this
un-regularized model, ∆Br above ±60◦ latitude are about
3.75 times larger than that within ±60◦, and ∆Br/|B| above
±60◦ are about 2.5 times larger than that within ±60◦.

zero Br at the poles, which is an intriguing mathemat-

ical property of this method. Given this property and

the fact that Saturn’s internal magnetic field is predom-

inantly dipolar, we employ the Green’s function method

to seek small-scale internal magnetic field solutions be-

yond spherical harmonic degree 3.

5.2.2. Small-scale features in Saturn’s internal magnetic
field from Green’s function inversion

We adopt the degree 1 to 3 Gauss coefficients from

the Cassini 11 model as the basis model, and seek the

internal magnetic field beyond this basis model using

the Green’s function. To obtain a smooth solution, one

needs to either truncate the solution at a certain order
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Figure 13. Gauss coefficients and ∆Br(n > 3)/|B(n ≤ 3)|
at the a = 0.75 RS , c = 0.6993 RS isobaric surface from
a survey of regularized inversion based on Cassini Grand
Finale MAG measurements. The thick red traces represent
our preferred solution, the Cassini 11+ model.

imax (see Appendix B for more details) or apply certain

form of regularization. Here we choose to truncate the

solution at imax as a first step. The truncation order

of the eigenfunction, imax, is determined by the RMS

residual and the model-data misfit.

Fig. 15 shows the small scale magnetic field beyond

spherical harmonic degree 3, ∆Br, constructed from the

Green’s function with rd = 0.6993 RS and imax = 12,

which we refer to as CG12 model, in which C stands

for Cassini, G stands for Green’s function, and 12 in-

dicates the truncation order of the eigenfunction. This

truncation order is chosen to yield a similar RMS resid-

ual to that of the Cassini 11+ model. The perturbation

field from the Cassini 11+ model and the Cassini 11

model are shown in Fig. 15 for comparison (the same
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Figure 14. First six eigenvectors of the magnetic Green’s
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RS , c = 0.6993 RS ellipsoidal surface). It can been seen
that the eigenfunctions constructed from the Green’s func-
tion feature zero values at the poles, in contrast to the m = 0
Legendre functions which peak at the poles.

degree-3 model has been removed for a fair comparison).

It can be seen from Fig. 15 that the field structures

constructed from two different methods are very similar

within ±60 degrees: there are four latitudinal magnetic

field bands between the equator and 60◦ latitude in each

hemisphere. Above ±60◦, the solution from the Green’s

function features zero Br at the poles (an intrinsic prop-

erty of the method) while the Cassini 11+ model fea-

tures comparable ∆Br/|B| to that within ± 60◦ (which

results from the chosen regularization). Although the

difference between the two models beyond ±60◦ latitude

originates from the intrinsic properties of the methods,

this nonetheless highlights the non-uniqueness in the so-

lution beyond±60◦ latitude. This non-uniqueness in the

polar region should be kept in mind when interpreting

the resultant ∆Br.

Once we obtain Br at r = rd, the corresponding Gauss

coefficients can be easily computed via a surface integra-

tion given the orthogonality of the spherical harmonics

on a sphere.

g0n =
2n+ 1

2(n+ 1)

(
rd
RP

)n+2 ∫ π

0

BrP
0
n(cos θ) sin θdθ,

(12)

where the pre-factor results from the Schmidt-

normalization. Supplementary Table 1 compares the

Gauss coefficients of the Green’s function model (the

CG12 model) to that of the Cassini 11 model (Dougherty

et al. 2018) and the Cassini 11+ model. For the CG12

model, the degree 1-3 Gauss coefficients are the sum of

the basis model and those computed from Eq. (12). It

can be seen that the Gauss coefficients of these models

are also broadly similar: beyond degree 3, all models fea-

ture a strong and positive g04 and a strong and negative

g07 .

6. ELECTROMAGNETIC INDUCTION RESPONSE

FROM SATURN’S INTERIOR

Electromagnetic (EM) induction can be employed to

probe the interiors of planetary bodies. Examples of

planetary applications of this technique include the dis-

covery of the subsurface ocean inside Europa and Cal-

listo from Galileo magnetometer measurements (Khu-

rana et al. 1998), constraints on lunar core size from

Apollo 12 and Explorer 35 magnetometer measurements

(Hood et al. 1982), and constraints on water content

variations in the mantle transition zone inside the Earth

(Kelbert et al. 2009).

The key parameter in the EM induction is the skin-

depth, d =
√

2/ωindµ0σ, which depends on the fre-

quency of the inducing field ωind and the local electrical

conductivity σ. µ0 is the magnetic permeability. Since

the electrical conductivity is expected to rise continu-

ously yet rapidly as a function of depth inside Saturn

(Weir et al. 1996; Liu et al. 2008; Cao & Stevenson

2017a), the EM induction response is expected to oc-

cur at different depths for inducing fields with different

frequencies. The depth at which the EM induction oc-

curs is where the frequency dependent skin-depth dind
becomes comparable to or smaller than the local scale-

height of the electrical conductivityHσ =
∣∣σ/dσdr ∣∣. Given

our current understanding of the electrical conductiv-

ity profile inside Saturn based on a band-closure model

(Liu et al. 2008), EM induction is expected to occur at

rind around 0.87RS and 0.86RS for sounding frequencies
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Figure 15. Small-scale (n > 3) magnetic field of Saturn viewed at the a = 0.75 RS , c = 0.6993 RS isobaric surface constructed
from regularized Gauss coefficients inversion (Cassini 11+ model) and from the Green’s function inversion (CG 12 model).

equal to the rotational frequency of Saturn (∼ 10.5 hr)

and the orbital frequency of Cassini Grand Finale orbits

(6.5 Earth days) respectively (Fig. 16A). The electrical

conductivity at these depths are about 0.1 S/m and 1

S/m respectively. The depth from the 1-bar atmosphere

is about 8000 km.

The magnetodisk BZ field (Table 3) is expect to in-

duce an internal axial dipole g01(ind) inside Saturn.

This induction response consists of two parts, a time-

stationary part and a time-varying part. The magne-

todisk field has a well defined mean component of order

10 nT , which seems to be stable over at least decadal

time-scales with available in-situ observations. Given

the very high electrical conductivity in Saturn’s deep

interior, an induction response to the stable part of the

magnetodisk BZ field is expected. However, this in-

duction response cannot be effectively separated from a

stable internal axial dipole.

Thus, in searching for an induction response from the

interior of Saturn, we focus on the expected time-varying

part. The expected time-varying induction response

∆g01 to the time-varying part of the magnetodisk field

∆BZ is that

∆g01 = −1

2

(
rind
RS

)1/3

∆BZ . (13)

This corresponds to an induction response in which the

induced radial field Bindr perfectly cancels the radial

component of the external inducing field Bextr at rind.

Note that the induced tangential component Bindθ acts

to increase the external tangential component by 50%

instead of canceling it at rind. The factor 1/2 in Eq. 13

originates from the normalization of the associated Leg-

endre polynomials which is part of the definition of g01 .

Thus, the slope of ∆g01 versus ∆BZ reveals the depth

at which the induction response occurs. For an induc-

tion depth at 0.87RS (0.86RS), the expected slope is

−0.4773 (−0.4755).

We solve for ∆g01 orbit by orbit after removing the

Cassini 11+ model and the magnetodisk field. Figure

16B shows ∆g01 as a function of the time-varying mag-

netodisk ∆BZ field orbit-by-orbit. With the available

data an induction signal seems present. If one performs

a formal inversion analysis on this dataset, the expected

slope is within 1σ of that from the formal inversion anal-

ysis. However, the large scatter in the data precludes

any definitive constraint on the induction depth.

7. ORBIT-TO-ORBIT VARIATIONS IN SATURN’S

“INTERNAL” QUADRUPOLE MAGNETIC

MOMENTS
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Figure 16. Electromagnetic induction response from the
interior of Saturn. Panel A shows the skin depth versus the
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In addition to solving for ∆g01 orbit by orbit, we also

attempted to solve for ∆g02 orbit by orbit and found

some non-negligible variations. Solving for ∆g02 does im-

prove the data-model misfits, while solving for ∆g0n with

n > 2 does not reduce the data-model misfit much fur-

ther. We attempted to solve for ∆g01 and ∆g02 separately

and simultaneously, and observed negligible differences

in the resulting values. Table 6 lists the resultant ∆g02 ,

which are also plotted against Rev Number in Fig. 17.

It can be seen that the variations in g02 stay within ± 4.6

nT , except along Rev 288 where a factor of 1.5 larger

variation in g02 were observed. Near simultaneous Hub-

ble Space Telescope (HST) observations of the northern

far-ultraviolet aurorae of Saturn recorded a strong inten-

sification of total auroral power in the H2 bands close

to the periapsis time of Rev 288 (Lamy et al. 2018).
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Figure 17. Orbit-to-orbit variations in Saturn’s exter-
nal magnetodisk field, “internal” dipole, and “internal”
quadrupole coefficients.

Moreover, ∆g01 and ∆g02 do not exhibit strong corre-

lation: the coefficients of correlation between the two

is only 34%. The variability in ∆g02 is larger than that

in ∆g01 . The standard deviation of ∆g02 is 2.8 nT (2.4

nT if Rev 288 is excluded), while the standard devia-

tion of ∆g01 is 2.0 nT . We speculate that the observed

variations in g02 mostly reflect variations in the east-west

(zonal) currents in the ionosphere. The quadrupole mo-

ment g02 corresponds to north-south antisymmetric zonal

currents: e.g. a positive g02 is consistent with eastward

current in the north and westward current in the south.

The order 5 nT amplitude is consistent with our order-

of-magnitude estimations of the ionospheric Hall current

contributions (see Appendix C), while the pattern indi-

cates stronger north-south asymmetry compared to the
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Table 6. Orbit-to-orbit varying Internal Dipole and
Quadrupole Coefficients Measured along the Cassini Grand
Finale Orbits

Rev Num ∆g01 [nT ] ∆g02 [nT ]

271 1.2 1.1

272 3.2 1.9

273 1.4 -1.3

274 -0.5 -0.8

275 2.2 -0.5

276 -0.7 3.5

278 1.1 -1.2

279 -2.7 2.1

280 4.2 0.1

281 -3.7 -4.0

282 1.6 1.1

283 -1.3 -4.6

284 -0.3 2.3

285 1.1 -0.4

286 -1.7 -2.1

287 -1.2 -3.4

288 2.1 7.0

289 -2.1 0.4

290 -0.5 -4.0

291 0.6 2.0

292 -1.8 1.8

expectation of continuing the 1-bar wind pattern up to

the 1100 km altitude ionospheric layer.

8. SEARCH FOR NON-AXISYMMETRY IN

SATURN’S INTERNAL MAGNETIC FIELD

As demonstrated in the analysis of Saturn’s mag-

netic equator positions (section 3), the level of depar-

ture from perfect axisymmetry is likely only on the or-

der of 3 × 10−4. Nonetheless, we performed a search

for the non-axisymmetric internal magnetic moments of

Saturn based on the Cassini Grand Finale MAG mea-

surements. The traditional Gauss coefficients represen-

tation is adopted, and the maximum SH degree and or-

der for the non-axisymmetric moments are both set to

be 3. Since the deep interior rotation rate of Saturn re-

mains uncertain (Anderson & Schubert 2007; Read et al.

2009; Mankovich et al. 2019; Militzer et al. 2019), we

surveyed a wide range of possible rotation periods from

10h30m00s to 10h55m00s.

Fig. 18 shows the dipole tilt, the relative non-

axisymmetry in SH degree 2 and 3 (defined as the ratio

of the amplitude of the non-axisymmetric magnetic mo-

ments to that of the axisymmetric magnetic moment

of the same degree), and the RMS residual from the

search. No dominant peak in the amplitude of the in-
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Figure 18. Results from the search for non-axisymmetry in
Saturn’s internal magnetic field based on the Cassini Grand
Finale MAG measurements. Panel A shows the dipole tilt,
panel B and C show the relative non-axisymmetry in degree
2 and degree 3 moments respectively, and Panel D shows the
RMS residual. All quantities are shown as a function of the
assumed rotation period of Saturn’s deep interior. No dom-
inant peak in internal non-axisymmetry can be identified,
and the peak dipole tilt is less than 0.007◦ (25.2 arcsecs).

ternal non-axisymmetric can be identified, and the peak

dipole tilt is less than 0.007 degrees (25.2 arcsecs). The

relative non-axisymmetry in degree 2 and 3 are less than

1.5×10−3. Thus, Saturn’s internal magnetic field is 1000

times more axisymmetric compared to those of Earth

and Jupiter. What makes Saturn’s internal magnetic

field so drastically different? We discuss this in the next

section.

9. IMPLICATION FOR SATURN’S INTERIOR

9.1. Magnetic axisymmetry and deep stable

stratification inside Saturn

The exceptional level of axisymmetry in Saturn’s in-

ternal magnetic field revealed by the Cassini Grand Fi-

nale MAG measurements presents a challenge and an

opportunity. The challenge is to our understanding of

natural dynamos while the opportunity is to decode Sat-

urn’s interior structure and dynamics. Cowling’s the-

orem (Cowling 1933; Backus & Chandrasekhar 1956;
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Hide & Palmer 1982) precludes a perfectly axisymmet-

ric magnetic field to be maintained by natural dynamos,

although no lower bound on the departure from axisym-

metry has been placed by this theorem. Furthermore,

Cowling’s theorem is a statement about the entire mag-

netic field in the dynamo region, much of which we

cannot observe (e.g., the toroidal field). Setting Cowl-

ing’s theorem aside for now, Saturn’s axisymmetric in-

ternal magnetic field appears special from the perspec-

tives of both observations and modern understanding of

the planetary dynamo process.

From observations, highly axisymmetric magnetic

fields are rare among planets. Both Earth and Jupiter

feature ∼ 10◦ dipole tilt, while Uranus and Neptune

feature ∼ 50◦ dipole tilt and strong non-axisymmetric

quadrupole and octopole fields. The case of Mercury

and Ganymede are less clear at this stage. Mercury’s

magnetic equator positions do feature ∼ 100 km peak-

to-peak variations (see Fig. 4 in Anderson et al.

2012), which are much bigger variations compared to

that of Saturn given the relative small size of Mercury

(RMercury = 2439.7km). However, whether such vari-

ations are due to internal non-axisymmetry or mag-

netospheric processes (Jia et al. 2015) remains to be

clarified. The ESA-JAXA BepiColombo mission is ex-

pected to help resolve this issue. The non-axisymmetry

of Ganymede’s internal magnetic field is less clear due to

the ambiguity in separation of the dynamo-generated in-

ternal field and the EM induced field given the limited

spatial-temporal coverage of Galileo Ganymede flybys

(Kivelson et al. 2002). The ESA JUpiter ICy moons

Explorer (JUICE) mission is expected to resolve this

ambiguity with low-altitude Ganymede orbits.

From modern understanding of the planetary dynamo

process, highly axisymmetric magnetic fields are rare in

convective dynamo simulations. Highly supercritical ro-

tating convection is strongly non-axisymmetric. Due to

inverse cascade (Guervilly et al. 2014; Rubio et al. 2014),

the non-axisymmetry in the convective flows tends to

have strong large-scale components. These large-scale

non-axisymmetric convective flows are expected to gen-

erate large-scale non-axisymmetric magnetic fields as

observed in the majority of convective numerical dy-

namo simulations. In numerical dynamo surveys, the

magnetic field in the dipolar branch tends to feature a

modest amount of non-axisymmetry, e.g. with dipole

tilt between 5 to 10 degrees, while the magnetic field in

the multi-polar branch tends to be dominated by non-

axisymmetry (Christensen & Aubert 2006; Soderlund

et al. 2012; Duarte et al. 2013).

The most appealing mechanism to axisymmetrize Sat-

urn’s internal magnetic field is via the combination of

strong differential rotation and suppression of large-scale

non-axisymmetric convective motion on top of the dy-

namo region (Stevenson 1980, 1982). It should be em-

phasized that the differential rotation here refers to the

shear between the flow in the convective dynamo re-

gion and the flow in an electrically conducting layer

above the convective dynamo region. In principle, only

differential rotation in the spherical radial direction is

needed. Such differential rotation tends to destroy non-

axisymmetric magnetic features via advectively shearing

them, then diffusively dissolving them. Under the case

of angular velocity as a function of radial distance only

and ignoring the dynamic feedback from the Lorentz

force induced, this process can be thought of as elec-

tromagnetic filtering. In addition to strong differen-

tial rotation on top of the deep dynamo, suppression

of large-scale non-axisymmetric convective motion out-

side the deep dynamo is a necessary ingredient to main-

tain an axisymmetric magnetic field, since any large-

scale non-axisymmetric convective motion in an electri-

cally conducting region would lead to large-scale non-

axisymmetric magnetic field. The most likely way these

two conditions are satisfied inside Saturn is via the for-

mation of a stably stratified (Stevenson 1980) or double

diffusively convecting (Leconte & Chabrier 2012, 2013)

layer on top of the deep fully convective dynamo. He-

lium rain (Stevenson 1975; Stevenson & Salpeter 1977;

Morales et al. 2009; Lorenzen et al. 2009) could lead

to the formation of such a layer. However, the picture

of helium rain inside Saturn is in doubt since we lack

a direct measurement of significant helium depletion in

the atmosphere of Saturn. The established helium de-

pletion in Jupiter from Galileo results and the expected

lower entropy in Saturn suggests helium rain should oc-

cur in Saturn to a greater extent than in Jupiter but this

is contingent on the standard assumption of isentropy

down to the pressure level of helium insolubility in both

planets. Other processes inside Saturn could lead to the

formation of such a layer on top of the dynamo. For

example, if dissolved core material (heavy elements) is

convectively mixed upward to around 0.6 RS , this would

create a stable compositional gradient near this depth

since the layer above would feature less heavy elements.

The thickness of this layer and the format of radial

motion in this layer, e.g. oscillatory motion or small-

scale double diffusive convective motion, is determined

by the competition between the thermal gradient and

the compositional gradient (Leconte & Chabrier 2012).

The measured extreme level of axisymmetry in Saturn’s

magnetic field can help us constrain these properties.

We loosely refer to this layer as a “stable layer” even
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though it should be understood that this layer could be

double diffusively convecting.

An important non-dimensional parameter to quantify

the stable layer’s ability to axisymmetrize the dynamo

generated magnetic field is

αRm =
mLStable
RDynamo

∆uφLStable
ηStable

, (14)

here m is the azimuthal wave number (spherical har-

monic order m), LStable is the thickness of the stable

layer, RDynamo is the radius of the deep dynamo, ∆uφ
is the differential rotation between the stable layer and

the deep dynamo, and ηStable is the magnetic diffusivity

of the stable layer. Fig. 19 shows the maximum attenu-

ation factor of the dipole tilt (m = 1), which is the ratio

of the dipole tilt above the stable layer to that below

the stable layer, as a function of αRm according to the

plane layer kinematic model of Stevenson (1982):

∆max =
1.59

(αRm)1/12
exp

[
−
√

2/3 (αRm)
1/2
]
. (15)
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Figure 19. The attenuation factor of the internal dipole tilt
as a function of αRm according to the kinematic plane-layer
model by Stevenson (1982). To reach a 0.007◦ dipole tilt,
αRm needs to be larger than 238. The stable layer needs to
be thicker than 2500 km (5600 km) if the differential rotation
between the deep dynamo and the stable layer is about 5
mm/s (1 mm/s).

Assuming a 10◦ dipole tilt in the deep dynamo re-

gion, to achieve the observed upper limit of dipole tilt,

0.007◦, outside the stable layer, αRm needs to be larger

than 238. If we assume 1 mm/s (5 mm/s) differential

rotation between the stable layer and the deep dynamo

and a magnetic diffusivity of 4 m2/s (equivalent to an

electrical conductivity of 2 × 105 S/m) and a deep dy-

namo radius around 0.55 RS , this requires a stable layer

thicker than 5600 km (2500 km). It should be immedi-

ately realized that a “stable” layer over 2500 km thick

cannot be a purely diffusive layer. Assuming a thermal

conductivity of 100 W/K/m (French et al. 2012), to dif-

fusively transport the observed luminosity 2 W/m2 of

Saturn through a purely conducting layer over 2500 km

thick around 0.55 RS would require a thermal gradient

as large as 66 K/km or a temperature jump over 165000

K across the stable layer. Thus, double diffusive con-

vection and/or fluid waves must be present to transport

the heat out.

Moreover, αRm and the “stable” layer thickness de-

rived here is likely a lower limit. In this kinematic model

(Stevenson 1982), the dynamical feedback from the mag-

netic field to the flow via the Lorentz force was ignored.

Such dynamical feedback likely would reduce the effi-

ciency of axisymmetrization. Whether a very large αRm

can be achieved in a fully dynamic situation is unclear,

since the differential rotation between the stable layer

and the deep dynamo ∆uφ would be dynamically con-

strained. In published Saturn dynamo simulations with

a stable layer (Christensen & Wicht 2008; Stanley 2010),

αRm is on the order of 15 or less, consistent with the

∼ 1◦ dipole tilt achieved. Whether there is a dynami-

cal limit on αRm and the axisymmetrization efficiency

of this mechanism remains an open question for future

investigations.

9.2. Banded magnetic perturbations and deep zonal

flows in the semi-conducting layer of Saturn

It is intriguing that although Saturn’s internal mag-

netic field appears to be perfectly axisymmetric, it does

feature a rich axisymmetric magnetic spectrum extend-

ing to spherical harmonic degree 9 and beyond. The

degrees 1 to 3 magnetic moments likely originate from

the deep dynamo given their order-of-magnitude power

dominance over that of the higher degree moments when

viewed at 0.75 RS . The magnetic moments beyond de-

gree 3 and the associated latitudinally banded magnetic

perturbations likely originate from a shallow secondary

dynamo with alternating bands of deep zonal flows in

the semi-conducting layer of Saturn. As shown in Cao

& Stevenson (2017a), banded differential rotation and

local helical motion in the semi-conducting region could

generate a rich axisymmetric magnetic spectrum even if

the deep dynamo field is simply an axial dipole. The

Cassini MAG data suggests that there are eight alter-

nating bands of magnetic perturbations between ± 60◦

at the a = 0.75RS elliptical surface (Fig. 15 & 20B).

The typical latitudinal width of each magnetic band is
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Figure 20. Saturn’s large and small scale radial magnetic field at the a = 0.75, c = 0.6993 RS isobaric surface according to
the Cassini 11+ model. Saturn’s large scale radial magnetic field at this depth features a relatively weak equatorial region, Br
remains less than 50,000 nT (<1/3 of its peak value) between ±40◦. Saturn’s small-scale magnetic field at this depth features
eight alternating bands between ±60◦, with typical amplitude of ∼ 5% - 10% of the background field.

∼ 15◦. If we project the observed 1-bar surface zonal

winds along the direction of the spin-axis towards the

a = 0.75RS elliptical surface, there are eight alternat-

ing bands of zonal jets between ± 60◦ with the off-

equatorial jets feature typical latitudinal width ∼ 15◦

at this depth. Thus, the characteristic width of the

latitudinally banded magnetic perturbations is similar

to that of the Z-projection of the surface off-equatorial

zonal jets.

Three necessary ingredients for a secondary dynamo

in the semi-conducting layer are 1) the existence of a

deep dynamo which provides the background magnetic

field B0, 2) differential rotation in the semi-conducting

layer which produces toroidal magnetic field BT from

B0 through the dynamo ω-effect, and 3) local helical mo-

tion which produces observable poloidal magnetic field

perturbations ∆BP from BT through the dynamo α-

effect (Parker 1955; Steenbeck et al. 1966; Steenbeck &

Krause 1966). Heat transport requirements and back-

ground rotation naturally lead to helical motion and lo-

cal dynamo α-effect in the semi-conducting layer. The

spatial profile of the resultant BT and ∆BP are ex-

pected to be spatially correlated with that of the differ-

ential rotation. The fact that the characteristic width of

the latitudinally banded magnetic perturbations is sim-

ilar to that of the Z-projected surface zonal jets lends
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further support to the idea that the profile of deep zonal

flows in Saturn’s semi-conducting layer strongly resem-

ble that of the observed surface zonal jets (Iess et al.

2019; Galanti et al. 2019; Militzer et al. 2019). In addi-

tion to the idealized mean-field model (Cao & Stevenson

2017a), secondary dynamo action has also been observed

in some global numerical dynamo simulations for giant

planets featuring a radially varying electrical conductiv-

ity and deep zonal flows in the outer layers (e.g. Gastine

et al. 2014; Duarte et al. 2018).

The peak toroidal magnetic field production could oc-

cur anywhere between the top of the semi-conducting

layer (e.g. ∼ 0.87RS where σ ∼ 0.1 S/m) and the base

of the semiconducting layer (to be defined later), since

it is determined by the competition between the decay-

ing wind velocity and the increasing electrical conduc-

tivity as a function of depth. Regardless of the peak

production depth, the toroidal magnetic field will dif-

fuse downward to the base of the semi-conducting layer

(e.g., see Figs. 2 & 10 in Cao & Stevenson 2017a).

The poloidal magnetic field perturbations ∆BP, how-

ever, are expected to be generated mainly near the base

of the semi-conducting layer, due to its dependence on

σ2. The “base of the semi-conducting layer” is defined

by either 1) the transition to the main dynamo, which

likely occurs before the saturation of the electrical con-

ductivity, or 2) the upper end of the “stable layer” which

provides a well-defined separation of the shallow dynamo

from the deep dynamo.

Since the secondary dynamo lies above the “sta-

ble layer”, will it generate secondary non-axisymmetric

magnetic field that violate the observational con-

straints? The answer to this question is two-fold. First,

in the spirit of mean field electrodynamics, the α-effect

is not dependent on longitude and hence does not in-

troduce large scale non-axisymmetric field, though at

the scale of the convective eddies it necessarily involves

motions and small scale fields that have longitudinal de-

pendence. However, the longitudinal dependent fields

are expected to be much smaller than the axisymmet-

ric field arising from the α-effect. Second, a 5% non-

axisymmetry associated with the high-degree (n > 3)

magnetic moments will produce peak non-axisymmetric

magnetic fields on the order of 5 nT along the S/C tra-

jectory. This likely is still compatible with the Cassini

MAG measurements.

As discussed in Dougherty et al. (2018) and in Cao &

Stevenson (2017a), the separation of the magnetic field

of shallow origin from that of deep origin is not clear-

cut. Taking a step-back to examine the large-scale field

which most likely originates from the deep dynamo field,

the fact that g01 and g03 take the same sign implies that

the radial magnetic flux is expelled from the equatorial

region and pushed towards mid-to-high latitude (see Fig.

20A). This could originate from a deep “equatorial” jet

either in the stable layer or in the deep dynamo region

itself, which would tend to clear-out the radial flux so

that the steady-state magnetic field approaches that of

a Ferraro-corotation state: B · ∇ω = 0, here ω is the

local angular velocity. Also as discussed in Dougherty

et al. (2018), if a significant part of the magnetic field

with n ≤ 9 has a deep origin, the poles deep inside

the planet (e.g. at 0.5 RS) could feature almost zero

radial magnetic field. Almost zero radial magnetic field

at the poles at the deep dynamo surface could originate

from flux expulsion and/or time-varying process inside

a tangent cylinder (Sreenivasan & Jones 2005; Landeau

et al. 2017; Schaeffer et al. 2017; Cao et al. 2018) defined

by a central core (mostly likely a stably stratified fluid

core instead of a solid core inside Saturn), which does

not participate in the large-scale convection in the deep

dynamo.

10. SUMMARY AND OUTLOOK

We have analyzed the full Cassini Grand Finale MAG

dataset with the goal to characterize and understand the

internal magnetic field and interior of Saturn. Saturn’s

internal magnetic field turns out to be axisymmetric

with respect to the spin-axis to an exceptional level; the

dipole tilt which is a good proxy for the large-scale non-

axisymmetry, must be smaller than 0.007◦ (25.2 arc-

secs). This extreme level of axisymmetry sets key con-

straints on the form of convection in the highly conduct-

ing layer of Saturn. A stably stratified electrically con-

ducting layer thicker than 2500 km above Saturn’s deep

dynamo could axisymmetrize Saturn’s internal magnetic

field to the observed level, if the dynamical feedback

from the magnetic field does not enter the leading order

force/vorticity balance. Furthermore, a heat transport

mechanism other than pure conduction, e.g. double dif-

fusive convection or waves, must exist within this layer

to be compatible with the observed luminosity of Sat-

urn.

Although almost perfectly axisymmetric, there is a

modest amount of north-south asymmetry in Saturn’s

internal magnetic field, directly demonstrated by the ∼
5% northward offsets of Saturn’s magnetic equator from

the planetary equator. In addition to the well-resolved

axisymmetric low spherical harmonic degree (n ≤ 3)

magnetic moments, Saturn’s magnetic field features an

axisymmetric yet rich magnetic energy spectrum, which

corresponds to latitudinally banded magnetic perturba-

tions when viewed at the a = 0.75 RS , c = 0.6993 RS
isobaric surface. Such latitudinally banded magnetic
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perturbations likely arise from a “shallow” secondary

dynamo action within the semi-conducting layer of Sat-

urn, enabled by differential rotation, small-scale helical

motion, and the background magnetic field provided by

the deep dynamo. Regularized inversion with spherical

harmonic solutions as basis functions as well as trun-

cated Green’s function solutions demonstrated that the

small-scale axisymmetric magnetic field between ±60◦

latitude at the a = 0.75 RS non-spherical “dynamo sur-

face” can be well determined, while the details of the

small-scale field above ±60◦ latitude are less certain.

It should be noted that the area above ±60◦ latitude

is less than 14% of the surface area. To fully resolve

the small-scale magnetic field of Saturn above ±60◦ lati-

tude, including both the axisymmetric field and the non-

axisymmetric field, low altitude magnetic field measure-

ments directly above the polar region are needed. This

task is left to future missions to the Saturn system.

APPENDIX

A. GAUSS COEFFICIENTS REPRESENTATION OF THE INTERNAL PLANETARY MAGNETIC FIELD

The traditional Gauss coefficients representation of the internal planetary magnetic field outside of the source region

are shown here for convenience.

V =
∑
n=1

n∑
m=0

Rp

(
Rp
r

)n+1

[gmn cosmφ+ hmn sinmφ]Pmn (cosθ) , (A1)

B = −∇V, (A2)

Br =
∑
n=1

n∑
m=0

(n+ 1)

(
Rp
r

)n+2

[gmn cosmφ+ hmn sinmφ]Pmn (cosθ) , (A3)

Bθ = −
∑
n=1

n∑
m=0

(
Rp
r

)n+2

[gmn cosmφ+ hmn sinmφ]
dPmn (cosθ)

dθ
, (A4)

Bφ =
∑
n=1

n∑
m=0

(
Rp
r

)n+2
m

sinθ
[gmn sinmφ− hmn cosmφ]Pmn (cosθ) , (A5)

where Rp is the reference radius here taken to be the 1-bar equatorial radius of Saturn, (gmn , h
m
n ) are the Gauss

coefficients, n and m are the spherical harmonic degree and order respectively, r is the spherical radial distance from

the center of the planet, θ and φ are the co-latitude and east longitude respectively, and Pmn (cosθ) are the Schmidt

semi-normalized associated Legendre functions.

B. GREEN’S FUNCTION FOR THE INTERNAL PLANETARY MAGNETIC FIELD AND THE

EIGENVECTORS OF THE INVERSE PROBLEM

As shown in Gubbins and Roberts (1983) and Johnson and Constable (1997), the mapping between the magnetic

field at a spherical dynamo surface to anywhere above is

Bobsr,θ,φ(r, θ, φ) =

∫ 2π

0

∫ π

0

BrDr (θ′, φ′)Gr,θ,φ(µ) sin θ′dθ′dφ′, (B6)

where BrDr is the radial component of the magnetic field at the r = rD spherical dynamo surface, Bobsr,θ,φ are three

components of the internal magnetic field measured above the dynamo surface, θ is colatitude, φ is longitude, and µ

is the consine of the angle between the position vectors r̂ and r̂′.

The Green’s function for each component are

Gr(µ) =
b2

4π

1− b2

f3
, (B7)

Gθ(µ) = − b
3

4π

1 + 2f − b2

f3T

dµ

dθ
, (B8)
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Gφ(µ) = − b3

4π sin θ′
1 + 2f − b2

f3T

dµ

dφ
, (B9)

and

µ = r̂ · r̂′, (B10)

b =
rD
r
, (B11)

f = (1− 2bµ+ b2)1/2, (B12)

T = 1 + f − µb. (B13)

The surface integration can be discretized, the forward problem can then be expressed as

data = Gmodel, (B14)

in which data is the three component internal magnetic field at the measurement location Bobsr,θ,φ(r, θ, φ), model is the

profile of BrDr , and G is the matrix expression of the integration of the Green’s functions (B6). It should be emphasize

here that G is a function of the position of the measurements only.

The inverse problem can then be computed using the generalized inversion analysis (e.g. Jackson 1972; Connerney

1981; Aster et al. 2013). Here we briefly explain this analysis, aiming at clarifying the meaning of the eigenvector

of parameter space here. Assuming there are n number of measurements and m number of parameters which means

discretizing the surface integration (eq. B6) into m points on the spherical surface r = rD, data is a n× 1 vector, G is

a n×m matrix, and model is a m× 1 vector. The matrix G can be factored using the singular-value-decomposition

into the product

G = UΛV T , (B15)

in which U is a n× p matrix, Λ is a diagonal matrix of p number of non-zero eigenvalues (λ1,λ2,λ3,...,λp), and V is a

m× p matrix. Each column of the V matrix, Vi, is one eigenvector in the parameter space. In our formulation,

each Vi is a profile of BrDr . The solution model can then be computed as a weighted sum of the different eigenvectors

in the parameter space

model =
∑
i

βiVi, i = 1, 2, ... (B16)

which for this particular problem can be expressed as

BrDr =
∑
i

βiB
rD
i , i = 1, 2, ... (B17)

here βi is a weight whose value is the ith element of the vector UTdata divided by the ith eigenvalue λi: βi =(
UTdata

)
i
/λi. In constructing the final model solution, truncation at order imax here simply means truncating the

summation in equation (B16) at order imax.

C. IONOSPHERIC HALL CURRENTS AND THEIR ASSOCIATED MAGNETIC FIELD

Zonal flows likely exist in the ionosphere of Saturn. The intra-D ring field-aligned current as measured along the

Cassini Grand Finale orbits could arise from the ionospheric Pedersen currents driven by the zonal flows. Such zonal

flows would also drive ionospheric Hall currents, which would be in the zonal (φ̂) direction. Modeling of the measured

Bφ combined with a global ionospheric conductivity profile (Müller-Wodarg et al. 2006; Galand et al. 2011; Müller-

Wodarg et al. 2012) indicates that amplitude of the zonal flow at the ionospheric peak conductivity layer likely is

50% of that at 1 bar. Taking this value, we can make an order of magnitude estimation of the zonal ionospheric Hall

current as

Iφ = ΣH |B|uφ, (C18)

in which ΣH is the height-integrated ionospheric Hall conductivity (∼10 S near local noon at the equator), |B| is the

magnetic field strength, and uφ is the zonal velocity in the ionospheric peak conductivity layer.
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Table 7. Gauss Coefficients associated with zonal Hall currents in Saturn’s Ionosphere

[nT]

g01(Hall) 6

g02(Hall) 0.06

g03(Hall) -4.15

g04(Hall) -0.24

g05(Hall) 2.55

g06(Hall) 0.22

g07(Hall) -1.26

g08(Hall) -0.42

g09(Hall) 0.20

g010(Hall) 0.20

Since we aim at an order-of-magnitude estimation of the magnetic field associated with the ionospheric Hall current,

we assume axisymmetry as a first step. In this first step, we further assume the ionospheric Hall conductivity takes the

noon values at all local times, which should yield an upper bound on the current density and the associated magnetic

fields. The axisymmetric assumption is a reasonable one as long as the zonal extent of the current is much wider than

the spatial coverage of the measurements.

One can then obtain the (Br, Bθ) associated with the zonal Hall currents via solving a boundary value problem:

treating the ionospheric Hall currents as boundary currents. The boundary conditions are

Br,above = Br,below, (C19)

Bθ,above −Bθ,below = µ0Iφ, (C20)

here above and below refers to above and below the ionosphere respectively.

It can be shown that above the ionosphere, the magnetic field associated with the Hall currents can be expressed as

BH = −∇VH , (C21)

VH =
∑

RI

(
RI
r

)n+1

A0
nP

0
n (cos θ) , (C22)

A0
n = − n

2n+ 1
µ0I

n
φ , (C23)

here RI is the radial distance of the ionospheric peak conductivity layer from the center of the planet and Inφ is n-th

degree coefficients of the decomposition of Iφ onto dP 0
n/dθ,

Iφ =
∑
n

Inφ
dP 0

n(cos θ)

dθ
. (C24)

The corresponding Gauss coefficients, re-normalized with respect to the 1-bar radius, are then simply

g0n(Hall) = A0
n

(
RI
RP

)n+2

. (C25)
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