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Abstract—In this work, two efficient low complexity Antenna
Selection (AS) algorithms are proposed for downlink Multi-User
(MU) Massive Multiple-Input Multiple-Output (M-MIMO) sys-
tems with Matched Filter (MF) precoding. Both algorithms avoid
vector multiplications during the iterative selection procedure
to reduce complexity. Considering a system with N antennas
at the Base Station (BS) serving K single-antenna users in the
same time-frequency resources, the first algorithm divides the
available antennas into K groups, with the kth group containing
the N/K antennas that have the maximum channel norms for the
kth user. Therefore, the Signal-to-Interference plus Noise Ratio
(SINR) for the kth user can be maximized by selecting a subset
of the antennas from only the kth group, thereby resulting in a
search space reduction by a factor of K. The second algorithm
is a semiblind interference rejection method that relies only on
the signs of the interference terms, and at each iteration the
antenna that rejects the maximum number of interference terms
will be selected. The performance of our proposed methods is
evaluated under perfect and imperfect Channel State Information
(CSI) and compared with other low complexity AS schemes
in terms of the achievable sum rate as well as the energy
efficiency. In particular, when the Signal-to-Noise Ratio (SNR)
is 10 dB, and for a system with 20 MHz of bandwidth, the
proposed methods outperform the case where all the antennas
are employed by 108.8 and 49.2 Mbps for the first and second
proposed algorithms, respectively, given that the BS has perfect
CSI knowledge and is equipped with 256 antennas, out of which
64 are selected to serve 8 single-antenna users.

Index Terms—Massive MIMO, Antenna Selection, Multi-User,
Complexity Reduction, Sum Rate, Energy Efficiency

I. INTRODUCTION

MASSIVE Multiple-Input Multiple-Output (M-MIMO)
has been a hot topic of research in wireless commu-

nications in recent years, and it refers to a system where
tens to hundreds of antennas are placed at the Base Station
(BS) to serve a much smaller number of users. Compared
to conventional MIMO systems, M-MIMO shows a great
improvement in capacity and reliability while reducing the
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radiated energy dramatically [1], since increasing the number
of antennas will provide additional degrees of freedom, which
in return can be utilized to enhance the energy consumption
of such systems [2]. For downlink transmission, precoding
techniques should be applied to map the K×1 symbol vector
intended for the K single-antenna users into an N × 1 data
vector before being transmitted through the wireless channel,
where N is the number of antennas at the BS, N � K.
The two most common types of linear precoding are Matched
Filter (MF) and Zero Forcing (ZF) [3]. However, in this
paper we consider only MF precoding since ZF does not only
require higher complexity for finding the pseudo inverse of the
channel matrix, but also can suffer from serious performance
limitations. For example, one of the main limitations of ZF
is that when the number of users grows large for a fixed
number of antennas at the BS, the ZF precoder suffers from
a sum rate loss [4], since most of the power will be used to
null the interference. Moreover, the ZF suffers from degraded
performance when there are users located on the cell-edge,
also known as the “near-far” problem. In addition, the ZF
precoder is very sensitive to different types of distortions such
as unmodeled interference [5], [6]. In contrast, MF precoding
requires lower processing complexity and can accommodate
more users than ZF.

Although increasing the number of antennas at the BS offers
great advantages in terms of performance, it does come at
the price of increased hardware complexity, cost, and power
consumption. Employing all the antennas means that each
antenna should be connected to a separate Radio Frequency
(RF) chain, and each RF chain consists of a mixer, analogue
to digital converter, and amplifier. Therefore, and unlike the
antenna elements, RF chains are expensive. Moreover, RF
chains are considered as highly power demanding elements,
and they consume 50%-80% of the total transceiving pow-
er [7]. One way to reduce the hardware complexity, cost,
and power consumption while keeping the advantages of a
M-MIMO system, is by applying Antenna Selection (AS)
schemes [8]. Therefore, designing an efficient low complexity
AS algorithm is an important topic in M-MIMO systems.

There has been a considerable amount of work on AS with
both conventional and M-MIMO systems, for example, in [4],
it was found that not all antennas contribute equally in M-
MIMO systems, and AS can reduce the complexity and cost
of M-MIMO without large degradation in the performance;
while the authors in [9] designed an AS scheme to reject



2

the co-channel interference for a single user uplink scenario.
Moreover, the authors in [10] and [11] aimed to enhance
the error performance through AS by exploiting the temporal
correlation, and the constructive interference, respectively.
Although the proposed algorithm in [11] has low complexity, it
works efficiently only for low modulation Phase Shift Keying
(PSK) signalling, and it is data dependent, which means that
extremely fast RF switching is required. Furthermore, the
authors in [12] and [13] addressed the design of AS algorithms
to maximize the Energy Efficiency (EE) of point-to-point M-
MIMO systems. The authors in [14] proposed a novel iterative
AS method for an uplink point-to-point M-MIMO system with
a Maximum Ratio Combining (MRC) receiver, under spatially
correlated channels. Their work focused on minimizing the
Mean Square Error (MSE) of the received signal to improve
the error rate performance for a single user scenario. The
authors in [15] proposed a Rectangular Maximum-Volume
(RMV) theory based AS technique, for downlink M-MIMO
systems. However, their work focused on maximizing the sum
rate capacity, which can be obtained via high complexity
dirty paper coding. Moreover, the authors in [16] and [17]
designed an AS algorithm with quartic complexity in point-
to-point M-MIMO systems, while the authors in [18] studied
the trade-off between energy and spectral efficiencies under
random AS in Multi-User (MU) M-MIMO downlink systems.
Moreover, in [19], the authors proposed an AS scheme under
interference alignment, where the interference is forced to
zero through transmitter-receiver beamforming. The authors
in [20] proposed an AS method for power minimization in
MU downlink M-MIMO systems, under a predefined Quality
of Service (QoS) requirement. In addition, the authors in [21]
and [22] proposed a joint AS and user scheduling scheme
with ZF precoding. Finally, the authors in [23] showed that
when MF precoding is applied, removing certain antennas can
improve the sum rate performance of the system, and they
proposed a low complexity greedy AS algorithm for sum rate
maximization in downlink M-MIMO systems.

In this paper, we design two novel AS algorithms for down-
link MU M-MIMO systems for Signal-to-Interference plus
Noise Ratio (SINR) maximization with low complexity. Our
contributions in this paper, which to the best of our knowledge
have not been considered in any previously published work,
can be summarized as follows

1) We design a User-Centric AS (UCAS) algorithm with
reduced search space, where the available antennas are
divided into K groups, and each group corresponds
to only one user, where the kth group contains the
antennas that have the maximum channel norms for the
kth user. Therefore, to maximize the SINR for the kth
user at a given iteration, the proposed algorithm selects
an antenna from only the kth group. This reduces the
search space by a factor of K.

2) The second proposed algorithm, called Semiblind In-
terference Rejection AS (SIRAS), is designed to reject
the highest number of interuser interference terms at
any given iteration, based on the signs of only the
interference terms.

3) Both algorithms avoid any vector multiplications during
the iterative selection process by storing the multiplica-
tions of any two entries in the channel matrix before the
iterative algorithms start. This results in dramatic com-
plexity reduction in terms of number of floating-point
operations (FLOPs) required for their implementations.

4) The performance of the proposed algorithms is evaluated
in terms of the achievable sum rate, energy efficiency,
as well as computational complexity, and compared
with other low complexity AS algorithms. Our pro-
posed methods demonstrate an improved performance-
complexity trade-off.

The rest of this paper is organized as follows. In Section II,
we introduce the system model and formulate the AS problem.
In Section III, the proposed AS algorithms are introduced and
explained in detail. In Section IV, different numerical results
are presented along with their discussions. The complexities
of the different AS algorithms used in this work are evaluated
in Section V in terms of number of FLOPs required for their
implementations. Finally, the conclusions are drawn in Section
VI.

TABLE I
LIST OF NOTATIONS USED IN THIS WORK

Notation Explanation

‖a‖ The Frobenius norm of vector a

a∗ The element-wise conjugate of vector a

aT The transpose of vector a

aH The Hermitian transpose of vector a

<[a] The real part of complex number a

=[a] The imaginary part of complex number a

0M×N The M by N zero matrix

IN The N by N identity matrix

ai The ith row of matrix A

acj The jth column of matrix A

ai,j The ith element of the jth column of A

|a| The absolute value of a

a! The factorial operator(a
b

)
= a!

b!(a−b)! The binomial coefficient

The list of notations used throughout this work alongside
their explanations are shown in Table I. We next introduce the
model for the MU M-MIMO system.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. Channel, signal, and noise models
We consider a single cell MU M-MIMO system operating

in the downlink scenario as depicted in Fig. 1. Time Division
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Fig. 1. MU M-MIMO downlink system.

Duplex (TDD) transmission is assumed, where the users send
orthogonal pilots to the BS to obtain Channel State Informa-
tion (CSI). Let H = [h1, . . . ,hK ]T ∈ CK×N be the channel
matrix, where hk ∈ CN×1 includes the channel coefficients
between the BS and user k, with hk,n ∼ CN (0, σ2

h), and let
wk ∈ CN×1 denote the unit norm precoding vector for the
kth user, and it can be given as

wk =
h∗k
‖hk‖

. (1)

Assuming that the BS has perfect knowledge of H, and MF
precoding is applied, the transmitted signal vector from the
BS to all users can be given as

s =

K∑
k=1

√
pkwkxk, (2)

where x = [x1, ...., xK ]T is the vector of information symbols
intended for the K users, with E{xxH} = IK , pk is the
power allocated for the kth user, and it follows the constraint

K∑
i=1

pi = PT , (3)

where PT is the total transmission power in Watts available at
the BS for all users. Moreover, the received signal at the kth
user can be given as

yk = hTk s + nk

=
√
pkh

T
kwkxk +

K∑
i=1
i 6=k

√
pih

T
kwixi + nk, (4)

where nk ∼ CN (0, σ2
n) is the Additive White Gaussian Noise

(AWGN) at the kth user.

B. SINR, achievable rates, and energy efficiency
In this work, we will use the sum rate and EE metrics to

demonstrate the efficiency of the proposed AS algorithms. For
systems with MF precoding, the SINR for the kth user can be
expressed as [24]

γk =
pk
∣∣hTkwk

∣∣2∑K
i=1, i 6=k pi

∣∣hTkwi

∣∣2 + σ2
n

, (5)

and the achievable rate for the same user is a function of the
SINR, and it can be given as

Rk = log2(1 + γk), (6)

while the total sum rate is the sum of achievable rates for all
users, i.e.

R =

K∑
k=1

Rk. (7)

Furthermore, the EE in bits/Joule can be defined as the
total bandwidth, multiplied by the total sum rate over the total
power consumed [13], i.e.

EE =
B . R

Ptotal
, (8)

where B is the bandwidth, and Ptotal is the total power
consumed at the transmitter and the receiver, and can be given
as [25]

Ptotal =
PT
η

+NRFPtx +KPrx, (9)

where η is the power amplifier efficiency, NRF is the number
of activated RF chains at the transmitter, while Ptx and Prx are
the circuit power consumption per RF chain at the transmitter
and the receiver, respectively [25].

C. AS problem formulation

For a BS equipped with only Ns RF chains, AS schemes
can be applied to optimize a certain cost function. In this work,
we aim to select Ns out of the available N antennas at the
BS to maximize the SINRs. This optimization problem can be
formulated as follows

maximize
∆

K∑
k=1

 pk
∣∣hTk∆wk

∣∣2∑K
i=1,
i 6=k

pi
∣∣hTk∆wi

∣∣2 + σ2
n


subject to
∆n,n ∈ {0, 1}, (10a)
N∑
n=1

∆n,n = Ns, (10b)

where ∆ is a binary-valued N ×N diagonal selection matrix.
Providing the optimal solution requires an exhaustive search
over

(
N
Ns

)
different combinations of antenna subsets, therefore

it becomes prohibitive for large values of N and Ns.
Accordingly, we propose in this paper two low-complexity,

yet highly efficient, AS algorithms to solve the optimization
problem in (10), and compare the performance of our proposed
methods with the greedy selection algorithm proposed in
[23, Algorithm 4]. It is noteworthy that the authors in [23]
also considered a single-cell MU M-MIMO downlink system.
However, their work focused on maximizing the sum rate
through joint power allocation and AS as well as user schedul-
ing, while in this work we focus only on the low-complexity
design of AS schemes. It should be noted that throughout
this work, we assume frequency-flat fading channels. Similar
assumptions in M-MIMO systems with AS were made in [19],
[26].
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III. PROPOSED ANTENNA SELECTION ALGORITHMS

Although MF is one of the most attractive forms of linear
precoding, it suffers from inter-user interference, which causes
a performance degradation. Both of the proposed algorithms
depend on the channel cross-correlation matrix U = HHH ,
which can be expressed as

U =



hT1 h∗1 hT1 h∗2 · · · · · · hT1 h∗K

hT2 h∗1
. . .

...
...

. . .
...

...
. . . hTK−1h

∗
K

hTKh∗1 · · · · · · · · · hTKh∗K


, (11)

where the elements on the diagonal of (11) are related to the
desired signal gain for each user, while the elements in the
upper and lower triangular parts are directly related to the
inter-user interference, since the interference from user j to

user i is |h
T
i h∗j |2
‖hj‖2

, for i, j = 1, 2, ... K, and i 6= j. Each
element in (11) is a summation of N multiplications between
two complex numbers, i.e.

hTi h∗j = hi,1h
∗
j,1 + hi,2h

∗
j,2 + .....+ hi,Nh

∗
j,N . (12)

Both of the proposed algorithms aim to maintain low im-
plementation complexity by avoiding vector multiplications
during the iterative selection process as explained in the
following subsections.

A. Proposed User-Centric Antenna Selection (UCAS) Algo-
rithm

In this method, the antennas at the BS are divided into
K groups based on their channel norms, where each group
corresponds to one user. Moreover, each group should be
allocated exactly N/K antennas, therefore, any group that
reaches its maximum limit will not be considered in the
allocation process for the remaining set of available antennas.
The nth antenna at the BS will be allocated to the kth group,
denoted as Gk, only if it satisfies the following condition

hk,n ∈ Gk ⇐⇒ |hk,n| > |hi,n| ,∀i ∈ K \ k, (13)

where K is a set containing the indices of groups with less
than N/K antennas. For example, the 2nd antenna at the
BS will be allocated to the 3rd group G3, if and only if
|h3,2| > |hi,2| ,∀i = 1, ....,K, i 6= 3, and G3 has less than
N/K antennas. The proposed grouping strategy is explained
in detail in Algorithm 1.
At a given iteration, the UCAS algorithm aims to maximize
the SINR for only the kth user, by selecting a single antenna
from Gk. For example, let H = [h1, . . . ,hK ]T ∈ CK×t−1 be
the channel matrix that corresponds to the (t − 1) selected
antennas after as many iterations. Then, at the tth iteration,
the antenna ζ will be selected as follows

ζ = arg max
ns∈Gk

∣∣∣hTk h∗k + hk,ns
h∗k,ns

∣∣∣2∑K
i=1
i 6=k

∣∣∣hTk h∗i + hk,ns
h∗i,ns

∣∣∣2 + σ2
n

. (14)

Algorithm 1 Proposed grouping strategy for the UCAS
method
1: Input K, N , and H,
2: Initialize
3: Gk = 0N

K
×1

, ∀k ∈ {1, ...,K},
4: tk = 0, ∀k ∈ {1, ...,K}, (Number of antennas in each group),
5: K = {1, ...,K}, (Set of indices of groups with less than N/K

antennas),
6: for n = 1→ N
7: k∗ = argmaxk∈K

∣∣hk,n∣∣,
8: tk∗ = tk∗ + 1,
9: Gk∗ (tk∗ ) = n, (Gk(i) is the ith element of Gk),

10: if tk∗ = N/K
11: K := K \ k∗,
12: end if
13: end for
14: Output Gk, ∀k

Moreover, we aim to achieve further complexity reduction
by avoiding any vector multiplications in the numerator and
denominator of (14). Accordingly, we store the values of the
N complex multiplications in (12), and for each element in
(11), in a matrix Ξ ∈ CK2×N , which can be expressed as
follows

Ξ =



ξ1,1 . . . . . . ξ1,N
...

. . .
...

...
. . .

...
ξK,1 . . . . . . ξK,N

...
. . .

...
...

. . .
...

ξK2,1 . . . . . . ξK2,N


, (15)

where ξ1,1 = h1,1h
∗
1,1, ξ1,N = h1,Nh

∗
1,N , ξK,1 = h1,1h

∗
K,1,

ξK,N = h1,Nh
∗
K,N , ξK2,1 = hK,1h

∗
K,1 and ξK2,N =

hK,Nh
∗
K,N (see Appendix A for details). Therefore, the SINR

for the kth user depends mainly on rows {K(k−1)+1,K(k−
1)+2, . . . ,Kk} in Ξ. Let Rk denote the set of row indices in
Ξ that corresponds to user k, withRki being the ith element of
Rk, for example, R1 = {1, 2, . . . ,K}, while R11 = 1, and let
ω = [ω1, ω2, . . . , ωK2 ]T be a vector initialized with zeros, and
used to update the values of the signal and interference terms
after each antenna is selected, since selecting any antenna from
any group will result in adding a column from Ξ to ω. To
clarify this, assume at iteration t, the antenna ζ was selected,
the vector ω will then be updated as follows

ω[t] = ω[t−1] + ξcζ , (16)

and the selection of ζ can now be expressed as follows

ζ = arg max
ns∈Gk

∣∣∣ω[t−1]
Rkk

+ ξRkk
,ns

∣∣∣2∑K
i=1
i 6=k

∣∣∣ω[t−1]
Rki

+ ξRki
,ns

∣∣∣2 + σ2
n

. (17)

Note that the selection process is now carried out without any
vector multiplications. It should be noted that Gk is updated
after the selection, by removing the index that corresponds to
the selected antenna before the next iteration starts. In the next
iteration, the selection will be carried out in a similar manner
to maximize the SINR for the next user, i.e. the (k + 1)th
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Algorithm 2 Proposed UCAS algorithm
1: Input K, N , Ns, Gk(∀k), Rk(∀k), and H,
2: Initialize
3: ω = 0K2×1, m = 0, Ξ = 0K2×N ,
4: for i = 1→ K
5: for j = 1→ K
6: m = m+ 1,
7: for n = 1→ N
8: ξm,n = hi,nh

∗
j,n,

9: end for
10: end for
11: end for
12: for l = 1→ Ns/K
13: for k = 1→ K

14: ζ = argmaxns∈Gk

∣∣∣∣ωRkk
+ξRkk

,ns

∣∣∣∣2∑K
i=1
i 6=k

∣∣∣∣ωRki
+ξRki

,ns

∣∣∣∣2+σ2
n

,

15: ω := ω + ξcζ ,
16: Gk := Gk \ ζ,
17: end for
18: end for
19: Output [Hc

j ]j /∈Gk,∀k

user. It is worth mentioning that exactly Ns/K antennas are
selected from each group to ensure fairness between all users.
The proposed UCAS scheme is explained in detail as shown
in Algorithm 2.

B. Proposed Semiblind Interference Rejection Antenna Selec-
tion (SIRAS) Algorithm

The SIRAS algorithm aims to minimize the interuser in-
terference by minimizing the terms in the upper and lower
triangle parts of (11) relying only on the signs of the inter-
ference terms, hence the term semiblind. Furthermore, since
hTi h∗j = (hTj h∗i )

∗, it is sufficient to minimize the elements in
the upper triangular part only, and that will lead to exactly the
same minimization for the terms in the lower triangular part,
and vice versa. The algorithm starts by storing the M × N
complex multiplications in Φ, where M = (K2−K)/2 is the
number of interference terms in the upper triangular part of
(11), and it can be expressed as follows

Φ =


φ1,1 . . . . . . φ1,N

...
. . .

...
...

. . .
...

φM,1 . . . . . . φM,N

 . (18)

Since the upper triangular part of (11) is considered in this
work, the N elements in the first row of (18) are the values of
the N complex number multiplications in the first interference
term in (11), i.e. φ1,n = h1,nh

∗
2,n, while φM,n = hK−1,nh

∗
K,n,

for n = 1, 2, ..., N (see Appendix A for details). The algorithm
then selects its first antenna based on the maximum total
channel norms

ζ [0] = arg max
n∈1:N

‖hcn‖ , (19)

where ζ [0] is the first selected antenna. After selecting the
first antenna, a vector ψ ∈ CM×1 will be initialized with
the column in Φ that corresponds to the selected antenna,

Algorithm 3 Proposed SIRAS algorithm
1: Input K, N , Ns, M , and H,
2: Initialize:
3: ψ = 0M×1, Φ = 0M×N , m = 0,
4: M = 01×N , (set containing the indices of selected antennas)
5: A = 1→ N , (set containing the indices of available antennas)
6: for i = 1→ K − 1
7: for j = i+ 1→ K
8: m = m+ 1,
9: for n = 1→ N

10: φm,n = hi,nh∗j,n,
11: end for
12: end for
13: end for
14: ζ[0] = argmaxn∈1:N ‖hcn‖,
15: ψ[0] = φc

ζ[0]
,

16: A := A \ ζ[0],
17: Mζ[0] = 1,
18: for t = 1→ Ns-1
19: λ = 01×N−t, (vector containing the number of opposite signs

between φ and ψ for each available antenna),
20: for n = 1→ N − t
21: for m = 1→M
22: if sign(<[φm,ηn ]) 6= sign(<[ψ[t−1]

m ])
23: λn := λn + 1,
24: end if
25: if sign(=[φm,ηn ]) 6= sign(=[ψ[t−1]

m ])
26: λn := λn + 1,
27: end if
28: end for
29: end for
30: ζ = argmaxλ,
31: ψ[t] = ψ[t−1] + φcζ ,
32: A := A \ ζ,
33: Mζ = 1,
34: end for
35: Output: [Hc

j ]j /∈A

i.e. ψ[0] = φcζ[0] . Note that the M values in ψ are complex
numbers, and they are directly related to the interference
between the users at any given iteration, hence minimizing
these values will result in minimizing the total interference
and therefore higher SINRs. Moreover, selecting any antenna
will result in adding a column from Φ to ψ. Assume that at
iteration t, the antenna ζ was selected, then ψ will be updated
as follows

ψ[t] = ψ[t−1] + φcζ , (20)

therefore, the goal is to select the antenna that corresponds to
the column in Φ which will minimize the M complex values
in ψ. In other words, at iteration t, the algorithm aims to select
the antenna ζ from the set S, where the nth antenna (denoted
as λn) belongs to S if it satisfies the following condition

λn ∈ S ⇐⇒
{

sign(<[φm,n]) 6= sign(<[ψ[t−1]
m ])

}
∩{

sign(=[φm,n]) 6= sign(=[ψ[t−1]
m ])

}
,∀m,n ∈ A,

(21)

where A is a set containing the indices of available antennas
at a given iteration. However, it is not guaranteed to find
an antenna that satisfies the condition in (21), therefore, we
relax this condition and select the antenna that has the highest
number of opposite signs between Φ and ψ. In the next
iteration, the vector ψ will be updated according to (20), and
the same procedure will be repeated again until maximum
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number of selected antennas is reached. The proposed method
is described in detail in Algorithm 3.

IV. NUMERICAL RESULTS AND DISCUSSION

We apply Monte Carlo simulations to evaluate the spectral
and energy efficiency performances of our proposed AS tech-
niques for a wide range of Signal-to-Noise Ratios (SNRs).
Furthermore, we compare our proposed algorithms with two
low complexity AS methods. The first method is the Maximum
SNR (MS) selection, where the Ns antennas with the highest
channel gains are activated to serve the users in the cell. While
the second technique is the low complexity greedy method pro-
posed in [23, Algorithm 4]. However, it is worth mentioning
that the work in [23] considers joint power allocation and AS,
while here we focus only on the AS part.

Before discussing the results, we need to introduce the
different parameters used in this work. First, we define the
SNR per user as

SNR =
σ2
h

σ2
n

PT
K
, (22)

where the channel variance σ2
h can be found by using the path

loss formula for a general urban channel model, which can be
expressed as follows [27]

PL (dB) = 10 log10 d
α + β, (23)

where d is the distance between the users and the BS, α is
the path loss component, and β is the fixed-loss component.
In our simulations, and unless stated otherwise, d was set
to 100 meters, α was assumed to be 2 as in [28], and β =
10 dB, therefore, σ2

h = 10−5, while the noise variance σ2
n

was assumed to have a value of 10−6. Our assumption for
equal distances between users and the BS is based on the fact
that different distances from the BS for different users can be
tackled through power allocation techniques based on large
scale fading [29]. In addition, the bandwidth B was set to
20 MHz, the efficiency of the power amplifier η was 0.35,
while the receive and transmit circuit power consumption per
RF chain Prx and Ptx were set to 62.5 mW and 48.2 mW,
respectively [25]. Finally, the simulations were averaged over
104 different channels realizations for each SNR value.

A. Impact of AS on spectral and energy efficiencies

The advantage of designing efficient AS schemes when
MF precoding is applied, in terms of spectral and energy
efficiencies, can be seen in Figs. 2 and 3, respectively. Both
of the proposed algorithms achieve higher rates with better
EE than the full system case, where all the antennas are
employed, i.e. when Ns = N . Furthermore, in terms of sum
rate performance, increasing the SNR results in decreasing
the number of antennas required to match the achievable rate
where all antennas are activated. The reason behind this is that
as the SNR increases, the effect of the noise becomes negli-
gible, and the main factor that degrades the performance is
the inter-user interference, and our proposed algorithms select
the antennas that highly minimize the inter-user interference.
In other words, although selecting a subset of the available
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Fig. 2. Sum rate vs number of selected antennas for the proposed AS schemes
when N = 256 and K = 8.

antennas will reduce the signal gain, the resultant SINR will
be higher, hence higher rates are achieved. Moreover, in terms
of EE, applying AS techniques can dramatically improve the
system performance as can be seen in Fig. 3. For example,
when the number of selected antennas is 64, the UCAS and
SIRAS algorithms outperform the full system case by 190.8
and 184 Mbits/Joule, respectively.

B. Achievable rates with fixed number of selected antennas

In this subsection, we show the performance of the proposed
algorithms in terms of the achievable rates, and compare our
results with MS and greedy selection techniques for a wide
range of SNR values.

Fig. 4 shows the total sum rate when the BS is equipped
with 128 antennas, out of which 32 are selected, for different
AS schemes. The proposed algorithms outperform significant-
ly both greedy and MS methods. Moreover, UCAS slightly
outperforms the SIRAS algorithm when the SNR is less than
10 dB, while they both show the same performance for higher
SNR values. For this scenario, employing all the available
antennas at the BS achieves higher rates than our proposed
algorithms when the number of selected antennas is 32.

Fig. 5 shows the total sum rate when 256 antennas are
placed at the BS, and 64 antennas are selected by the proposed
algorithms. The proposed methods not only outperform the
greedy and MS techniques, but also the case where all the
antennas are activated for SNR values higher than 0.5 dB and
3.5 dB for the UCAS and SIRAS algorithms, respectively.

From Fig. 5, the UCAS algorithm outperforms the full
system, greedy, and MS selection methods at 10 dB SNR by
5.44, 10.12, and 19.64 bps/Hz, respectively, which correspond
to a significant 108.8, 202.4, and 392.8 Mbps for a system
with 20 MHz of bandwidth, while the SIRAS method shows an
improvement of 2.46, 7.14, and 16.66 bps/Hz compared to the
full system, greedy, and MS selection methods, respectively,
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Fig. 4. Sum rate vs SNR (dB) for different AS schemes when N = 128,
Ns = 32, and K = 8.

at the same SNR value. Although the UCAS algorithm shows
better performance than the SIRAS method, the latter occupies
less memory space than UCAS, since the SIRAS relies on Φ
which has dimensions of M × N , with M = (K2 − K)/2,
compared to Ξ for the UCAS which has dimensions of
K2 ×N .

C. Energy Efficiency Performance

In this subsection, we show the EE performance for the
different AS methods as well as the full system case. We
assume 128 antennas are placed at the BS, out of which 32
are selected to serve 8 users in the cell.

As Fig. 6 shows, at moderate SNR values, the proposed
methods outperform significantly all other schemes for both
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Fig. 5. Sum rate vs SNR (dB) for different AS schemes when N = 256,
Ns = 64, and K = 8.
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Fig. 6. EE vs SNR (dB) for different AS schemes when σ2
n = 10−9, N =

128, Ns = 32, and K = 8.

scenarios. Furthermore, activating all the antennas results in
extremely poor EE performance, which validates the impor-
tance of AS for energy efficient systems. For example, the
proposed methods outperform the greedy algorithm, MS se-
lection, and the full system by 59 Mbits/Joule, 92 Mbits/Joule,
and 194 Mbits/Joule, respectively, at SNR of 10 dB.

D. Achievable rates with imperfect channel state information

In practical scenarios, the complex channel matrix H is
estimated at the BS through pilot signals sent by the users,
and channel estimation errors arise in any practical system.
Different techniques have been designed to obtain the CSI
in both conventional and M-MIMO systems [30]–[32]. In
general, increasing the number of pilot signals leads to a better
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Fig. 7. Sum rate vs ε for the proposed AS schemes when N = 256, Ns = 64,
and K = 8

estimation accuracy, but that comes at the price of a reduced
data transmission interval. However, for M-MIMO systems, it
was shown that a minimum of K pilot signals per coherence
interval are enough when the system is operating in a TDD
mode [33]. In this subsection, we evaluate the performance of
the proposed algorithms under imperfect CSI. The estimated
channel matrix Ĥ can be given as [34], [35]

Ĥ = H + εE, (24)

where εE represents the channel estimation error term, and
is uncorrelated with H. The entries of E are independent
and identically distributed random variables with zero mean
and variance of σ2

h. Furthermore, ε controls the estimation
accuracy, and ε = 0 means the BS has a perfect CSI.

Fig. 7 demonstrates the achievable rates of the proposed
methods for different levels of channel estimation error. The
achievable rates are effected by the channel estimation accura-
cy for both methods. In addition, at higher SNR, the proposed
algorithms become more sensitive under imperfect CSI. The
reason behind this is that as the SNR increases, the noise effect
becomes negligible, and the presence of CSI errors leads to
the selection of sub-optimal antennas. For example, when the
SNR = −5 dB, the UCAS and SIRAS algorithms suffer a
3.57 and 3.23 bps/Hz rate loss when ε = 0.4 compared to
the perfect CSI case, respectively; while the achievable rates
for the same algorithms degrade by 7.92 and 7.11 bps/Hz,
respectively, when ε = 0.4, at SNR of 10 dB compared to the
perfect CSI case.

Fig. 8 demonstrates the performance of different AS
schemes for a wide range of SNR values when ε is 0.2. The
UCAS and SIRAS algorithms outperform the full system case
at 2 dB and 7 dB, respectively, compared to 0 dB and 4 dB
for perfect CSI. Furthermore, at SNR = 10 dB, the UCAS
algorithm outperforms the greedy method and MS selection by
8.34 bps/Hz and 17.34 bps/Hz, respectively; while the SIRAS
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Fig. 8. Sum rate vs SNR (dB) for different AS schemes when N = 256,
Ns = 64, K = 8 and ε = 0.2.

method achieves 5.91 bps/Hz and 14.91 bps/Hz higher rates
than the greedy method and MS selection, respectively, at the
same SNR value.

E. Performance of the proposed methods with multiple ran-
dom initializations

The performance of both of the proposed methods can be
further enhanced by adopting multiple random initialization-
s of users and antennas, for UCAS and SIRAS schemes,
respectively. More specifically, for the UCAS method, after
obtaining Ξ and grouping the antennas into K groups, the
users were ordered from 1 to K, where for each of the Ns/K
rounds of selection, one antenna was selected to maximize the
SINR for the 1st user, followed by selecting one antenna to
maximize the SINR for the 2nd user, and so forth until the
Kth user. However, adopting multiple random initialization
orders of the K users can further improve the performance by
obtaining multiple sets of selected antennas, and then choose
the set that achieves the highest SINR. Similarly, and for the
SIRAS scheme, multiple random antennas can be chosen as
the first selected antenna, and then perform the selection for
the following Ns − 1 iterations to obtain different sets of
selected antennas, and finally select the set that achieves the
maximum total SINR.

As demonstrated in Fig. 9, both methods achieve a consid-
erable gain when multiple random initial ordering of users and
antennas are considered. Specifically, at a SNR of 10 dB, the
UCAS scheme shows an improvement of 3.73 bps/Hz when
10 random initial orders (L = 10) of users are considered
compared to the classical single ordering case (L = 1) shown
in Algorithm 2. Moreover, the SIRAS scheme achieves a 4.03
bps/Hz gain when considering 10 random antennas as the first
selected antenna (L = 10), compared to the case where the
first selected antenna is only the one with the highest channel
gain (L = 1). However, although these methods can provide
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Fig. 9. Sum rate vs SNR (dB) for the proposed methods with different initial
order when N = 256, Ns = 64, and K = 8.

a considerable performance gain, they come at the price of
increased complexity for their implementations as will be
discussed in Section V.

F. Performance of UCAS algorithm under different grouping
strategies

Throughout this work, grouping the antennas into K groups
for the UCAS scheme was performed according to our pro-
posed method in Algorithm 1. However, there are different
methods to perform this part of the algorithm, and in this
section, we will investigate the performance of two additional
grouping strategies.

The first method is the random grouping strategy, where
each group will randomly be assigned N/K antennas. A more
efficient way of grouping is assigning the antenna that has the
maximum channel gain with only the first user as the first
assigned antenna for the first group. Followed by assigning
the antenna that has the maximum channel gain with only
the second user to the second group, and so forth until the
Kth group. Moreover, the same procedure will be repeated
until each group has N/K antennas assigned to it. We call
the latter scheme as the user-based grouping.

As demonstrated in Fig. 10, the random grouping method
shows an extremely poor performance compared to the other
two grouping schemes. In contrast, the user-based grouping
method shows a marginal sum rate improvement compared to
the original grouping strategy given in Algorithm 1. However,
the user-based grouping method requires higher complexity
as will be demonstrated in Section V. Therefore, the orig-
inal grouping method demonstrates a positive performance-
complexity trade-off compared to the other two schemes.

G. Fairness measurement of the proposed AS schemes

To have more insight into the performance of the proposed
AS schemes, we measure the equality among different users
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Fig. 10. Sum rate vs SNR (dB) for UCAS algorithm under different grouping
schemes when N = 256, Ns = 64, and K = 8.

-8 -6 -4 -2 0 2 4 6 8 10 12 14 16
SNR (dB)

0.975

0.98

0.985

0.99

0.995

1

Fa
irn

es
s 

in
de

x

UCAS Algorithm  (original grouping)
SIRAS Algorithm
UCAS Algorithm (user-based grouping)
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by applying Jain’s equality formula, which can be defined as
follows [36]

Jain’s fairness index =

(∑K
k=1Rk

)2
K
∑K
k=1R

2
k

. (25)

As shown in Fig. 11, the proposed methods achieve near
optimal fairness among the users, as the fairness index exceeds
97% for a wide range of SNR values. Moreover, the UCAS
method, and regardless of the grouping strategy, can deliver
higher fairness to users than the SIRAS scheme for the entire
range of SNR values considered in this work.



10

TABLE II
NUMBER OF ADDITIONS AND MULTIPLICATIONS FOR DIFFERENT AS SCHEMES

Algorithm Operator Additions Multiplications

MS

‖hcn‖ , ∀n N(2K − 1) N(2K + 1)

Sorting N logN −−

Total N(2K + logN − 1) N(2K + 1)

Greedy

‖hcn‖ , ∀n N(2K − 1) N(2K + 1)

Sorting N logN −−

wk, ∀k
∑Ns
l=1K(2l − 1)

∑Ns
l=1K(4l + 1)

γk,∀k K
∑Ns
l=1(4Kl− 1) K

∑Ns
l=1(4Kl+ 5K + 1)

R (2K − 1)Ns −−

Total N(2K + logN − 1)−Ns +
∑Ns
l=1 l(4K

2 + 2K) N(2K + 1) +Ns(5K2 + 2K) +
∑Ns
l=1 l(4K

2 + 4K)

UCAS

Ξ 2K2N 4K2N

Gk,∀k 2KN 3KN

ζ,∀t ∈ {1, ..., Ns}
∑Ns/K
l=1 (N

K
− l)4K2

∑Ns/K
l=1 (N

K
− l)(4K2 +K)

ω[t], ∀t ∈ {1, ..., Ns} 2K2Ns −−

Total K(2KN + 2N + 2KNs) +
∑Ns/K
l=1 (N

K
− l)4K2 N(4K2 + 3K) +

∑Ns/K
l=1 (N

K
− l)(4K2 +K)

SIRAS

Φ N(K2 −K) 2N(K2 −K)

‖hcn‖ , ∀n N(2K − 1) N(2K + 1)

ζ[0] N −−

λ
∑Ns−1
l=1 2(N − l)(K2 −K) −−

ζ,∀t ∈ {1, ..., Ns − 1} ∑Ns−1
l=1 (N − l) −−

ψ[t],∀t ∈ {1, ..., Ns − 1} (Ns − 1)(K2 −K) −−

Total N(K2 +K) + (Ns − 1)(K2 −K) +
∑Ns−1
l=1 (N − l)(2K2 − 2K + 1) N(2K2 + 1)

V. COMPLEXITY ANALYSIS

In TDD M-MIMO systems with AS, the BS is required for
each coherence interval, to perform channel estimation and
AS to enable efficient uplink and downlink data transmission.
Therefore, the complexity analysis presented in this section is
of great importance to evaluate the efficiency of the proposed
AS schemes in practical scenarios, since higher complexity
requires longer processing time, thus reducing the data trans-
mission interval, and vice versa. It is worth highlighting that
state-of-the-art Digital Signal Processors (DSPs), such as that
found on the TCI6638K2K DSP board designed by Texas
instruments for the next generation of wireless networks, can
support up to 153.6 GigaFLOPs per second [37].

We follow the complexity analysis in [38], where the addi-
tion between two real numbers is equivalent to 1 FLOP, while
their multiplication is equivalent to 4 additions. Moreover,
we assume that comparing the signs of two real numbers is
equivalent to 1 addition, while finding the square root of a
real number and division between two real numbers are each
equivalent to one real multiplication.

A. Complexity of MS scheme

The MS method has the lowest complexity, however that
comes at the price of performance degradation. Finding the

channel norms for the N antennas requires N(10K + 3)
FLOPs, while sorting the antennas requires N log10N FLOPs,
therefore, the total complexity is

CMS = N(10K + log10N + 3). (26)

B. Complexity of greedy AS algorithm [23, Algorithm 4]

The greedy algorithm starts by finding the channel norms
for the N antennas and sorting them, which requires N(10K+
log10N+3) FLOPs. The algorithm will then start its iterations,
where at each iteration the sum rate in (7) will be evaluated.
Finding the MF precoding weights for all the users requires
K
∑Ns
l=1(18l + 3) FLOPs, while evaluating the SINRs for all

users requires
∑Ns

l=1(20K2l + 20K2 + 3K) FLOPs. Finally,
calculating the sum rate after obtaining the SINR values takes
(2K − 1)Ns FLOPs, therefore, the total complexity of the
greedy algorithm can be given as

Cgreedy = N(10K + log10N + 3) +Ns(20K2 + 8K − 1)

+

Ns∑
l=1

l(20K2 + 18K). (27)

However, here we only consider an ideal case for the greedy
algorithm by assuming that each selected antenna will boost
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Fig. 12. Complexity in number of FLOPs vs number of antennas at the BS
for different AS schemes when Ns = N/4, and K = 8.

the total sum rate, therefore, the actual complexity of the
greedy algorithm is higher than that shown in this section,
otherwise it would have shown the exact same sum rate
performance as the MS scheme.

C. Complexity of UCAS algorithm with a single initial order
of users (L = 1)

The UCAS algorithm starts by evaluating the matrix Ξ
that has K2 × N complex multiplications, which results
in 18K2N FLOPs. Then, the absolute channel values be-
tween the N antennas and K users are evaluated before
being allocated to Gk,∀k according to Algorithm 1, which
results in 14KN FLOPs. The Ns/K iterations will then
start to select K antennas at each iteration, which results in∑Ns/K
l=1 (20K + 4)(N −Kl) FLOPs. Finally, the vector ω is

updated after selecting each antenna, which requires 2K2Ns
FLOPs. Therefore, the total number of FLOPs required by the
UCAS algorithm can be given as

CUCAS = KN(18K + 14) + 2K2Ns

+

Ns/K∑
l=1

(20K + 4)(N −Kl). (28)

D. Complexity of SIRAS algorithm with a single initial order
of antennas (L = 1)

The SIRAS algorithm requires 9N(K2 − K) FLOPs to
obtain Φ, after that, N(10K+4) FLOPs are required to select
the first antenna. The Ns − 1 iterations will then start, and
at each iteration the vector λ is used to store the number of
opposite signs, which takes

∑Ns−1
l=1 2(N−l)(K2−K) FLOPs.

Finding the Ns − 1 antennas from λ requires
∑Ns−1
l=1 (N − l)

FLOPs, and finally, updating the vector ψ results in (Ns −
1)(K2 − K) FLOPs. Therefore, the total complexity for the
SIRAS algorithm can be given as
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Fig. 13. Complexity in number of FLOPs vs number of users for different
AS schemes when N = 256 and Ns = N/4.

CSIRAS = N(9K2 +K + 4) + (K2 −K)(Ns − 1)

+

Ns−1∑
l=1

(N − l)(2K2 − 2K + 1). (29)

The numbers of additions and multiplications for the d-
ifferent AS schemes are shown for each operator in Table
II1. It should be noted that in the aforementioned table, the
number of additions also includes the comparison between
the values or signs of two real numbers, while the number
of multiplications includes the division as well as finding the
square root of a real number.

Figs. 12 and 13 show the complexity for different AS
schemes for different numbers of antennas N at the BS and
different numbers of users K, respectively, with Ns = N/4.
In both results, the MS algorithm has the lowest complexity,
followed by the UCAS algorithm, then the SIRAS, while the
greedy algorithm requires the highest complexity among the
adopted schemes. As mentioned before, the actual complexity
for the greedy algorithm is higher than that shown in this
section, and here we only consider an ideal case.

To gain more insight on the efficiency of our proposed
schemes in practical scenarios, assume that we have a BS
equipped with 256 antennas, out of which 64 are selected
to serve 8 single-antenna users. According to the analysis
presented in this section, both of the proposed methods require
less than 2 × 106 FLOPs, which corresponds to 13 µs of
processing time using the aforementioned DSP board. Note
that this is an impressive outcome for the proposed methods
given that in the current Long-Term Evolution (LTE) standard,
transmitting one symbol of data requires 71.4 µs [11].

1The number of additions and multiplications of UCAS and SIRAS methods
shown in Table II are for the case where L = 1.
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E. Complexity analysis of UCAS algorithm with multiple
random ordering of users (L > 1)

The complexity required for obtaining L different candidate
sets of selected antennas for the UCAS method, with L > 1,
can be given as follows

C[L]UCAS = LC[1]UCAS − (L− 1)(18K2N + 14KN)

+ C[L]add, (30)

where C[1]UCAS is the complexity of UCAS method for a
single initialization given in (28), and C

[L]
add is the additional

complexity required to evaluate the SINRs for the L candidates
of different antenna subsets and selecting the one that has
the maximum SINR as the final solution. For any number of
random initializations L > 1, C[L]add can be given as follows

C[L]add = L(20K2Ns + 20K2 + 18KNs + 7K). (31)

Finally, the second term in the right hand side of (30) is
subtracted from the total complexity due to the fact that the
matrix Ξ has to be evaluated only once, as well as grouping
the antennas into the K groups according to Algorithm 1.

F. Complexity of SIRAS method with multiple random initial-
izations of antennas (L > 1)

Similar to the UCAS method, the complexity of the SIRAS
algorithm when L > 1 can be given as follows

C[L]SIRAS = LC[1]SIRAS − (L− 1)(9NK2 +NK + 4N)

+ C[L]add, (32)

where C[1]SIRAS is the complexity of the SIRAS method for
a single initialization given in (29), C[L]add is the additional
complexity to compute the SINRs of the L different antenna
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Fig. 15. Complexity in number of FLOPs vs number of antennas at the BS
(N ) for different grouping schemes when K = 8.

subsets given in (31), while the second term of the right hand
side of (32) refers to the fact that the matrix Φ, sorting the
antennas, and selecting the first antenna as the one with the
maximum channel gain needs to be carried out only once.

As shown in Fig. 14, both methods suffer from increased
complexity as the number of random initial orders (L) in-
creases, with the SIRAS method requires higher complexity
compared to the UCAS scheme.

G. Complexity of user-based grouping scheme

The complexity of the user-based grouping strategy requires∑N
l=1 14(N − l+ 1) FLOPs to perform the grouping process,

compared to 14KN FLOPs for the original approach given
in Algorithm 1. As demonstrated in Fig. 15, the user-based
grouping scheme requires much higher complexity than the
original proposed grouping method, especially as the number
of antennas at the BS increases.

VI. CONCLUSIONS

In this paper, two efficient low complexity AS algorithms
were proposed for downlink MU M-MIMO systems with MF
precoding. Dramatic complexity reduction was achieved by
storing the multiplications between each two entries of the
channel matrix to avoid any vector multiplications during
the iterative selection process. The first algorithm divides
the available antennas into K groups depending on their
channel norms, where each group corresponds to one user
only. This resulted in a search space reduction by a factor of
K. The second algorithm was designed to reject the interuser
interference relying only on the signs of the interference
terms. The performance of the proposed methods under per-
fect and imperfect CSI was evaluated in terms of spectral
and energy efficiencies. The proposed methods demonstrated
great performance-complexity trade-off compared to other AS
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methods as well as to the case where all the antennas were
employed.

APPENDIX A

The entries of matrices Ξ and Φ, for a system with 4 single-
antenna users and 8 antennas at the BS, i.e. K = 4 and N = 8,
can be defined as shown in (33) and (34), respectively.
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