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S U M M A R Y
We present a new Moho depth model of the British Isles and surrounding areas from the
most up-to-date compilation of Moho depth estimates obtained from refraction, reflection and
receiver function data. We use a probabilistic, trans-dimensional and hierarchical approach
for the surface reconstruction of Moho topography. This fully data-driven approach allows for
adaptive parametrization, assessment of relative importance between different data-types and
uncertainties quantification on the reconstructed surface. Our results confirm the first order
features of the Moho topography obtained in previous work such as deeper Moho (29–36 km) in
continental areas (e.g. Ireland and Great Britain) and shallower Moho (12–22 km) offshore (e.g.
in the Atlantic Ocean, west of Ireland). Resolution is improved by including recent available
data, especially around the Porcupine Basin, onshore Ireland and Great Britain. NE trending
features in Moho topography are highlighted above the Rockall High (about 28 km) and the
Rockall Trough (with a NE directed deepening from 12 to about 20 km). A perpendicular
SE oriented feature (Moho depth 26–28 km) is located between the Orkney and the Shetland,
extending further SW in the North Sea. Onshore, our results highlight the crustal thinning
towards the N in Ireland and an E–W oriented transition between deep (34 km) and shallow
(about 28 km) Moho in Scotland. Our probabilistic results are compared with previous models
showing overall differences around ±2 km, within the posterior uncertainties calculated with
our approach. Bigger differences are located where different data are used between models or
in less constrained areas where posterior uncertainties are high.
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1 I N T RO D U C T I O N

The Mohorovicic (Moho) discontinuity is a major feature of the
Earth and defines the boundary between the crust and the upper
mantle. As such, the depth of the Moho is a key parameter for
many aspects of Earth Sciences, such as seismic tomography, geo-
dynamic reconstructions, crust–mantle compositional models, iso-
static compensation and gravity studies, seismic hazard mitigation
and exploration for Earth’s resources. Given the distinctive seismic
signature of the Moho (P-wave velocities increase from a range of
6.7–7.2 km s–1 to a range of 7.6–8.6 km s–1), seismic data provide
fundamental information to build models of Moho topography at
various scales. For more than 50 yr, controlled source seismology
has represented the primary tool to study the depth of the Moho
(see Prodehl et al. 2013, and references therein). Over the last two
decades, passive seismic methods and in particular the receiver
function (RF) approach (Langston 1977) have relied on the ever
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increasing number of relatively low cost seismic stations to produce
abundant estimates of Moho depth. Results from RF studies have
been used alone (e.g. Piana Agostinetti & Amato 2009; Li et al.
2014) or combined with refraction and reflection data to construct
Moho models on both global (Prodhel & Mooney 2012; Laske et al.
2013) and regional scales (e.g. Kennett et al. 2011).

Regional Moho depth models are usually constructed by the spa-
tial interpolation of irregularly distributed point estimates. This 2-D
spatial interpolation process, or surface reconstruction, is in fact an
inverse problem in which all the available but sparse data are used
to infer a continuous surface describing the Moho topography over
the specified region, including areas of no data. Interpolation of
spatial data is routinely performed in many Earth Science applica-
tions with different techniques. The choice of interpolation method
varies depending on user experience and on the type of data to be
interpolated. Some widely used methods for spatial interpolation
include kriging (Stein 1999), near neighbour, triangulation, spline-
in-tension (Smith & Wessel 1990).

The majority of these methods suffer from well known limita-
tions. First, the level of smoothness of the reconstructed surface
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is typically specified by the user over the whole 2-D domain of
interest. As the data are irregularly distributed and have spatially
varying uncertainties, a constant smoothness approach cannot adapt
to changes in spatial resolution. In addition, the parameters control-
ling the smoothness need to be tuned. This tuning is often performed
with a trial and error approach which requires subjective choices
and is user-time consuming. For example, the results given by the
gridding with tension approach (Smith & Wessel 1990) rely on the
choice of the tension parameter of the splines used in the inter-
polation, which is completely user-subjective. Similarly, the search
radius parameter in near neighbour interpolation needs to be set
based on experience and strongly influences the results.

A second limitation arises when multiple data-types are involved.
In this case, weights need to be assigned to each type of data. If
done arbitrarily, this may possibly introduce a bias in the recon-
structed surface. Finally, estimation of the uncertainty associated
with a reconstructed surface is difficult to obtain with the majority
of these methods. To overcome these limitations, a Bayesian ap-
proach for the surface reconstruction problem has been proposed
(Bodin et al. 2012a). In this approach, based on a reversible jump
Markov chain Monte Carlo (rjMcMC) algorithm, both the number
of parameters in the reconstructed surface and the magnitude of
data noise are treated as unknowns in the interpolation. The main
result is a self-adaptive parametrization in which both the surface
complexity (i.e. smoothness) and the weights of different data-types
are directly inferred from the data themselves. This algorithm has
been successfully applied to the surface reconstruction of Moho to-
pography (Bodin et al. 2012a), coastal sea level rise (Choblet et al.
2014) and geodetic uplift rates (Husson et al. 2018).

In this work, we develop a similar algorithm and apply it to the
most complete database of seismic Moho depth data of the British
Isles. We show that the Bayesian approach provides a framework for
dealing with multiple data-types with different resolution, spatial
distribution and errors. The probabilistic solution and quantifica-
tion of uncertainties provided by our Bayesian approach gives new
insights into the Moho topography across the British Isles and sur-
roundings and opens new perspectives for future studies in the area.

1.1 Moho depth of the British Isles: previous studies

The crustal structure of the British Isles (Fig. 1) has been extensively
explored over the last few decades through a combination of active
and passive seismic studies driven by both scientific and economic
interests (e.g. hydrocarbon exploration). This has resulted in one
of the most seismically surveyed regions in the world with a high
density of good quality data, both onshore and offshore.

The first maps of Moho depth were based on the BIRPS deep seis-
mic reflection data (Klemperer & Hobbs 1991) and mainly cover
the offshore domain of Great Britain (Meissner et al. 1986; Chad-
wick & Pharaoh 1998). Building on an earlier compilation (Clegg
& England 2003), a comprehensive database of seismic wide-angle
reflection and refraction data was assembled by Kelly et al. (2007)
to construct velocity and Moho depth models of the British Isles.
This compilation is also included in the Moho model for Europe,
Greenland and the North Atlantic of Artemieva & Thybo (2013).
More recently, passive seismic studies based on the RF method,
have provided new sets of Moho depth measurements onshore Ire-
land and Great Britain (see Davis et al. 2012; Licciardi et al. 2014,
and references therein). Some of these results were used to build a
recent Moho model of the NE Atlantic Ocean (Funck et al. 2016).
The most recent Moho depth model of the British Isles is that of

Baykiev et al. (2018) using a compilation of results from refraction
and RF data and also including the estimates from offshore deep
reflection profiles provided by Davis et al. (2012).

The available Moho depth models of the British Isles have been
obtained with classical interpolation algorithms. In particular, krig-
ing was used to obtain the Moho models of Kelly et al. (2007) and
Funck et al. (2016), while a combination of ‘nearest neighbour’
and kriging was used by Artemieva & Thybo (2013). Finally, the
gridding with tension approach (Smith & Wessel 1990) was used
by Baykiev et al. (2018). Despite the abundance of Moho depth
models of the study area, no efforts have been focused on quantify
the uncertainties on them.

In this work, we aim at filling this gap by using a probabilistic
approach to the surface reconstruction problem. In order to deal
with the most up-to-date compilation of Moho depth estimates, we
update the most complete available database with recently pub-
lished results (Watremez et al. 2016; Prada et al. 2017; Chen et al.
2018), which have not been used in the construction of previous
models.

2 DATA

At the core of this study, there is a database of 4581 Moho depth
estimates comprised between −20◦ and 7◦ of longitude and between
48◦ and 63◦ of latitude (Fig. 2) and assembled from published re-
sults using active and passive seismic data. Based on the type of
data and the different techniques used to estimate the Moho depth,
we subdivide the database into four categories for the surface re-
construction problem: refraction/wide-angle, reflection, broad-band
RFs and short-period RFs. Alternative and/or additional partitions
of the database are possible. For example, the type of processing
applied to RF data for obtaining Moho depth values (e.g. from
H − κ stacking or forward/inverse modelling of RF data) could
also be considered for defining additional categories in our inver-
sion. Another choice could be grouping the active seismic data
based on the year of acquisition, to take in consideration the de-
velopment of the technology across 40 yr. Here, we have opted
for a simple data partitioning to facilitate the interpretation of the
results.

The data have been preprocessed as little as possible to avoid user-
induced bias in our data-driven Bayesian approach. In particular, no
spatial resampling or smoothing has been performed on the data.
Therefore, the final density of data points is highly variable over
the region of interest, with different sampling intervals between
different categories.

Refraction data (circles in Fig. 2) constitute the primary source
of information with 4146 Moho depth estimates both offshore and
onshore. Wide-angle/refraction data provide high quality estimates
of Moho depth as they directly contain information on velocity at
depth and require few a priori constraints. We use the compilation of
refraction data presented in Kelly et al. (2007), where the reader may
find the complete list of experiments with references. In addition,
we complement the refraction data with recently published results
from experiments carried out in the Porcupine Basin (Watremez
et al. 2016; Prada et al. 2017; Chen et al. 2018).

Reflection data (triangles in Fig. 2) contribute with 294 point
estimates. We use the data compiled by Davis et al. (2012) from the
work of Chadwick & Pharaoh (1998) in the British Isles. The ma-
jority of the points within this group are located offshore, although
some sparse information is available onshore Great Britain. Moho
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Figure 1. Physiographical map of the study area according the the ETOPO 1 Global Relief Model (Amante & Eakins 2009) and main tectonic boundaries
(red lines) modified from Tomlinson et al. (2006). FI, Faroe Islands; GGF, Great Glen Fault; HB, Hatton Basin; HBF, Highland Boundary Fault; HH, Hatton
High; ISZ, Iapetus Suture Zone; MP, Midland Platform; MSFS, Menai Straits Fault System; MTZ, Moine Thrust Zone; OI, Orkney Islands; OIT, Outer Islands
Fault; PAP, Porcupine Abyssal Plain; PB, Porcupine Basin; PH, Porcupine High; RH, Rockall High; RT, Rockall Through; SI, Shetland Islands; SUF, Southern
Uplands Fault; VF, Variscan Front; WBF, Welsh Borderland Fault zone.

depth estimates from reflection data are obtained from two-way-
traveltime (twtt) measurements, which are converted to depth using
an assumed crustal velocity model, as described by Chadwick &
Pharaoh (1998).

Finally, we compiled Moho depth estimates from RF data ob-
tained over the last decade onshore Ireland and Great Britain. This
technique is based on the analysis of teleseismic converted waves
below a single station and is mainly sensitive to the impedance
contrasts located at the Moho (Zhu & Kanamori 2000). We subdi-
vide these estimates based on the type of sensor used (broadband
or short period, Fig. 2) to obtain the Moho depth values. The rea-
son for this choice is that, depending on the depth and nature of
the crust–mantle boundary (shallow/deep, gradational/sharp), the
frequency content in RF data determines the resolution at which
the Moho signal can be detected, with broad-band signal carrying
more information and higher resolution to identify gradient at the

Moho transition (Bodin et al. 2012a). A total of 116 Moho depth
estimates from broad-band RF and 25 from short period RFs have
been included. For broad-band RF, the main sources of data are
those from Landes et al. (2006), Shaw Champion et al. (2006),
Tomlinson et al. (2006), Di Leo et al. (2009), Davis et al. (2012)
and Licciardi et al. (2014). Short period sensors were used only in
the work of Tomlinson et al. (2006). In some cases, for a single
station multiple estimates of Moho depth are available. Each indi-
vidual value is considered as an independent point in our surface
reconstruction.

In our approach, the magnitudes of the data errors are treated as
unknown in the inversion, but the relative importance between data
points of the same category is fixed (see the next section). For this
reason, good relative knowledge of the uncertainties is required for
each point. Whenever possible, information about uncertainties on
each Moho depth value has been included. For refraction data, we
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Figure 2. Location of the Moho depth estimates used in this study. Four different data-types are considered: refraction/wide angle (coloured lines), reflection
(triangles), broad-band (squares) and short period (stars) receiver functions. Red lines mark the orientation of the two profiles shown in Fig. 6.

use the empirical estimates of uncertainties given in Kelly et al.
(2007) and the Monte Carlo error estimates for the data in the Por-
cupine Basin. For RF data, we used published uncertainties with
a caveat: most published results rely on a common RF technique
known as H − κ stacking (Zhu & Kanamori 2000), which may un-
derestimate uncertainties on the retrieved Moho depth, depending
on the number of data and the particular approach used (Ogden
et al. 2019). For some of the estimates used in this study, the au-
thors reported uncertainties as low as 0.3 km, which is below the
resolution of the RF data. For this reason, we set a minimum value
(0.8 km) for the standard deviation associated with these estimates.
This value is somehow arbitrary, but it better represents the smallest
achievable errors when using the H − κ technique (e.g. Licciardi
et al. 2014).

Finally, uncertainties on reflection data were not available. For
this category, we set the standard deviation for each point estimate
equal to 1 km. In principle, uncertainties on Moho depth values es-
timated from reflection data could be differentiated according to the
age, the source frequency and/or fold of the original seismic lines

(e.g. Bodin et al. 2012a). In practice, the main factor controlling the
uncertainties on Moho depth estimates from reflection lines is the
type of reflectivity at the Moho that can affect the picking. The great-
est uncertainty on Moho depth are found in areas where there is no
lower crustal reflectivity. In addition, the amount of reflectivity can
vary along individual lines. Finally, the twtt picks are converted to
depth with a velocity-depth function, and this step itself introduces
errors which are difficult to track. The Moho depth values used in
this study are those obtained by (Chadwick & Pharaoh 1998) by
depth-converting the twtt values using a different layered velocity
model for each seismic line (table 1 of Chadwick & Pharaoh 1998).
In this way, the errors are at least internally consistent between
different lines. Therefore, although assigning a constant error to
the whole reflection data set might not be the optimal solution, it
is the only viable option as a differentiation of the errors between
reflection lines is not possible with the data in our possession. A
conservative approach is used in this regard as a subjective differ-
entiation of data error may introduce a bias which would be difficult
to quantify.
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3 M E T H O D

In this work, we use a Bayesian probabilistic approach for the sur-
face reconstruction algorithm. In particular, we use a hierarchical
approach (Malinverno & Briggs 2004) combined with a rjMcMC
algorithm (Green 2003) in order to sample the unknown posterior
probability distribution (PPD) of the model parameters (the un-
known surface) given prior information on the model parameters
and a measure of data fit (the likelihood function). Here, we give a
description of the features characterizing our specific implementa-
tion, while more details are given in the Supporting Information. For
general description of the probabilistic approach to inverse problem
refer to Mosegaard & Tarantola (2002). For reviews of McMC and
rjMcMC methods in geosciences refer to Gallagher et al. (2009)
and Sambridge et al. (2013).

Our approach is based on that described by Bodin et al. (2012a),
in which both the number of parameters (k) used to describe the re-
constructed surface and the magnitude of data noise are considered
unknown in the inversion. At each iteration of the rjMcMC algo-
rithm, the current model is perturbed probabilistically according to a
specific set of rules (see the Supporting Information). The proposed
model is accepted or rejected based on the Metropolis–Hasting ac-
ceptance criterion (Metropolis et al. 1953; Hastings 1970) which we
implemented following Mosegaard & Tarantola (1995) and Piana
Agostinetti & Malinverno (2010), as described in the Supporting
Information. The final ensemble of collected models will have a
distribution that approximate the PPD.

In the rjMcMC algorithm, the dimensions of the problem can
vary and this is classically referred to as a trans-dimensional ap-
proach (see Sambridge et al. 2013, for a review). One of the rec-
ognized advantages of a trans-dimensional approach is its implicit
parsimony (Malinverno 2002; Mackay 2003). Given two models
with similar likelihood the simplest one (with lower k) is preferred.
This represents an advantage in our application as: (i) overfitting
the data is avoided and (ii) the level of complexity of the recon-
structed surface will be determined directly from the data. In other
words, there is no need to specify a smoothing term for the in-
terpolant surface as the degree of smoothing is self-adapted for
different portions of the map based on the information contained
in the data, their uncertainties and the spatial distribution of data
points.

3.1 Model specification

Following Bodin et al. (2012a), the surface to be inferred
is parametrized with a k number of Voroni cells (Sambridge
et al. 1995). Although alternative parametrizations have been
recently suggested for this kind of problem (Hawkins et al.
2019), the Voronoi scheme represents a common choice in trans-
dmensional inference due to its flexibility and the relative low
number of free parameters (Bodin et al. 2012a; Piana Agostinetti
et al. 2015).

Each Voronoi cell is described by the location coordinates of its
centre c = [x, y] and by the value of the parameter to be interpo-
lated (Moho depth), z which is considered constant within the cell.
By construction, a surface made up of k Voronoi cells is uniquely
determined by specifying the two vectors: C = [c1, c2, ..., ck] and
z = [z1, z2, ..., zk]. In addition, the magnitude of data error associ-
ated with each of the 4 data-type is considered as an unknown and is
specified by a set of so called hyperparameters h = [h1, h2, h3, h4].
Therefore, the full set of model parameters can be expressed as
m = [k, C, z, h].

3.2 Likelihood and hierarchical approach

The likelihood function plays a fundamental role in the rjMcMC
algorithm by driving the sampling of the PPD. In this work, the
likelihood of a given model is the combination of the likelihoods of
four independent data-types. This leads to the following expression
for the likelihood function:

p(d | m) =
4∏

i=1

1[
(2π )Ni |Ce,i |

]1/2
exp

[
−1

2
eT

i C−1
e,i ei

]
, (1)

where Ce,i is the covariance matrix of the data error and ei = di −
gi (m) is the error vector for the ith data-type. The forward operator
gi (m) simply expresses the Moho depth values of the current model
for the ith data-type.

Our algorithm makes use of the so-called Hierarchical approach
(Malinverno & Briggs 2004), in which the magnitude of data errors
is treated as an unknown. This is implemented through the use of
the hyperparameters hi according to:

Ce,i = θi × C∗
e ,i , (2)

where C∗
e ,i is the covariance matrix of the observed errors and θi =

10hi . With this type of implementation, the relative error between
data points of the same type of data is fixed while θ i is a scaling
parameter that controls the absolute magnitude of Ce,i . In this work,
all data points are assumed to be uncorrelated (i.e. C∗

e ,i is diagonal).
In addition, as explained in Section 2, we use the same value for the
observed standard deviation for all reflection data points (1 km). In
this case, C∗

e ,i further simplifies to a scalar, whose value is directly
inferred in the inversion through the corresponding hyperparameter.
We note that in our formulation, the hyperparameters will also
include the contribution of errors due to the approximation implied
by the Voronoi model (i.e. an ensemble of 2-D step functions with
a constant Moho depth value). In practice, in order for the model to
fit the data where this approximation is less valid (e.g. for dipping
Moho), the hyperparameters will tend to increase.

Eqs (1) and (2) show how the hyperparameters contribute to
the likelihood. Therefore, they play a role in driving the sampling
of the PPD. The effect of the hierarchical approach is twofold.
First, it provides a posterior estimate of the data errors, which may
be poorly known a priori. Secondly, the hyperparameters act as
weighting factors in our joint inversion of multiple data-types. They
are automatically adjusted by the algorithm, based solely on the
information contained in the data, thus reducing the influence of
subjective choices imposed by the user (Bodin et al. 2012b).

3.3 Prior distributions

In the Bayesian approach, prior distributions (or simply priors) plays
a key role in posterior sampling as they limit the possible values of
the parameters in the Markov chain. In this work, we use uniform
prior distributions for all the model parameters as they are easy to
deal with and do not impose strong constraints on the solution. For
the number of Voronoi cells, k ∼ U(1,350). For longitude, latitude
and Moho depth we set respectively x ∼ U( − 22, 9)◦, y ∼ U(47,
65)◦ and z ∼ U(5, 55) km. For all hyperparameters h ∼ U(0, 1)
resulting in a scale factor θ of the observed errors between 1 and
10.

Working with prior distributions offers a flexible framework to
define the level of prior knowledge on each model parameter. These
distributions can be easily modified according to previous studies or
any kind of scientific knowledge. Although our Bayesian approach
aims at reducing the user-induced bias, it still requires a number
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of assumptions to be made. These assumptions are involved in the
choice of parametrization, in the type of data noise correlation,
and in the data selection process. We call these ‘implicit priors’
and Appendix A show that all these assumptions impose strong
constraints on the interpolation.

4 R E S U LT S

The rjMcMC algorithm is applied to the data set of Moho depths
described in Section 2. We use 300 parallel chains, each of them
running for five million iterations, discarding the first half of them
and collecting models every 500 iterations to reduce potential cor-
relations between successively sampled parameter values. Over-
all, the posterior inference is made on an ensemble of 1.5 million
models.

The probabilistic Moho depth surface resulting from our algo-
rithm is conditional on the number of Voronoi cells and on the
values of Ce that depend on the hyperparameters (Fig. 3). There-
fore, in order to better understand results, an assessment of the
relative importance of each data type in the inversion is needed.
This is done by considering the posterior marginal distribution of θ

multiplied by 〈√diag(C∗
e )〉 (i.e. the average value of the observed

standard deviations of the data noise) for each category (Fig. 3b).
Moho depth estimates from reflection data have the lowest posterior
standard deviation of data noise (1.5–1.8 km) and therefore the high-
est importance in the joint inversion. The results for refraction data
partially overlap with reflection data with values less than 2 km, but
show a more skewed distribution towards higher values. This reflects
the high number of measurements belonging to this group, with ob-
served standard deviation spanning a higher range of values. Finally,
Moho depth estimates from RF data have higher posterior errors,
with those from broad-band RF (≈2.8 km) being more important
than those from short period RF, which shows a broad distribution
centred at about 3.5–4.0 km. The inferred relative importance of
each data type is supported by experience: seismic data from active
sources carry information with higher resolution than those from
passive seismic data and therefore, are given more importance in the
inversion. In addition, the absolute values of the posterior standard
deviation of the data noise fall into the usually assumed range for
each category (Zelt & Smith 1992; Zhu & Kanamori 2000).

It is important to bear in mind that the results shown in Fig. 3(b)
are tightly constrained by our choices regarding, density of data
points, error correlation and fixed relative importance of each point
within a given data type. For example, it is not surprising that the two
most densely spaced, internally consistent data types (i.e. refraction
and reflection data) yield the lowest posterior standard deviations,
given that the used algorithm prefers parsimonious solutions. More-
over, the assumption of uncorrelated errors is probably adequate for
RF data as data points can safely be considered as independent,
as they are individually obtained by a single station analysis. On
the other hand, refraction and reflection data sets consist of dense
points along oriented lines that come from the interpretation of
seismic images or velocity models. This interpretation process is
likely to introduce a certain degree of correlation between nearby
points along the same refraction/reflection line. Therefore, our as-
sumption may lead to an underestimation of the posterior errors for
this type of data, whose importance may be consequently overes-
timated in the joint inversion. With two additional tests (Figs A1
and A2, Appendix A1), we show that decreasing the data density
and/or the strength of data noise correlation results in larger pos-
terior estimates of the data noise. These tests suggest that, given

our assumptions, the results of Fig. 3(b) should be taken as a rough
estimate of the relative importance of each data type rather than
an exhaustive one. In any case, this represents a clear advantage
over classical interpolation techniques which do not provide such
information.

The full solution of our interpolation scheme is represented by
a multidimensional PPD which is difficult to visualize in a single
figure. However, some representative statistics of the PPD can be
extracted from the ensemble of collected models for simpler analy-
sis and interpretation. The mean Moho depth map is shown in Fig. 4.
Although each individual model sampled in the Markov chain is a
single Voronoi tessellation, and so the depth map is discontinuous,
the process of averaging over the whole ensemble of collected mod-
els produces a smooth mean surface (Fig. 4a). A visual comparison
between the mean model and the data (Fig. 2) supports the robust-
ness of the first order features of the mean model. Deeper Moho
(between 30 and 40 km depth) is found in continental areas (e.g. Ire-
land and Great Britain), and shallower Moho (12–22 km) offshore
(e.g in the Atlantic Ocean, west of Ireland). Maximum values of
Moho depth are found in Wales (36–37 km), SE England and near
the Faroe Islands (38–40 km). On the other hand, minimum values
of Moho depth (11–12 km) are located in the Porcupine Abyssal
Plain (PAP).

A spot of anomalously thick crust of about 40 km is present
in SE Great Britain. This is controlled by a single data point
of short-period RFs. However, as we shall see in the next sec-
tion, the probabilistic solution obtained with our algorithm pro-
vides robust guidelines for the interpretation of this Moho depth
feature.

Nevertheless, in the Supporting Information we show and discuss
the results of an outlier-robust inversion in which the the influence
of outliers is reduced by replacing the likelihood of eq 1 with an
equivalent expression that uses an L1-norm measure of data misfit
(e.g. Poggiali et al. 2019).

4.1 Moho depth uncertainties and resolution

The Bayesian approach at the core of our algorithm readily allows
for a quantification of uncertainties on the retrieved Moho map. Pos-
terior uncertainties depend on the combined effect of observed data
errors, values of the hyperparameters, spatial distribution of mea-
surements, data consistency and model complexity. In order to un-
derstand how uncertainties are obtained and how they should be in-
terpreted, we plot the map of posterior standard deviation of the sam-
pled depth values at each pixel, σ , together with the posterior density
of Voronoi nuclei in Fig. 5. The σ map (Fig. 5a) indicates how well
resolved is the mean of the posterior distribution shown in Fig. 4.
The nuclei density map (Fig. 5b) is a proxy for model complexity:
high density of Voronoi nuclei is associated with small Voronoi cells
and is found where high complexity in the reconstructed surface is
required by the data. On the other hand, low density values indicate
the presence of larger cells. The non-homogeneous distribution of
nuclei density values expresses the adaptive nature of our Voronoi
parametrization.

The highest values of σ (above 10 km) are located at the bor-
ders of the map, where no measurements are available. Here, the
solution is not constrained by the data: the mean Moho model and
its standard deviation are equal to the equivalent statistics of the
prior uniform distributions (mean 30 km, σ ≈ 14.5 km ), while the
density of nuclei is homogeneous. Within the region delimited by
the data, σ tends to increase away from data points and decrease
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Figure 3. Marginal posterior distributions for (a) number of Voronoi cells and (b) posterior standard deviation (SD) of data noise. See text for details.

Figure 4. Results of the probabilistic Moho depth surface reconstruction. Mean surface computed from the ensemble of models belonging to the posterior
probability distribution. Contours of Moho depth are drawn every 2 km and labelled every 6 km.

in regions with consistent measurements. In particular, higher σ

values are found where the data coverage is lower (e.g. σ ≈ 8 km
in SE England and 6 km off the NW coast of Ireland) or inconsis-
tent (as with the anomalously thick crust in SE Great Britain). In

addition, we note that around well constrained anomalies in Moho
depth (as the 36-km-thick crust in Wales with low σ ) a transition re-
gion characterized by a loop of higher σ develops. Similar features
(called uncertainty loops) were observed in previous studies using
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Figure 5. Results of the probabilistic Moho depth surface reconstruction. (a) Standard deviation surface. (b) Voronoi nuclei density computed from the
ensemble of models belonging to the posterior probability distribution. In both plots, contours of standard deviation are drawn every 2 km and labelled every
4 km.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/221/2/1384/5751826 by U

niversity of Leicester user on 03 April 2020



1392 A. Licciardi et al.

the trans-dimensional Bayesian approach (Galetti et al. 2015; Zhang
et al. 2018) as a consequence of the Voronoi cell parametrization
(Hawkins et al. 2019). In Appendix A2 (Fig. A3d) we show that
uncertainty loops develop in a dataless transitional domain between
well constrained and neighbouring regions even in a simple 1-D
interpolation problem.

Spatial variations of σ and nuclei density are strictly related to
the information contained in the data and to the complexity of the
model. Taken jointly, the maps in Fig. 5 provide the key to under-
stand the spatial resolution of the data. High frequency variations
of σ are present where highly informative data require gradients in
Moho depth and are usually associated with high posterior density
of the Voronoi nuclei. For example, around the Porcupine Basin and
in the NNW portion of the study area, refraction data are dense,
coherent along the same line and with small posterior data noise
(see Fig. 3b). In this case, σ tends to be low in close proximity
of the refraction lines and high in between them, if the required
variation in Moho depth is outside the range allowed by the data
noise. As described in Appendix A2 (Figs A3, a–c), this results
in high nuclei density, as our constant-value Voronoi parametriza-
tion requires more and smaller cells in order to create steeper gra-
dients and accommodate small scale variations in Moho depth.
On the other hand, large regions with low σ and low nuclei den-
sity (as in southern Ireland, eastern Celtic Sea and eastern Great
Britain) correspond to areas in which spatially coherent data are fit
(within uncertainties), with a few large Voronoi cells. This is the
effect of our parsimonious approach: simpler geometries are pre-
ferred if the data do not justify higher complexity. The resulting
small value of σ suggests that the data are sensitive to the long
wavelength mean Moho depth, which is robustly constrained in
these areas.

As in other inverse problems, the solution of our surface recon-
struction is unlikely to be unique. Non-uniqueness can be inves-
tigated by plotting the entire marginal distribution for each point
in the map along different profiles (Fig. 6). With this type of rep-
resentation, the shape of the marginal PPD for each point can be
directly observed. The mean value and 95 per cent credible intervals
are plotted to better illustrate the lateral variations of Moho depth
and associated uncertainties. Profiles are constructed along arcs of
fixed longitude (−6.5◦, Fig. 6a) and latitude (56◦, Fig. 6b). Their
location is shown with red lines in Fig. 2 for reference. It is clear
that the PPD in some portions of the profiles is far from Gaussian
and possibly multimodal. For example, the profile in Fig. 6(a) has
a broad PPD at around 55.5◦ of latitude, where two distinct peaks
can be distinguished. At this location on the map, the 1-D marginal
posterior distribution for Moho depth (Fig. 6c) indicates values of
Moho depth of about 29 and 24 km for the two peaks. Recently, it
has been suggested that alternative choices of parametrization can
alleviate the problem of multimodality in surface reconstruction
(Hawkins et al. 2019).

We note that the smooth Moho structures obtained in areas where
there is little data constraint do not necessarily preclude the exis-
tence of complex Moho structures. In such poorly constrained areas,
our trans-dimensional parsimonious algorithm only encourages the
simplest interpretations, which is not necessarily the closest so-
lution to the real Earth structure. Consequently, as described in
Appendix A2 (Fig. A3d), the final posterior standard deviation in
regions with poor/absent data coverage is strongly dependent on
implicit priors (choice of parametrization and the parsimonious na-
ture of the algorithm), therefore it should be taken with caution.
More generally, how to use posterior uncertainties from a Bayesian
inversion for subsequent studies is a matter of on-going research

(e.g. Visser & Markov 2019) and a deep discussion about this topic
is beyond the scope of this work. However, as we have stressed
thorough this paper, the outputs of a Bayesian inversion should not
be considered alone without considering the ‘prior belief’ (implicit
priors), that is how such outputs have been created. Possible devel-
opments along this line may involve the use of the full family of
models sampled from the PPD which, implicitly, contains all the
‘prior belief’ used to generate such models.

4.2 Additional model statistics

Further insights on the statistical properties of our solution can
be gained through the analysis of higher moments of the poste-
rior distribution such as skewness and kurtosis (Fig. 7), which give
additional information about the shape of the PPD. Skewness is
the third standardized moment of a distribution and measures the
asymmetry of a given distribution with respect to its mean. Posi-
tive (negative) values of skewness indicates that the distribution has
longer tail on the right (left) side, therefore towards large (small)
Moho depth values. For unimodal distributions this implies that the
mean is therefore shifted from the mode towards the corresponding
tail of the distribution. A skewness value of zero indicates a sym-
metric distribution such as the boundaries of our model where the
PPD is equal to the uniform (and symmetric) prior distribution, or
the majority of the Irish landmass where the posterior distribution
appears symmetric.

Kurtosis is the fourth standardized moment of a distribution and
its value is mainly influenced by the presence of outliers in the dis-
tribution. Higher kurtosis indicates infrequent extreme deviations
(or outliers), as opposed to frequent modestly sized deviations. It
has been usually interpreted as a measure of ‘peakedness’ or ‘bi-
modality’ of a given distribution although it does not provide a
direct measure of these properties.

Given maps of skeweness and kurtosis it is possible to picture
the shape of the posterior distribution at each point in our domain
of interpolation. For example, high kurtosis is located along two of
the refraction profiles on the westernmost part of our model. At the
same location, skewness is strongly negative. This indicates that the
posterior distribution here, is very peaked and with low amplitude
tails towards small values of Moho depth.

As opposed to optimization methods which produce a single
reconstructed surface, our approach provides a full posterior distri-
bution of surfaces. We have already discussed the mean model and
its standard deviation maps (Figs 4 and 5a). However, our proba-
bilistic solutions allow to gain further insights on the Moho depth
variations by examining additional statistics. In Fig. 8, we show the
median and mode models of Moho depth. The median model is
constructed by selecting the middle value of Moho depth from its
marginal distribution at each point in the map. The median is less
affected by outliers than the mean and provides a better measure
of central tendency in case of skewed distributions. We note that
regions of the map with strongly skewed distributions, such as the
refraction profiles discussed before, the gradients at the Moho are
stronger (with shorter wavelength) in the median model compared
to the mean model which is smoother.

On the other hand, the mode (maximum a posteriori, MAP)
model corresponds to the Moho depth value associated with the
maximum of the marginal distributions at each location. The mode
model tends to be rougher and preserves some features of the
Voronoi parametrization. However, it indicates the most probable
value of Moho depth at each point. Not only this could give a better
idea about the transition of the Moho between regions but in this

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/221/2/1384/5751826 by U

niversity of Leicester user on 03 April 2020



Moho depth of the British Isles 1393

Figure 6. Full posterior probability distributions along the profiles indicated by the red lines in Fig. 2. These are cross sections at (a): fixed longitude of –6.5◦
and (b): fixed latitude of 56◦. The green line is the mean and the grey dashed lines are the 95 per cent credible intervals of the distributions. In (c) the 1-D
marginal distribution along the dashed line in (a) is shown. This corresponds to the full solution at –6.5◦ (lon) and 55.5◦ (lat).

case, it also reduces the influence of the anomalously thick crust in
SE Great Britain.

We conclude this section by noting that the full PPD is made
available in the Supporting Information, so that the interested read-
ers can use the complete probabilistic solution according to their
particular needs.

5 C O M PA R I S O N W I T H P R E V I O U S
M O D E L S

In this section, we compare our results with the Moho depth models
presented in previous works. As our complete solution is represented

by an ensemble of models, a single model needs to be chosen to per-
form the comparison. The best data fitting model is discontinuous,
being represented by a set of Voronoi cells. In contrast, the mean
Moho depth model of Fig. 4 is smooth and an obvious candidate for
this test.

Fig. 9 shows the comparison between the mean Moho depth
model obtained in this study and the models presented in Kelly
et al. (2007) and Baykiev et al. (2018). The corresponding difference
maps are shown in Fig. 10 for a more quantitative comparison. Here,
blue (red) values indicate that our model has a shallower (deeper)
Moho than the one which it is compared with. The spatial domain
for the comparison is determined by the geographical extent of
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Figure 7. (a) Map of skewness of the posterior distribution. Negative (positive) values indicates that the distribution has left (right) tails. A value of zero
indicate a symmetric distribution. (b) Map of kurtosis of the posterior distribution. High kurtosis is a proxy for highly peaked distributions.

Figure 8. Posterior median (a) and mode (b) Moho depth models. For the purposes of visualization, the modal model is masked out in regions were the
posterior standard deviation is above 14 km. Picking the maximum value of an almost flat histogram can introduce misleading artefacts in the map. Contours
of Moho depth are drawn every 3 km and labelled every 6 km.

each model, considering only regions for which the posterior σ of
our results is less than 14 km. In addition, we have performed a
direct comparison between the model of Kelly et al. (2007) and
the solution of our algorithm using exactly the same data set as in
Kelly et al. (2007). The results of this comparison are shown and
discussed in the Supporting Information.

The model of Kelly et al. (2007, Fig. 9c) relies exclusively on
refraction data and has been generated using ordinary kriging using

the code KT3D (Deutsch & Journel 1998). On the other hand, the
Moho topography map of Baykiev et al. (2018) has been constructed
from the same data set as in this study (without the refraction data
in the Porcupine Basin), interpolated with the spline-in-tension ap-
proach of the GMT package surface (Wessel et al. 2013). From
a visual comparison, both these models show shorter wavelength
variations of Moho depth with respect to our mean model (Fig. 9).
In any case, the differences in Moho depth related to these high fre-
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Figure 9. Comparison of our mean Moho depth model with previous studies. Panels (a) and (b) mean Moho depth and standard deviation of this study (same
as Fig. 4). (c) and (d) Moho models from (Kelly et al. 2007) and (Baykiev et al. 2018), respectively. In all maps, regions for which the standard deviation of
the posterior distribution is higher than 14 km are masked out. Contours are drawn every 2 km and labelled every 4 km in (b) and 6 km in (a), (c) and (d).

quency variations are generally comprised between ±2 km (Fig. 10)
which is within the posterior σ estimated by our approach (Fig. 9b).
Differences of about ±4 km are found where different data are used
across models. For example, the offshore south of Ireland and the
western offshore of Norway are constrained by reflection data in
our model. This produces about 4 km difference with respect to
the model of Kelly et al. (2007). Regions with higher differences
are represented by the offshore area west of Ireland and around
the north, south and west edges of the map in Kelly et al. (2007)
model (difference as big as ±10 km). In the first case, the results

from new refraction data included in our database help to better
constrain variations in Moho depth around the Porcupine Basin. In
the second case, the observed differences are due to the fact that
our model tends to converge to the mean value of Moho depth
for the uniform prior distribution used (30 km) where no data are
available.

As a consequence of our parsimonious algorithm, continuous
structures in Moho topography are better highlighted in our model.
One of these structures is the NE trend of shallow Moho offshore
west of Ireland from the PAP through the Rockall Through (RT).
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Figure 10. Comparison of our mean Moho depth model with previous studies. (a) and (b) Differences between our mean model and the models of (Kelly et al.
2007) and (Baykiev et al. 2018), respectively. In all maps, regions for which the standard deviation of the posterior distribution is higher than 14 km are masked
out.

From SW to NE along this trend, the Moho gets deeper from about
12 km to about 20 km. Following the structural orientation of the
RT, this feature is displaced to the north where it continues, with
a NE trend and Moho depth between 20 and 24 km, north of the
Hebrides and between the Shetland and the Faroe Islands. Here,
between the Orkney and the Shetland, another continuous feature in
Moho depth (26–28 km) extends towards the North Sea with a SE
trend. Both these features are present in the model of Kelly et al.
(2007), but with lower lateral continuity.

Despite being smooth, our model robustly captures small scale
features as well. For example, above the Rockall High, the NE
trending structure characterized by a Moho depth of about 28 km is
clearly defined, whereas in Kelly’s model it appears smoothed out
towards north. The posterior σ increases where the two models do
not agree, indicating that the observed differences are within the
estimated posterior uncertainties. The use of recent refraction data
highlight the short wavelength Moho depth variations between the
Porcupine Basin (16–18 km) and the Porcupine High (24–26 km).

Despite the major role of refraction and reflection data in building
the interpolation surface, RF data help to determine variations of
Moho depth onshore. In Ireland, for example, our model indicates
a simple and smooth pattern of crustal thinning from south to north
with the location of the main discontinuity (30 km contour line)
that closely follows the surface trace of the Southern Uplands Fault.
This confirms the results obtained by the analysis of RF data alone
(Licciardi et al. 2014), indicating that RF data are constraining
our model in this area. In both Kelly’s and Baykiev’s models, this
feature is less clear due to high frequency variations in Moho depth.
In the former, this is due to the lack of data, in the latter, to the
choice of the interpolation algorithm. Onshore Great Britain, the
main difference between our model and previous published models
is located along the west coast of Scotland (Fig. 10). In this area, our

mean model is between Kelly’s and Baykiev’s, which have deeper
and shallower Moho respectively. The use of RF data in this region
helps to better characterize roughly E-W oriented Moho variations
across the Great Glen Fault, from about 34 km in the east to about
28 km to the west. This transition is smoother than in Baykiev’s
model and shows shallower Moho values than in Kelly’s model, but
it is associated with high posterior σ (more than 3 km).

6 C O N C LU S I O N

In this work, we have presented the results of a Bayesian surface
reconstruction algorithm to determine variations in Moho depth
around the British Isles in a probabilistic sense. Our results are
based on the most up-to-date compilation of Moho depth estimates
in the region, assembled from a variety of different studies and
obtained with different seismic methods. We have shown that our
approach does not require user-subjective choices regarding spatial
smoothing, nor an ad hoc weighting between different data-types.
On the contrary, our trans-dimensional algorithm relies on adaptive
parametrization and automatic weighting, based solely on the in-
formation contained in the data. Given its parsimonious nature, our
probabilistic approach produces an ensemble of models for which
the intrinsic trade-off between model complexity and data fit is
addressed following Occam’s principle of simplicity. In addition,
it provides a suitable framework for uncertainty quantification. In
this way, robust features are highlighted and uncertainties can be
used for statistical testing of different scenarios such as lithospheric
modelling or crustal studies.

Our results provide the first attempt to map the Moho topography
of the British Isles in a probabilistic fashion. Despite the advantages
provided by our Bayesian workflow, our approach still requires a
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number of assumptions to be made. These assumptions are involved
in the choice of parametrization, in the type of data noise correlation,
and in the data selection process as highlighted in this work. In
any case, we have shown that our Bayesian framework provides a
flexible setting for testing and adapting the underlying assumptions
(‘implicit priors’) if required.

Under the assumption of uncorrelated data errors, refraction and
reflection data provides the main source of information to determine
Moho depth variations. Although with larger posterior errors, the
suite of RF data contained in our database yields constraints on
crustal thickness onshore Ireland and Great Britain.

Moho depth variations of the mean model extracted from the PPD
indicates deeper Moho (29–36 km) in continental areas(e.g. Ireland
and Great Britain) and shallower Moho (12–22 km) offshore (e.g.
in the Atlantic Ocean, west of Ireland). Maximum values of Moho
depth are found in Wales (36–37 km), SE England (36–37 km) and
near the Faroe Islands (38–40 km), while minimum values of Moho
depth (11–12 km) are located in the Porcupine Abyssal Plain to the
west of the Porcupine Basin and the Porcupine High.

Our results confirm the first order features of the Moho topogra-
phy obtained in previous work, but we improve resolution by adding
new constraints provided by recent available data, especially around
the Porcupine Basin, onshore Ireland and Great Britain. In particu-
lar, NE trending features in Moho topography are highlighted above
the Rockall High (about 28 km) and the Rockall Trough (with a NE
directed deepening from 12 to about 20 km). A perpendicular SE
oriented feature (Moho depth 26–28 km) is located between the
Orkney and the Shetland, extending further SW in the North Sea.
Onshore, our results highlight the crustal thinning toward the N in
Ireland and an E–W oriented transition between deep (34 km) and
shallow (about 28 km) Moho in Scotland. Differences with previ-
ously published models are in general around ±2 km, within the
posterior uncertainties calculated with our approach. Bigger differ-
ences are located where different data are used between models or
in less constrained areas where posterior uncertainties are high.

The mean and standard deviation maps presented in this work are
available to be downloaded, together with the full PPD obtained with
our Bayesian algorithm. The reader can access the results here: http
s://doi.org/10.6084/m9.f igshare.11558976.v1. These probabilistic
results open new perspective for future work. In particular, posterior
errors on Moho depth can be used for statistical hypothesis testing
or probabilistic modelling of the structure and/or composition of
the crust and the lithosphere in the British Isles.
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A P P E N D I X : I M P L I C I T P R I O R S

A1 Data noise correlation and data selection

One of the assumptions of our approach is that each individual value
of Moho depth is considered as an independent data point. While this
eliminates the subjective selection of an adequate sampling radius,
this assumption acts as an implicit prior in the inversion and it may
introduce a bias in assessing the relative importance of different
data types and uncertainty. As described in the main text, the results
of our surface reconstruction are obtained by using a data set which
has been preprocessed as little as possible in order to limit any user-
induced bias in data selection. The results indicate that the two most
densely spaced data types (refraction and reflection data) produce
the lowest values of the posterior standard deviation therefore, they
contribute more to the final reconstructed surface. It is of interest
to study the behavior of our algorithm as the density of data points
for these two data set is reduced and how this affects the posterior
estimates of standard deviation. In addition, by downsampling the
data, the effect of data error correlation is decreased in an empirical
fashion. We have performed two additional tests that should be
taken as a qualitative measure of these two combined effects. In
the first (Fig. A1) and second test (Fig. A2) both reflection and
refraction data points are downsampled by a factor of two and
four respectively yielding a spacing of ≈10 and ≈20 km between
points for refraction data and of ≈70 and ≈140 km for reflection
data. The results indicate that the posterior estimates of data error
(and relative importance of each data type) are affected by data
density: with fewer data points (and with less influence of data error
correlation), the estimated posterior standard deviation of refraction
and reflection data increases. At the same time, fewer Voronoi cells
are needed as the data constraints on the Moho surface are strongly
reduced. These results suggest that our estimates of the posterior
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standard deviation of the data error in the joint inversion need to be
taken as a rough estimates of the relative importance of each data
type that is affected by our assumptions about data error correlation
and data selection.

A2 Choice of parametrization and rjMcMC parsimony

Our algorithm implements a 2-D Voronoi parametrization with
constant Moho depth value within each cell. The choice of the
parametrization can be considered as an implicit prior imposed on
the interpolation scheme. In particular, two cases are worth to con-
sider to understand the effect of this implicit prior: (i) (the behaviour
of the Voronoi parametrization when the surface to be interpolated
is different from blocks with constant values and (ii) what happens
in case of missing data (the actual interpolation process). The first
case has been studied in detail by Hawkins et al. (2019) for the sur-
face reconstruction problem. In this appendix, we present equivalent
results on synthetic tests for a 1-D change point problem which, we
think, is more intuitive and easier to understand. In these tests, the
goal is to reconstruct the objective function y, given some observed
data points (x, y) at location x, generated from the true function
and perturbed with Gaussian noise with a standard deviation of 0.2
(the same for all data points). A parametrization similar to the one
adopted for the surface reconstruction of the Moho discussed in the
main paper is used here. In 1-D, this parametrization is described
by a series of segments with constant y. The discontinuity between
two adjacent segments is called a change point.

First, we set up three synthetic data sets with regularly spaced
datapoints (Figs A3, a-c), in which the transition between two con-
stant y values of 1 and 4 is: (1) a single jump (Fig. A3a) located at
x = 3; (2) a linear function from x = 2 to x = 4 (Fig. A3b) and (3)
the sigmoid function y = 1 + 3/(1 + exp { − 6(x − 3)}) (Fig. A3c).
In the first case, only one change point is required by the algorithm
and the objective function is correctly retrieved. In the second case,
our simple parametrization requires additional parameters (between
3 and 9 with a maximum probability at 4) to explain the linear trend
between x = 2 and x = 4. In this case, the mean of the posterior
distribution will tend to a staircase geometry. In a similar fashion,
the third case indicates that additional parameters are required as
well when the transition is a smooth function. From test (2) and
(3) we can conclude that the more the transition is similar to a step
function, the fewer parameters will be required by our algorithm.
In both cases, the information about the increasing trend of y is
preserved in the posterior distribution, but the mean value of the

PPD may result in geometries which are different from the true
one. In any case, we note that the true models (green lines) in both
Figs A3(b) and (c) are comprised within one standard deviation of
the mean. Therefore, this does not change the interpretation of the
Moho map presented in the paper. Rather, it gives further insights on
the possible limitations of the chosen parametrization. Areas with
high density of Voronoi cells in Fig. 5 may indicate the presence of
complex Moho geometries which are difficult to represent with our
simple Voronoi parametrization.

Finally, we examine the implicit prior constraints implied by our
parametrization in the interpolation process itself, meaning in the
reconstruction of a function across a data gap. This is shown in
Fig. A3(d) which uses the same data set of Fig. A3(a) but with the
addition of two data gaps in the x intervals [2,4] and [5,7]. In princi-
ple, because of the lack of data, an infinite number of solutions are
possible. In practice, the results indicate that our parametrization
imposes some constraints on the values of y in these cases. In partic-
ular, in the [2,4] interval, rather than sampling the prior distribution
(U(0, 6)) across the data gap, the algorithm produces a symmet-
ric bimodal distribution with peaks determined by the y values of
the data points adjacent to the gap. This behavior has proven to be
typical to Voronoi cell parametrization (Hawkins et al. 2019) and
results in a so called uncertainty loop (Galetti et al. 2015): the value
of σ as a function of x (red line in the lower plot) indicates high
uncertainty in the transition region and low uncertainties on either
side where y is well constrained by the data. The resulting mean of
the posterior distribution increases linearly from 1 (at x = 2) to 4 (at
x = 4). Note that although the algorithm detects the presence of a
change point across the data gap, it fails in determining its location
which is equiprobable between x = 2 and x = 4.

In the [5,7] interval, the algorithm does not require the presence
of a change point. Within the data gap, it assigns similar y values
as those required by the data points on the left and right of the
interval. This is a clear example showing parsimony in action: rather
than adding complexity where no information are available, the
algorithm prefers the simplest solution with fewer parameters. Two
observations regarding posterior uncertainties across a data gap can
be made from this test. First, posterior uncertainties are determined
by the magnitude of the y jump and nearby data values and errors.
Secondly, the combined effect of our parametrization and parsimony
imposes prior constraints on the interpolation across a data gap:
rather than sampling the prior distribution, the algorithm prefers the
simplest solution. This contributes to the estimated uncertainties on
the interpolation itself across a data gap.
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Figure A1. Marginal posterior distributions for (a) number of Voronoi cells and (b) posterior standard deviation (SD) of data noise. In the inversion, reflection
and refraction data have been downsampled by a factor of two.

Figure A2. Marginal posterior distributions for (a) number of Voronoi cells and (b) posterior standard deviation (SD) of data noise. In the inversion, reflection
and refraction data have been downsampled by a factor of four.
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Figure A3. Results of the synthetic tests in 1-D to illustrate the effect of the chosen parametrization. (a–c) Results of three inversions with regularly spaced
data points in which the nature of the discontinuity is changed from a simple jump in (a) to a linear function in (b) to a sigmoid function in (c). The ‘observed’
data (grey circles) are generated according to the true objective function (green line) and adding Gaussian noise with a standard deviation of 0.2 (error bars on
each data point). d) Results of the inversion when portions of the data are missing. In all panels, the black solid (dashed) line is the mean (standard deviation)
of the posterior distribution. The histograms of the number of change points and their probabilistic location along the x axis are plotted in each panel. In last
panel we also show the standard deviation (red line) as a function of x.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/221/2/1384/5751826 by U

niversity of Leicester user on 03 April 2020


