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Abstract—Monocular visual-IMU (Inertial Measurement Unit) 

odometry has been widely used in various intelligent vehicles. As a 
popular technique, detector-descriptor based visual-IMU 
odometry is effective and efficient due to the fact that local 
descriptors are robust against occlusions, background clutter and 
abrupt content changes. However, to our knowledge, there is not a 
comprehensive and comparative evaluation study on the 
performance of different combinations of detectors and 
descriptors recently developed. In order to bridge this gap, we 
conduct such a comparative study in a unified framework. In 
particular, six typical routes with different lengths, shapes and 
road scenes are selected from the well-known KITTI dataset. 
Firstly, we evaluate the performance of different combinations of 
salient point detectors and local descriptors using the six routes. 
Finally, we tune the parameters of the best detector or descriptor 
obtained for each route, to achieve better results. This study 
provides not only comprehensive benchmarks for assessing 
various algorithms, but also instructive guidelines and insights for 
developing detectors and descriptors to handle different road 
scenes. 
 

Index Terms—Evaluation, odometry, monocular visual-IMU 
odometry, navigation, local descriptors, salient point detectors. 
 

I. INTRODUCTION 

MONG the commonly used techniques for ego-motion 
estimation, Visual Odometry (VO) [1-5] plays important 

roles in the studies of computer vision, intelligent vehicles and 
robotics. By matching the consecutive video frames acquired 
by onboard cameras [5], VO incrementally estimates the pose 
of a vehicle. In this context, the information of the vehicle’s 
motion state relative to the surrounding environment is 
essential for assessing the risk of collision in autonomous 
driving and advanced driver-assistance systems (ADAS).  

In terms of the onboard camera, VO can be classified into two 
types: stereo and monocular [5]. A stereo VO system not only 
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owns a complex architecture, but also generates a monocular 
system with the increase of the distance between the lens and 
the object. In contrast, the monocular VO system is simple and 
can be easily used in real systems. Moreover, the inertial 
measurements obtained from the IMU and visual data are 
complementary [6]. Thus, odometry system based on these 
measurements, i.e., Visual-IMU Odometry (VIO), are able to 
boost the accuracy and reliability of motion estimation. This 
advantage is of great significance to the development of 
intelligent vehicles. In this paper, we therefore focus on 
monocular visual-IMU odometry. 

Local descriptors can be defined as the description of the 
distinct patterns or structures contained in a local image region. 
As local descriptors are robust against occlusions, background 
clutter and other changes [7], they have been extensively used 
in various vision systems, such as visual tracking [8], visual 
odometry [9] and visual Simultaneous Localization and 
Mapping (visual-SLAM) [10]. To achieve efficient image 
matching, local descriptors are often extracted at salient point 
locations. In this case, both salient point detection and 
descriptor extraction play important roles in detector-descriptor 
based VIO systems. However, different detector-descriptor 
combinations may generate significantly different performance, 
especially, when different road scenes and route shapes are 
encountered. For practical applications, it is important to know 
which combination is superior to others under a certain 
circumstance. In this context, an extensive, comparative 
evaluation of various combinations of detectors and descriptors 
using a unified framework is necessary, to obtain useful 
benchmarks and guidelines for choosing or developing 
detectors and descriptors. 

To our knowledge, nevertheless, there is not comprehensive 
evaluation research conducted to compare the performance of 
different detector-descriptor combinations in the scenario of 
monocular visual-IMU odometry. Compared with [11], our 
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Fig. 1. Illustration of the monocular visual-IMU odometry system based on the 
detector-descriptor scheme. 
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current paper (1) provides more details of the related work and 
the investigated salient point detectors and descriptors; (2) 
utilizes more routes; (3) examines typical convolutional neural 
network (CNN) features; (4) investigates the impact of the 
parameters in the best salient point detector or local descriptor 
for each route; and (5) conducts more extensive analysis and 
discussion of experimental results. 

The main contributions of this study can be summarized as 
follows. (1) Without loss of generality, we deliberately select 
six typical routes containing different lengths, shapes and road 
scenes from the known KITTI dataset [12] and use these data 
for monocular VIO. The routes can be used by the community 
for further research. (2) We review five salient point detectors 
and nine local descriptors. (3) We apply CNN features to 
monocular VIO. (4) We conduct a comprehensive evaluation 
study on various detector-descriptor combinations for 
monocular VIO. This study provides the community with a 
series of useful benchmarks and instructive guidelines. 

The rest of this paper is organized as follows. The related 
work is reviewed in Section II. In Section III, the detectors and 
descriptors are surveyed and their implementation details are 
described. The experimental setup is introduced in Section IV. 
The results obtained using different detector-descriptor 
combinations are reported and discussed in Section V. In 
Section VI, the parameters of the best detector or descriptor for 
each route are tuned. Our conclusions are given in Section VII. 

II. RELATED WORK 

A. Salient Point Detectors 
To accelerate the computational speed of matching two 

images, many salient point detectors have been proposed. 
Using the image gradient matrix, Harris and Stephens [13] 
developed a corner detector. Inspired by the Harris detector, Shi 
and Tomasi [14] introduced a different corner detector that has 
a more principled feature selection criterion, namely, Good 
Features To Track Detector. The Features from Accelerated 
Segment Test (FAST) corner detector [15] were designed on 
the basis of a circle of pixels surrounding the candidate corner 
pixel. Mair et al. [16] proposed a derivation of the FAST 
detector, i.e., Adaptive and Generic Accelerated Segment Test 
(AGAST). This detector utilizes backward induction to create 
an optimal decision tree in order to improve the computational 
efficiency. On the basis of AGAST, Binary Robust Invariant 
Scalable Keypoints (BRISK) [17] were detected in a 
continuous scale space. Mikolajczky and Schmid [18] also 
designed the scale and affine invariant Harris-Laplace corner 
detector. 

While these corner detectors have high efficiency, the 
distinctiveness of detected points is poor. On the other hand, 
blob detectors, e.g., the Difference of Gaussian (DoG) [19] and 
Fast Hessian [20] detectors, normally produce more distinctive 
points [5]. Especially, the latter uses box filters to approximate 
the Laplacian of Gaussian (LoG) functions, and achieves high 
detection speeds. Agrawal et al. [21] applied center-symmetric 
local binary patterns as an alternative to the orientation 
histogram approach of SIFT [19]. The Simple Blob Detector 

was implemented in the OpenCV [22] library. This detector 
extracts the connected regions from a binary image. Only the 
regions whose area lies in a given range are treated as blobs. 
Moreover, a hybrid detector was developed in order that both 
sorts of points can be detected [23]. Matas et al. [24] extracted 
regions using a watershed segmentation method. 

All of the abovementioned detectors treat points or regions as 
isolated in the image. In contrast, Dense Feature Detector [25] 
is a hybrid approach using dense sampling on a regular grid and 
interest point detection. This detector first samples image 
patches using a regular grid, and then refines their positions and 
scales by an optimized interestingness measure. It generates a 
set of feature points on a semi-regular grid, densely covering 
the entire image similar to the case of dense sampling. 

B. Local Descriptors 
Once salient points have been detected, a feature vector is 

usually extracted from the highlighted points for matching or 
tracking. Lowe [19] developed the Scale-Invariant Feature 
Transform (SIFT) descriptor using local gradient histograms. 
Similarly, Histogram of Orientation Gradient (HOG) [26] was 
designed based on locally normalized histograms of the 
gradient orientation data. Bay et al. [20] developed the 
Speeded-Up Robust Features (SURF) descriptor, providing the 
faster efficiency than SIFT. Sampling an image patch at a point 
is usually used as a feature descriptor [27]. In [28], Leung and 
Malik used the features computed using a filter bank for texture 
classification. The Local Self-Similarity Descriptor (LSSD) 
was proposed in [29]. In addition, the Local Intensity Order 
Pattern (LIOP) descriptor was introduced by Wang et al. [30]. 
Recently, Hariharan et al. [31] applied the hyper-column 
features computed at multiple convolutional layers of a 
pre-trained convolutional neural network (CNN) to object 
segmentation, and obtained state-of-the-art results. 

Binary descriptors are different from the aforementioned 
real-valued descriptors by directly constructing strings via the 
pixel-level comparison. In this context, the BRIEF descriptor 
[32] utilizes a set of binary intensity tests in order to extract 
strings from an image patch. However, BRIEF is sensitive to 
the in-plane rotation and scale changes. To solve this problem, 
Leutenegger et al. [17] developed the BRISK descriptor. 
Similarly, Rublee et al. [33] proposed an improved BRIEF 
descriptor. Since this descriptor is usually combined with a 
multi-scale FAST detector, they are named Oriented FAST and 
Rotated BRIEF (ORB). 

C. Detector-Descriptor Based Monocular Visual (-IMU) 
Odometry 

It has been proved that local descriptors are robust against 
occlusions, background clutter and other changes. As a result, 
they were widely used in visual (-IMU) odometry. Nister et al. 
[9] used 11 × 11  image patches cropped around the Harris 
corner points for the VO tasks. Leutenegger et al. [34] tightly 
integrated inertial measurements into the keyframe-based 
visual odometry using a customized multi-scale SSE-optimized 
Harris corner detector and BRISK descriptor. Bloesch et al. [35] 
implemented a monocular VIO system based on the FAST 
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detector and multi-level patch features. Compared with the 
above corner points, blob points are more distinctive and 
redetected in the VO applications [5]. Of the most successful 
local descriptors, SIFT was widely utilized in the application of 
monocular VIO [36], [37]. In [38], a monocular visual-aided 
inertial navigation system was developed based on SURF [20]. 
Nevertheless, only gray level images were used for extraction 
of the aforementioned descriptors. For purposes of using richer 
image characteristics, three different multi-channel descriptors 
were adapted for monocular VIO [39]. 

D. Comparative Evaluations of Salient Point Detectors and 
Local Descriptors 

Salient point detectors and local descriptors have been 
evaluated in several publications. By changing the conditions 
of camera noise, image orientation, illumination, scale and 
viewpoint, Schmid et al. [40] assessed several detectors. 
Mikolajczyk and Schmid further evaluated different affine 
invariant detectors [41] and descriptors [7]. In [42], Heinly et al. 
compared three types of binary descriptors: BRIEF [32], ORB 
[33] and BRISK [17] with two baselines of the SIFT [19] and 
SURF [20] descriptors. It was found that SIFT was more robust 
to changes in affine images and perspectives than its 
counterparts. Zhang et al. [43] compared local descriptors for 
texture and object classification. The performance of twelve 
detectors was compared by Bostanci et al. [44] using the 
analysis of variance. Yang and Newsam [45] also compared 
local descriptors for image retrieval. Besides, evaluation 
studies were conducted for visual tracking [46], [47], [48]. 

On the other hand, ego-motion estimation tasks [49], [50], [51] 
have been used to assess detectors and descriptors. Benseddik 
et al. [52] assessed SIFT [19] and SURF [20] for monocular 
VO. Scaramuzza et al. [53] examined the performance of SIFT, 
Harris and Kanade-Lucas-Tomasi (KLT) for monocular VO. 
Jiang et al. [54] benchmarked the performance of several 
detectors and descriptors for stereo VO. For the application of 
visual-SLAM, Gil et al. [55] investigated the repeatability of a 
set of detectors and the invariance and distinctiveness of 
different local descriptors under various perceptual conditions. 
Moreover, Diosi et al. [3] evaluated three salient point detectors, 
including DoG [19], Harris-Laplace [18] and Maximally Stable 
Extremal Regions (MSER) [24], for the task of visual path 
following in outdoor urban surroundings. 

However, only a small number of detectors and/or descriptors 
were evaluated in the above studies. Also, the involved datasets 
were smaller and not representative to various road scenes and 
route shapes for the VO task. To address these problems, we 
therefore perform a comprehensive (using more detectors and 
descriptors) evaluation based on a well-established monocular 
visual-IMU odometry system together with six representative 
real world routes. To the authors’ knowledge, this study is the 
first attempt to comprehensively evaluate different 
detector-descriptor combinations for the task of monocular 
visual-IMU odometry. 

III. SALIENT POINT DETECTORS AND LOCAL DESCRIPTORS 
It is known that local descriptors are insensitive to occlusions, 

background clutter and other changes. Therefore, they have 
been widely used in visual (IMU) odometry systems [9], 
[35-39]. Salient points are normally detected before local 
descriptors are extracted, to reduce the number of the points 
required for matching two images. Popular salient point 
detection methods include corner and blob detectors. Although 
corner detectors can be efficiently computed, they own low 
distinctiveness. Comparably, blob detectors are more 
distinctive while the detection speed is slower. 

Image sequences captured by the onboard camera can be 
utilized as the input data of VIO. These images usually contain 
illumination changes, motion blurring, perspective 
transformation and independently moving objects. In order to 
diminish the influence of moving objects, the majority of the 
detected features should fall in the static background or 
distribute across the whole image. However, the detected 
features using the MSER detector tend to distribute in parts of 
an image [56]. Heinly et al. [42] found that the matching 
precision, matching score and recall values of BRIEF [32], 
ORB [33] and BRISK [17] are not satisfying and even far from 
the baseline under the conditions of affine and perspective 
transforms. According to [47], the Harris [13], CenSure [21] 
and Good Features To Track [14] detectors cannot properly 
cope with scale changes, illumination changes and motion blur, 
which occur in many natural images. In addition, Simple Blob 
Detector [22] is absolutely controlled by parameters and hence 
it may not guarantee the number of detected features. However, 
Dense Feature Detector [25] requires intensive computation.  

In this work, we select two blob detectors: Difference of 
Gaussian (DoG) [19] and Fast Hessian (FH) [20] and two 
corner detectors: Features from Accelerated Segment Test 
(FAST) [15] and Harris-Laplace [18] for our evaluation study. 
Besides, we select a hybrid blob and corner detector [23]. 
Regarding local descriptors, nine methods are selected because 
they are commonly used in computer vision and visual 
odometry. We will review these detectors and descriptors and 
describe their implementation details as follows. 

A. Salient Point Detectors 
In this subsection, we briefly describe the five salient point 

detectors. 
1) Difference of Gaussian (DoG) 

Lowe [19] used the scale-space extrema of the Difference of 
Gaussian (DoG) function to detect salient points. For the sake 
of obtaining invariance against scale changes, an image is 
convolved with the DoG function at multiple scales. The scale 
space of the image is expressed using the formula: 
                      𝐿(𝑥, 𝑦, 𝜎) = 𝐺(𝑥, 𝑦, 𝜎) ∗ 𝐼(𝑥, 𝑦), (1) 
where 𝐺(𝑥, 𝑦, 𝜎) is a Gaussian function with the scale of 𝜎, 
𝐼(𝑥, 𝑦) is the image, and ∗ denotes the convolution operation. 

The DoG function can be calculated based on the difference 
between two neighboring scales split by a constant value: 
                   𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝜎) − 𝐿(𝑥, 𝑦, 𝜎), (2) 
where 𝑘 represents the sampling interval in the scale space. If 
𝐷(𝑥, 𝑦, 𝜎) is a local maximum or minimum, (𝑥, 𝑦, 𝜎) is treated 
as a feature region surrounding the salient point (𝑥, 𝑦). 
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2) Fast Hessian (FH) 
Using the determinant of the Hessian matrix, the Fast Hessian 

detector was developed [20]. The 𝜎 scale Hessian matrix can be 
computed using the following formula: 

𝐻(𝑥, 𝑦, 𝜎) = 2

!!

!"!
𝐺(𝜎) ∗ 𝐼(𝑥, 𝑦) !

!"
!
!#
𝐺(𝜎) ∗ 𝐼(𝑥, 𝑦)

!
!"

!
!#
𝐺(𝜎) ∗ 𝐼(𝑥, 𝑦) !!

!#!
𝐺(𝜎) ∗ 𝐼(𝑥, 𝑦)

3,   (3) 

where 𝐼(𝑥, 𝑦)  is an image, and !
!"
𝐺(𝜎)and !

!

!"!
𝐺(𝜎)  are the 

1st- and 2nd-order Gaussian derivative functions respectively. 
To accelerate the computational speed, box filters are used to 

approximate the Laplace of Gaussian functions. The 
approximated determinant of the Hessian matrix is defined as: 

                 𝑑𝑒𝑡7𝐻$%%&'"8 = 𝐷""𝐷## − (0.9𝐷"#)(, (4) 
where 𝐷"" , 𝐷##  and 𝐷"#  are the box filter approximations in 
the directions of 𝑥, 𝑦 and 𝑥𝑦 respectively. Salient points can be 
produced from an image by detecting the local maximum of 
𝑑𝑒𝑡7𝐻$%%&'"8 across different locations and scales. 
3) Features from Accelerated Segment Test (FAST) 

The FAST detector that Rosten et al. [15] introduced works 
on a discretized circle which consists of 16 pixels and centers at 
the candidate corner point 𝑝. When a continuous arc containing 
at least nine pixels that are brighter than the candidate pixel 
𝐼% + 𝑠 (𝑠 is a threshold), or darker than the candidate pixel 𝐼% −
𝑠, exists, the point 𝑝 is regarded as a corner point. A decision 
tree is further trained in order that fewer candidate pixels are 
examined and higher efficiency is achieved. 

Non-maximal suppression is not applicable because FAST 
does not utilize corner response functions. Rosten et al. [15] 
produced a score for each potential salient point using 
𝑉 = 𝑚𝑎𝑥(∑ (𝐼!→# − 𝐼!( − 𝑡#∈%!"#$%& , ∑ (𝐼! − 𝐼!→#( − 𝑡#&%'(") ), (5) 
where 𝑆)&*+,-  and 𝑆.$&/  are the subsets of the pixels on the 
circles that are smaller and larger than 𝑝 by 𝑡 respectively. 
4) Harris-Laplace (H-L) 

The Harris-Laplace detector [18] uses the scale-adapted 
Harris function to identify salient points in the scale space. The 
typical scale of a local image pattern is derived via finding the 
extremum of the Laplacian function across multiple scales. A 
scale is typical in the quantitative standpoint as it measures the 
scale where the maximal similarity between the local pattern 
and the detector is achieved. The Harris-Laplace detector 
consists of two steps: multi-scale point detection and an 
iterative algorithm implemented for identifying the location 
and scale of the salient points. 
5) Blob and Corner (B&C) 

In [23], Geiger et al. proposed a hybrid salient point detector. 
An image was first convolved with the blob and corner masks 
in order to identify stable salient points. Then, the convolved 
maps were processed using non-maximum and non-minimum 
suppressions. In total, four sets of points were obtained, i.e., 
“blob min”, “blob max”, “corner min” and “corner max”. 

B. Local Descriptors 
The nine local descriptors are briefly reviewed below. 

1) Histogram of Oriented Gradients (HOG) 
The HOG descriptor [26] is extracted from the normalized 

gradient orientation histograms computed in a dense grid. It 
first divides an image into small connected spatial blocks. Each 
block is further partitioned into cells. A gradient orientation 
histogram is computed within each cell. Finally, the histograms 
computed from each block are collapsed into a feature vector. 
2) Hyper-column CNN Features (HC-CNN) 

The hyper-column features that Hariharan et al. [31] 
proposed are extracted at multiple layers of a pre-trained CNN 
in terms of a pixel location. Given an image, a series of feature 
maps are derived at each layer after this image is fed to the 
CNN. The feature maps are upsampled into the original 
resolution of the image using interpolation. For a pixel location, 
the features at the corresponding locations in all the feature 
maps are combined into a hyper-column feature vector. In 
comparison to the other CNN features, e.g., the fully-connected 
layer features, hyper-column features encode the characteristics 
of pixels and contain more precise localization information. 
3) Image Patches (IMGP) 

A simple representation of a pixel is the image patch sampled 
around this pixel. Especially, the speed of image patch 
sampling is faster than that of extraction of other descriptors, 
such as SIFT [19] and SURF [20]. Also, image patches indeed 
preserve original image characteristics and encode the detailed 
image information [27]. Compared with the full images, local 
patches often encounter less distortion. Therefore, it is easier to 
define the similarity between two local patches. 
4) Integral Channel Image Patches (ICIMGP) 

Dollár et al. [57] introduced a series of integral channels. 
These channels comprise color or gray level channel, the 
gradient magnitude channel and six different gradient 
histogram channels. In comparison with the pure gray level or 
color channels, the integral channels are more diverse but 
heterogeneous. On the basis of these channels, Dong et al. [39] 
adapted integral channel image patch features. First, the image 
patch was sampled around a pixel in each channel. Second, 
each patch was individually 𝐿(  normalized. Finally, all the 
patches were concatenated into a single feature vector. 
5) Leung-Malik (LM) Filter Bank 

In total, 36 1st- and 2nd-order Gaussian derivative filters built 
at six orientations and three scales, eight Laplace of Gaussian 
filters and four Gaussian filters are included in the LM filter 
bank [28]. By convolving with an image, a 48-dimensional 
feature vector is produced with regard to each pixel. 
6) Local Intensity Order Pattern (LIOP) 

In [30], Wang et al. introduced the LIOP descriptor. This 
descriptor captures not only the local ordinal data of each pixel 
but also the overall ordinal data. The LIOP descriptor was 
developed by assuming that the relative order of the pixel’s 
gray levels is constant when the gray level monotonically varies. 
In terms of each image patch sampled around a pixel, LIOP first 
divides it into sub-regions according to the overall ordinal data. 
Then, LIOP is calculated over the patch corresponding to each 
pixel. An ordinal bin is derived from the LIOPs calculated in 
each sub-region. Finally, all the bins are collapsed into a LIOP 
feature vector. 
7) Local Self-Similarity Descriptor (LSSD) 

The LSSD was developed by Shechtman and Irani in [29]. 
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Given a pixel location 𝑞 , an image patch centered at this 
location is cropped. Then, the patches around the pixels within 
a larger image region around 𝑞 are sampled and compared with 
the patch based on the sum of square differences (SSDs) 
between patch colors/intensities. The SSDs are normalized and 
transformed into a correlation surface, which is defined as: 

𝑆0(𝑥, 𝑦) = 𝑒𝑥𝑝 A−	 112"(",#)
6$"78$&#$%&',8$&()*+(0)9

C, (7) 

where 𝑣𝑎𝑟:'*;<  denotes the acceptable photometric variation, 
and 𝑣𝑎𝑟$=->(𝑞)  is the maximal variance of the differences 
between the patches sampled based on the region size. The 
correlation surface is converted into 𝑛&  radial bins and 𝑛? 
angular bins in the log-polar space. Finally, they are linearly 
stretched into [0, 1], which are comprised of the descriptor. 
8) Scale-Invariant Feature Transform (SIFT) 

In order to achieve invariance to image rotation, SIFT [19] 
first assigns an orientation to each detected salient point. Then, 
features are extracted for normalized image patches based on 
the 3-D histogram of the gradient location and orientation. The 
gradient location is quantized into a 4 × 4 location grid and the 
orientation is quantized into eight bins. In total, a 128-D feature 
vector is generated at each pixel location. 
9) Speeded-Up Robust Features (SURF) 

The SURF descriptor [20] first obtains an orientation for each 
salient point. A square region that is parallel to this orientation 
is derived around the point. Furthermore, the region is split into 
4 × 4  sub-regions. All the features extracted from these 
sub-regions are concatenated into a 64-dimensional feature 
vector. Compared with the SIFT descriptor, the lower 
dimensionality boosts the computational and matching speeds.  

C. Implementation Details 
We use the source code published together with the original 

literature if only this is applicable; otherwise, we implement the 
algorithm according to the literature. For the parameters of the 
five salient point detectors and the nine local descriptors, we 
use the optimal values reported in the original literature if there 
are not specific statements in the rest of this paper, to derive 
unprejudiced evaluation results. The values of the parameters 
of these detectors and descriptors are shown in Tables I and II.  

IV. EXPERIMENTAL SETUP 
To assess the performance of different detector-descriptor 

combinations, we conduct an evaluation study. The adapted 
version [39] of an existing monocular VIO system [37] is used. 
Especially, six representative routes covering different lengths, 

shapes and road scenes are selected and used in this study. The 
GPS/IMU localization unit data is utilized as the ground-truth 
data. The IMU data derived via fusing the acceleration and 
angular velocity with time is employed as the benchmark. In 
addition to the popular Root Mean Square Error (RMSE) metric, 
we also utilize a Segment Based End Point Error (SEPE) [60] 
metric and the Hausdorff distance [61] as performance 
measures.  

A. The Monocular Visual-IMU Odometry System 
Using the Multi-state Constraint Kalman Filter (MSCKF) 

[36], a moving-window monocular VIO system (see Fig. 2 for 
the pipeline) was developed by Hu and Chen [37]. Specifically, 
the camera measurement is obtained based on the trifocal 
geometry relationship [62] between three consecutive frames. 
As a result, it is not necessary to estimate the 3-D position of the 
feature points. The matched feature points between the first two 
frames are mapped into the third frame using a trifocal tensor 
model [62]. Furthermore, a subset is selected from these points 
using the “bucketing” approach [63]. Finally, outlier points are 
filtered through Random Sample Consensus (RANSAC) [64].  

In this study, we utilize the adapted version [39] of the 
aforementioned system [37]. Compared with the original 
system, different detectors and descriptors can be incorporated 
into this version. The feature matching and outlier rejection unit 
was replaced by a self-adaptive module. This module is able to 
prevent the system from crashing in the case that inadequate 
inliers are obtained. In addition, we utilize the feature matching 
method that Lowe [19] proposed.  

B. Dataset and Ground-Truth 
For the purpose of fairly and explicitly assessing the detectors 

TABLE II 
THE PARAMETER VALUES OF NINE LOCAL DESCRIPTORS 

Descriptor Parameters Values 
HOG [26] Block Size 15 × 15 

 Cell Size 5 × 5 
 Number of Orientations 9 

HC-CNN [31] Model VGG16[58]-places205[59] 
 Layers Conv-1, 2, 3, 4 & 5 

IMGP [27] Patch Size 11 × 11 
ICIMGP [39] Number of Channels 8 

 Patch Size 11 × 11 
LM [28] 𝜎* √2, 2, 2√2 

LIOP [30] Number of Spatial Bins 6 
 Number of Neighbors 4 
 Sampling Radius 𝑅 6 

LSSD [29] Patch Size 5 × 5 
 Region Radius 40 
 𝑛+ 12 
 𝑛, 3 

SIFT [19] Sub-window Size 4 × 4 
 Number of Bins Per Window 8 

SURF [20] Window Size 4 × 4 

 

TABLE I 
THE PARAMETER VALUES OF FIVE SALIENT POINT DETECTORS. 

Detector Parameters Values 
Difference of Gaussian  [19] Octaves 4 

 Levels Per Octave 3 
 𝜎- 1.6 

Fast Hessian [20] Octaves 4 
 Threshold 𝑇 0.2 
 Sampling Step 𝑛 2 

FAST [15] Threshold 𝑇 30 
Harris-Laplace [18] Peak Threshold 0.000002 

 Edge Threshold 10 
Blob and Corner [23] Window Size 13 × 13 

 
 
 
 
 

 Bold fonts indicate the highest performance across different feature sets. 
 

Fig. 2.  Pipeline of the monocular visual-IMU odometry system [37]. 
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and descriptors, we select six representative routes from the 
known KITTI dataset [12] by considering the length, shape, 
road scene (including the environment and the impact of the 
independent motion of pedestrians and other vehicles) and the 
speed of the recording platform. These aspects are challenging 
for the established VO systems. Fig. 3 shows three example 
images for each route. Furthermore, the number of the sequence 
and the numbers of the start and end point images provided by 
the KITTI dataset [12] in terms of the six routes are detailed in 
Table III. Specifically, (1) Routes 1 and 2 are the straight lines 
on the express way and in the residential area respectively. 
Compared to Route 1 (≈780m, ≈60km/h), the average speed 
on Route 2 (≈357m, ≈33km/h) is much lower. Besides, there 
are few independent motion vehicles and pedestrians on Route 
2; (2) Route 3 (≈330m, ≈ 28km/h) is a quarter turn on the urban 
road where other vehicles may be encountered; (3) Route 4 (≈
960m, ≈26km/h) includes multiple quarter turns while Route 5 
(≈1050m, ≈40km/h) contains multiple curved turns. Both the 
routes locate in the residential area. They have more 
complicated shapes and are longer than Routes 1, 2 and 3; and 
(4) Route 6 (≈930m, ≈38km/h) is a close loop and also locates 
in the residential area. 
 

All the frames with regard to the six routes were acquired at 
10 fps using a driving car. A gathering setup which consisted of 
several sensors [12] was equipped on the car. Those frames 

have the resolution of 1240 × 375 pixels. At the same time, 
the GPS and IMU data were recorded. The fusion of the two 
sets of data is used as the ground-truth data. Only synchronized 
gray level images are used except that color images are used for 
the hyper-column CNN (HC-CNN) descriptor [31].  

C. Performance Measures 
The Root Mean Square Error (RMSE) and end-point error are 

popular performance metrics used for the VO research. We 
utilize the RMSE measure calculated from the orientation or 
position data as a performance metric. The RMSE is defined as: 

𝑅𝑀𝑆𝐸 = R∑ [("%B"C%)!D(#%B#C%)!]#
%,-

:
, 

 
(8) 

where (𝑥* , 𝑦*) and (𝑥S* , 𝑦S*) are the ground-truth and estimated 
data respectively.  

Instead of using the end position error of the whole trajectory, 
we adapt the Segment-Based End Point Error (SEPE) [60] 
measure. Given a start point, we take a segment of the 
ground-truth trajectory over the length of 100m. The images 
and GPS/IMU data of the KITTI dataset [12] are synchronized 
at the same rate (i.e., each image corresponds to a set of 
GPS/IMU data). The VIO system used a fixed camera height to 
derive absolute scale. The estimated trajectory has been 
transformed into the same reference system as the ground-truth. 
Thus, we can obtain the corresponding end points on the 
estimated trajectory. The position error over the traversed 
distance is derived by computing the Euclidean distance 
between the two end points. Along with the start position is 
shifted by 2m each time, this process is repeated until the end of 
the path is reached. The mean, median and standard deviation 
values of the errors are reported in this paper. 

In addition, the modified Hausdorff distance [61] is used as a 
similarity measure between the estimated and ground-truth 
trajectories. The Hausdorff distance between two point sets: 𝐴 
and 𝐵 is computed according to: 

ℎ(𝐴, 𝐵) = 	 F
𝑁𝑎
∑ {𝑚𝑖𝑛

𝑏∈𝐵
{	𝑑(𝑎, 𝑏)}}𝑎∈𝐴 , (9) 

where 𝑎  and 𝑏  are the points in 𝐴  and 𝐵  respectively, and 
𝑑(𝑎, 𝑏) is the direct distance (which is usually computed using 
the Euclidian distance) between 𝑎 and 𝑏. As shown in Equation 
(9), the Hausdorff distance is not symmetric, i.e., ℎ(𝐴, 𝐵) ≠
ℎ(𝐵, 𝐴) . Therefore, a more general form of the Hausdorff 
distance defined below is normally used. 

𝐻(𝐴, 𝐵) = 𝑚𝑎𝑥{ℎ(𝐴,𝐵), ℎ(𝐵,𝐴)}. (10) 

V. EVALUATION ON DIFFERENT COMBINATIONS OF SALIENT 
POINT DETECTORS AND LOCAL DESCRIPTORS 

      

      

      
(a) Route 1 (b) Route 2 (c) Route 3 (d) Route 4 (e) Route 5 (f) Route 6 

Fig. 3.  Example images (captured using the left camera) of the six routes selected from the KITTI dataset [12]: (a) a straight line on the express way, (b) a 
straight line in the residential area, (c) a quarter turn on the urban road, (d) multiple quarter turns in the residential area, (e) multiple curved turns in the 
residential area, and (f) a close loop in the residential area. 

TABLE III 
DETAILS OF THE SIX ROUTES USED IN THIS STUDY. 

Route 
No. 

Sequence No. in the KITTI 
Dataset [12] 

No. of the Start Point 
Image (The Left Color 

Camera Image) 

No. of the End Point 
Image (The Left Color 

Camera Image) 

1 2011_09_26_drive_0101_sync  
0000000361 0000000816 

2 2011_09_26_drive_0023_sync  
0000000090 0000000472 

3 2011_09_26_drive_0009_sync 
0000000000 

 
0000000405 

4 2011_10_03_drive_0027_sync  
0000000301 

 
0000001610 

5 2011_10_03_drive_0034_sync  
0000000000 

 
0000000899 

6 2011_09_30_drive_0020_sync  
0000000000 

 
0000000834 
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In this section, we assess the five salient point detectors and 
nine local descriptors reviewed in Section III. The experimental 
setup introduced in Section IV is used. In particular, we 
investigate the ability of different combinations of detectors 
and descriptors for the task of monocular visual-IMU odometry 
on six typical routes containing different lengths, shapes and 
road scenes. The parameters used for these methods are shown 
in Tables I and II. We report the overall position and orientation 
RMSE values, the Hausdorff distance, and the mean, median 
and standard deviation values of the SEPE computed between 
the ground-truth and estimated trajectories as follows (Only the 
performance of the best descriptor for each detector in terms of 
each route is reported. Please refer to the supplementary 
material for complete results). 

A. Route 1: Straight Line on the Express Way 
Route 1 is a straight line captured on the express way. The 

average speed of the vehicle was high. The overall position and 
orientation RMSE values, the Hausdorff distance, and the mean, 
median and standard deviation values of the SEPE computed 
between the estimated trajectories obtained using IMU and the 
best descriptor for each detector and the ground-truth trajectory 
are reported in Table IV (a). Figure 4(a) further displays the 
ground-truth trajectory and the estimated trajectories. 

It can be seen from Table IV (a) that: (1) the combination of 
the FH detector [20] and the ICIMGP descriptor [39] yields the 
best RMSE performance; (2) ICIMGP [39] also performs 
properly when used with the other detectors, except the DoG 
detector [19]; (3) the HOG [26] and LSSD [29] descriptors 
perform properly when combined with FAST [15], while SIFT 
[19], SURF [20] and LM [28] generates promising results when 
used with DoG [19] and FAST [15]; (4) IMGP [27] and LIOP 
[30] do not provide good performance. Particularly, the 
performance of LIOP is worse than all of its counterparts; (5) 
the state-of-the-art HC-CNN descriptor [31] only performs well 

when combined with the H-L detector [18]; and (6) the IMU 
method performs properly on this route. 

B. Route 2: Straight Line in the Residential Area 
Route 2 is also a straight line and was acquired in the 

residential area. Compared with Rout 1, the average speed of 
the vehicle used for this route was lower. Besides, there are rare 
independent motions of other vehicles and pedestrians. Table 
IV (b) lists the overall position and orientation RMSE values, 
the Hausdorff distance, and the mean, median and standard 
deviation values of the SEPE computed between the estimated 
and ground-truth trajectories. Figure 4(b) further shows the 
ground-truth trajectory and the estimated trajectories obtained 
using IMU and the best descriptor for each detector.  

As shown in Table IV (b), (1) the joint use of the FH detector 
[20] and ICIMGP [39] produces the best performance; (2) the 
performance of ICIMGP is comparable to the best result when 
combined with the DoG detector [19]; (3) the performance of 
LSSD [29] is inferior. This is particularly true when it is used 
with the FH [20] or H-L detectors [18]; (4) the HC-CNN [31], 
HOG [26], IMGP [27], LIOP [30] and SIFT [19] descriptors 
perform properly when combined with the DoG detector [19]. 
It is noteworthy that DoG [19] is the best choice for HC-CNN 
[31]; (5) in terms of LM [28] and SURF [20], the best choices 
of the detector are DoG [19] and FAST [15] respectively. 

C.  Route 3: Quarter Turn 
Route 3 is a simple quarter turn on the urban road. Table IV (c) 

reports the overall position and orientation RMSE values, the 
Hausdorff distance, and the mean, median and standard 
deviation values of the SEPE derived using IMU and the best 
descriptor for each detector. As can be seen, (1) the ICIMGP 
descriptor [39] often outperforms its counterparts, especially, 
when combined with the FAST detector [15]; (2) the joint use 
of the FAST detector and the HOG descriptor [26] is 
comparable to this result; (3) both SIFT [19] and SURF [20] 

   
(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4.  The ground-truth trajectory and trajectories (best viewed in color) obtained using IMU and the best descriptor for each detector with six routes: (a) a straight 
line on the express way, (b) a straight line in the residential area, (c) a quarter turn on the urban road, (d) multiple quarter turns in the residential area, (e) multiple 
curved turns in the residential area, and (f) a loop in the residential area. (Map source: GoogleEarth). More figures can be found in the supplementary material. 
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yield proper performance; (4) the performance of LIOP [30] is 
superior to that it obtains on Route 1 but is still worse than that 
of its counterparts in most cases; (5) when combined with the 
B&C detector [23], LM [28] and LSSD [29] perform properly 
on this route; (6) the proper performance is produced by IMGP 
[27] along with the FAST [15] or DoG [19] detectors; (7) for 
both the RMSE and SEPE metrics, the DoG detector is the best 
choice for HC-CNN [31]; and (8) IMU performs properly. In 
addition, Figure 4(c) shows the ground-truth trajectory and the 
trajectories obtained using IMU and the best descriptor for each 
salient point detector. 

D. Route 4: Multiple Quarter Turns 
Route 4 was captured in the residential area and contains 

multiple quarter turns. Compared with Routes 1, 2 and 3, this 
route is longer and has more complicated shape. Table V (a) 
lists the overall position and orientation RMSE values, the 
Hausdorff distance, and the mean, median and standard 
deviation values of the SEPE obtained using different methods. 
It can be observed that: (1) the joint use of the FH detector [20] 
and ICIMGP [39] yields the best RMSE and SEPE performance; 
(2) HOG [26] generates the proper result, especially, when 
combined with the H-L detector [18]; (3) the performance of 
IMGP [27] is even comparable to the best result when 
combined with DoG [19] and performs properly together with 
the other detectors; (4) LM [28] performs properly and yields 
its best performance when combined with the H-L detector [18]; 
(5) both SIFT [19] and SURF [20] perform properly in most 
cases; (6) LIOP [30] produces better results than that it 
performs on Routes 1, 2 and 3, and yields its best performance 
when used with H-L [18]; (7) LSSD [29] provides proper 
performance when combined with B&C [23], DoG [19] or 
FAST [15]; (8) HC-CNN [31] generates proper performance 
along with the H-L, DoG or FAST detectors; and (9) the 
performance of the IMU method is worse than those of all the 
detector-descriptor combinations. Furthermore, the 
ground-truth trajectory and the trajectories obtained using IMU 

and the best descriptor for each salient point detector are 
presented in Fig. 4(d).  

E. Route 5: Multiple Curved Turns 
 Multiple continuous curved turns are included in Route 5 

which was acquired in the residential area. The overall position 
and orientation RMSE values, the Hausdorff distance, and the 
mean, median and standard deviation values of the SEPE 
computed between the estimated trajectories obtained using 
IMU and the best descriptor for each detector and the 
ground-truth trajectory are reported in Table V (b). It can be 
seen that: (1) the combination of FH [20] and ICIMGP [39] 
generates promising  RMSE and SEPE performance; (2) SIFT 
[19] yields the comparable performance to these results when 
used with FAST [15] and performs better than that it does on 
Routes 1, 2 and 3; (3) HOG [26], SURF [20] and LM [28] 
perform properly while LSSD [29] only produces proper 
performance when used with B&C [23], DoG [19] or FAST 
[15]; (4) IMGP [27] yields its best performance when combined 
with DoG [19] and also performs properly when used with the 
other detectors; (5) the results obtained using LIOP [30] 
severely suffer from the drift issue except when used with H-L 
[18] and are even worse than that obtained using IMU; (6) the 
overall performance of HC-CNN [31] is better than that it 
yields on the previous four routes, and it performs properly 
when combined with DoG [19]. Figure 4(e) further shows the 
ground-truth trajectory and the trajectories derived using the 
IMU method and the best descriptor for each detector.  

F. Route 6: Loop Line 
Route 6 is a closed loop captured in the residential area. In 

Table V (c), we report the overall position and orientation 
RMSE values, the Hausdorff distance, and the mean, median 
and standard deviation values of the SEPE computed between 
the trajectories obtained using different methods and the 
ground-truth trajectory. As can be seen, (1) the ICIMGP 
descriptor [39] generates the best RMSE performance when 

TABLE IV 
RESULTS COMPUTED BETWEEN THE GROUND-TRUTH TRAJECTORY AND 
THE TRAJECTORIES OBTAINED USING IMU AND THE BEST DESCRIPTOR 

FOR EACH SALIENT POINT DETECTOR ON ROUTES 1, 2 AND 3. MORE 
RESULTS CAN BE FOUND IN THE SUPPLEMENTARY MATERIAL. 

 IMU B&C+ICIMGP DOG+SIFT FAST+HOG FH+ICIMGP H-L+HC-CNN 
Pos. RMSE(m)  19.75 8.87   5.48 11.00 5.27 9.70 

Ori. RMSE(deg) 2.42 1.97 2.37 2.22 1.74 1.97 
Hausd. Dist. (m) 7.17 2.21   3.12 6.70 2.50 5.70 

Mean(m) 18.59 8.27 4.95 9.80 4.63 9.55 
Median(m) 16.84 8.41 5.20 7.96 5.45 8.49 

Std. Dev. (m) 10.85 4.64 3.29 6.63 4.37 4.20 
(a) Route 1 

 IMU B&C+HC-CNN DOG+ICIMGP FAST+ICIMGP FH+ICIMGP H-L+ICIMGP 
Pos. RMSE(m) 15.41 20.21 4.98 17.74 3.84 21.71 

Ori. RMSE(deg) 2.05 3.47 1.32 2.19 1.05 2.85 
Hausd. Dist. (m) 5.40 4.14 1.29 3.23 1.55 3.60 

Mean(m) 15.74 20.39 4.09 15.36 3.34 21.94 
Median(m) 13.97 19.93 4.48 10.05 2.99 18.44 

Std. Dev. (m) 8.65 12.06 1.48 13.85 0.92 12.81 
(b) Route 2 

 IMU B&C+ICIMGP DOG+ICIMGP FAST+ICIMGP FH+ICIMGP H-L+ICIMGP 
Pos. RMSE(m) 19.29 4.24 5.81 3.57 4.95 8.49 

Ori. RMSE(deg) 3.92 1.46 1.52 1.40 1.48 1.54 
Hausd. Dist. (m) 8.25 3.20 3.04 2.10 3.81 3.65 

Mean(m) 19.51 4.48 4.45 3.20 5.17 7.45 
Median(m) 20.70 4.46 3.65 3.11 5.12 6.27 

Std. Dev. (m) 8.06 0.44 2.30 0.90 0.53 3.33 
(c) Route 3 

 

TABLE V 
RESULTS COMPUTED BETWEEN THE GROUND-TRUTH TRAJECTORY AND 
THE TRAJECTORIES OBTAINED USING IMU AND THE BEST DESCRIPTOR 

FOR EACH SALIENT POINT DETECTOR ON ROUTES 4, 5 AND 6. MORE 
RESULTS CAN BE FOUND IN THE SUPPLEMENTARY MATERIAL. 

 IMU B&C+HOG DOG+IMGP FAST+HC-CNN FH+ICIMGP H-L+HOG 
Pos. RMSE(m) 1540 9.02 4.88 12.18 4.43 4.99 

Ori. RMSE(deg) 11.23 2.66 2.75 2.54 1.37   1.42 
Hausd. Dist. (m) 1014 6.84 2.43   6.76 1.98 2.79 

Mean(m) 1280.66 12.45 4.52 11.68 2.31 4.73 
Median(m) 946.41 12.09 4.51 10.56 3.10 4.53 

Std. Dev. (m) 1095 4.77 2.47 6.25 2.09 2.25 
(a) Route 4 

 IMU B&C+HC-CNN DOG+IMGP FAST+SIFT FH+ICIMGP H-L+SIFT 
Pos. RMSE(m) 86.63 9.08 8.14 6.95 6.53 10.83 

Ori. RMSE(deg) 3.67 2.46 2.59 1.54 2.58 2.78 
Hausd. Dist. (m) 35.08 5.07 3.79 4.65 3.69 5.46 

Mean(m) 72.18 9.23 7.06 6.66 3.87 9.64 
Median(m) 56.25 9.70 6.93 6.82 5.20 8.56 

Std. Dev. (m) 56.72 2.44 4.37 2.54 2.93 5.39 
(b) Route 5 

 IMU B&C+LM DOG+HOG FAST+ICIMGP FH+ICIMGP H-L+ICIMGP 
Pos. RMSE(m) 314.48 12.29 6.40 4.56 9.14 6.90 

Ori. RMSE(deg) 9.76 3.19 2.46 2.39 2.68 2.64 
Hausd. Dist. (m) 208.90 2.52 1.67 1.95 2.66 1.64 

Mean(m) 282.00 11.92 5.58 3.46 8.68 6.77 
Median(m) 262.95 12.96 3.98 4.09 7.62 6.21 

Std. Dev. (m) 199.37 5.71 4.40 1.72 4.40 3.42 
(c) Route 6 
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combined with the FAST detector [15]. It also performs well 
when used with the other detectors; (2) HOG [26] yields 
promising results except when it is used with B&C [23]. 
Regarding the median value of the SEPE metric, “DOG+HOG” 
and “FAST+ICIMGP” shows similar performance. However, 
the worst case error (Mean + 3 Standard Deviation) [60] values 
produced by both combinations are 18.78m and 8.62m 
respectively; (3) the proper results are derived using HC-CNN 
[31]. In particular, the best detector for it is DoG [19]; (4) LM 
[28], IMGP [27], SIFT [19] and SURF [20] generate proper 
performance while LSSD [29] only yields proper performance 
when used with DoG [19] or FAST [15]; (5) LIOP [30] 
properly performs when combined with the B&C [23], DoG 
[19] or H-L [18] detectors; and (6) the performance of IMU is 
the worst while it can be improved by being jointly used with 
the detector-descriptor methods. Figure 4(f) also shows the 
ground-truth trajectory and the trajectories obtained using IMU 
and the best descriptor for each salient point detector. 

G. Position Errors Per Video Frame 
Given each frame is considered, we compute the position 

errors generated by the best descriptor for each detector along 
with the six routes and present these results in Fig. 5. 

According to Fig. 5(a), the position error of the 
“B&C+ICIMGP” combination greatly increases and arrives at 
a peak with 24.03m from Frame 93 to Frame 283. The similar 
phenomenon can be observed for the case of “FAST+HOG” 
where a peak with 28.06m is reached to at Frame 283. Since 
Route 1 was gathered on the express way with high speed, there 
were a lot of cars moving in the camera view. In this situation, 
the moving vehicles (please refer to Fig. 3 (a) for examples) in 
front of the recording platform made this route challenging. In 
contrast, the combinations of “DoG+SIFT” and “H-L+ICIMGP” 
perform better in that interval. However, the combination of FH 
and ICIMGP properly perform between those frames. 

Route 2 was acquired in the residential area with cyclists and 
cars moving in front of the camera in the second half of the 
route (see Fig. 3(b) for examples). As a result, the position error 
produced by “B&C+HC-CNN”, “FAST+ICIMGP” and 
“H-L+ICIMGP” apparently rises (see Fig. 5(b)). 

As shown in Fig. 5(c), the performance of the combinations 
of “B&C+ICIMGP”, “FAST+ICIMGP” and “FH+ICIMGP” is 
satisfactory. From Frames 110 to 165, there were cars in front 
of the camera, pedestrians on the right-hand sidewalk and a left 
turn (see Fig. 3(c) for examples). These complex road scenes 
should account for the high position errors that “H-L+ICIMGP” 
suffers in the interval. In addition, there were many cars drove 
across the intersection after Frame 352. This situation results in 
the increased position error with “DoG+ICIMGP” and 
“H-L+ICIMGP”.  

Route 4 contains multiple quarter turns and was captured in 
the residential area with rectilinear motions, left and right 
quarter turns, and moving cyclists and pedestrians (see Fig. 
3(d)). The most significant challenge with this route should be 
due to the turns and independent moving objects. Over the full 
sequence, “DoG+IMGP”, “FH+ICIMGP” and “H-L+HOG” 
produce low position errors (which are normally below 4m). In 
the turn frames, position errors that “B&C+HOG” and 
“FAST+HC-CNN” yield encounter large, continuous 
fluctuations. 

Multiple curved turns in a residential area are included in 
Route 5. There are three continuous semicircle turns between 
Frames 150 and 600 (see Fig. 3(e) for examples). As displayed 
in Fig. 5(e), the position error starts to increase and meets three 
peaks during this period. Also, the long distance curved turn 
results in the increased position error after Frame 700. 

The sixth route is a loop recorded in the residential area with 
rectilinear motions and semicircle turns. However, fewer 
moving objects are encountered in this route (see Fig. 3(f) for 
examples). The position error that the straight line motion 
generates is relatively low except for “B&C+LM”; while the 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 5.  Position errors (best viewed in color) obtained using the best descriptor for each detector in terms of each video frame along with the six routes: (a) a 
straight line on the express way, (b) a straight line in the residential area, (c) a quarter turn on the urban road, (d) multiple quarter turns in the residential area, (e) 
multiple curved turns in the residential area, and (f) a loop in the residential area.  
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semicircle turns yield two apparent position error peaks. 

H. Useful Insights 
The results show that the performance of the nine descriptors 

varies when they are used with different detectors or routes. To 
summarize, seven insights can be derived as follows. 

(1) The best result is normally produced by ICIMGP [39], 
especially, when it is combined with the FAST [15] or FH [20] 
detectors. It is suggested that ICIMGP [39] is suitable for 
monocular visual-IMU odometry. The promising results should 
be attributed to the fact that ICIMGP [39] encodes richer image 
characteristics than its counterparts that are usually extracted 
from gray level images. When combined with the FAST [15] 
and H-L [18] detectors, ICIMGP [39] generates promising 
results on Routes 3 and 6. This observation should be attributed 
to the fact that the majority of the images captured on Routes 3 
and 6 are asphalt pavement or concrete building surfaces. These 
surfaces contain corner-like structures and therefore can be 
easily extracted using the corner detector. In [65], it has been 
demonstrated that the performance of the FAST [15] detector is 
far better than that of H-L on the asphalt and concrete texture 
surroundings. This finding should be account for the fact that 
“FAST+ICIMGP” usually outperforms “H-L+ICIMGP”. 

(2) The HOG [26] and LSSD [29] descriptors perform 
properly when they are used with the DoG [19] or FAST 
detectors [15]. However, their performance varies when used 
with other detectors.  

(3) Regarding the IMGP descriptor [27], the most suitable 
detector could be DoG [19] or FAST [15]. When it is combined 
with the DoG detector [19], it even outperforms ICIMGP [39] 
on Routes 4 and 5. However, IMGP does not yield promising 
results on the straight line express way route (Route 1). The 
similar finding can be observed for LIOP [30] when it is used 
with the H-L detector [18]. These results suggest that gray level 
image patches are not sufficient for the high speed motion road 
scene or the straight line route and probably need to be used 
with other image feature channels (please refer to ICIMGP).  

(4) The LM [28], SIFT [19] and SURF [20] descriptors yield 
promising results when they are jointly used with DoG [19]. 
But their performance is not stable when used with the other 
detectors. Surprisingly, SURF [20] normally performs better 
when combined with DoG [19] than that it does along with FH 
[20]. 

(5) The state-of-the-art HC-CNN [31] descriptor is inferior 
or comparable to ICIMGP [39]. We attribute this result to the 
following two reasons. First, we utilized the Places205-VGG 
model [59] to extract HC-CNN features. Places205-VGG was 
trained using the VGG-VD-16 CNN [58] on the 205 scene 
categories of the Places dataset [59] rather than the KITTI 
dataset [12]. However, the difference between the two datasets 
is apparent. The Places dataset was collected from the Internet, 
and the images contained were taken at different time and 
places independently. Nevertheless, the KITTI dataset was 
captured during car driving whilst recording various driving 
situations, e.g., driving straight on different speeds and making 
the left or right turn. Although the Places dataset contains more 
images than the KITTI dataset, it does not contain these driving 

situations. Since the KITTI dataset does not provide the 
annotated data for road scene classification, we cannot 
fine-tune the Places205-VGG model using the KITTI dataset. 
Hence, it is likely that the Places205-VGG model [59] cannot 
represent road scenes well.  

Second, the Places205-VGG model was trained for the task 
of scene classification. Nonetheless, the size of feature maps 
becomes smaller and smaller with the layers become deeper 
because of the downsampling operations. To extract HC-CNN 
features at each pixel location, the feature maps are up-sampled 
into the original image resolution using interpolation. This 
process loses much localization information and may lead to 
feature matching errors and inaccurate ego-motion estimation 
results. 

(6) It is difficult to decide the best salient point detector as 
the performance of the detectors varies with different routes. 
Also, the performance of a detector depends on which 
descriptor is combined with it. Generally, the DoG [19] 
detector provides relatively stable and good results. For a 
practical VO system, road scene classification can be used as a 
pre-processing before salient points are detected. A detector is 
selected and applied according to the class of the image frame. 
This selection process makes the detector adaptive to different 
road scenes. 

(7) According to the average position RMSE, the ranking in 
the ascending order of the difficulty is: (Routes) 4, 3, 6, 5, 2, 
and 1. To be exact, the average position RMSE values: 15.34m 
and 16.08m are derived on Routes 4 and 3 respectively. These 
values are much lower than the values: 46.65m and 65.75m 
generated on Routes 2 and 1. It is shown that straight line routes 
are challenging for the detector-descriptor methods tested here. 
In contrast, quarter turns are easier for these methods.  

The above insights provide the community with meaningful 
guidelines for choosing the salient point detector and local 
descriptor in the scenario of monocular visual-IMU odometry.  

I. Discussion 
In this subsection, we make discussion on the obtained 

results in terms of four different aspects. 
1) Multi-channel vs. Single-Channel Descriptors 

Multi-channel images usually contain the complementary 
information among different channels. As a result, they encode 
richer characteristics and are able to provide the more complete 
description of the related content than any of the single 
channels (e.g., the gray level image). We tested a multi-channel 
image patch descriptor, i.e., ICIMGP [39], which was extracted 
from multiple channels of an image, including the gray level 
channel and seven other channels (please refer to Section 
III-B-4 for more details). In contrast, the single channel image 
patch descriptor: IMGP [27] was directly extracted from gray 
level images. The superior performance of ICIMGP to IMGP 
and the other descriptors tested in this study has been observed 
in our experiments. The average position errors (m) generated 
by ICIMGP on the six routes are 20.01, 16.54, 5.41, 9.51, 11.98 
and 9.51 respectively; while the corresponding six values 
produced by IMGP are 62.08, 45.02, 19.08, 14.62, 18.95 and 
19.77 respectively. We attribute this result to the fact that 
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ICIMGP incorporates additional feature channels, such as 
gradient magnitude and gradient histogram. 
2) Blob vs. Corner Detectors 

We examined two blob detectors: DoG [19] and FH [20] and 
two corner detectors: FAST [15] and H-L [18]. In the two 
challenging straight line and the loop line routes, most of the 
descriptors generated good results when combined with the 
DoG [19] detector. Regarding the FH [20] detector, however, 
its performance showed a large variance across the six routes 
when combined with different descriptors. On the other hand, 
the FAST detector [15] produced promising results on Routes 1, 
3, 5, and 6, except when combined with the LIOP [30] 
descriptor. Although the H-L detector produced high position 
RMSE values on Routes 1 and 2, they yielded good results on 
Route 3. Therefore, it is not practical to determine which of the 
blob and corner detectors is better than the other. 
3) Impact of the Road Scene and Route Shape 

All the six routes were gathered at different times of the day 
and a variety of locations. As a result, different road scenes, 
including lighting conditions, shadow presence and numbers of 
vehicles, pedestrians and cyclists, and different route shapes are 
contained in these routes. In terms of the road scene, Routes 1 
and 2 have the same shape (i.e., straight line) but quite different 
road scenes. Route 1 was captured on the express way where 
many moving vehicles and cyclists occurred in the view of the 
camera. In contrast, Route 2 was acquired in the residential area, 
which is a low dynamic surrounding. Therefore, Route 1 is 
more challenging than Route 2 as the independent motion of 
vehicles, pedestrians and cyclists results in the mismatching of 
features. The difference in road scenes should account for the 
difference in the average position RMSE (65.75m vs. 46.65m), 
the median (53.02m vs. 40.47m) and standard derivation 
(49.05m vs. 28.39m) of the SEPE generated on Routes 1 and 2. 

On the other hand, the multiple quarter turns (Route 4), 
multiple curved turns (Route 5) and close loop (Route 6) routes 
were gathered in the residential area. Although the road scenes 
of these routes are similar, the shapes of these are obviously 
different. However, the average position RMSE values: 15.34m, 
30.91m and 21.18m and the average SEPE median values: 
14.93m, 22.98m and 18.90m are produced on Routes 4, 5 and 6. 
These results suggest that the impact of the route shape on the 
VO performance is also significant. 
4) Comparison of the Feature Dimensionality 

We do not compare the computational speed of different 
detectors and descriptors because they are implemented in 
different programming languages. However, the time cost of 
feature matching depends on the dimensionality of the local 
descriptors extracted at the same salient points. Table VI lists 
the dimensionality of the nine local descriptors. It can be seen 
that the dimensionality of the ICIMGP [39] descriptor is high 
while it indeed produces the best results in this study.  

VI. EFFECT OF PARAMETER VALUES ON THE PERFORMANCE OF 
THE BEST DETECTOR OR DESCRIPTOR FOR EACH ROUTE 

In Section V, we tested different combinations of detectors 
and descriptors using fixed parameter values. In this section, we 
intend to investigate the effect of different parameter values on 
the performance of these combinations. However, it is not 
practical to tune the parameters of all detectors and descriptors. 
Alternatively, we tune the parameters of the best detector or 
descriptor obtained with each route in Section V in order to 
further augment the obtained results. According to the position 
RMSE and the SEPE (supplemented by the worst case error), 
the best detector-descriptor combination performed on Routes 
1, 2, 4 and 5 is the FH detector [20] and the ICIMGP descriptor 
[39]; while the combination of FAST [15] and ICIMGP [39] 
performs best on Routes 3 and 6. We will examine the effect of  
the parameters of these methods on the visual-IMU odometry 
performance in this section. 

A. Tuning Parameters of the Best Detector for Each Route 
We here tune the threshold 𝑇 for the FH [20] and FAST [15] 

detectors. For the FH detector, 𝑇 is set to 0.2 (which has been 
used in Section V), 0.4, 0.6, 0.8 and 1.0. Meanwhile, the values 
of 𝑇 are assigned with 20, 25, 30 (which has been used in 
Section V), 35 and 40 for the FAST detector. For simplicity, the 
size of image patches that ICIMGP [39] uses is kept as 
11 × 11	pixels.  

Table VII reports the overall position and orientation RMSE 
values, the Hausdorff distance, and the mean, median and 
standard deviation values of the SEPE calculated between the 
ground-truth trajectory and the estimated trajectories on the six 
routes. As can be seen, the performance of the FH detector [20] 
varies when the value of 𝑇 is changed. It can be seen that on 
Routes 1, 4 and 5, the FH detector produces the better results 
when the value of 𝑇 is set to 0.2 than it performs when 𝑇 is 
assigned with the other values. In contrast, the FH detector 
yields similar results when 𝑇 is set to 0.2 and 0.6 on Route 2. 
However, these results are better than those obtained using FH 
with the other 𝑇 values. 

On the other hand, the results derived using the FAST 
detector [15] when 𝑇 is set to 25 are superior to those that it 
produces when 𝑇 is assigned with the other values on Routes 3 
and 6. Nevertheless, the influence of the 𝑇 value to the FH [20] 
and FAST [15] detectors is not significant when Routes 2 and 3 
are considered respectively. In addition, the best results 
obtained using FH [20] or FAST [15] and ICIMGP [39] on 
different routes are relatively stable. Compared with the results 
provided by the IMU method, FH [20] or FAST [15] and 
ICIMGP [39] always yield the better performance. 

B. Tuning Parameters of the Best Descriptor for Each Route 
 Since the ICIMGP descriptor [39] normally generates the 

best results on the six routes, we alter the neighborhood size 𝑁 
of the image patches used by this descriptor. Specifically, the 
values of 𝑁  are set to 7, 9, 11, 13 and 15. Regarding the 
detector, FH [20] (𝑇 = 0.2) is used for Routes 1, 2, 4 and 5 while 
FAST [15] (𝑇 = 30) is used for Routes 3 and 6. 

TABLE VI 
THE DIMENSIONALITY OF THE NINE LOCAL DESCRIPTORS. 

Descriptor HOG HC-CNN ICIMGP IMGP LIOP 
Dim 279 1475 968 121 144 

Descriptor LM LSSD SIFT SURF  
Dim 48 36 128 64  
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 The overall position and orientation RMSE values, the 
Hausdorff distance, and the mean, median and standard 
deviation values of the SEPE computed between the 
ground-truth trajectory and the estimated trajectories on the six 
routes are shown in Table VIII. The most obvious observation 
is that ICIMGP [39] normally produces the best result when the 
value of 𝑁 is set to 11. It is worth to note that 𝑁 = 15 generates 
comparable RMSE and mean SEPE values to 𝑁 = 11, while the 
median and standard derivation values produced by the former 
are inferior to those generated by the latter. That is to say, the 
performance of ICIMGP does not enhance when the size of 
image patches is larger than 11 × 11 pixels. This finding is 
consistent with that Dong et al. [39] and Gauglitz et al. [47] 
observed. The performance of the ICIMGP descriptor using 
11 × 11 patches is relatively steady no matter what route is 
used. In contrast, the performance of IMU is normally inferior. 

To summarize, the combinations of FH [20] (𝑇 = 0.2) or 
FAST [15] (𝑇 = 30) and ICIMGP [39] are promising for the 
monocular visual-IMU odometry task. 

VII. CONCLUSIONS AND FUTURE WORK 
In this paper, we first reviewed five salient point detectors and 

nine local descriptors. Then, we deliberately selected six 
typical routes from the known KITTI dataset [12] by taking into 
account lengths, shapes and road scenes, to rigorously assess 
the detectors and descriptors. Using the adapted version [39] of 
an established monocular visual-IMU odometry system [37] 
and these routes, we performed an extensive evaluation study 
on different combinations of the detectors and descriptors. To 
our knowledge, this is the first extensive comparative 
evaluation on salient point detectors and local descriptors for 
monocular visual-IMU odometry using the representative 
routes with different lengths, shapes and road scenes. 

We examined the detectors and descriptors with the fixed 

TABLE VII 
RESULTS COMPUTED BETWEEN THE GROUND-TRUTH TRAJECTORY AND 

THE TRAJECTORIES OBTAINED USING THE FH [20] OR FAST [15] 
DETECTOR WITH VARIED 𝑇 VALUES AND THE ICIMGP DESCRIPTOR [39] 

ON DIFFERENT ROUTES 
 FH-0.2 FH-0.4 FH-0.6 FH-0.8 FH-1.0 IMU 

Pos. RMSE(m) 5.27 12.17 16.78 9.48 8.52 19.75 
Ori. RMSE(deg) 1.74 1.80 1.91 1.82 1.79 2.42 
Hausd. Dist. (m) 2.50 3.47 3.29 3.50 3.63 7.17 

Mean(m) 4.63 7.86 8.96 6.80 6.01 18.59 
Median(m) 5.45 6.48 10.44 6.85 6.47 16.84 

Std. Dev. (m) 4.37 7.53 10.40 5.32 4.57 10.85 
(a) Route 1 

 FH-0.2 FH-0.4 FH-0.6 FH-0.8 FH-1.0 IMU 
Pos. RMSE(m) 3.84 4.03 3.62 5.92 5.90 15.41 

Ori. RMSE(deg) 1.05 1.35 1.21 1.41 1.40 3.05 
Hausd. Dist. (m) 1.55 1.69 1.49 1.51 1.72 5.40 

Mean(m) 3.34 3.41 3.09 4.80 4.81 15.74 
Median(m) 2.99 3.67 2.91 5.98 3.88 13.97 

Std. Dev. (m) 0.92 1.53 0.98 1.14 0.84 8.65 
(b) Route 2 

 FAST-20 FAST-25 FAST-30 FAST-35 FAST-40 IMU 
Pos. RMSE(m) 3.07 3.01 3.57 4.11 5.91 19.29 

Ori. RMSE(deg) 1.35 1.30 1.40 1.51 1.66 3.92 
Hausd. Dist. (m) 1.93 1.62 2.10 2.27 3.76 8.25 

Mean(m) 2.90 2.59 3.20 3.64 5.87 19.51 
Median(m) 2.75 2.41 3.11 3.16 6.30 20.70 

Std. Dev. (m) 0.87 1.21 0.90 1.51 1.71 8.06 
(c) Route 3 

 FH-0.2 FH-0.4 FH-0.6 FH-0.8 FH-1.0 IMU 
Pos. RMSE(m) 4.43 5.04 6.98 4.61 11.93 1540 

Ori. RMSE(deg) 1.37 1.42 1.45 1.37 2.31 11.23 
Hausd. Dist. (m) 1.98 2.43 3.75 2.42 5.48 1014 

Mean(m) 2.31 3.00 4.68 3.52 6.25 1280.66 
Median(m) 3.10 4.33 4.16 4.18 5.01 946.41 

Std. Dev. (m) 2.09 2.05 3.40 1.75 6.41 1095 
(d) Route 4 

 FH-0.2 FH-0.4 FH-0.6 FH-0.8 FH-1.0 IMU 
Pos. RMSE(m) 6.53 9.45 9.25 10.65 11.00 83.63 

Ori. RMSE(deg) 2.58 2.77 2.71 2.96 3.02 3.67 
Hausd. Dist. (m) 3.69 5.9123 5.93 6.58 6.63 35.08 

Mean(m) 3.87 6.51 6.38 7.89 8.30 72.18 
Median(m) 5.20 8.06 9.60 8.98 7.36 56.25 

Std. Dev. (m) 2.93 2.30 2.01 2.41 4.33 56.72 
(e) Route 5 

 FAST-20 FAST-25 FAST-30 FAST-35 FAST-40 IMU 
Pos. RMSE(m) 8.99 4.20 4.56 10.22 5.58 314.48 

Ori. RMSE(deg) 3.42 2.21 2.39 3.69 2.46 9.76 
Hausd. Dist. (m) 3.84 1.97 1.95 2.34 2.25 208.90 

Mean(m) 6.82 2.67 3.46 7.39 3.44 282.00 
Median(m) 5.45 1.55 4.09 6.91 4.64 262.95 

Std. Dev. (m) 2.00 1.64 1.72 2.84 2.57 199.37 
(f) Route 6 

FH-T or FAST-T denotes Fast Hessian or FAST with the threshold of T. 

TABLE VIII 
RESULTS COMPUTED BETWEEN THE GROUND-TRUTH TRAJECTORY AND 

THE TRAJECTORIES OBTAINED USING THE FH [20] (𝑇=0.2) OR FAST [15] 
(𝑇=30) DETECTOR AND THE ICIMGP DESCRIPTOR [39] WITH VARIED 

NEIGHBORHOOD SIZES (𝑁) ON DIFFERENT ROUTES 
 N = 7 N = 9 N = 11 N = 13 N = 15 IMU 

Pos. RMSE(m) 12.44 49.00 5.27 10.18 13.25 19.75 
Ori. RMSE(deg) 2.22 4.26 1.74 2.03 2.36 2.42 
Hausd. Dist. (m) 3.37 10.00 2.50 3.056 3.39 7.17 

Mean(m) 7.83 22.90 4.63 7.27 9.40 18.59 
Median(m) 9.53 7.18 5.45 6.58 10.60 16.84 

Std. Dev. (m) 6.34 41.98 4.37 7.24 10.90 10.85 
(a) Route 1 

 N = 7 N = 9 N = 11 N = 13 N = 15 IMU 
Pos. RMSE(m) 5.41 4.04 3.84 4.31 3.76 15.41 

Ori. RMSE(deg) 1.43 1.33 1.05 1.40 1.28 3.05 
Hausd. Dist. (m) 1.47 1.69 1.55 1.75 1.64 5.40 

Mean(m) 4.09 3.64 3.34 3.60 3.18 15.74 
Median(m) 5.61 3.00 2.99 3.37 4.01 13.97 

Std. Dev. (m) 1.77 2.10 0.92 1.98 1.16 8.65 
(b) Route 2 

 N = 7 N = 9 N = 11 N = 13 N = 15 IMU 
Pos. RMSE(m) 5.57 4.44 3.57 5.69 3.73 19.29 

Ori. RMSE(deg) 1.79 1.62 1.40 1.70 1.51 3.92 
Hausd. Dist. (m) 3.37 2.09 2.10 2.68 2.67 8.25 

Mean(m) 3.76 3.44 3.20 4.44 3.65 19.51 
Median(m) 4.13 2.95 3.11 3.39 3.22 20.70 

Std. Dev. (m) 1.24 1.86 0.90 2.89 0.92 8.06 
(c) Route 3 

 N = 7 N = 9 N = 11 N = 13 N = 15 IMU 
Pos. RMSE(m) 22.76 13.50 4.43 11.09 30.36 1540 

Ori. RMSE(deg) 3.25 2.33 1.37 3.01 4.25 11.23 
Hausd. Dist. (m) 11.16 6.86 1.98 5.66 12.65 1014 

Mean(m) 13.20 7.27 2.31 8.85 19.60 1280.66 
Median(m) 15.36 10.17 3.10 7.04 21.09 946.41 

Std. Dev. (m) 8.27 5.71 2.09 5.03 15.26 1095 
(d) Route 4 

 N = 7 N = 9 N = 11 N = 13 N = 15 IMU 
Pos. RMSE(m) 12.23 8.04 6.53 10.84 9.99 83.63 

Ori. RMSE(deg) 2.95 2.75 2.58 2.90 2.80 3.67 
Hausd. Dist. (m) 6.07 4.81 3.69 5.51 5.82 35.08 

Mean(m) 9.71 6.57 3.87 7.31 6.46 72.18 
Median(m) 10.72 7.17 5.20 6.85 7.19 56.25 

Std. Dev. (m) 6.15 3.20 2.93 4.24 9.79 56.72 
(e) Route 5 

 N = 7 N = 9 N = 11 N = 13 N = 15 IMU 
Pos. RMSE(m) 10.22 6.68 4.56 9.98 4.66 314.48 

Ori. RMSE(deg) 3.23 2.79 2.39 3.11 2.42 9.76 
Hausd. Dist. (m) 2.15 1.88 1.95 2.60 2.02 208.90 

Mean(m) 8.00 4.07 3.46 7.71 3.97 282.00 
Median(m) 8.02 4.58 4.09 5.96 4.14 262.95 

Std. Dev. (m) 3.81 3.83 1.72 4.36 2.03 199.37 
(f) Route 6 
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parameters in order to find out the most promising 
detector-descriptor combination. The results of the experiments 
provide the community with a set of benchmark data for future 
research. More importantly, the analysis of the results can be 
used as guidelines for developing new algorithms or 
implementing practical odometry systems. To further augment 
the experimental results, we also tuned the parameters of the 
best detector or descriptor for each route. To be specific, the FH 
[20] and FAST [15] detectors and the ICIMGP [39] descriptor 
were examined in this experiment. It was found that the joint 
use of FH [20] (𝑇 = 0.2) or FAST [15] (𝑇 = 30) and ICIMGP 
[39] (𝑁 = 11) produced relatively stable and promising results 
across the six routes for the monocular visual-IMU odometry 
application.  

In our future work, we intend to explore deep learning 
methods when a large road scene dataset which contains 
various scenes is available. We may also analyze the results 
using spatial statistics of image features [44]. 
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