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ABSTRACT
Gas clumps formed within massive gravitationally unstable circumstellar discs are potential
seeds of gas giant planets, brown dwarfs, and companion stars. Competition between three
processes – migration, gas accretion, and tidal disruption – establishes what grows from a
given seed. Numerical simulations and population synthesis calculations published to date,
however, do not always agree on the outcome. Here, we investigate if the codes PHANTOM,
GADGET, SPHINX, SEREN, GIZMO-MFM, SPHNG, and FARGO give the same answer
when faced with the same migrating clump setup. Four test runs with varying assumptions
about the initial clump mass and gas accretion on to it are performed. We find that the codes
disagree in the clump migration rate by between 10 per cent to ∼50 per cent, depending on the
test, but always arrive in the same qualitative picture. Specifically, with gas accretion turned
off, planets migrate through the whole effective computational domain. In contrast, for the run
with the most massive seed and gas accretion on, the planet opens a deep gap and stalls at
separation of order 80 AU. We find that the artificial viscosity treatment and the sink particle
prescription may account for much of the differences between the codes. We also attempt to
reproduce the planet evolution tracks from our hydrodynamical simulations with prescriptions
from three previous population synthesis studies. We find that the disagreement amongst the
population synthesis models is far greater than that between our hydrodynamical simulations.

Key words: accretion discs – hydrodynamics.

1 IN T RO D U C T I O N

Secondary star formation via gravitational instability (GI) of mas-
sive circumstellar discs has now been observed by ALMA (Tobin
et al. 2016) and may be a viable explanation for the high frequency
and the host metallicity correlations of stellar binaries with separa-
tions less than tens of AU (Moe, Kratter & Badenes 2019). Modern
star formation simulations (Bate 2018) and observations of young
discs (Tychoniec et al. 2018) also indicate that massive large gas
discs could be abundant.
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The conditions for disc fragmentation (Gammie 2001; Rafikov
2005) are similar to those for forming first hydrostatic cores in
star formation (Larson 1969), implying that the masses of gas
clumps born in the discs must be initially similar to those of the
opacity-limited fragments, e.g. ∼5–10 MJ (Low & Lynden-Bell
1976; Rees 1976; Masunaga, Miyama & Inutsuka 1998), although
both smaller and larger initial clump masses were considered in the
literature (Boley et al. 2010; Kratter, Murray-Clay & Youdin 2010;
Forgan & Rice 2013a). Due to these uncertainties and due to strong
clump evolution after formation via inward migration (Mayer et al.
2004; Vorobyov & Basu 2005; Baruteau, Meru & Paardekooper
2011; Machida, Inutsuka & Matsumoto 2011), gas accretion (Zhu
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et al. 2012a; Stamatellos 2015; Mercer & Stamatellos 2017), and
tidal disruption (Boley et al. 2010; Nayakshin 2010), it is difficult
to predict when and how often disc fragmentation leads to the
formation of planets (Kuiper 1951), brown dwarfs (Stamatellos &
Whitworth 2008, 2009), or secondary stellar companions (Kratter
et al. 2010).

The scale of uncertainty in this problem is immense and affects
our understanding of even the most basic questions, especially in
the theory of planet formation. Direct imaging surveys show that the
occurrence rate of wide separation (tens of AU or more) planetary
mass companions to FGK stars, and also brown dwarfs, is just a
few per cent (Biller et al. 2013; Chauvin et al. 2015; Reggiani et al.
2016; Vigan et al. 2017). This is much smaller than � 50 per cent
observed planet occurrence rate at separations less than a fraction
of AU from the star (see chapter 2 in Winn & Fabrycky 2015). One
interpretation of this result is that gravitational disc instability rarely
makes planetary-mass objects (Kratter et al. 2010; Forgan & Rice
2013a; Rice et al. 2015; Vigan et al. 2017). On the other hand, if
radial migration and tidal disruption transmogrify planetary mass
gas clumps into short-period planets, including sub-Neptune mass
planets (Boley et al. 2010; Nayakshin & Fletcher 2015), then the
rate at which GI fragmentation forms planetary-mass clumps could
be much higher; the resulting planets are simply not where they
were born.

Furthermore, there is now observational support that at least some
initially widely separated objects end up at sub-AU separations
from the star, presumably due to disc migration. The frequency of
appearance of planets more massive than ∼4 Jupiter masses and
brown dwarf companions to stars do not correlate with the host
star metallicity (Raghavan et al. 2010; Troup et al. 2016; Nayakshin
2017a; Santos et al. 2017), indicating that these objects probably did
not form by Core Accretion (which predicts an opposite correlation,
see Mordasini et al. 2012). Additionally, the properties and statistics
of very strong episodic flaring of young protostars, known as FU
Ori outbursts (Hartmann & Kenyon 1996), are consistent with stars
tidally disrupting and devouring (Vorobyov & Basu 2006; Takami
et al. 2018) up to a dozen gas clumps per lifetime.

There are many physical uncertainties in the physics of the
problem, e.g. disc opacity (Meru & Bate 2010), initial conditions
for disc fragmentation (Vorobyov & Basu 2010; Zhu et al. 2012a),
treatment of gas cooling close to and inside the Hill sphere of
the planet (Nayakshin & Cha 2013; Stamatellos 2015; Mercer &
Stamatellos 2017), dust growth and dynamics inside the clump,
which may stronly affect clump cooling and heating balance
(Helled & Bodenheimer 2011; Nayakshin 2016), etc.

However, in addition to this, different simulation codes use
different numerical algorithms to model the same processes, and
it is not clear if applying these codes to the same problem will
yield identical results. The goal of our paper is evaluate how the
simulation results differ between some commonly used numerical
codes. To focus on this issue alone, we set up a physically simple
test problem of a gas giant planet embedded in a massive gas disc at
an initial separation of 120 AU. The disc cooling is treated with the
widely used idealized β-cooling prescription (Gammie 2001; Rice,
Lodato & Armitage 2005).

To disentangle various effects, we perform four comparison runs.
The initial planet mass is set to Mp0 = 2 MJ in three of the runs and
to Mp0 = 12 MJ in the fourth. As explained above, gas accretion
on to the gas clumps is an integral part of the problem. Therefore,
in two of the Mp0 = 2 MJ runs, we turn-off gas accretion on to
the planet, setting instead a relatively large gravitational softening
length parameter to reduce the amount of gas flowing into the

gravitational potential well of the planet (as was also done by
Baruteau et al. 2011). In the other two comparison runs, a sink
particle prescription is used to absorb the gas accumulating at the
planet location.

The paper is structured as follows. In Section 2, we describe the
physical setup and initial conditions of the problem, and describe
the contributing codes. In Section 3, we present main results of
our paper. A comparison of the results to population synthesis
prescriptions is made in Section 4, and in Section 5 we discuss
observational implications of this work.

2 PRO B L E M A N D N U M E R I C A L D E TA I L

2.1 Contributing Codes

There are five 3D SPH codes that we compare here: PHANTOM
(Price et al. 2017), GADGET (Springel 2005), SPHINX (Dehnen &
Aly 2012), SEREN (Hubber et al. 2011a,b), and SPHNG (Benz
1990). The Meshless Finite Mass code GIZMO (Hopkins 2015)
builds on SPH methods and adds a kernel discretization of the
volume, coupled to a high-order matrix gradient estimator. The
GIZMO-MFM numerical scheme has a higher order consistency
and appears to overcome some of the numerical viscosity issues
in SPH, and has been recently shown to reproduce the expected
convergence of the critical cooling time-scale for fragmentation (see
Deng, Mayer & Meru 2017), which has been hard to achieve with
SPH methods previously (e.g. Meru & Bate 2010). Finally, FARGO
is a 2D fixed cylindrical grid finite differencing code (Masset 2000)
which has been widely used for studies of planet migration and has
shown consistency with analytical solutions in the linear regime
applicable to much lower mass planets (e.g. Baruteau & Masset
2008) than studied here.

2.2 Problem choice

The potential formation of gas giant planets via gravitational
instability of protoplanetary discs (e.g. Kratter & Lodato 2016)
motivates our study. To this end, all of our runs use a massive gas
disc with initial mass Minit = 0.2 M� as an initial condition for
all of our runs. The disc is in circular rotation around a star with
mass M∗ = 1 M�. At fragmentation, the disc Toomre (1964) Q-
parameter is Q � 1 (e.g. Boley et al. 2010). Such discs generate
spiral density arms. Interactions of the planets with the arms give
stochastic velocity kicks to the planets (e.g. Baruteau et al. 2011).
In addition, fragmenting discs usually hatch more than one gas
clump. Clump–clump interactions also lead to angular momentum
exchange between the clumps (Cha & Nayakshin 2011) and even
mergers (Hall, Forgan & Rice 2017). These processes are stochastic
and make numerical simulations of planet migration with different
codes susceptible to small numerical detail.

To avoid this stochasticity, we simplified the task at hand by
choosing the parameters of the problem such that the Toomre param-
eter of the disc is slightly larger than expected at fragmentation, i.e.
Q � 2 everywhere, which makes the disc gravitationally stable. We
then inject a planet into the disc and follow its evolution numerically.
It is clearly desirable to extend the code comparison in the future
in the regime in which the disc is free to fragment and form more
clumps.

An ideal gas equation of state is used in this paper with the
adiabatic index γ = 7/5, as appropriate for diatomic gas. The star
irradiates the disc and sets the minimum irradiation temperature,
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which is a function of radius R:

Tirr = T0

(
R

R0

)−1/2

, (1)

where T0 = 20 K and R0 = 100 au. The irradiation temperature
corresponds to the specific internal energy,

uirr = kBTirr

μ(γ − 1)
, (2)

where μ = 2.45mp is the mean molecular weight of the gas.
The radiative cooling of the disc is modelled with the β-cooling

prescription widely used in the literature to model marginally stable
self-gravitating discs (e.g. Rice et al. 2005). The irradiation from
the central star is additionally present as a heating term, so that the
specific internal energy of the gas, u, evolves according to

du

dt
= −u − uirr

tcool
, (3)

where tcool = β�K(R)−1,

�K(R) =
(

GM∗
R3

)1/2

(4)

We use β = 10 for the runs presented below. This value of β is
comparable to the critical fragmentation β for γ = 7/5 as found
by Rice et al. (2005), although recent simulations with GIZMO-
MFM suggest that disc fragmentation may occur at lower β (e.g.
Deng et al. 2017) for this code. However, the inclusion of external
irradiation will also likely lead to fragmentation happening for lower
values of β (Rice et al. 2011)

2.3 Initial conditions

We first describe the initial conditions for the SPH codes and
GIZMO-MFM. The star is treated as a sink particle that accretes
any SPH particles that enter inside the sink radius, Rsink = 3 au. The
gravitational softening of the star is set at hg = 0.25 au. The disc is
initially set up with the surface density profile

�in(R) = Md

2πR(Rout − Rin)
(5)

where Rin = 10 au and Rout = 300 au are the inner and the outer
initial disc radii, respectively. The disc is relaxed for about 10 orbits
at the outer edge before the planet is inserted. This is done to allow
the disc to settle into a vertical hydrostatic balance and to damp
out radial disc oscillations. During the disc relaxation procedure, a
small fraction (∼3 per cent) of the SPH particles are accreted on to
the central star. This is inevitable due to artificial viscosity of the
disc increasing in regions of lower particle number, which is usually
near the inner disc boundary.

These initial conditions, after the relaxation procedure was
applied, are presented in Fig. 1. The top panel shows the gas
column density multiplied by radius, e.g. �(R) × (R/100 AU) and
the vertically averaged gas temperature profile T(R). Both of these
are compared to the respective column density and temperature
profiles before the relaxation (blue dashed curves). We see that
both the inner and the outer regions of the disc are depleted by the
relaxation process, but that the region between R ∼ 30 AU and R ∼
200 AU has a smooth � ∝ 1/R profile. The gas temperature profile
is very close to equation (1), except for radii R � 20 AU where the
artificial viscosity heating is not negligible. Since our relaxed disc
has a strong roll-over at radii smaller than R ∼ 30 AU, we expect
that the planet migration process in this numerical setting will be

Figure 1. Initial (relaxed) conditions for all of the SPH runs presented in
the paper. Top: disc surface density, plotted as � × (R/100 AU), and the
temperature profiles. The disc inward of ∼30 AU is strongly affected by the
sink (star) particle inner boundary condition. Bottom: The ratio of the disc
vertical scaleheight H to 0.1R (solid) and the Toomre parameter Q.

strongly affected at radii of about 40 AU. The bottom panel of Fig. 1
presents the disc aspect ratio H/R normalized to 0.1 and the Toomre
Q-parameter. As stated in the Introduction, the disc is everywhere
stable to self-gravity and does not fragment.

For FARGO, the initial conditions were obtained in the same
physical setup but the code was relaxed for 50 orbits at the outer
edge.

In the simulations presented below, time is counted from the
relaxed initial condition shown in Fig. 1. We inject the planet
instantaneously at t = 0 on a prograde circular orbit centred on
the star at the initial separation of R = 120 AU. No change is made
to the initial velocity of either the gas or the star. Note that for
Mp0 = 2 MJ, the planet mass is only 1 per cent of the disc mass and
just 0.2 per cent of the total mass of the system, so this approach is
justifiable. While for the Mp0 = 12 MJ simulation the error is larger,
we prefer this approach because keeping the planet orbit fixed while
increasing its mass slowly (a common approach in studies of low
mass planet migration) would lead to undesirable modifications of
the disc structure for our problem. For example, as found by Malik
et al. (2015), the gap opening criterion should include a gap-opening
time-scale. If the planet migrates across the gap sooner than the gap
could be excavated, no gap is opened. However, keeping the planet
on a fixed orbit implies an infinite source of angular momentum and
therefore may result in the planet opening a gap in the disc where
none should be present.

2.4 Approach to code algorithm differences

Numerical hydrodynamics codes, whether particle or grid-based,
employ different numerical algorithms to integrate equations of
motions, various time-stepping criteria, and approximate techniques
to resolve contact discontinuities such as shocks and singularities
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arising in the gravitational potential and forces near point masses
(Bodenheimer et al. 2007). For example, by default GADGET
uses the Monaghan (1997) form of the artificial viscosity with the
Balsara–Monaghan switch to reduce artificial viscosity in shear
flows (Monaghan 1992; Balsara 1995), and the spline kernel for
SPH (for details see Springel 2005). More modern formulations
of artificial viscosity exist and different SPH kernels are adopted
by some of the other codes (see Section 3.4). It is possible to
modify GADGET to use the same approaches. However, it is not
possible, in practice, to modify all of the codes to employ exactly
the same numerical algorithms due to significantly different intrinsic
code designs. Additionally, such code alterations would defeat the
purpose of our code comparison project as the codes actually being
compared would then be different from their current community-
used versions.

Therefore, we attempted no code modification in this project with
only a few exceptions that relate to the most salient physics of the
problem. For each test problem presented below, all of the codes
use the same gravitational softening parameters and the accretion
radii for the two sinks in the problem, as detailed further below. The
sections below discuss the implementation of sink particle accretion,
gravitational softening, and artificial viscosity in the codes used in
this paper.

2.4.1 GADGET

Our implementation of GADGET is very similar to the code
description given in the instrument paper by Springel (2005), with
a few changes detailed below. GADGET uses the spline kernel
(Monaghan & Lattanzio 1985) for both the SPH density field and
computing the gravitational softening around all particles, including
the sink particles. We use 40 particles for the neighbour search. The
artificial viscosity of SPH is that given by the Monaghan–Balsara
formulation (Gingold & Monaghan 1982; Balsara 1995), modified
by the viscosity limiter prescription (see equation (11) in Springel
2005) to alleviate unwanted angular momentum transport in the
presence of shear flows. We follow the default GADGET settings
in this paper, keeping the artificial viscosity coefficient αv set to 1
for all times, and βv = 2αv.

The sink particles are implemented in a very simple way. Any
SPH particle that is separated from the sink by a distance smaller
than the accretion radius Ra is accreted by the sink. The linear
momentum and mass of the accreted particle are added to that of
the sink. Some authors consider more complicated gas accretion
criteria. For example, Bate, Bonnell & Price (1995a) consider
the expected pressure of the gas within the sink region and the
binding energy of the gas with respect to the sink. However, there is
much physical uncertainty in picking these additional gas accretion
criteria. The sink radius defines the region of space where we have
insufficient information (usually, no information at all) about the
gas properties. The interactions of that missing gas with the SPH
particle in question could change the properties of the latter in
ways that cannot be computed. For example, an SPH particle on an
hyperbolic trajectory around the sink is formally not bound to the
sink and thus would not be accreted if one accretes only particles
with negative binding energies (Bate et al. 1995a). However, the
same particles may be accreted if the particle were to interact with
the missing gas within the sink radius, undergoe shock due to this
interaction, and then lose the excess energy through radiation.

For further discussion of these issues and tests of our GADGET
implementation of the sink particle prescription, see Cuadra et al.

(2006) and Humphries & Nayakshin (2018). Nayakshin (2017b)
found that the sink radius prescription tends to over-estimate the
gas accretion rate on to a planet embedded in a massive gas
disc for simulation parameters comparable to those used here (see
figure A1 in Nayakshin 2017b). Gas accretion rates measured in
this paper should be thus taken as upper limits to the corresponding
astrophysical problem.

2.4.2 PHANTOM

Cullen & Dehnen (2010) introduced an artificial viscosity switch
which utilizes the derivative of the velocity divergence to detect
shocks. Due to the switch, the artificial viscosity coefficient αv is
varied between a minimum value, αmin, far from the shock, and the
maximum, αmax = 1, reached close to the shock. We use this method
for PHANTOM in this paper, as described in detail in sections 2.2.7–
2.2.9 in Price et al. (2017). We fix the artificial viscosity coefficient
βv at 4 for our comparisons runs (see Price & Federrath 2010).
An exception to this is Section 3.4 where we explore how results
depend on the choices of the artificial viscosity prescription for
PHANTOM.

Gravitational softening in PHANTOM is different for interactions
between sinks and interactions between sinks and SPH particles.
The sink–sink softening is set to 0 by default. The sink–gas
gravitational softening length is the maximum between the fixed
softening length of the sink and the gas particles adaptive softening
length. Gravity for SPH particles is softened by the SPH kernel
function (see section 2.12.2 in Price et al. 2017).

Compared to GADGET, the PHANTOM default sink particle
implementation also sets constraints on the binding energy and
relative angular momentum of the SPH particle to be accreted. In
this paper, we disable these additional checks and use the same
approach as specified in Section 2.4.1.

2.4.3 SPHINX

SPHINX is an SPH code based on a conservative formulation (as
derived from a variational principle, e.g. Price 2012) with individual
artificial dissipation strengths αv adapted using the Cullen &
Dehnen (2010) switch with βv = 2αv. The details of the artificial
viscous force differ slightly (by an amount O(h2)) from traditional
implementations to accommodate the one-sweep SPH algorithm,
which avoids separate sweeps over all particle neighbours for the
density and force computations. For the runs here, we use the
Wendland (1995) C2 smoothing kernel, which scales as w ∝ (h
− r)3(h + 3r) for r < h with smoothing length h, adjusted to obtain
Nh = 4πρh3/3m = 80 at each time step. Gravity is computed using
a C∞ softening kernel with density ∝ (r2 + h2

s )−7/2, which results
in a smaller force bias than traditional Plummer softening (Dehnen
2001). Individual softening lengths ε are scaled to the smoothing
lengths h such that the estimates for the gas and gravitating mass
densities are mutually consistent (have the same bias). SPHINX
uses an oct-tree for neighbour search (and gas-selfgravity which is
computed using the fast multipole method Dehnen 2000) and the
leap-frog (2nd-order symplectic) time integrator. Star and planets
are represented by sink particles, whose gravity is computed by
direct summation. Any gas particle within one sink radius is accreted
by a sink particle, whereby its mass, linear, and angular momentum,
as well as energy is absorbed by the sink particle (which carries a
spin and internal energy for this book keeping).
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2.4.4 SPHNG

SPHNG is based on the version developed by Benz 1990) and
first presented by Bate et al. (1995a). It uses variable individual
smoothing lengths hj and adjusts them so that the number of nearest
neighbours for any particle is 50 ± 20. It also uses individual particle
time-steps to simulate dense regions with sufficient precision while
avoiding over-simulation of less dense regions, and integrates the
particles using a second-order Runge–Kutta scheme. The standard
artificial viscosity (Monaghan 1992), with αv = 1.0 and βv = 2.0,
and standard spline kernel are used. A binary tree is used to calculate
neighbour lists and to determine gravitational forces between gas
particles, with the gravitational force softened by the SPH kernel
function (Price et al. 2017). The gravitational force between the
gas particles and the sink particles is, however, done using a direct
calculation, which is softened by replacing the 1/r2 gravitational
force dependence with 1/(r2 + h2

s ). If accretion on to the sink
particles is allowed, then particles are only accreted if they are
bound and if the specific angular momentum of the particle is less
than that required for them to form a circular orbit at the accretion
radius (Bate et al. 1995a).

2.4.5 GIZMO

The GIZMO code is a multimethod code which inherits the tree-
based gravity algorithm from GADGET3 (see Springel 2005,
for GADGET2 code description) and couples it with different
Lagrangian hydrodynamical solvers. For this paper, we employ
the Meshless Finite-Mass (MFM) hydro method in GIZMO which
solves the inviscid fluid equations by partitioning the computational
domain using volume elements associated with a particle distribu-
tion, and computing fluxes through the volume ‘overlap’ by means
of a Riemann solver as in finite volume Godunov-type methods
(Hopkins 2015). Volume elements are constructed via convolution
integrals with kernel functions analogous to those adopted in SPH.
Owing to the use of a Riemann solver (here, we use the HLLC solver
and the minmod slope limiter), GIZMO-MFM employs no explicit
artificial viscosity. This numerical method appears significantly
less dissipative than SPH for differentially rotating flows, better
conserving angular momentum and vorticity (Hopkins 2015; Deng
et al. 2017). The kernel for the volume partitioning, the gravitational
softening, and the sink particle implementation are all identical to
those of GADGET used in this paper (Section 2.4.1).

2.4.6 SEREN

The SPH code SEREN was developed for star and planet formation
simulations by Hubber et al. (2011b,a). The code uses an octal tree to
compute gravity and find neighbours, multiple particle time-steps,
and a 2nd-order Runge–Kutta integration scheme. To simulate the
effect of physical viscosity in discs, SEREN uses a time-dependent
artificial viscosity (Morris & Monaghan 1997) with parameters
αmin = 0.1, αmax = 1, and βv = 2αv, so as to reduce artificial
shear viscosity away from shocks (this scheme is the predecessor of
the Cullen & Dehnen 2010, method). Sink particles, which interact
with the rest of the computational domain only through their gravity,
are used to represent the central star and the planet (Bate, Bonnell &
Price 1995b). Gas particles accrete on to a sink when they are within
the sink radius and bound to the sink (see Hubber et al. 2011a). Once
gas particles are accreted, their mass and linear angular momentum
are added to sink. The gravitational force between gas particles and

Table 1. The parameters distinguishing the Runs presented in this paper.
Ra, hs, and Mp0 are the sink accretion radius, the gravitational softening
parameter, and the mass of the planet, respectively. All the other parameters
and initial conditions are the same for all four Runs.

Run Ra (AU) hs (AU) Mp0 ( MJ)

Run 1 0.0 1 2
Run 2 0.0 2 2
Run 3 0.5 0.01 2
Run 4 1.0 0.01 12

a sink is found through a direct calculation and softened according
to 1/(r2 + h2

s ) to avoid unphysically large gravity forces.

2.4.7 FARGO

FARGO is a 2D grid based, staggered-mesh code (Masset 2000;
Baruteau & Masset 2008) that has been used extensively to study
planet migration (Masset 2002; Masset & Casoli 2010; Baruteau
et al. 2011). For the runs presented here, we use a cylindrical grid
with 508 and 1536 cells in the radial and azimuthal directions,
respectively. The radial grid is logarithmic with the inner and
outer boundary conditions set at 10 and 300 AU, respectively. Von
Neumann–Richtmyer artificial bulk viscosity is used to treat contact
discontinuities (Stone & Norman 1992).

For this paper, FARGO also uses a fixed gravitational softening
parameter hs as for all the other codes, which is a break with the
common practice of scaling hs with the local disc scaleheight or
the star–planet separation (e.g. Baruteau et al. 2011), but allows
for a more uniform comparison between the codes. Specifically, the
softening parameter used in grid simulations is typically set to hs =
εH, where ε ∼ O(0.1) (Müller, Kley & Meru 2012). In this case the
gravitational softening would be a function of position as H ∝ R for
our simulations (see Fig. 1). The consequences of this for numerics
are not immediately obvious, but we note that for ε = 0.1 and H ∼
0.1R, the adaptive softening is equivalent to hs = 0.4 − 1.2 AU in
the radial range 40–120 AU, which is not too dissimilar from the
1 AU and 2 AU fixed smoothing employed in Runs 1 and 2 (see
below). For a relatively large fixed value ε = 0.7, we find that the
FARGO migration time-scales increase by ≈50 per cent compared
to those presented in this paper.

2.5 The comparison runs

It is possible to resolve the pre-collapse gas giant planets (clumps)
in modern computer simulations directly (e.g. Boley et al. 2010;
Galvagni et al. 2012; Zhu et al. 2012b; Nayakshin 2017b; Hall et al.
2017). However, while the clumps can be resolved and modelled
from the point of view of hydrodynamics, other physics, e.g. a
proper equation of state including molecular hydrogen internal
degrees of freedom, dust dynamics, and radiative transfer, are
not yet implemented in most of the codes available to us here.
Any simplified radiative transfer scheme applied to the clumps
would necessarily over-simplify their internal physics (their cooling
balance is significantly different from that of the disc; e.g. see
Vazan & Helled 2012) and would thus be riddled with its own
uncertainties. A more prudent approach for us to follow here is to
model the planet as a sink particle, just as the star, albeit with its
own gas accretion (sink) radius.

Table 1 shows the parameters that distinguish the four different
comparison runs that are presented below. In Runs 1–3, the initial
planet mass is set to Mp0 = 2 MJ, whereas Run 4 starts with
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Mp0 = 12 MJ. In Runs 1 and 2, gas accretion on to the sink is
completely turned off by setting the accretion radius to zero. This
is done to try to isolate the effects of planet migration versus gas
accretion on to the planet. This is especially important since FARGO
is a grid-based code in which implementation of gas accretion is
drastically different from the sink particle method of SPH codes.
Therefore, Runs 1 and 2 can be simulated with SPH codes and
FARGO, whereas Runs 3 and 4 are done with SPH only.

Turning off gas accretion on to a planet does not come free of
numerical cost. Gas that gets bound to the planet may eventually get
very close to the planet. A very high gas density around the planet is
numerically challenging as the SPH particle time step becomes too
short for the code to execute effectively. Therefore, to avoid that, in
Runs 1 and 2, the planet softening radius, hs is increased to 1 and 2
AU, respectively, from the much smaller value used in Run 3. For a
similar reason, Run 4, uses a larger accretion radius than Run 3.

The initial SPH particle number is N = 106 for all of the runs
presented here.

2.6 Analytical expectations

Tanaka, Takeuchi & Ward (2002) derived an analytical expression
for type I migration of a low mass planet in an isothermal disc. The
migration time-scale, defined as

τ = R

|Ṙ| , (6)

where Ṙ is the rate of change of planet–star separation due to
gravitational torques from the disc, is given by

τiso = (2.7 + 1.1λ)−1 M�

Mp

M�

�pr2
p

(
cs

rp�p

)2 1

�p

. (7)

Here, λ is the exponent of the surface density power law, � ∝ R−λ,
�p is the surface density at the planet location, M� and Mp are the
star and planet masses, respectively, rp is the planet–star separation,
cs is the gas sound speed at the planet, and �p is the planet Keplerian
angular velocity. For the initial parameters of our disc and Mp =
2 MJ, we obtain a migration time-scale of τ iso = 14.6 × 103 yr.
Even though our discs are not isothermal, the results of Tanaka
et al. (2002) are widely used, and serve as a useful comparison for
us.

Baruteau et al. (2011) used the 2D code FARGO to study planet
migration in very massive self-gravitating discs, for which the
Toomre parameter Q self-regulates to a value between ∼1.5 and ∼3
over a broad range of radii. These authors also offered an analytical
expression for the migration time-scale:

τsg ≈ 5.6

(3.8 − λ)
γQp

h3
p

q

(
0.1

hp

)2 2π

�p

, (8)

where q = Mp/M� is the mass ratio; Qp is the Toomre parameter
and hp = H/R at the planet position. For the initial parameters of
our Runs 1–3, equation (8) yields τ sg = 5.0 × 103 yr at a separation
R = 120 AU.

3 R ESULTS

3.1 At a glance

Fig. 2 shows the planet separation against time for Runs 1 & 2. To
recap, gas accretion on to the planet is off, and instead a relatively
large gravitational softening parameter is used. Despite this, some

gas accumulates deep inside the Hill sphere, and differently so for
different codes. This appears to be the primary reason why Runs 1
and 2 stalled for SEREN at around 5000 yr. Fig. 3 shows the results
of Runs 3 & 4 (left-hand and right-hand panels, respectively) in
which gas accretion on to the planet (sink particle) is allowed. The
sink mass versus time is shown in the lower panels.

A cursory look at Figs 2 and 3 shows that there is a general
qualitative agreement between the different codes. For example,
in Runs 1–3, the planet manages to migrate to separations of 40–
60 AU for most of the codes, whereas in Run 4, in which the
planet is much more massive, the planet stalls further out due to
it opening a deep gap in the disc. At the same time, there are
significant quantitative disagreements between the codes. All of
the codes show that the planet develops orbital eccentricity, but the
actual value of the eccentricity is different, varying between ∼0.01
to the maximum of ∼0.1.

3.2 Analysis of Runs 1-3

3.2.1 Migration rates

We now analyse Runs 1–3 in which the planet’s initial mass is Mp0 =
2 MJ. To aid quantitative analysis, we determine migration time-
scale, τ , from the simulations. A straight-forward use of equation (6)
to calculate τ from the simulation data is ill advised due to planets
having non-zero eccentricity: the instantaneously defined migration
time varies significantly over a fraction of the planet orbital time-
scale. Some sort of time averaging of τ over times at least as long
as an orbital period is thus needed.

To do so, we first define a time-dependent migration rate as the
final difference R/t, where the separation and time differences
are counted from the initial values:

Ṙ(t) = R(t) − R0

t
, (9)

where R0 = R(t = 0) = 120 AU, t > 0 is time, and R(t) is the planet–
star separation at that time. To remedy the oscillatory behaviour in
Ṙ due to finite orbital eccentricity, we define an orbit-averaged
quantity

˙̄R(t) = 1

Tp

∫ t+Tp/2

t−Tp/2
Ṙ(t ′)dt ′ , (10)

where Tp is the planet orbital period at location R(t). We use this
definition to define the planet migration rate after t = 4000 yr for all
of the codes, which we label τ 4. We then also define the migration
time-scale τ 7, following the procedure outlined above, but including
the data between 4000 and 7000 yr. Comparison of τ 4 and τ 7 tells
us how the migration rate varies as the planet gets closer to the star.
Due to a non-zero planet orbital eccentricity, a finer time-resolved
analysis of the migration rate does not appear well-justified. We also
experimented with taking the averaging time in equation (10) twice
shorter and twice longer and obtained virtually undistinguishable
results.

Fig. 4 compares the migration time-scales τ 4 and τ 7 (left and
right-hand panels, respectively) for all the codes for Runs 1–3,
which are shown with the coloured symbols. The dashed and
solid horizontal lines show the migration time-scales given by
equations (7) and (8), respectively. These analytical estimates of
τ are computed using the initial disc properties (see Fig. 1).

Taking the full range of τ 4 and τ 7 values, we see that they vary by
a factor of 3−4 between the different codes for Runs 1 & 2, and by
a smaller factor of ∼2 for Run 3. For τ 4, the mean of the migration
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4404 M. Fletcher et al.

Figure 2. Planet separation versus time for Run 1 (left-hand panel) and Run 2 (right-hand panel). Both of these do not allow the planet to gain mass from the
disc, so the sink mass is fixed at Mp0 = 2 MJ.

Figure 3. Planet separation (top panel) and sink particle mass (lower panel) versus time for Runs 3 & 4 (left-hand and right-hand panels, respectively).

time-scales are closer to the Tanaka et al. (2002) expression, but
for τ 7 the mean lies between the analytical estimates of Tanaka
et al. (2002) and Baruteau et al. (2011). The range in the migration
time-scales is similar to the factor of ∼3 difference between these
two analytical results. We also note that τ 4 is longer than τ 7 for
most of the runs, implying that migration of the planet accelerates
somewhat as the planet gets closer to the star (as long as it remains
in the Type I). The same trend is predicted by the formulas shown
in equations (7) and (8). We conclude from Fig. 4 that there is a
qualitative agreement not only between the different codes but also
with the theory.

Comparing Runs 1 and 2, we note that the migration time-scales
vary by ∼10 per cent for most of the codes whereas hs changes
by a factor of two. However, for SEREN, the difference between
the two runs is larger, and is in the opposite sense compared with

most of the other codes. This is likely due to a non-linear interplay
of how gravitational softening affects gravitational torques versus
planet accretion. To make further progress, we must consider the
role of planet accretion in greater detail, as the evolving planet mass
certainly affects the migration rate.

3.2.2 Hill mass versus sink mass

The sink particle mass may not always properly reflect the mass of
the planet. To quantify this, we define an effective Hill mass of the
planet, MH, as the sink mass plus the mass of the gas within RH/2 of
the planet. The choice of RH/2 is motivated by results of Nayakshin
(2017b), who finds that gas bound to the planet is usually located
within half the Hill radius; material between RH/2 and RH is much
more likely to be lost as the planet migrates inwards.
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Migration code comparison 4405

Figure 4. Migration time-scales for all codes for Runs 1–3 are shown with the coloured symbols, calculated for time intervals between 0 and 4000 yr(left-hand
panel) and between 4000 and 7000 yr (right-hand panel). The dashed and solid horizontal lines show the analytically computed migration times given by
equations (7) and (8), respectively. The SEREN results do not appear for Run 2 on the right-hand panel since the code did not progress to the 7000-yr point.

We should also note that the Hill radius definition needs to include
the mass of the gas envelope around the sink itself, that is,

RH = R

(
MH

3M�

)1/3

, (11)

where we use MH rather than the sink mass, Mp. When the Hill mass
is dominated by the sink mass, MH can be safely replaced by Mp,
and the calculation of MH from the particle data is trivial. In general,
however, the mass of the gas surrounding the sink is not negligible,
so we iterate over RH and MH to find self-consistent values for these
two quantities that obey equation (11).

Fig. 5 shows the Hill mass and the sink mass for Runs 1–3
calculated for the different codes. For Run 3, where gas accretion
on to the sink is allowed, we see that for all the codes MH ≈ Mp.
In other words, the gas mass within the Hill sphere is negligible
compared with the sink mass. As the sink mass grows rapidly by
gas accretion, this also means that once gas enters the Hill sphere,
it accretes on to the sink rapidly, so there is never a dynamically
significant gas envelope around the sink. This is expected since we
use a relatively large value of Ra = 0.5 AU for Run 3. Nayakshin
(2017b) found that the accretion rate on to the sink is roughly
proportional to the sink radius (see Appendix in that paper) and
that sink radii larger than ∼0.1 AU over-estimate the rate of gas
accretion on to the sink when compared with a simulation in which
the clump was directly resolved.1

Fig. 5 shows that in Runs 1 & 2, the mass of gas surrounding the
sink particle within RH/2 is comparable to the sink mass by the end
of the runs, in stark contrast to Run 3. For PHANTOM in particular,
at t = 10 000 yr, the Hill mass is dominated by the envelope.

In a qualitative agreement between the codes, MH is always larger
in Run 3 than in Runs 1 and 2. This demonstrates that the gas
envelope around the planet particle, which builds up in Runs 1
and 2 but not in Run 3, has a detrimental effect on further gas
accretion on to the planet. This is likely due to the extra pressure
of the envelope, which makes it more difficult for the gas entering

1However, it is not clear what is the appropriate value of Ra to use in general
as it also depends on the numerical resolution, e.g. the number of SPH
particles used. Using too low a value of Ra may lead to an under-estimate of
the accretion rate as the sink region may become unresolved due to a finite
SPH particle resolution.

the Hill sphere to remain there. However, the exact trend going
from Run 1 to Run 2 in the Hill mass is not the same for the
different codes. While for GADGET and GIZMO-MFM a larger
gravitational softening results in a lower mass gas envelope, this is
not the case for PHANTOM and SPHINX. Therefore, gas accretion
on to the planet (or the planet envelope) remains a significant source
of uncertainty even in the simulations where gas accretion is turned
off. An exception to this could be problems where gas accretion
on to the planet is physically insignificant, such as when the planet
mass is very sub-Jovian or the gas cooling time is very long (as in
the β 
 1 regime in Nayakshin 2017b).

Let us now compare the uncertainties in the planet accretion
rate versus that in migration. The left-hand panel of Fig. 3 shows
that there is more disagreement in the planet mass versus time
plot between the different codes for Run 3 than in the planet
migration tracks. The mass of gas accreted by the planet varies
from a minimum of ∼4 MJ to a maximum of ∼12 MJ, whereas the
planet migration time-scales vary by less than a factor of 2. We
believe that this smaller disagreement in planet migration rates may
be somewhat fortuitous. As the planet mass increases, the analytic
formulas in the linear type I regime (e.g. equation 7) predict that the
migration rate should increase linearly with planet mass. However,
as the planet starts to open a gap, it starts to transition into a slower
type II regime. The migration rate therefore depends on the planet
mass somewhat less strongly than can be expected based on the
theoretical type I predictions.

3.3 Run 3 and Run 4

3.3.1 Gap opening

Runs 3 and 4 both use the sink particle prescription but differ
in the initial sink mass, 2 MJ and 12 MJ, respectively. These two
simulations cover the parameter space in which a growing planet
goes from migrating in type I (no gap in the disc) to type II (a deep
gap opened). In the outer massive disc, both planet migration rates
and gas accretion rates on to the planet are far larger in the Type I
regime than in the Type II regime (e.g. Zhu et al. 2012b; Nayakshin
2017b). The time and radial location where the switch between
migration regimes occurs is thus of a significant importance.

Fig. 6 shows with different coloured lines the planet mass versus
separation tracks for Runs 3 (left- hand panel) and 4 (right-hand
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4406 M. Fletcher et al.

Figure 5. The Hill mass, MH (red curves), and the sink mass Mp (black), for Runs 1–3.

panel) for all the eligible codes. The planets start at the lower
right corner and move towards the upper left corner in this
diagram.

There are also four black curves in the figure that show theoretical
predictions from Crida, Morbidelli & Masset (2006) for when a deep
gap in the disc should be opened. According to these predictions,
the planet opens a gap when the parameter Cp is smaller than unity:

Cp = 3

4

H

RH
+ 50αH 2

R2

M∗
Mp

≤ 1 . (12)

Here, α is the physical viscosity parameter of the gas disc
(Shakura & Sunyaev 1973). We do not set a physical viscosity
parameter in the runs presented here (PHANTOM offers a facility
for this but most other SPH codes do not). However, artificial

viscosity in numerical schemes can mimic certain effects of a
physical viscosity. Price et al. (2017) show that for the PHANTOM
viscosity implementation, artificial viscosity parameter αv, set to
unity for all SPH codes here (but see Section 3.4), results in effective
Shakura & Sunyaev (1973) viscosity parameter

α = 1

10
αv

hsml

H
, (13)

where hsml is the SPH smoothing lengh and H is the local disc
vertical height scale (see Murray 1996). At the separation where our
planets open gaps, we have hsml/H ≈ 0.4, and hence the effective
disc viscosity of these codes is about α = 0.03.

Additionally, self-gravitating protoplanetary discs generate phys-
ical viscosity that saturates at a maximum value of α ∼ 0.06
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Figure 6. Planet mass versus separation for Runs 3 and 4 (coloured curves). The black curves running from the bottom left to the top right corners of the panels
show the gap opening planet mass (equation 12) for several different values of the viscosity parameter α as specified in the legend. The planet mass-separation
tracks turn more vertical when they switch into the Type II regime. As discussed in Section 3.3.1, the expected gap opening masses are given by the solid curve,
but the actual ones are closer to the α = 0.1 curve.

(Gammie 2001; Rice et al. 2005) for marginally stable discs.
The value of the Q-parameter for our disc is significantly greater
than the critical ∼1.5 and we thus expect that the effective α

from the disc self-gravity is much smaller than the maximum
value.

Fig. 6 show the planet gap-opening mass as a function of
separation for our initial discs, defined as the planet mass for which
Cp = 1. The solid curve sets α = 0.03, whereas for the dashed
and the dotted curves α = 0.05 and α = 0.1, respectively. Since
planet migration effectively stalls (at least on the time-scales of
our simulations) when the planet switches to the type II migration
regime, the radial location of this switch can be identified in the
figure as the point where the planet track turns from being mainly
horizontal to being more vertical. For Run 3, the left-hand panel of
Fig. 6 shows that the location at which the migration type switches is
approximately consistent with the Crida et al. (2006) prediction for
α = 0.1, although the actual value of the separation and planet mass
at that point are somewhat different for the codes. However, the
estimated effective disc viscosity for the codes is α = 0.03, and the
respective (solid) curve in Fig. 6 yields significantly smaller masses.
The only exception to that is GIZMO-MFM whose meshless finite
mass scheme was shown to provide smaller artificial viscosity (Deng
et al. 2017).

The results of Run 4 are largely consistent with this picture. We
see that the gap opening value of planet mass and separation lie close
to the α = 0.1 theoretical curve, with GIZMO-MFM transiting into
type II migration somewhat earlier once again. One exception to this
is PHANTOM, for which the planet seems to cross the migration
type dividing line rather uneventfully.

The fact that our simulated gas clumps open gaps at higher masses
and later in time than predicted by the Crida et al. (2006) analysis
confirms the findings of Malik et al. (2015) who showed that in
massive circumstellar discs, gap opening is more difficult than for
less massive discs. As shown by Malik et al. (2015), if planets
migrates through the horse-shoe region faster than the gap can be
excavated by planet toques, the gap remains closed even if Cp falls
below unity.

For Run 4, PHANTOM diverges from all the other codes after
about 4000 yr. We have repeated the PHANTOM simulation with
the artificial viscosity coefficient βv (see Section 3.4 for definitions)
set to higher value, βv = 4. This brings both the PHANTOM mass
and separation curves closer to the results of the other codes.
The planet migrated to ∼70 rather than 60 AU and the final
planet mass was 30 MJ rather than 33 MJ. This may indicate that
PHANTOM’s lower artificial viscosity scheme is the main reason
for the differences with the rest of the codes for this simulation.

Finally, although our code migration comparison project is not
designed to study the longer term planet evolution that occurs in
the Type II regime, we can see from Fig. 6 that there is a significant
disagreement in the planet evolution once it crosses over into the
Type II regime. While qualitatively, we see that planets tend to
stall in Type II, as expected, some codes predict that the planets
continue to migrate in while others (PHANTOM in the left-hand
panel) start to migrate outward. This may indicate that the secular
evolution of the planets in the Type II migration regime is even more
model-dependent than the Type II which we mainly aim to study
here.

3.3.2 Gas accretion time-scales

As emphasized by previous authors, there is a competition between
the process of gas accretion on to the planet and its inward migration
(e.g. Zhu et al. 2012b; Nayakshin 2017b). This competition plays a
significant role in shaping of the outcome of disc fragmentation. It is
hence convenient to define, in addition to the migration time-scale,
an accretion time-scale for the planet, tacc,

tacc = Mp

Ṁ
, (14)

where Ṁ is the gas accretion rate on to the planet. The corresponding
dimensionless quantity τ acc,

τacc = tacc

Tp
, (15)
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where Tp = 2π /�p is the orbital period at the planet location, will
be useful as well.

Bate, Bonnell & Bromm (2003) studied planet migration and
accretion in isothermal discs and found that the following equation
describes the gas accretion rate on to the planet well in the Type I
migration regime,

Ṁacc = b
Mp

M∗
�pρR3 , (16)

where b ≈ 2.3 empirically and ρ is the disc midplane density. By
writing ρ = �/(2H) and expressing

� = cs�p

πGQ
, (17)

where Q is the Toomre parameter at the planet location, we can
re-arrange the Bate et al. (2003) result as

τacc = b−1Q . (18)

Zhu et al. (2012a) used a 2D code to study clump migration and
accretion, and provided a 2D estimate for the rate of gas accretion
on to the planet,

Ṁ = 4��R2
H (19)

Expressing � through equation (17) again, we obtain the corre-
sponding gas accretion time-scale

τacc = Mp

ṀTp
= 3

8

RH

H
Q . (20)

Since for our planets RH ∼ H within a factor of two or so,
equation (20) is actually not very different from equation (18).

Fig. 7 shows dimensionless accretion time-scales for Runs 3
and 4. The black curves show the analytic estimates obtained with
equations (18) and (20), respectively. For equation (18), we show
three curves which use b = 2.3 (as in Bate et al. 2003), and then
also b = 1, and 1/3. We can see that both analytic prescriptions
predict much faster accretion rates on to the planet than actually
measured in the simulations. This is most likely due to the analytic
estimates assuming an isothermal equation of state and therefore
the maximum efficiency for gas capture on to the planet. In the
runs presented here, the gas is not isothermal and heats up due
to adiabatic compression in the Hill sphere. The cooling rate β-
parameter is β = 10, which is relatively large. Nayakshin (2017b),
see also Humphries & Nayakshin (2018), found that gas accretion on
to planets is significantly suppressed for β � a few. The isothermal
gas accretion rate estimates from Bate et al. (2003) and Zhu et al.
(2012b) physically corresponds to the β � 1 regime investigated
in Nayakshin (2017b), for which much higher accretion rates were
indeed obtained. It appears that b ≈ 1/3 in equation (18) fits the gas
accretion rates in the Type I migration regime best.

Fig. 7 also demonstrates that the accretion time increases strongly
when the planet switches to the type II migration regime. This has
also been seen in previous simulations (e.g. Bate et al. 2003) and is
to be expected as the planet clears its immediate neighbourhood of
gas, chocking its own growth.

The initial dips in the accretion time for both panels in Fig. 7 are
caused by our artificial initial conditions, in which a massive planet
is injected in the disc. The gas within the Hill sphere of the planet
then finds itself strongly bound to it and accretes on to the planet on
a time-scale shorter than the local dynamical time, 1/�. This initial
transient is followed by a more self-consistent evolution in which
the gas in the Hill sphere of the planet ’knows about its existence’.

3.4 Importance of artificial viscosity prescription

Artificial viscosity is used in SPH and grid-based codes to treat
flow discontinuities such as shocks (Monaghan 1992; Bodenheimer
et al. 2007). The codes we test here differ in their implementation
of the artificial viscosity. Some part of the differences in the results
of Runs 1–4 (discussed in Section 3) may be due to these numerical
technique differences. Varying the viscosity prescriptions for all
of the codes would make the presentation of this paper overly
long. Instead we pick one code, PHANTOM, and investigate how
different artificial viscosity choices affect the results for just Run 3.

All modern SPH codes employ artificial viscosity prescriptions
that include a term linear in v, the velocity difference between
two interacting SPH particles, and a term quadratic in v (Springel
2005; Price et al. 2017). That is, the first term enters artificial
viscosity with a dimensionless coefficient αv, and the second with
coefficient βv. In some codes, e.g. GADGET, these coefficients
are fixed whereas in others such as PHANTOM they are allowed
to vary in time during simulations. Cullen & Dehnen (2010), in
particular, presented a method in which αv depends on the time
derivative of the particle velocity divergence. The latter is used as a
shock indicator and helps to eliminate artificial viscosity away from
shocks, reducing unwanted numerical dissipation in dynamically
quiet regions. Additionally, there are different suggestions on the
appropriate values for the coefficient βv to use, and, in fact, this
may depend on the problem studied (Price et al. 2017).

Fig. 8 shows how the planet separation (top panel) and planet
mass (bottom panel) are affected by the changes in the viscosity
prescription for Run 3. The solid curves show Run 3 in which
the αv parameter is time-dependent as in the method of Cullen &
Dehnen (2010), and is allowed to vary between 0 ≤ αv ≤ 1. The
different colours in the solid curves indicate different values of the
coefficient βv, which we varied in a broad range, from βv = 0.2 to
βv = 10. The dashed curves in Fig. 8 show simulations with the
same range in βv but which now use a fixed value for αv = 1.

First, without reference to the different artificial viscosity values
in the figure, we note that the larger the planet mass, the more rapidly
the planet migrates, at least until it opens a gap and switches to type
II migration. Such a trend simply reflects the fact that more massive
planets migrate more rapidly in the Type I regime (equation (7)).

Another trend obvious through all of the curves is that the higher
artificial viscosity simulations tend to yield smaller gas accretion
rates on to the planet. The least viscous run (red solid curve) shows
the the largest gas accretion rate on to the sink and the most rapid
migration. The most viscous run (green dashed curve) shows the
slowest migration and the smallest gas accretion rate. The rest of
the runs show a continuous transition between these two extremes.

This gas accretion trend with artificial viscosity is most likely
due to the artificial viscosity heating of the gas inside the Hill
radius. The larger the gas viscosity, the larger the dissipation rate
within the Hill sphere, making the gas hotter. Such sensitivity of
gas accretion rate on to the planet to heating within the Hill sphere
was seen in the previous literature although for different reasons.
Nayakshin & Cha (2013) and Stamatellos (2015) included planet
radiative feedback on the surrounding gas, and found that when
the feedback is present, it keeps the gas hotter in the planet’s Hill
sphere, stifling gas accretion on to it. Nayakshin (2017b) found that
slower radiative cooling rates within the Hill sphere, which also
makes the gas hotter in that region, likewise leads to a reduction in
the gas accretion rate.

In greater detail, we see that the runs with βv = 0.2 and βv =
2 are virtually indistinguishable, implying that the quadratic term
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Figure 7. Left-hand panel: Dimensionless accretion time-scale against time for Run 3. The black curves are analytical estimates for the accretion time-scale
given by equations (18) (for different values of the parameter b) and (20), as indicated in the legend. These estimates assume an isothermal equation of state
and therefore over-predict the gas accretion rates measured in the simulations. Right-hand panel: Same but for Run 4. Note that the gas accretion time increases
strongly when a gap in the disc is opened.

Figure 8. Differences in the results of Run 3 for PHANTOM when the
values of the artificial viscosity parameters αv and βv are varied. See
Section 3.4 for detail.

in the artificial viscosity prescription is negligible for these small
values of βv for the given problem. Higher values of βv however
definitely affect the results. We also see that the fixed αv simulations
lead to less massive and less rapidly migrating planets that tend to
open a gap sooner.

The range of migration rates and planet masses in Fig. 8 is
large enough to conclude that although the artificial viscosity is
not the only reason for differences in the results from the four
runs explored in this paper, it is one of the major reasons for these
differences. For example, GADGET’s planet separation versus time
track for Run 3 is similar to the green dashed curve in Fig. 8 for
PHANTOM obtained with a fixed αv = 1, as used by GADGET.
However, by default GADGET uses βv = 2αv, which is much
smaller than βv = 10 for the green dashed curve. Clearly, other code
differences, both in viscosity implementation (GADGET uses the
Balsara 1995, switch; PHANTOM does not), and in how artificial
softening and gas accretion on to the sink is implemented must be
at play. A recent study by Stamatellos & Inutsuka (2018) found that
the artificial viscosity coefficient αv can also drive differences in
planet accretion/migration.

On the other hand, while PHANTOM simulations suggest a
higher artificial viscosity might suppress accretion via spurious
heating of the gas surrounding a sink particle, the trend shown by
the GIZMO-MFM results in this paper suggest the role of numerical
viscosity might be more complex. Indeed, as shown in Deng et al.
(2017), the MFM method, which does not employ any artificial
viscosity, at variance with all SPH methods, minimizes spurious
transport of angular momentum inside self-gravitating disks and
results in a lower accretion on to sink particles (see appendix
B in Deng et al. 2017). Indeed MFM solves the fluid equations
via Riemann solver as in Godunov-type finite volume methods,
which removes the need of an artificial viscosity term in the hydro
equations (Hopkins 2015).

Artificial viscosity implementations in SPH can induce enhanced
angular momentum transport, and thus accretion, in non-shocking
rotating flows inside fluid disks, owing to the contribution of the
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linear in v term (even with correction terms such as the Balsara
switch, e.g. Kaufmann et al. 2007). Spurious heating and artificial
angular momentum transport are thus two different unwanted effects
of artificial viscosity which affect accretion in opposite ways.
Quantifying the interplay of these two effects warrants further
investigation. Nevertheless, it is noteworthy that, in the GIZMO-
MFM runs, the reduced accretion limits asymptotically the mass
growth of the protoplanet to less than 10MJ, namely within the gas
giant planet regime.

4 C OMPARISON TO POPULATION SYNTH ESI S

At the time of writing, there are three detailed population synthesis
models that address the evolution of clumps formed by gravitational
instability at distances of tens to 100 AU. Such population synthesis
is a necessary step to correctly interpret the results of large
observational surveys (e.g. Vigan et al. 2017) with respect to how
often disc fragmentation might result in the formation of massive
planets and/or brown dwarfs.

The population synthesis models differ in assumptions about
the initial state of the disc and the clumps, disc dissipation,
clump radiative cooling, dust dynamics and core formation, clump
migration and accretion. It is of course not possible for us to examine
these different approaches here. However, we can investigate a
more limited but better defined question: how well would these
models reproduce the evolution of the clumps that we see in our
numerical models given the same disc and clump properties as our
simulations?

To facilitate the population synthesis comparison to the simula-
tions presented in this paper, we shall utilize the fact that the disc
surface density profiles evolve relatively weakly in Run 3 as the
planet remains in the Type I migration regime for most of the codes
until it stalls not very far from the disc inner edge. We can therefore
use the initial disc surface density profile for this comparison. For
Run 4, there is a stronger surface density evolution, but we shall
use the same approach (since two of the three population synthesis
codes make such an approximation too), hoping that it will capture
the essentials of the problem.

We first overview the clump migration approaches. Forgan &
Rice (2013b) use the simplified migration scheme from Nayakshin
(2010), in which the Type I migration time-scale is

tI =
(

Mp

M∗
�

)−1
H

R
. (21)

This is derived from the Tanaka et al. (2002) formula (equation 7)
by requiring additionally a marginally unstable self-gravitating disc
for which the Toomre parameter Q ≈ 1 everywhere. For type II, the
migration time-scale is given by the disc viscous time,

tII = tvisc = 1

α�

(
H

R

)−2

. (22)

The switch between Type I and Type II migration occurs when Mp

> Mt, where Mt is the transition mass given by,

Mt = 2M∗

(
H

R

)3

(23)

as used by Bate et al. (2003). We note that Forgan et al. (2018)
have recently presented an updated population synthesis model. We
do not include this study in our code comparison here because its
migration module is similar to the Müller, Helled & Mayer (2018)
treatment, which is discussed below. Furthermore, Forgan et al.

(2018) also consider multiple gas clumps and model their N-body
interactions. These effects can be very important in modifying the
outcome of disc fragmentation (Hall et al. 2017) but is beyond the
scope of our one-clump study.

Nayakshin & Fletcher (2015) use the Tanaka et al. (2002)
expression for type I migration written as

tI = fmig
M2

∗
MpMd

H 2

R2
�−1 (24)

where Md = 2π�(R)R2 is a measure of the local disc mass, and
fmig is a dimensionless factor, set between 0.5 and 2 for different
models. The factor is introduced to mimic the stochastic kicks from
spiral density waves or other clumps. The Type II migration time
is also set to the viscous time but with a correction multiplicative
factor,

tII = tvisc

(
1 + Mp

Md

)
. (25)

The factor (1 + Mp/Md) takes into account planet inertia when the
disc is less massive than the planet (Syer & Clarke 1995). The
correction is not very important for outer massive discs but may
become large in the inner disc (R � 10 AU). The Crida parameter
(Cp, equation 12) is used to model the transition between Type I and
Type II migration. To prevent a sharp transition when Cp = 1, an
exponential function of the form, f = min(1, exp [ − (Cp − 1)]) is
used to smooth the transition out. Note that Cp is a function of the
viscosity parameter α, which is poorly known for protoplanetary
discs. Nayakshin & Fletcher (2015) assumed that log α is a random
uniform variable in the limits between log (0.005) and log (0.05).
We shall evaluate the results for these minimum and maximum
values of α. Finally, Nayakshin & Fletcher (2015) use a time-
dependent 1D viscous disc model to evolve the disc surface density
and other disc properties, and to conserve the angular momentum in
the interactions between the disc and the planet, but for comparison
below we shall assume the initial disc properties to be consistent
with the two other models.

Müller et al. (2018) use a third set of equations to control planet
migration, based on Baruteau et al. (2011), see equation (8). For type
II migration, equation (25) is used but without the (1 + Mp/Md)
correction, which however is unimportant for this paper as it is
close to unity. Müller et al. (2018) also use the Crida parameter to
determine when the planet switches to the type II migration, but
consider two additional requirements for gap opening based on the
work of Malik et al. (2015). They define three time-scales, τ visc =
R2/ν, τcross = 2.5RHv−1

r , where vr is the radial velocity of the planet,
and τ gap = q2(H/R)5�−1. The additional requirements demand that
ητ gap < τ cross and τ visc < τ cross, where η is a dimensionless factor
varied from 10 to 1000, with η = 100 used as a baseline model.
Here, we test only the first of these two additional criteria since it
was the one used for most of the models in Müller et al. (2018).

Finally, population synthesis models also differ in how they treat
the gas accretion on to clumps. Two of the population synthesis
models (Forgan & Rice 2013b; Nayakshin & Fletcher 2015)
neglected gas accretion on to the clumps, assuming a fixed gas
mass unless the clumps are tidally disrupted. Müller et al. (2018)
prescribed a gas accretion rate on to the clumps based on earlier
simulations of Galvagni & Mayer (2014). Since our gas clumps
accrete a significant amount of gas as they migrate, for a proper
comparison with the population synthesis prescriptions we need all
of them to take accretion into account. We previously found that the
Bate et al. (2003) expressions for gas accretion rates, when reduced
down to account for a smaller accretion efficiency of our slowly
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cooling discs, yields a reasonable match to the accretion time-scales
of our simulation (Fig. 7). We therefore use equation (16) with b =
1/3 here to let the planets gain mass when investigating Forgan &
Rice (2013b); Nayakshin & Fletcher (2015) models.

We also need to take into account the decrease in the accretion
rate when the planet switches from type I to the type II regime,
which is clearly seen in Fig. 7. To this end, we write

Ṁp = Ṁacc

[
1 + e−(Cp−1)/C

]−1
, (26)

where Ṁacc is the accretion rate estimate given by equation (16)
where C = 0.2. We shall see below that this yields a decent
fit to the planet mass evolution for both Run 3 and Run 4. With
this approach, the comparison of population synthesis models to
hydrodynamical simulations isolates just the planet migration and
gap opening aspects.

Figs 9 and 10 show such comparisons for Run 3 and Run 4,
respectively. The shaded region represents approximately the range
of numerical results obtained for these runs with the different
numerical codes. In particular, PHATOM and GIZMO-MFM are
selected to show the fastest and the slowest migrating planets for
Run 3 in the left panel; the SEREN and GIZMO-MFM curves to
show the range of models in the middle and right panels. For Run 4,
PHANTOM and SEREN are selected as the extremes for the both
planet accretion and migration tracks.

We see that there is a significant difference in how the three
population synthesis models compare to the numerical results. The
Müller et al. (2018) study appears to over-estimate somewhat how
quickly and how far the planets migrate before they switch into
the Type II regime. This seems to be because Müller et al. (2018)
formulae are based on Baruteau et al. (2011) and yield too rapid
migration by a factor of a few in the type I regime, as was seen in
Fig. 4. Also, the planet opens a gap a little closer to the star than it
does in the simulations. This depends on the parameter η which is
set to 100 and 1000 for the solid and the dashed curves, respectively.

The Forgan & Rice (2013b) approach appears to yield too slow a
migration rate. This is because the planet switches into the Type II
migration rate immediately, as the transition mass in this approach
is set to 2(H/R)3M∗ ≈ 2 MJ, and the planet is already this massive
in the beginning of the Run 3. This under-estimates the planet
transition mass, which is found to be in the range of ∼7 MJ to
∼30 MJ (cf. Fig. 6). We found that a much better fit to Run 3 is
obtained with the Forgan & Rice (2013b) formulas if the transition
mass is increased by a factor of ∼5.

The Nayakshin & Fletcher (2015) formulas used Tanaka et al.
(2002) expression for the migration rate with a dimensionless factor
fmigr in front. The factor was a logarithmically uniform random
variable in the limits 0.5 < fmigr < 2 and was meant to mimic
possible stochastic kicks that the clumps obtain when interacting
with the spiral density waves of the disc (see Baruteau et al. 2011).
In the interest of figure clarity we use fmigr = 1 in Fig. 9 for this
model. Further, Nayakshin & Fletcher (2015) use the Crida et al.
(2006) switch for gap opening, with the α parameter being a sum
of two parts, a constant α and a part driven by self-gravity. We
neglect the latter contribution to α here, and show two cases with
α = 0.005 and 0.05 in Fig. 9. It is apparent that the smaller α curve
(red solid) opens a gap in the disc far more easily than expected.
The α = 0.05 curve (red dashed) seems more reasonable. However,
we must remember that Nayakshin & Fletcher (2015) neglected gas
accretion on to the planet. The agreement of their prescriptions with
Run 3 would have been worse if we kept the planet mass fixed at
2 MJ.

Fig. 10 shows that for a more massive gas clump none of
the population synthesis prescriptions fare particularly well. The
Forgan & Rice (2013b) model and the low viscosity model of
Nayakshin & Fletcher (2015) open a gap in the disc too early,
as for Run 3. The higher viscosity model of Nayakshin & Fletcher
(2015) does relatively well in terms of gap opening mass but over-
estimates the speed with which the planet migrates in initially. The
Müller et al. (2018) equations also yield clumps migrating in too
rapidly, and the gap is opened too close in compared with numerical
simulations.

We therefore conclude that matching numerical results with ana-
lytic expressions remain a problem. What is particularly alarming is
that seemingly benign changes in the parameters of the population
synthesis prescriptions (such as a factor of a few change in the
planet transition mass) can yield planet migration rates different by
∼ two orders of magnitude as the planet switches into the Type II
migration regime prematurely.

5 D I SCUSSI ON AND C ONCLUSI ONS

5.1 Numerics

In this paper, we set up four different simulations of a gas planet
starting at an initial separation of 120 AU in a massive gaseous
disc. These four Runs differed in treatment of gas accretion on
to the planet and the initial planet mass. We then performed
these simulations with seven different numerical codes in order
to compare their results.

We find differences by a factor of ∼2, and sometimes as large
as 3, between different codes in the accretion and migration rates.
A more detailed analysis using PHANTOM indicates that these
differences are to a large degree due to variations in the artificial
viscosity prescriptions between the codes, although other factors
such as gravitational softening and sink particle treatment probably
also contribute.

We also compared our results with the planet migration and
accretion prescriptions from three previous population synthesis
studies (Section 4 and Figs 9 and 10). The Forgan & Rice (2013b)
approach is found to open deep gaps in the disc prematurely. Since
planets migrate very slowly in the type II regime, this implies that
this study may over-estimate the population of gas giants remaining
at wide separation after gas discs are dispersed. The Müller et al.
(2018) study, on the other hand, over-estimates the rate of inward
migration of planetary mass clumps. The Nayakshin & Fletcher
(2015) study fits the Run 3 results relatively well in the high viscosity
case but not for the low viscosity case. In the latter case, clumps
open deep gaps in the disc and tend to stall on wide orbits when
they should migrate to smaller radii via Type I migration. However,
all three population synthesis prescriptions fare poorly for Run 4 in
which a more massive planet is considered. Additionally, Forgan &
Rice (2013b) and Nayakshin & Fletcher (2015) neglect gas accretion
on to clumps.

5.2 Observational implications

Recent observational surveys of solar type stars show that only a
few per cent of such stars are orbited by massive planets or brown
dwarfs on orbits larger than ∼10 AU (e.g. Biller et al. 2013; Chauvin
et al. 2015; Vigan et al. 2012, 2017). Let us call this fraction Npresent.
This is a key constraint on the theory of planet and brown dwarf
formation via gravitational instabilities of large massive gas discs.
However, it is even more important to consider the frequency of
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Figure 9. Comparison of migration and accretion tracks for Run 3, shown as a shaded region, with population synthesis models as shown in the legend.
Left-hand panel: planet separation versus time; Middle panel: planet mass versus time; Right-hand panel: mass versus separation.

Figure 10. Same as Fig. 9 but for Run 4. See Section 4 for more detail.

such objects in a time-integrated sense, that is, the number of gas
clumps formed by disc fragmentation per star. Let this fraction be
Nbirth. The two fractions are clearly connected via

Npresent = Nbirth × Psurv , (27)

where Psurv < 1 is the probability for a gas clump to survive to the
present day at a wide separation.

Detailed calculations and population synthesis approaches are
necessary to calculate Psurv accurately. Forgan & Rice (2013b)
obtained Psurv ∼ 1, Nayakshin & Fletcher (2015) had Psurv �
0.1 (Nayakshin 2016, found a yet smaller value, Psurv ∼ 0.05,
when feedback effects of the luminous core on to the clump are
included), and Müller et al. (2018) found Psurv � 1 but noted that
this depends strongly on model assumptions. Rice et al. (2015) in
addition showed that N-body interactions with secondary stars may
remove a number of wide separation planets, lowering the fraction
of Psurv further in the post-disc dispersal phase.

Our simulations and population synthesis comparison (Figs 9
and 10) demonstrate that just varying the assumptions about the
underlying physics of the disc or clumps by a factor of a few may
influence the results very strongly. One has to also add to this that
the exact birth mass of the fragments and the mass of the disc at
which it fragments are not known to better than a factor of a few (e.g.
Kratter & Lodato 2016), and the evolution of the clump strongly
depends on uncertain disc cooling and dust physics (Nayakshin
2017b), radiative feedback from the clump (Nayakshin & Cha 2013;
Stamatellos 2015; Mercer & Stamatellos 2017), etc. Therefore,
the uncertainty in Psurv at present is uncomfortably large. At this

time we cannot rule out a survival probability that would imply
Nbirth > 1.

What is the best way forward in resolving these uncertainties?
Clearly, theoretical and simulation efforts to constrain Psurv from
first principles should continue. However, other indirect approaches
can also help. If the migration processes allow GI planets to populate
the whole range of separations between the stellar radius and their
birth place, what would be the differences between the objects left
behind from this migration and those made by Core Accretion?
If we are able to understand these differences more robustly, then
discovering (or not) such unusual objects at separations less than
10 AU may yield independent constraints on Psurv and Nbirth.
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