
B(C6F5)3-Catalyzed Direct C3 Alkylation of Indoles and Oxindoles  

Shyam Basak,† Ana Alvarez-Montoya,‡ Laura Winfrey,‡ Rebecca L. Melen,†* Louis C. Morrill,†* 
Alexander P. Pulis‡* 

†Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, 
United Kingdom 
‡School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom.

ABSTRACT: The direct C3 alkylation of indoles and oxindoles is a challenging transformation and only a few direct methods 
exist. Utilizing the underexplored ability of triaryl boranes to mediate the heterolytic cleavage of α-nitrogen C–H bonds in 
amines, we have developed a catalytic approach for the direct C3 alkylation of a wide range of indoles and oxindoles using 
amine based alkylating agents. We also employed this borane-catalyzed strategy in an alkylation-ring opening cascade 
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Indoles and oxindoles are prevalent motifs in biologically 
active molecules.1 Classic indole syntheses involve ring con-
struction.2 Another approach involves the  functionalization 
of the readily accessible heterocycle core, yet the direct and 
selective C3 alkylation of indoles and oxindoles is a surpris-
ingly challenging transformation as the reaction with simple 
alkyl halides is often not synthetically useful.2,3 For example, 
with methyl iodide, 1,2-dimethyl indole and 1-methyl indole 
are unreactive,4 2-methyl indole results in mixtures of N- and 
C-methylation,5 and oxindoles undergo dialkylation at C3.3 
The installation of a methyl group is a worthwhile endeavor 
considering medicinal chemists interest in the “magic methyl 
effect”,6 yet only a few methods exist for the direct C3 methyl-
ation of indoles and oxindoles (Scheme 1a). Direct C3 methyl-
ation is possible with CO2/H2 and a ruthenium catalyst (e.g. 
for 1,2-dimethyl indole and 2-methyl indole),7 and with bor-
rowing hydrogen methods with methanol (e.g. for 2-methyl 
indole8 and 1-phenyl oxindole).8a,9 The direct methylation of 1-
methyl indole is currently unknown.4  

Owing to their intrinsic Lewis acidity, borane catalysts have 
found numerous applications in synthesis and are tradition-
ally used to activate polarized bonds.10 Triaryl boranes can also 
activate unpolarized bonds, such as H–H11 and Si–H bonds.12 
In a similar vein, we considered if boranes could also be used 
to cleave heterolytically C(sp3)–H bonds13 and unveil new ap-
proaches to challenging transformations. Related to this, we 
were intrigued by a report by Santini that described the heter-
olytic cleavage of an α-nitrogen C(sp3)–H bond during the 
stoichiometric reaction of dimethyl aniline and B(C6F5)3 to 
form an iminium borohydride ion pair (Scheme 1b).14 B(C6F5)3-
mediated α-N C(sp3)–H bond cleavage15 was unrecognized as 
a synthetic strategy for almost a decade until Stephan and co-
workers reported its use in the transfer hydrogenation of 
imines.16 Subsequently,  Grimme and Paradies,17a Kanai,17b and 
Zhang17c disclosed methods for the dehydrogenation of N-het-
erocycles. A major breakthrough came when Erker reported 
the use of this unusual reactivity in C–C bond forming reac-
tions where stoichiometric B(C6F5)3 was used to generate 
iminium ions for Mannich type processes.18 Wasa greatly ad-
vanced the strategy by reporting the catalytic use of B(C6F5)3 
in an asymmetric Mannich process.19 The iminium ions gen-
erated have also been used in electrocyclizations,20 and in the 
β-functionalization of amines.21,22 However, the use of this re-
activity in catalytic C–C bond forming reactions remains 

rare.19,20 Inspired by these reports and borrowing hydrogen al-
kylation reactions,23 we have applied this underutilized reac-
tivity in challenging alkylation processes.  

Here we have developed a new strategy for the direct C3 
methylation of indoles and oxindoles (Scheme 1c). The process 
utilizes a B(C6F5)3-mediated α-N C(sp3)–H bond cleavage 
event to activate readily available amine based alkylating 
agents. Using this borane-catalyzed method, common unde-
sired reactions, such as N-methylation of indoles, formation 
of 3,3’-bisindolylmethanes, and dialkylation of oxindoles, are 
not observed. In addition, the substrate scope is broad and en-
compasses 1-, 2-, and 1,2-substituted indoles, as well as other 
challenging alkylations, including a novel alkylation-ring 
opening cascade. 

Scheme 1. B(C6F5)3-catalyzed α-N C(sp3)–H bond cleav-
age used in the methylation of indoles and oxindoles. 

 

We began by investigating various aniline derivatives as 
methylating agents in the borane-catalyzed methylation of 1,2-
dimethyl indole (1a) (Scheme 2). In general, we discovered 



 

that a variety of aryl and diaryl amines were effective in meth-
ylating 1a using B(C6F5)3 (10 mol%).24 Electron rich diaryl me-
thyl amines, such as 4a and 6a were found to be optimal and 
allowed the formation of 2a in quantitative yields at ambient 
temperature. 

Scheme 2. B(C6F5)3-catalyzed methylation of indole 1a 
with various alkylating agents. 

 

Reactions were performed using 0.2 mmol of 1a. Yields were 
determined after 1H NMR spectrum analysis of the crude reac-
tion mixture with an internal standard. 

We surveyed the scope of the B(C6F5)3-catalyzed methyla-
tion of various 1,2-, 1-, and 2-substituted indoles and oxindoles 
and found that the reaction broadly tolerated a range of func-
tional groups and substitution patterns (Scheme 3). Notably, 

the direct methylation of 1-methyl indole (1f), a transfor-
mation that was previously absent from the literature,4 was 
successfully accomplished in high isolated yield (2f, 75%) us-
ing the B(C6F5)3-catalyzed approach with methylating agent 
6a.25 2-Substituted indoles (i.e. NH indoles, cf. 2l–s) were effi-
ciently methylated when 2,2,6,6-tetramethylpiperidine (TMP, 
10 mol%) was used with alkylating agent 6a and B(C6F5)3 (10 
mol%).26 Importantly, N-methylation was not observed with 
NH bearing indoles. In contrast, N-alkylation, or mixtures of 
N-, and C-alkylation typically result when NH indoles are 
treated with methyl iodide under basic conditions.5 The suc-
cessful reaction of 1- (cf. 2f–k) and 2-substituted indoles (cf. 
2l–s) was surprising given that B(C6F5)3 has been reported to 
readily react with these classes of heterocycle to produce zwit-
terionic species.27 3,3’-Bisindolylmethanes, a common product 
formed in the reaction of formaldehyde or iminium electro-
philes with indoles, were not observed.28 

Oxindoles (8a–q) were successfully employed in the 
B(C6F5)3-catalyzed methylation to give products 9a–q. In this 
class of heterocycle, 1,2,2,6,6-pentamethylpiperidine (PMP, 
13) was used as the alkylating agent and higher temperatures 
were required. Crucially, C3 dimethylation was not observed. 
Therefore, the borane-catalyzed process complements 
traditional alkylating agents: C3 dialkylation typically occurs 
when oxindoles are treated with methyl iodide under basic 
conditions.3

Scheme 3. Substrate scope in the B(C6F5)3-catalyzed alkylation of indoles and oxindoles. 

 

Reactions were performed using 0.5 mmol of 1 or 8. Yields are isolated. Yields in parenthesis determined after 1H NMR spectrum 
analysis of the crude reaction mixture with an internal standard. a B(C6F5) (10 mol%), 6a (R = CH3, 1.2 eq.), 25 °C, DCE, 16 h. b 
B(C6F5)3 (10 mol%), 6a (R = CH3, 1.2 eq.), 95 °C, DCE, 16 h. c B(C6F5)3 (20 mol%), 6a (R = CH3, 1.2 eq.), 95 °C, DCE, 8 h. d B(C6F5)3 (10 
mol%), 6a (R = CH3, 1.2 eq.), TMP (10 mol%), 110 °C, toluene, 16 h. e B(C6F5)3 (10 mol%), 13 (PMP, 2 eq.), 150 °C, xylenes, 16 h. f 
Combined yield of tautomers. g B(C6F5)3 (10 mol%), 6b (R = Et) or 6c (R = (CH2)9CH3) (1.2 eq.), 95 °C, DCE, 24 h. h B(C6F5)3 (20 
mol%), 4b (R = Bn, 2 eq.), 150 °C, xylenes, 24 h. 



 

The methylation of 6-methyl indole (cf. 2n) and unsubsti-
tuted oxindole (cf. 9n) occurred in low yield, presumably due 
to competitive coordination of N or O to the B(C6F5)3 catalyst. 
Otherwise, across the different classes of substrates, the pro-
cess tolerated a range of functional groups and substituents, 
such as OCH3 (2c, 2s, 9i, 9k), F (2o, 9d), Cl (2d, 2p, 9e), Br 
(2q, 9f), CF3 (9m), NO2 (2e, 9j), CO2Me (9c), and other car-
bonyl derivatives (9o, 9p) which contrasts the dogma some-
times associated with B(C6F5)3-mediated processes.29 We also 
performed the B(C6F5)3-catalyzed methylation of 1,2-dimethyl 
indole (1a) on a preparative scale, producing 1.3 g of 1,2,3-tri-
methyl indole (2a) in 83% yield.30 

In addition, we briefly explored other challenging alkylation 
reactions using the B(C6F5)3-catalyzed method and discovered 
that 1,2-dimethyl indole (1a) was successfully ethylated (10a), 
decylated (11a) and benzylated (12a), at C3 using the ethyl- 
(6b), decyl- (6c) or benzyl- (4b)31 diaryl amines respectively.32 

The borane-catalyst, B(C6F5)3, is a commercially available 
white powder that forms a water adduct, H2O·B(C6F5)3, when 
exposed to moisture in air and is therefore routinely handled 
in an inert atmosphere.33 Inspired by related methods,34 we 
developed a procedure where B(C6F5)3 can be used as received 
from the supplier and weighed in air on the open bench, and 
the reaction performed using standard Schlenk line 
techniques (Scheme 4). Thus H2O·B(C6F5)3 (10 mol%) was 
dissolved in the desired solvents (as received from the 
supplier) and treated with triethyl silane (20 mol%). The 
resultant solution contains active B(C6F5)3 and O(SiEt3)2 that 
can be used directly in the alkylation of indoles and oxindoles 
to provide methylated indoles (2a, 2f, and 2l), benzylated 
indole (12a) and methylated oxindole (9a)35 in good yields. 
Therefore, showing that access to specialized equipment 
(such as a dry glove box), a separate purification of 
commercially available B(C6F5)3, and rigorously anhydrous 
solvent is not required in the B(C6F5)3-catalyzed alkylation. 

Scheme 4. The use of H2O·B(C6F5)3 in the borane-cata-
lyzed alkylation of indoles and oxindoles. 

 

a 6a, 25 °C, DCE, 16 h. b 6a, B(C6F5)3 (20 mol%), Et3SiH (40 
mol%), 95 °C, DCE, 8 h. c 6a, TMP (10 mol%), 110 °C, toluene, 
16 h. d 4b, 150 °C, p-xylene, 24 h. e PMP (13) (2 eq.), 150 °C, p-
xylene, 16 h. 

Beyond methylation and alkylation we also explored the 
B(C6F5)3-catalyzed alkylation strategy in a novel alkylation-
ring opening cascade process for the generation of functional-
ized indoles 15 (Scheme 5). Products 15 contain a 4-(3-in-
dolyl)butylamine motif that is found in several sero-
tonergic/dopaminergic drug molecules, such as vilazodone, 

roxindole, siramesine, and carmoxirole.36 Upon reaction of N-
aryl pyrrolidines 14,37 indoles 1 and B(C6F5)3 catalyst, a variety 
of 4-(3-indolyl)butylamines 15 were formed in good yields.38 

Scheme 5. B(C6F5)3-catalyzed alkylation-ring opening 
cascade. 

 

Standard conditions: H2O·B(C6F5)3 (10 mol%), Et3SiH (20 
mol%), 14 (1 eq.), 1 (2.2 eq.), 1,2-Cl2C6H4, 110 °C, 20–24 h. a DCE, 
85 °C. b Toluene. 

In order to probe the mechanism and provide direct access 
to deuterated methyl groups at C3 of indoles, we used deuter-
ated methylating agent 6a-d3 in the B(C6F5)3-catalyzed meth-
ylation of indoles 1a and 1l under previously optimized condi-
tions (Scheme 6a). Deuterated C3 methyl indoles 2a-d3 and 2l-
d3 were formed in high yield in both cases.39 

Based on these results and literature precedent, we propose 
the following catalytic cycle for the B(C6F5)3-catalyzed alkyla-
tion of indoles and oxindoles (Scheme 6b). The borane-cata-
lyst mediates heterolytic cleavage, via hydride abstraction, of 
the α-N C(sp3)–H bond in the amine based alkylating agents 
(3–7, 13, 14) forming iminium-borohydride ion pairs 16 
(Scheme 6b, step i). Analogous ion pairs have been observed 
by Santini and coworkers using NMR spectroscopy (cf. 
Scheme 1A).14 The electrophilic iminium 16 is trapped with an 
indole 1 (or oxindole 8), forging a new C–C bond (step ii) in an 
analogous fashion to the Mannich reaction. Proton transfers 
enable the ion pair 17 to eliminate the amine 18 (which can be 
recovered from the reaction) via an E1CB-type mechanism (step 
iii).40 The α,β-unsaturated iminium-based ion pair 19 is re-
duced by the borohydride counterion, producing the alkylated 
indoles 2 (and oxindoles 9) and regenerating the borane-cata-
lyst (step iv). In the boron catalyzed alkylation/ring opening 
cascade process (cf. Scheme 5), the cyclic nature of the imin-
ium 20 enables the amino fragment to be retained in products 
15 after elimination (Scheme 6c). 

 

Scheme 6. Mechanistic studies and proposed catalytic 
cycle. 



 

 

Yields are isolated and %D incorporation was determined 
after 1H NMR spectrum analysis of the purified compounds. 
a DCE, 25 °C, 16 h. b TMP (10 mol%), toluene, 110 °C, 16 h. 

In summary, we have developed a new approach to the di-
rect C3 alkylation of indoles and oxindoles. Using a B(C6F5)3-
catalyst and amine derived alkylating agents, we exploit the 
underexplored ability of boranes to cleave heterolytically α-N 
C(sp3)–H bonds in a catalytic C–C bond forming reaction. This 
method provides a metal-free and complementary approach 
to the few existing methods for the direct C3 alkylation of in-
doles. Unlike other procedures, this B(C6F5)3-catalyzed meth-
odology encompasses several classes of indole, including 1-, 2-
, and 1,2-substituted indoles, and allows previously unreported 
direct methylations. The reaction displays broad scope and ex-
ceptional chemoselectivity, avoiding N-methylation and for-
mation of 3,3’-bisindolylmethanes in indole substrates, and di-
alkylation in oxindoles. Other alkylations are also reported, 
including a novel alkylation-ring opening cascade process to 
generate privileged 4-(3-indolyl)butylamines from N-aryl pyr-
rolidines. 
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