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Jointly modelling longitudinally 
measured urinary human chorionic 
gonadotrophin and early pregnancy 
outcomes
N. B. Ashra1*, L. Marriott2, S. Johnson2, K. R. Abrams1 & M. J. Crowther1

Human chorionic gonadotrophin (hCG) is largely used to confirm pregnancy. Yet evidence shows 
that longitudinal hCG profiles are distinguishable between healthy and failing pregnancies. We 
retrospectively fitted a joint longitudinal-survival model to data from 127 (85 healthy and 42 failing 
pregnancies) US women, aged 18–45, who were attempting to conceive, to quantify the association 
between longitudinally measured urinary hCG and early miscarriage. Using subject-specific predictions, 
obtained uniquely from the joint model, we investigated the plausibility of adaptively monitoring early 
pregnancy outcomes based on updating hCG measurements. Volunteers collected daily early morning 
urine samples for their menstrual cycle and up to 28 days post day of missed period. The longitudinal 
submodel for log hCG included a random intercept and slope and fixed linear and quadratic time terms. 
The survival submodel included maternal age and cycle length covariates. Unit increases in log hCG 
corresponded to a 63.9% (HR 0.36, 95% CI 0.16, 0.47) decrease in the risk of miscarriage, confirming 
a strong association between hCG and miscarriage. Outputted conditional survival probabilities gave 
individualised risk estimates for the early pregnancy outcomes in the short term. However, longer 
term monitoring would require a larger sample size and prospectively followed up data, focusing on 
emerging extensions to the joint model, which allow assessment of the specificity and sensitivity.

Early miscarriage, defined in the UK as loss before week 13, is a frequent complication of pregnancy1. It affects 
12% to 24% of clinically confirmed pregnancies, not counting those losses which occur prior to the date of the 
missed period - so-called biochemical pregnancies2. Women who suffer from a miscarriage are more likely to 
report symptoms associated with depression, with affected women ranging from 20% to a high of 55%3. Though 
the majority of losses are self-resolving, those that are not may require diagnostic tests, hospital treatment, sur-
gical intervention and follow-up care2. This provides an incentive to identify potential early losses as early as 
possible by exploring more patient-centred monitoring strategies.

The recently published priorities for research within miscarriage ranked highest the identification of effective 
interventions to prevent miscarriage4. This encompasses the plausibility of using biomarkers to track pregnancy 
progression through viability or miscarriage. Several potential biomarkers have been identified to predict miscar-
riage, with human chorionic gonadotrophin (hCG) a strong contender5. The hormone tends to rise rapidly and 
reliably in early pregnancy, doubling every 1.5 days in the first 5 weeks post conception and then every 3.5 days 
from week 7, before plateauing around week 105,6. Its use is more prevalent in tracking early pregnancy progress 
in an in vitro fertilisation (IVF) population and for identifying ectopic pregnancies7. However, evidence suggests 
that longitudinal profiles of hCG can be utilised to distinguish between viable and failing pregnancies, with sim-
ilar patterns of hCG noted across maternal serum and urine8.

The repeated collection of a continuous biomarker, such as hCG, over time gives rise to intermittently 
observed longitudinal data which are subject to measurement error9,10. Conventionally, this data is analysed using 
linear mixed effects models, with time-to-event outcomes analysed using survival models11,12. However, when 
interest lies in quantifying the association between the repeatedly measured biomarker and time-to-event out-
come, separate analyses ignore the dependency between the longitudinal and time-to-event processes13.

1Department of Health Sciences, University of Leicester, Leicester, UK. 2Clinical Research Department, SPD 
Development Company Ltd., Bedford, UK. *email: nbba1@le.ac.uk

OPEN

https://doi.org/10.1038/s41598-020-61461-w
mailto:nbba1@le.ac.uk


2Scientific Reports |         (2020) 10:4589  | https://doi.org/10.1038/s41598-020-61461-w

www.nature.com/scientificreportswww.nature.com/scientificreports/

Acknowledging an association between a longitudinal biomarker and survival outcome implies that very high 
or low values of the biomarker are indicative of adverse outcomes14. Fitting a simple survival model to the event, 
including all of the longitudinal biomarker information, tells us how a change in biomarker value affects survival 
over follow-up time. However, the variation in biomarker observations between individuals is not incorporated 
into the model, so inferences for individuals cannot be drawn. Secondly, the implicit changes in biomarker values 
between each physically observed measurement are ignored, resulting in a failure to build a complete biomarker 
profile. The linear mixed effects model can build this biomarker trajectory and inbuilt random effects allow esti-
mation of personalised risk as an output of the model. Recognizing the advantages of both types of model, com-
bining both the linear mixed effects and survival models through a shared dependence structure via the joint 
longitudinal-survival model is essential. This allows the association to be appropriately modelled, whilst taking 
into account the intermittent nature of observations and measurement error. The model, through estimation of 
individual trajectories, can aid monitoring and potentially prediction of outcomes.

The aim of this paper is to retrospectively apply the classical joint model framework to data of pregnant 
women, who were followed up from before conception, to quantify the association between longitudinal urinary 
hCG observations and early miscarriage. The paper will also consider whether estimation of conditional survival 
probabilities from the joint model could provide the basis for dynamic monitoring of patients in the very early 
stages of pregnancy prior to other symptoms manifesting.

Results
A total of 44 (17.6%) women suffered miscarriages. The dataset used for analysis consists of 85 randomly selected 
viable pregnancies and 44 miscarried pregnancies. A summary of demographic variables is given in Table 1. 
Overall, the two groups were comparable. Women who experienced healthy pregnancies were slightly younger 
(mean ± SD: 29.95 ± 4.15) than those who miscarried (mean ± SD: 32.34 ± 4.60). The majority of women in 
either group were from a White European background (88.24% and 77.27% respectively). A slightly higher pro-
portion of women who had viable pregnancies had previously experienced a miscarriage, compared to women 
who miscarried (12.94%, and 9.76%). Of the women who miscarried, 18 (14.2%) experienced biochemical preg-
nancies and 24 (57.1%) women suffered early miscarriages. Two women who miscarried did not contribute hCG 
measurements and were not included in the joint modelling analysis.

The remaining 127 women all contributed repeated hCG measurements. For women who miscarried the 
average number of hCG observations was 17.5 (SD: 8.6) and for women who experienced viable pregnancies the 
average number of measurements was higher at 23.6 (SD 3.9).

Profiles of log hCG measurements for viable and failing pregnancies are presented in Fig. 1. The general 
trajectory shows an initial rise after conception, which continues through the first three weeks of the healthy 
pregnancies before slowing in rise. There was greater variation in profiles for women who miscarried, who also 

Variables
Healthy 
(n = 85)

Miscarried 
(n = 44)

Overall 
(n = 129)

Age, years 29.95 (4.15) 32.34 (4.60) 30.77 (4.44)

Ethnicity, n (%)

White 75 (88.24) 34 (77.27) 109 (84.50)

Black 3 (3.53) 7 (15.91) 10 (7.75)

Asian 4 (4.71) 2 (4.55) 6 (4.65)

Mixed 3 (3.53) 1 (2.27) 4 (3.10)

Education, n (%)

High School 4 (4.71) 2 (4.55) 6 (4.65)

Graduate 69 (81.18) 28 (63.64) 97 (75.19)

Postgraduate 12 (14.12) 14 (31.82) 26 (20.16)

Occupation, n (%)

Homemaker 12 (14.12) 3 (6.82) 15 (11.63)

Student 1 (1.18) 1 (2.27) 2 (1.55)

Skilled labourer 2 (2.35) 2 (4.55) 4 (3.10)

Office admin 8 (9.41) 5 (11.36) 13 (10.08)

Professional 60 (70.59) 31 (70.45) 91 (70.54)

Other 2 (2.35) 2 (4.55) 4 (3.10)

Cycle length 29.94 (2.95) 28.66 (3.21) 29.50 (3.09)

Previous pregnancies 1.00 (1.05) 1.11 (1.15) 1.04 (1.08)

Previous live births 0.62 (0.76) 0.70 (0.88) 0.65 (0.80)

Time to conceive, 
months 4.36 (5.83) 4.55 (5.98) 4.43 (5.86)

Previous miscarriage, 
n (%) 11 (12.94) 4 (9.76) 15 (11.90)

Table 1.  Baseline demographics by pregnancy viability group. All values are mean(SD) unless otherwise stated.
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presented with an initial rise after conception. However, some women experienced a sharp drop in hCG, whilst 
others experienced a more gradual rise in hCG in comparison with women who had healthy pregnancies.

Overall Kaplan-Meier survival estimates for time to miscarriage are shown in Fig. 2. An approximate 15 day 
lag is evident before an event is seen, due to the use of time since conception as a timeline.

Modelling longitudinal profile.  Inclusion of a quadratic time variable was necessary to appropriately 
capture the shape of the log hCG profile. Results from an initial fitted linear mixed effects model, including a 
grouping variable for pregnancy outcome, confirmed that mean log hCG was −1.66 mIU/mL (95% CI −2.14, 
−1.18) lower in the biochemical pregnancy group and −1.13 mIU/mL (95% CI −1.48, −0.78) lower in the early 
miscarriage group, when compared with the healthy pregnancies. Results are presented in Table 2.

Joint longitudinal-survival model.  A joint longitudinal-survival model was fitted to the data. Estimates 
for the model with current value association structure are given in Table 3. A unit increase in absolute value of 
log hCG corresponded to a 66.1% (HR 0.339, 95% CI 0.257, 0.447) decrease in the risk of miscarriage at time t. 
A one-year increase in maternal age at conception resulted in a 7.6% (HR 1.076, 95% CI 0.998, 1.159) increase in 
the risk of miscarriage. A one-day increase in cycle length was associated with a 15.6% (HR 0.844, 95% CI 0.739, 
0.965) decrease in the risk of miscarriage.

Figure 1.  Log human chorionic gonadotrophin trajectories for viable pregnancies and miscarriage pregnancies.

Figure 2.  Kaplan-Meier survival probabilities for time-to-miscarriage.
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A comparison of log hCG association parameters for various models are presented in Table 4. The association 
between log hCG and time to miscarriage was attenuated when fitting a survival model with time-varying covar-
iate (HR: 0.439, 95% CI: 0.373, 0.516) and the two-stage model (HR: 0.440 95% CI: 0.368, 0.527). Furthermore, 
standard errors for both the standard survival model and two-stage model were 0.036 and 0.040 respectively 
compared to a larger 0.142 for the joint model.

Conditional survival predictions.  Conditional survival probabilities were obtained from the joint model, 
which included the current value association structure (see Table 2). Probabilities estimated for the ten-day win-
dow after the last observed hCG measurement are shown in Fig. 3 and for a two-day window in Fig. 4. Participants 
A and B experienced biochemical and early losses respectively, whilst participant C experienced a healthy preg-
nancy. For both participants A and B a similar number of measurements were observed over comparable time 
periods, with similar average cycle lengths (28 and 30 days respectively) and ages (42 and 38 years respectively). 
Based on observed hCG measurements as well as age and cycle information, both were predicted to experience 
miscarriages.

For participant C estimates confirmed an 80% survival probability for the pregnancy two days post last 
observed hCG measurement. Depending on the cut-off used for low risk this may not be considered a high 
enough survival probability for a healthy pregnancy. As follow-up did not continue it was not possible to update 
probabilities to look at longer-term outcomes.

Discussion
Principal findings.  This analysis builds on the two-stage model approach implemented by Marriott et al.15. 
By utilising the more advanced joint longitudinal-survival framework, the association between longitudinally 
measured urinary hCG and time to miscarriage is modelled, accounting for both measurement error and the 
intermittent nature of observations. This improves upon the two-stage model, which assumed that measurements 
remained constant between observation times.

Longitudinal model

Mean change 
in log hCG 
MIu/ml

95% Confidence 
Interval

Time since conception, 
days 1.431 1.396, 1.466

Quadratic time since 
conception, days −0.025 −0.026, −0.024

Group

Healthy — —

Biochemical loss −1.656 −2.135, −1.176

Early loss −1.132 −1.484, −0.781

Table 2.  Model estimates from a linear mixed effects model.

Survival submodel
Hazard 
Ratio

95% Confidence 
Interval

Age, years 1.076 0.998, 1.159

Usual cycle length, days 0.844 0.739, 0.965

Expected current value of log 
hCG 0.339 0.257, 0.447

Longitudinal submodel Mean 95% Confidence 
Interval

Time since conception, days 1.431 1.396, 1.466

Quadratic time since 
conception, days −0.025 −0.026, −0.024

Table 3.  Model estimates from a joint longitudinal-survival model with current value association structure.

Model
Standard 
error

Hazard 
Ratio for 
log hCG

95% 
Confidence 
Interval

Time-varying covariate 0.036 0.439 0.373, 0.516

Two-stage model 0.040 0.440 0.368, 0.527

Joint model 0.142 0.339 0.257, 0.447

Table 4.  Survival estimates from a standard survival model with time-varying covariate, two-stage model and 
joint model.
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With the emphasis now on personalised care, it is becoming standard practice to use the joint model in favour 
of singular or two-stage analyses to model the association between longitudinal and failure processes, to both 
maximise efficiency and minimise the potential for bias16. The mainstream use of joint models coincides with 
improvements in software making these complicated models increasingly easier to fit, with packages available in 
both R (JM, JoineRML) and Stata (stjm, merlin)13,17–19. This makes the estimation of conditional survival 
probabilities from such models more accessible.

This paper investigates whether urinary hCG could be used to monitor pregnancy viability prospectively in 
early pregnancy from first detection of hCG. Tracking at this early stage presents an adjunct to diagnosis by ultra-
sound later on in the pregnancy. This analysis echoes research suggesting declines in hCG can be noted even prior 
to other symptoms presenting20. There is also potential for this monitoring to occur prior to conception, with a 
recent study finding that a lag between the luteal phase and hCG production can be indicative of a biochemical 
pregnancy, possibly due to early or delayed implantation21.

Tracking of hCG by pregnant women is practicable, as demonstrated by Foo et al. who employed a fertility 
monitor that also provide semi-quantitative analysis of hCG levels on pregnancy tests that were used daily in 
women who conceived21. Retrospective analysis of the semi-quantitative data indicated that non-viable preg-
nancies had different hCG profiles to viable pregnancies. Serial tracking could have the potential to cause stress, 

Figure 3.  Conditional survival probability curves for participants A and B who experienced biochemical and 
early losses, respectively.

Figure 4.  Conditional survival probability curve for participant C who experienced a healthy pregnancy.
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although women using tests to track ovulation for fertility purposes do not appear to have higher stress levels 
than those not employing tests22,23. Nevertheless, it is likely that tracking would initially be of benefit in high risk 
pregnancies, where anxiety levels are already high and there would be a willingness and reason to track. Further 
research would be required to understand the psychological impact of tracking.

Monitoring from first detection has the potential to be useful in cases of recurrent miscarriage, particularly 
as research into treatment gains traction. A recently published feasibility study assessing the effectiveness of the 
diabetes drug sitagliptin as a treatment for recurrent miscarriage, presented promising findings24. This trial builds 
on previous research, which found that in some cases of recurrent miscarriage it is the deterioration of stem-like 
cells in the uterus which contribute to pregnancy loss. When adjusted for age and baseline colony forming unit 
(CFU) counts, the CFU count was higher (RR 1.52, 95% CI 1.32, 1.75) in the sitagliptin group compared to pla-
cebo, pointing to successful regeneration of cells. These findings could revolutionise treatment for unexplained 
recurrent miscarriage, particularly as the more established progesterone therapy has not been shown to signifi-
cantly impact the rate of live births (PROMISE and PRISM trials)25,26.

Not all miscarriage is likely to be predictable due to the diverse aetiology of the condition. Some causes can be 
directly related to reduced hCG levels, e.g. conditions that affect rate of embryonic development such as chromo-
somal abnormalities, or inadequate placentation. Other causes, for example, where infectious agents or trauma 
are involved, may have no forewarning.

The demographic factors that add to the model have plausibility. The association between chronological age 
and miscarriage is well documented, and short follicular phase has also been associated with miscarriage by other 
authors27,28. Short cycle length may represent a surrogate marker for advanced reproductive age as the initial 
transition to peri-menopause can be characterised by a shortening of cycle length29.

Strengths and limitations.  The two-stage model did not allow the investigation of the nature of the asso-
ciation between miscarriage and hCG, something which is possible with the joint model. Although attempted 
it was not feasible to sensibly fit a joint model with a first derivative association structure, possibly due to the 
small sample size. This is something that requires further investigation in a larger dataset, particularly as there 
is evidence in the literature, which suggests that the overall profile of hCG is important as opposed to changes 
in absolute values of hCG. Certainly, both recent papers utilising Bayesian non-parametric models, and mixed 
effects penalized splines model approaches, focused on classification of each type of pregnancy based on complete 
longitudinal profiles30,31.

A Weibull model was utilised to model the baseline hazard, however ideally more flexibility would be desir-
able. This could be achieved by using restricted cubic splines to model the baseline hazard. Model selection was 
carried out using forwards stepwise selection, which is known to introduce bias32. Alternative selection methods 
should be considered in future, specific to the joint modelling context. Selection based on the log likelihood 
contribution for the longitudinal part and conditional survival model have been proposed, but are currently only 
implemented in the SAS statistical software33. The example dataset was relatively small, and so fitting a model as 
complex as the joint model was challenging. Results must therefore be interpreted with caution. As this was a 
retrospective analysis of data with limited follow-up measurements, it was not possible to update predictions as 
measurements were observed. Predictions were therefore inaccurate for wider time periods. With the small sam-
ple size, it was also not viable to split the dataset for development and validation of the model. Attempting to uti-
lise such data for diagnostic or monitoring purposes also requires careful consideration of the potential for false 
positives. This study did not take into account the sensitivity and specificity of the fitted model, however this is 
an important component for planned future analyses in line with developments in joint model methodology34,35.

When utilising the joint model framework, it is essential to think about adjustments that need to be made to 
the model to truly reflect the biological reality of the biomarker and disease processes. In this analysis considera-
tions were made for the timeline on which miscarriage was modelled and how this affected the inclusion of fixed 
and random effects. Due to limitations of the software, the models included fixed and random intercepts, though 
no hCG would have been detectable at time zero. Date of conception would also be unknown in a natural preg-
nancy setting, making this analysis more suited to an IVF setting. This, however, could be adjusted for by using 
the last menstrual period (LMP) as a timeline in a natural pregnancy setting.

Employing two separate modelling techniques for longitudinal and survival data requires larger sample size 
requirements in a clinical trial setting. The increased efficiency of simultaneously modelling the two outcomes has 
the advantage of maintaining desired power at a lower sample size36. This makes designing clinical trials around 
a joint model framework an attractive prospect.

Conclusions
The novel extension to this analysis concerns the subject-specific predictions. This study is an initial investigation 
into whether women at high risk of miscarriage could be adaptively monitored via their urinary hCG concentra-
tion. Though the effectiveness of possible treatments, particularly for recurrent miscarriage, remain uncertain; 
the joint model is well placed for dynamic monitoring. However long term follow-up observations are required, 
along with access to a larger dataset for a model to be developed and subsequently validated. Future analyses 
should also consider the sensitivity and specificity of the fitted predictive model, to minimise the likelihood of 
false diagnoses of miscarriage.

Methods
Description of dataset.  Women attempting to conceive were asked to collect daily early morning urine 
samples for their entire menstrual cycle and up to 28 days after the day of their missed period if they became 
pregnant. Women recruited were aged between 18–45 years and were not excluded on the basis of existing fer-
tility issues. Intra-individual variation in the concentration of first morning urine is much lower, than when 
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considering all urine voids. In addition, the exponential rise of hCG in early pregnancy from <1 mIU/ml to 
>150 000 mIU/ml renders fluctuations in urine concentration as having minimal effect on the trajectory of rise. 
Therefore, correction for urine concentration differences, e.g. using creatinine, was not required.

Urinary concentration of hCG was quantified using a validated quantitative immunoassay system 
(AutoDELFIA; PerkinElmer, Waltham, USA). The concentration of luteinising hormone (LH) in the urine were 
analysed by a panel of experts from a range of disciplines, including statisticians, endocrinologists and clinical sci-
entists, to determine the day of LH surge, which occurs approximately 24 hours prior to ovulation. It was assumed 
conception occurred the day after the LH surge37. Details of sample collection and storage have been described 
previously15. Additional maternal demographics, menstrual and pregnancy history data were recorded. The study 
was carried out in accordance with the ethical principles of the Declaration of Helsinki. Written, informed con-
sent was obtained from all individual participants involved in the study.

Statistical analyses.  The data utilised in this analysis have been analysed previously using a two-stage 
model approach15. The two-stage model utilises existing modelling techniques by first fitting a linear mixed 
effects model to the longitudinal data. Subject-specific predictions are then obtained from the mixed model and 
included as a time-varying covariate in a survival model. This method incorrectly assumes that the biomarker 
remains stagnant between measurements and gives too precise estimates with unrealistically small standard 
errors16. This analysis will now be extended using a joint model framework, which offers a number of advantages 
over the two-stage model approach.

Longitudinal modelling.  The joint model is made up of two component models – the longitudinal linear 
mixed effects model and proportional hazards survival model36. The longitudinal model for urinary log hCG 
forms a trajectory function, which estimates the unobserved values of log hCG for the ith patient at time t to form 
complete profiles. The formulation of the fitted model is as follows,

= +log hCG t m t e( ) ( )i i ij

m t b b time time( ) ( ) ( )i i i0 0 1 1 2
2β β β= + + + +

σ∼ Ω ∼b MVN e N(0, ) (0, )i u ij e
2

The model is made of fixed effects parameters including a fixed intercept (β0) and linear and quadratic time 
since conception terms, with parameter estimates, β1 and 2β  respectively. The random effects parameters allow 
each individual i to vary at baseline via a random intercept (b )oi  and over time through a random linear time since 
conception term, with parameter estimate b i1 . The possibility of measurement error, as with any continuous bio-
marker, is accounted for via the residual error term, e ,ij  which is normally distributed. The random effects bi are 
multivariate normally distributed. An unstructured correlation matrix was assumed.

Survival modelling.  A proportional hazards survival submodel was assumed, conditional on 
= ≤ ≤M t s s t( ) {m ( ), 0 }i i , which denotes the history of the true unobserved longitudinal measurements up to 

time t and additional covariates vi
14. The specific fitted model is given by,

γ γ α| = + +h t M t v h t usual cycle length m t( ( ), ) ( )exp[ age ( )]i i i0 1 2

The baseline hazard, h t( )0 , was assumed to follow a Weibull distribution. Maternal age and usual cycle length 
were included as covariates in the survival model, after a forwards model selection procedure was carried out at 
the 5% significance level. The inclusion of m t( )i  in the survival submodel estimates the change in absolute log hCG 
values and is termed the current value parameterisation, with association parameter α. By including the longitu-
dinal model within the survival submodel, we effectively link the expected value of log hCG to the miscarriage or 
censoring time, where typically an hCG response would not have been observed. Various association structures 
were explored, including the first derivative association structure, which models the rate of change of log hCG.

To allow for comparison a standard survival model with log hCG included as a time-varying covariate was 
fitted, as well as a two-stage model using subject specific predictions from the longitudinal model, as defined for 
the joint model, in a survival model.

Subject-specific survival probabilities dependent on maternal age and longitudinal log hCG measurements 
were obtained from the sample on which the joint model was fitted, using the Stata package stjm13. Conditional 
survival predictions can potentially be updated as measurements are observed, giving a real-time risk of miscar-
riage, or dynamic predictions. All models were fitted in Stata IC version 15.1.

Funding and ethical approval.  This was a diagnostic accuracy study on a sample bank collected from a 
multicentre, prospective study, conducted by Radiant Research (USA) on behalf of the sponsor SPD Development 
Company Ltd. (UK). The study was approved by Quorum Review Committee on 30th November 2009; clinical 
trial number NCT01077583. This analysis was conducted by N.B.A as part of a doctoral training programme 
jointly funded by MRC IMPACT and SPD Development Company Ltd.
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