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Abstract

Filamentary structures, or long and narrow streams of material, arise in many areas of astronomy. Here we
investigate the stability of such filaments by performing an eigenmode analysis of adiabatic and polytropic fluid
cylinders, which are the cylindrical analog of spherical polytropes. We show that these cylinders are gravitationally
unstable to perturbations along the axis of the cylinder below a critical wavenumber kcrit ; few, where kcrit is
measured relative to the radius of the cylinder. Below this critical wavenumber, perturbations grow as µ s te u ,
where τ is time relative to the sound-crossing time across the diameter of the cylinder, and we derive the growth
rate σu as a function of wavenumber. We find that there is a maximum growth rate σmax∼1 that occurs at a
specific wavenumber kmax∼1, and we derive the growth rate σmax and the wavenumbers kmax and kcrit for a range
of adiabatic indices. To the extent that filamentary structures can be approximated as adiabatic and fluidlike, our
results imply that these filaments are unstable without the need to appeal to magnetic fields or external media.
Further, the objects that condense out of the instability of such filaments are separated by a preferred length scale,
form over a preferred timescale, and possess a preferred mass scale.

Unified Astronomy Thesaurus concepts: Analytical mathematics (38); Hydrodynamics (1963); Gravitational
instability (668)

1. Introduction

The formation and evolution of filamentary structures is ubiquitous in astrophysics. To give a handful of examples, the first large-
scale structures are thought to form out of the intersections and collapse of dark matter sheets and filaments (e.g., Bond et al. 1996;
Kravtsov & Borgani 2012). Galaxy mergers and the tidal destruction of dwarf galaxies are accompanied by the formation of galactic
tidal tails and stellar streams (e.g., Grillmair 2009). The tidal disruption of a star by a supermassive black hole (Rees 1988) transforms
the star into a long, thin filament of gas (Kochanek 1994; Guillochon et al. 2014; Coughlin et al. 2016a). The merger of two compact
objects results in the tidal stripping of material from the less dense object, and that material is flung out in the form of a tidally ejected
tail of debris (e.g., Lee & Ramirez-Ruiz 2007; Rosswog 2007). Mergers between giant molecular clouds and cloud cores, and the
associated turbulence within those cores, result in the formation of filaments along which star formation can occur (e.g., André et al.
2010; André 2017). Cold streams can provide a reservoir of gas that fuels star formation in galaxies (e.g., Dekel & Birnboim 2006).

Owing to their ubiquity, the (magneto)hydrodynamic stability of such filaments has received a considerable amount of attention,
with among the first analytic investigations undertaken by Chandrasekhar & Fermi (1953) and Ostriker (1964a), who analyzed the
stability of an incompressible and uniform-density cylinder and a compressible and uniform-density cylinder, respectively. Since
then, a number of authors have considered the stability of filaments in various environments with a variety of initial conditions and
perturbations, which can give rise to, e.g., the Kelvin–Helmholtz instability (e.g., Mandelker et al. 2016, 2019b; Padnos et al. 2018;
Vossberg et al. 2019) and cooling instabilities (e.g., Bodo et al. 1993; Bessho & Tsuribe 2012; Birnboim et al. 2016; Gronke &
Oh 2019; Mandelker et al. 2019a), which themselves can be modified by magnetic fields (e.g., Nagasawa 1987; Berlok &
Pfrommer 2019), rotation (e.g., Freundlich et al. 2014; Sadhukhan et al. 2016), and gravity (e.g., Nagasawa 1987; Hunter et al.
1997, 1998; Aung et al. 2019).

In spite of past work on the stability of filamentary structures, to the authors’ knowledge, only Breysse et al. (2014) analyzed the
global stability of an adiabatic, hydrostatic cylinder with a polytropic equation of state through an eigenmode analysis (analogous to a
stellar eigenmode analysis; e.g., Cox 1980). Breysse et al. (2014) demonstrated that such filaments are unstable to (cylindrical) radial
perturbations once the adiabatic index falls below 1, in agreement with Chandrasekhar & Fermi (1953). They also showed that the g-
modes of such cylinders are convectively unstable to nonradial perturbations when the adiabatic index is less than the polytropic
index, similar to the stellar convective instability criterion. Breysse et al. (2014) also focused on perturbations that displace the axis of
the cylinder (m= 1 modes; see Section 4 for a precise definition of m), which are analogous to spherical perturbations that are
characterized by a spherical harmonic number of ℓ=1 that displace the center of mass of the sphere.

Here we perform an eigenmode analysis of adiabatic fluid cylinders. We construct and analyze a purely Eulerian set of perturbation
equations from the fluid equations and consider the fluid velocity as the fundamental variable, which contrasts the approach taken in
most studies of stellar oscillations in which a Lagrangian formalism is adopted that treats the fluid displacement as the fundamental
variable. We focus exclusively on purely polytropic cylinders for which the adiabatic and polytropic indices are equal and g-modes
are absent, and we primarily consider perturbations that are only along the axis of the cylinder and azimuthally symmetric (i.e., no
variation around the axis of the cylinder).

In Section 2 we derive the equilibrium configuration of a polytropic hydrostatic cylinder, and in Section 3, we analyze the response of
such a cylinder to (cylindrical) radial perturbations. We derive the same result as Chandrasekhar & Fermi (1953) and Breysse et al. (2014),
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that such perturbations drive an instability when the adiabatic index of the gas satisfies γ�1; we emphasize, however, that as the gas
becomes more isothermal and g  1, this instability is fundamentally different from the gravitational instability of a g  4 3 spherical
polytrope. We present the generic (i.e., not restricted to the radial direction) perturbation equations, and we derive the eigenvalue equations
that describe the fundamental modes of the filament3 in Section 4 .

In Section 5 we consider perturbations that are azimuthally symmetric and along the axis of the cylinder, and we show that such
perturbations are characterized by an unstable mode when the wavelength of the perturbation is longer than a critical value. We
derive the growth rate of the instability as a function of the wavenumber of the perturbation for a number of different adiabatic
indices, and we show that there is a maximum growth rate at a wavelength that is comparable to the radius of the cylinder. We show
that this unstable mode characterizes unidirectional motion along the axis of the cylinder, and that the instability operates
gravitationally and analogously to that of a γ=4/3 spherical polytrope. We also present an eigenmode decomposition of a specific
initial perturbation.

We summarize and discuss the implications of our findings in Section 6.

2. Hydrostatic Polytropic Cylinders

Our unperturbed hydrostatic state is a cylinder of length 2L and cross-sectional radius H such that L?H, and we assume that
fluid quantities (e.g., density and pressure) only depend on cylindrical radius s, which is consistent with the hydrostatic nature of the
cylinder in the limit that  ¥L . Defining the line mass of the cylinder4 as Λ=M/L and the dimensionless cylindrical radius as
ξ=s/H, we parameterize the density ρ, dimensionless line mass λ, and gas pressure p by
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from which it follows that λ0(1)=1; here subscript zeros refer to the unperturbed state, which is relevant for the next two sections, in
which we consider perturbations on top of this state.

We further assume that the cylinder is a polytrope, implying that the functions h0 and g0 are related by = gh K g0 0 0 , where K0 is the
dimensionless specific entropy of the cylinder and γ is the polytropic index. With these definitions, the equation of hydrostatic
balance in the radial direction and the Poisson equation in cylindrical coordinates (see Equation (33)) can be combined to yield the
following single equation for λ0,
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which is just the cylindrical version of the Lane–Emden equation written in terms of the line mass λ0. It is straightforward to show
that if the solution to this equation is to be nontrivial and satisfy the requirement that the total line mass must be equal to Λ/2, so that
λ0(1)=1, then the function λ0 can be approximated near the surface by
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To arrive at this expression, we Taylor expanded the function λ0 in powers of (1−ξ) and equated like powers on the left- and right-
hand sides of Equation (2). We can use this solution to integrate Equation (2) inward from a point near the surface. We require that λ0
go to zero at ξ=0, which fixes the value of K0 for a given γ. We determine K0 numerically through an iterative method, specifically
by integrating Equation (3) from ξ ; 1 to 0 and varying K0 until we achieve λ0(ξ;0);0.

The left panel of Figure 1 shows the solution for the dimensionless density, pressure, and line mass when γ=5/3, for which
K0;0.107; to aid in the visualization of these functions, here we normalized the dimensionless pressure and density h0 and g0 by
their values at the origin, g0(0) and h0(0). The right panel of this figure gives the solution for the dimensionless density when γ=2,
5/3, and 4/3, for which K0;0.0865, 0.107, and 0.131, respectively.

Ostriker (1964b) described the properties of these solutions, and Ostriker (1965) presented detailed tabulated values of the specific
functions for a range of adiabatic indices. Here our primary concern is not with the hydrostatic solutions themselves, but with their
response to imposed perturbations. We turn to the analysis of cylindrical-radial perturbations in the next section.

3. Radial Perturbations

From the above definitions of the density and pressure (Equation (1)), the sound speed cs is given by Lc Gs  , which yields the
dimensionless sound-crossing time τ of the cylinder:

t º
L

d
G

H
dt

c dt

H
. 4s ( )

3 The majority of the (abridged) algebraic manipulations that lead to the equations are given in Appendices A and B.
4 This definition of the line mass is algebraically convenient but somewhat of a misnomer owing to the fact that the total length of the cylinder is 2L; Λ, as we have
defined it, is therefore twice the total line mass of the cylinder, being the total mass divided by the total length.
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We now impose purely cylindrically radial perturbations (i.e., no variation along the axis of the cylinder or around the axis) on top of
the hydrostatic cylinder that induce a cylindrical-radial velocity vs, which we parameterize by

x t= Lv G f , . 5s s ( ) ( )

Here fs is a function of ξ=s/H(t), where H(t) is the true stream radius (i.e., including the radial perturbations). The component of
the velocity normal to the surface of the cylinder must be continuous across the surface in the comoving frame of the surface, which
implies that the function fs satisfies
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We thus see that if the motion of the surface is subsonic, the function fs will be less than 1. In this limit of subsonic surface motions,
we are justified in dropping nonlinear terms in the velocity from the fluid equations, and we can construct the linear response of the
cylinder to such small-amplitude perturbations. We therefore expand the fluid density and pressure as
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where g1 and h1 are small perturbations to the density and pressure with respect to the unperturbed functions g0 and h0, respectively.
Dropping nonlinear terms, we can take the Laplace transform of the continuity, radial momentum, and entropy equations to obtain
three algebraic equations relating the perturbation to the pressure, the perturbation to the density, and the cylindrical-radial velocity.
These three equations can then be combined into a single second-order differential equation for the cylindrical-radial velocity; to
maintain the readability of the paper, the algebraic steps are deferred to Appendix A, and the result is
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Here a tilde denotes the Laplace transform of a quantity, where the Laplace transform of fs is
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and the dimensionless velocity of the surface of the cylinder. Here we imposed an initial cylindrical-radial velocity δf to seed the
perturbations; modifying the approach to allow for an initial pressure excess that induces the motion, for example, is straightforward.

Equation (8) is our fundamental equation describing the radial oscillations of a polytropic cylinder, and to integrate it numerically
for a given σ, Ṽ , and δf, we need two boundary conditions on the velocity. The first such boundary condition arises from the
continuity of the normal component of the velocity across the surface, which yields Equation (6), and shows that

x = =f V1 . 11s̃ ( ) ˜ ( )

Figure 1. Left: functions λ0, g0, and h0, being the dimensionless enclosed line mass, density, and pressure, as a function of the dimensionless radius for a polytropic
index γ=5/3. The density and pressure are normalized by their values along the axis of the cylinder, g0(0) and h0(0), respectively. Right: solution for the density of
the cylinder for the polytropic indices shown in the legend. These solutions have respective specific entropies of K0=0.0865, 0.107, and 0.131.
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The second boundary condition comes from the requirement that the solution be expandable about the surface and nontrivial, which
gives

x g
s g sd= - + - -
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2
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To derive this expression we used, from Equation (3), that xµ - g-g 10
1 1( ) ( ) and g g x= - -h g 1 10 0 ( )( ). Finally, for a given σ

and initial velocity perturbation δf and an arbitrarily chosen Ṽ , integrating Equation (8) numerically from the surface will not
necessarily result in a well-behaved solution near ξ=0. However, we require that physical perturbations that maintain cylindrical
symmetry do not displace the axis itself, and hence we require that x = =f 0 0s̃ ( ) . For a given σ (and initial velocity perturbation),
there will be a unique Ṽ that results in the solution for fs̃ satisfying this third boundary condition. The solution for the velocity of the
surface itself is therefore constrained by requiring that solutions remain well behaved along the axis of the cylinder.

3.1. Eigenmodes

There are special values of σ ≡ σn, which in general are complex numbers, for which the solution for Ṽ in Equation (8) diverges.
In the vicinity of the point σn, we can divide Equation (8) by Ṽ , define ºf f Vn s

˜ ˜ ˜ , and, letting s s n, Equation (8) becomes
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The dependence on the specific perturbation drops out from both the differential equation and the boundary condition owing to the
fact that V1 0˜ as s s n (i.e., the ratio df Ṽ becomes much less than the rest of the operator equation in Equation (8) as
 ¥Ṽ ), and σn is determined by requiring that the solution for fñ be well behaved (and equal to zero) at ξ=0. In maintaining a

finite fñ, we are implicitly letting the eigenfrequencies describing the surface oscillations coincide with those of the eigenfunctions;
assuming otherwise leads to either contradictions or trivial solutions, and hence the motions of the interior of the cylinder directly
couple to the surface motions (i.e., one cannot have motion in the interior of the cylinder that does not impact the surface). The
eigenvalues σn and the corresponding eigenfunctions are then independent of the specific perturbation that originated the movement
of the cylinder. Also note that the eigenvalue in Equation (13) depends only on sn

2; hence, if we find any solution σn, −σn is also a
solution with the same fñ.

The left panel of Figure 2 shows the first five eigenfunctions when γ=5/3; the legend in this figure gives the square of the
eigenvalue that corresponds to each mode and demonstrates that all of these modes are characterized by purely imaginary
eigenfrequencies. The lowest-order mode has a zero crossing only at the origin, and each higher-order mode has an additional node
where the function intersects the line =f 0s̃ , shown in this figure by the black dashed line for reference.

Figure 2. Left: first five eigenfunctions describing the cylindrical-radial velocity of a γ=5/3 cylinder, where the legend gives the square of the eigenvalue
appropriate to each mode. The fact that all of the eigenvalues are imaginary means that the solution is stable, and the cylinder oscillates in response to radial
perturbations. The fundamental (lowest-order) mode has one zero crossing at the origin, and each successive mode has one more node than the previous one. The
black dashed line shows =f 0s̃ for reference. Right: lowest-order mode for the adiabatic indices shown in the legend. As the adiabatic index decreases, the
fundamental mode becomes increasingly nonlinear, implying that one needs many higher-order modes to reconstruct a linear (i.e., well-ordered) initial velocity
perturbation. As the equation of state softens, the cylinder becomes unstable to chaotic motions in the outer, low-density region of the cylinder.
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The eigenmodes offer a numerically convenient means of constructing the response of the cylinder to an imposed perturbation, as
we can write

 s s- =V C, 15
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where C is a holomorphic function in the complex plane. Note, however, that we can use the inverse Laplace transform, being
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where the integral is taken over a line in the complex plane that extends from - ¥i to ¥i and is to the right of all the poles (the
eigenvalues) of Ṽ (see, e.g., Riley et al. 2006), to write the solution for V as
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where in the last line, we closed the contour integral in the left half of the complex plane and used the residue theorem. Thus, for a
given initial perturbation, we need only calculate the quantity V1 ˜ in the immediate vicinity of the eigenvalues σn to determine its
derivative, and the response of the cylinder is then a sum over a discrete set of modes. If all of the eigenvalues are purely imaginary,
then the hydrostatic configuration is stable and oscillates in response to an imposed perturbation. On the other hand, a mode with a
positive real part implies that the solution is unstable, and perturbations grow exponentially rapidly.

For γ=5/3, all of the eigenvalues are imaginary, and the response of such a polytropic cylinder to an imposed radial perturbation
is to stably oscillate. Note, however, that if we let γ=1, Equation (13) appears to have the exact solution σ1=0 and x=f1̃ , which
suggests that isothermal cylinders are unstable to radial perturbations (recall that σ refers to the eigenvalue of the velocity of the
surface of the cylinder, not its displacement, and hence σ=0 corresponds to a constant surface velocity), which is the same result
recovered by Chandrasekhar & Fermi (1953) and Breysse et al. (2014). The adiabatic index of γ=1 therefore appears analogous to
γ=4/3 for spherical polytropes.

The analogy is, however, not entirely accurate, as the physical behavior and manifestation of the instability between the two cases
is fundamentally different: for the spherical case, as γ decreases to 4/3, the lowest-order eigenfunction becomes more linear, and the
lowest eigenvalue approaches σ=0. Thus, if we impose an initial velocity perturbation of δf=−ξ on a polytropic star, then, as
g  4 3, the response of the spherical polytrope is dominated by the lowest-order mode, the star collapses inward on itself
homologously, and the velocity profile remains almost linearly radial with time (and is exactly linear when γ=4/3). This behavior
is ultimately due to a phase lag between the perturbation to the velocity and those to the pressure, density, and gravitational potential,
as the latter are all proportional to the fluid displacement. The pressure therefore builds in response to the existence of the initial
velocity field to withstand the radial collapse of the sphere. The gravitational potential, however, also builds precisely in sync with
the pressure, which serves to accelerate the inward motion of the fluid. The value of γ=4/3 thus represents the critical adiabatic
index at which the pressure cannot build vigorously enough to overcome the destabilizing nature of self-gravity, and the spherical
polytrope continues to collapse in on itself at a constant velocity. The constancy of the velocity arises from the competition between
the simultaneously rising pressure and gravitational potential.

On the other hand, the nature of the instability in the cylindrical case is completely different, as the lowest-order mode becomes
increasingly nonlinear as the gas becomes more isothermal. This behavior is shown in the right panel of Figure 2, which gives the
fundamental mode for the adiabatic indices shown in the legend (the square of the eigenvalue is also given in the legend). If we
therefore impose the same initial velocity profile of δf=−ξ to a nearly isothermal cylinder, then instead of the response being
dominated by the lowest-order mode, we instead need many higher-order modes to accurately reconstruct the solution near the
surface. Thus, instead of collapsing homologously inward, the cylinder responds to an initial radial infall by transferring power to
higher-order modes, and the outer, low-density regions of the nearly isothermal cylinder oscillate violently and stochastically. As we
reach the threshold of γ=1, the unstable mode appears to emerge as the new lowest-order mode with σ2=0.

However, the case of γ=1 cannot be self-consistently analyzed with our set of variables, as the mass of the cylinder is infinitely
concentrated along the axis and the radius of the cylinder is not a well-defined quantity in the isothermal limit. Instead, in this case,
we would have to work with variables normalized by the quantities along the axis of the cylinder and the radius normalized by the
central scale height, being p rp G4c c

2( ) , where pc and ρc are the pressure and density along the axis, respectively. In terms of these
variables, as g  1, the surface of the cylinder grows to an arbitrarily large number of scale heights. Thus, at γ=1, the cylinder
becomes infinite in extent, and the set of eigenmodes goes from a set of discrete points to a dense continuum. The function x=fs̃ is
also not the solution at σ2=0, as there is no longer a surface at which to apply a regularity boundary condition; instead, the
boundary condition on the eigenmodes is such that there are no inward-propagating waves as we move to larger radii, as the
background state now possesses what is effectively an outflow boundary at large radii. Thus, while γ=1 possesses the solution
σ2=0, it also possesses an infinite number of solutions with σ2=ò and  0.

With these points in mind, we now move on to the analysis of general (i.e., not necessarily restricted to the radial direction)
perturbations of an adiabatic self-gravitating cylinder and analyze the eigenmodes of these cylinders. We note that our analytical
approach and numerical methodology for calculating the eigenmodes differ from what is commonly presented in, for example, texts
on stellar oscillations (e.g., Cox 1980). To verify the validity of our methods, we also derived the eigenmode equations that describe
the oscillations of a polytropic sphere and recovered identical results to those presented in Lee & Ostriker (1986) for the
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eigenfrequencies of the f, p1, p2, etc.modes of a γ=5/3 polytrope. Because they may be useful in other contexts and we have not
encountered them elsewhere, we give these equations in Appendix C for reference.

4. Eigenmode Equations for Nonradial Perturbations

The previous subsection assumed that perturbations were purely in the cylindrical-radial direction. Here we allow the perturbations
to also be along (the z-direction) and around (the j-direction) the axis of the cylinder. As above, we nondimensionalize the fluid
quantities by defining

x h j t r
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Here H is the true location of the surface of the cylinder, i.e., including the perturbations induced by the fluid motion, and the
cylindrical nature of the unperturbed solution demands that ∂H/∂z=1 and ∂H/∂j=H in the perturbative limit. As for the
previous section, the subsonic nature of the perturbations also implies that ¶ ¶ LH t G . We now must also explicitly account for
the perturbations to the gravitational potential of the cylinder, Φ, and the surface of the cylinder, H, which we parameterize by

x x h j t j z h j tF = L + = +G j j H z t H, , , , , , 1 , , . 200 1 0{ ( ) ( )} ( ) { ( )} ( )

Here H0 is the unperturbed radius of the cylinder, and ζ is the dimensionless perturbation to the surface. Unlike the case of radial
perturbations, for which the perturbation to the surface velocity is the only quantity that has physical meaning,5 here the presence of
deviations along and around the axis of the cylinder requires that we account for the angular and linear variations of the surface itself.
We also normalize the unperturbed gravitational potential by j0(1)=0; the normalization does not, of course, affect the properties of
the solutions, but it does simplify the appearance of the equations.

We can now insert the above definitions into the fluid equations and the Poisson equation, take their Fourier and Laplace
transforms, and derive the linearized perturbation equations and eigenvalue equations; we defer the details of the calculations to
Appendix B and present only the final results here, being the following set of two equations for the functions sºF fs s
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The first of these is the radial momentum equation, and we let there be an initial cylindrical-radial velocity perturbation d x h jf , ,s ( )
that drives the motion of the cylinder, while the second is the Poisson equation. Tildes denote Laplace- and Fourier-transformed
quantities so that, for example, fs̃ is given by

ò ò òx s x t h j j h t=
p st h j¥
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s 0 0

2
s
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and similarly for j1̃. To ensure the periodicity of the solution around the axis of the cylinder, m is restricted to positive and negative
integers, while k is a continuous variable. It is also apparent from Equations (21) and (22) that the signs of m and k do not affect the
solution, and we can restrict our analysis to positive m and k.

Analogous to what was done in Section 3 for purely radial perturbations, the boundary conditions at the surface can be determined
by Taylor expanding the functions Fs̃ and j1̃ about ξ=1 and requiring that the normal component of the velocity be continuous
across the surface of the cylinder; writing the leading-order series expansion of the gravitational potential about the surface as

z x= + ¢ -j J J 11̃
˜ ˜ ˜ ( ), this gives
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5 By this we mean that we are always free to rescale the units of the problem; hence, when the oscillations are purely radial, the fundamental physical quantity is the
velocity of the surface of the cylinder, not its position. This is apparent from the fact that in Section 3 we were able to solve for the perturbation to the velocity and
never had to introduce the perturbation to the surface itself; hence, the only restriction that ensures the quasi-hydrostatic nature of the solution is that the surface
velocity is small in comparison to the sound speed.
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We can obtain a second relation between J̃ and ¢J̃ by noting that, outside the surface of the cylinder (ξ>1), the density is exactly
zero, and Equation (22) can be written as Laplace’s equation in cylindrical coordinates for the quantity zx xD º - ¶ ¶j j j1 1 0

˜ ˜ ˜ . There
are two independent solutions to this equation, one of which diverges at large ξ while the other decays; discarding the growing
solution as unphysical, as small perturbations to the fluid should not result in diverging corrections to the gravitational potential, we
find that for all ξ>0, the potential satisfies

xD µj H ik . 251 m
1˜ ( ) ( )( )

Here Hm
1( ) is a Hankel function of the first kind, in the limit that k 0 approaches x- m∣ ∣. To ensure that the gravitational field remains

finite, the potential itself and the derivative of the potential must be continuous across the surface of the cylinder, which shows that J̃
and ¢J̃ are related by
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Equations (24) and (26) can be used to integrate Equations (21) and (22) for a given σ, J̃ , and z̃ . For a chosen σ, only for a special
combination of J̃ and z̃ will the solutions remain regular at the origin. As for the purely radial perturbations, the displacement of the cylinder
is recovered by ensuring that the solutions are well behaved along the axis. In this case, we also recover the perturbation to the gravitational
potential at the surface of the cylinder, J̃ , which is constrained by the nondivergence of the gravitational field at the axis of the cylinder.

The eigenmodes are obtained when the solution for z̃ has a pole in the complex plane, and, performing the same steps as in
Section 3 and defining zºF Fn s˜ ˜ ˜ and z=j jn 1

˜ ˜ ˜ , we find that the eigenmodes satisfy the following two differential equations:
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and the boundary conditions
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Here sºJ Jn n˜( ). We can also derive an expression for the eigenfunction appropriate to the z-component of the velocity; see Equation (59).
The eigenvalues σn and Jn are recovered by requiring that the functions Fñ and jñ remain well behaved near the origin, in particular, that
they retain finite values and derivatives at ξ=0. We can determine these eigenvalues numerically by first picking a value of σn and
iteratively calculating the Jn that maintains the regularity of the velocity at the origin: for the chosen σn, we start with a guess for Jn,
numerically integrate Equations (27) and (28) inward from the surface, and calculate the value of xF 0 ;ñ ( ) we then perturb the guess for
Jn, calculate the new value of xF 0ñ ( ) , and use the difference between the new and old values of xF 0ñ ( ) to inform our new guess for
Jn that will better satisfy the boundary condition on Fñ at the origin. We then continue to iteratively perturb our choice of Jn until the
function Fñ satisfies the boundary condition near the origin. For the same σn, we can then perform precisely the same procedure to find the
Jn that maintains the regularity of the gravitational potential near the origin. Only for special values of σn will the two Jn coincide, and these
are then the eigenvalues σn and Jn that simultaneously satisfy the boundary conditions at the surface and the axis of the cylinder.

The quantities Jn and σn could be complex numbers, implying that there are actually four unknowns—the real and imaginary
components of σn and Jn—that are determined by simultaneously satisfying four boundary conditions—the real and imaginary
components of Fñ and jñ being well behaved near the origin. However, note that Equations (27) and (28) depend only on sn

2, and
through a suitable redefinition of the eigenfunctions, it can be shown that Equations (27) and (28) can be written in the form of a
Hermitian operator equation in sn

2. The eigenvalues sn
2 are therefore purely real, and—as for the purely radial perturbations—the

dependence on only sn
2 implies that if σn is a solution, then so is −σn.

When sn
2 is real, this method of calculating the modes also offers a convenient way of visualizing the solutions: as we augment the

value of σn, the Jn that satisfies the boundary condition on the velocity or gravitational potential adopts a new value, and the solutions
for Jn(σn) therefore trace out curves in Jn−σn space. The points where these two curves intersect then delimit the eigenvalues, and
we can—by calculating each Jn over a fairly wide and somewhat coarse range of σn—visually inspect the intersection points and
recover the eigenvalues.
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In the next section, we use this method to calculate the eigenvalues corresponding to m=0 and a range of k, and we show that
there is an unstable mode that exists below a critical value of k that describes the collapse of the cylinder along its axis. For the
remainder of this paper, we do not analyze modes with m>0, as we have not found any unstable modes that characterize such
perturbations.6 This finding is consistent with that of Hunter et al. (1998), who showed that—in the limit that the cylinder has a
constant density—surface modes generated by a confining, ambient gas corresponding to m>0 are stable when the pressure of the
filament is much larger than that of the ambient medium. This stability feature was also found by Aung et al. (2019), who
investigated the presence and evolution of gravitational instability alongside the Kelvin–Helmholtz instability (we note that, as
compared to these previous works, we are studying the “body mode” regime in which there is no confining pressure, i.e., the motions
and oscillations of the fluid cylinder are due purely to the pressure and gravitational field of the cylinder itself and not to any external
medium). For definiteness, we focus primarily on gas pressure–dominated cylinders with γ=5/3, though we plot the unstable
eigenfrequency as a function of k for various adiabatic indices.

5. Gravitational Instability of m=0 Modes

Figure 3 shows the Jn curves as functions of σ for γ=5/3 and the wavenumber k shown in the top right corner of each panel; the
top and middle right panels show Jn as functions of real σ, whereas the remainder are functions of imaginary σ. The blue curves are
the solutions that satisfy the boundary condition on the velocity at ξ ; 0, while the red curves satisfy the boundary condition on the
gravitational potential, and the black dashed lines show Jn=1 for reference. The intersections (purple points) are the eigenvalues,
which simultaneously satisfy the regularity conditions on both the velocity and the gravitational potential. This figure demonstrates
that perturbations with k=0.1 and 1 are characterized by six stable eigenvalues and one unstable eigenvalue, while k=2.5 and 4
possess seven oscillatory and stable eigenvalues with s < 10∣ ∣ (we do not plot the Jn as functions of real σ for k=2.5 and 4, as
there are no real eigenvalues). The fact that there are seven total modes for all k suggests that the mode characterized by the smallest
value of s∣ ∣ transitions from being unstable to stable above a critical value of the wavenumber k. We refer to the smallest mode by σu,
and, in line with the notation used in stellar oscillation theory, we denote the first stable mode by the f-mode, the second stable mode
by p1, the third stable mode by p2, etc.; the specific eigenvalues are given in Table 1.

To substantiate the notion that the smallest eigenvaluesu (as measured by s s s= *∣ ∣ ) transitions from being unstable to stable above a
critical k, Figure 4 shows the real part of the unstable mode as a function of k for the adiabatic indices in the legend. We see that, for k= 1,
the real part of the eigenvalue is small and the growth rate of the corresponding instability is slow. As k increases, the real part of σu
increases and reaches a maximum value, σmax, at a wavenumber kmax that is of order unity. Beyond this wavenumber, the real part
decreases and equals zero at a critical wavenumber, kcrit, and beyond this wavenumber, the eigenvalue σu is purely imaginary and describes
stable oscillations. The approximate values of σmax and kcrit for different adiabatic indices are given in Table 2.

Figure 5 shows the first seven eigenfunctions describing the cylindrical-radial velocity for γ=5/3 and k=1 (left panel) and the z-
component of the velocity (middle panel). These plots illustrate the physical relevance of the additional mode σu that is unstable for this set
of parameters: just as the f-mode (the first stable mode) describes purely outward or inward radial motion, and, correspondingly, the
eigenfunction has no zero crossings in the range ξ ä (0, 1], the mode σu characterizes motion that is unidirectional along the axis of the
cylinder. This feature of the eigenmodes also gives insight into the physical nature of the instability, as the root σ2=0 for k=0 that
appears in Figure 4 for all γ can be understood as uniform motion along the axis of the cylinder, and therefore must exist owing to the
Galilean invariance of the fluid equations. For small k, we can then think of the motion along the stream as comprised of two half-cylinders
joined by a node in the velocity, and the fluid either converges toward or diverges from the node owing to the sinusoidal dependence of the
perturbation in z. When the fluid converges toward (diverges from) the node, the gravitational potential increases (decreases) as the density
at the node increases (decreases), and this serves to further accelerate the motion toward (away from) the node. As k increases, the density
is more drastically perturbed along the cylinder, but the total amount of mass involved in each wavelength of the perturbation decreases,
which causes the pressure to increase more drastically than and counteract the destabilizing influence of the gravitational potential; this in
turn causes the growth rate of the instability to saturate and then decline. At the critical wavenumber kcrit, the increase in the pressure
exactly balances the increase in the gravitational potential, and the collapse along the axis of the cylinder proceeds at a constant velocity.
This instability is therefore the cylindrical analog of the gravitational instability of a γ=4/3 spherical polytrope, but here the instability
operates along the axis of the cylinder instead of radially.

We see from Figure 3 and Table 1 that as σ2 becomes larger, the eigenvalue that constrains the gravitational potential at the surface
of the cylinder, Jn, becomes better approximated by Jn=1. This feature of the solutions directly validates Cowling’s approximation,
because to leading order in the perturbation to the surface z̃ , the gravitational potential is given by

h j t zx
x
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G j
s
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The last line follows from a first-order Taylor series expansion of the unperturbed potential after accounting for the corrections to the
surface of the cylinder. The unperturbed potential satisfies ∂j0/∂ξ(ξ=1)=1; therefore, as J 1n , the total correction to the
gravitational potential at the surface vanishes. The right panel of Figure 5 shows the correction to the gravitational potential for the
eigenmodes, x xD = - ¶ ¶j j jn n 0

˜ ˜ , normalized by Jn and demonstrates that the total change in the gravitational potential effectively
vanishes for the higher-order modes.

6 Though we note that m=1, k=0 has the exact solution s = 0;n
2 since m=1 modes yield displacements of the axis of the cylinder, this mode describes the

uniform translation of the entire cylinder in the radial direction and is another manifestation of the Galilean invariance of the fluid equations.
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5.1. An Example

To illustrate the basic features of how the instability manifests itself in the oscillations of a cylindrical filament, here we consider a
specific example where we impose an initial cylindrical-radial velocity of d x x=f z A k z, coss p( ) ( ), where A is an arbitrary
normalization (though, to be consistent with the linear analysis, it should be less than 1) and kp is a specific wavenumber. Owing to
the independence of the perturbation Equations (21) and (22) on the sign of kp, in this case, the time-dependent solution for the
perturbation in real space is also just proportional to k zcos p( ), and we can solve Equations (21) and (22) with d x=f̃ and k=kp. For
definiteness, here we set kp=1, so that the cylinder has a single unstable mode.

Figure 3. Blue curves denote the values of Jn as functions of σ that solve the eigenvalue equations (see Equations (21) and (22)) and the boundary condition
x =F 0 0s̃( ) , while the red curves satisfy x x¶ ¶ =j 0 01̃ ( ) . The value of the wavenumber k is shown in the top right corner of each panel; the top and middle left

panels plot Jn as functions of imaginary σ, the top and middle right panels as functions of real σ, and the bottom left and right panels as functions of imaginary σ. The
intersections of the two curves (purple points) are the combinations of Jn and σ that simultaneously satisfy both regularity conditions at the origin and therefore are the
eigenvalues, and the dashed lines show Jn=1 for reference. All of these solutions are for gas pressure–dominated cylinders with γ=5/3. For k=0.1 and 1, there
are six stable eigenvalues and one unstable eigenvalue with s < 10∣ ∣ , while k=2.5 and 4 possess seven stable eigenvalues (we did not plot Jn as functions of real σ
for k=2.5 and 4 because there are no unstable modes for these k). The fact that each k possesses the same total number of eigenvalues suggests that the lowest-
frequency mode transitions from being unstable to stable above a critical wavenumber.
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Writing the perturbation to the surface of the cylinder as a product of eigenvalues and a holomorphic function (the same analysis as
for the purely radial perturbations that led to Equation (17)) and exploiting the dependence of the equations on σ2, we can write the
solution for the perturbation to the surface of the cylinder from Equations (21) and (22) as

åz s t
s s z

= =
¶

¶
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1 1

, 31
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where s s=n n
2 . The modes with s < 0n

2 drive stable oscillations in response to the initial perturbation, while the unstable mode

with s > 0n
2 generates an exponentially growing motion of the surface of the cylinder.

Table 1
The Eigenvalues sn

2 and Jn for γ=5/3 Polytropic Cylinders

Mode Wavenumber

k=0.1 k=1 k=2 k=3

u {σ2, J}={0.0267, 11.1} {0.495, 11.7} {0.160, −0.428} {−1.08, 0.734}
f {−2.69, 0.997} {−3.00, 0.954} {−3.74, 0.960} {−4.91, 0.977}
p1 {−10.7, 1.00} {−10.9, 1.00} {−11.6, 1.00} {−12.8, 1.00}
p2 {−22.2, 1.00} {−22.4, 1.00} {−23.1, 1.00} {−24.4, 1.00}
p3 {−37.3, 1.00} {−37.5, 1.00} {−38.3, 1.00} {−39.5, 1.00}
p4 {−56.0, 1.00} {−56.2, 1.00} {−56.9, 1.00} {−58.1, 1.00}

Note.The wavenumber of the perturbation is shown in the top row.

Figure 4. Real part of the unstable eigenmode σu as a function of wavenumber k for the adiabatic indices shown in the legend. The unstable mode is characterized by a
small real part for k = 1, reaches a maximum value between 0.5 and 1.2 at wavenumbers of order unity, and equals zero at a critical wavenumber ~k fewcrit . For this
range of k, the imaginary component of σu is zero, while above this range, the real part is zero; the mode σu therefore goes from being unstable in the limit of k�kcrit
to stable for k>kcrit. At k=kcrit, the instability grows linearly with time. The maximum growth rate, σmax; the wavenumber at which the maximum occurs, kmax; and
the critical wavenumber above which the modes are stable, kcrit, are given in Table 2.

Table 2
For the Adiabatic Indices Shown in the Top Row, the Maximum Growth Rate of the Unstable Mode (σmax, First Row), the

Wavenumber at Which This Maximum Growth Rate Is Achieved (kmax, Second Row), and the Critical Wavenumber above Which the
Oscillations Are Stable (kcrit, Third Row)

γ=4/3 γ=1.4 γ=1.5 γ=5/3 γ=2

σmax=1.3 1.1 0.88 0.72 0.57
kmax=2.0 1.7 1.5 1.2 0.96
kcrit=3.80 3.19 2.65 2.17 1.75

Note.See Figure 4 for a graphical representation of these values.
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We can numerically determine the coefficients cn appearing in Equation (31) by calculating the solution for z1 ˜ in Equations (21) and
(22) when s s s= + D2

n
2 2, where Δσ2 is a small number, and using the definition of the derivative. In practice, we calculate z1 ˜ at the

four points±Δσ2,±2Δσ2 and use a five-point stencil to estimate the derivative. For the first three stable eigenmodes, we useΔσ2=0.01;
for the fourth and fifth stable modes,Δσ2=0.001; and for the unstable mode,Δσ2=0.0001. We solve the equations with a method that
is analogous to what was done to calculate the eigenmodes: for a given σ, we first determine the z1 ˜ that satisfies the boundary condition
on the velocity at the origin over a range of J̃ . We then perform the same procedure to find the z1 ˜ that satisfies the boundary condition on
the potential at the origin over the same range in J̃ . These two solutions for z1 ˜ then trace out curves as functions of J̃ , which intersect at
the unique combination of J̃ and z1 ˜ that satisfies the differential equations and boundary conditions at the axis of the cylinder.

The coefficients we find for the unstable mode and the first five stable modes are, respectively, s = ´ -c 5.84 10n n
4, 1.30, −0.401,

0.127, −0.0371, and 0.0102. The left panel of Figure 6 shows the evolution of the surface of the cylinder H=1+ζ(τ) at z=0 as a
function of time with the amplitude of the perturbation set to A=0.2, so that the initial velocity of the surface is 20% of the sound
speed; here time is in units of the sound-crossing time, and the unperturbed radius of the cylinder is normalized to 1. The right panel
shows the temporal evolution of the dimensionless velocity of the surface, ∂H/∂τ, at z=0, and the fact that the velocity equals 0.2
at τ=0 is a consistency check on our eigenmode decomposition. The purple curves show the total solution, while the red (blue)
curves give the contribution from the unstable (stable) mode(s). Because the coefficient multiplying the unstable mode is very small
compared to those for the stable modes for this specific velocity perturbation, the cylinder initially appears to oscillate stably.
However, after ∼10 sound-crossing times, the exponential growth of the unstable mode starts to dominate, and the solution diverges
exponentially as ~ te0.7 , where the factor of 0.7 is the unstable eigenvalue for k=1 and γ=5/3 (see Figure 4).

6. Summary and Implications

In this paper, we analyzed the eigenmodes of an adiabatic polytropic cylinder that is infinite along its axis, the hydrostatic solutions
for which were presented in Section 2. The eigenmodes describe the global response of such a cylinder to small perturbations, where
the perturbations parameterize deviations of the fluid from the purely hydrostatic and cylindrical nature of the background state.
When the perturbations are in the cylindrical-radial direction (Section 3), the modes are stable and oscillatory when the adiabatic
index of the gas satisfies γ>1. The purely radial perturbations become unstable when the cylinder is isothermal and γ=1, but

Figure 5. The left panel shows the cylindrical-radial velocity eigenfunctions for the first seven eigenvalues shown in the legend and a wavenumber of k=1, where,
for ease of visualization, we normalized the functions by the square of the eigenvalue. The middle panel shows the eigenfunctions for the z-component of the velocity
for the same k and eigenvalues, and here we normalized the functions by the eigenvalue J. Comparing these two panels, we see that the unstable mode (yellow curves)
plays the role of the f-mode (the first stable mode) when applied to the z-component of the velocity. The right panel gives the total change to the gravitational potential
for the same eigenvalues and demonstrates that while the first two modes possess a fairly substantial change to the gravitational field, it is effectively zero for the
higher-order modes; this is a direct demonstration of the validity of Cowling’s approximation.

Figure 6. Left panel shows the evolution of the displacement of the surface of the cylinder at z=0 given an initial perturbation, while the right panel shows the evolution of
the surface velocity, both as functions of time normalized by the sound-crossing time τ. The blue curves are the contribution to the solution from the stable modes, while the
red curves arise from the unstable mode, and the purple curves are the total solution. Because the coefficients of the stable modes in the eigenmode decomposition are much
larger than that of the unstable mode, the cylinder oscillates for ∼10 sound-crossing times before the instability sets in and runaway growth occurs.
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unlike the self-gravitational instability that arises when the adiabatic index of a spherical polytrope falls below γ=4/3, the
instability operates more similarly to convection (see the discussion at the end of Section 3 and the right panel of Figure 2).

For more general perturbations (Section 4), we showed that these cylinders are characterized by a single unstable and growing
mode when the perturbations are azimuthally symmetric (no variation around the axis of the cylinder) and the wavenumber of the
perturbation along the axis of the cylinder is below a critical value, kcrit (Section 5). Below this critical wavenumber, which is
measured relative to the radius of the hydrostatic cylinder, the perturbations to the cylinder grow asµ s te u , where τ is time relative to
the sound-crossing time over the diameter of the cylinder and σu is real and positive. We calculated the growth rate σu for the range of
k over which the solutions are unstable for a number of adiabatic indices and showed that the growth rate of the instability peaks at
σmax∼1 at a wavenumber kmax∼1; see Figure 4 and Table 2.

The eigenfunction for the unstable mode is the analog of the f-mode for the velocity along the axis of the cylinder and therefore
characterizes motion that is unidirectional along the cylinder; the fact that s  0u

2 as k 0 in Figure 4 is therefore representative of
the Galilean invariance of the fluid equations and corresponds to uniform motion in one direction. We also argued that this feature of
the unstable mode implies that the instability arises from the self-gravity of the gas, as long-wavelength perturbations in the velocity
along the axis of the cylinder cause large portions of the fluid to converge near a node (in the velocity). This convergence of the
matter drives an increase in the gravitational field, which further accelerates the gas toward the node and amplifies the motion,
ultimately fueling the instability. At larger wavenumbers (smaller wavelengths), the increase in the pressure that accompanies the
increase in the density at the node starts to counteract the increasing gravitational potential, and at the critical wavenumber kcrit, the
fluid collapses along the axis toward a node at a constant velocity. Above the critical wavenumber, the pressure rises sufficiently
rapidly to withstand the destabilizing influence of the self-gravity, and the cylinder stably oscillates.

Figure 4 shows that for a specific <k kcrit and adiabatic index, the growth rate is a specific number on the order 1. Thus, if we
impose a perturbation of exactly one wavenumber, e.g., a sinusoidal variation in the velocity along the cylinder, then the instability
will grow at precisely the rate appropriate to that wavenumber. We calculated the evolution of the surface of an adiabatic, gas
pressure–dominated filament (i.e., one with an adiabatic index of γ=5/3) to such a sinusoidal variation and found that the
coefficient multiplying the unstable mode in the eigenmode expansion was much smaller than those multiplying the stable modes.
Thus, for the specific perturbation we considered, the cylinder oscillated seemingly stably for ∼10 sound-crossing times before the
runaway growth ensued. In this case and after the initial oscillatory phase, the deformation of the surface grew exponentially at
precisely the rate initiated by the k=1 perturbation, or, from Figure 4, as µ te0.7 .

However, the formation of a filament in an astrophysical context is unlikely to be accompanied by a perturbation at a single
wavelength, and the Fourier decomposition of, say, the density along the filament will likely have significant power over a broad
range of wavenumbers. Consequently, all of the unstable modes will start to grow at their own respective rates, augmenting the
corresponding Fourier coefficients. Provided that there is not too much power at a single unstable wavelength, the most unstable
mode will eventually come to dominate at late enough times and will characterize the power spectrum of the objects that
gravitationally condense out of the filament. If, on the other hand, there is initially a large concentration of power at a single
wavelength, then that mode may reach a nonlinear amplitude prior to the dominance of the most unstable mode, causing structure to
collapse and form at that (nonmaximal) wavenumber. Even in this scenario, however, the wavenumber that characterizes the
distribution of collapsed objects will be less than the critical one, kcrit, as above such a wavenumber, the perturbations are stable.
These results therefore predict that there is a preferred length scale that separates the objects that condense out of the gravitational
instability of the filament and, at the very least, a minimum separation between such objects.

Furthermore, the exponential growth of the instability implies that the time to reach nonlinear amplitudes is t sNcoll max , where
N is a number that varies logarithmically with the magnitude of the initial perturbation. Because of this very weak scaling on the
properties of the initial perturbation and the fact that σmax∼1, the timescale for objects to collapse out of the filament is
t ´ LH Gfewcoll 0 , where H0 is the initial radius of the filament and Λ is the initial mass per unit length. Since the wavenumber
at which the growth rate is maximized is also of order unity, we expect the mass distribution of the objects to peak at a value of Mcoll

; ΛH0.
We propose that this instability is the underlying mechanism responsible for the fragmentation of debris streams formed from the

tidal disruption of stars by supermassive black holes (Coughlin & Nixon 2015; Golightly et al. 2019). We note, however, that it is not
strictly correct to apply our results (e.g., the growth timescale and mass scale) directly to tidally disrupted debris streams, as the
background state of the gas comprising such a stream is not hydrostatic but instead possesses a diverging velocity profile from the
center of mass that is induced by the tidal field of the black hole. As shown by Coughlin et al. (2016a, 2016b), a necessary condition
for the stream to be gravitationally unstable in the presence of such a background shear is that the equation of state satisfies g  5 3,
which arises from the competition between the shear timescale and the sound-crossing time over the radius of the stream. When the
equation of state satisfies this inequality, the relevant timescale that characterizes the growth of the perturbations is still given by the
sound-crossing time over the radius of the stream, but in this case, the background line mass declines as L µ -t tdyn

2 3( ) and the
radius expands as µ g g- -H t tdyn

2 2 3 1( ) ( ) ( ( )), where tdyn is the dynamical time at the tidal radius (being roughly the same as the
sound-crossing time over the initial stellar diameter; see Equations (60) and (62) of Coughlin et al. 2016a). Thus, instead of growing
as exponentials in time, perturbations grow exponentially to a power of time with a power-law index less than 1. Specifically, using
the relation between dτ and dt in Equation (19) and these scalings for H and Λ, we find that

t µ
-

g-

- g-t

t

1

1
, 32
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and the fastest-growing mode grows as s te max .
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When γ=5/3, Equation (32) is no longer valid, and returning to Equation (19) and letting γ=5/3 shows that t µ t tln dyn( ). When
the stream is gas pressure–dominated, the instability therefore only grows as a power law in time. An additional complication in this case
arises from the fact that the dynamical timescale at the center of mass (∝R3/2 ∝ t, where R is the position of the marginally bound radius)
scales identically with the sound-crossing time over the stream, which implies that there is an additional parameter—the ratio of the stream
density to the black hole density at the tidal radius—that enters into the stability analysis. In the limit that the stream density is much greater
than the black hole density,7 the instability grows as µ st max , but for ratios closer to unity, the eigenvalue and its dependence on the
ratio must be determined from the stability analysis. It is also likely that once the ratio falls below ∼1, the stream is stabilized by the
tidal shear of the black hole. We defer a detailed analysis of this case to a future investigation.

Because of this slower growth rate, it likely takes a considerable amount of time for the perturbations to become nonlinear and
collapse out of the stream in a tidal disruption event, and the time taken to become nonlinear is more sensitive to the size of the initial
perturbation. Consequently, even though the dynamical time in a typical tidal disruption event is on the order of hours, it may take on
the order of months to years for the fragmentation to occur. We speculate that this large discrepancy in timescale between the initial
stellar disruption, the formation of the clumps, and the return of the clumps to the black hole—and the discrete feeding episodes—
could explain the late-time flaring observed in the galactic nucleus GSN 069 (Miniutti et al. 2019) if the original outburst (observed
c. 2010) was due to a tidal disruption event (Shu et al. 2018).

Because of the stiffness of the nuclear equation of state, the adiabatic index of the gas that comprises the tails of ejected material in
the merger of two compact objects may be well represented by γ  2 (Shapiro & Teukolsky 1983; Wiringa et al. 1988; Rasio &
Shapiro 1994). Correspondingly, these tails should be susceptible to this gravitational instability and should collapse into small-scale
knots, and this was found in numerical simulations by Lee & Ramirez-Ruiz (2007) when the equation of state was as stiff as γ=3.
The tails should still be unstable when γ=2, though the instability grows only asµ et1 3

(Equation (32)), and perturbations will take
longer to reach the nonlinear scale. This instability could therefore be responsible for late-time flaring observed in short gamma-ray
bursts (e.g., O’Brien et al. 2006) as condensed knots feed the remnant accretion flow at discrete times (see also Rosswog 2007).

As the equation of state softens, Figure 4 shows that the range of unstable modes broadens such that the maximum wavenumber to
which the filament is unstable, kcrit, becomes larger (i.e., the filament is unstable to shorter-wavelength perturbations), and the growth
rate of the instability increases. This feature arises from the fact that, as the adiabatic index approaches 1, the change in the pressure is
weaker for the same change in the density, and correspondingly, the pressure cannot as easily resist the destabilizing nature of self-
gravity. For the cool, nearly isothermal filaments from which stars could form, this result implies that if gas pressure is the only form
of pressure support that resists gravitational collapse, then regions of length scales more dissimilar from the fastest-growing one will
likely be able to reach nonlinear amplitudes, and the spectrum of, e.g., the masses of protostars will likely be less well represented by
a single scale. However, if turbulent magnetic fields are the main source of pressure, for which γ=4/3 (McKee & Tan 2003), then
Figure 4 predicts that the mass spectrum and spatial distribution of stars that form along filaments encode the underlying nature of the
filament itself (e.g., the line mass). In particular, if the filament has a diameter D=2H, then Figure 4 (see also Table 2) predicts that
star-forming cores are preferentially separated by a length p pH k D D2 2 1.5max   . Interestingly, this prediction is consistent
with the findings of Zhang et al. (2020), who investigated the properties of a set of star-forming filaments and found that the average
spacing between cloud cores was ∼0.15 pc, while the FWHM of the filament was measured to be 0.1 pc.

Our analysis pertained to a polytropic cylinder in a vacuum, without magnetic fields, and without rotation. The global instability
we described is fundamentally due to self-gravity and the geometry of the hydrostatic configuration of the fluid and exists in the
absence of these other quantities. On the other hand, if, for example, a large amount of shear is present between the filament and a
background medium and the density contrast is not too low, then the Kelvin–Helmholtz instability could operate more rapidly than
the instability identified here. This is precisely the context of the numerical study presented in Aung et al. (2019), where the body
modes of the filament operate alongside the instability driven by the shear between the surface of the cylinder and the ambient gas.

We focused exclusively on the case where the fluid is a pure polytrope, such that the adiabatic and polytropic indices are identical.
If one breaks this condition, then there are more modes that characterize the oscillations of the filament, and as discussed in Breysse
et al. (2014), these modes can drive convective instabilities when the adiabatic index is less than the polytropic index. However,
owing to the physical nature of the gravitationally unstable mode described in this paper and the fact that it characterizes
unidirectional motion along the filament, we find it unlikely that this mode no longer exists or becomes stable for nonpolytropic
filaments. This instability is therefore a generic feature of self-gravitating filaments.

E.R.C. thanks Eliot Quataert for useful discussions. We thank the referee, Nir Mandelker, for an extremely thorough reading of the
manuscript and detailed verification of our derivations and for pointing out some appropriate references that we missed in an initial draft. E.
R.C. acknowledges support from NASA through the Hubble Fellowship Program, grant No. HST-HF2-51433.001-A, awarded by the
Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA
contract NAS5-26555. C.J.N. is supported by the Science and Technology Facilities Council (grant No. ST/M005917/1).

Appendix A
Derivation of the Cylindrically Symmetric Perturbation Equations

Here we derive the eigenvalue equation that describes the purely cylindrical-radial oscillations of a polytropic cylinder,
Equation (8). When the motions of the fluid are subsonic and we neglect the nonlinear terms in the velocity, the continuity, radial

7 It may seem as though this cannot ever be achieved, as the successful tidal disruption of the star requires that the stellar density be less than the black hole density at
the tidal radius. However, it is approximately the equality between the average stellar density by volume and the black hole density that determines the tidal radius, and
hence the density at the center of mass of the stream can be substantially larger than the black hole density (e.g., see Figure 2 of Coughlin & Nixon 2015). The
dynamical focusing of the material in the plane of the disruption can also augment the density postpericenter (Coughlin et al. 2016b; Steinberg et al. 2019).
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momentum, Poisson, and entropy equations are
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Here s is the cylindrical radius, ρ is the density, p is the pressure, vs is the cylindrical-radial velocity, Φ is the gravitational potential,
and r= gK pln( ) is the specific entropy, with γ the adiabatic index of the gas. Introducing the definitions of the dimensionless
density, pressure, velocity, line mass, radius, and time (see the discussions preceding Equations (1) and (5)); adopting a polytropic
relation between the pressure and the density,
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and inserting these into Equation (33) yields the equation of hydrostatic balance for the unperturbed quantities,
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and the following three equations for the perturbed quantities:
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is the dimensionless surface velocity, and using the polytropic relation between the pressure, density, and definition of the line mass
yields the Lane–Emden equation from Equation (35) (see Equation (2)). We also used the following relations that result from the
transformations between partial derivatives with respect to physical coordinates and dimensionless coordinates:
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Taking the Laplace transform of the first and third of Equations (36), where the Laplace transform of λ1 is
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and similarly for other quantities, and assuming for simplicity that there is no initial perturbation to the line mass or the entropy, we
can solve for the Laplace-transformed perturbation to the line mass and the density:
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Taking the Laplace transform of the second of Equations (36), letting there be an initial velocity perturbation δf (ξ), and using these
solutions for l1

˜ and h1̃ gives
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Using the fact that x l x= ¶ ¶g1 1˜ ˜ from Equation (34), using Equation (40) to remove the dependence on l1
˜ , and a few additional

algebraic manipulations turns this into Equation (8), being the second-order differential equation for fs̃.

Appendix B
Derivation of the Generic Eigenvalue Equations

Here we derive the eigenvalue equations that describe the general (i.e., not restricted to the cylindrical-radial direction s)
oscillations of an adiabatic cylinder, specifically Equations (21) and (22). In the perturbative limit where we neglect the nonlinear
terms in the velocity and gradients in the z and j directions, where z is along the axis of the cylinder and j is the azimuthal angle
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around the axis, the continuity, momentum, entropy, and Poisson equations are
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Here ρ is the fluid density; p is the pressure; vs, vz, and vj are the s, z, and j components of the velocity; r= gK pln( ) is the specific
entropy, with γ the adiabatic index; and Φ is the gravitational potential. We now nondimensionalize these equations by defining
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where jH z t, ,( ) is the surface of the cylinder that includes the perturbations. We further parameterize the surface of the cylinder by
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where ζ is the dimensionless perturbation to the cylinder and assumed to be much less than 1. In terms of these variables and letting
the unperturbed cylinder be a polytrope, so = gh K g0 0 0 , the subscript-zero quantities satisfy the Lane–Emden Equation (2), and the
leading-order, linearized fluid equations become
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Note that, in deriving these equations, we used the following transformations between partial derivatives:
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We further emphasize that these transformations are correct to leading nonlinear order in the perturbed quantities. For example, we
do not have to account for the additional term h h¶ ¶ ´ ¶ ¶t that arises in transforming from t to the dimensionless variables
because this term will always be of second order in the perturbations. An analogous nonlinear term is dropped from the
transformation between the derivative with respect to z and the dimensionless variables. Similarly, in the Poisson equation, the only
first-order term that survives the second-order differentiation of the unperturbed potential j0 with respect to z is
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It is because of this term (and the analogous one that arises from the differentiation with respect to j) that the dependence on ζ

appears in Equation (50).
We now take the Fourier and Laplace transforms of this set of equations, where the combined transform of fs is
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Here k is a continuous variable, while m is restricted to positive and negative integers. We assume for simplicity that there is only an
initial perturbation to the s-component of the velocity, the Fourier transform of which we denote dfs̃. Equations (47) and (48) can then
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be combined to show that
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Using Equations (54) and (56) in Equation (45) and performing a few algebraic manipulations then shows
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and inserting Equation (57) into this relation, performing a few more algebraic manipulations, and defining sºF fs s
˜ ˜ yields

Equation (21). Taking the Fourier transform of the Poisson Equation (50), using Equation (57), and performing some rearrangements
gives Equation (22). Using Equation (57) in Equation (56) and defining sºF fz z

˜ ˜ also shows
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which—for the eigenvalues σn and eigenfunctions Fñ and jñ—are the eigenfunctions of the z-component of the velocity.

Appendix C
Eulerian Formulation of Spherical Eigenmodes

Because we have not encountered them elsewhere in the literature, they provide a check on our results, and they may also be useful
to other readers in other contexts, here we provide the completely Eulerian eigenvalue equations that govern the oscillations of
spherical polytropes. The fluid equations in spherical coordinates in the limit that we neglect nonlinear terms in the fluid velocity are
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Here the definitions of the fluid variables are precisely the same as or analogous to the cylindrical case, i.e., ρ is the fluid density; p is
the pressure; r is the spherical-radial coordinate; θ is the spherical polar angle; f is the spherical azimuthal angle; vr, vθ, and vf are the
radial, poloidal, and azimuthal components of the velocity; r= gK pln( ) is the specific entropy, with γ the adiabatic index; and Φ is
the gravitational potential. We now nondimensionalize the fluid quantities by introducing the following definitions:

r x q f t
p q f

x x q f t x q f t
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R t
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Here M is the total mass of the polytrope and q fR t, ,( ) is the radius of the star at which the density equals zero, which—including
the perturbations induced from aspherical motions—depends on both time and the polar angles. Consistent with the subsonic nature
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of the perturbations and the small angular variation of the surface with respect to radius, we further parameterize this radius by

z t q f= +R R 1 , , , 630{ ( )} ( )

where R0 is the unperturbed radius of the star and ζ is a small correction induced by the perturbations. Inserting the above into the
fluid equations, the zeroth-order terms can be combined to give

g
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where

òx x x x=
x

m g d 650
0

2
0( ) ˜ (˜ ) ˜ ( )

is the dimensionless mass enclosed within the polytrope. Equation (64) is the familiar Lane–Emden equation in spherical coordinates
written in terms of the dimensionless mass, and aside from geometrical factors, it is the same as Equation (2). It can be solved in
precisely the same way that we solved Equation (2) to obtain solutions for the unperturbed density, pressure, and entropy K0 for
different adiabatic indices γ.

Owing to the spherical nature of the background state, we expand the angular part of the perturbation to the surface and the fluid
variables in spherical harmonics; in particular, we write
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To avoid introducing yet more notation, we used the same symbol to represent the angle-independent functions that represent the
fluid quantities, except for the θ and fcomponents of the velocity, where we introduced the function f⊥. Substituting the above
definitions into the equations and dropping nonlinear terms leads to a self-consistent set of relations for the θ-independent quantities;
i.e., the θ and f components of the momentum equation yield the same equation for f⊥, and the fundamental equation for the
spherical harmonics,
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completely removes the angular dependence in the equations. We can now take the Laplace transform of the equations and follow the
same set of procedures that we did in Appendix B to reduce the entire set of relations to two second-order coupled ordinary differntial
equations for the perturbation to the gravitational potential and the radial component of the velocity. Defining s ºf Fr r

˜ ˜ and focusing
on the eigenmodes, for which z s sµ - -

n
1˜ ( ) , and letting z=F Fn r˜ ˜ ˜ , z=j jn 1

˜ ˜ ˜ , and s s n, the eigenmode equations are
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Here we normalized the unperturbed gravitational potential such that j0(1)=0, which, as for the cylindrical case, does not affect the
solutions but does simplify the appearance of the equations. This set of coupled equations is the analog of Equations (27) and (28),
and we note that—aside from geometrical factors, slight differences in the dependence on the adiabatic index and unperturbed
potential, and the appearance of x+ℓ ℓ 1 2( ) as opposed to x+k m2 2 2—the two sets of equations are identical. As we did in the
cylindrical case, we can now expand the solutions near the surface of the polytrope to determine the boundary conditions on the
functions at ξ=1. Requiring that the normal component of the velocity be continuous in the comoving frame of the surface and
expanding the gravitational potential as

x x= + ¢ -j J J1 1 , 70n n n
˜ ( ) ( ) ( )

the series expansion of Equation (68) near the surface gives
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Outside of the surface of the polytrope, Equation (69) is Laplace’s equation in spherical coordinates for the quantity x x- ¶ ¶j jn 0
˜ [ ].

Requiring the perturbation to the gravitational potential to remain finite at large radii then yields the following additional constraint
between ¢Jn and Jn:

¢ = + -J ℓ J1 1 . 72n n( )( ) ( )

We can now numerically solve this set of equations in a manner analogous to what was done for the cylindrical eigenmodes and
search for the pairs of quantities s J,n n{ } that simultaneously satisfy the regularity of both the velocity and the gravitational potential
near the origin; these are the eigenmodes that describe the fundamental oscillations of the spherical polytrope. Using this method, we
find precisely the same eigenvalues (to four significant figures) as reported in Lee & Ostriker (1986) for the eigenmodes of a γ=5/3
polytrope. Namely, the f-mode has s -2.12n

2  and Jn=0.796, and the higher-order modes are the same as those reported in Lee &
Ostriker (1986) with Jn ; 1 (as for the cylindrical oscillations, the feature Jn ; 1 is a direct demonstration of the validity of
Cowling’s approximation).
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