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ABSTRACT
We perform N-body simulations of the early phases of open cluster evolution including a large
population of planetesimals, initially arranged in Kuiper-belt like discs around each star. Using
a new, fourth-order, and time-reversible N-body code on Graphics Processing Units (GPUs),
we evolve the whole system under the stellar gravity, i.e. treating planetesimals as test particles,
and consider two types of initial cluster models, similar to IC348 and the Hyades, respectively.
In both cases, planetesimals can be dynamically excited, transferred between stars, or liberated
to become free-floating (such as A/2017 U1 or ’Oumuamua) during the early cluster evolution.
We find that planetesimals captured from another star are not necessarily dynamically distinct
from those native to a star. After an encounter, both native and captured planetesimals can
exhibit aligned periastrons, qualitatively similar to that seen in the Solar system and commonly
thought to be the signature of Planet 9. We discuss the implications of our results for both our
Solar system and exoplanetary systems.

Key words: planets and satellites: dynamical evolution and stability – methods: numerical –
Kuiper belt: general – minor planets, asteroids: individual: 1I/’Oumuamua – open clusters and
associations: general – Oort cloud.

1 IN T RO D U C T I O N

The vast majority of stars are born in open clusters, which disperse
as a result of gravitational scattering between stars on time-scales
�100 Myr. This is at least an order of magnitude longer than
the inferred lifetime of an average protoplanetary disc, in which
planetesimals and planets are expected to form around young stars
(see e.g. Alexander et al. 2014). Protoplanetary discs efficiently
damp inclination and eccentricity of objects embedded within them
(see e.g. Baruteau et al. 2014, for a review), essentially shielding
a young planetary system from the harsh dynamical environment
of the cluster (see e.g. Picogna & Marzari 2014). However, the
difference in lifetimes between discs and clusters means that there is
a period of 10s–100s of Myr during which intra-cluster interactions
can shape a young planetary system without the presence of a disc to
damp away their effects. This implies that intra-cluster interactions
could leave a lasting – and potentially observable – imprint on
young systems of planets and planetesimals. Indeed, as our own
Sun was most likely born in an open cluster, such signatures may
have been present in the early Solar system and potentially be still
observable today. Given that open clusters gradually expand and
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slowly disintegrate over time, we expect the majority of close and
potentially dynamically significant interactions to occur in the first
few Myr after disc dispersal, when the cluster is still relatively
dense.

Recent observations of open clusters have already begun to
reveal a large and diverse population of planetary systems hosted
within these already dynamically complex objects. Zuckerman
et al. (2013) used the observation of calcium in white dwarfs
within the Hyades open cluster to infer the presence of both
debris discs and planets around these stars. More recently, evidence
has emerged of transiting planets around other Hyads (Livingston
et al. 2017). Evidently, there is a growing need to understand the
impact of the cluster environment on planetary systems during
both their formation and long-term evolution. Studying planets or
planetesimals in open clusters is a challenging numerical problem
due to the vast array of time-scales and sheer number of objects that
must be considered.

Levison et al. (2010) actually already performed a simulation of a
full open cluster with each star hosting a disc of comets, with a view
to explaining the formation of the Oort cloud. They found that the
Oort cloud might indeed be formed largely of comets captured from
other stars. However, their initial population of comets around each
star consisted only of long period, highly eccentric comets similar to
our Kuiper Belt’s scattered disc, the premise being that the formation
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of giant planets would generate a considerable number of such
objects. Whilst quite plausible, this study did not reveal anything
about the potential fate of more traditional Kuiper belt objects. If
our Solar system contains signatures of intra-cluster interactions,
these populations may be our best hope of observing them.

A follow-up study by Brasser et al. (2012) again modelled an
entire cluster – this time with both comets and giant planets –
but only one star in each simulation initially hosted comets. They
showed that interactions between a primordial asteroid belt, giant
planets, and other stars in the cluster can explain the formation
of our inner Oort cloud, and explain the orbits of objects like
Sedna. In a further follow-up study (Brasser & Schwamb 2015), they
added giant planet migration to these models, hoping to differentiate
between the formation of the inner Oort cloud and a population of
extreme Kuiper-belt objects that are ‘detached’ from Neptune. This
study led them to suggest that objects with perihelia > 45 au and
semi-major axes > 250 au belong to the Oort cloud rather than the
Kuiper belt.

Whilst Levison et al. (2010) showed that integrating an entire
cluster with planetesimals is possible, the more common approach
is to somehow decouple the evolution of the cluster and the
individual planetary systems. The advantage of this approach is that
it drastically reduces computational effort, yet still enables some
statistical predictions regarding planetery or cometary systems in
clusters. For instance, Kobayashi & Ida (2001) performed numerical
simulations of stellar flybys – a star with a disc flies past a second,
disc-less star. They found that increased eccentricity and inclination
in the outer part of a planetesimal disc could inhibit planet formation
by causing collision velocities between planetesimals to be greater
than their mutual surface escape velocity. In the inner disc however,
the eccentricities and inclinations remain almost untouched and
planet formation continues unabated. In this work, they considered
only flybys that were relatively close to the outer disc, without
attempting to draw flyby parameters from cluster simulations.

In a similar vein, Lestrade et al. (2011) considered the possibility
of stripping debris discs in open clusters, using a combination of
numerical simulations of stellar fly-bys and kinetic theory of clusters
to estimate thepercentage of planetesimals stripped from stars of
various masses during a cluster lifetime. Their results suggest that
only clusters with initial stellar number densities > 1000 pc−3 pose
a significant threat to debris discs. More recently, Jı́lková et al.
(2016) performed many numerical experiments of a flyby between
two stars: one with a disc and one without, in order to study
the population of objects captured by the originally disc-free star.
They found this mechanism to be a viable way of forming objects
with high eccentricity and inclination on the outskirts of planetary
systems. Work by Grishin et al. (2018) suggests thiecapture rate
could be enhanced significantly around stars still hosting gas discs.

Similar techniques have been used to study the evolution of
planets themselves in clusters. Pacucci, Ferrara & D’Onghia (2013)
considered the incidence of free-floating, Jupiter-like planets in five
clusters. They use a sub-grid model to describe the changes in plan-
etary orbital parameters as their open-cluster simulations evolve.
Cai et al. (2017) and Cai, Portegies Zwart & van Elteren (2018)
simulate the effect of intra-cluster encounters on planetary systems
by modelling the cluster and planetary evolution in separate but
linked N-body simulations. Pfalzner, Bhandare & Vincke (2018a)
combined the results of N-body simulations of the open cluster M44
with the results of N-body simulations of two stars and their discs
flying past each other to ascertain if stellar interactions could affect
the formation locations of young planets. Parker, Lichtenberg &
Quanz (2017) considered the capture of free floating planets in

open clusters. To do this, they assumed an initial population of free-
floating planets, without making any direct assumption regarding
their origin. These studies concentrated on free-floating planets
because of their potential detectability and the possibility that one
of these planets was captured by our Sun. However, intra-cluster
interactions also naturally lead to the liberation of smaller objects
from young planetary systems.

Of particular interest in this context is the recent discovery of
1I/2017 U1 ’Oumuamua (Meech et al. 2017), the first detected so-
called ‘inter-stellar comet’. ’Oumuamua was presumably ejected
from some other – presently unknown – young planetary system,
and has been making its way through interstellar space ever
since. It seems prudent to investigate the possibility that objects
such as ’Oumuamua could be liberated from their original host
system by stellar cluster interactions. The dynamical properties of
this interesting object were constrained with extraordinarily high
accuracy during its flyby of the Solar system, and we will discuss the
implications of these observations later in this paper. Moro-Martı́n
(2018b,a) already considered the idea that ’Oumuamua might have
been ejected from either a young protoplanetary disc or an exo-Oort
cloud, finding the latter scenario to be unlikely and the former to be
plausible only if the population from which ’Oumuamua originated
was anisotropically distributed.

It is, of course, not just alien planetary systems that provide
evidence and motivation for studying planetesimal discs in clusters.
As mentioned above, Levison et al. (2010) already investigated Oort
cloud formation in the context of open clusters, and our own Kuiper
belt displays some very interesting dynamical characteristics that
may, to some extent, be the result of interactions in the Sun’s natal
environment. Objects within the belt occupy a broad and varied
region of phase space, which can be used to break the population
down into distinct families. Elliot et al. (2005) report on the Deep
Ecliptic Survey (DES) looking for Kuiper Belt Objects (KBOs).
They introduced a convenient scheme for separating our Kuiper
belt into distinct dynamical populations, in part using the Tisserand
parameter of each object:

Tp = ap

a
+ 2cos(i)

√
(a/ap)(1 − e2), (1)

where a and ap are the semimajor axes of the KBO and perturbing
body, respectively, i is the inclination of the KBO relative to the
perturber, and e is the eccentricity of the KBO orbit. In the case of
the DES, the perturbing body is Neptune. They use the Tisserand
parameter as well as other dynamical considerations to split their
observed KBOs into five distinct dynamical categories. Three of
these categories are relevant here:

(i) Classical – objects with e < 0.2 and Tp > 3 relative to Neptune
(ii) Scattered – objects with Tp < 3 relative to Neptune
(iii) Scattered-extended – objects with e > 0.2 and Tp > 3 relative

to Neptune

We will refer to these definitions throughout this manuscript, using
the term KBOs to refer to all of these objects together.

Here, we aim to perform a complete analysis of how Kuiper-
style planetesimal belts are affected by a cluster environment,
investigating all of the cluster-related effects mentioned above.
We perform N-body simulations of stars embedded in young
clusters where each star hosts its own Kuiper-belt-style disc of
planetesimals, and make no attempt to decouple the evolution of
the planetesimal populations from the rest of the cluster. While
this approach is computationally expensive, it allows us to gather
statistics for planetesimals across an entire cluster, and understand
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the likelihood of various different outcomes for different masses
of star. In particular, we are interested in understanding how intra-
cluster interactions might have shaped the present-day population
of our Kuiper belt, and if there is a chance that these populations
contain material captured from another star.

2 N U M E R I C A L M E T H O D

We use the time-integration algorithm named ‘4A’ by Chin & Chen
(2005) and originally discovered by Suzuki (1995) and Chin (1997).
Like the popular leapfrog method, this integrator is symplectic and
time-reversible, but fourth-order rather than second-order accurate.
A single time-step takes only three times longer than for the leapfrog
but may achieve errors that are orders of magnitude smaller than for
the leapfrog. This means that significantly less computational effort
must be extended to achieve an equivalent integration accuracy.
Given that the lifetime of an open cluster is of order 100 Myr and
Kuiper Belt objects orbit with a period of order 100 yr, we wish
to achieve minimal errors while keeping run-times manageable.
The 4A algorithm is ideal for this, and we have found its energy
conservation properties to be far superior to Leapfrog even with
much longer time-steps.

Our code uses a global, adaptive time-step applied to all particles.
In principle, an individual time-stepping scheme could speed up
these simulations somewhat. However, implementing per-particle
time-stepping in a time-reversible (and energy-conserving) fashion
is challenging (see e.g. Dehnen 2017), and with our GPU imple-
mentation of the 4A algorithm, the N2 force calculation is already
very quick. We therefore stick with a global time-step, but ensure
that it is adapted in a time-reversible fashion. The full details of this
scheme are given in Appendix A.

3 IN I T I A L C O N D I T I O N S

We base our cluster initial conditions on the standard Plummer
(1911) model. Stellar masses in our clusters are drawn from
the Kroupa (2001) initial mass function (IMF), truncated below
M∗ = 0.08 M� and above M∗ = 20 M�. This leads to an average
stellar mass of �0.51 M�. We construct a standard Plummer sphere
with each particle being assigned a mass from the Kroupa IMF, and
then assign a disc of 100 or 200 planetesimals to each star. The
naming scheme for our simulations gives information regarding the
choice of Plummer sphere initial conditions. Names are presented in
the formatCLUSTER bXX i, whereCLUSTER states that observed
cluster the simulation is based on, XX represents the Plummer
(1911) scale parameter b in units of parsecs, and i represents which
realisation of a particular cluster model is being considered. The
individual planetesimal discs are initially dynamically cold, with
near-circular orbits and zero mutual inclination, but each individual
disc has a random inclination (chosen from a uniform distribution)
relative to the other discs in the cluster. They are test particles
within our simulations, i.e. interact with every star, but not with
other planetesimals.

The test particles are distributed around each star between a
randomly selected inner and outer radius, rin and rout, respectively.
We choose rin from a uniform distribution, for which the lower limit
is the radius at which a circular orbit would have some minimal
orbital period – a parameter that varies between simulations – and
the upper limit is always the radius for which the orbital period is
�715 yr (80 au in the Solar system). For the bulk of our models, the
minimum orbital period in the disc is that of Neptune (� 164.3yr),
or in other words, the inner edge of our own Kuiper Belt. In this way,

all our discs are analogues of the Kuiper Belt, but the more massive
stars in our simulations host slightly more radially extended discs,
because a ∝ M1/3

∗ at a constant period.
The outer edge of the disc, rout, is then chosen from another

uniform distribution, whose lower limit is rin and whose upper limit
is the radius corresponding to an orbital period of 1000 yr (100 au in
the Solar system). Initial positions are then sampled randomly from
the the annulus between rin and rout such that the surface density of
particles is the same across the entire annulus. Finally, the particles
are given the velocity for a circular orbit at their position, though a
combination of truncation and round-off error ensures that they still
have negligible eccentricities with an average of e � 2.6 × 10−4.

This choice of initial conditions is simplistic by necessity: the
Kuiper Belt is the only well-studied planetesimal disc, and we
therefore have very little data to base our choice of initial conditions
on. In an effort to understand the effect that this simplification has on
our initial conditions, we also perform several simulations where the
interior period of the planetesimal belt around each star is allowed
to be as short as � 31.6yr – equivalent to an orbital radius of 10 au
in the Solar system. These simulations are designated by the suffix
tight in their names.

As our fiducial cluster model, we consider a well-studied and
extremely young cluster: IC348. These simulations have names
beginning with IC348. Luhman, Esplin & Loutrel (2016) have
performed an extensive census of this young cluster, which is
estimated to be between 2 and 6 Myr old and still partially immersed
in its parent molecular cloud. This age suggests that many of the
stars will soon lose their protoplanetary gas discs, making this the
ideal starting point for our simulations of the cluster environment in
the immediate aftermath of disc dispersal. Luhman et al. (2016) list
478 known members of the cluster, which they describe as being
nearly complete down to � 0.01 M�. Based on this number and
the fact that we truncate our Kroupa IMF at M∗ = 0.08 M�, we
take the number of stars as 440 for each simulation of IC348. The
cluster is approximately 300 pc from us with a radius of 14 arcmin,
giving a projected radius of around 1.22pc. This in turn gives us a
Plummer scale parameter of b = 0.49 pc, assuming that 80 per cent
of the mass of the Plummer sphere falls within this 1.22pc radius.
This gives a good visual fit to the distribution of stars in fig. 1
of Luhman et al. (2016). We stress, however, that the aim is not
to perform realistic simulations of IC348, but use this cluster as a
template for which we may study planetesimals in realistic clusters
in general. Finally, each star in our IC348 simulations begins with
200 primordial planetesimals, giving a total of 88 000 test particles
in each IC348 simulation.

To understand the effect star–star interactions on planetesimal
discs in a more massive cluster, we consider another extremely
well-studied example: the Hyades. Since the Hyades are some
625 Myr old, they have already lost much of their initial stars,
and consequently the rate of close stellar interactions is much lower
today than it was at the cluster’s birth. We therefore do not wish to
use a model of the Hyades today, but rather a model of their state
shortly after formation. Fortunately, Ernst et al. (2011) studied this
problem in some detail, evolving various different King (1966) and
Plummer (1911) models in a galactic potential in an effort to find
the initial conditions that best fit the observed Hyades.

Their best-fitting Plummer model with no primordial binaries for
the Hyades contained an initial 2250 stars with masses picked from
a Kroupa (2001) IMF. Ernst et al. (2011) defined the cluster scale-
radius by requiring that 99 per cent of the cluster mass be within the
Jacobi or tidal radius (see e.g. King 1962). Enforcing this condition
leads us to a Plummer sphere with b � 1.2pc, corresponding to
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a Jacobi radius of 14.7pc for their initial location of the Hyades
in a Milky Way potential. In addition to our canonical Hyades
models with b = 1.2 (simulation names beginning Hyades), we
run further models with b = 0.6 (names beginning Hyades b0.6)
but the same quantity of stars, to assess the effect of increased
density. In all of these models we assign 100 test-particles per star.
This is reduced from 200 in the IC348 simulations to offset the
extra computational effort of integrating four to five times as many
stars.

We also do not include primordial binaries in these models,
because very little is known about planetesimal discs around binary
stars, and we want to avoid another level of uncertainty to our
initial conditions. We also note that tight binaries could significantly
reduce the time-step of our simulations, making simulation times
of several Myr implausible. However, binaries may have significant
effects on the fate of planetesimal discs, and we intend to study their
importance in the future.

Table 1 shows the parameters chosen for each of the models we
consider, including core densities and masses. Note that there is
variation between models with identical parameters due to random
sampling of the IMF and Plummer sphere. We model six different
realizations of an IC348-style cluster in an effort to understand the
resulting variations in the outcomes, and to allow us to average
certain results over multiple models. We integrate each of these
models for 10 Myr. Additionally, we run the simulations IC348 2,
IC348 3, IC348 tight for a further 5Myr, such that we can
understand how the population of each simulation might evolve
if run for longer. Our Hyades models are integrated for shorter
time periods – 8 Myr and 4 Myr for the runs with b = 1.2 pc and
b = 0.6 pc respectively – since the larger numbers of stars make
them significantly more computationally expensive. However, we
also run the model Hyades b0.6 2 for an additional 2 Myr, again
in order to investigate how extending the simulations might change
the results.

The initial conditions for our main Hyades simulations contain an
error in the sampling of initial disc inclinations: the inclination of
each disc was sampled uniformly between 0 and π rather than
uniformly in cos(i) between −1 and 1. This leads to the discs
initially being oriented preferentially toward the z axis of each
simulation. However, given the random nature of the Plummer
sphere itself and the orbits within, we expect this to make little
difference to the results. As a test, we ran two additional realisations
of Hyades b1.2 to 4Myr with the sampling method corrected
and compared them to our main Hyades simulations at T =
4Myr. These are denoted in tables 1 and 3 with the naming
convention Hyades b1.2 i rerun, and display very little – if
any – difference to our main models. We are therefore confident that
the sampling error has no effect on the results of our longer Hyades
runs.

We note that actual clusters drift apart on Myr time-scales, and
therefore we only aim to model the short period directly after gas
disc dissipation, when the cluster density is at its highest. However,
in the case of an old, developed cluster like the Hyades, we can
reasonably expect any of the effects seen in our results to be
significantly more pronounced. We further note that despite the
absence of Galactic tides or a gas potential in our simulations,
our cluster models do spread out with time as a result of mass
segregation – more massive stars sink into the potential, forcing
less massive ones outward. Each IC348 simulation takes roughly
two to three weeks on a single NVIDIA K80 GPU, assuming
the time-step does not become too small as a result of very
eccentric orbits. The Hyades simulations can take up to 3 months

– again, depending upon how the orbits of the test particles
change.

4 R ESULTS

Interactions between stars in the cluster lead to a variety of outcomes
for the planetesimal discs, that can shape them in unique ways
and generate dynamically interesting populations. Determining to
which star – if any – a given planetesimal is bound is non-trivial
in the cluster potential. We thus turn to the tidal force on a star-
planetesimal pair to understand if their mutual attraction is greater
than the tidal force from the cluster which pulls them apart. The
acceleration of planetesimal i due to the gravity from star j is

aij = −GMj

|r ij |3 r ij , (2)

where r ij ≡ r i − rj . The total acceleration of the planetesimal is
then

ai =
∑
j∈∗

aij . (3)

The acceleration that planetesimal i feels from the the rest of the
cluster – excluding star j – is simply

ai\j = ai − aij . (4)

The tidal acceleration with which the cluster attempts to separate
the pair is then

atidal = ai\j − aj = ai − aj − aij . (5)

The tidal force may actually be compressive (if atidal · r ij < 0),
but in general pulls the planetesimal-star pair apart. Here, we use a
simple criterion based on the modulus of the tidal acceleration com-
pared to that of their mutual attraction and consider a planetesimal
unbound if

|atidal| ≥ |aij |. (6)

Note though, that |atidal| < |aij | for a given pair does not necessarily
imply boundedness. A given planetesimal may be very close to and
experience a huge acceleration from a given star whilst still having
sufficient velocity to escape its pull completely. Thus, we only
consider a planetesimal to be bound to a star if – in addition to
|atidal| < |aij | – the eccentricity of the pair e < 1. Particles that
satisfy this condition for more than one star are considered to be
unbound from either star – there is no clear way to establish which
star will dominate their future evolution. We note that only a very
few particles in our densest simulations of the Hyades fall into
this category. We also tried a simpler criterion – determining if a
planetesimal has e < 1 relative to one and only one star – but this
led to spurious detections of very-long-period planetesimals that
happened to share a similar velocity to a given star, but in reality
were much closer to other stars.1

Once we have a census of planetesimals bound to each star, we
perform some further analysis on each population to establish the
following statistics:

(i) Necc – the total number of stars in a given simulation with a
planetesimal population that is at least marginally eccentric relative
to the population in the initial conditions. Further details regarding
how eccentric systems are selected are provided in Section 5.1.

1This is possible because the eccentricity ignores the cluster contribution
and hence overestimates the gravitational influence of the star.
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Table 1. List of models considered in the text, and some ideal and realized properties of these models in the initial conditions. Nstars and Ntest are the total
numbers of stars and test particles in each simulation, respectively. Mstars is the mass of stars in each simulation, which varies even between simulations with
identical numbers of stars due to the random selection of masses from the Kroupa IMF. b is the Plummer sphere scale parameter. ρcore, pred volume mass
density of stars that would lie within the core radius (0.64b) of an ideal, continuous Plummer sphere with the given mass Mstars and scale parameter b. Since
our Plummer spheres are discrete, the actual mass within the core radius varies somewhat. ρcore, meas is thus the measured mass within the core radius at the
beginning of each simulation. M(R < R50%) signifies the mass within 1.3b, the radius that would contain 50% of the mass of an ideal, continuous Plummer
sphere. Note that the combination of random selection of mass, position, and velocity can lead to considerable variation between clusters with otherwise
identical parameters.

Model name Nstars Mstars Ntest/Nstars Scale parameter b ρcore, pred M� pc−3
ρcore, meas

M� pc−3 M(R < R50per cent)/Mstars

IC348 1 440 233.58 200 0.49 283.22 172.94 41.23 %
IC348 2 440 241.08 200 0.49 292.31 284.82 42.05 %
IC348 3 440 206.21 200 0.49 250.03 350.38 52.63 %
IC348 4 440 227.42 200 0.49 275.75 149.26 50.29 %
IC348 5 440 205.64 200 0.49 249.33 226.82 52.84 %
IC348 6 440 240.47 200 0.49 291.57 310.13 53.90 %
IC348 tight 440 252.37 200 0.49 306.00 323.86 52.11 %
Hyades b1.2 1 2250 1163.66 200 1.20 96.06 88.70 47.35 %
Hyades b1.2 2 2250 1197.97 200 1.20 98.89 103.24 49.91 %
Hyades b1.2 1 rerun 2250 1123.95 200 1.20 92.78 65.20 45.78 %
Hyades b1.2 2 rerun 2250 1153.03 200 1.20 95.18 74.11 47.12 %
Hyades b1.2 tight 2250 1125.69 200 1.20 92.93 92.89 45.96 %
Hyades b0.6 1 2250 1137.57 200 0.60 751.26 704.91 47.75 %
Hyades b0.6 2 2250 1165.45 200 0.60 769.68 751.72 47.85 %

(ii) Nalign – the total number of stars in a simulation where the
planetesimal population shows evidence of apsidal alignment. The
method for identifying aligned systems is described in Section 5.2.

(iii) Nloser – the number of stars in a simulation that lost one or
more of their original planetesimals.

(iv) Nstrip – the total number of stars in a simulation that lost
> 75 per cent of their original planetesimals.

(v) Nthief – the number of stars in a simulations that gained one
or more planetesimals that were originally orbiting a different star.

(vi) Nscat – the number of stars that have one or more planetesi-
mals meeting the DES (Elliot et al. 2005) definition of scattered or
scattered-extended objects, as defined by equation (1).

(vii) Nkuiper – the number of stars in a simulation that have at
least one planetesimal in each of the DES categories ‘classical’,
‘scattered’, and ‘scattered-extended’ as defined by equation (1),
and therefore have a Kuiper belt at least passably similar to our
own.

(viii) N0classic - the number of stars in a simulation that no longer
have any planetesimals meeting the DES definition of classical
KBOs. Note that all our planetesimals start in the classical regime.

(ix) Naffected - the number of stars in a simulation that meet one
or more of the above criteria. This gives a direct measure of the
number of stars that are affected by intra-cluster interactions.

(x) nfree – the total number of planetesimals in a given simulation
that are not considered bound (according to the criterion developed
above) to any star. Note that this does not necessarily mean that
the planetesimals are unbound from the overall cluster potential,
although in general we find that they are.

Tables 2 and 3 show the final values of these numbers for
each of our IC348 and Hyades simulations respectively. Further
details regarding the calculation of each of these numbers can be
found in Section 5. Fig. 2 shows some of the these values as a
function of stellar mass. Figs 1 and 4 show some examples of
individual systems that have been sculpted by stellar interactions in
our IC348 simulations, whilst Fig. 5 shows the total population of
planetesimals across all stars in one cluster. Note that in figures that

display orbital elements, the inclination i and longitude of periastron
φ are calculated using the plane of each star’s initial planetesimal
disc as the reference plane. In the initial conditions, each star’s disc
consists entirely of planetesimals whose specific orbital angular
momenta hi point in the same direction defined by unit vector k′

∗.
The direction of k′

∗ is random and different for each star. We thus
calculate inclinations of planetesimals that are bound to a given star
relative to that star’s k′

∗. The longitude of periapse φ also requires
that we define a reference direction in the plane orthogonal to k′

∗,
which we define as i ′

∗ = k′
∗ × i , with i being the unit vector that

points along the positive x axis of the simulation. This choice of
reference direction is arbitrary but makes little difference to the end
result.

5 D ISCUSSION

5.1 General evolution of orbital elements

Planetesimals in our simulations start with minimal eccentricity e
� 2.6 × 10−4. Therefore, even small levels of dynamical heating
in a planetesimal disc should be readily apparent. For the sake
of simplicity, we define the population of planetesimals around
a star to have experienced eccentricity growth if one or more
planetesimals orbiting the star has an eccentricity e > 0.01. This
criterion is perhaps overly simplistic, but we have found that
it effectively identifies systems with interesting features in the
eccentricity distribution. For each simulation we count the number
of stars that meet this criteria once the simulation is complete. This
is the figure Necc in Tables 2 and 3.

The numbers in column Naffected in Table 2 suggest that up
to 20 per cent of planetesimal discs are affected by the cluster
environment in our IC348 simulations. However, the majority
of interactions between cluster stars are not violent enough to
transfer planetesimals between them, or liberate planetesimals
leaving them to float freely. Instead, they lead to an excitation
of the planetesimal orbits. This is readily demonstrated by Fig. 2
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Table 2. Summary of key results from each IC348 simulation. The precise definitions of the quantities tabulated are given in Section 4.

Model (T/Myr) Necc Nalign Nloser Nstrip Nthief Nscat Nkuiper N0classic Naffected nfree

IC348 1 (10) 43(9.8%) 59(13.4%) 25(5.7%) 12(2.7%) 13(3.0%) 17(3.9%) 9(2.0%) 22(5.0%) 76(17.3%) 2811(3.2%)
IC348 2 (10) 46(10.5%) 66(15.0%) 23(5.2%) 6(1.4%) 20(4.5%) 21(4.8%) 11(2.5%) 20(4.5%) 81(18.4%) 2255(2.6%)
IC348 2 (15) 53(12.0%) 59(13.4%) 28(6.4%) 12(2.7%) 19(4.3%) 24(5.5%) 11(2.5%) 24(5.5%) 82(18.6%) 3403(3.9%)
IC348 3 (10) 47(10.7%) 80(18.2%) 12(2.7%) 2(0.5%) 11(2.5%) 24(5.5%) 10(2.3%) 9(2.0%) 88(20.0%) 946(1.1%)
IC348 3 (15) 59(13.4%) 77(17.5%) 15(3.4%) 5(1.1%) 12(2.7%) 29(6.6%) 13(3.0%) 13(3.0%) 88(20.0%) 1393(1.6%)
IC348 4 (10) 23(5.2%) 44(10.0%) 8(1.8%) 2(0.5%) 7(1.6%) 14(3.2%) 6(1.4%) 7(1.6%) 48(10.9%) 652(0.7%)
IC348 5 (10) 33(7.5%) 48(10.9%) 15(3.4%) 6(1.4%) 14(3.2%) 17(3.9%) 9(2.0%) 10(2.3%) 65(14.8%) 1495(1.7%)
IC348 6 (10) 48(10.9%) 57(13.0%) 23(5.2%) 9(2.0%) 10(2.3%) 18(4.1%) 11(2.5%) 21(4.8%) 71(16.1%) 2238(2.5%)
IC348 tight (10) 33(7.5%) 58(13.2%) 7(1.6%) 2(0.5%) 6(1.4%) 12(2.7%) 7(1.6%) 8(1.8%) 66(15.0%) 513(0.6%)
IC348 tight (15) 46(10.5%) 57(13.0%) 12(2.7%) 4(0.9%) 8(1.8%) 19(4.3%) 11(2.5%) 12(2.7%) 69(15.7%) 1060(1.2%)

Table 3. Summary of key results from each Hyades simulation. The precise definitions of the quantities tabulated are given in Section 4.

Model (T/Myr) Necc Nalign Nloser Nstrip Nthief Nscat Nkuiper N0classic Naffected nfree

Hyades b1.2 1 (4) 17(0.8%) 59(2.6%) 3(0.1%) 0(0.0%) 1(0.0%) 6(0.3%) 4(0.2%) 1(0.0%) 61(2.7%) 18(0.0%)
Hyades b1.2 1 (8) 48(2.1%) 86(3.8%) 13(0.6%) 1(0.0%) 11(0.5%) 17(0.8%) 11(0.5%) 11(0.5%) 98(4.4%) 294(0.1%)
Hyades b1.2 2 (4) 30(1.3%) 71(3.2%) 10(0.4%) 3(0.1%) 6(0.3%) 15(0.7%) 10(0.4%) 8(0.4%) 84(3.7%) 297(0.1%)
Hyades b1.2 2 (8) 55(2.4%) 105(4.7%) 17(0.8%) 6(0.3%) 9(0.4%) 25(1.1%) 17(0.8%) 15(0.7%) 128(5.7%) 526(0.2%)
Hyades b1.2 1 rerun (4) 33(1.5%) 65(2.9%) 11(0.5%) 4(0.2%) 9(0.4%) 12(0.5%) 4(0.2%) 11(0.5%) 76(3.4%) 496(0.2%)
Hyades b1.2 2 rerun (4) 29(1.3%) 91(4.0%) 8(0.4%) 0(0.0%) 7(0.3%) 9(0.4%) 2(0.1%) 7(0.3%) 100(4.4%) 127(0.1%)
Hyades b1.2 tight (8) 44(2.0%) 80(3.6%) 14(0.6%) 2(0.1%) 12(0.5%) 15(0.7%) 8(0.4%) 14(0.6%) 98(4.4%) 443(0.2%)
Hyades b0.6 1 (4) 160(7.1%) 318(14.1%) 33(1.5%) 6(0.3%) 22(1.0%) 63(2.8%) 25(1.1%) 36(1.6%) 370(16.4%) 922(0.4%)
Hyades b0.6 2 (4) 146(6.5%) 359(16.0%) 23(1.0%) 8(0.4%) 17(0.8%) 52(2.3%) 21(0.9%) 23(1.0%) 405(18.0%) 797(0.4%)
Hyades b0.6 2 (6) 206(9.2%) 404(18.0%) 32(1.4%) 11(0.5%) 25(1.1%) 76(3.4%) 29(1.3%) 36(1.6%) 477(21.2%) 1110(0.5%)

Figure 1. Example results from simulation IC348 5 after 10 Myr of cluster evolution. The left- and right-hand panels show the orbital elements (eccentricity
e, inclination i, and longitude φ of periastron) of planetesimals hosted by a 0.73 M� and 0.13 M� star, respectively. The two stars had a mutual encounter that
dynamically excited both discs, causing the lower mass star to lose 37 of its primordial test particles. All of these became attached to the more massive star,
forming a small and aligned scattered-extended disc. The encounter also scatters a large number (38 per cent) of the larger star’s primordial planetesimals on
to orbits that meet the DES definition of ‘scattered’. As a consequence, the star is left with a Kuiper belt with three distinct populations similar to our own. The
less massive is left only with objects in the ‘scattered’ regime. Note that in both cases, the primordial planetesimals (blue) exhibit alignment of periastron in
their outer regions after the encounter. The pericentre distance of the two stars during the encounter was � 1045 au, with an eccentricity (excluding the rest of
the cluster potential) of e � 1.12.
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Debris discs in stellar open clusters 27

Figure 2. Outcomes for planetesimal discs in our six simulations of IC348
binned by stellar mass. The top panel shows the total number of stars in each
mass bin across all six simulations, while the second panel shows the total
number of planetesimals stolen from (light blue) or ejected into the cluster
and left to float freely (dark blue) in each mass bin. The remaining four
panels show thepercentage of stars that have lost (3rd panel from top) or
stolen (4rd panel) planetesimals, or have populations that exhibit alignment
of periapsides (5th panel) or eccentricity growth (6th panel) after 10 Myr,
binned by mass. To avoid low number statistics in the higher mass bins, we
stack six simulations of IC348 together and use a logarithmic scale in mass.
Discs around higher-mass stars are in general more likely to be affected by
the cluster environment. We attribute this trend to multiple effects, discussed
in detail in Section 5.1.

Figure 3. An example (taken from the model IC348 2) of a system
around a 1.89 M� star undergoing significant dynamical heating while also
capturing a population of planetesimals from another star. The panels from
top to bottom show eccentricity e, inclination i and longitude of periastron
φ. The star had a close encounter with a 1.02 M� star and lost 47 per cent
of its original disc (blue) but captured 18 per cent of the disc of the smaller
star (orange), which in turn lost 86 per cent of its original disc but captured
16.5 per cent of the larger star’s disc. After the interaction, the captured
population around the 1.89 M� star cannot be dynamically distinguished
from the primordial planetesimals that were scattered on to high eccentricity,
inclined orbits.

and Table 2 – thepercentage of planetesimal discs experiencing
eccentricity growth is around an order of magnitude more than those
experiencing more violent outcomes. On average, for our models of
IC348, we find that approximately 10 per cent of systems undergo
interactions within 10 Myr that generate significant eccentricity.
The results of two such interactions can be seen in Figs 1 and 3. As
is to be expected, a much smallerpercentage of discs demonstrate
such dynamical heating in our Hyades models, since their core
density is significantly lower. Our Hyades models with b = 0.6 pc
(and eight times higher density) do however demonstrate a level of
dynamical heating similar to IC348 after just 4 Myr.

Interestingly, Fig. 2 suggests that systems around massive stars
are more likely to undergo dynamical heating than those around
lower mass stars. In fact, thepercentage of stars undergoing dy-
namical heating at different masses appears to follow a power-
law distribution, though further work is required to establish if
this relationship holds up with different initial conditions. We first
note, that this cannot be explained by the fact that more massive
stars have more extended discs, since our scaling to similar orbital
periods implies that the binding energy and gravitational pull of the
outermost planetesimals scale like M2/3

∗ and M1/3
∗ , respectively: it

is somewhater harder to affect discs around more massive stars in
our simulations.
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However, mass segregation dictates that more massive stars sink
to the centre of the cluster, where they experience the highest density
of stars and are much more likely to experience close encounters.
Furthermore, gravitational focussing is stronger for massive stars,
increasing the number and severity of close encounters that they
experience.

Fig. 5 demonstrates how various populations of planetesimals
undergo dynamical heating across an entire cluster, and additionally
shows the distributions of eccentricity and inclination for various
populations. Planetesimals that are ejected by one star and later
recaptured by another are likely to end up on Oort cloud style
orbits, in a similar fashion to that predicted by Levison et al. (2010).
Interior to the Oort cloud, planetesimals with eccentric or inclined
orbits can be either primordial to their star, or captured directly
from another star. These planetesimals have orbital elements very
similar to those in our own Solar system, with the tail of objects
exhibiting long period orbits and high eccentricities in our system
being particularly well fit by the simulation results. Note that based
on these results, it is not necessarily possible to distinguish between
scattered primordial planetesimals and those captured from another
star based on orbital elements alone, something demonstrated by
the interaction in Fig. 3. Very few planetesimals that are primordial
to their star or directly captured from another star end up on Oort-
cloud-like orbits, though we note that this might change if additional
perturbers such as planets were added to the simulations.

5.2 Apsidal alignment

Alignment between the peri-/apo-centres of neighbouring planetesi-
mals is an interesting phenomenon, not least because it is observed in
our own system. In exosolar systems, the effect might significantly
influence the formation of planets. It may also be observable; an
eccentric debris disc viewed face-on will appear as an extended
circular disc if the orbits are randomly aligned, but take the shape
of an ellipse if the orbits are similarly aligned.

To look for evidence of apsidal alignment, we consider direction
of the eccentricity vector of each planetesimal relative to its current
host star. As the eccentricity vector of a planetesimal describes
the location at which its periastron occurs, an over-abundance of
eccentricity vectors pointing in one particular direction implies
alignment within a system. We thus search for planetesimals whose
eccentricity vectors point in similar directions – and therefore
‘neighbour’ one another. For each pair of planetesimals 1 and 2,
we compute the angle between their eccentricity vectors as

θ1,2 = arccos

(
e1 · e2

|e1||e2|
)

(7)

and consider two particles to be neighbours if θ1, 2 ≤ θ crit, with θ crit

being a critical angle. At the beginning of each of our simulations,
the eccentricity vectors around each star are randomly distributed
in a circular, planar fashion. On average then, we expect each of
the n planetesimals orbiting a star to have two ‘neighbours’ with
eccentricity vectors separated by θ1, 2 ≤ 2π /(n − 1). If we consider
larger angular separations by introducing an arbitrary factor α such
that the criterion becomes θ1, 2 ≤ θ crit = 2απ /(n − 1), then the
average particle should have μ = 2α neighbours in our initial
conditions. Assuming the number of neighbours for each particle
is distributed in a Poissonian fashion, the standard deviation is
σ = √

μ. If a particle has a number of neighbours that is higher
than μ by a few multiples of σ , this is strong evidence that it has
become a member of an aligned population. We thus consider a
system to demonstrate apsidal alignment if it contains one or more

planetesimals with a neighbour number nb ≥ μ + 4σ , using α = 5.
The value of α was tuned manually to exclude spurious detections
of alignment.

Table 2 shows that apsidal alignment is a relatively common
occurrence in our simulations, occurring for > 10 per cent of
systems in our IC348 simulations, and generally being slightly
more common than eccentricity growth. Thepercentage of systems
undergoing apsidal alignment is again lower in ourHyadesmodels
than our IC348 models, and again roughly consistent with the
number of systems experiencing eccentricity growth. If future
observations reveal debris discs that appear elliptical in regions
of high stellar density, there is a chance they were shaped by a
stellar flyby.

If one considers forming planets in the planetesimal discs left after
gas disc dispersion, one might naturally assume that those discs that
have undergone dynamical heating in the cluster environment are
less likely to bear rocky planets. However, Kobayashi & Ida (2001)
note that apsidal alignment between neighbouring planetesimals
naturally reduces the collision velocity should they meet, thereby
reducing the chance that an impact between two planetesimals
might destroy them. This in turn means that in the weakly-perturbed
inner regions of discs that have undergone stellar encounters, planet
formation via the core accretion scenario may not be inhibited.
However, the alignment may break down further away from the
host star, increasing relative velocities and thereby inhibiting planet
formation. This leads to a natural critical radius around stars which
have undergone fly-bys, beyond which no planet formation is likely
to occur.

5.3 Capture of planetesimals from other stars

A few per cent of stars in each simulation capture one or more
planetesimals that originally belonged to other stars. The way
in which this happens varies greatly between stellar encounters,
with some stars capturing planetesimals in a way that makes them
indistinguishable from the native population, and others capturing
one or two planetesimals on highly inclined and eccentric long-
period orbits. Fig. 4 provides an excellent example of a system with
a dynamically distinct population: the large population captured
from a 0.11 M� star demonstrates orbital elements that are entirely
distinct from the primordial disc.

Again, Fig. 2 suggests that more massive stars are more likely
to thieve planetesimals from other stars. We attribute this to the
larger chance of close encounters (due to mass segregation and
gravitational focussing) already held responsible in Section 5.1 for
the increased chance of disc heating. As before, the chance of theft
also appears to follow a power-law distribution. Massive stars are
also more likely to lose some portion of the original disc, but note
that this does not necessarily indicate that they are responsible for
the majority of captured planetesimals. Indeed, Fig. 2 suggests that
the majority of captured planetesimals are sourced from the lowest
mass stars, simply because there are many more of them.

The number of stars hosting stolen planetesimals is always lower
than the number of stars that lost the planetesimals, implying that
some small proportion of interactions leads exclusively to the lib-
eration of planetesimals and not their capture. We note that capture
can be a transient phenomenon: planetesimals are often temporarily
captured on orbits of a = 105 − 106au and then stripped later by
moderate variations in the potential. There is tentative evidence for
this in Fig. 5, where the red points represent planetesimals that have
been bound to at least three different stars. This raises the interesting
idea that the least tightly bound planetesimals in a system may in
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Figure 4. An example of apsidal alignment in captured objects from
the model IC348 3 after 10Myr. The panels from top to bottom show
eccentricity e, inclination i and longitude of periastron φ. The colours of the
points represent the parent stars of the planetesimals. This 2.4 M� star had a
close encounter with a 0.11 M� star, stripping the smaller star of 55 per cent
of its disc and capturing some 50 per cent of the stripped planetesimals in
the process. This captured population (orange) forms a scattered/scattered-
extended disc around the star, with the periapsides of the orbits being aligned.
The primordial disc (blue) around the star remains largely unaligned, despite
clear eccentricity growth.

fact have belonged to several different stars during the cluster phase,
eventually ending up permanently bound to whichever host they
happened to orbit when that star left its birth cluster. This is in fact
similar to the mechanism that Levison et al. (2010) suggest for Oort
cloud formation, an idea that we will discuss in further detail later.

5.4 Free-floating planetesimals

Star-star interactions – particularly in the dense core of a cluster
– can efficiently liberate planetesimals, leading to a population of
free-floating planetesimals. These may have been equipped with
enough excess energy, i.e.

Ei = 1
2 v2

i −
∑
j∈∗

GMj

|r ij | > 0 (8)

to escape the cluster entirely and float freely through the field.
Otherwise, if E < 0 they are destined to drift within the cluster
until they either are re-captured by another star, or suffer a close
encounter and acquire sufficient energy to escape.

On average between 1 and 4 per cent of all the planetesimals in
our IC348 models are free-floating after 10Myr. The difference in
number of free-floating planetesimals in the models IC348 2 and
IC348 3 between 10 and 15 Myr is around 50 per cent, suggesting
that all models would produce significantly more of these objects

if integrated for longer. The second panel in Fig. 2 shows that
the majority of free-floating planetesimals originally belonged to
the lower mass stars in our clusters, but the much lower number
of massive stars still contribute a disproportionate amount. Fig. 5
demonstrates that some of these planetesimals may eventually be
captured by other stars, albeit on distant, easily-perturbed orbits.

Of course, not all planetesimals remain bound to the cluster,
and some fraction will slowly drift away into the galaxy. For
each planetesimal that we find to be not bound to any star, we
compute the energy (8) with respect to the cluster. We find that for
models of IC348, between 85 and 100 per cent of all planetesimals
that are ejected from their star have E > 0, i.e. will escape the
cluster. Fig. 6 shows the distribution of hyperbolic excess velocities
v∞ = √

2E for planetesimals in our IC348models. All the models
of IC348 produce similar distributions of v∞ – between 0 and
10 km s−1 – though the model IC348 tight shows a strong peak
around 4 km s−1, IC348 1 at 5 km s−1, and IC348 3 shows a
preference for velocities around 2.5 km s−1. Table 1 shows that
these models all have vastly different core densities at the beginning
of the simulations, which may go some way to explaining these
discrepancies.

5.5 A/2017 U1 (Oumuamua) – a cluster escapee?

The prevalence of planetesimals escaping the cluster with v∞
of a few km s−1 could potentially explain the origin of inter-
stellar objects such as A/2017 U1 ’Oumuamua. ’Oumuamua had
a heliocentric velocity of 26.17 km s−1 (Meech et al. 2017), but
only � 10 km s−1 relative to the Local Standard of Rest (LSR) (see
e.g. Schönrich, Binney & Dehnen 2010). The velocity dispersion of
stars near the Sun is between 25 and 40 km s−1 (see e.g. Dehnen &
Binney 1998; Dehnen 1998; Rix & Bovy 2013). After its encounter
with the Sun, ’Oumuamua’s velocity is significantly further from
the LSR, As Meech et al. (2017) point out, these facts suggest that
’Oumuamua was ejected from its host system relatively recently
and locally, We can use the velocity profiles in Fig. 6 to infer if
’Oumuamua might have been born in and ejected from a local
cluster. The excess velocity is of order 1–5 km s−1 for the vast
majority of planetesimals. Assuming then, that ’Oumuamua was
ejected from an IC348-style cluster not far from the Sun, it would
have an velocity relative to the cluster of between 1 and 5 km s−1,
well within the 10 km s−1 velocity that ’Oumuamua exhibits relative
to the LSR. The additional 5–9 km s−1 difference required to explain
’Oumuamua’s initial velocity would then easily be explained by the
motion of its birth cluster relative to the LSR. This suggests that
if ’Oumuamua was ejected from a local cluster, the ejection was
recent, such that the object has had little time to undergo further
dynamical interactions that would increase its velocity relative to
the LSR.

This scenario is similar to that suggested by Gaidos, Williams &
Kraus (2017), who proposed that ’Oumuamua was ejected from a
nearby stellar association by a super Earth or Neptune mass planet
with very little excess velocity, and from within a couple of au of
its original host star. This limit on the initial orbit of ’Oumuamua
around its host was derived from the fact that the object was thought
to contain no ice, meaning it must have formed within the ice line
of its original host. The debate regarding the composition of the
object is still ongoing. Based on a peculiar acceleration evident in
its trajectory, Micheli et al. (2018) suggest that ’Oumuamua is in
fact undergoing cometary outgassing which is altering the trajectory.
Rafikov (2018) finds this scenario unlikely, suggesting that the spin
generated by outgassing would have caused ’Oumuamua to break
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Figure 5. Distribution of orbital elements of all bound planetesimals in the model IC348 2 after 15 Myr. Black points represent planetesimals that remain
bound to their original host star. Blue points are planetesimals that have switched their host. The red squares have switched host already after 10 Myr and at
15 Myr had switched again, i.e. have belonged to at least three different host stars over the course of the simulation. Orange triangles represent planetesimals
that were free floating (bound to no star) at 10 Myr but have since been re-captured. Finally, grey points represent known trans-Neptunian objects in our Solar
system, sourced from the IAU Minor Planet Center. The grey shaded region shows the approximate range of orbital periods in the Oort cloud.

Figure 6. Distribution of hyperbolic excess velocities for planetesimals ejected from our IC348 models after 10 Myr. The distributions forIC348 2,IC348 4,
IC348 5, and IC348 6 are not plotted, but are broadly similar to those shown. IC348 1 is anomalous relative to these other models, demonstrating on
average notably higher excess velocities, despite the cluster initially having a notably lower core density.
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apart during its journey through the Solar system, and Bialy & Loeb
(2018) suggest the peculiar acceleration is instead simply driven by
solar radiation pressure. If, however, the object is outgassing, this
would naturally favour formation outside the ice line, potentially
in a region similar to the discs considered here. Furthermore,
Feng & Jones (2018) performed backwards integrations of the orbit
of ’Oumuamua within the potential of the galaxy, finding that it
likely came from a member of the ‘Local Association’, which
includes several well-known stellar clusters such as the Pleiades.
Our simulations suggest that ’Oumuamua could have been liberated
from one of these clusters by a stellar flyby, and that there should be
many more objects from the same cluster making their way through
interstellar space with similar velocities.

5.6 Destruction of systems

A rare but important outcome of intra-cluster interactions is stars
having their discs almost entirely stripped by an encounter. We
define stripping as the removal of > 75 per cent of the original disc.
Between 1 and 2 per cent of stars in our IC348 simulations meet this
criterion, whilst closer to 5 per cent lose one or more planetesimals.
This level of destruction could also easily inhibit planet formation
by depriving the young planetary system of solids, so finding a star
with no debris disc and no long-period planets could be a sign of a
strong stellar interaction.

These results present a slightly different picture to those of
Lestrade et al. (2011), though their study used an analytical
prescription to compute the number of close encounters which may
explain the differences. Our IC348 models have a core number
density � 500 pc−3, and we find a significant level of planetesimal
stripping after just 10 Myr. Lestrade et al. (2011) suggested that such
stripping should only be significant for clusters more dense than
> 1000 pc−3, and their work accounted for longer, 100 Myr time-
scales. If we allowed our clusters to evolve for ten times longer,
we would certainly see an increase in the level of stripping. For
example, in just 5 Myr the number of stars that have their discs
stripped doubles in IC348 tight, though we note that given the
low number statistics, it is not possible to draw any solid conclusions
regarding the rate of debris-disc stripping.

Lestrade et al. (2011) also note that the mechanism of cluster-
based stripping preferentially strips lower-mass stars, which could
lead to the observed paucity of debris-discs around low-mass stars.
Our results are consistent with this idea in that the majority of
stars we see having their discs stripped have masses < 1 M�. Again
however, given the small number of discs that are stripped overall, it
is difficult to draw a definite conclusion from our results regarding
a trend in mass. Fig. 2 strongly suggests that more massive stars are
overall more likely to show evidence of cluster interaction, though
this trend does not extend to total destruction of the disc.

5.7 Application to our own Solar system

In order to understand the implications of our results for our own
Solar system, we first compare the planetesimal discs formed in
our clusters to our own Kuiper belt. We follow Elliot et al. (2005),
breaking each disc down into three distinct dynamical populations
based on equation (1). This equation requires the orbital elements
of a perturbing body. In the case of our own Solar system, this body
is Neptune, but we do not include planets in these simulations. We
therefore take the inner edge of each planetesimal disc rin in the
initial conditions of our simulations, and define ap = 0.95rin. We
then define i relative to the initial inclination of the planetesimal disc,

such that planetesimals with i = 0 are aligned with this initial plane.
By doing this, we implicitly assume the presence of a Neptune-like
perturbing body that is co-planar with and near to the inner-edge of
our initial planetesimal discs. We realize that having such a planet
in close proximity to our discs may alter some of these results, but
this assumption allows us to at least estimate the frequency with
which intra-cluster interactions form Kuiper-style-discs.

We find (see columns Nscat and Nkuiper in Table 2) that debris discs
with multiple populations similar to our own Kuiper Belt are readily
produced in star clusters. Despite all our stars beginning with Kuiper
belts that only have classical, circular populations, many end with
an additional population that resembles our own scattered belt, and
more often than not, the periapsides of these objects are aligned.
We also note that the number of stars N0classic with no remaining
classical KBOs is of order 1 per cent. These stars are generally not
the same as the stars that have been stripped, and they normally
still host sizeable populations of scattered and scattered-extended
objects. This suggests that the destruction of classical Kuiper belt
populations by intra-cluster interactions is rare, and – assuming
such debris discs are a common by-product of planet formation –
that the majority of stars host such a disc after leaving their birth
cluster.

A second approach is to consider the different types of stellar
interactions that our Kuiper belt might have experienced. Assuming
our own Solar system was at one point part of an open cluster with a
density similar to IC348, Fig. 2 allows us to estimate the likelihood
that it had certain types of interactions during its early lifetime. For
instance, between 3 and 10 per cent of Solar-mass stars in our IC348
simulations capture planetesimals from another star, whilst between
2 and 7 per cent lose planetesimals in the cluster environment. So,
there is a non-negligible chance that a fraction of our Kuiper belt
actually formed around another star or was stripped and carried
away by another star.

The clustering in periapsis generated by stellar encounters
(particularly in Figs 1 and 4) is very similar to that seen in the
scattered objects of our own Kuiper belt reported by Trujillo &
Sheppard (2014), and invoked by Batygin & Brown (2016a) as
potential evidence for a ninth planet in the outer reaches of the
Solar system. However, Trujillo & Sheppard (2014) already showed
that the mass in the giant planets of the Solar system is enough to
randomise the perihelia of scattered belt objects on relatively short
time-scales, and therefore the present-day alignment of perihelia
in these objects cannot be a result of a Gyr-old cluster interaction.
Nevertheless, our results strongly suggest that some portion of the
Solar system’s present-day scattered and scattered-extended discs
may have been generated by a single, strong cluster interaction –
either from objects previously in the classical disc that were excited
to high eccentricity orbits, or objects that were captured from a
passing star, or a combination of the two mechanisms (see e.g.
Pfalzner et al. 2018b). This scenario is particularly favourable if
there is a 9th planet in the outer Solar system that was captured
from a passing star, which may also have donated some of its debris
disc to the Kuiper belt (see e.g. Mustill, Raymond & Davies 2016).
We also note that a relatively recent stellar encounter with a field
star (perhaps within a few Myr) could have generated a similar
alignment that is currently degrading as a result of interactions with
the giants planets, though there is no known local star that could be
responsible for such an interaction.

Further to this, the Kuiper belt hosts a significant population
of objects with significant orbital inclination, for instance ’Niku’
(Chen et al. 2016) with its i = 110◦, e = 0.3, a = 36 au orbit.
Batygin & Brown (2016b) explain these inclined objects in the
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framework of a 9th planet, invoking Kozai (1962) -Lidov (1962)
cycles from planet 9 to generate large inclinations in initially long-
period KBOs, before inward scattering by Neptune places them on
their current orbits. Most recently Becker et al. (2018) report on the
discovery of 2015 BP519, with an inclination of 54◦, an eccentricity
of 0.92, and a semi-major axis of 450 au. In the planet 9 framework,
this object would be in the process of undergoing Kozai-Lidov
cycles, and would presumably be scattered into a tighter orbit in the
future. Figs 4 and 5 demonstrate that highly inclined planetesimals
are readily formed from both captured populations and primordial
populations that have undergone scattering. In particular, Fig. 4
shows that large populations of inclined objects can be captured
from a lower-mass star without disrupting the captor’s primordial
planetesimal disc. Some of these objects have large eccentricities
that may put them on planet crossing orbits, which could explain
shorter period objects such as Niku. We therefore suggest that some
portion of the inclined scattered-extended disc in our Solar system
may have been captured in an inclined flyby with a less massive star
in the Sun’s birth cluster.

Finally, in the vein of Levison et al. (2010) and Brasser et al.
(2012), we consider the formation of the Oort cloud from scattered
planetesimals. 5 shows that stellar interactions can – in extreme
cases – cause the capture of objects on long-period orbits that would
place them within the Oort cloud. The figure also demonstrates that
a star’s primordial planetesimal population can in a few cases be
scattered by a passing star on to Oort-like orbits. Finally, it shows
that small numbers of free floating planetesimals can be recaptured
in these orbits. Presumably then, there is an element of chance
around which star a given long-period planetesimal is orbiting
when a cluster dissolves, and planetesimals may be passed between
several hosts. More simulations with larger particle numbers are
clearly required to understand the formation of this population
further, since only a tiny fraction of our Kuiper-style objects meet
this fate. What is clear however, is that some portion of our Oort
cloud could easily have been carried with the Sun out of its natal star
cluster, having originally belonged to other stars. What’s more, these
planetesimals need not necessarily have been placed on long period
eccentric orbits around their parent stars by planetary interactions
as previously suggested, but could have been stripped from the
dynamically cold inner regions of these stars by violent star-star
interactions. This effect presumably accounts for a very small
population of the objects in our Oort cloud, and it is not immediately
clear how these interlopers might be distinguished from native
objects, unless their composition is significantly different from our
native planetesimals as to be detected in cometary trails. Future
simulations could attempt to investigate the differences in orbital
properties between native and non-native Oort cloud objects, but
this is beyond the scope of the present study.

5.8 Caveats & Future work

In this work, we have investigated the effect of all other stars in
an open cluster on planetesimal discs over a long time-scale, but
there are some simplifications our simulations that could modify
the results described above which we wish to address in future
work. To begin, the majority of stars host planets, and including
these planets in our simulations could significantly increase the
fraction of liberated planetesimals. Planetesimals scattered by star-
star interactions might be pushed on to planet-crossing orbits which
might then further affect the orbits of the planetesimals. We suggest
therefore that our simulations provide only a lower limit on the
fraction of free floating planetesimals in a cluster, and that planet-

planetesimal interactions may greatly increase this number. It would
also certainly increase the number of Oort cloud style objects formed
in our simulations. The natural way to explore this problem is simply
to introduce planets interior to the debris discs. This, however, would
significantly increase the run time of the simulations. There is also
naturally the question of how realistic our assumed initial conditions
are. It would be prudent in future to try other cluster models such as
the King (1966) model or the fractal model favoured by Parker et al.
(2017). Using different initial distributions of planetesimal orbits
might also make a difference to the results, though the difference
between our tight models with shorter period planetesimals
and our standard models is sufficiently small that it seems our
conclusions are robust to such changes.

In terms of cluster dynamics, the most obvious omissions
here are primordial binaries, the potential of gas left over from
star formation, and the galactic potential. We intend to include
primordial binaries in a future study, though we anticipate that
binary stars would only serve to exacerbate many of the effects
seen in this study. In this instance we did not include galactic
tides since our integrations last for only around 10 per cent of an
average cluster lifetime and our clusters are still relatively dense,
so the potential of the galaxy is unlikely to have a meaningful
effect. The potential of leftover gas from cluster formation may,
however, have an effect on the time-scales considered here. Young
embedded clusters form in molecular clouds, the remnants of which
are expelled from the cluster by stellar heating and outflows. This
expulsion of gas can cause the cluster to expand and reach a new
equilibrium, or disintegrate entirely, depending upon the balance
between star formation rate and gas expulsion rate (Lada & Lada
2003).

Common practice in cluster simulations is to include a gas
potential at the start of a simulation and remove it after a few
Myr (for instance, 3 Myr in Levison et al. 2010), causing the cluster
to drift apart more rapidly. This may be particularly relevant to our
simulations since IC348 appears to still be partially embedded in the
edge of the Perseus molecular cloud (see e.g. Lada 1994; Muench
et al. 2003). Some observations even suggest that the most gas-
rich regions to the southwest of the cluster’s core are still forming
stars, though the core itself appears to be devoid of star formation
(Muench et al. 2003, 2007). Muench et al. (2007) show that the core
of the cluster where the majority of class II sources are hosted is
potentially even still embedded in a filament of gas. Assuming that
these class II sources represent stars with gaseous protoplanetary
discs, it may still be several million years before they lose their
gas. The mutual evolution of the class II sources and the filament in
which they reside during this time may have a profound effect on
stellar density and therefore the rate of close stellar interactions at
the critical point when the planetesimals lose the protection of a gas
disc. The exact effect of the removal of this filament is impossible
to predict without knowing the exact mass and spatial extent of the
gas, making it difficult to simulate. Furthermore, since the cluster
is only partially embedded in the cloud, the removal of gas is less
likely to be totally catastrophic and might not reduce the density of
the cluster by a large factor. We also note that many of the effects
observed in our models could impact the younger protoplanetary
discs, even in the gas-rich phase. For instance, whilst changes to
orbital elements and apsidal alignment would be damped by the gas
disc, theft and capture of planetesimals would still be possible.

Finally, it is important to consider the effect of the total simulation
times on the results. We restricted them to � 10 Myr in an effort
to understand the effect of the cluster environment at its densest
point whilst limiting the computational demands of our simulations.
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Indeed, Muench et al. (2007) calculate the crossing time for IC348
to be at most 1.2 Myr and the relaxation time of the cluster to
be roughly 5× this, meaning our simulations ran for almost two
relaxation times. As the cluster expands relatively rapidly during this
time, we expect the rate of meaningful stellar encounters to drop off
quickly. However, for some systems these less frequent encounters
might still have a significant effect. Furthermore, Muench et al.
(2007) also show that IC348 is already dynamically relaxed and
mass segregated, suggesting the mass segregation seen in our
simulations would most likely occur when the protoplanetary discs
still contain enough gas to damp the dynamical effects described
here. Perhaps then, in future work it would make sense to relax the
initial conditions first, lest the mass segregation process have an
effect on the results.

By allowing IC348 2, IC348 3 and IC348 tight to run
for an extra 5 Myr in addition to the 10 Myr we ran most of our
IC348 models for, we are able to gain some insight into how
longer simulation times might affect our results. Table 2 suggests
that the extra 50 per cent simulation time does indeed not translate
to an extra 50 per cent occurrence in all of our outcomes. For
instance, the number of stars with partially eccentric discs increases
only by around a third, and the number of stars that have lost
planetesimals to the cluster increases by an even smaller fraction.
Clearly the rate of close encounters has slowed, but there is still
some significant evolution. This shows that intra-cluster interactions
continue to be important for planetesimal discs even after a couple
of relaxation times, though the removal of a gas potential and
subsequent expansion of the cluster could change this picture. We
also note that there is a general trend for the number of aligned
systems to decrease slightly over the extra 5Myr integration time,
suggesting that the cluster potential might destroy alignment in
some fraction of systems on a relatively short time-scale. Fig. 5 also
demonstrates that on longer time-scales, other effects may become
interesting, such as planetesimals being recaptured from the cluster
or passed from star to star on Oort-cloud style orbits. We also ran
the model Hyades b0.6 2 for an additional 2 Myr on top of its
original 4 Myr run-time, though the changes to the results in this case
are slightly less pronounced than those in IC348 2 and IC348 3.
This is to be expected since our Hyades b0.6 have a high core
density that shortens the crossing and therefore relaxation time-
scales relative to our IC348 models. There is however still some
change in planetesimal dynamics over this extra 2 Myr, hinting that
longer simulations may help to further elucidate how Kuiper belts
and Oort clouds respond to a cluster environment. This further
implies that our default Hyades models - which have the lowest
core densities and therefore longest crossing times of all - may
continue to evolve at their slow pace for quite some time after the
8 Myr considered here.

The clear solution to most of the issues and omissions discussed
here is to improve the efficiency of our integration method. This will
allow for longer runtimes and shorter-period orbits, which enable
the addition of stellar binaries and planets and also allow us to
explore more massive or denser clusters. We plan to investigate the
additional effects listed above in follow-up studies.

6 SU M M A RY

We have presented N-body simulations of planetesimal discs
analogous to our own Kuiper-belt, orbiting stars in open clusters.
Close interactions between stars in the cluster have a variety of
effects on the planetesimal discs, ranging from minor dynamical
heating to total destruction. The implications of these intra-cluster

interactions are far-reaching and applicable to many areas of
planetary astrophysics. In the following we briefly summarise the
more important findings of these simulations:

(i) Between 10 per cent and 20 per cent of debris discs in an
IC348-style cluster will undergo dynamical heating due to stellar
encounters. This heating can generate populations that are qualita-
tively similar to those in our own Solar system.

(ii) Apsidal alignment among planetesimals is readily created by
stellar fly-bys. This alignment is qualitatively similar to that seen in
our own Solar system.

(iii) Roughly 3-5 per cent of stars in our IC348 simulations steal
planetesimals from other stars. The number of stars losing their
native planetesimals is lower, suggesting free-floating planetesimals
are often recaptured by other stars.

(iv) Intra-cluster interactions efficiently liberate planetesimals
from interacting stars. The majority of these planetesimals go on
to escape the cluster entirely with excess velocities comparable to
their initial orbital velocities – 5 km s−1 for planetesimals with the
orbital period of Neptune.

(v) This effect predicts the presence of many interstellar inter-
lopers such as ’Oumuamua.

(vi) Even in relatively low-density clusters such as IC348, of
order 1-2 per cent of planetesimal discs can be destroyed within the
first 10 Myr of a cluster’s lifetime.

(vii) Higher-mass stars are on average more likely to suffer from
significant encounters than their lower-mass siblings.

(viii) As a consequence, more massive stars are more likely to
both steal and lose planetesimals, but lower mass stars are still the
source of the majority of free-floating planetesimals.

(ix) Some of the dynamical properties of Kuiper belt and Oort
cloud objects in our own Solar system can be explained by these
effects, though it may be difficult to distinguish these from effects
caused by other perturbers such as a ninth planet.

(x) These effects are naturally dependent upon the core density
of the cluster, and stars in a cluster such as the Hyades are much less
likely to undergo significant changes due to the cluster environment.
Future studies could include stellar binaries and planets, which
should exacerbate many of the aforementioned effects.
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APPENDIX A : TIME-REVERSIBLE TIME-STEP
A DA P TAT I O N A L G O R I T H M

Following Dehnen (2017), we define a time-stepping function
T ( p, q) which gives us the ‘optimum’ time-step for our simulation.

We also define h, the actual time-step used by the simulation. In
principle, one simply desires that h = T. However, things are
not quite this simple. Should one wish to use a time-reversible
integration method – thereby avoiding secular energy evolution –
one must ensure that the value of h is also chosen reversibly. There
are many potential ways in which one can achieve this – Holder,
Leimkuhler & Reich (2001) suggest treating the timestepping
function T as some kind of mean μ(x, y) between the previous hn − 1/2

and next hn + 1/2 time-steps, giving T ( pn, qn) = μ(hn−1/2, hn+1/2).
For a given mean function μ(x, y), one can then rearrange to find
the next time-step explicitly. This method has a well-known issue
whereby the value of h begins to ‘flip’ on a time-step to time-step
basis, between two values bracketing the value of T, but often very
far away from it. We found that this flipping issue is problematic for
almost all of our simulations, because close interactions between
stars and their planetesimals can lead to relatively sudden changes
of T. Hairer & Söderlind (2005) instead suggest using the derivative
of the function T to evolve the value of h as follows:

1

hn+1/2
− 1

hn−1/2
= − Ṫn

Tn

. (A1)

This scheme is excellent at maintaining h close to T, but unfor-
tunately necessitates the calculation of Ṫ . Depending upon the
functional form of T, this can be an expensive operation, requiring
another N2 loop across particles. Here, we leverage the speed with
which GPU-based code can perform N2 operations, and choose T
in such a way that the overall impact on runtime is minimized.

We begin by defining the dynamical time between two bodies i
and j as

Pij = 2π

√
|r ij |3

G(mi + mj )
, (A2)

where r ij = r i − rj . We use this quantity to compute the char-
acteristic, individual time-scale for the interaction between each
pair of particles. These time-scales must be combined to give an
optimal time-step for particle i in a way that gives precedent to the
shortest time-scales, while still being continuous and differentiable.
We therefore choose to define the optimum time-step for particle i
as

τ
−q

i =
∑
j �=i

P
−q

ij , (A3)

with integer q � 4. This form gives precedence to pairs with shorter
interaction time scales and approximates min j{Pij}, which is the
appropriate form if the dynamics of each particle is dominated
by one interaction, as is the case for our simulated planetesimals.
Since the optimal time step required for the integration of the stellar
trajectories is typically much longer than that for the planetesimals,
this approach is completely suitable for our simulations. The
computation of Pij must evidently be done on a pair-wise basis,
and may in principle be done at the same time as calculating gravity
with minimal extra computational overhead. However, since we
already have to perform a further N2 loop to compute the derivative
of T we calculate Pij simultaneously with this derivative.

Having established this per-particle time-stepping criterion, we
need to obtain the global time step function T as a continuous
and differentiable combination of all the τ i that approximates
the minimum across all particles. In analogy to the way τ i was
constructed from Pij, one may use

T −m =
N∑

i=0

τ−m
i (A4)
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with integer m > 1. In the absence of close encounters, the shortest
time steps τ i are those of the innermost planetesimals around
each star, which are roughly equal (by construction of our initial
conditions). In this case of Nshort � N∗ particles with equal shortest
steps τ short, the approach (A4) gives T � τshort/N

1/m

short, which is
too short by a factor N

1/m

short. This causes the simulation to take
unnecessarily short time-steps, unless large values of m are used,
which leads to issues with both maintaining floating-point accuracy
and large values of |Ṫ |. One may avoid this specific problem by
introducing a factor N−1 on the right-hand side of equation (A4),
but then T is � N−1/m too large in the case of Nshort = 1.

Finally then, we come to a ‘two-sum’ approach, whereby the
value of T is defined as

T = η

( ∑N

i=0 τ−n
i∑N

i=0 τ
−(n+m)
i

) 1
m

. (A5)

Here we have added η as a parameter to control the overall length of
the time-step. In the hypothetical situation where a large proportion
of particles require an equally small shortest time-step, a factor Nshort

appears in both the numerator and denominator of this fraction,
thereby cancelling out. We have found that summing the per-particle
criteria in this fashion gives an optimum time-step that is very close
to the minimum across all particles. The final piece of the puzzle is
then to find Ṫ by differentiating equation (A5), giving

dT

dt
= η

m
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−n

τ
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(A6)

where the derivative of each per-particle time-step is given by

dτi

dt
=

(
1∑

j �=i P
−q

ij

) 1
q +1

·
⎛
⎝∑

j �=i

1

P
q+1
ij

dPij

dt

⎞
⎠ . (A7)

The second bracket here can be computed on a pairwise basis in the
same loop as τ i as

1

P
q+1
ij

dPij

dt
=

(√
G(mi+mj )

2π

)q+1
3π√

G(mi+mj )

r ij · vij

|r ij | 3
2 (q+1)+ 1

2

.

(A8)

We can ensure increased numerical efficiency by selecting a value of
q which means we need not perform a square-root operation for each
pair of particles in order to calculate τ i and Ṫ . Here we use q = 4.
Using this value of q means that the N2 loop required to compute the
time-step is faster than a standard N2 force loop, since each particle-
particle calculation requires only basic arithmetic operations

Some initial testing of this scheme revealed excellent energy
conservation and minimal precession of orbits for simple test
problems. Unfortunately, in the context of a cluster, we found this
scheme presented an additional problem. In these simulations, two
stars that are initially well separated can eventually approach each
other very quickly. Since the criterion in equation (A2) takes no
account of relative velocities, this approach can happen on a time-
scale that is similar in length to the overall time-step. This can in

turn lead to large values of Ṫ , causing h to drift away from T and
resulting in either inaccurate or slow integration. To combat this
effect, we wish to build a term into the time-stepping criterion that
can detect close-encounters a few time-steps before they happen.
We therefore define an additional pairwise ‘velocity-dependent’
time-stepping criterion

Qij = 1

k

|r ij |
|vij | (A9)

where k is a constant that is chosen to control the relative magnitude
of Qij and Pij. We also experimented with a second velocity-related
criterion of the form

Qij = |r ij |2
r ij · vij

(A10)

However, we found that the divergence of this criterion to infinity at
apo- and peri-centre made it difficult to keep the chosen time-step h
close to the value of T. The new velocity-dependent criterion needs
to be combined with our previous position-dependent criterion
equation (A2) to give the overall optimum time-step for particle
i. Equation (A3) then becomes

τi =
⎛
⎝∑

j �=i

P
−q

ij + Q
−q

ij

⎞
⎠

− 1
q

(A11)

with a derivative given by

dτi

dt
=

(
1∑

j �=i P
−q
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ij

)(
1
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·
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dt
+ 1

Q
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ij
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)
(A12)

The term in dPij/dt is the same as that in equation (A8). The second
term can be computed as

1

Q
q+1
ij

dQij

dt
= kq |vij |q−1

|r ij |q+1

(
r ij · vij

|r ij | |vij | − vij · aij

|vij | |r ij |
)

. (A13)

Again, we use q = 4 such that we avoid the need for a square
root operation during time-step computation. We have found that
this scheme leads to faster precession of Keplerian orbits relative
to the purely ’position-based’ approach, though still significantly
better than using constant time-step. Most importantly though, this
scheme greatly reduces the deviation between h and T after a fast
close encounter between two stars, without requiring us to lower
the value of η such that the simulation runs more slowly.

The choice of the powers m and n, as well as the time-step
control parameter η, is critical in maintaining the accuracy of the
integration, whilst keeping the evolution of the time-step stable and
minimising simulation runtime. Larger values of n and m bring
the overall value of T closer to the minimum time-step across all
particles, but also potentially increase the value of the derivative Ṫ .
This can – for sufficiently large η – lead to the selected time-step h
drifting far away from T. After some testing, we settled on k = 4,
m = 2, n = 8 and η = 0.015, finding that this generally keeps the
value of h within 10 per cent of the value of T. Additionally, we set
limits that require that the selected time-step is within a factor of 5
of the value of T. Note that in principle one could simply reset the
selected time-step once it drifts too far from T. Any time-step on
which this happens would then be irreversible, leading to a small
secular energy error. In principle as long as these resets do not
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Table B1. Time evoution of quantities in IC348 5 and IC348 5 short – the same initial conditions with a shorter time-step.

Model (T/Myr) Necc Nalign Nloser Nstrip Nthief Nscat Nkuiper N0classic Naffected nfree

IC348 5 (2.5) 9(2.0%) 26(5.9%) 1(0.2%) 1(0.2%) 1(0.2%) 5(1.1%) 1(0.2%) 1(0.2%) 27(6.1%) 111(0.1%)
IC348 5 short (2.5) 9(2.0%) 22(5.0%) 1(0.2%) 1(0.2%) 1(0.2%) 5(1.1%) 1(0.2%) 1(0.2%) 23(5.2%) 111(0.1%)
IC348 5 (5) 10(2.3%) 37(8.4%) 2(0.5%) 1(0.2%) 2(0.5%) 9(2.0%) 2(0.5%) 1(0.2%) 39(8.9%) 111(0.1%)
IC348 5 short (5) 10(2.3%) 40(9.1%) 2(0.5%) 1(0.2%) 2(0.5%) 9(2.0%) 2(0.5%) 1(0.2%) 42(9.5%) 112(0.1%)
IC348 5 (10) 23(5.2%) 44(10.0%) 8(1.8%) 2(0.5%) 7(1.6%) 14(3.2%) 6(1.4%) 7(1.6%) 48(10.9%) 652(0.7%)
IC348 5 short (10) 26(5.9%) 41(9.3%) 9(2.0%) 3(0.7%) 9(2.0%) 18(4.1%) 9(2.0%) 5(1.1%) 49(11.1%) 473(0.5%)

Figure B1. Energy conservation over the course of the simulationIC348 5
with η = 0.0075 (blue) and η = 0.015 (blue).

occur very often, this should not be a problem. However we elected
to keep our integration completely2 time-reversible by optimising
n, m, k and η.

2Note that technically speaking our implementation is not completely
reversible since the round-off errors inherent to floating-point arithmetic
are not either (see e.g. Rein & Tamayo 2018).

APPENDI X B: C ODE TESTS

Here we demonstrate the efficacy of our new time-stepping method
in combination with the 4A integrator, and our new GPU-based
implementation thereof. Typically one would do this by showing
that the method conserves energy well over the course of an
integration. Unfortunately, our planetesimals are massless and
therefore do not contribute to the Hamiltonian of the system, so we
cannot totally demonstrate the accuracy of the method in this way.
As an alternative, we reran the model IC348 5 with η = 0.0075
rather than 0.015, naming this model IC348 5 short. The idea
of this test is to show that altering the evolution of the time-step
does not significantly impact the results of our simulations, beyond
the expected changes due to numerical errors in a chaotic system.

Table B1 demonstrates how the results of the simulation change
after various integration lengths using the two different values of
η. The differences between the two simulations are minimal and
thepercentages of star-disc systems undergoing various changes are
very similar. Of course, one would not expect such an intrinsically
chaotic system to evolve identically with different time-stepping
parameters over hundreds of millions of time-steps. We also provide
a plot of the total energy error over the course of these two
simulations (Fig. B1) to show that the error in the integration of
the cluster stars themselves is minimal. The magnitude of the error
is similar with both values of η since the error is below the level of
numerical precision in both cases.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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