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Abstract.

Several aspects of the general theory for the critical states of a vortex lattice and the

magnetic flux dynamics in type-II superconductors are examined by a direct variational

optimisation method and widespread physical principles. Our method allows to unify

a number of conventional models describing the complex vortex configurations in the

critical state regime. Special attention is given to the discussion of the relation between

the flux-line cutting mechanism and the depinning threshold limitation. This is done by

using a smooth double critical state concept which incorporates the so-called isotropic,

elliptical, T and CT models as well-defined limits of our general treatment. Starting

from different initial configurations for a superconducting slab in a 3D magnetic field,

we show that the predictions of the theory range from the collapse to zero of transverse

magnetic moments in the isotropic model, to nearly force free configurations in which

paramagnetic values can arbitrarily increase with the applied field for magnetically

anisotropic current voltage laws. Noteworthily, the differences between the several

model predictions are minimal for the low applied field regime.
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1. Introduction

The study of the critical state theory of a vortex lattice in type-II superconductors

is a stimulating problem. It relates to a wide list of physical phenomena and also

affects a number of practical applications. The original concept of a critical state

dates back to the work by C. P. Bean [1–3] who assumed that external magnetic field

variations are opposed by the maximum current density in the material, i.e.: when

non-vanishing |J| = Jc. Physically, the driving force due to the currents circulating

in the superconducting sample is balanced by the limiting pinning force acting on

the vortex lattice so as to prevent destabilisation and the consequent propagation of

dissipative states. It occurs that Bean’s simplifying ansatz straightforwardly leads to

predict the proper response of the sample provided the electrical current density vector J

is perpendicular to the local magnetic field vector B, i.e, J(r) = Jc⊥(r). Just recall that

magnetostatic forces are given by J×B. However, unless for highly symmetric situations,

J does not necessarily satisfy the condition J = J⊥. Therefore, the stronger limitation

of Bean’s model is that one can just apply it to vortex lattices composed by parallel flux

lines perpendicular to the current flow. On the other hand, rotations of B can lead to

entanglement and recombination of neighbouring flux lines which brings a component

of the current density along the local magnetic field, J‖. This component generates

distortions which also become unstable when a threshold value Jc‖ is exceeded, giving

place to the so-called flux cutting phenomenon. Thus, when the conditions J‖ = Jc‖

and J⊥ = Jc⊥ become active, the so-called double critical state appears.

From the mathematical point of view, the critical state problem consists of finding

the equilibrium distribution for the circulating current density J(r) defined by the

conditions J‖ ≤ Jc‖ and J⊥ ≤ Jc⊥ both consistent with the Maxwell equations in

quasistationary form, i.e.: displacement currents are neglected [4]. Customarily, one

also considers situations where the local components of the magnetic field H(r) along

the superconductor are much higher than the lower critical field Hc1 and well below Hc2

to allow the use of the linear relation B = µ0H.

The general statement of the critical state, in the above described terms, was done

by Clem and Pérez-González [5–12]. In particular, these authors have provided the

physical background for successfully understanding an important number of experiments

with rotating and oscillating magnetic field components. On the other hand, the

theoretical scenario has been successively enlarged by a number of alternative approaches

that focus on different aspects of the vast number of experimental activities in this field,

e.g., one can identify the so-called:

(i) Isotropic models [13–17] in which the critical state hypothesis reads J2

‖ + J2
⊥ ≤ J2

c

in the spirit of Bean’s original hypothesis [3].

(ii) The Elliptical model [18–20], posed through the condition J2

‖/J
2

c‖ + J2
⊥/J

2
c⊥ ≤ 1.

(iii) The so-called T-states characterized by J⊥ ≤ Jc⊥ and J‖ unbounded [21].

In this work, we will show that all the above mentioned models may be unified
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Figure 1. (Color online) (a) Pictorial illustration of the slab geometry with

a perpendicular magnetic component hz. (b) Geometrical interpretation of the

smooth double critical state model (Sm-DCSM) with χ = jc‖/jc⊥=1. Several

regions are incorporated through the order of the superelliptical functions (n =

1, 2, 3, 4, 6, 10, 20, 40,∞). Here n = 1 corresponds to the isotropic model (circular

region), and n → ∞ corresponds to the classical DCSM (square region) introduced

by Clem and Pérez-González [5]. (c) Schematics of the time dependence of the

applied magnetic fields in the diamagnetic configuration, and (d) in the paramagnetic

configuration.

within a continuous two-parameter theory that poses the problem in terms of geometrical

concepts within the J‖ − J⊥ plane. To be specific, in this framework, we show that by

the application of our variational statement [4], one is able to specify almost any critical

state law by means of an integer index n, that accounts for the smoothness of the

J‖(J⊥) relation, and a certain bandwidth characterising the magnetic anisotropy ratio

χ ≡ Jc‖/Jc⊥. This will allow to elucidate the relation between diverse physical processes

and the actual material law.

The paper is organised as follows. In Sec. 2 we put forward some details about

the most remarkable features of the critical state theory. The physical interpretation of

the underlying approximations is focused on within our variational formulation. Then,

Sec. 3 is devoted to observe some properties of the electrodynamical behavior of the

superconductor for different choices of the parameters n and χ. Specifically, we consider

3D magnetic field configurations in the infinite slab geometry for different initial states

and processes (see Fig. 1). A global discussion of our results and some concluding

remarks are finally presented in Sec. 4.

2. Magnetic anisotropy of the Critical State

As stated above, the most complete description of irreversible phenomena in type-
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II superconductors at a macroscopic level is done through the commonly called Double

Critical State Model (DCSM) introduced by Clem and Pérez-González [5–12]. Let us

recall some basic ideas that will be essential for our further treatment. The material law

introduced by the above authors in the form of the threshold conditions J‖ ≤ Jc‖ and

J⊥ ≤ Jc⊥ for the current density flowing either parallel or perpendicular to the local

magnetic field has been expressed in a geometrical language in previous articles [4, 22].

Essentially, our concept is to define a region ∆r(J) within the J‖ − J⊥ plane, such that

nondissipative current flow occurs when the condition J = J‖ + J⊥ ∈ ∆r is verified.

On the contrary, a very high dissipation is to be assumed when J is driven outside ∆r.

Recall that this scheme has allowed to translate the DCSM physics onto a region of

currents defined in 3D by a cylinder [4] with its axis parallel to the local magnetic field

B, and a rectangular longitudinal section in the plane defined by the vectors J‖ = Jc‖Ê‖

and J⊥ = Jc⊥Ê⊥. Such section is shown in Fig. 1. We recall that in 2D problems

with in-plane currents and magnetic field, the current density region straightforwardly

coincides with the above mentioned longitudinal section. In this scheme, the parts of

the sample where only the flux depinning threshold has been reached are denoted T

zones or flux transport zones (J⊥ = Jc⊥ ; J‖ < Jc‖). They are represented by points in

a horizontal band. Physically, the flux lines are migrating while basically retaining their

orientation. On the other hand, regions where only the cutting threshold is active are

denoted as C zones or flux cutting zones (J‖ = Jc‖ ; J⊥ < Jc⊥). They are represented

by points in a vertical band. In those regions where both mechanisms have reached

their critical values are defined as CT zones (J‖ = Jc‖ and J⊥ = Jc⊥). The current

density vector belongs to the corners of a rectangle. Finally, the regions without energy

dissipation are called O zones, and the current density vector belongs to the interior of

the rectangle.

In this section, and corresponding to the regions depicted in the lower part of Fig. 1,

we investigate the magnetic response of type-II superconductors, whose material law is

obtained by smoothly modifying the standard DCSM rectangular region until the elliptic

cases are reached. In this work, we focus on the role of the smoothing index n, and thus,

will only consider the extreme cases χ = 1 and χ → ∞. Notice that the smooth limiting

cases (elliptic or isotropic) can be considered as the manifestation of averaged values

of the critical current restrictions due to the inhomogeneity of the material, as well

as a consequence of flux line interactions at a mesoscopic level that introduce coupling

between the thresholds Jc‖ and Jc⊥. In any case, smooth models have to be considered as

related to a number of experiments that one could not explain within piecewise smooth

statements [23–28]. Hereafter, we will use the notation Sm-DCSM for such models.

2.1. Variational Statement

As indicated above, the selection of appropriate restrictions for the macroscopic current

density is a significant step forward to reveal the intrinsic structure of the mechanisms

involved. In conventional approaches, related to the material law J(E), and starting
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from the Maxwell equations, one may obtain the penetration profiles for the magnetic

field from a differential equation statement of diffusive type (i.e.: ∂tH = f(∇2H)). In

our case, the basis of the Sm-DCSM relies in a parallel (and equivalent) formulation

that uses a discretisation scheme of the magnetic field in terms of time-steps connected

by the finite-difference expression µ0(hl+1 − hl). The evolution from one magnetostatic

state to another is obtained variationally. Thus, we minimise the functional

F[hl+1(r)] =
µ0

2

∫

∀

|hl+1 − hl|
2 + p · (∇× hl+1 − j) (1)

where the Lagrange multiplier enforces Amperè’s law [4, 29]. In addition, the

minimization is performed with the local distribution of currents constrained by the law

J ∈ ∆r. Notice that, either material or extrinsic anisotropy can be easily incorporated

by prescribing ∆r to be the appropriate region. For instance, by modeling ∆r as an

elliptical [4, 18–20, 22] or a rectangular [4–12, 30] region oriented over selected axes.

Mathematically, such kind of regions are hosted as limiting cases of a smooth expression

defined by the two-parameter family of superelliptic functions
(

j‖
jc‖

)2n

+

(

j⊥
jc⊥

)2n

≤ 1. (2)

The reader can immediately verify that an index n = 1 and a bandwidth defined

by χ ≡ jc‖/jc⊥ = 1 correspond to the standard isotropic model [13]. On the other

hand, when one assumes enlarged bandwidth (i.e.: χ > 1), the Sm-DCSM becomes the

standard elliptical model introduced by Romero-Salazar and Pérez-Rodŕıguez [18, 19].

When the bandwidth χ is extremely large, i.e., Jc‖ ≫ Jc⊥, one recovers the so-called

T−states treated by Brandt and Mikitik [21]. Rectangular regions strictly corresponding

to the DCSM [5–12] are obtained for the limit n → ∞ and arbitrary χ. Finally, allowing

n to take values over the positive integers, a wide scenario describing anisotropy effects

is envisioned [Fig. 1(b)]. Such regions will be named after superelliptical and their

properties can be understood in terms of the rounding (or smoothing) of the corners for

the DCSM.

2.2. Numerical treatment

In order to illustrate the effect of the material law, below we will show the behavior of

the field and current-density profiles for the system illustrated in Fig. 1 with different

selections of the region ∆r. To be specific, we have considered an infinite slab made up

by 2 ·NS longitudinal sheets arranged along the x-y plane and filling the space |z| ≤ a.

Symmetry or antisymmetry conditions for the different electrodynamical quantities can

be be applied along the Ns sheets arranged in 0 ≤ z ≤ a. On the other hand, one

can assume in-plane position independence of J, i.e.: one has [Jx(zi), Jy(zi)]. Note,

in passing, that this ensures a divergenceless current density as required by charge

conservation in steady states. Incidentally, we have to mention that along this work

we have used Ns = 300. From the technical point of view, we also mention that the

physical parameters that define the problem have been used to renormalise the physical
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quantities. Thus, we use h ≡ H/Jc⊥a, and J ≡ J/Jc⊥. Recall that, one may assume

the numerical value Jc⊥ as known a priori or obtained from experiment. Finally, the

position within slab will be expressed in terms of z ≡ z/a.

Now, following Ref. [4] the variational statement for the Sm-DCSM, in numerical

form leads to minimise the function

F[{Ii,l+1}] =
1

2

∑

i,j

Ii,l+1MijIj,l+1 −
∑

i,j

Ii,lMi,jIj,l+1

+
∑

i

Ii,l+1∆h(zi) , (3)

where the set of unknown current values for the time layer l+1, i.e.:{Ii,l+1} are defined

within a collection of circuits (indexed by i, j) whose mutual inductance coefficients

are represented by Mi,j. In the slab symmetry the circuits are just sheets made up of

straight lines along the x and y axes. Finally, ∆h(zi) defines the time discretisation of

the applied magnetic field (∆h(zi) ≡ hy,l+1 − hy,l). As it was shown in Ref. [4], the

geometrical coefficients Mi,j are given by

Mx,y
i,j ≡ 1 + 2[min{i, j}]i 6=j , or

≡ 2

(

1

4
+ i− 1

)

i=j .

(4)

Recall that inductive coupling only occurs for x and y layers separately, and that the

corresponding coefficients are identical.

Eventually, the response of the superconductor is obtained as a pair of surface

current functions {jx(zi), jy(zi)} for each one of the Ns sheets. The magnetic field

profiles and magnetic moments may be obtained by numerical integration. Thus, the

magnetic moment components per unit area are obtained from

M =

∫ a

−a

z× j dz (5)

3. Results

Below, we present the theoretical predictions for the Sm-DCSM with several choices

for the index n along the magnetization processes indicated in Fig. 1. First, we

consider solutions for hl+1, starting from a fully penetrated state with a magnetic field

perpendicular to the slab surfaces, i.e., a lattice of parallel vortices is assumed to nucleate

parallel to the z-axis within the sample. Then, the material is subjected to a surface

field hx(a). As the external magnetic field is now augmented by means of ∆hx(a), flux

lines are tilted and penetrate the specimen until an equilibrium distribution is achieved

(diamagnetic). If the external magnetic field is subsequently lowered, thereby reducing

the retaining magnetic pressure, flux lines migrate out of the sample until the equilibrium

is restored (paramagnetic). These initial configurations can be seen in Figs. 2 & 3. From

this point, the sample is immersed in a growing applied magnetic field along the y-axis

inducing an additional inclination of the flux lines.
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Figure 2. (Color online) Profiles of the magnetic field component hx[z, hy(a)] and

their corresponding current-density profiles jy[z, hy(a)] starting from the first -time

step defined by hx(a) = 1.1 and hz = 1.5 in the diamagnetic configuration (Fig. 1(c)).

The current component jx[z, hy(a)] and the cutting component j‖ are also shown. The

curves are labelled according to the longitudinal magnetic field component at surface of

slab corresponding to the values hy(a) = 0.040, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.6, 2.0, 4.0, 8.0,

and hz0 = 1.5. First row: profiles for the isotropic model χ2 = 1, n = 1. Second one:

profiles for the Sm-DCSM with χ2 = 1, n = 4. Third one: profiles for the DCSM with

χ2 = 1, n = ∞. Finally, in the lowest row, the profiles for the T-state model, i.e.,

χ2 → ∞, c⊥ 6= 0 are shown.

In order to allow a physical interpretation on how the material law affects the

response of the sample, in Figs. 2 & 3 we plot the profiles of magnetic field and induced

currents as hy(a) is increased. In particular, we show the electrodynamic evolution of the

critical state for regions defined by χ2 = 1 and indexes n = 1 (isotropic model), n = 4

(Sm-DCSM with corner rounded), and n → ∞ (rectangular DCSM), with the initial

condition hz = 1.5 and hx(a) = 1.1 for both diamagnetic and paramagnetic states. In

addition, the profiles for the condition χ2 → ∞ and jc⊥ 6= 0 (infinite bandwidth model

or T -state model) are also included. The magnetic response for other regions ∆r with

corners smoothed by the index condition n = 2, 3, 6, 10, 20, 40 are shown in Fig. 4.

When the magnetic field hy(a) is switched on, an electric field Ex arises in the

surface layer of the superconductor according to the Faraday’s law. This electric field

produces a current jx that will screen the excitation. Then, owing to the restrictions on

the current density vector j introduced by the material law, the local component hx(z)

is pushed towards the center of the sample in the diamagnetic case, or towards the
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Figure 3. (Color online) Same as Fig. 2, but the initial paramag-

netic configuration illustrated in Fig. 1(d) with hx(a) = 1.1 and hz =

1.5. Here, the curves have been labelled according to the values hy(a) =

0.040, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0.

external surface in the paramagnetic one as one can observe in Figs. 2 & 3. The local

variation of the magnetic field hx relates to an inner variation of the current density

along the y-axis (jy(z)) which engenders flux cutting as related to a density of current

flowing parallel at the flux-lines (jc‖).

We recall the following features for the different critical current models that

have been considered. Within the isotropic case (upper row of Figs. 2 & 3), the

local component hx(z) increases (diamagnetic case) or it reduces (paramagnetic case)

until the specimen is fully penetrated to satisfy the condition hx = hx(a) ∀ z, i.e.,

jy(z) → 0 as hy increases. As a consequence, no sign reversal in the induced currents

is predicted. Thus, notice that the isotropic hypothesis (χ2 = 1, n = 1) provides a

straightforward explanation of the observed magnetization collapse [14–16]. Another

related phenomenon, the so-called paramagnetic peak effect of the magnetic moment

is not foreseen by the isotropic material law. In previous works, this observation

was explored in terms of the so-called two velocity electrodynamic model as a crude

approximation for the real dynamics in a flux line lattice [23, 25–28]. Here (Fig. 4)

we notice a pronounced peak effect in both components of the magnetic moment. We

emphasise that whatever region is considered [excepting the limiting cases “χ2 = 1,

n = 1” (isotropic model), and “χ2 → ∞” (T- or infinite bandwidth- model)], the peak

effect in the paramagnetic case is predicted for both components of the magnetization.

In this sense, we argue that the peak effect cannot be interpreted as a direct evidence of
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Figure 4. (Color online) The magnetic moment components Mx (top) and My

(bottom) per unit area as a function of the applied magnetic field component hy(a)

in the diamagnetic (left) and paramagnetic (right) initial configurations defined by

hx(a) = 1.1 and hz = 1.5. Results for several models are shown, e.g., the T-state

model (χ2 → ∞, jc⊥ 6= 0), the conventional DCSM (n → ∞), the Sm-DCSM with

χ2 = 1 and n = 1, and the Sm-DCSMs with χ2 = 1 and n = 2, 3, 4, 6, 10, 20, 40. The

insets shows a zoom of the behavior around the minima.

an elliptical material law. Instead of this, it is a universal signal of the anisotropy effects

involved in a general description of the material law. The evolution of the peak effect

as a function of χ2 has been shown in Figs. 17 and 18 of Ref. [4]. There, we note that

an increase of the bandwidth χ2 produces a stretched magnetic peak. Consequently,

paramagnetic effects are visible over a wider range as the cutting threshold value jc‖
increases. We emphasise that the overall effect of increasing the value χ2 = (jc‖/jc⊥)

2 is

that the components of M get closer to the master curves defined by χ → ∞. Several

further distinctive signals for the different models are highlighted below.

On the one hand, for the isotropic model, the collapse of the magnetization is

achieved while j‖ is monotonically reduced (upper rows in Figs. 2 and 3). When

the material law is the infinite bandwidth model or T-state model (χ2 = ∞), the

magnetization collapse does not take place, and there is no restriction on the longitudinal

component of the current that increases arbitrarily towards the center of the sample.

This corresponds to the absence of flux cutting, i.e.: j‖ does not saturate by reaching a

threshold value jc‖. For rectangular or smooth rectangular regions (intermediate rows in

Figs. 2 and 3), together with the absence of collapse, one also observes that j‖ basically

saturates to a value that depends on the smoothing parameter n (exactly to jc‖ for the

very rectangular case n → ∞).

Remarkably, when a rectangular section is assumed, the sample globally reaches

the CT state (corner of the rectangle). As a consequence of the sharp limitation for
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j‖, a well-defined corner in the magnetic moment components Mx and My appears,

both for the diamagnetic and paramagnetic cases (see Fig 4). This clear trace of the

DCSM establishes the departure from the master curves defined by the T -state, and

has been assigned to the instant at which the sample reaches the CT state. We call

the readers’ attention about the noticeable gap in Fig. 4, separating the isotropic model

(χ2 = 1, n = 1) and the square model (“χ2 = 1, n → ∞”). Thus, the question

arises about the possibility of inverting an experimental response within this interval

so as to uniquely determine a given smooth region ∆r for the components of J. As it

will be argued below, complimentary information about the limitations Jc‖ and Jc⊥ is

due. Thus, if one compares Fig. 4 and Figs. 17 and 18 in Ref. [4] one can realize that

smooth models for a given ratio χ ≡ Jc‖/Jc⊥ will fill the gap between the master limiting

curves defined by the rectangular (χ, n → ∞) and elliptic (χ , n = 1) models, and their

corresponding curves for different values of χ will intersect in a complicated fashion.

In other words, the magnetization curves by themselves do not provide an exhaustive

information on the material law which defines the critical state dynamics in type II

superconductors. In fact, notice that in the regime of low fields hz ∼ hy(a) (or a weak

oscillating magnetic field in presence of a strong constant field [13,16]) the material law

is indistinguishable and the magnetic moment may be reproduced even by the isotropic

model.

Nevertheless, a deeper insight in Figs. 2 and 3 reveals that the local behavior of

the current density profiles, if available, should give clear indications. Thus, notice that

although the dynamics of the profiles hx, jy, and jx is almost indistinguishable between

the smooth and rectangular models (third and fourth rows of Figs. 2 and 3), a clear

distinction arises by analysing jc‖. On the one hand, when the rectangular model is

assumed j‖ reaches the threshold value jc‖, and the entire specimen verifies a CT-state

as the applied magnetic field increases. On the other hand, when the rectangular region

is smoothed by the index n, the parallel component of the current density eventually

decreases to a value that depends on the values of n and χ.

4. Conclusions

In type-II superconductors, an incomplete isotropy for the limitations of the current

density relative to the orientation of the local magnetic field arises from the different

physical conditions of current flow either along or across the Abrikosov vortices. One

can thus talk about magnetically induced anisotropy. In this work, we have explored the

application of the so-called smooth double critical state model to anisotropic material

laws in such sense. Theoretical predictions have been made that allow to establish a

relation between a number of experimental observations and anisotropies of the material

law. Two fundamental material-dependent quantities play key roles in this theory

(Jc‖,Jc⊥) related to the flux cutting and depinning thresholds. We have applied the

theory to the case of a type-II superconducting slab assuming translational symmetry
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along its surface and a 3D magnetic field.

Motivated by the possibility of modelling the influence and mutual interaction

between the critical current thresholds, we have investigated situations with current

density vectors belonging to some smooth region ∆r within the J‖ − J⊥ plane. This

has been done by describing the boundary of ∆r by means of a superelliptic relation

((J‖/Jc‖)
2n + (J⊥/Jc⊥)

2n = 1). Notoriously, the material law ∆r is determined by the

index n and a proper bandwidth χ ≡ Jc‖/Jc⊥. Thus, our predictions cover a wide range

of laws: (i) the isotropic model (χ2 = 1, n = 1 ⇒ ∆r is a circle), (ii) the elliptical model

(χ2 > 1, n = 1 ⇒ ∆r is an ellipse), (iii) the rectangular model (χ2 ≥ 1, n → ∞ ⇒ ∆r

is a rectangle), and (iv) the infinite band model (χ2 → ∞). After a detailed analysis

that entails the local electrodynamics for material laws that cover a wide range of values

for n and χ we conclude that a considerable amount of experimental observations may

be explained in this framework. Thus, we have shown that: (i) the magnetic moment

collapse by a perpendicular field is clearly assigned to the isotropic behavior of Jc,

(ii) paramagnetic magnetization induced by the application of a perpendicular field is

always predicted if anisotropy in the region ∆r is allowed. (iii) Paramagnetic peak

effects induced by a perpendicular magnetic are expected in a wide range of conditions,

(iv) differences between the several models studied are smeared out for low magnetic

fields, (v) unless for the extreme cases (isotropic χ = 1, n = 1 and T-states χ → ∞)

the inversion of magnetic data (Mx,My) so as to elucidate the specific critical state

region for a given sample is not straightforward. Complimentary information about

the maximal values of Jc‖ and Jc⊥ is required so as to extract the complete material

law Jc‖(Jc⊥). Further research along this line is suggested, i.e.: the design of some

experimental routine that defines a well posed inverse problem for the determination of

∆r.
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[7] Pérez-González A and Clem J R 1985 Phys. Rev. B 31 7048.
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[27] Fisher L M, Kalinov A V, LeBlanc M A R, Pérez-Rodŕıguez F, Savel’ev S E , Voloshin I F and
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