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Abstract

A round straight superconducting wire has been used as numerical prototype for pursuing a

comprehensive study on the local distribution of current and power density losses, attained by

the concomitant action of an ac transport current and an oscillating transverse magnetic field.

The numerical simulations have been performed within the magnetoquasisteady approach of the

critical state theory, including virgin and premagnetized wires. A wide variety of shapes for the

flux fronts characterizing the local dynamics of the electromagnetic quantities across the section

of the wire has been revealed. Under special conditions, flux fronts characterized either by the

so-called “field-like”, or “current-like” shapes are shown, with the occurrence of multiple domains

of current flow detached by thin lines acting as boundaries between the critical values Ic and −Ic.

Despite the lack of symmetry for attaining at least an intuitive definition on the shape of the flux

front, a universal pattern of the distribution of magnetic flux has been identified. Also, a strong

asymmetric localization of the power density losses has been envisaged, as long as synchronous

electromagnetic excitations are used.
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I. INTRODUCTION

Major features of the macroscopic electromagnetic behavior of type-II superconducting

wires have been captured by Bean’s model of the critical state1,2. In this framework, mag-

netization currents of density J are induced within the superconductor during variations of

the magnetic flux which accordingly redistribute themselves to screen the penetrating flux

within the sample. Their magnitude adopts the critical value Jc at a given temperature and

specified field, where all the electromagnetic quantities are supposed to be averaged over a

volume containing a big enough number of vortices. Although simple for idealized configu-

rations, the electrodynamics underlying Bean’s model becomes cumbersome when realistic

configurations are addressed. In fact, for most of the practical cases, the macroscopic ob-

servables such as the magnetic moment curve or the ac-losses can only be calculated through

the use of sophisticated numerical methods capable of determining the time-dependent dy-

namics of the local current density profiles, and/or the profiles of magnetic flux density, as

well as of the distribution of electric field inside of the superconducting wire.

In idealized configurations such as infinite slabs under the action of a parallel magnetic

field or a longitudinal transport current, Ampere’s law takes the form dB/dx = µ0J and may

be straightforwardly solved with some prescription for the current density (|J | ≤ |Jc|) under

continuity boundary conditions that incorporate the influence of the sources. This leads to

the exact analytical solution of the main experimental observables3. Being more specific,

the analytical solution for these cases consists of solving a free boundary problem for the

distribution of penetrating current (or magnetic flux) under a given external electromagnetic

excitation. The inner flux-free region can be straightforwardly depicted by a planar front of

flux for the case of a slab, or a radial flux front centered in the symmetry axis of a cylindrical

wire. Thus, once a method is found for obtaining the actual size of the flux free region, all the

electromagnetic observables such as the intensity of magnetic flux, the global magnetization

curve, and the expected value for the ac-losses, can be deduced from the knowledge of the

penetrating current profiles.

On the other hand, when realistic configurations are brought to the fore, such as a

long strip with finite thickness or a bulk superconducting cylinder exposed to a transverse

magnetic field, the use of computational algorithms based upon well established physical

principles is unavoidable. In fact, for real applications of superconducting wires, the scenario
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is such that a simultaneous field and transport current condition must be satisfied. Then,

in addition to the ambient field one has to consider the local action of the magnetic field

generated by the transport current itself. Thus, as this is the configuration very often met

in practice, this paper is devoted to study different configurations of oscillating transverse

magnetic field and a synchronous transport current, both applied to a round superconducting

wire with infinite length, prepared in a virgin or premagnetized state, with special attention

to the symmetry of the flux front and the local distribution of power density losses along

the cyclic stage.

II. NUMERICAL METHOD AND THEORETICAL STATEMENTS

In this work, the variational optimization method developed in Ref.4 has been used to

iteratively solve the discretized form of Faraday’s law δBi = −∇×Ei(Ji) δt, for the problem

of the long superconducting wire. The magnetoquasisteady approach ∇ × Bi) = µ0Ji) is

used. In terms of the circulating current densities, the electromagnetic problem consists of

solving the increment δJi) at each point of the cross section (δJ = {0 or± Jc}), as induced

by the penetrating flus fronts.

Finite element simulations have been conducted on the basis of analytical expressions for

the inductance matrices between parallel cylindrical filaments {i}, each carrying a uniform

distribution of current density Ji = Iisi, and such that their cross sectional area si = πa2 is

much lesser than the cross sectional area of the entire superconducting wire (Ω). Thereby, for

very large (formally infinite) filaments centered at the positions ri, the inductance matrices

can be defined as

Mij =


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













µ0

8π
, ∀ ri = rj ∈ Ω

−
µ0

2π
ln
(

|ri−rj |

a

)

, ∀ ri 6= rj ∈ Ω ,

(1)

In these expressions, arbitrary constants may be added to both matrices, which are ab-

sorbed into the customary minimization procedure of the electromagnetic Lagrange density

defined for problems within the critical state theory4–7.

In practical terms, Faraday’s law is replaced by a global minimization statement equiva-

lent to evaluate the maximal projection rule Ê · J over each one of the filaments filling the
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cross section of the superconducting wire8. The quantity to be minimized takes the form:

1

2

∑

i,j

{Ii,l+1 [MijIj,l+1 +∆A0(ri)]− Ii,lMijIj,l+1} , (2)

where the set of currents {Ii,l+1} defines the set of unknown variables for the time steps

l+1, whilst an initial value defined by the set of currents {Ii,l} is assumed. For a sufficiently

refined mesh, the current density within each one of the filaments has to be constrained by

the critical state material law |Ii| ≤ Ic. Furthermore, the system must satisfy the additional

constraint for the transport current:

∑

si∈Ω

Ii = Itr , (3)

with Itr the intensity of transport current injected to the superconducting wire at the time

step l + 1. Thus, specification of the time-steps for the minimization procedure may be

pursued through a fine discretizing of the function Itr(t) when the transport current condition

is recalled, or through the discretization of the vector potential component related to non-

local sources A0(ri), which in case of a uniform magnetic field B0 corresponds to A0(ri) =

B0 × ri. Notice that, in all cases the minimization principle is based upon a discretization

of the path, followed by the external sources, meaning that it is an approximation to the

continuous evolution whose accuracy increases as the step diminishes.

Eventually, subsequent to the minimization procedure the components of the magnetic

flux density B = ∇ × A can be evaluated according to the definition of the total vector

potential A(ri) = A0(ri) + Aself(ri), where the contribution of currents derived from the

local variations of the electromagnetic excitations (B0, Itr) is given by Aself(ri) =
∑

j MijJj.

Finally, as mentioned above, additional integration constants have been arbitrarily cho-

sen, and the vector potential obtained is affected by this. The ambiguity may be surpassed

by including the physical condition for the electric field E ≡ 0 at those points where mag-

netic flux does not vary. Thus, although our statement of Faraday’s law does not include

the electrostatic-like term in the general expression of the electric field E = −∂tA − ∇φ,

a gauge calibration can be performed as indicated. Then, an accurate determination of the

electric field at each one of the filaments and therefore the local hysteretic losses may be

truly achieved.
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FIG. 1. (Color online) Sketch of some of the experimental processes analyzed along this paper.

Here, a cylindrical SC wire of radius R is subjected to isolated triangular excitations Itr(t) (top

pane) and By(t) (middle pane) of amplitudes Ia and Ba respectively. The profiles of current density

for the time-step labeled as 4 are displayed to the right, for the amplitudes Ia = 1 and Ba = 6

respectively. The bottom pane shows the corresponding profiles for the density of power dissipation

in the aforementioned cases (left: transport current. Right: magnetic field). Hereinafter, units are

(µ0/4π)RJc for B0,y, and Ic ≡ πR2Jc for Itr.

III. RESULTS

The electromagnetic behavior of a round superconducting wire subjected to the action

of a transverse magnetic field By(t) and a longitudinal transport current of intensity Itr,z(t)

has been simulated in different conditions. The time dependence of the electromagnetic

excitations (By, Itr,z) follows the triangular pattern shown in Fig. 1. This figure also shows

the penetration profiles of current density and the magnetic field lines (isolevels of magnetic

vector potential) for the corresponding isolated excitations, Itr (top pane) or By (middle
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FIG. 2. (Color online) Magnetic flux lines and profiles of current density of a round superconducting

wire subjected to the synchronous action of the electromagnetic sources depicted in Fig. 1, where

the time-steps shown have been accordingly labeled. First two columns correspond to a virgin-wire

subjected to synchronous sources of amplitudes [Ia = 1, Ba = 2] (left pane), and [Ia = 0.25, Ba = 8]

(middle pane). In addition, a premagnetized wire withB0,y(t = 0) = 2 has been considered previous

to the action of the synchronous sources of amplitudes [Ia = 0.5, Ba = 4].

pane). Trivially, for a long cylindrical wire only subjected to a transport current, the flux

front is defined by a circumference of radius r̃ = R
√

1− Itr/Ic, which straightforwardly

allows to obtain the analytical solution of the entire electromagnetic problem. However, for

the seemingly simple case of the superconducting wire subjected to a transverse magnetic

field, the flux-front cannot be defined by an exact analytical solution. Nevertheless, a number

of approaches to characterize this boundary have been reported.9–12. Noteworthy is that the

local density of power dissipation across the section of the superconducting wire follows

the same symmetry defined by the flux front boundary, with its maximal intensity over

the surface of the superconducting wire (see bottom pane of Fig. 1). Naively, in a first

approximation, for describing the local electromagnetic properties of superconducting wires
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under configurations of simultaneous alternating current and applied magnetic field, one

could argue that the above described patterns or their slight modifications: “current-like”

or “field-like” tendencies may serve for extremal excitation amplitudes I
a
and B

a
. Thus,

within this simplified scenario, the flux-front would be depicted by a linear superposition

of the profiles of current density for isolated excitations. For instance, one could start with

the “field-like” shielding profiles and then apply a displacemen of its geometrical center as

result of a kind of “Lorentz force” related to the application of a transport current. Fig.2

shows that this picture is basically correct.

On the other hand, in the light of this “superposition” ansatz, one would expect an axially

symmetric distribution of density of power dissipation leading to a quasi-homogeneous heat

release over the surface of the superconducting wire. This follows from the patterns displayed

for the cases with isolated excitations (see Fig.1). However, as we have shown in Ref.8 neither

the linear superposition of the isolated contributions can deal with an accurate evaluation of

the hysteretic losses, nor with the local distribution of profiles of current density. Therefore,

determining the distribution of heat release across the superconductor is far from being

intuitive. As shown below, for diverse experimental configurations with a simultaneous

action of an oscillating magnetic field and an ac transport current, the density of power

dissipation across the section of the superconducting wire shows a strong localization towards

one side of the wire during the entire cyclic process.

In order to prove the above statement, the power dissipation profiles corresponding to

the processes in Fig. 2 are shown in Fig. 3. Notice the strong localization of the specific

power density. This is revealed as a universal behavior for superconducting wires subjected

to oscillating excitations, even at those cases where the superconducting wire has been

magnetized previous to the cyclic oscillation stage (rightmost columns of Figs. 2 and 3).

Certainly, determining the flux front for synchronous electromagnetic excitations with low

magnetic field is almost intuitive as the distribution of profiles of current density develops a

current-like pattern (see left pane of Fig. 2). However, for high magnetic fields, ascertaining

the distribution of profiles of current density in the cyclic stage is more elaborated, as long as

the electromagnetic history is not erased by the maximal condition for the amplitude of the

ac transport current I
a
= Ic. Actually, if I

a
< Ic the flux fronts do not overlap to a unique

contour line defined by the filaments with current alternating between Ic and −Ic, although

a field-like pattern may still be identified as it is observed from the current profiles depicted
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FIG. 3. (Color online) Local profiles for density of power dissipation E ·J across the section of the

superconducting wire, in correspondence to the profiles of current density displayed in Fig. 2. In

the left pane, the colormap for the time-step labeled with a (2) must be read with a renormalization

factor of 5. Units are (µ0/4π)R
2J2

c /δt for E · J.

in the second column of Fig. 2. Further, the definition of the flux front becomes even more

tangled when premagnetized wires are considered, because multiple domains enclosed by the

aforementioned contour lines arise (see right pane of Fig. 2).

Remarkably, despite the appearance of a wide variety of flux-fronts described above, we

have observed that the local density of power dissipation E · J evolves in a rather defined

pattern along the cyclic stage, with a strong localization of the heat release towards one of

the sides of the wire, independently of the intensity of the synchronous oscillating excitations

B0 and Itr. Notoriously, one can identify that the asymmetric distribution of power losses is

straightforwardly linked to the zone where the the maximal density of magnetic flux occurs,

which corresponds to the “active” zone where the filaments are carrying a current of intensity

Ic in the same direction of flow of the injected transport current Itr. Thus, this asymmetric

distribution of power losses remains along the entire cycle perpendicular to the orientation
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of B0 as long as both excitations evolve synchronously.

IV. CONCLUSION

A systematic study of the local electromagnetic behavior of a round superconducting wire

subjected to the simultaneous action of an oscillating magnetic field of amplitude B
a
and

a synchronous transport current of amplitude I
a
, has been pursued under the critical state

model. Profiles of current density of the so-defined “current-like” type have been identified

for high values of the transport current (I
a
≃ Ic), where the flux front shows a semi-circular

shape shifted towards the direction of the unit vector û = B̂× ûtr, with ûtr the direction of

flow of the transport current. On the other hand, for low values of current (I
a
< Ic/4) and

moderate or high values of field (B
a
> 4), profiles of current density of the “field-like” type

may be identified by connecting the sharp corners of the multiple domains of current flow

defined by filaments with currents alternating between Ic and −Ic. Likewise, for premagne-

tized wires we have shown the occurrence of even more complex structures for the flux front,

with the occurrence of multiple domains seemingly unconnected. The strong deformation of

the classical flux fronts with circular or semi-elliptical symmetries does not allow a simple

approach to the description of the local electromagnetic properties. However, we have iden-

tified a counterintuitive overall pattern in the heat release of the superconducting wire. A

universal asymmetric distribution of the local power density losses towards one side of the

cross section is found. This trend is independent of the intensity of the electromagnetic exci-

tations B0 and Itr, as long as both excitations evolve synchronous. As a matter of fact, this

strong localization of the density of power dissipation is a straightforward consequence of

the underlying domain structure of the current flow, induced by the interaction of shielding

and transport.
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