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Abstract 

The evolution of turbulent rectangular submerged free jets has been investigated numerically with a two-

dimensional approach, [1], by using the Large Eddy Simulations (LES) at several Reynolds numbers. The 

average numerical results confirmed the presence of the undisturbed region of flow, URF, located between the 

slot exit and the beginning of the potential core region, PCR, previously observed experimentally at the 

University of Rome “Tor Vergata”. The two-dimensional study, [1], carried out under the conditions 

previously investigated in the literature, showed that the URF has a self-similar behavior, and proposed a new 

law for the evolution of the momentum. The present paper extends the Large Eddy Simulations (LES) to three-

dimensional rectangular submerged free jets, showing that the self-similar behavior of URF is present also in 

the three-dimensional numerical simulations, as well as in the PCR and in the fully developed region, FDR. 

1. Introduction 

The interpretation of the evolution of turbulent rectangular submerged free jets, investigated in the last 

decades, can be summarized by the interaction of the jet with the stagnant fluid just after the slot exit, [2], 

defining two regions of flow: the Potential Core Region (PCR) and the Fully Developed Region (FDR). The 

flow in the PCR and FDR has been studied theoretically by Tollmien [3] and Görtler [4], who found self-

similar velocity profiles in those regions of flow. The proposed equations describing their evolutions have been 

confirmed experimentally for the PCR [5-9], and the FDR, [10-13]. 

The experiments carried out at the University of Rome “Tor Vergata” by Gori and coworkers investigated 

the flow evolution of a rectangular jet of air, with Hot Wire Anemometer (HWA) and shadowgraph 

visualizations, [14-15], Hot Film Anemometer (HFA) and shadowgraph visualizations, [16-18], and Particle 

Image Velocimetry (PIV), [19-20]. The presence of a third region of flow, which has been called undisturbed 

region of flow, URF, has been observed in the average visualizations and measurements, [19], and located 

between the slot exit and the beginning of the potential core region, PCR. The average experiments established 

that its length diminishes with the increasing Reynolds number. Further experiments with the Particle Image 

Velocimetry (PIV) on the instantaneous flow evolution, [20], have shown that the URF can be further divided 

into two new types of flow, the negligible disturbances flow (NDF) and the small disturbances flow (SDF). In 
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the NDF the jet height remains almost constant, as well as the velocity and the turbulence profiles, while, in 

the SDF, the jet height evidences small contractions or expansions, but without the formation of vortices.  

Looking back to previous experiments of the literature it is  possible to recognize that a region of flow, 

which can be considered an Undisturbed Region of Flow (URF), was already been observed experimentally 

for certain inlet conditions [21-23]. In other experimental works, [24-27], Direct Numerical Simulations 

(DNS), [28-29], and Large Eddy Simulations (LES), [30], the evidence of an URF can be found, but none of 

these papers discussed about it.  

The URF has not been investigated numerically so far, except in [31], where preliminary numerical 

solutions, obtained with the RANS modeling, were compared with the experimental shadowgraph 

visualizations at Re=25,000 and 60,000. The study preceding the present work, from the same authors, [1], has 

been carried out with a series of Large Eddy Simulations (LES) at several Reynolds numbers, to verify that 

the URF occurs in the conditions previously given by the literature [2] in a two-dimensional case. 

The numerical analysis can give further information, besides the experiments, which can contribute to a 

better understanding of the phenomenon of heat transfer upon a cylinder, due to jet flow [32-35]. This problem 

has been shown to depend on several variables, as the presence of multiple cylinders in a row [36-37], fins 

[38-42], level of turbulence in the jet [43-44] and slot to cylinder diameter ratios [45-46].  

This work presents the results of three-dimensional (3D) Large Eddy Simulations (LES) of a rectangular 

free jet, at several Reynolds numbers, which extends the two-dimensional approach, [1], in order to show that 

also in the three-dimensional case it is possible to define self-similar relations for the URF, and to asses that 

the theoretical model is valid also in presence of a turbulent profile on the slot exit.  

 

2. Numerical Method 

2.1 Governing Equations 

In the LES approach the governing equations are derived by filtering the Navier-Stokes equations. This is 

particularly easy in the case of an incompressible fluid. The filtered variables are indicated with the superscript

 . Applying the filtering operation to the mass and momentum equations the following equations are obtained 
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where iu  is the velocity vector, p  the static pressure, ijδ  the identity tensor. The Reynolds number Re is 

defined as 
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where inU  is the inlet velocity, hD  the hydraulic diameter, defined as four times the ratio between the slot 

area and its perimeter, and ν  the fluid kinematic viscosity. The shear rate tensor, ijS , is defined as 
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The sub-grid stress tensor sgs
ijτ  is  

22
3

sgs
ij sgs ij sgs ijS kτ ν δ= −          (5) 

the sub-grid viscosity  

2
sgs SC Sν = ∆             (6) 

the sub-grid kinetic energy  

2 2
sgs Ik C S= ∆             (7) 

the filtered shear rate  

2 ij ijS S S=              (8) 

the filter width  

m m∆ = ∆ ∆            (9) 

with k∆  the box filter width in the m-th direction. The dynamic Smagorinsky model is employed in this study.  

2.2. Computational Details 

The simulations are realized with the pisoFoam finite-volume solver of the open-source code OpenFOAM, 

which solves the Navier-Stokes transient incompressible equations via the PISO algorithm. The 3D grid is 

generated with blockMesh, the OpenFOAM utility for mesh generation, at all the Reynolds numbers. The 

geometry is made of a rectangular box, 2 diameter long in the transverse direction (z), 3 diameters in the 

vertical (y) and 6.5 diameters in the axial direction(x). The grid is uniform in the z direction, and stretched in 

the x and y directions near the slot exit, although the minimum and maximum grid stencils are of the same 

order of magnitude. In the z direction the stencil is 0.0197z∆ =  hydraulic diameters, while in the x and y 

directions they are ( ) [ ], 0.0074,0.0294x y∆ ∆ ∈  hydraulic diameters. The grid is made of 442 262 102× ×  points. 

The explicit time integration scheme is of the second order backwards, and of the second order central for the 

spatial derivatives. The time step in each simulation satisfies the condition CFL < 0.5. The filter chosen in 
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OpenFOAM is the “simple” one, which interpolates the field in a given point with its neighboring cells. The 

filter amplitude is the cubic root of the cell volume. 

A wall is present above and below the slot, with a thickness of 0.176 hydraulic diameters, as in the 

experiments [19-20]. The total pressure is imposed on the outlet boundaries, while the velocity boundary 

condition changes according to its direction. If the fluid flows out of the domain a zero gradient condition is 

imposed for the velocity, otherwise the velocity is obtained from the patch-face normal component of the 

internal-cell value. This boundary condition in OpenFOAM is known as “pressureInletOutletVelocity”. A 

periodic boundary condition is imposed in the span-wise direction. 

The simulations are carried out for 30 flow times, being the “flow time” the ratio between the domain 

length and the axial velocity on the slot exit. The steady state is assumed to be reached after 10 flow times, 

while the following 20 flow times are employed to average the instantaneous variables and to obtain the mean 

turbulent properties. 

A top-hat velocity profile is assumed on the slot exit, in analogy with the experiments of [2], with the 

addition of some disturbances in order to trigger the turbulence in the 3D simulations. A small perturbation of 

1% in the amplitude of the velocity profile is enough to produce a 3D flow. The technique proposed by Lee et 

al. [47] is adopted, with the advantage of injecting the disturbance in the low and intermediate wave number 

ranges, where it cannot be immediately damped. Let decompose the discrete perturbation velocity field ku  in 

Fourier series 
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where nU  are the complex Fourier modes, which can be written as ni
n nU U e ϕ= . According to the Parseval 

theorem 
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In order to generate a perturbation, which is able to reproduce the turbulent energy spectrum, it is assumed that 

n nU NE=  and nϕ  is a random function of n. The turbulent spectrum is given by 
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with 

2 2 2
x y zk k k k= + +           (13) 

The inlet perturbation field is assumed to act in the three directions. 
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The simulations have been performed on the Blue Gene/Q system “Fermi” of the Italian supercomputing 

center CINECA, having requested around 200,000 CPU hours for all the simulations. 

3. Results and discussion. 

The results are presented for the four Reynolds numbers and all the variables are expressed in non-

dimensional form. 

3.1 Instantaneous variables 

The iso-surfaces of the instantaneous vorticity magnitude are reported in Fig. 1 at the four Reynolds 

numbers investigated. Despite the presence of a 1% perturbation in the amplitude of the velocity profile, the 

free shear layer shows an initial undisturbed behavior. A plausible explanation is that on the slot exit, i.e. at 

the interface between jet and stagnant air, the velocity gradient is so steep that the turbulent stresses are 

negligible compared to the viscous ones. The Kelvin-Helmholtz instability appears in the free shear layer at 

different times and positions according to the Reynolds number. The higher is the Reynolds number, the earlier 

the roller vortex structures form and the closer they are to the slot exit. This is in agreement with the linear 

theory of the Kelvin-Helmholtz instability [48], which prescribes that the wave number of the resonant 

harmonic is proportional to the ratio of the frequency to the mean velocity, so that a low wave number 

perturbation is enough to trigger the instabilities at high Reynolds number flows. Also, the vortices structure 

appears to be bigger at smaller Reynolds numbers.  

The roller vortex structures develop symmetrically and travel downstream at the speed of the convection 

velocity. The z component of the vorticity vector has opposite signs above and below the centerline, which 

means that the vortices above the centerline roll in the anti-clockwise direction while the vortices below the 

centerline roll in the clockwise direction. This cannot be seen in Fig.1 because it shows the iso-surfaces of the 

vorticity magnitude to clarify the jet shape. At a certain distance downstream the beginning of the Kelvin-

Helmholtz instability, the roller vortices eventually pair to form a bigger roller structure and the merging of 

the shear layers, which triggers the asymmetry in the flow.  

It is possible to consider the formation of the first Kelvin-Helmholtz instability as the beginning of the 

PCR, and the beginning of the vortex pairing as its end. In the PCR the resonant sub-harmonic is weak but, as 

the roller structures travel and pair, it becomes strong enough to activate the asymmetric modes, which trigger 

the evolution of the coherent structures. In the PCR, three symmetric couples of counter-rotating vortices can 

be identified for all the Reynolds numbers shown.  

From time to time, different couples of vortices pair to form larger ones, but this phenomenon stops 

downstream, where the FDR begins. At the beginning of the FDR the vortices break, by virtue of the vortex-

stretching, in very small structures which form a turbulent wake. This is the main difference with the numerical 

results of the two-dimensional case, [1], where this region is not present, but the large eddies occupy the entire 

domain, forming an asymmetric pattern. The comparison of the present results with the two-dimensional case, 
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[1], confirm that also in presence of a perturbation in the amplitude of the velocity profile there is a Negligible 

Disturbance Flow (NDF), immediately downstream the slot exit, where the jet height remains almost constant, 

followed by the Small Disturbance Flow (SDF), where the jet height evidences small contractions or 

expansions but without the formation of vortices, as observed experimentally in [20]. The sum of the length of 

NDF and SDF is about the same of the Undisturbed Region of Flow (URF), which has been defined for the 

average variables. The length of NDF and SDF, or URF, decreases with the increase of the Reynolds number, 

being quite consistent at Re=5000, a little smaller at 10,000, and quite small at Re=20,000 and 40,000. 

Figure 1. Instantaneous vorticity iso-surfaces colored by instantaneous velocity magnitude: (a) Re = 5000; 

(b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 2 presents the instantaneous isobaric surfaces, shown by different colors, where the blue is 

indicating the low pressure zones, as well as the instantaneous velocity, which is shown by vectors. The jet 

undergoes a series of pressure fluctuations across its section, i.e. in the transverse direction, and downstream, 

i.e. in the streamwise direction. The fluid presents a series of accelerations and decelerations in the streamwise 

direction, especially on the centerline.  

The NDF and SDF are clearly visible after the slot exit, as the region where the velocity vectors are almost 

one-directional and constant. The pressure changes on the two borders of the jet produce symmetric variations 

of the cross section and correspond to symmetric vortices. The jet section decreases in correspondence to the 

vortices, and increases between the different vortex pairs, due to the conservations of mass, which implies an 

increase in the velocity where the section reduces. The Bernoulli equation justifies a pressure increase where 

the velocity decrease.  

Figure 2a, for Re = 5000, shows that the first three concentric isobars along the shear layer present a slight 

pressure decrease around x=1.9, corresponding to a slight contraction of the cross section, shown also in Fig. 

1a. The two following isobars, around x=2.4, on the contrary, present an increase, which can be considered 

responsible for the expulsion of the fluid from the core of the jet. The formation of the first vortex pair, around 

x=3.4, is generated because the fluid, after the expulsion, is slowed down by the external small velocity of the 

stagnant fluid. Around x=5 the cross section undergoes a strong contraction, after which the end of the potential 

core is expected. 

Figure 2b presents the results for Re = 10,000. The pattern presents some similarities with Re=5,000, Fig. 

2a, except for the length of the NDF and SDF, which are shorter, and the first vortex pair which appears earlier, 

around x =1.5. The vortices appear almost symmetrical along the jet axis with an alternate pattern, and regions 

of low and high pressure are visible. The number of vortex pairs is higher compared to the previous case, and 

two big spots of high pressure are clearly visible around x = 3.5. The velocity vectors at the boundary layer 

roll backwards because of the pressure gradient. 

Figure 2c reports the results for Re = 20,000. The patterns appear somewhat different from the previous 

two cases, with the presence of several low pressure regions of short extentbetween the slot exit and x = 1.3. 
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Downstream from this point irregular spots of high pressure are visible. Similar results are shown in Fig. 2d 

for Re = 40,000. 

Figure 2. Instantaneous isobaric surfaces and velocity vectors: (a) Re = 5000; (b) Re = 10,000; (c) Re = 

20,000; (d) Re = 40,000. 

From the numerical results shown in Figs. 1-2, it is clear that, despite the presence of the 1% disturbance 

on the velocity profile at the slot exit, a region of flow free of vortices is present, as in [1], where the inlet 

profile was flat without turbulence. The instantaneous fields are variable and cannot be employed to identify 

the average length of the regions of flow. Therefore, the evolution of some mean variables is analyzed in order 

to understand the average effect of the turbulence on the flow. 

3.2 Average variables 

Figure 3a presents the evolution of the non-dimensional average turbulent kinetic energy, k, for Re = 5000. 

The turbulent kinetic energy is almost null between the slot exit and x = 1.5, confirming that, despite the 

perturbation introduced on the velocity profile at the slot exit, the turbulence develops only at a certain distance 

downstream, or, in other words, the region is free of turbulence and can be identified as the URF. 

Turbulence originates from two points, one above and the other below the centerline, i.e. on the boundary 

layers between the submerged jet and the stagnant air. Moving downstream from this two points, the turbulent 

kinetic energy diffuses linearly up to a position where the profiles in the upper and lower parts blend together 

along the centerline. The region between the two point sources and the connection of the upper and lower 

profiles has the shape of the potential core region, PCR.  

Figure 3b shows the turbulent kinetic energy for Re = 10,000, which is negligible close to the slot exit and 

starts to develop around x = 1. Figure 3c shows the k contours at Re = 20,000. The beginning of the turbulent 

kinetic energy is located around x = 0.1 and the diffusion in the vertical direction is smaller compared to the 

previous two cases. For Re = 40,000, Fig. 3d, the k profile is similar to Re = 20,000, except the source points, 

which are closer to the slot exit, and the diffusion in the vertical direction, which is even more limited. 

Figure 3. Turbulent kinetic energy contours: (a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 4 shows the maps of the x-y component of the Reynolds stress tensor, u v′ ′ , at the four Reynolds 

numbers investigated. The stress tensor is reported as positive in the upper part of the domain, and negative in 

the lower part.  

Figure 4a, at Re=5000, shows that, despite the presence of a perturbation on the velocity profile at the slot 

exit, the Reynolds stresses are negligible up to about x = 1.5, which is equal to the position where turbulent 

kinetic energy start developing, Fig. 2a. At this axial position there are two points from which the turbulent 

shear stress originates and spreads downstream. The contours show approximately a linear expansion in the 

transverse direction, up to a downstream point where the shear stresses in the upper and lower parts of the 
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domain merge. This pattern reminds of the potential core region, although this cannot be establish without 

inspecting the velocity profile.  

Figure 4b, Re = 10,000, shows a pattern of u v′ ′  similar to that at Re = 5000, although the turbulent shear 

stress starts closer to the slot exit, in agreement to the vorticity and turbulent kinetic energy results, showing a 

shorter length of the URF. The linear expansion of the turbulent stresses is visible as well, which terminates 

earlier, and, the upper and lower parts meet at a certain distance.  

Figure 4c shows the pattern of u v′ ′  at Re = 20,000. The sources of the shear stress are now very close to 

the slot exit and the area of linear expansion is longer, compared to the previous two cases, terminating earlier, 

where the positive and the negative stresses meet. Similar considerations can be done for Fig. 4d, where the 

results for Re = 40,000 are shown. The differences with Re = 20,000 are minors. 

Figure 4. u v′ ′  contours: (a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

From the two average turbulent variables, i.e. k and u v′ ′ , it is possible to distinguish two different behaviors 

in the near-field region, already analyzed in [1], plus a third one in the far-field, which was not captured in the 

2D simulations of [1] because of the lack of vortex stretching.  

The analysis of the mean axial velocity profile, done in [1], showed the shape of the “isotach” curves in 

the URF and PCR. The same conclusions can be drawn from the present 3D results, which are not reported 

here because similar to [1]. The isotachs in the fully developed region, FDR, which could not be captured in 

the 2D study [1], are reported in the following sections. 

3.3 Self-similar solutions in the URF. 

The analysis of the variables in the URF suggests that the dependence on the span-wise direction can be 

neglected. Therefore, despite the presence of a perturbation on the velocity profile at the slot exit, the flow can 

be considered 2D in the URF, and, in analogy with [1], the following relation can be obtained from the analysis 

of the isotach 

( )
0 Re

y h
x

η η
−

= +           (14) 

where h is the non-dimensional half-slot vertical coordinate, equal to 0.25.  

The analysis of the continuity and momentum equations shows that the jet flow in the URF can be 

described by the following ordinary differential equation 
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where the axial and vertical velocities can be derived from ( )f η  as  
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The vertical velocity on the centerline is assumed zero, which can be expressed by the following 

approximate condition 

( ) 0lim f
η

η η η
→−∞

= −           (18) 

The third order ordinary differential equation can be solved by splitting it in two systems of three first 

order differential equations and by imposing the continuity of f, ηddf / , and 22 / ηdfd , at 0η η= . A 

numerical code in Matlab is used to solve Eq. (15) through the routine “ode45”, which solves the systems of 

non-linear ordinary differential equations with the Runge-Kutta method of fourth order.  

The results confirm the findings of [1], with 0 0.5288η = − , ( )0 0.3384η = −f , 
0

0.6914/ ηη =df d , and 

0

2 2 0.191/ ηη = −d f d . 

Figure 5 compares the numerical axial velocities, obtained from the LES simulations, with the self-similar 

theoretical values, obtained from the solution of Eq. (15), at the four Reynolds numbers investigated. The 

numerical results are expressed in function of the self-similarity variable, 0η η− , and are reported at several 

axial coordinates in order to show that the hypothesis of self-similarity is confirmed. The velocity profile is a 

monotonically decreasing function, with the maximum at the center of the jet, becoming null in the stagnant 

air. The results show a very good agreement for the two smaller Reynolds numbers, Re=5000 and Re=10,000. 

The agreement is fair at Re=20,000 and less good on the axis at the highest Reynolds number, Re=40,000, 

which can be due to the perturbation imposed on the velocity profile at the slot exit, because the flow is more 

prone to turbulent transition.  

Figure 5. Axial velocity in URF: numerical (points) and present theory of self-similarity (black line): (a) Re = 

5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

3.4 Self-similar solutions in the PCR. 

The present numerical results, obtained from the LES approach, are now compared with the theories of 

Tollmien [3] and Görtler [4], developed for the PCR. Tollmien [3] proposed the following self-similar variable 

( )
( )

0

3 2
0

1
2

y h
x xc

ζ
−

=
−

          (19) 

which, by imposing a turbulent viscosity proportional to the square of the axial distance and the shear rate, 

leads to the following ordinary differential equation 
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3

3 0d f f
dζ

+ =            (20) 

Görtler [4] proposed the following self-similar variable 

( )
( )
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           (21) 

which, by imposing a turbulent viscosity proportional to the axial distance, leads to 

3 2

3 2 0d f d ff
d dξ ξ

+ =           (22) 

The velocities are related to the function f by the following equations 

2

3 22
a df a dfU

d e dc ζ ξ
= =           (23) 

( ) ( )df dfV a f a f
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ζ ζ ξ ξ
ζ ξ

   
= − − = − −   

   
       (24) 

The span-wise velocity in the Tollmien [3] and Görtler [4] theories is negligible. The coefficients e 

and c are non-dimensional parameters directly proportional to the turbulent viscosity, found respectively in [3] 

and [4]. The coefficient a, which appears in both Eq. (23) and (24) is assumed equal to 0.13, while the 

experimental values span between 0.09, in [19] as well as in [2], and 0.12. From Eq. (24) it follows that the 

value of the constant a can be deduced from the vertical velocity profile. Equations (20) and (22) are solved 

providing the boundary conditions imposed in [3] and [4]. The constants can be chosen in such a way that the 

variables ξ and ζ coincide.  

The axial velocity profiles obtained from the present LES simulations are compared with the Tollmien [3] 

and Görtler [4] theories in Fig. 6. The numerical results are expressed in function of the similarity variable ζ, 

and are plotted at different axial coordinates, to show that the hypothesis of self-similarity is confirmed. The 

velocity profile in the PCR is a monotonic function of the vertical coordinate, having a maximum on the 

centerline and going to zero far away. Both theories give comparable results at the interface. Despite the fact 

that at higher Reynolds numbers the effect of the disturbances is stronger, the agreement between the present 

numerical results and the two theoretical values is quite good.  

Figure 6. Axial velocity in PCR: numerical (points), Tollmien (black line) and Görtler theories (dashed line): 

(a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

The comparisons, carried out in sections 3.3 and 3.4, are important because they confirm that upstream 

from the fully developed zone, two self-similar regions are present: the first one follows the behaviour 

introduced in [1] for a two-dimensional case, while the second one follows the well-known theories of 

Tollmien [3] and Görtler [4].  
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3.5 Self-similar solutions in the FDR. 

Downstream from the PCR, the Fully Developed Region, FDR, begins, after the point where the 

turbulence has penetrated into the axis. Here the mean axial velocity on the centerline, which remains constant 

from the slot exit, starts decreasing with the square root of the axial coordinate.  

The isotach curves in the FDR, derived from the three-dimensional numerical simulations, are reported 

in Fig. 7. Unlike the preceding regions, the slope of the isotach curves in the FDR is always positive. 

Figure 7. Numerical isotach curves in FDR. U/Uc = 0.3: numerical (black points) and regression (black line). 

U/Uc = 0.5: numerical (white point) and regression (dot-dashed line). U/Uc = 0.7: numerical (x point) and 

regression (point line). U/Uc = 0.9: numerical (diamond point) and regression (dashed line). (a) Re = 5000; 

(b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

The conservation of the axial and vertical momentum leads to the following equations  

T
U U UU V
x y y y

ν
 ∂ ∂ ∂ ∂

+ =  ∂ ∂ ∂ ∂ 
         (25) 

0
R
yyP

y y
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= − +
∂ ∂

          (26) 

The mean continuity equation is enforced by the use of the mean stream-function, Ψ , defined by 

( )c sU x L fσΨ = ⋅ ⋅ − ⋅          (27) 

being f a function of the self-similar variable chosen, and 

c
s

nU
x L

=
−

           (28) 

the axial velocity at the centerline.  

The theories of Tollmien [3] and Görtler [4] differ in the definition of the turbulent viscosity, which is  

( )22
T s

Uc x L
y

ν ∂
= ⋅ − ⋅

∂
         (29) 

in [3], and 

( )T c sg U x Lν = ⋅ ⋅ −           (30) 

in [4]. 

The problem is solved in [3] by using the following self-similar variable 
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leading to the following ordinary differential equation 

2 2

2 2 0d d f d f dff
d d d dζ ζ ζ ζ

 
+ = 

 
         (32) 

while the self-similar variable is defined in [4] as 
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The two mean velocity components are defined as  
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The constant σ  is function of the Reynolds number. Abramovich [49] has chosen values of σ  that span 

between 0.09 and 0.12 giving 0.5cU U =  at ( )1η = , while, in the present work, σ  spans between 0.06 and 

0.1. Equations (32) and (34) are solved providing the boundary conditions imposed in [3] and [4].  

The comparison between the mean axial velocity profiles, obtained with the present numerical approach, 

and the theoretical ones, [3] and [4], is shown in Fig. 8 at different Reynolds numbers. The velocity is scaled 

by its axial value and plotted versus y/b, where 

( )A sb x Lσ= −            (37) 

and Aσ  is the value of the constant σ  such that ( ) 1 0.5cy b x U U= ⇒ = , [49].  

Figure 8. Axial velocity in FDR: numerical (points), Tollmien (black line) and Görtler theories (dashed line): 

(a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

The agreement between the present numerical results and the theoretical ones is quite good. Both the 

theories of [3] and [4] give comparable results at the interface, where their solutions coincide. The present 
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numerical results are in better agreement with [3] externally, while, in the center of the jet, the agreement is 

better with [4], the opposite of what happens for the PCR.  

4. Conclusions 

The aim of this work is to confirm the experiments of [14-20], that discovered the presence of a region of 

flow which can be considered “undisturbed” between the exit of the slot and the beginning of the PCR. This 

region, or type of flow, has been called Undisturbed Region of Flow, URF, in the average evolution, and 

Negligible Disturbance Flow, NDF, plus Small Disturbances Flow, SDF, in the instantaneous evolution. 

In order to confirm the experimental finding, three-dimensional numerical simulations are carried out at 

several Reynolds numbers by reproducing the boundary conditions of [2]. The present three-dimensional 

numerical simulations assume a top-hat velocity profile on the slot exit with a superimposed disturbance, which 

triggers the vortex stretching and consequently allows the FDR to appear as well. In the span-wise direction 

the “periodic” boundary condition has been used in order to have results independent on the slot width. The 

three-dimensional numerical results are validated against the theories of Tollmien [3] and Görtler [4] for both 

the Potential Core Region, PCR, and the Fully Developed Region, FDR, finding a good agreement. 

The present results extend the results previously obtained in the two-dimensional analysis [1]. Despite the 

introduction of a disturbance on the velocity profile at the slot exit, the turbulent boundary layer does not form 

on the slot exit. A region of flow forms between the slot exit and the PCR, where the evolution of the jet is 

driven by the viscous friction with the stagnant air. The length of this region of flow decreases with the increase 

of the Reynolds number and therefore, the theory of [2] still holds true at high Reynolds numbers, or for flows 

with strong perturbation added to the velocity profile at the slot exit. 

Another important conclusion is that the velocity profile in the URF is self-similar, which holds true also 

in the three-dimensional case with the superimposed disturbance. The evolution of the jet depends on the 

boundary conditions on the slot exit and a different velocity profile may produce a different flow evolution. 

However, since the thickness of the shear layer is proportional to the distance from the slot exit, the top-hat 

velocity profile is the one for which the roller-vortices appear earlier, and therefore, it is the velocity profile 

which produces the shortest URF. In conclusion, a different velocity profile can make the URF longer, but not 

shorter. Another important factor which may affect the solution is the turbulence intensity at the slot exit. The 

1% value superimposed on the velocity profile at the slot exit in the present simulations is plausible, but in 

other conditions the turbulence intensity can be higher.  

The present three-dimensional numerical results, validated against the theories of [3] and [4], confirm 

more than a decade of experimental observations about the URF in the average flow, and the NDF and SDF in 

the instantaneous flow, [14-20].  
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Captions to figures. 

Figure 1. Instantaneous vorticity iso-surfaces colored by instantaneous velocity magnitude: (a) Re = 5000; 

(b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 2. Instantaneous isobaric surfaces and velocity vectors: (a) Re = 5000; (b) Re = 10,000; (c) Re = 

20,000; (d) Re = 40,000. 

Figure 3. Turbulent kinetic energy contours: (a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 4. u v′ ′  contours: (a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 5. Axial velocity in URF: numerical (points) and present theory of self-similarity (black line): (a) Re = 

5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 6. Axial velocity in PCR: numerical (points), Tollmien (black line) and Görtler theories (dashed line): 

(a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 7. Numerical isotach curves in FDR. U/Uc = 0.3: numerical (black points) and regression (black line). 

U/Uc = 0.5: numerical (white point) and regression (dot-dashed line). U/Uc = 0.7: numerical (x point) and 

regression (point line). U/Uc = 0.9: numerical (diamond point) and regression (dashed line). (a) Re = 5000; 

(b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

Figure 8. Axial velocity in FDR: numerical (points), Tollmien (black line) and Görtler theories (dashed line): 

(a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 
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Figure 1. Instantaneous vorticity iso-surfaces colored by instantaneous velocity magnitude: (a) Re = 5000; 

(b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 
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Figure 2. Instantaneous isobaric surfaces and velocity vectors: (a) Re = 5000; (b) Re = 10,000; (c) Re = 

20,000; (d) Re = 40,000. 
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Figure 3. Turbulent kinetic energy contours: (a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000.  
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Figure 4. u v′ ′  contours: (a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000.  
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Figure 5. Axial velocity in URF: numerical (points) and present theory of self-similarity (black line): (a) Re = 

5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 
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Figure 6. Axial velocity in PCR: numerical (points), Tollmien (black line) and Görtler theories (dashed line): 

(a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 
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Figure 7. Numerical isotach curves in FDR. U/Uc = 0.3: numerical (black points) and regression (black line). 

U/Uc = 0.5: numerical (white point) and regression (dot-dashed line). U/Uc = 0.7: numerical (x point) and 

regression (point line). U/Uc = 0.9: numerical (diamond point) and regression (dashed line). (a) Re = 5000; 

(b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 
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Figure 8. Axial velocity in FDR: numerical (points), Tollmien (black line) and Görtler theories (dashed line): 

(a) Re = 5000; (b) Re = 10,000; (c) Re = 20,000; (d) Re = 40,000. 

 




