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Abstract

There has been substantial research into the joint modelling of time-to-event

and longitudinal outcomes in recent years with recent extensions focusing on

multiple longitudinal outcomes. Commensurate with a growing number of

longitudinal outcomes is the increasing dimensionality of the random effects.

Numerical integration is commonly used to fit joint models, but standard

Gaussian quadrature approaches are untenable for large dimensions, with

Monte Carlo integration, including variance reduction techniques, offering

a more scaleable alternative. Here, we propose to use quasi-Monte Carlo
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(QMC). QMC methods use quasi-random sequences, or so-called low-order

deterministic sequences, as opposed to pseudo-random samples. The moti-

vation of QMC integration is to reduce the convergence rate and number

of nodes required, by using nodes that are scattered more uniformly. In

this article, we extend an existing joint model for time-to-event and multiple

longitudinal data, which is fitted using the Monte Carlo Expectation Maximi-

sation (MCEM) algorithm, to a QMC integration framework. By simulation,

we compare the estimates and computational time to fit the models and fol-

low this with an application to a clinical dataset. We conclude that there is

a distinct speed advantage in using QMC methods for small sample sizes.

Keywords: Quasi Monte Carlo, Joint modelling, Multivariate longitudinal,

Time-to-event, EM algorithms

1. Introduction

Longitudinal studies in clinical research involve subjects who are followed-

up repeatedly and on whom response data are collected such as, for example,

one or more biomarkers (Gould et al., 2015). The time to an event is also

usually of interest, for example death. The longitudinal data may be cen-

sored by this time-to-event outcome. Modelling these two outcome processes

separately is generally inefficient, and can lead to biased effect size estimates

if the two outcome processes are correlated (Ibrahim et al., 2010). Conse-

quently, during the past two decades, there has been a rapid and substantial

development in research on joint modelling of longitudinal and time-to-event

data (Wulfsohn and Tsiatis, 1997; Henderson et al., 2000; Ibrahim et al.,

2010; Rizopoulos, 2010; Asar et al., 2015). Motivation has stemmed from
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three broad scientific objectives (Henderson et al., 2000): drawing inference

about a repeated measurement outcome subject to an informative dropout

mechanism; drawing inference for a time-to-event outcome, whilst taking ac-

count of an intermittently and possibly error-prone measured endogenous

time-dependent variable; and studying the joint evolution of the correlated

processes.

Despite several software packages being developed to fit joint models (Ri-

zopoulos, 2010; Crowther et al., 2013; Philipson et al., 2017; Kim, 2016),

they have mostly been limited to the setting of univariate longitudinal out-

comes. This is despite a plethora of research into joint models of multivariate

longitudinal data and time-to-event outcomes (Hickey et al., 2016). From a

theoretical perspective, the extension of the classical univariate joint model

to that of the multivariate case is straightforward. However, from a practical

viewpoint, the estimation algorithms for fitting these extended models are

computationally expensive. This is due to the need to integrate out subject-

specific random effects from the generally intractable likelihood, of which

the number increases with each additional longitudinal outcome. Hence, the

search for efficient integration methods in multivariate joint models is highly

motivated with the first work in this area beginning to emerge (Crowther,

2018; Martin et al., 2020).

There have been several proposals on how to fit joint models in recent

years. Aside from the fitting paradigm, for example Bayesian (Xu and Zeger,

2001b), frequentist (Henderson et al., 2000; Crowther et al., 2013), gener-

alised estimating equations (Song et al., 2002), or latent class model esti-

mation (Proust-Lima et al., 2012), a common theme is the evaluation of
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complex integrals. Common approaches to evaluating these integrals are

Gaussian quadrature (GQ), including adaptive (Wulfsohn and Tsiatis, 1997)

and pseudo-adaptive (Rizopoulos, 2012) variants ; Laplace approximations

(Rizopoulos et al., 2009); Monte Carlo (MC) estimation (Lin et al., 2002);

and Markov chain Monte Carlo (MCMC) (Xu and Zeger, 2001a). These ap-

proaches have several pros and cons. GQ can be very accurate, however the

number of nodes increases at an exponential rate (Cools, 2002). Therefore,

it is only useful for low dimensional random effects. Adaptive and pseudo-

adaptive GQ approaches can reduce some of this burden, but still remain

constrained by the exponential growth in nodes. Laplace approximations

are particularly amenable to high dimensional data, and have been shown to

reduce computational burden; however, the approximation may be inaccu-

rate when some subjects contribute very few observations (Rizopoulos et al.,

2009). MC methods benefit from a convergence rate that is independent of

the dimensionality of the problem (Lemieux, 2009). However, estimates are

subject to MC error, which can only be reduced by increasing the number of

MC draws. MCMC methods can also be very computationally intensive, but

offer a more natural framework for dynamic prediction (Rizopoulos et al.,

2014).

In this paper, we describe the estimation of a joint model with a soli-

tary time-to-event outcome and multivariate longitudinal data, with a linear

random effects structure. The R package joineRML (Hickey et al., 2018) is

available that fits the aforementioned model using a Monte Carlo Expecta-

tion Maximisation algorithm (MCEM) (Wei and Tanner, 1990; Lin et al.,

2002). Up until now, the package was predicated on exploiting a variance re-
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duction technique for the MC E-step – antithetic variables simulation. Here,

we consider an alternative method, which has, to-date, not been routinely

adopted into statistical estimation: Quasi-Monte Carlo (QMC) (Caflisch,

1998). QMC methods are comprised of a set of heuristic algorithms that

generate low discrepancy sequences. Such methods have been shown to be

highly suitable to high-dimensional generalized linear mixed models (Pan

and Thompson, 2007). Our primary objective is therefore to compare three

different variations of MC: (1) ordinary MC (OMC); (2) antithetic variables

MC (AMC); and (3) QMC. In particular, we contrast the estimates and the

computational requirements using simulation studies with two and three lon-

gitudinal biomarkers across three sample sizes, and analogous applications

to a clinical dataset.

2. Joint models for multivariate longitudinal data and time-to-

event data

2.1. Model

For each subject i = 1, . . . , n, yi = (y>i1, . . . ,y
>
iK) is the K-variate con-

tinuous outcome vector, where each yik denotes an (nik×1)-vector of observed

longitudinal measurements for the k-th outcome type: yik = (yi1k, . . . , yinikk)
>.

Each outcome is measured at observed (possibly pre-specified) times tijk for

j = 1, . . . , nik, which can differ between subjects and outcomes. Addition-

ally, for each subject there is an event time T ∗i , which is subject to right

censoring. Therefore, we observe Ti = min(T ∗i , Ci), where Ci corresponds to

a potential censoring time, and the failure indicator δi, which is equal to 1 if

the failure is observed (T ∗i ≤ Ci) and 0 otherwise. We assume that censoring
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is independent and, along with the measurement times, non-informative.

The model we describe is the natural extension of the model proposed by

Henderson et al. (2000) to the case of multivariate longitudinal data. The

k-th longitudinal data submodel is given by

yik(t) = µik(t) +W
(k)
1i (t) + εik(t), (1)

where µik(t) is the mean response, W
(k)
1i (t) is a latent process and εik(t) is

the model error term, which we assume to be independent and identically

distributed normal, with mean zero and variance σ2
k. The mean response is

specified as a linear model

µik(t) = x>ik(t)βk, (2)

where xik(t) is a pk-vector of (possibly) time-varying covariates with cor-

responding fixed effect terms βk. In the models considered here W
(k)
1i (t) is

specified as a linear combination of random effects, namely

W
(k)
1i (t) = z>ik(t)bik. (3)

where zik(t) is an rk-vector of (possibly) time-varying covariates with corre-

sponding subject-and-outcome random effect terms bik, which follow a zero-

mean multivariate normal distribution with (rk×rk)-variance-covariance ma-

trix Dkk. To account for dependence between the different longitudinal out-

come outcomes, we let cov(bik, bil) = Dkl for k 6= l. This latent process

subsequently links the separate submodels via association parameters. Fur-

thermore, we assume εik(t) and bik are uncorrelated, and that the censoring

times are independent of the random effects.
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The submodel for the time-to-event outcome is given by the hazard model

λi(t) = λ0(t) exp
{
v>i γv +W2i(t)

}
,

where λ0(·) is an unspecified baseline hazard, and vi is a q-vector of baseline

measured covariates with corresponding fixed effect terms γv. Conditional

on Wi(t) and the observed covariate data, the longitudinal and time-to-event

data generating processes are independent. To establish a latent association,

we specify W2i(t) as a linear combination of
{
W

(1)
1i (t), . . . ,W

(K)
1i (t)

}
:

W2i(t) =
K∑
k=1

γykW
(k)
1i (t),

where γy = (γy1, . . . , γyK) are the corresponding association parameters. To

emphasise the dependence of W2i(t) on the random effects, we explicitly write

it as W2i(t, bi) from here onwards.

2.2. Estimation

The observed data likelihood for the joint outcome is given by

n∏
i=1

(∫ ∞
−∞

f(yi | bi,θ)f(Ti, δi | bi,θ)f(bi |θ)dbi

)
, (4)

where θ = (β>, vech(D), σ2
1, . . . , σ

2
K , λ0(t),γ

>
v ,γ

>
y ) is the collection of un-

known parameters that we want to estimate, with vech(D) denoting the

half-vectorisation operator that returns the vector of lower-triangular ele-

ments of matrix D, given by

D =


D11 · · · D1K

...
. . .

...

D>1K · · · DKK

 ,
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and β = (β>1 , . . . ,β
>
K)>, and bi = (b>i1, . . . , b

>
iK)>.

As per Henderson et al. (2000), we exploit the expectation-maximisation

(EM) algorithm (Dempster et al., 1977) for fitting the model, by treating the

random effects bi as missing data. Starting from an initial estimate of the

parameters, θ̂(0), the procedure involves iterating between an M -step and

an E-step until convergence is achieved. Full details of the M -step are pro-

vided elsewhere, and remain identical for all approaches considered in this

research. In short, all parameters except γv and γy are available in closed-

form; the parameters in the Cox proportional hazards submodel are esti-

mated by a one-step Newton-Rasphson or a quasi-Newton one-step update

that is an analogue of the Gauss-Newton method (McLachlan and Krishnan,

2008, p. 8). Standard errors can be approximated after the EM algorithm has

converged using the empirical information matrix approximation (Lin et al.,

2002), allowing for Wald-like confidence intervals to be estimated. Alter-

natively, bootstrap estimation can be used, but at increased computational

expense (Henderson et al., 2000; Hsieh et al., 2006).

3. E-step approaches

At each E-step, it is required that we compute the expected log-likelihood

of the complete data conditional on the observed data and the current esti-

mate of the parameters,

Q(θ | θ̂(m)) =
n∑
i=1

E
{

log f(yi, Ti, δi, bi |θ)
}

=
n∑
i=1

∫ ∞
−∞

{
log f(yi, Ti, δi, bi |θ)

}
f(bi |Ti, δi,yi; θ̂(m))dbi.
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Here, the complete-data likelihood contribution for subject i is given by the

integrand of (4).

Consequently, theM -step update involves terms of the form E
[
h(bi) |Ti, δi,yi; θ̂

]
,

for known functions h(·). It can be shown that this conditional expectation

can be written as

E
[
h(bi) |Ti, δi,yi; θ̂

]
=

∫∞
−∞ h(bi)f(bi |yi; θ̂)f(Ti, δi | bi; θ̂)dbi∫∞
−∞ f(bi |yi; θ̂)f(Ti, δi | bi; θ̂)dbi

, (5)

where f(Ti, δi | bi; θ̂) is given by

f(Ti, δi | bi;θ) =
[
λ0(Ti) exp

{
v>i γv +W2i(Ti, bi)

}]δi
× exp

{
−
∫ Ti

0

λ0(u) exp
{
v>i γv +W2i(u, bi)

}
du

}
and f(bi |yi; θ̂) is calculated from multivariate normal distribution theory as

bi |yi,θ ∼ N
(
Ai

{
Z>i Σ−1i (yi −Xiβ)

}
,Ai

)
, (6)

with Ai =
(
Z>i Σ−1i Zi +D−1

)−1
, where Σi =

⊕K
k=1 σ

2
kInik

is a diagonal ma-

trix. Also Xi =
⊕K

k=1Xik and Zi =
⊕K

k=1Zik are block-diagonal matrices,

with Xik =
(
x>i1k, . . . ,x

>
inikk

)
an (nik × pk)-design matrix, with the j-th row

corresponding to the pk-vector of covariates measured at time tijk, and where⊕
denotes the direct matrix sum.

Without loss of generality, we outline the approaches with respect to the

integral of a Lebesgue integrable function f(x) on the unit cube Id = [0, 1]d

in d-dimensions. We define

I[f ] = E[f(x)] =

∫
Id
f(x)dx. (7)
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All of the approaches described naturally generalise to non-uniform distri-

butions. That is, for a d-dimensional non-uniform random variable x ∈ Rd

with density function p(x) : Rd 7→ R, we can define

I[f ] = E[f(x)] =

∫
Rd

f(x)p(x)dx.

3.1. Monte Carlo

Monte Carlo integration is a probabilistic representation of the integral

(Lemieux, 2009). Namely, consider a random sequence {xn}Nn=1 indepen-

dently sampled from Ud(0, 1), then an empirical approximation to (7) is

IN [f ] =
1

N

N∑
n=1

f(xn), (8)

which converges almost surely to I[f ], i.e.

lim
N→∞

IN [f ]
a.s.→ I[f ].

The central limit theorem (CLT) can be used to determine that the error of

the Monte Carlo integration is of order O(N−1/2). It is useful to note that

this order is independent of the integral dimension d.

For the E-step in the multivariate joint model problem, this translates to

a strategy of first sampling a sequence {bni }Nn=1 from (6) and, for each subject

i, calculating
N∑
n=1

h(bni )f(Ti, δi | bni ; θ̂)∑N
n=1 f(Ti, δi | bni ; θ̂)

. (9)

3.2. Antithetic variables

Variance reduction techniques for Monte Carlo integration are used to

accelerate the convergence (Lemieux, 2009). As noted above, the error of the
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Monte Carlo integration is of order O(N−1/2). By exploiting the CLT, it is

possible to show that the constant is equal to the standard deviation of the

integrand, σ[f ] given by

σ[f ] =

(∫
Id

(f(x)− I[f ])2 dx

)1
2

.

The rationale of variance reduction techniques is to reduce this constant

term, thus making the convergence relatively faster.

If we again consider a random sequence {xn}N/2n=1, with N an even number,

and also the corresponding antithetic variates {x̃n}N/2n=1 = {1− xn}N/2n=1, then

the antithetic empirical approximation to (7) is

IN [f ] =
1

N

N/2∑
n=1

(f(xn) + f(x̃n)) . (10)

Assuming σ[f ] <∞, the variance in the antithetic sampling approach is

1

N

[
σ2[f ] + cov (f(x), f(x̃))

]
.

Hence, if cov (f(x), f(x̃)) < 0, then the error term will be smaller than if we

had sampled N independent draws of xn as per ordinary Monte Carlo; see

section 3.1.

For the E-step in the multivariate joint model case, this translates to a

strategy of first sampling Ω ∼ N(0, Ir) and obtaining the antithetic pairs

±Ω, which will both be r-vectors of standard normal samples, that are then

transformed to the required form of (6) via

Ai

{
Z>i Σ−1i (yi −Xiβ)

}
±CiΩ,

where Ir is the identity matrix of dimension r = dim(bi), and Ci is the

Cholesky decomposition of Ai such that CiC
>
i = Ai. Drawing N/2 pairs

and evaluating (9) yields the antithetic estimate of (5).
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3.3. Quasi-Monte Carlo

Ordinary Monte Carlo (OMC) and antithetic Monte Carlo (AMC) are

predicated on a probabilistic interpretation. That is, they use random (or

rather, pseudo-random) sequences, which ensures convergence of orderO(N−1/2).

Quasi-Monte Carlo (QMC) methods, on the other hand, use quasi-random

sequences, which are deterministic (Lemieux, 2009; Caflisch, 1998). For this

reason, they are sometimes referred to as low-order deterministic sequences.

The motivation of QMC integration is to reduce the convergence rate and

number of nodes required, by using nodes that are scattered more uniformly

on Id than pseudo-random points, which, by virtue of independence, often

display clusterings. Figure 1 shows sampling nodes for the distributions

U2(0, 1) and N2(0, I2) deviates under OMC, AMC, and QMC (based on the

Sobol sequence, described in section 3.3.2).

Quasi-random sequences yield smaller errors than standard Monte Carlo

integration methods, which follows from the Koksma-Hlawka inequality:

|I[f ]− IN [f ]| ≤ V [f ]D∗N(x1,x2, . . . ,xN), (11)

where V [f ] is the variation of f(·) over Id in the sense of Hardy and Krause.

The quantity D∗N is a measure of the uniformity (called the star discrepancy)

of the sequence {xn}Nn=1, defined by

D∗N(x1,x2, . . . ,xN) = sup
J∈Id

∣∣∣∣∣ 1

N

N∑
n=1

1{xn∈J} −A(J)

∣∣∣∣∣ , (12)

where A(J) is the volume of the hyper-rectangular set J in Id that has one

vertex at 0. See Caflisch (1998, §5.4) for an outline of the proof. It can be

recognised that (12) is in fact the Kolmogorov-Smirnov test statistic. The
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OMC AMC QMC
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Figure 1: Bivariate uniform U2(0, 1) (top row) and normal N2(0, I2) (bottom row) devi-

ates sampled according to ordinary Monte Carlo (OMC; left column), antithetic Monte

Carlo (AMC; middle column), and quasi-Monte Carlo (QMC; right column) using a Sobol

sequence with Owen-type scrambling

inequality in (11) is an upper-bound and, moreover, since V [f ] is fixed for

a given f(·), the bound is determined by D∗N . Hence, for any sequence, the

error of the approximation is bounded by order O
(
(logN)dN−1

)
. It has

been reported that this bound is usually overcautious, and in practice faster

convergence is observed.

In the E-step under consideration here, this translates to a strategy of

first calculating uniform deterministic sequences, {xi}Ni=1, and transforming

them to multivariate normal deviates bi = Φ−1d (xi), where Φd(·) is the d-

variate Gaussian cumulative distribution function. Alternative methods of

transformation and the discrepancy properties have been explored using the

Box-Muller transformation (Ökten and Göncü, 2011). Several deterministic

13



sequences have been proposed in recent years. In the following, we consider

two standard sequences: the Halton sequence and the Sobol sequence. Effi-

cient algorithms for implementing both are widely available, which we access

through the R package randtoolbox (Dutang and Savicky, 2018).

3.3.1. The Halton sequence

The Halton sequence (Halton, 1960) is the multidimensional generalisa-

tion of the one-dimensional van der Corput (VDC) sequence (van der Corput,

1935). The n-th element of the VDC sequence is constructed by reversing

the representation of base-n. In other words, every integer n has a b-adic

representation n =
∑L−1

l=0 dl(n)bl (with 0 ≤ dl(n) < b the l-th digit). The

n-th number in the VDC sequence is then gb(n) =
∑L−1

l=0 dl(n)b−l−1. The

Halton sequence extends this approach by considering the pm-adic expansion

of n for the m-th dimension, where pm is the m-th prime number.

3.3.2. The Sobol sequence

The Sobol sequence (Sobol, 1967) is an alternative, as well as the most-

widely used (Atanassov et al., 2010), low-discrepancy sequence. The mathe-

matical determination of the sequence is based on linear recurrence relation-

ships over the finite field F2 = {0, 1}; hence, it is more involved than the

Halton sequence, but a fast algorithm based on the Gray code implemen-

tation is available. For details, we refer the reader to Antonov and Saleev

(1979). By considering orthogonal projections of multidimensional Sobol se-

quences, it has been shown that non-uniformity can occur. By scrambling

the low-discrepancy sequence – a hybrid of OMC and QMC – this issue can

potentially be alleviated (Chi et al., 2005). In particular, a commonly used

14



scrambling method is that of Owen (1998).

4. Simulation study and results

Two simulation studies were conducted, assuming K = 2 and K = 3

longitudinal outcomes respectively, each with n = 250, 500 and 1000 subjects.

In both scenarios, longitudinal data were simulated according to a follow-up

schedule of 6 time points (at times 0, 1, . . . , 5), with each model including

subject-and-outcome-specific random-intercepts and random-slopes, whereby

rk = 2. Event times were simulated from a Gompertz distribution with shape

θ1 = −3.5 and scale exp(θ0) = exp(0.25) ≈ 1.28, following the methodology

described by Austin (2012). The event rate in the simulations was ≈ 40%.

Independent censoring times were drawn from an exponential distribution

with rate 0.05. Any subject with Ti > 5 was censored at the truncation time

C = 5.1. For all submodels, we included a pair of covariates xi = (xi1, xi2)
>,

where xi1 is a continuous covariate independently drawn from N(0, 1) and xi2

is a binary covariate independently drawn from Bin(1, 0.5). The submodels,

for k = 1, . . . , K, are given as

yijk = (β0,k + bi0k) + (β1,k + bi1k)tj + β2,kxi1 + β3,kxi2 + εijk; (13)

λi(t) = λ0(t) exp
{
xiγv + ΣK

k=1γyk(bi0k + bi1kt)
}

; (14)

εijk ∼ N(0, σ2
k), (15)

with K = 2 and K = 3 for the bivariate and trivariate scenarios respec-

tively; we refer to these scenarios as ‘Scenario 1’ and ‘Scenario 2’ hereafter.

In the above, λ0(t) = eθ0+θ1t, bi has a multivariate normal distribution,

N2K(0, D), and D is a specified unstructured (2K × 2K)-covariance ma-
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trix (since rk = 2) with (up to)
∑2K

i i unique parameters . For this study,

the true parameters were: β>
1 = (0, 1, 1, 1),β>

2 = (0,−1, 0, 0.5), σ2
1 = σ2

2 =

0.25,γ>
v = (0, 1),γ>

y = (−0.5, 1). The random effect covariance matrices

were and D1,1 = D3,3 = 0.52, D2,2 = D4,4 = 0.22, and D1,3 = D3,1 = −0.53

with the remaining elements of Di,j set to zero.

A total of 1000 datasets were simulated for each setting using the simData()

function in the joineRML R package (Hickey et al., 2018), and the mjoint()

function used to fit the models. For each simulated dataset, we fitted the

model with OMC (using control argument type = "montecarlo"), AMC

(type = "antithetic") and QMC using a Sobol sequence with Owen-type

scrambling (type = "sobol").

Each of the three methods (using the different E-step routines) were

successfully applied to 1000 simulations, which were carried out in parallel

on an HPC cluster, consisting of nodes with 64GB RAM and 14-core 2.4GHz

CPU for each scenario. As expected, the time for the joint model to fit

was much faster for the AMC approach relative to the OMC approach in all

cases (Figure 2), with a smaller number of nodes used at the last iteration

(Figure ??). The proposed QMC method outperforms AMC for small sample

sizes in each scenario, and is comparable when n = 500. However, AMC

is superior to QMC for the largest sample size under consideration here.

Convergence times and standard deviations across both scenarios and all

three MC approaches are given in Table 1.

The differences in computational times were primarily explained by the

changes in MC nodes due to the dynamic nature of the E-step algorithm

described. In other words, the mean number of MCEM algorithm iterations
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Table 1: Computing times (SD in parentheses) under each Monte Carlo method for both

simulation scenarios and all sample sizes.

Method

OMC AMC QMC

Scenario 1

n = 250 129.67 (81.88) 23.83 (24.32) 13.77 (6.62)

n = 500 449.15 (921.31) 108.49 (288.44) 167.55 (339.91)

n = 1000 573.30 (680.37) 132.53 (59.35) 259.62 (122.54)

Scenario 2

n = 250 243.83 (193.42) 51.96 (43.90) 24.90 (9.78)

n = 500 570.12 (602.72) 128.25 (141.53) 122.59 (113.68)

n = 1000 692.14 (303.15) 318.31 (96.09) 482.80 (145.89)

were often similar for each method, but the mean number of nodes used at

the last iteration were substantially different. For example, in scenario 1, the

mean number of iterations for the OMC, AMC, and QMC approaches was

only 33, 20, and 15, respectively, whereas the mean number of nodes used at

the last iteration – at which (9) is evaluated – were 3516, 1043 and 703. Plots

showing bias and number of MC nodes can be found in the supplementary

materials.

Coverage rates were also calculated under each approach for both scenar-

ios. Table 2 displays the coverage rates when n = 500, with equivalent tables

for n = 250 and n = 1000 included in the supplementary materials. The

rates are very similar across methods and scenarios, and are all close to the

nominal 0.95 level.
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Table 2: Coverage rates of regression parameters under each Monte Carlo method for both

simulation scenarios: n = 500.

Parameter
Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

β0,1 0.945 0.942 0.941 0.956 0.956 0.955

β1,1 0.960 0.959 0.955 0.960 0.959 0.955

β2,1 0.958 0.959 0.958 0.961 0.961 0.962

β3,1 0.949 0.949 0.949 0.950 0.949 0.948

β0,2 0.969 0.964 0.967 0.956 0.959 0.954

β1,2 0.949 0.936 0.945 0.954 0.945 0.937

β2,2 0.956 0.957 0.955 0.950 0.951 0.953

β3,2 0.960 0.961 0.962 0.966 0.968 0.967

β0,3 - - - 0.953 0.954 0.954

β1,3 - - - 0.951 0.952 0.953

β2,3 - - - 0.962 0.961 0.962

β3,3 - - - 0.954 0.956 0.955

γv1 0.954 0.956 0.955 0.955 0.955 0.956

γv2 0.957 0.957 0.962 0.932 0.932 0.932

γy1 0.960 0.961 0.961 0.957 0.958 0.958

γy2 0.945 0.948 0.946 0.936 0.938 0.937

γy3 - - - 0.967 0.970 0.970
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Table 3: Coverage rates of variance parameters under each Monte Carlo method for both

simulation scenario: n = 500.

Parameter
Scenario 1 Scenario 2

OMC AMC QMC OMC AMC QMC

D1,1 0.951 0.956 0.948 0.959 0.960 0.956

D2,2 0.946 0.947 0.932 0.954 0.954 0.945

D3,3 0.941 0.945 0.935 0.957 0.956 0.950

D4,4 0.948 0.944 0.950 0.956 0.952 0.944

D5,5 - - - 0.951 0.952 0.953

D6,6 - - - 0.958 0.958 0.959

σ2
1 0.963 0.964 0.968 0.969 0.967 0.967

σ2
2 0.952 0.951 0.950 0.956 0.958 0.959

σ2
3 - - - 0.966 0.968 0.966
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Figure 2: Distribution of run times over 1000 simulated datasets using each MC method

for simulation study 1 (upper row) and simulation study 2 (lower row) at each sample size.

Run-times are on the log10 scale.

5. Application

To compare the three MC methods in a clinical setting we consider

an application to the oft-used (Albert and Shih, 2010; Crowther et al.,

2013; Andrinopoulou and Rizopoulos, 2016) primary biliary cirrhosis (PBC)

data, which is publicly available in a variety of places, including within the

joineRML R package; further details are given in Hickey et al. (2018). PBC

is a chronic liver disease affecting the bile ducts of the liver, causing liver

damage, cirrhosis and, ultimately, death in many cases.
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In keeping with the simulation study, we consider both two and three lon-

gitudinal biomarkers, although many more are available within this rich data

source. In keeping with the simulation study, the models for each biomarker

include random effects for both the intercept and slope. In the PBC study,

patients were randomly assigned to either the drug D-penicillamine (n = 158)

or placebo (n = 154), here represented by the binary covariate xi2 and we

include the age of patients at baseline as our continuous covariate, xi1. There

were a total of 140 (44.9%) deaths amongst the 312 patients.

As detailed in Hickey et al. (2018), a log transformation is commonly

used for one of the biomarkers (serum bilirubin) and another (prothrombin

index) requires a transformation based on the residuals from the longitudinal

sub-model, and, hence, these transformations are adopted here too. The

submodels for k = 1, 2, 3 are as given by (13) where k = 1 represents the

log-transformed serum bilirubin, k = 2 corresponds to serum albumin and

k = 3 is the Box-Cox-transformed prothrombin time. Also, xi = (xi1, xi2)
>

is the vector of baseline covariates and γv the vector of associated parameters

in the survival submodel, and bi follows a multivariate normal distribution,

N2K(0, D).

We fitted the bivariate and trivariate models with OMC, AMC and QMC

(using the control arguments described in section 4) in turn to the PBC data.

The superiority of QMC over the other two methods seen in the simulation

study for small sample size is repeated here. The time for the model fits

for K = 2 were 200.9, 122.5 and 14.6 seconds for OMC, AMC and QMC

respectively, and for K = 3 the corresponding times were 429.0, 256.9 and

12.0 seconds.
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Parameter estimates and standard errors (using the approximate method

discussed earlier in section 2.2) from the three methods are displayed in

Table 4 for the bivariate model. Both parameter estimates and associated

standard errors are very similar across the three methods. However, we also

utilise the bootstrap to quantify the uncertainty in run times since times

based on a single model fit may not be indicative of generally quicker perfor-

mance. The bootstrap results consolidated our findings in this case, namely

that QMC provided considerably faster run times than the other two methods

for a small sample size. Results under the bootstrap approach are included

in the supplementary material; we note in passing that differences between

the empirical and bootstrap standard errors were negligible in this instance.

6. Discussion

In this article, we compared traditional and quasi-MC approaches for the

numerical integration of random effects in a multivariate joint model. QMC

integration is based on choosing uniformly scattered deterministic nodes in a

unit hypercube rather than pseudo-random nodes. There are many proposals

on how to calculate these deterministic sequences, including Sobol sequences,

Halton sequences, Faure sequences, and various scrambled versions. Despite

the promising results here and elsewhere in other applications (e.g. Pan and

Thompson, 2007), QMC methods have not widely penetrated the biostatisti-

cal methodological field. In the joint model described here, the time-to-event

model was semiparametric. Standard approaches to the estimation of this

model have been based on the EM algorithm (Henderson et al., 2000; Lin

et al., 2002), which converges linearly. Hence, it is necessary to speed up
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Table 4: Parameter estimates from each Monte Carlo method (with standard errors in

parentheses) for the bivariate application to the PBC data

Parameter
Method

OMC AMC QMC

β0,1 0.495 (0.298) 0.498 (0.299) 0.489 (0.302)

β1,1 0.188 (0.010) 0.188 (0.010) 0.187 (0.010)

β2,1 0.001 (0.006) 0.001 (0.006) 0.001 (0.006)

β3,1 -0.108 (0.117) -0.107 (0.118) -0.105 (0.119)

β0,2 3.952 (0.120) 3.949 (0.121) 3.951 (0.122)

β1,2 -0.109 (0.005) -0.109 (0.005) -0.108 (0.005)

β2,2 -0.008 (0.002) -0.008 (0.002) -0.008 (0.002)

β3,2 0.037 (0.043) 0.037 (0.044) 0.037 (0.044)

γv1 0.066 (0.014) 0.065 (0.014) 0.066 (0.015)

γv2 -0.250 (0.291) -0.248 (0.291) -0.246 (0.292)

γy1 1.020 (0.124) 1.019 (0.124) 1.023 (0.123)

γy2 -2.415 (0.335) -2.410 (0.333) -2.405 (0.333)

D1,1 0.993 (0.111) 0.992 (0.111) 0.992 (0.111)

D2,2 0.034 (0.005) 0.034 (0.005) 0.033 (0.005)

D3,3 0.117 (0.014) 0.117 (0.014) 0.118 (0.014)

D4,4 0.005 (0.001) 0.005 (0.001) 0.005 (0.001)

σ2
1 0.347 (0.002) 0.347 (0.002) 0.347 (0.002)

σ2
2 0.319 (0.002) 0.319 (0.002) 0.319 (0.002)

23



convergence by offsetting computational overheads such as the E-step.

Alongside the setting considered in this work, joint models using para-

metric time-to-event models (e.g. Crowther et al., 2013) can also exploit

QMC methods in alternative fitting algorithms, e.g. Newton-Raphson. Fur-

thermore, QMC could be used in any other setting that typically relies on

numerical integration, with examples ranging from competing risks in a clas-

sic joint modelling setting (Williamson et al., 2008) to semi-competing risks

for clustered survival data (Peng et al., 2018), or with frailty in a copula

model (Emura et al., 2017) and

In any event, there are practical issues in using QMC methods for fitting

joint models. Like the OMC and AMC cases, a suitable number of nodes

need to be selected; in our example, we used N = 100K, where K is the

number of longitudinal outcomes. In addition, we continue to dynamically

increase the number of nodes as K + bK/δc for some small δ (e.g. δ = 3)

following the same methodology used for the OMC and AMC approaches

(Ripatti et al., 2002). A limitation of QMC methods is that they do not

permit the estimation of MC error. However, using the scrambling methods

this can be overcome (Owen, 1998).

Here, we showed that QMC reduced the computational time required to

fit multivariate joint models with a small sample size and was comparable

to AMC for moderate sample size. Comparison of times should be viewed

cautiously, as they may not translate across software implementations. How-

ever, in the comparisons described here, the code was identical except for the

Monte Carlo simulator, thus it is reasonable to state that the above findings

hold.

24



In future work, we will explore the application of QMC to a wider range of

generalised mixed models including multi-outcome models. A natural avenue

for research within the framework of the models considered here would be to

compare quadrature, MCEM and Laplace methods for choices of K and n in

order to make recommendations as to which method should be advocated,

and when.
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