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Abstract 13 

Histological assessment of glands is one of the major concerns in colon cancer grading. 14 

Considering that poorly differentiated colorectal glands cannot be accurately segmented, we 15 

propose an approach for segmentation of glands in colon cancer images, based on the 16 

characteristics of lumens and rough gland boundaries. First, we use a U-net for stain separation 17 

to obtain H-, E-, and background stain intensity maps. Subsequently, epithelial nucleus is 18 

identified on the histopathology images, and the lumen segmentation is performed on the 19 

background intensity map. Then, we use the axis of least inertia  based similar triangles as the 20 

spatial characteristics of lumens and epithelial nucleus, and a triangle membership is used  to 21 

select glandular contour candidates from epithelial nucleus. By connecting lumens and 22 

epithelial nucleus, more accurate gland segmentation is performed based on the rough gland 23 

boundary. The proposed stain separation approach is unsupervised, and the stain separation 24 

makes the category information contained in the H&E image easy to identify and deal with the 25 

uneven stain intensity and the inconspicuous stain difference. In this project, we use deep 26 

learning to achieve stain separation by predicting the stain coefficient. Under the deep learning 27 

framework, we design a stain coefficient interval model to improve the stain generalization 28 

performance. Another innovation is that we propose the combination of the internal lumen 29 

contour of adenoma and the outer contour of epithelial cells to obtain a precise gland contour. 30 

We compare the performance of the proposed algorithm against that of several state of the art 31 

technologies on publicly available datasets. The results show that the segmentation approach 32 

combining the characteristics of lumens and rough gland boundary have better segmentation 33 

accuracy. 34 

Introduction 35 

Colon cancer may be caused by epithelium (lumens of blood vessels, organs and surface 36 

tissues), also called adenocarcinoma (malignant tumor formed by gland structures in epithelial 37 
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tissues) [1]. It affects the distribution of cells and also changes the structure of glands. 38 

Pathologists are able to accurately detect small abnormalities in a biopsy [2-4]. 39 

With the increasing popularity of histopathology images, digital pathology provides a viable 40 

solution to the detection problem. Histopathology image analysis can help us to extract 41 

quantitative morphological features and can be used for computer-assisted cancer grading [5]. 42 

Histopathology is the fixation of thin sections of potentially disease tissues on a glass slide and 43 

stain to show specific structural or functional details [6-7]. By scanning the entire slide with a 44 

scanner, digitized images of those slides can be obtained, making histopathology suitable for 45 

image analysis [8-9].  46 

Colon histopathology image analysis is the basis of the primary detection of colon lesions [10]. 47 

The gland structure is shown in Figure 1a. A typical colon gland histopathology image contains 48 

four tissue components: lumen, cytoplasm, epithelial cells, and stroma (connective tissues, 49 

blood vessels, nerve tissue, etc.). The lumen area is surrounded by an oval structure called 50 

epithelial cells [11-12]. The whole structure is bounded by a thick line, called the epithelial cell 51 

nucleus. 52 

 53 

Figure 1 Illustration of colon images: (a) A typical benign colon gland histopathology image and its composition. 54 
(b) A malignant colon gland image. 55 

In clinical practice, pathologists use glands as the objects of interests, including their structural 56 

morphology and gland formation [13-14]. Especially, when performing automated gland 57 

segmentation in H & E images, pathologists can extract important morphological features to 58 

determine prognosis and plan treatments for individual patients [15]. Digital histopathology 59 

images contain noise and homogenous regions that hinder gland detection and segmentation. 60 

For example, Kerekes et al. [16] developed two diagnostic modules, one for gland detection 61 

and the other for nuclei detection. In gland detection, HSV and LAB color spaces are used for 62 

color segmentation, and glands can be identified using the connected component approach 63 

reported in [54]. Due to large differences between the tissue preparation protocols, stain 64 

programs and scanning characteristics, stain normalization of histopathology images provides 65 

a tool to ensure the efficiency and stability of the system. Cheikh et al. [17] used a 66 

normalization technique to associate the mean and standard deviation of each channel of the 67 

target tissue image with those of the template image through a set of linear transformations in 68 

the LAB color space. In order to segment a large number of color images into meaningful 69 

structures, Banwari et al. [18] proposed a thresholding approach based on image intensity. 70 

These approaches are based on different tissue structures and color differences and are not 71 

suitable for segmenting adherent glands or glands that are mixed with stroma which require 72 

complex correction algorithms to obtain accurate results. The active contour segmentation 73 

approach proposed by Cohen [19] relies on the characteristics of the gland structures. The 74 
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thickness of the tissue slice and the fading of the stain will lead to the change of the color 75 

distribution of the tissue image, and the gland model is not suitable for the glands with 76 

incomplete gland boundaries. The above conventional approaches mainly used glands’ 77 

appearance characteristics and features. The appearance characteristics are composed of the 78 

nucleus, cytoplasm and epithelial cells. Sirinukunwattana [20], Jacobs [21] and others used 79 

low-level features: color, texture and edges to identify glands. The contour features are based 80 

on a gland structure surrounded by epithelial cells. Sirinukunwattana [22] and Fu et al. [23] 81 

proposed that the spatial random field model well segmented the benign gland contour, but it 82 

was not suitable for segmenting malignant and diseased glands. 83 

With the recent development of deep learning in the field, it has become possible to apply deep 84 

learning to histopathology images. Roth et al. [24] proposed a multi-level deep convolutional 85 

neural network for automated pancreatic segmentation. Ronneberger [25] and others proposed 86 

to use U-net for histopathology image segmentation. The deep contour sense network proposed 87 

by Chen et al. [26] illustrates that contours play an important role in gland segmentation. The 88 

double parallel branch deep neural network proposed by Wang et al. [27] combined contours 89 

and other features to accurately segment glands. In addition, Xu et al. [28] proposed a fusion 90 

of complex multi-channel regions and boundary modes for segmentation of gland instances by 91 

side supervision. This work was extended in the study of Xu et al.  [29], which included 92 

additional information to enhance performance. Raza et al. [30] proposed a multi-input 93 

multiple-output network (MIMO-Net) for gland segmentation and achieved state-of-the-art 94 

performance. All of the above approaches require a large number of manual annotations, but it 95 

was very difficult to label a large number of histopathology images. Zhang et al. [31] used a 96 

deep confrontation network for unannotated images, achieving consistently good segmentation 97 

performance. 98 

Although the previous approaches has achieved certain promising results in gland 99 

segmentation, automated segmentation of glands is still a challenging task due to the 100 

complexity of histopathology images and the diversity of gland morphology, especially the 101 

gland lesions showed in Figure 1b. For normal glands, epithelial cells can be clearly 102 

distinguished from the surrounding environment [32]. For malignant glands, epithelial cells are 103 

usually intermingled in the stroma, and the epithelial nucleus are not easily distinguished from 104 

stromal nucleus [33], and even glands are attached to each other. In this situation, we consider 105 

that the lumen is a defined structure of the gland. This structure can help decision making 106 

because its presence and morphology indicate the grade of cancers [34]. It is observed that the 107 

lumen of the gland and the gland boundary have certain similarities in shapes, and the lumen 108 

can be accurately segmented compared to other structures of the gland. Afterwards, a gland 109 

segmentation approach based on the correlation between the lumen and the gland boundary 110 

was proposed.  111 

Our proposed approach first uses a U-net for stain separation to obtain H-, E- and background 112 

stain intensity maps. Subsequently, epithelial nucleus are identified on the histopathology 113 

image. Taking into account that the lumen is similar to the background, shown in Figure 2. The 114 

histopathology image is then used as the input of the framework proposed in [35] to obtain the 115 

rough gland boundary and epithelial nucleus, and the lumen is segmented based on the 116 

improved SPF approach reported in [36]. Finally, based on the correlation between the lumen 117 

and the gland boundary, we select the best gland contour from the candidate contours so as to 118 

achieve the segmentation of glands attached to each other. The innovation in our method is that 119 

we are the first to use deep learning to achieve stain separation. Deep learning is used to predict 120 

the stain coefficients. In the deep learning framework, we design a stain coefficient interval 121 
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model using Gaussian distribution. We can get a interval of the coefficient instead of a certain 122 

stain coefficient to improve the stain generalization performance. Another innovation is we use 123 

multiple morphological constraints to find the optimal tumor contour based on the internal 124 

(lumen)  and external (epithelium) contours .The proposed approach is evaluated on the 2015 125 

MICCAI GlaS Challenge dataset and colon adenocarcinoma dataset, resulting in satisfactory 126 

segmentation outcomes. 127 

 128 

Figure 2: The architecture of the proposed approach. 129 

Materials and Methods 130 

Histopathology image stain separation based deep learning framework 131 

The proposed stain separation framework is showed in Figure 3. Gaussian U-net Stain 132 

Separation (GUSS) makes the information contained in H & E images easy to identify, thus 133 

overcome the influence of uneven staining intensity or large differences in H & E 134 

images.Traditional stain separation methods require manual settings for a standard stain matrix, 135 

and cannot separate multiple stains at the same time. We here use deep learning to achieve this 136 

function. First, the histopathology image is used as the input of the model, and the U-shaped 137 

encoder-decoder model [55] is constructed for stain separation. The network is supported by 138 

three parts: contracting, bridge and expanding paths to complete the stain separation of H 139 

(Hematoxylin), E (Eosin) and B (Background) channels. The contracting path is used to reduce 140 

the spatial dimension of the feature map, while increasing the number of the feature maps layer 141 

by layer [37-40], extracting the input image as a compact feature. The bridge connects the 142 

contracting and expanding paths. This U-shaped encoder-decoder model is improved to be a 143 

multiple tasks model, besides the output of the U-net, we also use the most compact features 144 

to predict  the  stain color matrixes, which is combined with mean and variance of stain color 145 

values of Hematoxylin, Easin and Background paths. The expanding path is used to gradually 146 

recover the details of the target and the corresponding spatial dimensions, and the output is 147 

used for the prediction of the pixel-wise intensity map. The network is divided into ten residual 148 

branches. Prior to each residual branch of the expanding path, there is a cascade for the 149 

upsampling from the lower level feature maps and the feature maps from the corresponding 150 
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contracting path. The existence of the residual unit effectively avoids the problem of gradient 151 

disappearance during the backpropagation [41]. In addition, each residual branch included 152 

Convolution, Max Pooling, BN (Batch normalization) and ReLU (Rectified Linear Unit), 153 

which effectively accelerate the convergence speed [42]. 154 

 155 

Figure 3: The stain intensity map of hematoxylin-, eosin- and background channels is obtained from the 156 
histopathology image by the proposed stain separation framework. 157 

The model is trained by minimizing the reconstruction loss between the input image and each 158 

reconstructed outcome, The original image goes into a 10-branch called F1-F10 network for 159 

stain separation. The contracting path is composed of the first 1-4 branch network, and the fifth 160 

branch is the bridge connecting the contracting and expanding paths, implementing the stain 161 

color matrix prediction function. The expanding path consists of the 6th-9th branch network, 162 

and the tenth branch output is used for stain intensity matrix prediction. In the stain color matrix 163 

prediction, the F5 features are first flattened into a vector, and two fully connected layers are 164 

deployed, with an intermediate node of 500 and an output node of 9, representing the R, G, and 165 

B distributions of the three stain channels. During the training, the proposed predicts the stain 166 

concentrations for each pixel as well as the parameters (mean and variance) of a series of 167 

Gaussian distributions sampled to form an estimate of the stain matrix.  168 

Figure 4 shows an example of this process. 169 
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 170 

Figure 4: Stain mean and variance of the colour matrix. 171 

   For each of the stains contained in the image, the proposed method predicts 3 distributions - 172 

one for each of the RGB colour channels. The 𝑘𝑡ℎprobability distribution 𝑃𝑘 = 𝑁(𝜇𝑘, 𝜎𝑘) may 173 

represent the red value of the hematoxylin stain. We use a value ℎ𝑅 ∽ 𝑃𝑘to form an estimate 174 

of the red value of hematoxylin. This process is repeated for each of the distributions which 175 

are combined to form the estimated stain matrix 𝑆. The mean of each distribution 𝜇𝑘 represents 176 

the value around which our model has assigned the most probability whilst the standard 177 

deviation 𝜎𝑘 describes how certain the model where a value is sampled from will result in a 178 

low reconstruction error. 179 

Taking the example above, we again assume that 𝑃𝑘 = 𝑁(𝜇𝑘, 𝜎𝑘)  is the distribution 180 

representing the red value of hematoxylin; if 𝜇𝑘 = 0.5 and the standard deviation is low, then 181 

the value we sample from 𝑃𝑘 has a high chance of being close to 0.5. If the true red value of 182 

hematoxylin is close to 0.5, then the sampled value results in a reduced reconstruction loss; 183 

consequently, if the true red value is far from 0.5, then the sampled value will result in a very 184 

high reconstruction loss. If the model predicts a large standard deviation, the sampled value 185 

will vary greatly and produce a large reconstruction loss even if the mean value is correct. To 186 

find the optimal values for 𝑆, each of the mean values 𝜇𝑘 are close to the true values and the 187 

standard deviations 𝜎𝑘are low. 188 

For the stain separation task, in order to test the separation effect, the following loss function 189 

is defined: 190 

 
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In the formula, mnx ,  represents the nth pixel of the mth image, '

,mnx represents the predicted 192 

image pixel. 193 

Features are extracted from the histopathology image by the network described above, and then 194 

passed to a number of sub-branches that predict the intensity of the stain of each pixel and the 195 

parameters (mean and variance) of a series of Gaussian distributions. For each pixel in the 196 

image, R,G,B of the three channels (hematoxylin, eosin, background) are predicted.  197 

Segmentation of lumens from the background channel based on the SPF-level set 198 

method. 199 

Considering that lumens are one of the key components to distinguish glands, we segment 200 

lumens from the background channel after the stain separation. The SPF (Symbol Pressure 201 
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Function) is constructed by using the statistical information of the image, so that the SPF has 202 

the function of maintaining or even enhancing the prominent foreground target. Similar to the 203 

classical C-V model [43], the contour C  allows us to divide the image I into two parts, inner 204 

and outer, respectively, and uses the global intensity distribution of the image to construct the 205 

SPF function. The stain intensity distribution functions of regions 
1 and 

2 are represented 206 

by P1 and P2: 207 
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 209 

Where u and   are the mean and standard deviation of the Gaussian distribution of the stain 210 

intensity, respectively. In the level set approach, the level set function   is embedded, 211 

assuming  01   and  02   , and the corresponding contour C  can be represented 212 

by the zero level set  0 . We can use the above stain intensity distribution function to 213 

construct the following new SPF function:  214 

  
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 215 

The level set equation is: 216 

   






xIspf

t
                                         (5) 217 

 218 

Algorithm implementation:  219 

Step 1 Initialize the level set function  , and set the parameter  .  220 

Step 2 Calculate 
2211  ,u,,u . 221 

Step 3  Estimate the evolution curve through Eq. (5). 222 

Step 4  G* , apply Gaussian filtering to smoothing the curve.  223 

Step 5 Examine whether or not the level set function curve converges, otherwise returns to 224 

step 2. 225 
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 226 

Figure 5: Extraction of lumens from the background channel. (a) The background stain intensity map; (b)  The 227 
segmentation image using SPF, which contains small background areas; (c) The lumen outline after removing 228 
the small target. 229 

The lumen segmentation process is shown in Figure 5. The lumen contour C  is obtained from 230 

the background channel by the above algorithm.  231 

We use the spatially constrained CNN (SC-CNN) for nuclear detection and the softmax CNN 232 

for nuclear sorting [35]. We use the H stain intensity map obtained from the stain separation 233 

as the input of SC-CNN to locate the nucleus. Since the detected nucleus include epithelial and 234 

stromal nucleus, nuclear sorting is used. In classification, the morphology (shape, size, color, 235 

and texture) of the nucleus is employed. Therefore, the original RGB histopathology image is 236 

selected as the input of the softmax CNN, and the pixel set V  represents the epithelial cell 237 

nucleus. We select the epithelial nucleus closest to the stromal nucleus as the rough gland 238 

boundary pixels so as to obtain the rough gland boundary L . 239 

 Lumen and rough gland boundary feature representation based on the ALI (axis of 240 

least inertia). 241 

The axis of least inertia is a line that minimizes the value after the integration of the square of 242 

the distance to all the points on the image boundary. Its physical meaning is that the rotation 243 

inertia of the graph around this axis is the smallest. It is the only reference line for representing 244 

the shape of the target. It can be known, from the physical definition of the axis of least inertia, 245 

that it must pass through the centroid O  of the graph. The mathematical expression was: let 246 

the line 0 CByx , then the axis of least inertia is: 247 


 



ii y,x

ii

B

)CByx(
min

2

2

1
                                         (6) 248 

Where   is the set of edge points. Then we use the condition that the axis of least inertia passes 249 

the centroid )y,x(O 00 : 000  CByx , then B and C can be obtained. In order to describe 250 

the outline of the shape, the structure-based shape descriptor commonly used in the boundary 251 

description method is mainly a chain: this is a widely used descriptor, and its role is to use the 252 

outline of the shape with directions. The chain representation of the graph: the chain represents 253 

the target by a sequence of straight lines in a given direction. If the chain is used for matching, 254 

it depends on the choice of the first boundary pixel in this sequence. From the start point of a 255 

selection, a chain sequence is generated by using the x-direction ( 12x , based on our 256 

experience) chain. 257 
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 258 

Figure 6: Feature representation approach based on the axis of least inertia .(a) The axis of least inertia is used as 259 
the reference axis. (b) Characteristic triangle. (c) The brownish yellow is the lumen contour, the orange color is 260 
the lumen contour feature triangle, and the red is one of the candidate contours obtained based on the cconstraint. 261 

As shown in Figure 6a, the axis of least inertia is used as the reference axis, and the coordinate 262 

system is established by its perpendicular line. The lumen centroid is the origin O  of the 263 

coordinate system, and then according to the direction chain, the four regions of the coordinate 264 

system are equally divided into three regions with three directions so as to generate a chain 265 

sequence with 12 directions. The direction is perpendicular to the axis of least inertia and the 266 

direction of the closest point to the lumen is 0-direction, and the counter-clockwise rotation is 267 

30°, respectively, in the 0- to 11-direction. Then the 12 straight lines with the O  point as the 268 

vertex will be compared with the lumen contour C  to 0C , 
1C , ..., 

11C . 12 points constitute the 269 

chain code representing the lumen contour, and similarly the intersection points of these 270 

straight lines and the epithelial cell core set V  represent candidate contour chain codes. In 271 

Figure 6b, 0C  and 
1C  are the intersection of the 0- and the 1-direction and contour C , 272 

respectively, and the triangle formed by the three points 0C , 
1C , O  is the characteristic 273 

triangle of the lumen (the point of the lumen outline in each direction is unique). j,V0  and j,V1274 

are the intersections of the 0-, 1-direction and the epithelial nucleus set V , respectively, and 275 

the triangles formed by these points represent the gland’s candidate region. There are multiple 276 

epithelial nucleus in each direction. The similarity measure is performed using a trigonometric 277 

membership function. For each feature triangle, let 
1 , 

2 , and 3  be the inner angles of the 278 

triangles respectively, for which they have the following relationship: 279 

   31321
180

1
1  --，，                                         (7) 280 

Then the triangular membership 281 

function:
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Where d is the Euclidean distance between the vertices of the feature triangle. Looking at the 283 

membership value of the th-n  feature triangle of the lumen and the membership value of the284 

th-n feature triangle of the gland candidate region, the similarity between them is: 285 

n

n

'
)v,c(imS




                                         (9) 286 

The similarity of all the eigen values is: 287 


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n

)v,c(SimotalT
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1
                                         (10) 288 

If Total 1~)v,c(imS , it indicates that the two contours are similar,  and n  represents the 289 

number of the characteristic triangles. 290 

The proposed approach is to find an accurate gland outline based on the two constraints: 291 

The target contour S  based on the epithelial nucleus set V  is similar to the lumen contour C  292 

and rough gland boundary L , thus constructing a feature similarity constraint: 293 

1 )v,l(TotalSim                                         (11) 294 

1 )v,c(TotalSim                                         (12) 295 

The target contour S  is close to the rough gland boundary L , thus we have a distance 296 

constraint: 297 





11

0
2

i

j,ii
vs

j vlminargs
j

                                        (13) 298 

Where 1110 ,...,,i   represents the sequence of the directions, J,...,,j 10  represents the 299 

number of the epithelial nucleus in the i-direction. il  represents the intersection of the i-300 

direction and the rough gland boundary L , j,iV  represent epithelial nucleus in the i-direction. 301 

Taking the 0-direction as the start direction, the similarity of the feature triangles in each 302 

direction is retrieved counter-clockwise. Taking Figure 6b as an example, first, the features303 

ovv,ovv,ovv ,,,,,, 210011000100  and the lumen feature occ 10 are compared with the outer 304 

contour L. The candidate contour point in direction 1 is determined by the constraint condition 305 

Eqs. (13) and (14). Similarly, candidate contour points in direction 1 are used as reference 306 

starting points to determine candidate contour points in direction 2. After sequentially 307 

determining candidate contour points in 12 directions, this forms a candidate contour chain. 308 

Assuming that there are J candidate points in the starting reference direction 0, J candidate 309 

contours are formed according to the above method. In Figure 6c, the brownish yellow is the 310 

lumen contour, the orange color is the lumen contour feature triangle, and the red is one of the 311 
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candidate contours obtained. The optimal gland contour is determined from the candidate 312 

contour according to the constraint Eq. (15), and finally the gland contour is smoothed by cubic 313 

spline interpolation. 314 

Experiment Results and Discussion 315 

 Data 316 

The image dataset is the Gland segmentation challenge (GLaS) dataset organized for MICCAI 317 

2015 in addition to our own dataset. Our own dataset includes 100 calibrated pathological 318 

images of benign and malignant colon adenocarcinoma. They were taken from 34 H & E 319 

stained pathological sections of colon adenocarcinoma with cancer stage T3 or T4. Slices 320 

belong to different patients, and they are processed in different laboratory environments. The 321 

dataset has a very diverse diversity in a staining distribution and an organizational structure. 322 

The pathological slices are scanned through the whole slice to obtain a digital picture with a 323 

pixel precision of 0.465 microns. The full-frame image is readjusted to a pixel precision of 324 

0.620 microns (equivalent to a 20x magnification). Then we crop them randomly to a size of 325 

128× 128 and augment them to 22000 pieces for training and verification of the models. The 326 

nucleus is manually annotated by an experienced pathologist. This study needs to identify 327 

epithelial nucleus, so the nuclear annotation is divided into epithelial nucleus and others. 328 

Stain separation 329 

The dataset consists of 22,000 histopathology patches with the size of 128x128 each. This work 330 

employs the ADAM optimizer, and the initial learning rate of 1-e3 is gradually reduced at the 331 

end of each epoch. To emphasize this further, Figure 7 shows the H & E image stain separation 332 

result. The results indicate that the background and H- and E-stain of histopathology images 333 

can be successfully separated while the structure of the tissue is retained.  334 

 335 
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Figure 7: Stain separation result. The first column is the original image, the second column is the stain 336 
separation result of hematoxylin and the stain intensity map, and the third and fourth columns are the eosin, 337 

background stain separation results and stain intensity map. 338 

The pathological image containing the complete glandular structure is cropped without any 339 

interval to a size of 128*128, and the insufficient area was filled with zero operation. Figure 8 340 

shows the separation results of H and E staining of the pathological images from two different 341 

datasets. The results show that for pathological images with different sources and large 342 

differences in staining, the deep learning staining separation method can successfully separate 343 

H and E stains, and the separation staining result is consistent, while maintaining the tissue 344 

structure. 345 

 346 
Figure 8: H&E staining and separation results of different datasets: (a) original pathological image, (b) H 347 

staining image, (c) E staining image. 348 
After stain separation, H and E stains can be distinguished. We do not have ground truth to 349 

qualitatively evaluate the separation effect, but we can visualise the blue-violet characteristics. 350 

The H staining maps are obtained by the two traditional staining separation methods mentioned 351 

in [44] and [45], and the deep learning-based staining separation method is further investigated, 352 

and on the basis of staining separation, the cell nucleus is used to evaluate the effect of stain 353 

separation. Figure 9 shows the process of segmenting nucleus on the H-stained images. First, 354 

the H-stained image is converted into a grayscale image, then converted into a binary image as 355 

a nuclear segmentation mask, and finally the segmentation mask is overlaid on the original 356 

pathological image for us to analyze the effect of the nuclear segmentation. 357 



Hindawi Template version: Apr19 

 

 13 

 358 
Figure 9: Nucleus segmentation of H-stain images based on three stain separation methods: (a)-(c) H-stain images  359 
based on different methods, (d)-(f) Grayscale image, (g)-(i) Binary image, (j)-(l) Segmentation mask is overlaid 360 
on the original pathological image. 361 
A singular value decomposition method based on optical density and an independent 362 

component analysis method in the wavelet domain, two traditional methods[44-45] and the 363 

deep learning method proposed here are used to separate the same pathological tissue image, 364 

and the H stain image is used for nucleus segmentation processing, (a)-(c) in Figure 9 are the 365 

H-stained images obtained by the three stain separation methods, (d)-(f) are their corresponding 366 

grayscale images, (g)-(i) are their corresponding binary images, (j)-(l) is the outcome after we 367 

overlay the binary segmentation mask on the original image. Comparing the results (j)-(l), it 368 

can be found that (a)-(b), which have poor stain separation effects, lead to over-segmentation 369 

or under-segmentation of the nucleus.  370 

Figure 10 shows the comparison results of different methods. The Mikto method is used for 371 

cell division, so it can only be used to isolate H staining. Color deconvolution (CD) is a classic 372 

method of stain separation, but manual intervention is required to calculate the optimal stain 373 

matrix. Using the CD method can preserve the structure, but cannot well separate the 374 

background color. SDSA is the latest method to separate stainings using statistical analysis of 375 

multi-resolution staining data. It can be seen that SDSA successfully segments H stainings, but 376 

when there are more than two stains in the image, the separation outcome is poor. 377 
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 378 
Figure 10:  Comparison results against traditional methods. 379 

Lumen segmentation 380 

The segmentation of  glands depends on the interaction between the rough gland boundary and 381 

the lumen, so it is necessary to accurately segment the lumen. In the experiment, the 382 

segmentation results of the SPF approach and the improved SPF approach on the lumens are 383 

compared. In the level set approach, for binary selection and Gaussian filter regularization, the 384 

SPF can result in satisfactory segmentation.  385 

 386 

a                              b                                   c                           d 387 

Figure 11: Segmentation of lumens based on the improved SPF approach. (a) is the background stain intensity 388 
map, (b) is the traditional SPF approach segmentation result, and it can be seen that the lumen cannot be 389 

accurately segmented, and (c) is the improved SPF approach segmentation result. (d) shows the small target has 390 
been removed. 391 
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Since the improved SPF approach is based on statistical information, the background channel 392 

obtained from the stain separation process, in which the lumen and the background probability 393 

tend to be consistent, causes some small background blocks in the image to be segmented. The 394 

small target is removed from the segmented image, and the final segmentation result is shown 395 

in Figure 11d. 396 

Multiple segmentation techniques (e.g. DRLSE, LBF, LGDF and LIF) are used to segment the 397 

glandular cavity. As shown in Figure 12, the DRLSE model produces incomplete subdivisions; 398 

the LGDF model can segment the cavity from other areas. The LIF and LBF models are not 399 

suitable for the segmentation of the gland cavity. These models encounter challenges such as 400 

longer response time and more iterations. By using the new SPF level set segmentation method, 401 

these shortcomings are overcome. The comparison results show that the proposed model is 402 

easy to implement, and its calculation time is only 21 s compared with other active contour 403 

models. 404 

 405 

Figure 12: Segmentation of lumens using various contour models. The first row shows the results of the 406 
DRLSE model, the LBF model results are shown in the second row, the third row shows the results of the 407 
LGDF model, the fourth row shows the results of the LIF model, and the results of the proposed method are 408 
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shown in the fifth row. Column (a) shows the position of the initial contour. Column (b) shows the output 409 
obtained after several iterations. Column (c) shows the results of gland cavity segmentation. 410 

Gland segmentation 411 

This work is evaluated on the public GlaS dataset and compared with other methods in the 412 

GlaS competition. We use 100 images for system training and 65 for system testing, where 45 413 

test images belong to test set A and the remaining 20 belong to test set B. For quantitative 414 

analysis, we use F1 score, object Dice and object Hausdorff. Regarding Hausdorff distance, 415 

lower values are better; and for other measures, higher values are better. Table 1 shows the 416 

quantitative results, whereas the proposed method produces competitive results, compared with 417 

those algorithms presented in the competition. The proposed-N approach is only based on 418 

rough gland boundary obtained from the epithelial nucleus, and the proposed-N+L approach is 419 

based on rough gland boundary N and the lumen contour L. The algorithm first uses deep 420 

learning methods to perform staining separation. For different target segmentations, such as 421 

lumens, epithelial cells, and nucleus, one can accurately segment targets on the basis of staining 422 

separation. In test set A, the proposed algorithm performed poorly on F1 and the object Dice, 423 

but performs better on test set B. In terms of measuring the shape similarity via object 424 

Hausdorff, a lower score indicates that in malignant cases, the method takes into account the 425 

effect of the morphological features of lumens, so the results have a higher shape similarity to 426 

the ground truth.  427 

Table 1.Comparing results of different competition algorithms on the public GlaS dataset 428 

 F1 score Object Dice Object Hausdorff 

Method Test 

A 

Test 

B 

Test A Test B Test A Test B 

Proposed-N+L 0.901 0.851 0.893 0.842 44.125 94.528 
Proposed-N 0.886 0.816 0.886 0.823 45.236 103.686 

CUMedVision1 0.868 0.769 0.867 0.800 74.596 153.646 

CUMedVision2 0.912 0.716 0.897 0.781 45.418 160.347 

ExB1 0.891 0.703 0.882 0.786 57.413 145.575 

ExB2 0.892 0.686 0.884 0.754 54.785 187.442 

ExB3 0.896 0.719 0.886 0.765 57.350 159.873 

Freiburg1 0.834 0.605 0.875 0.783 57.194 146.607 

Freiburg2 0.870 0.695 0.876 0.786 57.093 148.463 

CVML 0.652 0.541 0.644 0.654 155.433 176.244 

LIB 0.777 0.306 0.781 0.617 112.706 190.447 

Vision4GlaS 0.635 0.527 0.737 0.610 107.491 210.105 

We compare the proposed approach with the state-of-the-art algorithms 429 

[17],[22],[27],[46],[47] on the our independent dataset. The relevant measurement indicators 430 

are shown in Table 2. It can be seen from Table 2 that the proposed approach produces the best 431 

segmentation results. Figure 13 showed the ROC curves of the different algorithms. 432 
Table 2.Comparing results with the state-of-the-art algorithms. 433 

 Accuracy (%) 
TP TN

TP TN FP FN



    

 
Dice 

2

2

TP

TP FN FP   
 Median Mean Std  Median Mean Std 

Bassem et al.[17] 78.56 77.32 9.12  0.763 0.750 0.120 

Sirinukunwattana et al.[22] 80.51 79.14 8.36  0.780 0.770 0.098 

Linbo et al.[27] 81.11 80.48 6.52  0.801 0.795 0.089 
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Kainz et al.[46] 82.53 81.08 6.13  0.825 0.815 0.076 

Guannan et al.[47] 85.32 83.60 5.32  0.841 0.832 0.062 

Proposed 88.34 86.91 3.72  0.874 0.869 0.047 

 434 

Figure 13: The ROC curves of different algorithms. 435 

As can be seen from Table 2, the proposed segmentation approach based on lumen and rough 436 

gland boundary improves the average pixel precision by at least 3%, and the Dice similarity 437 

coefficient has the improvement of 0.033. At the same time, the standard deviation of the pixel 438 

precision and Dice are at a low level, indicating that the segmentation approach is relatively 439 

stable and can effectively handle the problem of abnormal gland segmentation. Figure 14 440 

shows the segmentation effect for multiple instances in our independent dataset, where green 441 

is the manually annotated contour, yellow is the segmentation contour by different methods. 442 
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 443 

Figure 14: The segmentation outcomes for multiple instances on the independent dataset, where green is the 444 
manually annotated contour, yellow is the segmentation contour by different methods. 445 

It can be seen from Fig. 14 that the gland segmentation method based only on epithelial cell 446 

nucleus, such as the one proposed in [17] and our proposed-N, relies too much on the accuracy 447 

of nuclear recognition. Inaccurate nuclear recognition directly leads to inaccurate gland 448 

segmentation. However, the method of polygonal approximation, such as the one proposed in 449 

[12], cannot detect the external contour of the gland. The double parallel structure method [27] 450 

combining the inside of the gland and the contour can segment the gland contour more 451 
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accurately, but sometimes it cannot segment adhering glands. In summary, for the malignant 452 

and complex tumor images, our proposed method produces better segmentation results. 453 

Conclusions 454 

Histological assessment of glands is one of the challenges in colon cancer grading. Analysis of 455 

histological slides stained with hematoxylin and eosin is considered to be the "gold standard" 456 

in histological diagnosis. However, relying on artificial visual analysis is time consuming and 457 

laborious, as pathologists need to thoroughly examine each case to ensure accurate diagnosis.  458 

In order to improve the diagnostic ability of automated approaches, we here proposed an 459 

approach for accurately segmenting glands in colon histopathology images based on the 460 

characteristics of lumens and gland boundaries. First, this work constructed a U-net for 461 

separation of H&E images to obtain H-, E-, and background stain intensity maps. 462 

Subsequently, the epithelial nucleus is identified on the histopathology images, and the 463 

segmentation of lumen is performed on the background intensity map. Then, the axis of the 464 

least inertia and chain is used to represent the lumen and gland boundary features. Based on 465 

the detection of lumens and epithelial nucleus, more accurately gland segmentation has been 466 

performed based on the rough gland boundary.  467 

The main contribution of the approach includes three points. Firstly, a new unsupervised stain 468 

separation approach was proposed, which made the information contained in the H&E image 469 

easy to identify, and deal with the uneven stain intensity and the inconspicuous stain difference. 470 

The superiority of the proposed stain separation approach was proved. Second, this work 471 

developed and combined a new set of features for segmentation of glands. It considered the 472 

morphological characteristics of the internal lumen of the gland structure. During the process 473 

of carcinogenesis, the lumen of the gland usually undergoes obvious distortion, which makes 474 

the surrounding epithelial cells irregularly arranged, but most were still distributed around the 475 

lumen. Therefore, the approach of combining the axis of least inertia was proposed to represent 476 

the characteristics of lumens and gland boundaries. Since lumens are more independent and 477 

easier to segment than the epithelial cells, the segmentation approach based on lumens can be 478 

used to achieve the segmentation of glands attached to each other. The results showed that the 479 

proposed approach had improved the segmentation accuracy. Finally, this work showed a 480 

feature representation of lumens and gland boundaries, and we will continue to study the 481 

application of this approach for benign and malignant feature extraction of tumors. 482 
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