
IEEE TRANSACTIONS ON COMPUTERS 1

An Adaptive Multilevel Indexing Method for
Disaster Service Discovery

Yan WU, ChunGang YAN, Lu LIU, ZhiJun DING and ChangJun JIANG, Member, IEEE

Abstract—With the globe facing various scales of natural disasters then and there, disaster recovery is one among the hottest

research areas and the rescue and recovery services can be highly benefitted with the advancements of Information and

Communications Technology (ICT). Enhanced rescue effect can be achieved through the dynamic networking of people,

systems and procedures. A seamless integration of these elements along with the service-oriented systems can satisfy the

mission objectives with the maximum effect. In disaster management systems, services from multiple sources are usually

integrated and composed into a usable format in order to effectively drive the decision-making process. Therefore, a novel

service indexing method is required to effectively discover desirable services from the large-scale disaster service repositories,

comprising a huge number of services. With this in mind, this paper presents a novel multilevel indexing algorithm based on the

equivalence theory in order to achieve effective service discovery in large-scale disaster service repositories. The performance

and efficiency of the proposed model have been evaluated by both theoretical analysis and practical experiments. The

experimental results proved that the proposed algorithm is more efficient for service discovery and composition than existing

inverted index methods.

Index Terms—Service Computing, SOA, SOC, Disaster Management

—————————— ◆ ——————————

1 INTRODUCTION

atural and man-made disasters and their significant
impacts on human lives are always being the focal

points of discussion among the community of human and
environmental activists. We are witnessing the natural
calamities showing different dimensions in different ge-
ography, affecting the human community and it is always
being a tough fight with the nature. According to the
World Disaster Report 2012 [1], 15 million people were
forced to be displaced due to natural and technological
disasters.

The importance of ICT and its possible innovation in
the disaster recovery has been highlighted in the newly
published World Disaster Report 2013 [2]. According to
which, “the responsible use of technology offers concrete ways
to make humanitarian assistance more effective, efficient and
accountable and can, in turn, directly reduce vulnerability and
strengthen resilience. Finding ways for advances in technology
to serve the most vulnerable is a moral imperative; a responsi-
bility, not a choice.” “Haiti in 2010 saw the first field deploy-
ment of many technologies with the potential to support disas-
ter assessment and response.”

In the 2010 Haiti Earthquake, between 217,000 and
230,000 people found dead, and 300,000 estimated to be
injured, and 1,000,000 estimated to be homeless. Rescue
efforts began in the immediate aftermath of the earth-
quake, supported momentously by the international

communities. The factor lies behind the successful relief
and recovery is the real-time monitoring of sensible data
with an international boundary.

A rescue capability can be defined as the operation of
integrated services to fulfil a rescue mission objective. For
the provision of rescue capabilities, a defined set of disas-
ter services need to be integrated in an effective workflow
in order to fulfil the objective requirements. In more par-
ticular, the operations of sensors should be integrated to
achieve a joint functionality to fulfil a wide range of
search and rescue requirements. Generally, in an earth-
quake rescue, the search and rescue teams will initially
search for the survivals struggling within the destructed
buildings, and save them accordingly. In the meantime,
medical assistance should be on its prompt action along
with immediate transportation facilities to hospitals.
Apart from these basic necessities, there are other services
to be considered including power supply, road services,
sufficient food and water availability, communication,
transporting goods, and secondary disaster recovery ser-
vices, such as, monitor and alarm devices. On the whole,
disaster recovery services cumulate a set of duties func-
tioning towards the rescue objectives with a defined
workflow. The fundamental architecture of the Service
Oriented Architecture (SOA) can be effectively utilized in
order to enable the above said recovery services optimally
and with a timely approach. SOA usually stores the
metadata in its repositories and its novel service composi-
tion method can be used to search and retrieve the re-
quired services and also to dynamically compose them
into a joint-rescue capability. These factors suggest that
more efforts are required to devise efficient solutions to
ultimately solve the service composition problem. There-
fore, a new service discovery and retrieval model is re-

————————————————

• Y. Wu, C. Yan, Z. Ding, and C. Jiang are with the Key Laboratory of Em-
bedded System and Service Computing, Ministry of Education, Tongji
University, Shanghai, 201804, China. E-mail: vw_@163.com; yanchun-
gang@tongji.edu.cn; dingzj@tongji.edu.cn; cjjiang@tongji.edu.cn.

• L. Liu is with the Department of Computing and Mathematics, University
of Derby, Derby, DE22 1GB, UK E-mail: l.liu@derby.ac.uk.

• Y. Wu is also with the School of Computer Science and Telecommunication
Engineering, Jiangsu University, Zhenjiang, Jiangsu Province, 212013,
China.

N

2 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

quired to address and to overcome the existing issues and
challenges faced by disaster management systems.

In this paper, we propose a novel adaptive multilevel
index model to efficiently manage and to retrieve services
in a large-scale repository and to facilitate service discov-
ery and composition. The proposed model includes a
multilevel index and functionalities to support manage-
ment operations, i.e., addition, deletion, replacement and
retrieval and adaptive deployment.

The contributions of this work are summarized as fol-
lows:

1. A novel multilevel index model without any re-
dundancy has been proposed in this paper, based
on the theory of the equivalence relations and quo-
tient sets, which can reduce the service discovery
and composition time for an effective disaster ser-
vice management;

2. This model specifies how to retrieve, insert and
delete services from the system;

3. This model includes a novel flexible deployment
algorithm capable of adapting self-deployment ac-
cording to different situations by using different
types of indices;

4. Finally, the efficiency of the proposed model is
proved in comparison with other existing indexing
methods with our supporting experimental analy-
sis and results.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the fun-
damental architecture for dependable service composi-
tion. Section 4 introduces the proposed multilevel index
model. Section 5 describes the enabling key functions and
operations built in the proposed model. Section 6 discuss-
es the flexible deployment algorithm of the proposed
model. Section 7 reports the experimental results. Section
8 concludes the paper with an outline of our future re-
search directions.

2 RELATED WORK

SOA provides proper foundation architecture for disaster
rescue. Technologies of Service-Oriented Computing
(SOC), e.g. service composition, discovery and selection
[3-10], offer effective methods for integration of rescue
capability. Reliability and timeliness are the two im-
portant factors for rescue capability. In our previous
works, reliability is studied [11, 12]. L. Liu et al. [11] pro-
posed an evolutionary service oriented architecture to
offer a reliable rescue capability by means of dynamically
integrating businesses, systems and computing in hetero-
geneous environments. In [12], a reconfiguration algo-
rithm enabling proactive self-diagnosing of the evolution
is proposed to evaluate the impact of evolution, and the
self-configuration capabilities in adopting to the changes.
However, they were targeted only at reliability, ignoring
timeliness.

Service discovery and composition are closely related
with the timeliness of rescue capability that influences
users' satisfactions. Recent studies [13-15] reveal the fact
that the composition problem is very time-consuming.
Narayanan and McIlraith [13] used Petri nets to analyze

the complexities in the composition of the Semantic Web
services described by DAML-S and identified this prob-
lem to be a Exp-Space-Time-hard in the worst case. Nam
et al. [14] studied the computational complexities of the
behavioral description-based Web service composition,
and concluded that the composition problem of nonde-
terministic Web services with incomplete information, to
be 2-EXP-complete. Our prior work also proved that it is
co-NP-hard for a given group of services to decide the
behavioral compatibility of the service composition [15].

Tang et al. [16] introduced a novel automatic Web ser-
vice composition method based on the logical inference of
Horn clauses and Petri nets. They first transformed a Web
service composition problem into a logical inference prob-
lem of Horn clauses, based on the forward-chaining algo-
rithm. They used the structural analysis techniques of the
Petri nets in order to obtain the composite service. Since
the service repository usually holds a large number of
services and generates many operating rules, the Petri net
of a Horn clause is usually set very large. In order to re-
duce the composition time, they proposed a method to
select the candidate clauses during the arrival of new
queries, which creates interference. The main drawback
of this method is that it can be executed only after receiv-
ing the user requirements, not beforehand.

Wu and Khoury [17] proposed a tree-based search al-
gorithm for Web service composition in a cloud compu-
ting platform. They first created a tree that represents all
the possible composition solutions according to the user
requirements, and then pruned the illegal branches, aim-
ing to reduce the response time and to improve the per-
formance, and finally used a heuristic algorithm to search
for an optimal solution. This method has the disad-
vantage similar to that in [16]. Particularly, its optimiza-
tion process cannot be executed before receiving user re-
quirements.

Constantinescu et al. [18] proposed a type-compatible
service composition method. They used a forward com-
position algorithm to obtain a solution. This method in-
cludes other irrelevant services, which leads to its down-
fall. Kwon et al. [19] proposed a two-phase composition
method to overcome such a drawback of [18]. Its first
phase is to generate a composition solution via a forward
composition algorithm and the second phase is to elimi-
nate useless services backward. In the forward phase, a
service net is used to reduce the composition time. Let si
denote a service, and •si and si

• denote the input and out-
put parameters of si, respectively. Services are the nodes
of the net. If si

••sj, there exists a directed edge from si
to sj. If si is selected in the solution, only the services
linked by si need to be retrieved, and its efficiency in solv-
ing the problem is determined. The service net narrows
the search space for every step of service composition
(except the first one), and is effective in improving the
composition efficiency. Lee et al. [20] proposed a scalable
and efficient Web service composition method based on a
relational database. They used the service net as a basic
data structure. The service net can be addressed to have
two shortcomings. First, it does not take the consideration
of facilitating the service discovery. Secondly, it is time-

Y. WU ET AL.: AN ADAPTIVE MULTILEVEL INDEXING METHOD FOR DISASTER SERVICE DISCOVERY 3

consuming for service addition and deletion. For exam-
ple, when a service si is added, service net requires the
determination of, whether sj

••si and si
••sj for

every existing service sj.
Aversano et al. [21] proposed a backward composition

method that composes services from the terminal state to
the initial one. It includes two steps, as the horizontal and
the vertical step. The former is to find a minimal set of
services that can converge to a target state. The latter is to
repeat the former until a stop condition is met. Clearly,
according to the Binomial theorem [22], the time complex-
ity of the horizontal step is 2n in the worst case, where n is
the number of services. In order to reduce its composition
time, Li et al. [23] proposed an inverted index to manage
the services. An inverted index strategy is highly efficient
and it is used widely in many fields. For example, Google
uses it to reduce the response time for user’s queries [24,
25]. It is also adopted in the Web service storages. The
inverted index [21] usually stores the services along with
their corresponding parameters, and an index link is cre-
ated between the service and its output parameter. This
strategy is efficient and effective for the backward service
composition methods, and also convenient for service
addition and deletion. But it is not applicable to the for-
ward composition method [17-19] which is simpler and
more popular than the backward one. Note that, the time
complexity of this method is n(n-1)/2 in the worst case,
which is in contrast with the exponential time complexity
of the backward method [21].

The inverted index can be easily modified to increase
its adaptability to the forward composition method, with
a simple change in the index link created between the
service output and its corresponding input parameter.
Clearly, the principle of the amended inverted index and
the service net [19, 20] is almost the same, nevertheless.
But it overcomes the service net issues of service addition
and deletion. However, it also includes considerable re-
dundancies, which is later explained in this paper. These
redundancies can significantly cause considerable wast-
age of time during the process of service composition and
discovery. In order to eliminate such redundancies effec-
tively, an adaptive multilevel index model is proposed in
this paper based on the equivalence relations and the
quotient sets. Our prior work [26] presents some prelimi-
nary work relevant to the multilevel index theory. This
paper comprehensively presents a multilevel index mod-
el, and introduces an adaptive deployment algorithm and
four efficient operations to manage and maintain services.

3 ARCHITECTURE FOR DEPENDABLE DISASTER

SERVICE COMPOSITION

In our previous work [11], an evolutionary service orient-
ed architecture has been proposed to offer a dependable
rescue capability by means of dynamically integrating
businesses, systems and computing in heterogeneous en-
vironments. For example, services for detecting survivors
could be benefitted by employing lasers, visible spectra,
heat (infrared), radar or sonar sensors and these hetero-
geneous sensor services can also be deployed on rescue
helicopters, UAVs and on the search and rescue person-

nel. The sensing services allow interoperable service in-
terfaces and enhance the quality of service (QoS) in order
to deliver dependable capabilities in highly critical situa-
tions.

In order to satisfy different search and rescue require-
ments, different services need to be integrated to deliver a
joint search and rescue mission. A dynamic network of
services is modelled with a series of radar sensors, which
provide the ongoing data and facilitate timely update. In
our system, the information of Points of Interest (POIs) in
a specified region can be obtained in real-time. A se-
quence of services (such as “Get map information”, “Get
radar reading”, and “Display targets on map”) are oper-
ated in a workflow in order to provide a regional surveil-
lance service, as illustrated in Fig. 1(a). The service inte-
gration can be abstracted by using workflow patterns as
shown in Fig. 1(b), where s1 represents the service of ‘get-
ting map information’, s2 represents the service of ‘getting
radar reading’ and s3 represents the service of ‘displaying
targets on map’.

 Integration
Get map

information

Get radar

readings

Display targets

on map

(a)

 Capability

 Integration

C1

s1 s2 s3

(b)
Fig. 1. Workflow of service integration for delivery of rescue capabili-
ties.

 Capability

 Integration

C1

Binding

 Node A

s1 s2 s3

s1 s3 s5 s2 s4

 Node B

s1 s4 s2 s3

 Node C

s2 s3 s4

s1 s2 s3

 Node D

s2 s5 s3 s4

Fig. 2. Service-oriented architecture for the delivery of rescue capa-
bility.

Disaster monitoring sensor networks consist of poten-
tially a large number of nodes with sensing and wireless
communication capability. Each platform node can have
one or more sensors supplying data through services. Fig.
2 illustrates the integration of services for the delivery of
rescue capability on SOA [11]. In this architecture, each
platform node has a number of services that can be inte-
grated to form a higher level of functionality to deliver a
rescue capability. For example, a rescue helicopter is a
platform node offering services such as movement, met-
rological surveillance, situation surveillance, target sur-
veillance and patient delivery services. Further, the met-
rological surveillance function can be combined with oth-
er services to form a higher-level weather service contrib-
uting to the search-and-rescue mission.

4 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

Redundant service binding is a technique to improve
the reliability of the provision of rescue capabilities [11].
In order to deliver a reliable rescue capability, the neces-
sary functionalities should be provided by multiple ser-
vices, which are usually allocated to different peer nodes.
The reconfiguration algorithm can switch to one of the
backup services in case of any failures of the initial ser-
vice. The Distributed Recovery Block scheme [27] is ap-
plied to minimize the recovery time of the integration
process.

Apart from the failures of the services, rescue capabil-
ity evolution could develop potential problems, affecting
the reliability of provision of the rescue capabilities. Op-
erational requirements often change during a rescue and
search operation, in accordance with dynamically varying
situations. The rescue capability should be flexible to
adapt such dynamic requirements. A reconfiguration al-
gorithm enabling proactive self-diagnosing of the evolu-
tion is used to evaluate the impact of evolution, and the
self-configuration capabilities in adopting to the changes,
were dealt in [12].

 Reliability and timeliness are the two important fac-
tors affecting the effectiveness of a disaster relief effort.
The previous works discussed earlier were providing a
number of architectural solutions to the problem of dy-
namic changes, but most of the works were targeted only
at reliability, ignoring timeliness. However, the benefits
of the integration of services will not be realized unless an
effective method is developed to manage all the sensor
services and to discover the required services effectively
from a large-scale sensor service repository, for dynamic
service composition. To this extent, our researches are
using SOA for disaster management and relief, without
undermining the key factor ‘timeliness’ and developed
our highly efficient multilevel index model.

In the proposal model, a service is represented by its
input and output parameters and its related attributes. A
service is defined as follows:

Definition 1. A service s=(•s, s•, O), where •s is the set of
input parameters, and s• is the set of output parameters.
O is a set of service attributes, e.g., QoS.

Service retrieval is a function that accepts a set of pa-
rameters and returns a set of services that can be invoked
by this parameter set.

Definition 2. Service retrieval Re(A, S)={s|•sAsS},
where A is a given parameter set and S is a service set.

Service retrieval is an operation that accepts a set of
service parameters and rapidly returns a set of services
that can be invoked for effective service composition to
achieve an effective search and rescue mission.

Definition 3. Service discovery can be defined as Dc(A,
B, S, L)={s|•sABs•sSL(O)}, where A is a parame-
ter set provided by a user, B is a parameter set required
by the user, S is a service set, and L(O) means that the
discovered services must meet some conditions required
by users.

Therefore, Dc(A, B, S, L)={s|Re(A, S)Bs•L(O)}. It is
clear that service retrieval is an essential part of dynamic
service composition. If the time of service retrieval is re-
duced, the overall time of service composition will be

reduced.
According to the definition of service retrieval, it will

return a set of services with the same input and output
parameters. The functionality of service retrieval defined
in this paper is to narrow the search space for service dis-
covery. For this reason, if s=({a, b}, {c, d}, O), it is written
as s:ab→cd for conciseness. There is no ordered relation-
ship among the elements before or after “→”. S denotes
the set of all services in a repository, and sS, if no other
setting is mentioned.

Retrieval API

Service Composition Methods

Service Discovery Methods

Service

Repository

Users

Administrators

Service Providers

Multilevel Index

Management APIs

Ontology

Fig. 3. A multilevel index model in a service repository

Adding new sensor services

 into the service repository.

s2

Integration

C1

Capability

s1

s3

s2

Binding

s1

s3

Retrieval API

Service Composition Methods

Service Discovery Methods

Service

Repository

Multilevel Index

Management APIs

Ontology

Fig. 4. A multilevel index model in a service repository

The proposed multilevel index model can be easily
implemented in a service repository. Fig. 3 shows such a
scenario. The multilevel index is the core of the proposed
model, which is an efficient data structure for service re-

Y. WU ET AL.: AN ADAPTIVE MULTILEVEL INDEXING METHOD FOR DISASTER SERVICE DISCOVERY 5

trieval, addition, deletion and replacement. Service re-
trieval is an operation that accepts a set of service param-
eters and returns a set of services that can be invoked ac-
cording to the parameter set. It is commonly invoked by
the service composition and the discovery methods, when
a particular service needs to be identified from the service
repository according to a parameter set. Since this re-
trieval returns a smaller service set rather than all services
in a repository, the service composition or the discovery
method uses it effectively and works on a smaller service
sets to find the most suitable services, thereby reducing
their respective processing time. Service addition, dele-
tion and replacement are the three maintenance opera-
tions that can be used by the administrators or the service
providers to maintain the services in a service repository.
The proposed model needs an ontology to ensure that
each service parameter has a unique identifier. Otherwise,
it cannot work correctly.

The proposed model can provide supports for disaster
recovery in varying dimensions. Fig. 4 shows some ex-
amples. The process of integration of disaster services
invokes the service composition and the discovery meth-
ods; meanwhile, the service composition and the discov-
ery methods invoke the service retrieval in order to re-
duce their processing time. Upon identifying new disaster
services (e.g. new sensing services), they should be added
into the service repository quickly and efficiently. The
addition operation could fulfill this task very well which
is desirable in a search and rescue mission.

4 MULTILEVEL INDEX

Service retrieval should return a service set for the service
discovery and composition in such a way that it minimiz-
es the number of searches. In the process of service re-
trieval, reducing the retrieval time is very crucial, thereby
improving the retrieval efficiency. Information with more
redundancy in a service set often consumes more time
and causes unwanted delay in the retrieval process,
which is undesirable especially in a disaster rescue. In our
proposed model, such a redundancy is eliminated to the
maximum extent. Our multilevel indexing scheme is ex-
plained as follows.

4.1. The First and Second Level Indices

Definition 4. Relation R1 is defined on S: si, sjS, si R1 sj 
(•si=•sj)(si

•=sj
•).

Theorem 1. R1 is an equivalence relation on S.
Proof: (1) sS, •s=•ss•=s•  s R1 s  R1 on S is reflex-

ive [28]; (2) si, sjS, si R1 sj  •si=•sjsi
•=sj

• 
•sj=•sisj

•=si
•  sj R1 si  R1 on S is symmetric [28]; (3) si,

sj, skS, (si R1 sj)(sj R1 sk)  (•si=•sjsi
•=sj

•)(•sj=•sksj
•=sk

•)
 •si=•sksi

•=sk
•  si R1 sk  R1 on S is transitive [28].

From (1)-(3), R1 is an equivalence relation on S.
An equivalence relation E on a set W, divides W into a

family of disjoint subsets called the quotient set [28] of W
induced by E. Each subset is called an equivalence class
[28].

Procedure 1: Partition S according to R1.
According to Theorem 1, R1 as an equivalence relation

on S can divide S, resulting in a quotient set, i.e., a family

of disjoint service subsets.
Definition 5. The quotient set induced by R1 is denoted

as 1. An equivalence class contained in 1 is called a simi-
lar class, denoted as Cs.

According to R1, a service set S is divided into many
subsets, and each subset is called a similar class that con-
tains one or more services with the same input and out-
put parameters. Therefore, each similar class Cs has a
unique pair of parameter sets, denoted as •Cs and Cs

•
where •Cs=•s and Cs

•=s•, sCs.
The First Level Index (L1I): There is an index between a

service s and a similar class Cs, if sCs.
Relation R1 and Procedure 1 constructs L1I as shown in

the right side of Fig. 5. The definition of quotient set Q
induced by an equivalence relation E on a set W, ensures
every element contained in W is classified into a unique
equivalence class and also states that any two different
equivalence classes are disjointed. Therefore, L1I ensures
that all services are indexed only once, implying that nei-
ther service being omitted nor service being indexed
twice. In other words, L1I has the integrity and contains
no redundancy.

It is observed that without the function L1I, all the ser-
vices in the repository are retrieved for computing Re(A,
S). But with the presence of the function L1I, only the sim-
ilar classes are retrieved, instead of all the services in the
repository. Since the similar class count is always smaller,
when compared with the total number of services in the
repository, L1I reduces the retrieval time greatly. For ex-
ample, given a parameter set A={a}, and S ={s1:a→b,
s2:a→b, s3:c→d, s4:c→d}, 4 services need to be retrieved to
compute Re(A, S) without L1I. Including the function L1I,
since that Cs1={s1, s2} with •Cs1={a} and Cs1

•={b}, and
Cs2={s3, s4} with •Cs2={c} and Cs2

•={d}, only 2 similar classes
need to be retrieved to compute Re(A, S).

Definition 6. Relation R2 is defined on 1: Cs1, Cs21,
Cs1 R2 Cs2  •Cs1=•Cs2.

Theorem 2. R2 is an equivalence relation on 1.
This theorem can be proved in a similar way to Theo-

rem 1.
Procedure 2: Partition 1 according to R2.
According to Theorem 2, R2 as an equivalence relation

on 1 can divide 1, resulting in a quotient set, i.e., a fami-
ly of disjoint similar class subsets.

Definition 7. The quotient set induced by R2 is denoted
as R2. An equivalence class contained in R2 is called an
input-similar class, denoted as is.

According to R2, 1 is divided into many subsets, and
each subset is called an input-similar class that contains
one or more similar classes with the same input parame-
ters, which means, each similar class Cs contained in the
same input-similar class is has the same •Cs. Therefore,
each input-similar class is contained in R2 has a unique
parameter set, denoted as •is where •is=•Cs, Csis.

The Second Level Index (L2I): There is an index between
a similar class Cs and an input-similar class is, if Csis.

Relation R2 and Procedure 2 constructs L2I as shown in
Fig. 5. Since Re(A, S) focuses only on •s, with the function
L2I, instead of all similar classes, only all of the input-
similar classes need to be retrieved. Since the input-

6 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

similar class count is smaller than the similar class count,
the retrieval time is further reduced. Relation R2 and Pro-
cedure 2 ensure that L2I has the integrity and contains no
redundancy.

The service retrieval is related only to the service input
parameters. Therefore, after the construction of L2I, L1I
has no effect on the service retrieval. But, it can improve
the efficiency of the service discovery and composition
and hence L1I is preserved. Service retrieval can find a set
of similar classes. If there were no L1I, service discovery
Dc(A, B, S, L) would compute Bs• for every single ser-
vice. But with the aid of L1I, service discovery needs to
compute BCs

• only for similar classes. Since the number
of similar classes is smaller than the total number of ser-
vices in general, the service discovery time can be re-
duced. This is the reason why the first level index is pre-
served.

4.2. The Third and Fourth Level Indices

After developing L1I and L2I, a method to speed up Re(A,
S) is created and an inverted index is used between the
input-similar classes and the parameters, so that every
parameter points to those input-similar classes whose •is,
contains this parameter. Then, while computing Re(A, S),
those input-similar classes pointed by the parameters
contained in A need to be retrieved. However, this meth-
od cannot completely get rid of the information redun-
dancy. For example, consider A={a, b}, •is1={a, c}, and
•is2={a, b}. In the inverted index method, a points to both
is1 and is2, and b points to is2. Both is1 and is2 are re-
trieved by a, and is2 is retrieved by b. Clearly, is1 is re-
trieved twice, thus creating redundancy. In order to avoid
such redundancy, two new levels of indices are needed.

First, a concept of a key is required. A parameter in •is
is designated as a key of is, denoted as (is). Each class
of is is forced to pick only one key if |•is|1. Different
input-similar classes may have the same or different keys.
Next, a new level of index is delivered, and then the de-
termination of the key for an input-similar class is dis-
cussed.

Definition 8. Relation R3 is defined on R2: is1, is2R2,
is1 R3 is2  (is1)=(is2).

Theorem 3. R3 is an equivalence relation on R2.
This theorem can be proved in a similar way to Theo-

rem 1.
Procedure 3: Partition R2 according to R3.
According to Theorem 3, R3 as an equivalence relation

on R2 can divide R2, resulting in a quotient set, i.e., a fami-
ly of disjoint input-similar class subsets.

Definition 9. The quotient set induced by R3 is denoted
as 3. An equivalence class contained in 3 is called a key
class, denoted as Ck.

The Third Level Index (L3I): There is an index between
an input-similar class is and a key class Ck, if isCk.

Relation R3 and Procedure 3 constructs L3I, as shown in
Fig. 5 and ensures that L3I has the integrity and contains
no redundancy.

According to R3, R2 is divided into many subsets, and
each subset is called a key class that contains one or more
input-similar classes with the same key, which means,

each input-similar class is contained in the same key
class Ck has the same key. Therefore, each key class Ck
contained in 3 has a unique key, denoted as (Ck). Then
(Ck)=(is), isCk.

The function f: A→B is a bijection iff 1) x, yA,
f(x)=f(y)x=y, and 2) zB, xA, such that f(x)=z. From
the above analysis, it is clear that a key class has a unique
key and a key identifies a unique key class. К denotes the
set of keys of all key classes. Thus 3 and К form a bijec-
tion fk:3→К. Given Ck3 and kК, fk(Ck)=k, if (Ck)=k.

The Fourth Level Index (L4I): There is an index between a
key class Ck and a key kК, if fk(Ck)=k.

The definition of bijection ensures that L4I has the in-
tegrity and contains no redundancy.

After building L3I and L4I, the information redundancy
contained in the prior example can be eliminated. For
example, consider A={a, b, c}, •is1={a, c}, •is2={a, b},
•is3={b, c}, and •is4={d}. If (is1)=a, (is2)=a, (is3)=b,
and (is4)=d, Ck1={is1, is2}, Ck2={is3}, Ck3={is4}, (Ck1)=a,
(Ck2)=b, (Ck3)=d, and К={a, b, d}. When computing Re(A,
S), only a and b in A are the keys, whereas c is not a key.
Therefore, only Ck1 and Ck2 are retrieved and they are re-
trieved only once.

L1I-L4I constructs a multilevel index for the services.
Fig. 5 shows the resultant structure. Since each level index
has the integrity and contains no redundancy, the pro-
posed model also ensures the integrity avoiding redun-
dancy as a whole.

4

1

2

3

: L I

К

k

k

k



1

2

3

S

s

s

s



2 2

1

2

3

: L I

is

is

is



 R3 3

1

2

3

: L I

k

k

k



C

C

C

1 1

1

2

3

: L I

s

s

s

C

C

C


…… …… …… ……

Fig. 5. The Multilevel Index Model

4.3. The Selection of a Key

A question arises as how to determine the keys of the in-
put-similar classes. This determination is assigned as an
automatic functionality in the multilevel index modeler to
facilitate ease use to the service designer. The selection of
the key is determined by the cardinality of Ck, denoted as
|Ck|, in the proposed model automatically.

Theorem 4. Assume that |R2|=n, |3|=m, the probabil-
ity of every is being retrieved is equal, |Cki| is same, i=1,
2,…, m, and t denotes the time of retrieving is from R2.
When m n= , t n= is minimal.

Proof: Key classes and input-similar classes constitute a

two-level index. The average time to find is from R2

without an index is n/2. The average time to find is with

a two-level index is,
2 2

m n
t

m
= + . Since

2

1

2 2

dt n

dm m
= − ,

solving 0
dt

dm
= leads to m n= . Therefore, when m n= ,

t is minimal, since
2

2 3

1
0

d t n

dm m n
= =  . 

Theorem 4 suggests that |Ck| should be as close to

2| | as possible. For example, R2={Ck1, Ck2}, |Ck1|=2,

Y. WU ET AL.: AN ADAPTIVE MULTILEVEL INDEXING METHOD FOR DISASTER SERVICE DISCOVERY 7

(Ck1)=a, |Ck2|=1, (Ck2)=b. An input-similar class is with
its •is={a, b} is added. If the key of is is designated to a,
|(2| | -|Ck1|)|+|(2| | -|Ck2|)|=| 2 -3|+| 2 -
1|=2. If its key is designated to b, |(2| | -
|Ck1|)|+|(2| | -|Ck2|)|=| 2 -2|+| 2 -2|1.17<2.
Therefore, its key should be designated to b in which,
|Ck| is as close to 2| | as possible.

Theorem 4 presents a basic principle for the selection
of keys. The operation "addition" is performed based on
this principle, which is introduced in the next section.

5 OPERATIONS OF THE INDEX

This section first introduces the functions implied in the
proposed model, and then, based on them, four opera-
tions, i.e., retrieval, addition, deletion and replacement
have been illustrated.

5.1. The Functions in the Multilevel Index Model

Given a bijection f:A→B, f -1 denotes its invertible function.
A function f:A→B is a surjection, if and only if yB,
xA such that f(x)=y. If f:A→B is a surjection, and CB,
the preimage of C under f, is defined by f

-p(C) = {e|eA
f(e)C}.

If a set W is partitioned by an equivalence relation E,
into a quotient set Q, f:W→Q forms a surjection according
to the partition relation. Then the functions can be em-
bedded into the proposed model as shown in Fig. 6.

S is partitioned into multiple similar classes by R1. Ac-
cording to Procedure 1, S and the set of all similar classes
1, form a surjection, denoted as f1:S→1. 1 is further par-
titioned into multiple input-similar classes by R2. Accord-
ing to Procedure 2, 1 and the set of all input-similar clas-
ses R2, form a surjection denoted as f2:1→R2. R2 is parti-
tioned into multiple key classes by R3. According to Pro-
cedure 3, R2 and the set of all key classes 3, form a surjec-
tion, denoted as f3:R2→3. The function fk:3→К is a bijec-
tion.

f1f2f3fk4

1

2

3

: L I

К

k

k

k



1

2

3

S

s

s

s



2 2

1

2

3

: L I

is

is

is



 R3 3

1

2

3

: L I

k

k

k



C

C

C

1 1

1

2

3

: L I

s

s

s

C

C

C


…… …… …… ……

Fig. 6. The Multilevel Index Model with Functions

Next, the methodologies for operating the services in
the proposed model are presented, along with the intro-
duction of the four operations.

5.2. Retrieval

Retrieval is an important operation of the proposed mod-
el. It can be invoked by service discovery and composi-
tion methods and return service sets according to retriev-
al requirements. Based on the multilevel index, the re-
tireval operation reduces their corresponding retrieval
time effectively. The computation of Re(A, S) involves six
steps, as shown in the following algorithm.

Algorithm 1. Retrieval.

Input A

K=AК;

={Ck|Ckfk
-p(K)};

C={is|isf3-p()•isA};

=f2-p(C);

Re(A, S)=f1-p();

Theorem 5. Algorithm 1 to compute Re(A, S) is correct.
Proof: Let P=Re(A, S)={s|•sAsS} and S' denotes the

set obtained by Algorithm 1. (1) sS' f1(s)=Cs 
f2(Cs)=is  •s=•Cs=•is A  sP  S'P. (2) Given
sP, f1(s)=Cs, f2(Cs)=is, f3(is)=Ck, and fk(Ck) =k.
•s=•Cs=•isA. Since (is)К and (is)A, we have
(Ck)=(is)K. Since fk is a bijection, fk(Ck)KCk.
Since •isA and f3 is a surjection, f3(is)=CkisC. Since
f2 is a surjection, f2(Cs)=isCs. Since f1 is a surjection,
f1(s)=CssS'. Thus, sS' and PS'. By (1) and (2), P=S'.
Therefore, this algorithm is correct. 

 Since our model is designed based on the complete
index for all the services in the repository and accurate
key matching, the recall of service search will always be 1.
The objective of the study is not going to improve the
recall and accuracy of service search in large-scale service
repositories, but to develop a novel indexing module to
speed up the search process and reduce the searching
time. Recall the example in Section IV.B, given A={b, c}
instead of A={a, b, c} and the input-similar class is1 with
•is1={a, c} and (is1)=a, is1 will not be retrieved for
Re(A, S) since c is not a key.

If a data structure without any index, called a sequen-
tial structure is used to compute Re(A, S), the number of
services needed to be retrieved is |S| in any case. For an
inverted index structure [23], the number of services
needed to be retrieved is 0 in the best case and |A||S|
in the worst case, whereas our proposed model needs to
retrieve 0 service in the best case but |S| services in the
worst case.

5.3. Addition

Theorem 4 gives a basic principle for selecting the key,
which is |Ck| should be as close to 2| | as possible.
Based on this principle, a best-fit method is given to insert
a service into the multilevel index. When a service s is
inserted into the multilevel index, the first step is to iden-
tify the input parameters which are used as keys con-
tained in К, and then the appropriate key k is selected,
such that |fk

-1(k)| is close to 2| | . If there are more than
one key available with the same cardinality, a key is se-
lected randomly. If there is no key contained in •s, a pa-
rameter is randomly selected from •s, as a new key. Un-
fortunately, this method may make some key classes such
that their cardinalities are much bigger than 2| | when
some parameters are used as input parameters by most
services. To avoid this, a preset threshold value is pre-
sented to control the cardinality of a key class, with a
condition that, in a service, for a key k with, |fk

-1(k)|

2| | , it cannot be selected as the key of s. The addition
algorithm is illustrated as follows.

Algorithm 2. Addition.

8 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

Input a service s;

K=•sК;

if(K==){randomly select a k•s as a key of s;}

else

{={Ck|Ckfk
-p(K)};

 find is:isf3-p()•is==•s;

 if(is exists){select k=(f3(is) as a key of s;}

 else

 {Kinclude={k|kK|fk
-1(k)|<

2| | };

 Kclose={k|kKincluded|(|fk
-1(k)|-

2| |)||(|fk
-1(k')|-

2| |)|,

k'Kincluded};

 if(Kclose){randomly select a kKclose as a key of s;}

 else

 {if((•s-K)){randomly select a k(•s-K) as a key of s;}

 else

 {Kexcluded=K-Kincluded;

 Kclose = { k | kKexcluded  |(|fk
-1(k)|-

2| |)||(|fk
-1(k')|-

2| |

)|,k'Kexcluded};

 randomly select a kKclose as a key of s;}}}}

if(kК){add k into К; create Ck:Ck3(Ck)=k;}

find is:•is=•sisf3-p({fk
-1(k)});

if(is does not exist){create is:isR2•is=•s;}

find Cs:Cs•=s•Csf2-p({is});

if(Cs does not exist){create Cs:Cs1•Cs=•sCs•=s•;}

Cs=Cs{s};

The proposed method was built upon the inverted in-

dex which inherits all the advantages of the inverted in-
dex. The efficiency of the proposed index is higher than
the inverted one, even in the worst key selection case,
because it eliminates the redundancy residing in the in-
verted index.

5.4. Deletion and Replacement

Deletion is to delete a service from the multilevel index. It
is a reverse process of addition. The deletion algorithm is
as follows.

Algorithm 3. Deletion.

Input a service s;

S'=Re(•s, S);

if(sS')

{Cs=f1(s);Cs=Cs-{s};

 if(|Cs|==0)

 {is=f2(Cs);is=is-{Cs};

 if(|is|==0)

 {Ck=f3(is);Ck=Ck-{is};

 if(|Ck|==0)

 {k=fk(Ck);3=3-{Ck};К=К-{k};}}}}}

The replacement operation can be implemented by the

deletion and addition operations. Replacement requires
two inputs as s and s', where s is the original service, and
s' is the service to replace s. The replacement algorithm is
as follows.

Algorithm 4. Replacement.

Input s and s';

Deletion(s);

Addition(s');

6 FLEXIBLE DEPLOYMENT

The proposed multilevel index is designed for large-scale
complex disaster service repositories, with four-level in-
dexing to optimize the service discovery process. Howev-
er, the four-level indexing method is not always suitable
for smaller scale service repositories, since smaller reposi-
tories usually comprise only a few services with similar
input and output. In response to this issue, a flexible de-
ployment algorithm has been developed which is dynam-
ically adjustable with the number of indexing levels, ac-
cording to the characteristics of individual service reposi-
tories. This deployment algorithm is aimed at satisfying a
variety of scales of service repositories showing various
characteristics.

6.1. Deployment of L4I-L2I

According to the definition of 1, L1I reduces the redun-
dancy caused by the services with the same input and
output parameter sets. If there is no or few services shar-
ing the same input and output parameter sets, the L1I
would have no or little effect on reducing the service re-
trieval count and time. Furthermore, it might also cause
an extra overload. In this case, the multilevel index model
can be deployed with the index level of L4I-L2I, as shown
in Fig. 7.

4

1

2

3

: L I

К

k

k

k



1

2

3

S

s

s

s



2 2

1

2

3

: L I

is

is

is



 R3 3

1

2

3

: L I

k

k

k



C

C

C
…… …… ……

Fig. 7. The index model for L4I-L2I.

The operations are introduced as below for the de-
ployment of L4I-L2I.

Algorithm 5. Retrieval process of the index model for
L4I-L2I.

Input A;

K=AК;

={Ck|Ckfk
-p(K)};

C={is|isf3-p()•isA};

Re(A, S)=f2-p(C).

Note that, f2 is not the function from S to 1, but it is the

function from S to R2 according to the relation •s=•is. The
correctness of the retrieval can be proved in a similar way
to Theorem 5.

The addition operation is shown as follows.

Algorithm 6. Addition operation of the index model for
L4I-L2I.

Input a service s;

K=•sК;

Y. WU ET AL.: AN ADAPTIVE MULTILEVEL INDEXING METHOD FOR DISASTER SERVICE DISCOVERY 9

if(K==){randomly select a k•s as a key of s;}

else

{={Ck|Ckfk
-p(K)};

 find is:isf3-p()•is==•s;

 if(is exists){select k=(f3(is) as a key of s;}

 else

 {Kinclude={k|kK|fk
-1(k)|<

2| | };

 Kclose={k|kKincluded|(|fk
-1(k)|-

2| |)||(|fk
-1(k')|-

2| |)|,

k'Kincluded};

 if(Kclose){randomly select a kKclose as a key of s;}

 else

 {if((•s-K)){randomly select a k(•s-K) as a key of s;}

 else

 {Kexcluded=K-Kincluded;

 Kclose={k|kKexcluded|(|fk
-1(k)|-

2| |)||(|fk
-1(k')|-

2| |)|,

k'Kexcluded};

 randomly select a kKclose as a key of s;}}}}

if(kК){add k into К; create Ck:Ck3(Ck)=k;}

find is:•is=•sisf3-p({fk
-1(k)});

if(is does not exist){create is:isR2•is=•s;}

is=is{s};

The deletion operation is shown as follows.

Algorithm 7. Deletion operation of the index model for
L4I-L2I.

Input a service s;

S'=Re(•s, S);

if(sS')

{is=f2(s);is=is-{s};

 if(|is|==0)

 {Ck=f3(is);Ck=Ck-{is};

 if(|Ck|==0)

 {k=fk(Ck);3=3-{Ck};К=К-{k};}}}

Since the replacement operation is composed of dele-
tion and addition, this replacement algorithm for L4I-L2I
is the same as Algorithm 4.

6.2. Deployment of L4I-L3I

According to the definition of R2, L2I reduces the redun-
dancy caused by the services with the same input param-
eter set. If there are no or few services sharing the same
input parameter set, the L2I would have no or little effect
on reducing the service retrieval count and time. Similarly
to the function L1I, it might also cause an extra overload.
In this case, the multilevel index model can be deployed
with the index level of L4I-L3I. It is the lightest deploy-
ment as shown in Fig. 8.

4

1

2

3

: L I

К

k

k

k



1

2

3

S

s

s

s



3 3

1

2

3

: L I

k

k

k



C

C

C
…… ……

Fig. 8. The index model for L4I-L3I.

The f3 embedded on the above index is not the function
from R2 to 3, but it is the function from S to 3 according
to the relation (s)=(is). Here, a simplified retrieval op-
eration is illustrated as follows.

Algorithm 8. Retrieval process of the index model for
L4I-L3I.

Input A

K=AК;

={Ck|Ckfk
-p(K)};

Re(A, S)=f3-p();

Its correctness can be proved in a similar way to Theo-
rem 5.

The addition operation is simplified as follows.

Algorithm 9. Addition operation of the index model for
L4I-L3I.

Input a service s;

K=•sК;

if(K==){randomly select a k•s as a key of s;}

else

{={Ck|Ckfk
-p(K)};

 Kinclude={k|kK|fk
-1(k)|< | |S };

 Kclose={k|kKincluded|(|fk
-1(k)|- | |S)||(|fk

-1(k')|- | |S)|,

k'Kincluded};

 if(Kclose){randomly select a kKclose as a key of s;}

 else

 {if((•s-K)){randomly select a k(•s-K) as a key of s;}

 else

 {Kexcluded=K-Kincluded;

 Kclose={k|kKexcluded|(|fk
-1(k)|- | |S)||(|fk

-1(k')|- | |S)|,

k'Kexcluded};

 randomly select a kKclose as a key of s;}}}

if(kК){add k into К; create Ck:Ck3(Ck)=k;}

Ck=f-1(k);

Ck=Ck{s};

The deletion operation is simplified as follows.

Algorithm 10. Deletion operation of the index model for
L4I-L3I.

Input a service s;

S'=Re(•s, S);

if(sS')

{Ck=f3(s);Ck=Ck -{s};

 if(|Ck|==0)

 {k=fk(Ck);3=3-{Ck};К=К-{k};}}

6.3. Flexible Deployment Algorithm

In this section, the facts and criterion in selecting the dif-
ferent deployments will be introduced.

First, the criterion about L1I is discussed. =|S|,
=|1|, and =/, for a non-empty service repository,
0<1. The mean time for a retrieval, without L1I, can be
defined as T=t, where t denotes the mean time between
the service and the service under comparison. Including
L1I, the mean time for a retrieval can be defined as

10 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

T1=(t+t1), where t1 denotes the mean of the overload
time induced by L1I. Then the efficiency function of L1I
can be defined as E1=T/T1=1/((1+t1/t)) and E1 is de-
pendent on the deployment environment.  is usually
decided by the service set, and t and t1 are decided
based on the implemental conditions, including hardware
and software environments. E1>1 implies that L1I can im-
prove the retrieval efficiency and L4I-L1I is the index level
should be deployed here. Otherwise, L4I-L2I and L4I-L3I
should be considered.

About L2I, given =|R2| and =/ , the mean time
for a retrieval can be defined as T2=(t+t2) with the func-
tion L2I, where t2 denotes the mean of the overload time
induced by L2I. For the same reason as above, the efficien-
cy function of L2I can be defined as E2=T/T2=1/(
(1+t2/t)).  is decided by the service set, and t and t2
are decided based on hardware and software. If E2>1, L2I
should be implanted, otherwise, L4I-L3I should be consid-
ered.

So, the efficiency functions E1 and E2 are the key factors
to be considered, while selecting the index levels. For a
large-scale service repository, a subset of them can be
selected as an experimental sample to evaluate E1 and E2.
The following algorithm can be used to adaptively de-
termine the deployment model, for a given service set S.

Algorithm 11. Selection of the deployment model.

Input a service set S;

If(E1>1){deploying L4I-L1I;}

Else{if(E2>1){deploying L4I-L2I;}

 Else{deploying L4I-L3I;}}

 Different deployment models can be transformed into
each other efficiently by using the addition operation dis-
cussed in section V.C and the flexible deployment algo-
rithm. The efficiency of transformation mainly relies on
efficiency of the addition operation, which will be evalu-
ated in the next section.

7 EXPERIMENTAL RESULTS

In order to evaluate the proposed index model, an openly
available test set [20, 29-31], ICEBE05 [32], is used in our
experiments. The test set is comprised of 18 subsets that
simulated various scenarios in the service composition.
Each subset includes 11 composition queries. The con-
tents of the test set are detailed in TABLE 1.

TABLE 1. EIGHTEEN SERVICE COMPOSITION TEST SETS

No. Name Service Count No. Name Service Count

1 1-20-4 2156 10 2-20-4 3356

2 1-20-16 2156 11 2-20-16 6712

3 1-20-32 2156 12 2-20-32 3356

4 1-50-4 2656 13 2-50-4 5356

5 1-50-16 2656 14 2-50-16 5356

6 1-50-32 2656 15 2-50-32 5356

7 1-100-4 4156 16 2-100-4 8356

8 1-100-16 4156 17 2-100-16 8356

9 1-100-32 4156 18 2-100-32 8356

Since there is no service sharing the same input pa-
rameter sets in this test set, namely =1 and '=1, E1<1

and E2<1. The deployment of L4I-L3I is selected according
to Algorithm 11. All the services in the testing set are
stored in the proposed index and in the inverted index.
The composition efficiencies of both of the indices are
compared with a similar composition method.

Recall that service composition methods can be classi-
fied into two broad categories, the forward methods and
the backward methods. A composition request can be
denoted as Q=(Qp, Qr), where Qp is a parameter set pro-
vided by the user, and Qr is a parameter set required by
the user. The forward methods are used [16, 19, 20, 30, 33]
to compose the composition result from Qp to Qr. The
backward methods are converse in nature. The proposed
model is effective only for the forward composition
methods. Since the condition of the forward composition
is •sA, and thus it can be used to narrow the search
space, while the condition of the backward composition is
As•. Therefore, L3I and L4I are invalid for it.

One of forward composition methods, called breadth-
first composition method, is used in our experiments,
following Kwon et al [19]. This method exhibits the ad-
vantage of finding parallel services to the largest degree,
with a similar time complexity of the depth-first method.
Also, the breadth-first composition method can obtain the
same composition results for a given composition request,
regardless of the service storage structures. Therefore, this
method is not affected by randomness and is fair to com-
pare the performances of different storage structure. For
example, S={s1:a→b; s2:c→d; s3:b→f}, and Qp={a, c} and
Qr={f}. In the initial state, the parameter set available is
A=Qp={a, c}. First, the breadth-first method is used to find
all the services that can be invoked under A, i.e.,
S'={s|•sAsS}=Re(A, S). As an outcome, s1 and s2 are
identified. A is expanded to A=As1

•s2
•={a, c, b, d}, and

S=S-S'. If QrA and S', repeat the above process until
QrA or S'=. If QrA, the composition request can be
satisfied. In the above example, the composition result is
"s1||s2, s3", where "s1||s2" means that s1 and s2 can be in-
voked in parallel.

Note that, the above breadth-first process is one of the
basic methods and it exhibits a degree of complexity dur-
ing its implementation. For example, Kwon et al. [19] used
a backward phase to prune the redundancy services, and
Tang et al. [16] considered the behavioral-constraint com-
patibility of services into account. However, this does not
imply that the proposed model is either ineffective or im-
practical. Since, service retrieval is the basic operation of
service discovery and composition; it can be easily inte-
grated with these methods. Our intention is to evaluate
the effectiveness of the multilevel index model in narrow-
ing the search space for service retrieval in a service com-
position process, but not to implement an advanced and
complex service composition method. In this advent, the
breadth-first method is well fitted to our experiments,
particularly with our performance comparisons and eval-
uations.

In a service composition, a service should be selected
from a service set to judge whether it meets a given re-
quirement. If it is not in our interest, the next service is
selected and tested; if so, proceed to the next step. The

Y. WU ET AL.: AN ADAPTIVE MULTILEVEL INDEXING METHOD FOR DISASTER SERVICE DISCOVERY 11

number of services tested in the selection process, is a
primary indication of the efficiency of the composition
method. This primary indicator is called as the retrieval
count. Fig. 9 shows the total retrieval count of 198 compo-
sition queries with a breadth-first method under two in-
verted and multilevel structures. The proposed multilevel
index reduces 68.4% of retrievals than the inverted index.

Fig. 9. Total retrieval counts of a breadth-first method under inverted
and multilevel indices.

Fig. 10. Retrieval counts of a breadth-first method under inverted
and multilevel indices for 198 composition requirements.

Fig. 11. Differences of retrieval counts of a breadth-first method be-
tween the inverted index and the multilevel index.

Fig. 10 shows the retrieval counts for all the 198 com-
position requirements in the test set. Fig. 11 shows the
retrieval count differences between the inverted index
and the multilevel index. The whole curve in Fig. 11 is no
less than 0, which implies that the retrieval count under
the multilevel index is no more than the count of the in-
verted index model. These results also agree with the
previous theoretical analysis. There are some big fluctua-
tions at some points in the curve of the inverted index
model, which means the inverted index is not stable,
namely, for some special requests, users must wait for a

longer time than the response time of other requests.
Clearly, the multilevel index is more stable than the in-
verted index. Another advantage of the multilevel index
is that its increasing tendency is less than the inverted
index, which means that it has more advantages in a larg-
er service repository. Therefore, the multilevel index is
very suitable for large-scale service repositories. Fig. 11
shows this advantage very clearly.

Since the proposed index is more complicated than the
inverted index, it could have some overhead. Therefore,
composition time is an important and also a practical in-
dicator. Fig. 12 shows the total composition time of 198
composition queries with a breadth-first method, under
both the inverted index and the multilevel index. The
proposed multilevel index reduces 62.2% of the composi-
tion time than the inverted index. In a search and rescue
mission during a disaster relief effort, time means lives,
which is very crucial. From the obtained results, we can
see that the proposed model can significantly reduce the
composition time to deliver a joint search and rescue ca-
pability. The 62.2% reduction of the composition time also
reflects in more than 60% of savings in the computation-
related electricity power, and thus reducing the electricity
cost. In the environment of sensor networks, reduced
power consumption is also highly desirable, especially for
those devices assisted power by batteries.

Fig. 12. Total composition time of a breadth-first method under the
inverted and multilevel indices.

Fig. 13. Composition time of a breadth-first method under the invert-
ed and multilevel indices for 198 composition requirements.

Fig. 13 shows the composition time for all the 198
composition queries. Fig. 14 shows the difference in the
composition time, between the inverted index and the
multilevel index. In Fig. 14, it can be observed that, only
the first point of the curve is slightly smaller than 0,
which implies that the proposed index has overwhelming

Inverted

283830

Multilevel

89553

0

50000

100000

150000

200000

250000

300000

R
et

ri
ev

al
 c

o
u
n
t

Inverted

7336.5ms

Multilevel

2774.6ms

0

1000

2000

3000

4000

5000

6000

7000

8000

C
o
m

p
o
si

ti
o
n
 t
im

e
(m

s)

12 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

advantages. With the observation of an increasing ten-
dency of the curve in Fig. 14, it can be concluded that
with the increasing number of services, the proposed in-
dex exploits more benefits.

Fig. 14. Differences of composition time of a breadth-first method
between the inverted index and the multilevel index.

When new services are identified in a disaster rescue
scenario, they should be inserted quickly into a service
repository and prepared to be invoked by other services
or users. The efficiency of this operation highly depends
on the efficiency of the addition algorithm. To this end,
the addition operation of the multilevel index is tested,
and proved its efficiency with our experiment results. The
addition operation costs 1289.8ms to insert 81464 services.
The deletion operation is less complex than the addition
operation, and the replacement operation can be imple-
mented by the addition and the deletion operations, re-
spectively.

Above experiments are tested in a real-time mode. All
composition and addition requests are given in real time,
and they can be responded promptly, in less than 0.1 sec-
ond. That means the proposed method is efficient and
suitable for the dynamic disaster rescue environment.

8 CONCLUSION

This work proposes a multilevel index model to store and
to manage the services for large-scale service repositories.
Based on the theory of the equivalence relations and quo-
tient sets, the four-level indices are developed to con-
struct the multilevel index model. Four different opera-
tions are developed in the proposed model, in order to
manage and to maintain the service repositories. The the-
oretical analysis and the experimental results indicate that
the proposed multilevel index is more efficient for service
discovery and composition than the existing inverted in-
dex method, especially for the repositories with an in-
creasing number of services. The proposed model can be
deployed adaptively and flexibly according to the charac-
teristics of service repositories. Our experiments also
prove the efficiencies of the developed operations in the
index model. We also add that, in the advent of drastical-
ly expanding services, the proposed model provides a
highly desirable storage structure for large-scale service
repositories.

As a future work, the proposed model will be further
tested in more complex and larger scale environments, in
order to evaluate the influence of the potential factors
those could affect the overall performance. The potential

factors include the number of services included in a re-
pository, the number of input parameters included in
services and the number of services which use the same
parameter as their inputs. The formal question resolved
by the proposed method is how to quickly find out all
subsets for a given set from a large volume of data set.
Any question that can be abstracted to such a problem
can use the proposed multilevel index to speed its process.
Therefore, another future work is to evaluate this method
for other applications.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Funds of P. R. China under Grants No. 91218301,
61173016, 61332008, 90818023 and 61173042, HongKong,
Macao and Taiwan Science & Technology Cooperation
Program of China (2013DFM10100), Natural Science
Foundation of Jiangsu Province of China (BK20130528),
the Sino-UK Higher Education Research Partnership for
PhD Studies and Visiting Research Fellow Program of
Tongji University. Lu Liu and Changjun Jiang are the cor-
responding authors

REFERENCES

[1] (2012). World Disaster Report 2012. Available:

http://worlddisastersreport.org/en/data/index.html

[2] (2013). World Disaster Report 2013. Available:

http://worlddisastersreport.org/en/

[3] W. Tan, Y. Fan, and M. Zhou, "A Petri Net-Based Method for

Compatibility Analysis and Composition of Web Services in

Business Process Execution Language," IEEE Transactions on

Automation Science and Engineering, vol. 6, pp. 94-106, 2009.

[4] W. Tan, Y. Fan, M. Zhou, and Z. Tian, "Data-Driven Service

Composition in Enterprise SOA Solutions: A Petri Net

Approach," IEEE Transactions on Automation Science and

Engineering, vol. 7, pp. 686-694, 2010.

[5] P. Xiong, Y. Fan, and M. Zhou, "A Petri Net Approach to

Analysis and Composition of Web Services," IEEE Transactions

on Systems, Man and Cybernetics, Part A: Systems and Humans,

vol. 40, pp. 376-387, 2010.

[6] P. Sun, C. J. Jiang, and M. C. Zhou, "Interactive Web service

composition based on Petri net," Transactions of the Institute of

Measurement and Control, vol. 33, pp. 116-132, Feb 2011.

[7] G. Liu, C. Jiang, and M. Zhou, "Process Nets With Channels,"

IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, vol. 42, pp. 213-225, 2012.

[8] W. Tan and M. C. Zhou, Business and Scientific Workflows: A

Web Service-Oriented Approach, 1 ed.: Wiley-IEEE Press, 2013.

[9] P. W. Wang, Z. J. Ding, C. J. Jiang, and M. C. Zhou, "Design and

Implementation of a Web-Service-Based Public-Oriented

Personalized Health Care Platform," IEEE Transactions on

Systems, Man, and Cybernetics: Systems, pp. 1-17, 2013.

[10] Y. Wu, C. Yan, Z. Ding, G. Liu, P. Wang, C. Jiang, et al., "A

Novel Method for Calculating Service Reputation," IEEE

Transactions on Automation Science and Engineering, vol. 10, pp.

634-642, 2013.

[11] L. Liu, N. Antonopoulos, J. Xu, D. Webster, and K. Wu,

"Distributed service integration for disaster monitoring sensor

systems," IET Communications, vol. 5, pp. 1777-1784, 2011.

http://worlddisastersreport.org/en/data/index.html
http://worlddisastersreport.org/en/

Y. WU ET AL.: AN ADAPTIVE MULTILEVEL INDEXING METHOD FOR DISASTER SERVICE DISCOVERY 13

[12] L. Lu, D. Webster, X. Jie, and W. Kaigui, "Enabling dynamic

workflow for disaster monitoring and relief through service-

oriented sensor networks," in Proc. 2010 5th International ICST

Conference on Communications and Networking in China

(CHINACOM), 2010, pp. 1-7.

[13] S. Narayanan and S. A. McIlraith, "Simulation, verification and

automated composition of web services," in Proc. the 11th

international conference on World Wide Web, Honolulu, Hawaii,

USA, 2002, pp. 77-88.

[14] W. Nam, H. Kil, and D. Lee, "On the computational complexity

of behavioral description-based web service composition,"

Theoretical Computer Science, vol. 412, pp. 6736-6749, 2011.

[15] G. Liu, C. Jiang, M. Zhou, and P. Xiong, "Interactive Petri Nets,"

IEEE Transactions on Systems, Man and Cybernetics, Part A:

Systems and Humans, pp. 1-12, 2012.

[16] X. Tang, C. Jiang, and M. Zhou, "Automatic Web service

composition based on Horn clauses and Petri nets," Expert

Systems with Applications, vol. 38, pp. 13024-13031, 2011.

[17] C.-S. Wu and I. Khoury, "Tree-based Search Algorithm for Web

Service Composition in SaaS," in Proc. the Ninth International

Conference on Information Technology: New Generations (ITNG),

2012, pp. 132-138.

[18] I. Constantinescu, B. Faltings, and W. Binder, "Large scale,

type-compatible service composition," in Proc. the 2004 IEEE

International Conference on Web Services, 2004, pp. 506-513.

[19] J. Kwon, H. Kim, D. Lee, and S. Lee, "Redundant-Free Web

Services Composition Based on a Two-Phase Algorithm," in

Proc. the 2008 IEEE International Conference on Web Services, 2008,

pp. 361-368.

[20] D. Lee, J. Kwon, S. Lee, S. Park, and B. Hong, "Scalable and

efficient web services composition based on a relational

database," Journal of Systems and Software, vol. 84, pp. 2139-2155,

Dec. 2011.

[21] L. Aversano, G. Canfora, and A. Ciampi, "An algorithm for Web

service discovery through their composition," in Proc. the 2004

IEEE International Conference on Web Services, 2004, pp. 332-339.

[22] E. W. Weisstein. Binomial theorem. Available:

http://mathworld.wolfram.com/BinomialTheorem.html

[23] K. Li, L. Ying, D. Shuiguang, and W. Zhaohui, "Inverted

Indexing for Composition-Oriented Service Discovery," in Proc.

the 2007 IEEE International Conference on Web Services, 2007, pp.

257-264.

[24] S. Brin and L. Page, "The anatomy of a large-scale hypertextual

Web search engine," Computer Networks and ISDN Systems, vol.

30, pp. 107-117, 1998.

[25] L. A. Barroso, J. Dean, and U. Holzle, "Web search for a planet:

The Google cluster architecture," IEEE Micro, vol. 23, pp. 22-28,

2003.

[26] Y. Wu, C. Yan, Z. Ding, P. Wang, C. Jiang, and M. Zhou, "A

Relational Taxonomy of Services for Large Scale Service

Repositories," in Proc. the 19th IEEE International Conference on

Web Services (ICWS), 2012, pp. 644-645.

[27] K. H. Kim and H. O. Welch, "Distributed execution of recovery

blocks: an approach for uniform treatment of hardware and

software faults in real-time applications," Computers, IEEE

Transactions on, vol. 38, pp. 626-636, 1989.

[28] B. Kolman, R. C. Busby, and S. C. Ross, Discrete Mathematical

Structures, 5th ed. Upper Saddle River, NJ: Pearson Prentice

Hall, 2004.

[29] S. C. Oh, D. Lee, and S. R. T. Kumara, "Web service planner

(WSPR): An effective and scalable web service composition

algorithm," International Journal of Web Services Research, vol. 4,

pp. 1-22, Jan-Mar 2007.

[30] R. Hewett, P. Kijsanayothin, and B. Nguyen, "Scalable

Optimized Composition of Web Services with Complexity

Analysis," in Proc. the 2009 IEEE International Conference on Web

Services, 2009, pp. 389-396.

[31] S. C. Oh, D. Lee, and S. R. Kumara, "Effective Web Service

Composition in Diverse and Large-Scale Service Networks,"

IEEE Transactions on Services Computing, vol. 1, pp. 15-32, 2008.

[32] ICEBE05. (2005). Web Services Challenge 2005. Available:

http://www.comp.hkbu.edu.hk/~ctr/wschallenge/

[33] H. Mili, G. Tremblay, A. E. Caillot, R. B. Tamrout, and A. Obaid,

"Web service composition as a function cover problem," in Proc.

The 2005 Montreal Conference on eTechnologies, Montreal, Canada,

2005, pp. 61-71.

Yan WU received the M.S. degree from
Shandong University of Science and Tech-
nology, Qingdao, China, in 2009, and the
PhD degree from Tongji University, Shanghai,
China, in 2014. He is currently a Lecturer
with the School of Computer Science and
Telecommunication Engineering in Jiangsu
University, China. His research interests
include formal methods, Service-oriented
Computing, and Cloud Computing.

ChunGang YAN is currently a Professor with
the Department of Computer Science and
Technology, Tongji University, Shanghai,
China. Her current research interests include
Petri nets, formal method, workflow and ser-
vice-oriented computing. She has published
more than 30 publications. She has won
several awards.

Lu LIU is the Professor of Distributed Com-
puting in the University of Derby, Adjunct
Professor in Jiangsu University and Visiting
Research Fellow in Tongji University. Prof Liu
received his PhD degree from University of
Surrey (funded by DIF DTC) and MSc in Data
Communication Systems from Brunel Univer-
sity. Prof Liu's research interests are in areas
of cloud computing, service computing, peer-
to-peer computing, virtual computing and
system of systems engineering. Prof Liu has

secured many research projects which are supported by UK re-
search councils, BIS and RLTF as well as industrial research part-
ners. Prof Liu has over 100 scientific publications in reputable jour-
nals, academic books and international conferences. He was recog-
nized as a Promising Researcher by University of Derby in 2011 and
received BCL Faculty Research Award in 2012. Prof Liu has chaired
many international conference and workshops and has served as an
Editorial Board member for several international computing journals.
He is a member of IEEE and BCS.

ZhiJun DING received the M.S. degree from
Shandong University of Science and Tech-
nology, Taian, China, in 2001 and the Ph.D.
degree in computer science from Tongji Uni-
versity, Shanghai, China, in 2007. He is cur-
rently a Professor with the Department of
Computer Science and Technology, Tongji
University, Shanghai, China. His research
interests are in Service Computing, Semantic
Web, formal engineering, Petri nets, and

http://mathworld.wolfram.com/BinomialTheorem.html
http://www.comp.hkbu.edu.hk/~ctr/wschallenge/

14 IEEE TRANSACTIONS ON JOURNAL COMPUTERS, TC-2014-01-0059

workflows. He has published more than 50 journal papers in domes-
tic and international academic publications.

ChangJun JIANG received the Ph.D. degree
from the Institute of Automation, Chinese
Academy of Science, Beijing, China, in 1995.
He is currently a Professor of Computer Sci-
ence and Engineering and a Deputy Presi-
dent of Tongji University, Shanghai, China.
He is also a Research Fellow in the City
University of Hong Kong, Kowloon, Hong
Kong and a Specialist of Information Area of
Shanghai. His current research interests
include concurrency theory, Petri nets, formal

verification of software, cluster, grid technology, program testing,
intelligent transportation systems, and service-oriented computing.
He has been engaged in concurrency theory and concurrency pro-
cessing. He has published more than 100 papers in domestic and
international academic publications, including Science China, IEEE
TRANSACTIONS ON ROBOTICS AND AUTOMATION, IEEE
TRANSACTIONS ON FUZZY SYSTEMS, International Journal of
Computer Mathematics, International Journal of Computer Systems
Science and Engineering, International Journal of Studies in Infor-
matics and Control, and International Journal of Advanced System
Science and Application. Furthermore, he has published four books
(Science Publishing Foundation of the Chinese Academy of Sci-
ence). He has taken in over 30 projects supported by the National
Nature Science Foundation, National High Technology R&D Pro-
gram, and National Basic Research Developing Program and other
important and key projects at provincial or ministerial levels. Prof.
Jiang has been the recipient of one international prize and seven
national prizes in the field of science and technology. He was the
recipient of the Advancement Awards of the Ministry of Education
and National Excellent Doctoral Dissertation, and Excellent Youth
Teacher. He is selected in the Encouragement Program for Teaching
and Researching of Excellent Young Teachers by the Ministry of
Education and the recipient of China National Funds for Distin-
guished Young Scientists.

