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Abstract

Single bouts of land-based exercise (for example, walking, running, cycling) do not typically 

alter post-exercise energy intake on the day of exercise. However, anecdotal and preliminary 

empirical evidence suggests that swimming may increase appetite and energy intake. This 

study compared the acute effects of swimming on appetite, energy intake, and food preference 

and reward, versus exertion-matched cycling and a resting control. Thirty-two men (n=17; 

mean ± SD age 24 ± 2 years, body mass index [BMI] 25.0 ± 2.6 kg/m2) and women (n=15; age 

22 ± 3 years, BMI 22.8 ± 2.3 kg/m2) completed three experimental trials (swimming, cycling, 

control) in a randomised, crossover design. The exercise trials involved 60-min of ‘hard’ 

exercise (self-selected rating of perceived exertion: 15) performed 90-min after a standardised 

breakfast. Food preference and reward were assessed via the Leeds Food Preference 

Questionnaire 15-min after exercise, whilst ad libitum energy intake was determined 30-min 

after exercise. The control trial involved identical procedures except no exercise was performed. 

Compared with control (3259 ± 1265 kJ), swimming increased ad libitum energy intake (3857 

± 1611 kJ; ES=0.47, 95% CI of the mean difference between trials 185, 1010 kJ, P=0.005); the 

magnitude of increase was smaller after cycling (3652 ± 1619 kJ; ES=0.31, 95% CI -21, 805 

kJ, P=0.062). Ad libitum energy intake was similar between swimming and cycling (ES=0.16, 

95% CI -207, 618 kJ, P=0.324). This effect was consistent across sexes and unrelated to food 

preference and reward which were similar after swimming and cycling compared with control. 

This study has identified an orexigenic effect of swimming. Further research is needed to 

identify the responsible mechanism(s), including the relevance of water immersion and water 

temperature per se.



1 An acute bout of swimming increases post-exercise energy intake in young healthy men 

2 and women

3 Alice E. Thackray a,b, Scott A. Willis a,b, Aron P. Sherry a,b, David J. Clayton c, David R. Broom 

4 d, Mayada Demashkiehe, Jack A. Sargeant b,f, Lewis J. James a, Graham Finlayson g, David J. 

5 Stensel a,b, James A. King a,b

6

7 a National Centre for Sport and Exercise Medicine, School of Sport, Exercise and Health 

8 Sciences, Loughborough University, UK; A.E.Thackray@lboro.ac.uk (AET), 

9 S.Willis2@lboro.ac.uk (SAW), A.P.Sherry@lboro.ac.uk (APS), L.James@lboro.ac.uk (LJJ), 

10 D.J.Stensel@lboro.ac.uk (DJS), J.A.King@lboro.ac.uk (JAK).

11 b National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, 

12 University Hospitals of Leicester NHS Trust and University of Leicester, Leicester, UK; 

13 js928@leicester.ac.uk (JAS).

14 c School of Science and Technology, Nottingham Trent University, UK; 

15 David.Clayton@ntu.ac.uk (DJC).

16 d Academy of Sport and Physical Activity, Sheffield Hallam University, UK; 

17 D.R.Broom@shu.ac.uk (DRB). 

18 e Department of Physical Education and Sport Science, Nanyang Technological University, 

19 Singapore; Mayada.Demashkieh@nie.edu.sg (MD).

20 f Diabetes Research Centre, University of Leicester, UK

21 g Faculty of Medicine and Health, University of Leeds, UK; G.S.Finlayson@leeds.ac.uk 
22 (GSF).

23

24 Address for correspondence

25 Dr James King

26 Senior Lecturer in Exercise Physiology

27 School of Sport, Exercise and Health Sciences

28 Loughborough University

29 Leicestershire

30 United Kingdom

31 LE11 3TU

32 Phone: +44(0)1509 228457

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

mailto:A.E.Thackray@lboro.ac.uk
mailto:S.Willis2@lboro.ac.uk
mailto:A.P.Sherry@lboro.ac.uk
mailto:L.James@lboro.ac.uk
mailto:D.J.Stensel@lboro.ac.uk
mailto:J.A.King@lboro.ac.uk
mailto:js928@leicester.ac.uk
mailto:David.Clayton@ntu.ac.uk
mailto:D.R.Broom@shu.ac.uk
mailto:Mayada.Demashkieh@nie.edu.sg
mailto:G.S.Finlayson@leeds.ac.uk


33 Email: j.a.king@lboro.ac.uk

34 Declarations of interest: None.

35 Abbreviations: CI, confidence intervals; ES, effect size; LFPQ, Leeds Food Preference 

36 Questionnaire; METs, metabolic equivalents; PFC, prospective food consumption; RPE, rating 

37 of perceived exertion

38 Key words: exercise, appetite, energy homeostasis, food intake, food reward

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118

mailto:j.a.king@lboro.ac.uk


3

39 1. Introduction

40 The interaction between exercise and appetite control is an important issue which holds 

41 relevance for energy balance and weight management (Blundell, Gibbons, Caudwell, 

42 Finlayson, & Hopkins, 2015; Stensel, 2011). Over the last twenty years, many research groups 

43 have scrutinised how exercise, of various forms, impacts on appetite perceptions, ad libitum 

44 energy intake and appetite-related hormones (Dorling et al., 2018). The consensus of this 

45 research is that single bouts of moderate- to high-intensity exercise transiently suppress 

46 appetite, but do not influence subsequent ad libitum energy intake on the day exercise is 

47 performed (Deighton & Stensel, 2014; Schubert, Desbrow, Sabapathy, & Leveritt, 2013). This 

48 knowledge supports a therapeutic role of exercise in weight control given its ability to induce 

49 an energy deficit without eliciting compensation, at least in the short term.   

50 An understanding of the relationship between exercise and appetite control has been derived 

51 from studies employing predominantly land-based forms of exercise, most notably running and 

52 cycling. This fact is relevant because anecdotal (Burke, 2007), and preliminary experimental 

53 data (King, Wasse, & Stensel, 2011), suggests that swimming may stimulate appetite and 

54 energy intake. This contention is supported by the findings from two studies showing that 

55 water-based exercise (submerged cycling) stimulated post-exercise energy intake 

56 (Dressendorfer, 1993; White, Dressendorfer, Holland, McCoy, & Ferguson, 2005). Direct 

57 investigations of appetite and energy intake responses to acute swimming have demonstrated 

58 that swimming had no effect on post-exercise energy intake (King, Wasse, & Stensel, 2011; 

59 Lambert, Flynn, Braun, Boardley, 1999), but evoked a weaker satiety response to a post-

60 exercise meal (King, Wasse, & Stensel, 2011). Unfortunately, these studies are limited by the 

61 inclusion of small, male only samples; and the lack of a true control trial (resting) along with a 
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62 matched land-based exercise trial. The latter represents an essential study design feature, to 

63 isolate the effects of swimming from exercise per se. 

64 In recent years, the interaction between exercise and the hedonic value of food has received 

65 increasing attention from the scientific community (Berthoud, 2011; Finlayson & Dalton, 

66 2012). That is, researchers have been interested to determine whether exercise may alter the 

67 perceived or expected pleasure-giving value of food along with the motivation to consume 

68 certain foods. These factors have been conceptualised as ‘liking and wanting’ and can be 

69 assessed using the Leeds Food Preference Questionnaire (LFPQ) (Dalton & Finlayson, 2014). 

70 Research examining the acute effects of exercise on liking and wanting of foods has thus far 

71 produced mixed findings. Specifically, some studies have indicated that aerobic and resistance 

72 exercise decrease the relative preference for high-fat vs. low-fat foods (McNeil, Cadieux, 

73 Finlayson, Blundell, & Doucet, 2015), whereas other studies suggest no impact of various 

74 forms of exercise on reward-related parameters (Alkahtani, Aldayel, & Hopkins, 2019; Martins 

75 et al., 2015; Thivel et al., 2020). Given previous evidence hinting that water-based exercise 

76 may stimulate a drive to eat, it is possible that swimming may influence appetite-related reward 

77 parameters, but further work is required to investigate this hypothesis empirically. 

78 The primary aim of this study was to directly compare the acute effects of exertion-matched 

79 swimming and cycling on appetite, energy intake, and food preference and reward in men and 

80 women. As a secondary exploratory aim, we sought to determine the modulating effect of sex 

81 on key study outcomes. Based on existing evidence, our primary hypothesis was that swimming, 

82 but not cycling, would increase appetite, ad libitum energy intake and the motivation and 

83 preference to consume high-fat and sweet foods.
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86 2. Methods

87 2.1. Ethical approval and participants

88 This study received approval from Loughborough University’s Research Ethics Committee 

89 (R17-P059) before any trial-related procedures commenced. Seventeen healthy men and 15 

90 healthy women (total n = 32) were recruited from the local community and provided written 

91 informed consent to participate. To avoid awareness of the research aims affecting key study 

92 outcomes, information sheets provided to participants stated that the study sought to examine 

93 the impact of exercise on mood, stress and arousal. Participants were debriefed about the true 

94 aims of the study after the final experimental trial. Participants were: young adults (aged < 40 

95 years), without obesity (body mass index < 30 kg/m2) and did not smoke or possess diagnosed 

96 metabolic health conditions. Participants were habitually active and able to swim and cycle at 

97 a recreational level (not elite). Participants reported being weight stable (< 2 kg body mass 

98 change) in the three months before the study. All female participants reported being 

99 eumenorrheic and not pregnant. Table 1 provides details of the participants who completed the 

100 study.

101 2.2. Pre-assessment and familiarisation

102 Participants attended the laboratory on one occasion before the main trials to permit the 

103 collection of baseline data and to be familiarised with important study procedures. 

104 Measurements of stature and body mass were made using an integrated stadiometer and scale 

105 (285, Seca GmbH & Co.KG, Germany), whilst body fat percentage was estimated using bio-

106 electrical impedance analysis (BC-418, Tanita, UK). Participants subsequently completed the 

107 Three Factor Eating Questionnaire (Stunkard AJ & Messick S, 1985) and were familiarised 

108 with the 100 mm visual analogue (appetite) scales (Flint, Raben, Blundell, & Astrup, 2000), 

109 the LFPQ (Dalton & Finlayson, 2014), rating of perceived exertion scale (Borg, 1973), exercise 
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110 procedures and the ad libitum test meal. Notably, participants were familiarised with the entire 

111 ad libitum test meal procedure. Acceptability of the meal was subsequently confirmed by 

112 ensuring that a ‘reasonable’ amount of food had been consumed, and secondly, through 

113 participant dialogue.  

114 2.3. Study design and procedures

115 Participants completed three main experimental trials (swimming, cycling, control) in a 

116 crossover fashion, with the order of trials being randomised. Because a single bout of exercise 

117 can affect energy intake for up to three days later (Rocha, Paxman, Dalton, Winter, & Broom, 

118 2013), an interval of at least four days separated each main experimental trial. For women, all 

119 trials occurred during the follicular phase (days 1 – 7) of the menstrual cycle. Figure 1 provides 

120 a schematic overview of the study design.

121 On the morning of each main trial, participants consumed a breakfast meal at 08:45 in their 

122 own home. This meal was prepared by the research team and provided to participants in 

123 advance. Compliance with the timing of this meal was confirmed by the research team. 

124 Participants subsequently arrived at the research centre at 10:00 where they remained until the 

125 end of the experimental trial. In the control trial, participants rested in the laboratory for the 

126 trial duration. Between 10:30 (0 h) and 11:30 (1 h), five-min expired gas samples were 

127 collected into Douglas bags every 15 min to permit the calculation of resting energy 

128 expenditure and substrate oxidation via indirect calorimetry (Frayn, 1983). At 11:45 (1.25 h), 

129 participants sat in a room in isolation where they completed the LFPQ on a laptop. At 12:00 

130 (1.5 h), participants were provided with access to a homogeneous pasta meal which they were 

131 free to consume ad libitum until 12:30 (2 h). Participants subsequently rested in the laboratory 

132 for one additional hour (until 13:30). The purpose of this final hour, which included no 

133 additional study procedures, was to reduce the likelihood that participants would not eat to 
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134 ‘comfortable satiety’ at the ad libitum meal, because of the impending opportunity to consume 

135 more desirable foods, or to engage in social eating opportunities, once outside of the laboratory.

136 Identical procedures were undertaken in the swimming and cycling trials except that 60 min 

137 exercise protocols were undertaken between 10:30 (0 h) and 11:30 (1 h). Swimming was 

138 undertaken at the institution’s swimming pool (25 m) adjacent to the research laboratory, whilst 

139 cycling was completed on a stationary ergometer (Lode Excalibur, Lode B.V., The Netherlands) 

140 in the same laboratory where participants rested. In both exercise trials, the exercise protocols 

141 consisted of six, eight min intervals of exercise separated by two min of rest. The interval nature 

142 of the protocol was chosen to more closely resemble the intermittent pattern of leisure activity 

143 which is often performed by recreational swimmers. To match the moderate- to high-intensity 

144 exercise stimulus between swimming and cycling, participants were asked to work at a self-

145 reported target rating of perceived exertion (RPE) (Borg, 1973) of 15 (‘hard’) during the 

146 exercise intervals. Heart rate was measured continuously by short-range telemetry (T31 Polar 

147 Electro Ltd, Warwick, UK) as an objective assessment of exercise intensity. In the swimming 

148 trial, participants were free to choose their stroke for each interval and rested between intervals 

149 whilst stood in the pool at the end of the lane. The average speed of swimming was assessed 

150 by monitoring the distance accumulated in each interval. In the cycling trial, participants self-

151 selected their power output in the first 20 seconds of each interval and then continued at that 

152 exercise intensity for the remainder of the interval. Participants rested between intervals whilst 

153 sat stationary on the cycle ergometer. The average power output for each interval was recorded 

154 by the research team.

155 2.4. Physical activity and dietary standardisation

156 Participants recorded all food and drink consumed in the 24 h preceding the first experimental 

157 trial, which was replicated in the 24 h before subsequent trials. Participants were required to 
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158 consume their habitual diet during this period to ensure adequacy of endogenous carbohydrate 

159 stores. Alcohol, caffeine and structured physical activity were not permitted within this same 

160 24 h standardisation period. Participants arrived at the laboratory via the same mode of 

161 transport for each main trial having fasted from 22:00 the previous evening. Participants living 

162 within one mile walked slowly to the laboratory, whilst those living further away arrived via 

163 motorised transport.

164 2.5. Appetite and environmental conditions

165 Subjective perceptions of hunger, fullness, satisfaction and prospective food consumption 

166 (PFC) were measured using 100 mm appetite scales at five strategically determined time-points 

167 during main trials (0 h [pre-exercise/rest], 1 h [post-exercise/rest], 1.25 h [pre-LFPQ], 1.5 h 

168 [pre ad libitum meal], 2 h [post ad libitum meal]). These questions were interspersed with 100 

169 mm scales relating to mood, stress and arousal as part of the blinding process within the study. 

170 Environmental temperature and humidity were measured during exercise or rest (0–1 h) using 

171 a handheld hygrometer (Omega RH85, UK). The temperature of the swimming pool was 

172 measured using a glass thermometer (Fisher Scientific, UK).

173 2.6. Study meals

174 The standardised breakfast provided to study participants consisted of a strawberry jam 

175 sandwich, croissant and orange juice (69% carbohydrate, 22% fat and 9% protein). This 

176 contained 2720 kJ for men and 2200 kJ for women, which based on our previous research, 

177 provided 25% of daily (sex-specific) energy requirements (Alajmi et al., 2016; King, Wasse, 

178 Ewens, et al., 2011). Ad libitum energy intake was assessed from a homogeneous meal 

179 containing pasta, tomato sauce and olive oil (72% carbohydrate, 12% protein, 16% fat, 6.5 kJ 

180 per gram). These ingredients were combined in advance of trials and the meal was reheated 

181 before serving to participants. Consumption of individual macronutrients was determined by 
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182 calculating the amount of energy consumed from each macronutrient and then dividing that 

183 value by the energy equivalent for carbohydrate (17 kJ/g), fat (37 kJ/g) and protein (17 kJ/g). 

184 Participants were provided with access to the meal for 30 min and were instructed to eat until 

185 ‘comfortably full and satisfied’. Participants ate the meal in a room with no external influences 

186 and were required to self-serve from a large bowl containing an amount of pasta in excess of 

187 expected consumption (~1 kg cooked pasta). The mass of food consumed was determined by 

188 subtracting the mass of food remaining (including leftovers) from that initially presented. 

189 Absolute energy intake was deduced using nutritional information provided by the food 

190 manufacturers. Relative energy intake was calculated for the swimming and cycling trials by 

191 subtracting the net energy expenditure of exercise from the absolute energy intake during the 

192 homogenous meal.

193 2.7. Leeds Food Preference Questionnaire

194 At 11:45 (1.25 h) in all trials, participants completed the LFPQ which is a validated laptop-

195 based procedure that measures food preference and reward (Finlayson, King, & Blundell, 2008). 

196 The LFPQ provides measures of wanting and liking for an array of food images which vary in 

197 fat content and taste. The conduct and analysis of this questionnaire have been described in 

198 depth previously (Dalton & Finlayson, 2014). In brief, sixteen different food items, spanning 

199 four categories (high-fat savoury, low-fat savoury, high-fat sweet, low-fat sweet) were 

200 employed. To obtain the measurement of ‘relative preference’, participants were required to 

201 select the food they ‘most want to eat now’ from paired combinations presented simultaneously. 

202 Implicit wanting was ascertained by examining the reaction time for these choices, adjusted for 

203 frequency of choice for each category. Explicit liking and explicit wanting were determined by 

204 asking participants to rate the extent to which they ‘liked’ or ‘wanted’ each randomly presented 

205 food item with a 100 mm visual analogue scale. Bias scores for fat appeal and sweet appeal 
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206 were ascertained by subtracting the low-fat scores from the high-fat scores and then savoury 

207 scores from the sweet scores, respectively. 

208 2.8. Exercise energy expenditure

209 During the final minute of each cycling interval, a 60 s collection of expired gases was obtained 

210 using Douglas bags to permit the assessment of energy expenditure using indirect calorimetry. 

211 Specifically, the Haldane transformation was used to calculate inspired gas volumes and to 

212 determine oxygen consumption (V̇O2) and carbon dioxide production (V̇CO2) (Wilmore & 

213 Costill, 1973). Stoichiometric equations were then used to determine absolute quantities of fat 

214 (1.67 x V̇O2 – 1.67 x V̇CO2) and carbohydrate (4.55 x V̇CO2 – 3.21 x V̇O2) oxidised 

215 (assuming negligible protein oxidation) (Frayn, 1983). Total energy expenditure was 

216 subsequently determined by multiplying oxidised substrates by 39 and 17 kJ/gram, respectively.   

217 For each swimming interval, participants were free to choose their stroke, however, the selected 

218 stroke had to be maintained for the entire interval. The energy expenditure elicited during each 

219 swimming interval was estimated using Metabolic Equivalents (METs) specific to the 

220 swimming stroke and speed: recreational breaststroke (5.3 METs), recreational backstroke (4.8 

221 METs), slow front crawl (≤ 0.95 m/s; 5.8 METs), fast front crawl (> 0.95 m/s; 9.8 METs) 

222 (Ainsworth et al., 2019). Total exercise-related energy expenditure during swimming was 

223 derived by summing the energy expenditure for each exercise interval. The net energy 

224 expenditure of each exercise mode was determined by subtracting each participants’ resting 

225 energy expenditure (during control) from the gross exercise-induced energy expenditure. 

226 2.9. Statistical analyses

227 Data were analysed using the software package IBM SPSS Statistics for Windows version 24.0 

228 (IBM Corporation, New York, USA). Appetite perceptions are presented and analysed relative 
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229 to baseline (0 h) values (delta). Time-averaged total area under the curve for delta appetite 

230 perceptions were calculated using the trapezoidal method. The model residuals for all outcome 

231 variables were explored using histograms. All variables were deemed to show parity to a 

232 Gaussian distribution and are presented as mean ± SD. 

233 Linear mixed models were used to examine between trial (swimming vs. cycling) differences 

234 in exercise responses. Energy and macronutrient intakes, baseline (0 h) and delta area under 

235 the curve for appetite perceptions, and food preference and reward scores were examined using 

236 linear mixed models with trial (control, cycling, swimming) modelled as the sole fixed effect. 

237 Differences in delta appetite perceptions over time were explored using linear mixed models 

238 with trial (control, cycling, swimming) and time (0, 1, 1.25, 1.5 and 2 h) modelled as fixed 

239 effects. An exploratory analysis was conducted for all outcomes with sex modelled as a fixed 

240 effect and with a sex-by-trial interaction term. All models were adjusted for the period effect 

241 to account for any change in responses over time irrespective of trial (Senn, 1993).

242 Absolute standardised effect sizes (ES) were calculated to supplement important findings and 

243 thresholds of 0.2, 0.5, and 0.8 describe small, moderate, and large effects, respectively (Cohen, 

244 1989). Mean differences and the respective 95% confidence intervals (95% CI) are presented. 

245 Exact P values (to 3 decimal places) are reported except for very small values which are 

246 displayed as P < 0.001. Interpretation of the data is based on the 95% CI and ES rather than 

247 more conventional dichotomous hypothesis testing (Wasserstein et al., 2019).

248
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252

253 3. Results

254 3.1. Exercise responses

255 During the 48 min of swimming, the mean distance completed was 1,543 ± 393 m at an average 

256 speed of 0.54 ± 0.14 m/s. To complete the swimming sessions, some participants maintained a 

257 single stroke (front crawl n = 7; breaststroke n = 11; backstroke n =1) whereas others used a 

258 combination of front crawl, breaststroke and backstroke (n = 13). During cycling, a mean power 

259 output of 121 ± 38 watts was completed.

260 The 95% CI for the mean difference in heart rate elicited during swimming and cycling 

261 overlapped zero (146 ± 15 vs. 143 ± 18 beats/min, respectively; ES = 0.20, 95% CI -1, 8 

262 beats/min, P = 0.085). Mean RPE was marginally higher during swimming than cycling (15.2 

263 ± 0.7 vs. 14.9 ± 0.6, respectively; ES = 0.52, 95% CI 0.1, 0.6, P = 0.005), whereas estimated 

264 net energy expenditure was lower during swimming than cycling (1088 ± 286 vs. 1684 ± 580 

265 kJ, respectively; ES = 1.30, 95% CI -820, -387 kJ, P < 0.001).

266 3.2. Energy intake

267 A main effect of trial was identified for absolute (P = 0.017) and relative (P < 0.001) energy 

268 intake (Table 2). Swimming increased absolute energy intake compared to control (ES = 0.47, 

269 P = 0.005), whereas the magnitude of increase was smaller after cycling compared to control 

270 (ES = 0.31, P = 0.062) (Figure 2A, Table 2). The difference in absolute energy intake between 

271 swimming and cycling was trivial (ES = 0.16, P = 0.324) (Figure 2A, Table 2). Relative energy 

272 intake (absolute energy intake minus the net energy expenditure of exercise) was lower than 

273 control in the swimming (ES = 0.39, P = 0.045) and cycling (ES = 1.02, P < 0.001) trials. 
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274 Relative energy intake was higher in the swimming trial than the cycling trial (ES = 0.63, P = 

275 0.001) (Table 2). 

276 3.3. Ratings of perceived appetite

277 Ratings of perceived hunger, fullness, satisfaction and PFC were similar across trials at baseline 

278 (0 h) (all P ≥ 0.422) (Table 3). A main effect of trial was identified for delta hunger (P < 0.001), 

279 fullness (P = 0.039) and PFC (P = 0.001) but not satisfaction (P = 0.309), but no trial-by-time 

280 interactions were observed (all P ≥ 0.352) (Figure 3). Delta hunger and PFC were higher and 

281 delta fullness was lower than control in the swimming (all ES ≥ 0.20, P ≤ 0.017) and cycling 

282 (all ES ≥ 0.16, P ≤ 0.051) trials; the two exercise trials were similar (all ES ≤ 0.15, P ≥ 0.082). 

283 The area under the curve for delta appetite perceptions were similar across trials (all P ≥ 0.106) 

284 (Table 3, Figure 3). 

285 3.4. Food preference and reward

286 Fat and sweet appeal bias scores for relative preference, explicit wanting and explicit liking, 

287 and sweet appeal bias scores for implicit wanting were similar across trials (all P ≥ 0.080) 

288 (Table 4). The main effect of trial for implicit wanting fat appeal bias was not statistically 

289 significant (P = 0.055), but values were lower in the cycling compared to the control (ES = 

290 0.25, P = 0.035) and swimming (ES = 0.24, P = 0.038) trials (Table 4). The difference in 

291 implicit wanting fat appeal bias between the swimming and control trial was trivial (ES = 0.00, 

292 P = 0.973) (Table 4). 

293 3.5. Exploratory analyses

294 Exploratory analysis revealed no main effect of sex for swimming distance (men 1,509 ± 376 

295 m, women 1,582 ± 420 m; ES = 0.18, 95% CI -361, 214 m, P = 0.606) or average swim speed 

296 (men 0.52 ± 0.13 m/s, women 0.55 ± 0.15 m/s; ES = 0.19, 95% CI -0.13, 0.07 m/s, P = 0.597). 
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297 Mean cycling power output was higher in men than women (men 139 ± 40 watts, women 100 

298 ± 22 watts; ES = 1.19, 95% CI 15, 63 watts, P = 0.002). Estimated net energy expenditure was, 

299 on average, 280 kJ higher in men than women irrespective of exercise mode (ES = 0.64, 95% 

300 CI 49, 511 kJ, P = 0.020), but a trial-by-sex interaction was not apparent (P = 0.273) (data not 

301 shown). 

302 An exploratory analysis with sex modelled as a fixed effect and with a trial-by-sex interaction 

303 term revealed higher absolute energy intake in men (Figure 2B) than women (Figure 2C) (mean 

304 difference: 1042 kJ; ES = 0.68, 95% CI -1, 2085 kJ, P = 0.050). Men exhibited higher perceived 

305 appetite at baseline (0 h) than women for hunger (mean difference: 13 mm; ES = 0.46, 95% CI 

306 1, 25 mm, P = 0.040) and PFC (mean difference: 14 mm; ES = 0.57, 95% CI 1, 27 mm, P = 

307 0.033). Sweet appeal bias scores were higher in men than women for explicit liking (mean 

308 difference: 19 mm; ES = 0.89, 95% CI 4, 35 mm, P = 0.018), explicit wanting (mean difference: 

309 20 mm; ES = 0.86, 95% CI 4, 37 mm, P = 0.019), and implicit wanting (mean difference: 34 

310 AU; ES = 0.85, 95% CI 5, 63 AU, P = 0.023). 

311 Modelling sex as a fixed effect revealed no other main effects of sex (P ≥ 0.069) or any trial-

312 by-sex interactions (P ≥ 0.092) and did not alter interpretation of the main effects of trial or 

313 trial-by-time interactions outlined previously when sex was omitted from the models.  
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319

320

321 4. Discussion

322 The consensus from previous research suggests that single bouts of exercise do not elicit 

323 compensatory increases in appetite and energy intake in the hours afterwards (Dorling et al., 

324 2018; Schubert et al., 2013). The interaction between exercise, appetite and energy intake has 

325 been investigated predominantly using land-based forms of exercise, such as running and 

326 cycling. Given preliminary evidence suggesting that swimming may augment appetite and 

327 energy intake (Burke, 2007; King, Wasse, & Stensel, 2011), this study specifically examined 

328 the impact of swimming on appetite, energy intake, and food preference and reward. 

329 Importantly, responses to swimming were directly compared with an exertion-matched cycling 

330 bout so that the influence of swimming could be distinguished from the effects of exercise per 

331 se. In contrast to previous literature, our results show that a single bout of swimming increased 

332 ad libitum energy intake at a meal consumed shortly after exercise. This effect was consistent 

333 between men and women and the absolute increase was higher than that observed in the cycling 

334 trial compared to control. Furthermore, this outcome was unrelated to food preference or 

335 reward, which were largely unresponsive to both exercise modalities. 

336 Two previous studies demonstrated no effect of a single bout of swimming on ad libitum energy 

337 intake at meals consumed shortly after exercise (King, Wasse, & Stensel, 2011; Lambert, Flynn, 

338 Braun, Boardley, 1999). This finding, which contrasts the results from the present study, likely 

339 relates to procedural differences between studies. For instance, Lambert et al (1999) studied a 

340 small group of highly trained triathletes who completed 45 min bouts of vigorous-intensity (72% 

341 of maximum oxygen uptake) swimming and running. Participants’ habituation to swimming, 

342 and energy turnover more broadly, may have masked the responses that we have seen in 
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343 individuals swimming, but not at a competitive level. Another relevant disparity is the method 

344 used to assess ad libitum energy intake. In both previous studies, energy intake was assessed 

345 from buffet style meals. Conversely, in the present study we implemented a single item 

346 homogeneous meal because it is now recognised that homogeneous test meals provide greater 

347 sensitivity to detect between-trial differences given the smaller variance in outcome and 

348 reduced predisposition to overconsumption (Horner, Byrne, & King, 2014; King et al., 2017). 

349 Relating to this latter point, it is notable that across the exercise and rest trials, energy intake 

350 was considerably greater (26-58%) in the previous studies (King, Wasse, & Stensel, 2011; 

351 Lambert, Flynn, Braun, Boardley, 1999) compared with the present investigation. This may 

352 have blunted the ability to test for differences between conditions in the previous experiments.

353 Anecdotally, it has been suggested that swimming increases appetite (Burke, 2007); and in our 

354 previous experimental study, swimming elicited a weaker satiety response, verses a resting 

355 control trial, at a meal consumed one hour post-exercise (King, Wasse, & Stensel, 2011). In 

356 the present study, participants reported being hungrier and less full throughout the swimming 

357 trial in comparison to control. A similar response was witnessed in the cycling trial, although 

358 visually this difference was apparent earlier in the swimming trial i.e. by the end of exercise. 

359 The augmented appetite in response to swimming was consistent with our hypothesis; however, 

360 we did not expect cycling to elicit a similar response. High-intensity exercise is typically 

361 associated with appetite suppression and, therefore, the moderate- to high-intensity of exercise 

362 undertaken in this study is likely to have had a permissive effect on appetite perceptions. 

363 Interestingly, PFC was marginally higher in response to swimming vs. cycling. This finding is 

364 consistent with the proportionally greater increase in energy intake after swimming (vs. control) 

365 than cycling. 

366 In a meta-analysis of 51 acute studies, it was concluded that exercise has a trivial effect on 

367 energy intake consumed at meals within two hours after exercise cessation (Schubert et al., 
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368 2013). This data highlights the uniqueness of our findings when comparing the results to 

369 previous evidence. In seeking to explain our novel outcome, it is relevant to note that energy 

370 expenditure is unlikely to be explanative. This is because energy expenditure was estimated to 

371 be higher on the cycling verses swimming trial. Instead, water immersion and associated 

372 changes in body temperature, are perhaps the most likely explanation for the stimulatory effect 

373 of swimming on post-exercise energy intake. This suggestion is supported by data showing that 

374 energy intake was increased after treadmill-based exercise undertaken in cool (8-10oC) vs. 

375 neutral ambient temperatures (Crabtree & Blannin, 2015; Wasse, King, Stensel, & Sunderland, 

376 2013); and after cycling submerged in cold (20–22oC) vs. thermoneutral water (Dressendorfer, 

377 1993; White et al., 2005). In the present study, the water temperature was 28 ± 1oC which is 

378 lower than thermoneutral for humans (34–35oC) (Craig & Dvorak, 1966). Consequently, 

379 although swimming would have generated metabolic heat, it is likely that participants’ 

380 prolonged contact with cool water would lead to net body heat loss. This has been theorised to 

381 be an important driver of food intake in homeotherms (Brobeck, 1948).   

382 The precise mechanisms by which heat loss and/or cool water exposure augment energy intake 

383 are not clear and were beyond the scope of the present study. We have previously shown that 

384 swimming did not influence circulating levels of the hunger stimulating gut hormone, acylated 

385 ghrelin (King, Wasse, & Stensel, 2011). However, others have shown that cold exposure 

386 reduces circulating leptin and its signalling within central appetite circuits (Reynés et al., 2017; 

387 Zeyl, Stocks, Taylor, & Jenkins, 2004). This response could theoretically prompt an increase 

388 in energy intake and provides an interesting hypothesis for future experiments. 

389 Given the importance of non-homeostatic influences governing appetite and food intake, a key 

390 purpose of this study was to explore the potential impact of swimming on food preference and 

391 reward. Using functional magnetic resonance imaging, running and cycling have previously 

392 been shown to suppress hedonic responses to food cues in key reward-related brain regions 
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393 (Crabtree, Chambers, Hardwick, & Blannin, 2014; Evero, Hackett, Clark, Phelan, & Hagobian, 

394 2012). Furthermore, when employing the LFPQ, others have shown that aerobic and resistance 

395 exercise reduce the explicit liking and relative preference for high fat vs. low fat foods (McNeil 

396 et al., 2015). In contrast to our original hypothesis, food preference and reward were largely 

397 unresponsive to both swimming and cycling. A tendency for cycling to reduce implicit wanting 

398 fat appeal bias scores compared with swimming and control was the only documented finding 

399 in our analyses. Taken collectively, these findings support the conclusions of others who have 

400 suggested that the pattern of food reward is stable in the context of acute exercise (Martins et 

401 al., 2015). In the present study it should be recognised that our sample size was not powered 

402 specifically to assess the effect of exercise on food preference and reward. However, it is 

403 notable that our sample size was twice that utilised by McNeil et al. (2015) who had sufficient 

404 power to detect differences in exercise related LFPQ outcomes. Speculatively, given the 

405 similarity in participants examined and trial procedures, it is possible that the higher intensity 

406 of the exercise protocols employed by McNeil et al. (2015) explains the discrepant outcome 

407 i.e. food preference and reward may be affected more by higher-intensity exercise. Nonetheless, 

408 given the large variability in responses observed, our data indicates that recreational bouts of 

409 moderate- to high-intensity exercise, with and without water immersion, have no consistent 

410 impact on food preference or reward (assessed via the LFPQ).

411 Given the potential for sex-based differences in appetite control and energy homeostasis 

412 (Hagobian & Braun, 2010), we investigated the moderating effect of sex on study outcomes. 

413 Overall, our analyses showed that sex did not modulate the key outcomes of this study. 

414 Consequently, we can be confident that the key messages from our research can be generalised 

415 to both men and women. This sensitivity analysis revealed that men tended to consume more 

416 energy than women; however, this was consistent across trials. One interesting finding to 

417 emerge from the LFPQ data was that men demonstrated a greater implicit wanting, and explicit 
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418 wanting and liking, for sweet vs. savoury foods, in comparison to women. Again, however, 

419 this was consistent across trials and additional studies are needed to determine the consistency 

420 of this finding.

421 The present study has some notable strengths and limitations which should be recognised. A 

422 key strength of our study was that it included a large sample that was almost equally composed 

423 of men and women. This has enabled us to explore the potential for sex-based interactions 

424 within our data. The importance of this is underscored by the recognition that women have 

425 traditionally been underrepresented in many aspects of health-based research (Feldman et al., 

426 2019); particularly relating to energy balance where menstrual standardisation is necessary. 

427 Limitations include the short duration of the observation period which restricts the ability to 

428 discern whether the impact of swimming on energy intake is enduring and likely to influence 

429 energy balance meaningfully over the long-term. In a holistic sense, the stimulatory effect of 

430 swimming on energy intake was relatively small (~598 kJ) and it is unclear whether this 

431 difference would be augmented or negated at subsequent post-exercise meals. Additionally, for 

432 practical reasons, our study did not include a non-exercise, water immersion trial, and therefore 

433 it is not possible to determine whether the influence of swimming on energy intake was due to 

434 an interaction between exercise and water immersion, or water immersion per se. Finally, it 

435 should be noted that energy expenditure in the swimming trial was estimated using METs 

436 whereas direct measurements (indirect calorimetry) were undertaken in the cycling trial. 

437 Relative energy intake data, specifically within the swimming trial, should therefore be viewed 

438 with caution. Future studies should strive to obtain more precise measures of energy 

439 expenditure during swimming which can be directly measured using modified indirect 

440 calorimetry apparatus (Rodríguez, Keskinen, Kusch, & Hoffmann, 2008). 

441 In conclusion, a single bout of moderate- to high-intensity swimming increased ad libitum 

442 energy intake in a sample of recreationally active men and women. The magnitude of increase 
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443 after swimming (vs control) was greater than that observed after an exertion-matched cycling 

444 trial (vs control), which contributed to a greater relative energy intake after swimming. This 

445 response does not appear to be related to differences in food preference or reward. Additional 

446 studies are needed to characterise the longer-term influence of swimming on appetite and 

447 energy intake and to define the acute orexigenic mechanism(s).
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593 Figure legends

594 Figure 1. Schematic representation of the main trial protocol. Arrow indicates participants 

595 arrival at the laboratory, chequered rectangle indicates standardised breakfast, white rectangles 

596 indicate swimming, cycling or rest (control), grey rectangle indicates the Leeds Food 

597 Preference Questionnaire, and black rectangle indicates ad libitum pasta meal.

598 Figure 2. Absolute ad libitum energy intake in the control (), cycling () and swimming 

599 () trials in (A) all participants combined (n = 32), (B) male participants only (n = 17) and (c) 

600 female participants only (n = 15). Data points represent individual data values and the black 

601 solid line indicates the mean ± SD. Panel A: main effect of trial P = 0.017 (cycling vs. control 

602 P = 0.062; swimming vs. control P = 0.005; swimming vs. cycling P = 0.324). Panels B and C: 

603 main effect of sex P = 0.050; trial-by-sex interaction P = 0.967. 

604 Figure 3. Delta ratings of perceived (A) hunger, (B) fullness, (C) satisfaction and (D) 

605 prospective food consumption (PFC) in the control (), cycling () and swimming () trials 

606 in 17 men and 15 women. Data points on left hand figures represent mean ± SEM. White 

607 rectangle indicates swimming, cycling or rest (control), grey rectangle indicates Leeds Food 

608 Preference Questionnaire, and black rectangle indicates ad libitum pasta meal. Main effect of 

609 trial: hunger P < 0.001, fullness P = 0.039, satisfaction P = 0.309, PFC P = 0.001. Data points 

610 on right hand panels represent individual data points for time-averaged total area under the 

611 curve and the black solid line represents the mean ± SD. Main effect of trial all P ≥ 0.106.
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612 Table 1. Participant characteristics.

All 
(n = 32)

Men 
(n = 17)

Women 
(n = 15)

Main effect of sex
Men vs. women
Mean difference 

(95% CI)1

Age (years) 23 ± 2 24 ± 2 22 ± 3 2 (-0.1, 3)

Stature (m) 1.71 ± 0.08 1.76 ± 0.08 1.65 ± 0.04 0.11 (0.07, 0.15)2

Body mass (kg) 70.7 ± 12.8 77.9 ± 12.6 62.4 ± 6.6 15.5 (8.1, 22.9)2

Body mass index (kg/m2) 24.0 ± 2.6 25.0 ± 2.6 22.8 ± 2.3 2.1 (0.4, 3.9)2

Body fat (%) 19.9 ± 7.3 14.8 ± 4.5 25.8 ± 5.1 -11.0 (-14.5, -7.5)2

Lean body mass (kg) 56.7 ± 12.3 66.1 ± 9.1 46.1 ± 3.3 20.0 (14.9, 25.0)2

Three Factor Eating Questionnaire
Dietary restraint 9 ± 5 8 ± 5 9 ± 5 -1 (-4, 2)

Dietary disinhibition 6 ± 2 6 ± 3 6 ± 2 0 (-2, 2)

Hunger 6 ± 3 6 ± 3 6 ± 3 0 (-2, 2)
613 Values are mean ± SD. Data were analysed using linear mixed models with sex (men or 
614 women) included as a fixed factor. 

615 1 Mean difference and 95% confidence interval of the mean absolute difference between men 
616 and women. 

617 2 Main effect of sex P ≤ 0.018.
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618 Table 2. Ad libitum energy and macronutrient intakes in the control, cycling and swimming trials.

Mean difference (95% CI) 1

Control Cycling Swimming
Cycling vs. control Swimming vs. 

control
Swimming vs. 

cycling
Absolute energy intake (kJ) 3259 ± 1265 3652 ± 1619 3857 ± 1611 392 (-21, 805) 598 (185, 1010)3 205 (-207, 618)

Relative energy intake (kJ) 3259 ± 1265 1967 ± 1675 2769 ± 1610 -1277 (-1742, -812)2 -475 (-940, -10)3 802 (337, 1267)4

Protein (g) 23 ± 9 26 ± 12 28 ± 12 3 (-0.1, 6) 4 (1, 7)3 1 (-1, 4)

Carbohydrate (g) 140 ± 54 157 ± 70 166 ± 69 17 (-1, 35) 26 (8, 43)3 9 (-9, 27)

Fat (g) 14 ± 5 16 ± 7 16 ± 7 2 (-0.1, 3) 3 (1, 4)3 1 (-1, 3)
619 Values are mean ± SD for n = 32. Data were analysed using linear mixed models with trial (control, cycling or swimming) included as a fixed 
620 factor and with adjustment for the period effect. A main effect of trial was identified for absolute energy, relative energy and macronutrient 
621 intakes (P ≤ 0.017). 

622 1 Mean difference and 95% confidence interval of the mean absolute difference between the experimental trials adjusted for the period effect. 

623 2 Cycling vs. control P < 0.001.

624 3 Swimming vs. control P ≤ 0.045.

625 4 Swimming vs. cycling P = 0.001.
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626 Table 3. Baseline and time-averaged total area under the curve for appetite perceptions in the control, cycling and swimming trials. 

Mean difference (95% CI)1

Control Cycling Swimming
Cycling vs. control Swimming vs. 

control
Swimming vs. 

cycling
Baseline (0 h)

Hunger (mm) 33 ± 23 29 ± 20 29 ± 24 -5 (-13, 3) -4 (-12, 4) 0 (-7, 8)

Fullness (mm) 55 ± 25 60 ± 17 57 ± 22 5 (-4, 14) 2 (-7, 11) -3 (-12, 6)

Satisfaction (mm) 57 ± 19 58 ± 20 60 ± 18 1 (-6, 8) 3 (-4, 10) 2 (-5, 9)

PFC (mm) 42 ± 23 40 ± 22 39 ± 22 -2 (-10, 6) -3 (-11, 5) -1 (-9, 7)

Time-averaged total area under the curve

Delta hunger (mm h) 9.2 ± 10.1 13.6 ± 15.8 16.7 ± 15.5 4.4 (-2.5, 11.4) 7.5 (0.5, 14.4) 3.0 (-3.9, 10.0)

Delta fullness (mm h) -5.3 ± 15.4 -8.2 ± 16.0 -10.0 ± 17.2 -2.9 (-10.1, 4.3) -4.7 (-11.9, 2.5) -1.8 (-9.0, 5.4)

Delta satisfaction (mm h) -2.8 ± 11.2 -0.4 ± 12.0 -1.3 ± 15.1 2.4 (-3.5, 8.3) 1.5 (-4.4, 7.4) -0.9 (-6.8, 5.0)

Delta PFC (mm h) 5.8 ± 12.4 8.8 ± 17.0 12.8 ± 12.5 3.0 (-3.8, 9.9) 7.0 (0.2, 13.9) 4.0 (-2.9, 10.9)
627 Values are mean ± SD for n = 32. Data were analysed using linear mixed models with trial (control, cycling or swimming) included as a fixed 
628 factor and with adjustment for the period effect. Linear mixed models revealed no main effects of trial (P ≥ 0.106). PFC, prospective food 
629 consumption. 

630 1 Mean difference and 95% confidence interval of the mean absolute difference between the experimental trials adjusted for the period effect.
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631 Table 4. Measures of relative preference, implicit wanting, explicit wanting and explicit liking assessed 15 minutes after 60 minutes of exercise 
632 (cycling and swimming) or rest (control). 

Mean difference (95% CI)1

Control Cycling Swimming
Cycling vs. control Swimming vs. 

control
Swimming vs. 

cycling
Relative preference

Fat appeal bias (AU) -4.0 ± 11.0 -1.8 ± 10.8 -4.0 ± 9.5 2.2 (-0.5, 4.9) 0.1 (-2.6, 2.7) -2.2 (-4.8, 0.5)

Sweet appeal bias (AU) -0.3 ± 16.0 0.8 ± 14.5 0.3 ± 15.4 1.1 (-2.5, 4.7) 0.6 (-3.0, 4.2) -0.5 (-4.1, 3.2)

Implicit wanting
Fat appeal bias (AU) 12.9 ± 33.0 4.7 ± 37.6 12.7 ± 30.9 -8.2 (-15.8, -0.6) -0.1 (-7.7, 7.5) 8.0 (0.5, 15.6)

Sweet appeal bias (AU) -1.9 ± 43.0 3.8 ± 39.4 2.2 ± 41.0 5.7 (-4.8, 16.3) 4.1 (-6.5, 14.7) -1.6 (-12.2, 8.9)

Explicit wanting

Fat appeal bias (mm) 2.7 ± 10.9 1.2 ± 14.8 6.2 ± 12.8 -1.5 (-6.0, 2.9) 3.4 (-1.0, 7.9) 5.0 (0.5, 9.4)

Sweet appeal bias (mm) -1.0 ± 27.8 0.4 ± 22.1 -2.2 ± 20.6 1.4 (-3.9, 6.7) -1.1 (-6.4, 4.2) -2.6 (-7.8, 2.7)

Explicit liking
Fat appeal bias (mm) 2.7 ± 9.8 0.6 ± 14.9 4.4 ± 12.7 -2.1 (-6.2, 1.9) 1.7 (-2.4, 5.8) 3.8 (-0.3, 7.9)

Sweet appeal bias (mm) -2.4 ± 24.6 2.0 ± 21.9 0.2 ± 20.7 4.3 (-0.8, 9.4) 2.6 (-2.6, 7.7) -1.7 (-6.9, 3.4)
633 Values are mean ± SD for n = 32. Data were analysed using linear mixed models with trial (control, cycling or swimming) included as a fixed 
634 factor and with adjustment for the period effect. Linear mixed models revealed no main effects of trial (P ≥ 0.055).  

635 1 Mean difference and 95% confidence interval of the mean absolute difference between the experimental trials adjusted for the period effect.
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