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Abstract

This thesis concerns the use of Gaussian-process emulation (Sacks et al., 1989) to buildmetamod-

els of computationally expensive dynamical models of dwarf spheriodal galaxies. These meta-

models are computationally cheaper to evaluate than the models that they emulate, and hence

have the potential to render tractable previously intractable problems in galactic dynamics. The

first part of the thesis deals with the theoretical foundations ofGaussian-process emulation (GPE)

while the second part deals with the application of GPE to the modelling of dwarf spheroidal

galaxies. I give a description of the general principles of modelling and metamodelling, formally

defining a physical model, and showing that the parameter spaces of such models may be made

metric or pseudometric spaces. I give a formal treatment of the foundations of GPE and, building

on the work of Parzen (1959), give a novel derivation of the GPE predictor and mean-squared

error. I also set right some confusion and errors in the literature. In particular, I show that

the GPE predictor presented by Rasmussen and Williams (2006) is biased. I quantify this bias,

and discuss the circumstances under which it will be significant. In modelling dwarf spheroidal

galaxies, I adopt the distribution-function approach, and use GPE to construct a metamodel of

the log-likelihood. First, I construct a toy model of a dwarf spheroidal galaxy which I fit using

synthetic data drawn from the same toy model. I maximize the log-likelihood using the method

of efficient global optimization (Jones et al., 1998), finding that I am able to recover robust con-

fidence regions for the parameter vector, galactic density, and velocity anisotropy with fewer

than 100 model evaluations. Second, I construct a more general model. Although the result-

ing predictions are accurate, the metamodel fails validation, indicating that we may not trust the

confidence regions associated with these predictions. We conclude that the usual simplifications

made in implementing GPE render it inadequate for the task of predicting the log-likelihood in

this case, and that we must consider more general methods.
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Preface

This thesis concerns the use of Gaussian-process emulation (GPE) to build metamodels of com-

putationally expensive dynamical models of dwarf spheriodal galaxies. These metamodels are

computationally cheaper to evaluate than the models that they emulate, and hence have the po-

tential to render tractable previously intractable problems in galactic dynamics. The thesis is in

two parts. The first part (Chaps 1, 2, and 3) deals with the theoretical foundations of GPE, while

the second part (Chaps 4 and 5) deals with the application of GPE to the modelling of dwarf

spheroidal galaxies.

Chapter 1 concerns the general principles of modelling and metamodelling. I begin by for-

mally defining a mathematical model—as an indexed family of mathematical objects (functions,

differential equations, etc.) These indices are referred to as parameters. Typically they are tu-

ples of real numbers, each representing a different physical quantity. The set of all such indices,

when equipped with some structure forms a parameter space. However, parameter space is not

formally defined in the literature. I here make a first attempt at such a definition, giving a dis-

cussion of the kind of structure we would like parameter space to have. To this end I introduce

the concept of flavour spaces (Def. 10) and, as an example, show how they may form flavourful

vector spaces (Def. 11). In the case of dynamical modelling we are interested in models of prob-

ability density functions (specifically probability density functions on phase space). I show that

the parameter spaces of such models may be made metric or pseudometric spaces (Subsec. 1.1.2,

esp. Props 18 and 19). In the remainder of the chapter I present the well-established theory of

the maximum-likelihood estimation of model parameters.

Chapter 2 concerns the theoretical basis of GPE. The first use of GPE is rightly credited to

Sacks et al. (1989). It is, in short, the use of the best linear predictor (BLP) or best unbiased linear

predictor (BLUP) to predict the outcome of a computer experiment. Its origins, not properly

acknowledged in the machine learning literature, therefore lie in the statistical literature of the

1940s and 1950s (the invention of the BLUP is normally credited to Henderson, 1950). Themost
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natural setting for the derivation of the BLP and BLUP is the reproducing kernel Hilbert space.

The use of reproducing kernel Hilbert spaces in statistics was pioneered by Parzen (1959), and

my presentation in places closely follows his. His arguments combine mathematical rigour and

geometrical insight. I add detail and clarification where I think it appropriate. Most commonly,

other methods are used to derive the BLP or BLUP (see, for example, Sacks et al., 1989, who use

themethod of Langrangemultipiers to derive the BLUP) but Parzen’smethods have the advantage

of greater generality.

In the first part of the chapter (Sec. 2.1) I give a thorough account of random processes. In

doing so, I synthesize a large amount of material from numerous sources, in particular the grad-

uate texts of Adler (1981), Gikhman and Skorohod (1974), and Yaglom (1962). However, in

discussing stationary and isotropic random processes I introduce a new definition of invariant

random processes (Def. 41). This generalizes the definition of stationary and isotropic random

processes, which then become special cases of my new definition. In the second and third parts

(Secs 2.2 and 2.3) of the chapter I outline the theory of reproducing kernel Hilbert spaces and

their application to random process. In the fourth part I outline the theory of linear prediction,

and in the fifth part outline the use of reproducing kernel Hilbert spaces in linear prediction.

From Parzen’s prediction theorem (Thm 107) I make a novel derivation of the expressions for

GPE (Sec. 2.5.3, eqs 2.181, and 2.183). I finally discuss the relationship between GPE and geo-

statistics, where the use of the BLP and the BLUP goes by the name ‘kriging’. The practical imple-

mentation of GPE relies heavily on kriging methods in a way not properly acknowledged in the

literature. I identify some limitations of the kriging methodology, and a way to remedy them.

Specifically, I point out that the metric structure of parameter space I have developed in Chap-

ter 1 allows me to define new covariance functions, tailored for a particular use. I do not take

advantage of this ability, but leave it for further research. Throughout this chapter I give proofs

where they are useful to the development of the argument. Where I do give proofs, they are my

own unless otherwise stated.

Chapter 3 concerns the practical implementation of GPE, and sets right some confusion and

errors in the literature. I emphasize the importance of validating the results of GPE, a procedure

that appears to have been entirely overlooked in the application of GPE to astrophysical problems

thus far. The machine learning literature does not adequately distinguish between the BLP and

the BLUP, and in some sources only the BLP is presented. Rasmussen and Williams (2006), for

example, present only the BLP, though they do not call it such. Moreover, the particular expres-
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sion they derive for the BLP is based on an unwarranted assumption.1 It is, in general, biased.

It gives biased predictions, and biased values for the confidence intervals associated with these

prediction. This bias is not acknowledged by Rasmussen and Williams. I quantify it (Sec. 3.4,

Eq. 3.38), and discuss the circumstances under which it will be significant.

Chapter 4 concerns the proof-of-concept application of GPE to the dynamical modelling of

dwarf spheroidal galaxies. I adopt the distribution-function approach to dynamical modelling,

and construct a toy model of a dwarf spheroidal galaxy which I fit using maximum-likelihood

methods and synthetic data drawn from the same toy model. I assume that mass follows light

and use Ossipkov and Merritt’s method to construct a phase-space probability density function

for a galaxy with Plummer-type density. I then use GPE to construct a metamodel of the log-

likelihood, which Imaximize using themethod of efficient global optimization (Jones et al., 1998).

With fewer than 100 model evaluations I am able to recover robust confidence regions for the

parameter vector (Fig. 4.11), galactic density, and velocity anisotropy (Fig. 4.12). This material

has already been published inThemonthly notices of the Royal Astronomical Society (Gration and

Wilkinson, 2019).

Chapter 5 concerns the application of GPE tomore general models of dwarf spheroidal galax-

ies. I assume that the galaxy consists of a dark-matter halo and a single population of stars, each

of which has a density of the generalized Hernquist type. I find the phase-space probability den-

sity function by modelling it using the method of Gerhard (1991), and then solving the density

equation using themethod of Cuddeford and Louis (1995). Again, I useGPE to construct ameta-

model of the log-likelihood. Although the resulting predictions are accurate, themetamodel fails

validation, indicating that we may not trust the confidence regions associated with these predic-

tions. I conclude that the usual kriging methods are inadequate for the task of predicting the

log-likelihood in this case, and that we must consider more general methods. I leave this for

future work.

1To compute the BLP of a random variable Z based on a set of random variable X1,X2, . . . ,Xn we must know the

joint distribution of Z and X1,X2, . . . ,Xn, which we assume to be Gaussian in the case of GPE. Rasmussen and Williams

assume the mean to be both constant and zero. They appear to claim (wrongly) that they may do this without loss of

generality.

v



Acknowledgements

The relationship between a PhD student and his supervisor requires trust. The PhD student must

trust that the problem chosen by his supervisor is interesting and tractable, while the supervi-

sor must trust that his student has the ability to pursue the problem at hand and make it his

own. I should like to thank my supervisor, Mark Wilkinson, for upholding his end of bargain so

abundantly. I can only hope that I have upheld my end. I have found the subject of this thesis—

Gaussian-process emulation applied to the dynamicalmodelling of dwarf spheroidal galaxies—to

be utterly fascinating. But it was Mark who realized this first, and I should like to thank him for

his foresight. For a work of physics this thesis is rather eccentric. The first three chapters almost

exclusively address the mathematical setting of Gaussian-process emulation. I believe that some

interesting results have arisen from the investigations I present in these chapters, and that they

have direct consequences for physics. But the work was slow and involved and I should like to

thank Mark for having faith in me while it was under way.

I should also like to thank the other members of the Theoretical Astrophysics Group for their

help and advice over the course of my time at Leicester: Andrew King, Walter Dehnen, Sergei

Nayakshin, Richard Alexander, Chris Nixon, and Graham Wynn. Last but not least I should like

to thank Sylvy Anscombe for numerous discussions of the mathematical structure of Gaussian-

process emulation.

vi



Contents

1 Modelling and metamodelling 1

1.1 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Flavourful spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Metric and pseudometic parameter spaces . . . . . . . . . . . . . . . . . . 12

1.2 Likelihood methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 Asymptotic behaviour of the MLE . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Metamodelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2 Themathematical structure of Gaussian-process emulation 23

2.1 Random processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Stationary and isotropic random processes . . . . . . . . . . . . . . . . . . 28

2.1.1.1 Increments of a random process . . . . . . . . . . . . . . . . . . 31

2.1.1.2 Examples of random processes . . . . . . . . . . . . . . . . . . . 31

2.2 General theory of reproducing kernel Hilbert spaces . . . . . . . . . . . . . . . . . 34

2.2.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2.2 Hilbert spaces of functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2.1 Functional completion . . . . . . . . . . . . . . . . . . . . . . . 39

2.2.3 Reproducing kernels and reproducing kernel Hilbert spaces . . . . . . . . 40

2.2.4 The Moore–Aronszajn theorem . . . . . . . . . . . . . . . . . . . . . . . . 43

2.2.5 Reproducing kernel Hilbert space representations of Hilbert spaces . . . 44

2.3 Reproducing kernel Hilbert space representations of random processes . . . . . . 45

2.4 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Prediction in the setting of reproducing kernel Hilbert spaces . . . . . . . . . . . . 50

2.5.1 Generalized integral equations . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.5.2 Finding the BLUP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



2.5.3 Finite-dimensional space of mean functions . . . . . . . . . . . . . . . . . 58

2.5.4 Gaussian process emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Mean and covariance specification in Gaussian-process emulation 62

3.1 Choosing the covariance function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Kriging methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 Validating the emulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Avoiding mean misspecification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5 Conditioning the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Computational practicalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Gaussian-process emulation and galactic modelling 78

4.1 Emulating the likelihood functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.1.1 Computational expense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2 Plummer model of a dwarf spheroidal galaxy . . . . . . . . . . . . . . . . . . . . . 88

4.2.1 The anisotropic Plummer sphere . . . . . . . . . . . . . . . . . . . . . . . . 88

4.2.2 Optimization of the likelihood . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2.3 Confidence region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.2.4 Contamination of data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.2.4.1 Model misspecification . . . . . . . . . . . . . . . . . . . . . . . 105

5 Gaussian-process emulation and the generalized Hernquist model 108

5.1 Factorizing the phase-space probability density function . . . . . . . . . . . . . . . 108

5.1.1 Solving the density integral . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.2 Gaia challenge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Basic definitions 137

A.1 Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.1.1 Vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.1.2 Duals of vector spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2.1 Measure theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

A.2.2 Lebesgue measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

A.2.3 Probability spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

viii



A.2.4 Expectation and conditional expectation . . . . . . . . . . . . . . . . . . . 146

B Derivatives of the squared-exponential covariance function 148

ix



List of figures

1.1 The pullback of the Fisher information metric, dΘ(θ, θ′) = 1, 2, 3, and 4 for θ′ =

(0, 1). Each contour is closed and represents the set of all parameters equidistant

from θ′. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2 The Forrester function (dashed line) and its predicted values (solid line) com-

puted using GPE based on the 10 samples shown (filled circles). The five-sigma

confidence interval for these predictions is also shown (grey band). . . . . . . . . 22

2.1 Three realizations of a centredGaussian randomprocess on the real interval [−1, 1]. 35

2.2 A realization of a centred Gaussian process on the real region [ − 1, 1] × [ − 1, 1]. 35

2.3 The least squares predictor for Z based on X, denoted Ẑ, is the orthogonal pro-
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Notation

I use an uppercase letter to represent a random variable, and a lowercase letter to represent a

realization of that random variable. For example, a random variable X, may have a realization

x, y, z, etc. I denote the probability density function of a random variable X by fX. I denote the

cumulative probability distribution of a random variable X by FX.

The following symbols have reserved meanings.

⟨⋅, ⋅⟩ Inner product

⟨⋅, ⋅⟩V Inner product associated with a particular vector space, V

∥ ⋅ ∥ Norm of a vector

V Inner-product space (V,+, (λ), ⟨⋅, ⋅⟩)

H Hilbert space (H,+, (λ), ⟨⋅, ⋅⟩)

r Correlation function

k Covariance function or positive-semidefinite kernel

R Correlation matrix corresponding to correlation function r

K Covariance matrix corresponding to covariance function k

X Random process, {Xt}t∈T, with arbitrary index set T

Ω Measurable space, (Ω,M ) on which a random variable or random process is define

E(⋅) Expectation of a random variable

xv



var(⋅) Variance of a random variable

cov(⋅) Covariance of a random variable

corr(⋅) Correlation of a random variable

L(X) Linear span of a random process X

L(X) Hilbert space spanned by the random process X

Gk Reproducing kernel Hilbert space with reproducing kernel k

ev(⋅) Evaluation map

RΞ Set of functions from Ξ to R

(H, Ξ) Hilbert space of functions f ∶ ΞÐ→ R

L2(⋅) Square-integrable functions on a set

L2(⋅) Hilbert space of square-integrable functions on a set

ψ Congruence between two Hilbert spaces

inf(⋅) Infimum of a set

sup(⋅) Supremum of a set

min(⋅) Minumum of a set

max(⋅) Maximum of a set

N Set of natural numbers, including zero

Z Set of integers

Q Set of rational numbers

R Set of real numbers.

C Set of complex numbers

xvi



‘A physical theory or world picture is a model (generally of a mathematical nature) and a set of

rules that connect the elements of the model to observations.’

STEPHEN HAWKING AND LEONARD MLODINOW, THE GRAND DESIGN



Chapter 1

Modelling and metamodelling

The Miky Way is orbited by approximately 60 satellite galaxies (McConnachie, 2012). All but

the Large Magellanic Cloud are dwarf galaxies, with stellar masses less than 109 M⊙. These

dwarf galaxies fall into two categories: those containing gas, which therefore exhibit ongoing

star formation, and those not containing gas, which therefore exhibit no such ongoing star for-

mation. The first category of dwarfs are known as dwarf irregular (dIrr), and the second as dwarf

spheroidal (dSph). Dwarf galaxies are diffuse and intrinsically faint, and all except the SmallMag-

ellanic Cloud (a dIrr galaxy) have been discovered since 1938, when Shapley (1938) discovered

the Fornax dwarf spheroidal galaxy. The dSph galaxies that were bright enough to be discovered

before the Sloan Digital Sky Survey (SDSS) are known as the classical dwarf spheroidal satel-

lites. There are eight of these: Carina, Draco, Fornax, Leo I, Leo II, Sculptor, Sextans, and Ursa

Minor. Those discovered since, by SDDS and subsequent surveys (such as the ATLAS survey

performed on the VLT Survey Telescope, or the Dark Energy Survey), are known as ultrafaint

dwarf spheroidal satellites.

These dwarf galaxies are some of the most dark-matter dominated stellar systems we know,

with half-light mass-to-light ratios of 10 or more (Walker, Mateo, Olszewski, Peñarrubia, Evans

and Gilmore, 2009). Indeed some ultrafaint dSph satellites have half-light mass-to-light ratios in

excess of 1000 (Wolf et al., 2010). This makes the dwarf satellites valuable laboratories in which

to study the properties of dark matter. The stellar populations of the dSph galaxies are the most

direct tracers of dark matter. Of these, the classical dSph galaxies are particularly interesting

since we have excellent observations of their stellar kinematics (namely stellar sky positions and

line-of-sight velocites). The largest of these data sets were made by Walker, Mateo, Olszewski,
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galaxy d (kpc) rh (pc) M(rh) (106 M⊙) M∗ (106 M⊙) MV (mag)

Leo I 254 ± 15 251 ± 27 12 5.5 -12.0

Leo II 233 ± 14 176 ± 42 4.6 0.74 -9.8

Sextans 86 ± 4 695 ± 44 25 0.44 -9.3

Ursa Minor 76 ± 3 181 ± 27 9.5 0.29 -8.8

Carina 105 ± 6 250 ± 39 6.3 0.38 -9.1

Draco 76 ± 6 221 ± 19 11 0.29 -8.8

Sculptor 86 ± 6 283 ± 45 14 2.3 -11.1

Fornax 147 ± 12 710 ± 77 56 20 -13.4

Table 1.1 Properties of the classical dwarf spheroidal galaxies: bulk distance from the Sun, d,

half-light radius, rh, total mass contained within half-light radius, M(rh), stellar mass, M∗(rh),

and absolute V-band magnitude, MV (McConnachie, 2012).

Peñarrubia, Evans and Gilmore (2009) using the Michigan-MIKE Fibre Spectrograph (MMFS)

of the Magellan Clay telescope at the Las Campanas Observatory, Chile. These include obser-

vatations of 775 stars in Carina, 2500 stars in Fornax, 1365 stars in Sculptor, and 440 stars in

Sextans. Smaller data sets have been compiled for the remaining classical dSph galaxies by other

authors, and include observations of 300 stars in Leo I (Mateo et al., 2008), 170 stars in Leo II

(Koch et al., 2007), 100 stars in Draco, and 100 stars in Ursa Minor (Kleyna et al., 2002). In

Table 1.1 I summarize the gross features of the classical dSph galaxies. They have stellar masses

between 105 M⊙ and 107 M⊙ (Draco is the faintest, and Fornax the brightest), orbit at distances

of order 100 kpc, and (Draco and Ursa Minor are the closest at 76 kpc, and Leo I the most distant

at 254 kpc) have half-light radii of several hundred parsecs (Leo II is the smallest at 176 pc, and

Fornax the largest at 710 pc).

That the dSph glaxies are dominated by darkmatter is known from the fact that their kinemat-

ics may not explained by their stellar mass. Some additional, non-luminous, matter is required.

This fact is observed in many astrophysical systems, including spiral galaxies and galaxy clusters.

It is termed themissing-mass problem, and was first recognised by Zwicky (1933) in his observa-

tions of the Coma cluster. Later, Rubin and Ford Jr. (1970) and Rubin et al. (1978) observed it

in the Andromeda Galaxy, M31. In dispersion-supported systems like dSph galaxies and galaxy
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clusters themissing-mass problem ismost clearlymanifest as too great a dispersion in the velocity

of its members. It may therefore be observed using line-of-sight velocites, from which we com-

pute the velocity dispersion using the virial theorem. The excess dispersion requires excess mass

in the cluster. In disc galaxies the problem manifests itself as too great a circular speed for trac-

ers of the galactic potential. It may therefore be observed directly in the line-of-sight velocities

of gas or stars, which may be compared to Newtonian predictions. HII may be used to observe

rotation within roughly the extent of the stellar disc, and HI to observe rotation beyond the stel-

lar disc. These circular velocities are oberved to be roughly constant at large radii, contradicting

the expectation that they be asymptotically Keplerian, i.e. decreasing as vc(r) ∼
√
M/r. This ex-

cess circular speed, like excess velocity dispersion, necessitates excess mass within the observed

radius.

It was first proposed that this missing mass might exist be in the form of massive compact

halo objects (MACHOS), i.e. low-mass black holes, neutron stars, brown dwarfs, or unbound

Jupiter -like exoplanets (Griest, 1991). These are now largely excluded as dark-matter candidates

(Brandt, 2016), on the grounds that we observe them neither directly, in microlensing surveys,

nor indirectly, by their dynamical effects (such as the disrupting of wide halo binaries, stellar

streams, or the dynamical heating of their host systems). Instead, dark matter is properly under-

stood as an intrinsic compononent of Lambda cold dark matter (ΛCDM) cosmology. In ΛCDM,

the universe is modelled as spatially flat and containing a mixture of radiation, ordinary matter,

nonbaryonic dark matter, and dark energy. The universe begins in a hot Big Bang and cools as

it expands. In this model dark matter is essential to explain the structure that we observe in the

universe (Frenk and White, 2012; Primack, 2009). Quantum fluctuations cause perturbations in

the dark matter’s density that are then expanded to cosmological scales by inflation at 10−32 s.

This seeds the early universe with dark matter structures of all scales. These structures collapse

under gravity, with smaller structures collapsing first to form dark matter halos. Larger struc-

tures form by the merging of these small halos. Dark matter is gravitationally dominant, and

baryonic matter falls onto these halos to form galaxies. This process is known as hierarchical

structure formation (Blumenthal et al., 1984).

This structure formation must be probed using simulations (Vogelsberger et al., 2014). These

fall into two categories: those that simulate only the dark-matter content of the universe, such as

Millennium (Springel et al., 2005), and Aquarius (Springel et al., 2008); and those that simulate

both the dark-matter and baryonic content of the universe, such as Illustris (Vogelsberger et al.,

2014), and EAGLE (Schaye et al., 2015). The first kind of simulations probe the large-scale distri-
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bution of dark matter, while the second also probe the structure of dark matter halos, which are

affected by baryonic feedback. In this way we observe the formation of Galaxies (at separations of

about a megaparsec), galaxy groups (like the Local Group, consisting of tens of galaxies), galaxy

clusters (consisting of hundreds or thousands of galaxies), superclusters (like the Virgo Super-

cluster, consisting of hundreds of galaxy groups and clusters, or tens of thousands of galaxies),

filaments, and walls, separated by enormous voids (of scales of tens to hundreds of megaparsecs).

In ΛCDM dark matter is a an as-yet unidentified particle that does not form part of the stan-

dard model, but interacts with standard-model particles by the weak force. By not interacting by

the electromagnetic force, it remains invisible. Initially, the contents of the universe is in thermal

equilibrium. Particles freely interact with each other, being continually created and destroyed.

The interaction rate, and hence the relative abundances of species, is determined by the universe’s

temperature. Equilibrium is maintained by scattering, and in order to maintain equilibrium the

scattering rate must exceed the rate at which the universe is expanding. Once the two rates have

acheived equality for a given species that species falls out of thermal equilibrium with the others

and its abundance is fixed. This phenomemon is known as freeze out. Once frozen out a species

is said to have become decoupled from the rest of the universe’s contents. Dark matter is said to

be cold because it is nonrelativistic at this time.

According to ΛCDM the universe therefore evolves as follows. The early universe (lasting

from the end of the first 10−12 s to the first 377 000 yr) begins as a plasma of elementary parti-

cles. By the end of the first second, quarks become bound to form hadrons (including protons

and neutrons), and the temperature of the universe is 1010 K, at which point neutrinos freeze

out and become decoupled. From this point, the mean-free path of neutrinos becomes infinite

and they free-stream through the universe. Because these neutrinos have been scattered from a

nonreflective, opaque surface of uniform temperature, they have the spectrum of a blackbody.

These free-streaming neutrinos and their black-body spectrum may still be observed in the form

of the cosmic neutrino background. Between 10 s and 103 s nucleosynthesis occurs, and protons

become bound to neutrons to form atomic nuclei. Principally these nuclei are deuterium, He-3,

He-4, and Li-7. They are observed, in these abundances, today (Schramm and Turner, 1998).

After 377 000 yr electrons become bound to these nuclei to form neutral atoms. This process is

known as recombination, though this is a misnomer, as electrons had not been bound to nuclei

at any time before. At this time the temperature of the universe has fallen to 4000 K, and pho-

tons are frozen out and become decoupled from matter. Photons, like neutrinos now free-stream

through the universe, again exhibiting a blackbody spectrum. These photons and their spectrum
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may be observed today in the from of the cosmic microwave background (Penzias and Wilson,

1965). After photon freeze-out, the early universe is said to end, and it enters a period known as

the dark ages, during which the only new source of photons is the spin-flip transition between

the two hyperfine levels of the 1s ground state of hydrogen. The dark ages come to and end at

200 Myr with the formation of the first stars, which form as hydrogen undergoes gravitational

collapse. The earliest galaxies form from 380 Myr. Once stars have formed, the photons they

radiate reionize the universe’s hydrogen. Reionization is complete by 1 Gyr, and the universe

enters its present state.

As the universe expands over the course of its history, the density of its component popu-

lations reduces. At first radiation is the most dense component, and the universe is said to be

radiation dominated. At 47 000 yr matter becomes the most dense component, and the universe

becomesmatter dominated. In both cases the universe continues to expand but the rate of expan-

sion decreases with time. The universe is said to decelerate. The era of matter domination lasts

until 1 Gyr, when the density of matter falls below that of dark energy, and the universe becomes

dark-energy dominated. This causes the rate of expansion to increase with time, and the universe

to accelerate. This acceleration is observed in the recession of Type 1a supernovae (Riess et al.,

1998; Perlmutter et al., 1999). Today the observed mass-energy density of the contents of the

universe has been estimated by the Planck Collaboration (2018) to be 25.9 % dark matter 4.86 %

baryonic matter, and 69.1 % dark energy.

ΛCDM therefore successfully predicts the large-scale structure of the universe, the cosmic

microwave background, the abundances of the elements, and cosmic expansion. However, it faces

some challenges in predicting structure at small scales (namely galactic scales of one megaparsec

or less). These arise from discrepancies between the predictions of dark matter-only simulations

and observations. The three best-known challenges are the missing satellites problem (Klypin

et al., 1999; Moore et al., 1999), the too-big-to-fail problem Boylan-Kolchin et al. (2011), and the

core-cusp problem (Flores and Primack, 1994; Moore, 1994).

The missing satellites problem results from the fact that Milky Way-like halos in dark matter-

only cosmological simulations host thousands of satellite halos. This differs dramatically from

the 60 galaxies satellite galaxies that we observe. In particular, cosmological simulations predict

many more small halos than we observe small galaxies. Future surveys may find more ultra-

faint satellites, but they are unlikely to find the thousands required. It may well be that dark

matter halos are inefficient at forming galaxies at low mass. For example, as protogalactic gas

is warmed by reionization, that gas may be prevented from collapsing onto low-mass halos. It
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may also be that baryonic feedback may prevent galaxy formation. In this case, low-mass halos

would remain dark, and we would not observe as many low-mass galaxies as there are low-mas

halos. We would expect to observe only high-mass satellites, and solve the missing satellites

problem by proposing that the observed satellites galaxies reside in the highest-mass halos. A

consequence of this proposed solution is that the central densities of Milky-Way satellites should

be consistent with the central densities of highest-mass halos predicted by simulations (these are

of order 1010 M⊙). The too-big-to-fail problem results from the fact that the most-massive halos

found in Aquarius (Springel et al., 2008) and Via Lactea II (Diemand et al., 2008). are too dense

in centre. It is not clear why would galaxies not form in the highest-mass halos whilst forming

forming in halos of lower mass. These galaxies should be too big to fail in this way. Recently,

Ostriker et al. (2019) have suggested that this is the result of hierarchical growth itself. The Milky

Way has grown by mergers, and as over its history has always been most likely to merge with the

brightest of its satellites. After merger the difference in luminosity between the Milky Way and

its brightest satellite is greater than it was before merger. Ostriker et al. (2019) claim that this gap

in luminosity is indeed obervered in the most-recent baryonic ΛCDM simulations EAGLE and

IllustrisTNG.

The core-cusp problem results from the fact dark matter-only simulations predict a universal

density profile for dark-matter halos. Regardless of size, the spherically averaged density of a halo

is well approximated by the Navarro-Frenk-White (NFW) formula:

ρ(r) = ρ0 (
r
b
)
−1
(1 + r

b
)
−2

(1.1)

where r is distance from the galactic centre, ρ0 > 0 is a normalizing factor or characteristic density,

and b > 0 is the transition radius. This is a split-power law, in which density falls off as ρ(r)∝ r−3

for large radii, and as ρ(r) ∝ r−1 for small radii. Such halos are said to exhibit a cusp in their

central densities. However, observations suggest that the density of some dSph galaxies is roughly

constant at small radii, in which case they are said to exhibit a core (de Blok, 2010; Battaglia

et al., 2008; Strigari et al., 2010; Breddels and Helmi, 2013; Read and Steger, 2018). The core-

cups problem may be spurious, and the cores we supposedly observe may not be statistically

significant (Wolf and Bullock, 2012). Or it may be that these cores are genuine and that the

problem is resolved by baryonic physics. For example, it has been shown that supernova-driven

flattening may turn dark-matter cusps into cores (Navarro et al., 1996; Read and Gilmore, 2005;

Mashchenko et al., 2008). In either case we require more robust dynamical modelling, which

will allow us definitively identify the problem, or provide us with good targets for evolutionary
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simulations and help us better understand the history of these galaxies.

To date, dynamical modelling of dSphs has for the most part been based on very restrictive

simplifying assumptions, namely that the dSphs are spherical and in equilibrium (see, for ex-

ample, Wilkinson et al., 2002, Walker, Mateo, Olszewski, Peñarrubia, Evans and Gilmore, 2009,

Strigari et al., 2010, and Read and Steger, 2017). While some authors have considered more gen-

eral models (Breddels and Helmi, 2013), relaxation of these assumptions results in models that

are significantly more computationally expensive, often prohibitively so. When a model is com-

putationally expensive wemay use ametamodel, i.e. a model of the model that is computationally

cheaper. One commonly used method of metamodelling is Gaussian-process emulation (GPE).

In the astrophysical literature it has been used to fit exoplanetary transit and secondary-eclipse

light curves (Gibson et al., 2012 and Evans et al., 2015), to map interstellar extinction within the

MilkyWay (Sale andMagorrian, 2014, 2019), and to fit semi-analytic models of galaxy formation

(Bower et al., 2010), while in the cosmological literature it has has been used to predict the non-

linear matter power spectrum in the Coyote Universe simulation (Heitmann et al., 2009), and

to fit gravitational-wave models (Moore et al., 2016). However, it has not been used in galactic

dynamics.

Our principal interest is in what observational data can tell us about the distribution of dark

matter in a dSph. Which dark-matter distributions do the data rule out? Which best account for

the observations? We will adopt the distribution-function approach to the modelling of dSphs.

We construct a model of the phase-space distribution function, compute the observables, and

recover the parameter of this model using likelihood methods. We will be interested in using

GPE to create metamodels of this likelihood function.

1.1 MODELLING

Before we embark on a discussion of metamodelling and its application to galactic dynamics, it

will be worth our while to discuss some formal aspects of modelling in general. In particular it

will be worth our while to discuss the mathematical structure of parameter space. Although the

term ‘parameter space’ is ubiquitous, I know of no source that defines it. A full definition will

be beyond the scope of this thesis, and we will instead be concerned with showing that, in the

context of dynamical modelling, parameter space may be considered a metric or pseudometric

space. Nonetheless, we will work towards a formal definition of parameter space, the complete

statement of which must be left for future work.
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We begin with a formal definition of an indexed family.

Definition 1 (indexed family). Let Θ and Ξ be nonempty sets and let f be a surjective (i.e. many-

to-one) function such that

f ∶ ΘÐ→ Ξ(1.2)

θz→ f(θ).(1.3)

We use the notation ξθ ∶= f(θ). We call f the indexing function, we call the set Θ the index set, and

we call the set Ξ the indexed set. The indexing function, f, is in fact a set of pairs {(θ, ξθ) ∶ θ ∈ Θ},

which we denote (ξθ)θ∈Θ. We call this surjective function the family of elements in Ξ indexed by

Θ (or, the indexed family, or the Θ-indexed family).

When the elements of an indexed family take on a particular significance we will refer to it as

a model. When we view an indexed set as a model, we will refer to the indices as parameters and

to the index set as the set of parameters (or parameter set).

Example 2 (gravitational central force). A model of a particle’s acceleration under a gravitational

central force is

(ẍ(t) = − Gm
∣x(t)∣3

x(t))
m∈M

(1.4)

where x is the particle’s displacement from the centre of force, and the parameter m is the mass

of the source particle. The parameter set M (denoted Θ in Def. 1) is the set of all such masses, i.e.

the set of positive real numbers.

Example 3 (coupled pendulums). A model of a pair of coupled pendulums is

({m1ẍ1 = −
m1

l1
x1 − k(x1 − x2),m2ẍ2 = −

m2

l2
x2 − k(x1 − x2)})

θ∈Θ
(1.5)

where x1 and x2 are the displacements of the pendulums from equilibrium, and the parameter θ

is a tuple of values (m1,m2, l1, l2, k).1 The parameter set is Θ = R5
>0.

Example 4 (statistical model). If the elements of an indexed family are probability density func-

tions then we call that family a statistical model.

Two types of statistical model are of particular interest to us in astrophysics: models of mea-

surement errors, and distribution-function models of dynamical systems.
1Note the parameter is the tuple (m1,m2, l1, l2, k). Its components are not themselves parameters, and we do not refer

to, say, the mass m1 as a parameter of the system.
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Example 5 (Gaussian measurement errors). We represent the error of a measurement as a random

variable, X, which we typically assume to have a Gaussian distribution. A model of measurement

errors is an indexed family of Gaussian distributions

(fX(⋅; σ) ∶ RÐ→ R)σ∈Σ(1.6)

where fX(⋅; σ) is the normal probability density function with zero mean,2 i.e. where

fX(x; σ) =
1√
2πσ2

exp( − x2

2σ2 ).(1.7)

The parameter is the standard deviation, σ, and the parameter set is the set Σ = R>0.

Example 6 (distribution functionmodel of a dynamical system). If the elements of an indexed fam-

ily are probability density functions on phase-space thenwe call that family a distribution function

model of a dynamical system.

Remark 7. Note that Examples 4, 5 and 6 are indexed families of functions, that Example 2 is

an indexed family of differential equations, and that Example 3 is an indexed family of pairs of

coupled differential equations.

A parameter set Θ is called a parameter space if it is endowed with some structure. For exam-

ple, it might be endowedwith the structure of a vector space ormetric, or with a weaker structure,

such as that of a topological space. (I will take the definition of these structures for granted, but

for convenience include them in App. A.) What structure, then, should parameter space have?

1.1.1 Flavourful spaces

A parameter is typically a tuple consisting of physical quantities (mass, length, density, etc.) and

numbers. These numbers may be real, positive, nonnegative, or integer, etc. It makes sense, for

example, to add masses to masses or lengths to lengths. Similary, it makes sense to multiply

masses by a constant, or to multiply lengths by a constant. It makes sense to multiply lengths by

lengths, or to multiply masses by masses. But, it does not make sense to add masses to lengths,

nor does it make sense to multiply masses by lengths. We may think of each element of the tuple

as having a distinct flavour, and the parameter as being flavourful. We must accommodate this

flavourful property of parameters in the appropriate structure of parameter space.

We may illustrate this idea by constructing a flavourful vector space, noting that, in general,

parameter space will not be a vector space. The key is to recognize that the flavourful property
2Here we follow the convention that the PDF of random variable X always denoted fX.
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of parameters can be described by giving a vector space a distinguished (i.e. special) Cartesian

product. Recall that a Cartesian product of vector spaces is defined by their direct sum (see, for

example, Lang, 2004).

Definition 8 (direct sum). Let U be a vector space and let V,W ⊆ U be subspaces of U. Then U

is the direct sum of V andW if U = V+W and V∩W = {0}. We write U = V⊕W. We call V and

W factors of U.

A vector space may be decomposed into its factors.

Definition 9 (decomposition). A decomposition of a vector space V is a set of vector spaces {Vi ∶

i = 1, 2, . . . ,n} such that V is the direct sum of these vector spaces, i.e. such that

V = V1 ⊕V2 ⊕ ...⊕Vn.(1.8)

We may then define a flavourful vector space as a vector space together with a given decom-

position. In order to do this, we fix a finite family of vector spaces, which represent the flavours

of our parameters.

Definition 10 (flavour space). We fix a family U = (Ui)ni=1 of vector spaces. These vector spaces

are called flavour spaces.

Each factor of the decomposition should now be isomorphic to one of these flavour spaces.

Definition 11 (flavourful vector space). Fix a finite family U = (Ui)ni=1 of flavour spaces, and

let V be another vector space. A flavourful decomposition of V relative to U is a decomposition

of V into a direct sum

V = V1 ⊕V2 ⊕ . . .Vm,(1.9)

such that for each i ≤ m there exists j ≤ n such that Vi is isomorphic to Uj. A flavourful vector

space is a vector space equipped with a flavourful decomposition.

Each subspace is a Cartesian factor of the parameter space, and the parameter space itself is

the Cartesian product of these factors. We may refer to it as a product space. Note that if each

component of the parameter vector has a different flavour then n = m.

We will be able to make equivalent decompositions of a variety of mathematical structures,

for example topological spaces, groups, etc. For example, we might be interested in the seven

fundamental physical dimensions (length, mass, time, current, temperature, number, and lumi-

nous intensity), which may not all be represented as vector spaces. Consider, for example, the
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parameter space R≥0, representing temperature, all but the zero element of which fails to have

an additive inverse. Consider, also, a compact region, [a1, b1] × [a2, b2] × ⋅ ⋅ ⋅ × [an, bn] ⊂ Rn,

which is not closed under addition. This illustrates the fact that, in general, it will not be possible

to endow parameter space with the structure of a vector space. However, we will not consider

decompositions of such general spaces here.

If we are to quantify the distance between elements of a flavourful vector space we will wish

to equip it with a metric. We do this by equipping it with an inner product, which then induces

(i.e. is used to define) a metric. To do this we may adopt one of two approaches. We may either

equip each factor with an inner product, and then extend this to the product space, or we may

equip the product space with an inner product, and restrict it to each factor. By introducing an

inner product, we also allow ourselves to discuss the orthogonality of our factors.

Adopting the first approach, we suppose that each flavour space is an inner product space.

By abuse of notation we write, Ui = (Ui, ⟨⋅, ⋅⟩i), where ⟨⋅, ⋅⟩i ∶ Ui ×Ui Ð→ R≥0 is an inner product

on the flavour space Ui. Let V = V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vm be a flavourful space, and let (ai)mi=1 be a

sequence of positive numbers, which we will call scale constants. We may now define an inner

product, ⟨⋅, ⋅⟩, on the product space, V, given by

⟨∑
i
ui,∑

i
vi⟩ =∑

i
ai⟨ui, vi⟩i(1.10)

for all ui, vi ∈ Vi. Then (V, ⟨⋅, ⋅⟩) is an inner product space. Moreover, V1 ⊕ V2 ⊕ ⋅ ⋅ ⋅ ⊕ Vm is an

orthogonal direct sum, i.e. the factors of the flavourful space are orthogonal to each other. (To

see this, consider vectors u ∈ Vi and v ∈ Vj where i ≠ j. Then ⟨u, v⟩ = ai⟨u, 0⟩i + aj⟨0, v⟩j = 0.)

The inner product ⟨⋅, ⋅⟩i induces a normon the factorVi, namely the function ∥⋅∥i ∶ Vi Ð→ R≥0
given by

∥u∥i =
√
⟨u,u⟩i,(1.11)

and in turn, a metric, namely the function di ∶ Vi ×Vi Ð→ R≥0 given by

di(u, v) = ∥u − v∥i.(1.12)

Similarly, we have the norm ∥⋅∥ ∶ VÐ→ R≥0 given by ∥u∥ =
√
⟨u,u⟩, andmetric d ∶ V×VÐ→ R≥0

given by d(u, v) = ∥u − v∥. The crucial thing is as follows. Consider the unit vectors, ui ∈ Ui and

uj ∈ Uj, such that ∥ui∥i = ∥uj∥j = 1. Then the ratio of the norms ∥ui∥/∥uj∥ =
√
aj/ai.3 We may

think of the number
√
ai/aj as a relative scaling of flavour spaces Ui and Uj.

3To see this, note that ∥ui∥2 = ⟨ui,ui⟩ = ai⟨ui,ui⟩i = ai∥ui∥2i . Therefore ∥ui∥2/∥uj∥2 = (ai∥ui∥2i )/(aj∥uj∥2j ) = 1.

Hence ∥ui∥i/∥uj∥j =
√
aj/ai.
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Remark 12. We have extended the inner products on the factors ofV toV itself in such a way that

these factors become orthogonal. There are ways of extending these inner products such that the

factors do not become orthogonal, but we do not pursue them here.

Adopting the second approach, we suppose that the product space, V, is an inner prod-

uct space, rather than its factors. Again, by abuse of notation we write, V = (V, ⟨⋅, ⋅⟩), where

⟨⋅, ⋅⟩ ∶ V × V Ð→ R≥0 is an inner product on V. In this scheme, the given factors of V are not

necessarily orthogonal, but we may find an orthonormal basis for V, and hence an orthogonal

decomposition of V distinct from the given factors. We may find such a basis by applying the

Gram–Schmidt procedure. Denote this basis (bi)qi=1. Let Lj be the span of the vector bj. Then Lj is

a one-dimensional subspace ofV. The spaceV has the orthogonal decomposition L1⊕L2⊕⋅ ⋅ ⋅⊕Lq.

Again, the inner product induces a norm, and in turn a metric, both of which we may restrict

to each Lj. Denote the norm of factor Li by ∥ ⋅ ∥Lj . Then for unit vectors vi ∈ Li and vj ∈ Lj such

that ∥vi∥Li = ∥vj∥Lj = 1 we have that ∥vi∥/∥vj∥ = 1. We might think of these subspaces as being

natural.

1.1.2 Metric and pseudometic parameter spaces

From hereon we will be concerned specifically with those parameter spaces that index statistical

models (Ex. 4), including distribution-function models of dynamical models (Ex. 6). It will not

always be possible to make such spaces metric spaces, but it will always be possible to make them

pseudometric spaces, as we will now discuss. Recall that, whereas a metric is a function of two

variables that is positive-definite, symmetric, and obeys the triangle inequality, a pseudometric

is nondegenerate, symmetric, and obeys the triangle inequality (see App. A). Whereas a metric is

zero only if its arguments are identical, a pseudometric may be zero for nonidentical arguments.

The key here is that we may we define a metric or pseudometric on the set of probability

density functions itself, and that parameter space may then inherit this metric or pseudomet-

ric. Whereas the flavourful property of parameter space makes it difficult to impose a metric on

parameter space directly, there is no such problem with the set of probability density functions.

They are simply nonnegative functions.

The metric or pseudometric on the set of probability density functions quantifies how differ-

ent any two probability density functions are. We then take the distance between two parameters

to be the distance between the probability density functions that they index. The distance be-

tween these parameters then quantifies the effect of altering the parameter.

12



This leaves the question of precisely which metric we should impose on the set of probability

density functions. In the case that parameter space is a compact region [a1, b1] × [a2, b2] × ⋅ ⋅ ⋅ ×

[an, bn] ⊂ Rn it is possible to endow the set of probability density functions with the structure of

a Riemannian manifold. This is described by Amari (1985).4 In this scheme, the metric tensor is

given by the following definition.

Definition 13 (Fisher informationmetric tensor). The elements of the Fisher information met-

ric tensor are given by

gij(θ) = ∫
X
∂θi ln(fX(x; θ))∂θj ln(fX(x; θ))fX(x; θ)dx(1.13)

for θi, θj ∈ θ.

Thedistance between any twopoints on themanifold (i.e. between any twoprobability density

functions) is the length of the geodesic connecting those two points. We will call this the Fisher

information metric, and denote it d. In general the Fisher information metric will not have closed

form, and we will have to compute it numerically, or estimate it. However, in certain cases it is

possible to find a closed-form expression. The following is one such case.

Example 14 (Riemannianmanifold of Gaussian probability density functions). Consider a Rieman-

nian manifold of univariate Gaussian probability density functions,

(fX(⋅;μ, σ2))(μ,σ2)∈Θ(1.14)

for Θ = R ×R≥0. Amari (1985) shows that the Fisher information metric is given by

d(fX(⋅;μ, σ2), fX(⋅;μ′, σ2′)) =
√

2 arcosh((μ
2 − μ′2) + 2(σ2 + σ2′)

4σσ′
) .(1.15)

TheFisher informationmetric on the set of probability density functions can be used to define

a metric or pseudometric on the parameter space. In order to formalize this we will need the

concept of a pullback. First, however, let us recall the definition of a composite function.

Definition 15 (composite function). Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be functions. The function

g composed with f, (or g after f) is the function

g ○ f ∶ XÐ→ Z(1.16)

xz→ g(f(x)).(1.17)
4For a proof that such a such a set of probability density functions may be made into a Riemannian manifold we refer

the reader to Amari directly. We will move right away to consider the metric properties of this manifold.
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Figure 1.1The pullback of the Fisher information metric, dΘ(θ, θ′) = 1, 2, 3, and 4 for θ′ = (0, 1).

Each contour is closed and represents the set of all parameters equidistant from θ′.

We may define a pullback as follows.

Definition 16 (pullback). Let X, Y, and Z be sets and let f ∶ XÐ→ Y and g ∶ YÐ→ Z be functions.

We may pullback g via f to give a function g′ ∶ XÐ→ Z, defined to be the composition g ○ f.

Consider the indexed family f ∶ ΘÐ→ Ξ, and let d ∶ Ξ×ΞÐ→ R≥0 be ametric or pseudometric

on Ξ. Then the pullback of d via the indexing function f is the function

dΘ ∶ Θ ×ΘÐ→ R≥0(1.18)

(θ, θ′)z→ d(ξθ, ξθ′).(1.19)

Example 17 (Riemannian manifold of Gaussian probability density functions). Consider the Rie-

mannian manifold of univariate Gaussian probability density functions given in Example 14,

which has metric d. We may pullback this metric to form the metric dΘ given by dΘ(θ, θ′) =

d(fX(⋅;μ, σ2), fX(⋅;μ′, σ2′)). I plot this in Figure 1.1 for θ′ = (0, 1). Each contour represents the

set of points equidistant from θ′.

Note that the pullback of a metric on the set of probability density functions is not necessar-

ily a metric on the set of parameters. Consider the statistical model (fX(⋅; θ))θ∈Θ in which two

elements are identical, i.e. for which there exist θ, θ′ ∈ Θ such that θ ≠ θ′ and fX(⋅; θ) = fX(⋅; θ′).

Thus dΘ(θ, θ′) = d(fX(⋅; θ), fX(⋅; θ′)) = 0, i.e. the two points θ and θ′ are separated by zero dis-

tance despite being nonidentical. It is then the case that dΘ is a pseudometric.
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If there is a pseudometric on the model then the pullback of that metric is a pseudometric on

the parameter space. If there is a metric on the model then the pullback of that metric is a metric

on the parameter if and only if the indexing function is injective (i.e. one-to-one).

Proposition 18 (existence of pseudometric parameter spaces). Let f ∶ Θ Ð→ Ξ be an indexed

family and let d be a pseudometric on Ξ. Then dΘ, the pullback of d via the indexing function f,

is a pseudometric on Θ.

Proof. It is a simple matter of verification to show that dΘ satisfies the definition of a pseudomet-

ric.

Proposition 19 (existence of metric parameter spaces). Let f ∶ Θ Ð→ Ξ be an indexed family

and let d be ametric onΞ. Then dΘ, the pullback of d via the indexing function f, is a pseudometric

on Θ if and only if f is injective.

Proof. The function dΘ will fail to be a metric insofar as it fails to be positive semidefinite. Sup-

pose that the indexing function is injective, and furthermore suppose that dΘ(θ, θ′) = 0. Then

d(ξθ, ξθ′) = 0 and hence ξθ = ξθ′ . Thus θ = θ′ by injectivity. Conversely, suppose that the

indexing function is not injective, and furthermore suppose that ξθ = ξθ′ and θ ≠ θ′. Then

dΘ(θ, θ′) = d(ξθ, ξθ′) = 0. Thus dΘ is not positive definite.

We have thus shown howwemay rigorously regard the parameter spaces of statistical models

as metric or pseudometric spaces. In doing so, we have gone some way in providing an account

of the structure of parameter spaces that is missing from the literature. Further development of

this account must be left for future work, as we must now return to more practical questions of

modelling.

1.2 LIKELIHOODMETHODS

In galactic dynamics, we are interested in continuous random vectors (i.e. tuples of random vari-

ables) representing the state of a stellar system, or its observable quantities. Let us denote such

a random vector by X, and the model of its joint PDF by (fX(⋅; θ))θ∈Θ. Its true parameter, θ0,

is unknown to us. Let x be a realization of X. To recover the parameter, we will use the princi-

pal of maximum likelihood (Fisher, 1922), i.e. we will choose the parameter that, of all possible

parameters, assigns that realization the greatest probability density.
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Definition 20 (likelihood). Let X ∶ ΩÐ→ R be a random vector with joint PDF, fX, known to be

an element of the model (fX(⋅; θ))θ∈Θ. Let RΩ be the set of all real-valued random variables on

the probability space Ω. The likelihood is the function

L ∶ ΘÐ→ RΩ(1.20)

θz→ fX(X; θ).(1.21)

We call the value L(θ) the likelihood of the parameter θ. For convenience we will use the notation

L(θ) and Lθ interchangeably.

Note that it is L(θ) that is the random variable, not L. If X = x (i.e. if the random variable

X takes the realized value x) then L(θ) = fX(X = x; θ) (i.e. the random variable L(θ) takes the

realized value fX(X = x; θ)), and if X = x′ then L(θ) = fX(X = x′; θ). Similarly , if X = x then

L(θ) = fX(X = x; θ) and L(θ′) = fX(X = x; θ′).5 We will be interested in the relative likelihood of

two parameters and hence define the likelihood ratio.

Definition 21 (likelihood ratio). The likelihood ratio is the function

Λ ∶ Θ ×ΘÐ→ R(1.22)

(η, θ)z→ L(η)/L(θ).(1.23)

Wewill say that η ismore likely than θ if Λ(η, θ) > 1. Note that the likelihood ratio is invariant

under arbitrary scalings of the likelihood, L(θ)z→ aL(θ) for some real a. Therefore, we are not

interested in absolute values of L. It will often be convenient to work with the natural logarithm

of the likelihood, which we call the ‘support’.

Definition 22 (support). Let R̄ = R ∪ {−∞}, and let R̄Ω be the set of all R-valued functions on

the probability space Ω. The support6 is the function

S ∶ ΘÐ→ R̄Ω(1.24)

θz→ ln(L(θ))(1.25)

where we understand that ln(0) = −∞. We call the value S(θ) the support for the parameter θ.

For convenience we will use the notation S(θ) and Sθ interchangeably.
5Once we have defined random processes, in Chapter 2, we will be able to see the likelihood as the random process

L = (Lθ)θ∈Θ.
6Some authors (for example, Wasserman, 2004) use the term ‘log-likelihood of θ’ instead of ‘support for θ’, which they

denote l(θ). We will follow Edwards (1972) in using the latter term. This has the happy consequence that we may respect

our convention that random variables are denoted by a capital letter, in this case Sθ.
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Note that, just as L(θ) is the random variable not L, so is S(θ) the random variable, not S.

Definition 23 (maximum-likelihood estimator). Amaximum-likelihood estimator (MLE) of the

parameter is any element

Θ̂ ∈ argmax
θ∈Θ

(L(θ)).(1.26)

Note that the MLE need neither exist not be unique. There may be no maximum of the set

{L(θ)}θ∈Θ or there may bemultiple maxima. Because the logarithm is a monotonic function, the

maximum of the support function coincides with the maximum of the likelihood function, i.e.

argmaxθ∈Θ(L(θ)) = argmaxθ∈Θ(S(θ)).

1.2.1 Asymptotic behaviour of theMLE

The maximum-likelihood estimator is a random variable. Its value is dependent on the value of

X. What happens as as we observe an increasingly large number of realizations of X? Let (Xi)ni=1
be indendent and identically distributed random vectors, each with joint PDF fX(⋅, θ0) known to

be an element of the model ((fX(⋅, θ))θ∈Θ. The joint PDF of these random vectors is

f(X1 ,X2 ,...,Xn)(⋅; θ) =
n
∏
i=1

fX(⋅, θ).(1.27)

We denote the likelihood of parameter θ by Ln(θ), its support by Sn(θ), and theMLE by Θ̂n where

the subscript n emphasizes the dependence of these quantities on the number of observations.

What happens as n Ð→∞? In our case X is a random vector representing a single stellar obser-

vation, and (Xi)ni=1 is a set of observations for a stellar system. What, then, happens as we observe

increasingly may many stars?

Under certain regularity conditions we find that the MLE is consistent (i.e. it converges on

the true parameter) and asymptotically normal (i.e. its distribution converges on a normal distri-

bution with some given variance matrix). These regularity conditions amount to requiring that

the indexing function is injective, that the parameter space is compact, and that the PDF is suf-

ficiently smooth (for a discussion, see Wasserman, 2004, p. 126). If a model isn’t regular we may

consider a regular subset of that model, in which case we will say that a model is locally regular.

Recall that we say a sequence of random variables X1,X2, . . . ,Xn converges in probability to-

wards the random variable X (which may be a constant, i.e. a trivial random variable) if for all

positive ε it is the case that limnÐ→∞ P(∣Xn − X∣ > ε) = 0, and that we write Xn
p
Ð→ X to denote

this.
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Proposition 24 (consistency). The maximum-likelihood estimate of a parameter is consistent,

i.e. Θ̂n
p
Ð→ θ0.

Proof. A proof is given by Wasserman (2004).

To characterize the asymptotic normality of the MLE we will require the Fisher information.

Definition 25 (Fisher information). The Fisher information is the matrix-valued function

In ∶ ΘÐ→ Rn×n(1.28)

θz→ (Eθ(∂θiSn(θ)∂θjSn(θ)))ij.(1.29)

Note that In = nI1, and that I1 = Eθ(∂θiS1(θ)∂θjS1(θ)) = −Eθ(∂θiθjS1(θ)), i.e. the matrix I1 is

the negative of the expectation of the Hessian of the support. Note that it is positive semidefinite.

Note also that cov(∂θiS(θ), ∂θjS(θ)) = Iij.

Remark 26. We have already encountered the Fisher information, I1, in our discussion of the

structure of parameter space (Def. 13).

Recall thatwe say a sequence of randomvariablesX1,X2, . . . ,Xn, with cumulative distribution

functions FX1 ,FX2 , . . . ,FXn converges in distribution towards a randomvariable X, with cumulative

distibution function FX if limnÐ→∞ FXn = FX, and that we write Xn
dÐ→ FX to denote this.

Proposition 27 (asymptotic normality). The maximum-likelihood estimate converges in distri-

bution,

n1/2I1/21 (Θ̂n − θ0)
dÐ→ N(0, I))(1.30)

where I is the identity matrix, and I1/21 is the square root of the Fisher information matrix I1 (this

is well defined as the Fisher information matrix is positive semidefinite).

Proof. A proof is given by Wasserman (2004).

Remark 28. Note that in the limit, cov(Θ̂n,i, Θ̂n,j) Ð→ I−1n,ij, where I−1n,ij is the ij-th element of the

inverse of the Fisher information, In.

A more suggestive notation for convergence in distribution is

Θ̂n ≈ N(θ0, I−1n (θ0)).(1.31)
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We may think of Θ̂n as having a distribution that is approximately normal with mean θ0 and

variance I−1n (θ0). In fact, it may be shown (Wasserman, 2004, p. 129) that

Θ̂n ≈ N(θ0, I−1n (Θ̂n)),(1.32)

i.e. instead of evaluating the Fisher information at θ0, we may evaluate it at the realization of

Θ̂n. This allows us to determine the confidence region, Cn, defined by the boundary that is the

solution to the equation

(1.33) (θ − Θ̂n)tI−1n (θ − Θ̂n) = χ2q(1 − α)

where χ2q is the quantile function (i.e. the inverse of the cumulative distribution function) for

the chi-squared distribution for q degrees of freedom and α is the critical value. The probability

P(θ ∈ Cn)Ð→ α as nÐ→∞. We say that Cn traps θ0 with probability α.

We have noted that the Fisher information I1is the negative of the expectation of the Hessian

of the support. The Fisher information, I1(θ) therefore quantifies the curvature of the support,

S1(θ). Let us consider a parameter containing a single element, meaning that the support is a

function of one variable. Evaluated at θ0, it quantifies the breadth of the peak in the support. A

narrow peak (i.e. large curvature and large Fisher information) indicates that the maximum is

well constrained. A broad peak (i.e. small curvature and small Fisher information) indicates that

the maximum is poorly constrained.

Proposition 29 (equivariance). Let g ∶ Θ Ð→ R be a function, and let Θ̂n be the MLE of of θ0.

Then g(Θ̂n) is the MLE of g(θ).

Proof. A proof is given by Wasserman (2004).

By the asymptotic normality of maximum-likelihood estimates (Prop. 27), the distribution

of g(Θ̂n)must itself be asymptotically normal. Its distribution may be computed explicitly using

the following proposition.

Proposition 30 (delta method). Let ∇ = (∂θi)i, and let g ∶ Θ Ð→ R be a differentiable function

such that ∇g ≠ 0. Then

g(Θ̂n)
dÐ→ N(g(θ0),∇tg(θ0)I−1n ∇g(θ0)).(1.34)

Proof. A proof is given by Wasserman (2004).
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This allows us to determine the confidence region

Cn = (g(Θ̂n) − χ21(1 − α)
√
∇tgI−1n ∇g), g(Θ̂n) + χ21(1 − α)

√
∇tgI−1n ∇g)),(1.35)

which traps θ0 with probability α.

It is not always possible to compute the Fisher information. In particualar, we may be unable

to compute the expectated value.

Definition 31 (observed Fisher information). The observed Fisher information is the matrix-

valued function

Jn ∶ ΘÐ→ Rn×n(1.36)

θz→ (−∂θiθjSn(θ))ij.(1.37)

Consider an element of the matrix,

−∂θiθjSn(θ) = −∂θiθj ln(
n
∏
k=1

f(Xi; θ)(1.38)

= −∑
k=1

∂θiθj ln(f(Xi; θ)).(1.39)

The summands of this expression are independent and identically distributed. By the law of large

numbers, therefore, the element’s average converges on the expected value of any single term, i.e.

1
n
Jn,ij(θ)

p
Ð→ Iij(θ).(1.40)

More suggestively we may write Jn ≈ nI(θ) = In(θ). In fact, it may be shown that Jn ≈ In(Θ̂n).

Hence we may rewrite expressions 1.32 and 1.33 with Jn substituted for In. We may then make

the same substitution in our statement of the delta method (Prop. 30).

1.3 METAMODELLING

Distribution functionmodels of dwarf spheroidal galaxies are typically expensive to evaluate, and

it is impractical tomaximize the likelihood of the parameters. We are therefore interested in con-

structing metamodels of them. In our case, the model is a family of probability density functions

for the observable quantities, namely the sky positions and line-of-sight velocities of stars ob-

served in a dSph (a full discussion will come in Ch. 4). We create a metamodel by evaluating the

model for some small number of distinct parameters, and then using the results of these evalua-

tions to predict the value of the model for some arbitrary parameter. We do this without needing
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to make an additional evaluation of the model. In just the same way that a computer simulation

is a means of evaluating a model, an emulator is a means of evaluating a metamodel.7 And in

just the same way that a simulation run is a is an evaluation of a model for a single parameter, an

emulator run is an evaluation of a metamodel for a single parameter.

Although the value of an element of the model, f(x; θ), is deterministic, we treat it as if it

were random, i.e. we treat it as if it were the realization of a random variable. The metamodel is

a family of such random variables, one representing the value of the model for each parameter.

Metamodels allow us to compute a best guess for the value of the given element of the model,

together with a measure of confidence in that best guess.

We will use GPE to construct our metamodels. To give some idea of the potential of this

method, let us look at the results of the emulation of the Forrester function (Forrester et al.,

2008). The Forrester function is the function f ∶ [0, 1]Ð→ R given by

f(x) = (6x − 2)2 sin(12x − 4).(1.41)

It has no particular physical significance, but is rather used as a test function for optimization

methods, because it has multiple minima and an inflexion point. The example is artificial, as

we would never have any need to emulate this function. We may always evaluate the Forrester

function directly. Suppose, however, that it were expensive to evaluate and that we wished to

make as few evaluations as possible. (In this sense f(x) stands in for the likelihood of a parameter

L(θ).) With GPE we may evaluate the function for some small number of distinct arguments (in

this case 10), and use these values to predict the values of the function for its entire domain. GPE

does this with no knowledge of the formula for the Forrester function. The results are shown

in Figure 1.2. The predicted values are very close to the true values everywhere, and the true

values alwayswithin the five-sigma confidence intervals of the predicted values. These confidence

intervals are themselves small.

Having hinted at the potential of GPE, let us now turn our attention to its theoretical foun-

dations.

7Presumably the term ‘emulation’ originates with the fact that one computer programme is being used to emulate

another. This is somewhat analagous to the use of software (emulators) to allow one operating system to run programmes

written for another.
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Figure 1.2 The Forrester function (dashed line) and its predicted values (solid line) computed

using GPE based on the 10 samples shown (filled circles). The five-sigma confidence interval for

these predictions is also shown (grey band).
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Chapter 2

Themathematical structure of

Gaussian-process emulation

Consider the following problem of inference. Given a family of random variables, X1,X2, . . . ,Xn,

what can we say about some other random variable, Z? If Z is independent of this family we can

of course say nothing. But if it is dependent on it we might want to do one of two things. We

might want to provide some best guess for its realized value. Or we might want to provide a pre-

diction for that random variable based on this family, namely some other random variable that

appoximates it. Now consider an extension to this problem. Given the same family of random

random variables, X1,X2, . . . ,Xn, what can we say about some other family of random variables,

Z1,Z2, . . . ,Zm. Again, we might want to do one of two things. We might want to provide some

best guess for the realized values of its elements. Or we might want to provide a prediction for

that second family based on the first family, namely some other family of random variables that

approximates it. Now consider a further extension to the problem. Rather than families of ran-

dom variables indexed by the sets {1, 2, . . . ,n} and {1, 2, . . . ,m}, consider instead families of

random variables indexed by arbitrary index sets, T and S, namely {Xt}t∈T and {Zs}s∈S. Such fam-

ilies of random variables are known a random processes. Given a random process, X = {Xt}t∈T,

what can we say about some other random process, Z = {Zs}s∈S? We may want to provide best

guesses for the realized values of Z based on X. Or we might want to provide a prediction for Z

based on X. Each process, X and Z, may have one element, finitely many elements, or infinitely

many elements.1 The general case of predicting every element of Z seems not to have a name. Let
1In the case of that X is a finite subset of Z, some authors also use the terms ‘forecast’, ‘extrapolation’ or ‘interpolation’

instead of ‘prediction’(for example Yaglom, 1961; Gikhman and Skorohod, 1974).
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us call it replication.2 We may think of a replication as being a family of predictions of random

variables. Or, we may think of a prediction as being a single value of a replication of a random

process. In talking about prediction and replication we are really talking about the same thing.

In linear prediction (Parzen, 1959) we seek a predictor for Z that is a linear combination of

the elements of X. Let us denote this prediction by Ẑ. Then we have that

Ẑ =∑
t∈T

atXt.(2.1)

We choose the elements (at)t∈T so as minimize themean-squared error, E((Z− Ẑ)2). We call this

prediction the best linear predictor (Parzen, 1959). Wemay further impose the constraint that the

expected values of Z and Ẑ are equal, i.e. that E(Ẑ) = E(Z). We call this the best unbiased linear

predictor (Parzen, 1959). In the general case, these linear combinations will not be finite sums,

andwill be interpreted as convergent series in aHilbert space of random variables. Hilbert spaces

are already familiar to physicists as the proper setting for the formulation of quantum mechanics

(Böhm, 1978). In this way we may view prediction geometrically. In fact, we will see that we may

find the best linear predictor and the best unbiased linear predictor by projecting the random

variable Z onto the appropriate subspace.

In particular we use reproducing kernel Hilbert spaces, which may be used to represent ar-

birtrary Hilbert spaces, and in which our calculations become tractable. A reproducing kernel

Hilbert space is a Hilbert space of functions that has the following property: if two functions are

close in norm then they are also close point-wise. Or, given two functions f, g ∶ ΞÐ→ R, if ∥ f− g∥

is small then so is ∣f(ξ) − g(ξ)∣. (We will rigorously define the words ‘close’ and ‘small’ in due

course.)3 The general theory of reproducing kernel Hilbert spaces was developed by Aronszajn

(1950). It was first applied to the problem of prediction by Parzen (1959), the principal result

of his work being an expression for the best unbiased linear predictor for Z, which I will call the

‘Parzen prediction theorem’ (Thm 107). A special case of this theorem allows us to compute

explicit predictions for Z when X is finite. This special case may be used to create metamod-

els and emulators. The first such use was by Sacks et al. (1989). We will here summarize this

work, first establishing the theory of random processes, then the theory of reproducing kernel

Hilbert spaces, then the theory of prediction, and finally the theory of prediction in the setting

of reproducing kernel Hilbert spaces.

2I have Sylvy Anscombe to thank for coining this term.
3It is worth pointing out even at this early stage that L2, the Hilbert space of square-integrable functions, cannot be

endowed with the structure of a reproducing kernel Hilbert space.
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2.1 RANDOMPROCESSES

We will fundamentally be interested in random processes, namely indexed families of random

variables. (A summary of the theory of random variables is given in App. A.)

Definition 32 (random process). A random process (also stochastic process, random function, or

just process) is an indexed family of random variables on a probablity space Ω, which we denote

X = {Xt ∶ ΩÐ→ R}t∈T. We call T the index set, and any element t ∈ T an index.

Remark 33. The index set is arbitrary. I will generally be interested in the case that T ⊂ Rn. Some

authors reserve the term ‘randomprocess’ for the case thatT is one-dimensional, i.e. a subset ofR,

and use the term ‘random field’ in the case that T is multidimensional, i.e. a subset ofRn for some

n > 1. In this case, the term ‘time series’ is also used for a (one-dimensional) random process.

Furthermore, if T is discrete (respectively continuous) then the random process is said to be a

discrete-time random process (respectively continuous-time random process). I will not make this

distinction, but will use the term ‘random process’ regardless of the dimension of T.

If the index set of a random process is finite we will call that random process a random vector.

In particular, a finite subset of a random process is a random vector. We denote the cumulative

distribution function (CDF) of a random vector X by FX, and its probability density function

(PDF) by fX. Kolmogorov’s extension theorem (App. A) tells us that any random process is de-

termined by the set of all finite-dimensional joint distributions of its elements.

Definition 34 (realization of a random process). Given a fixed element of the probability space,

ω ∈ Ω, the realization of X at ω (also, sample function of X at ω, or sample path of X at ω) is the

function

f ∶ TÐ→ R(2.2)

tz→ Xt(ω).(2.3)

(See Adler, 1981, p. 14.)

A realization of a random process is a function, T z→ R, in the same way that a realization

of a random variable is a real number. We may think of ourselves as drawing a function from a

random process in the same way that we may think of ourselves as drawing a real number from

a random variable.

Definition 35 (order of a random process). Let X = {Xt}t∈T be a random process. Then X is of

order n (or n-th order) if the n-th moment of Xt exists for all t ∈ T.
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Note that if a random process is of order n then it is also of order n − 1.

Definition 36 (mean, covariance, and correlation function). LetX = {Xt}t∈T be a random pro-

cess. If X is first-order then the mean function for X is the function

m ∶ TÐ→ R(2.4)

tz→ E(Xt)(2.5)

where E(Xt) is the expected value of Xt. If X is second-order then the covariance function for X

(also, autocovariance function for X) is the function

k ∶ T × TÐ→ R(2.6)

(s, t)z→ cov(Xs,Xt),(2.7)

where cov(Xs,Xt) is the covariance of random variables Xs and Xt, and the correlation function is

r ∶ T × TÐ→ R(2.8)

(s, t)z→ corr(Xs,Xt)(2.9)

where corr(Xs,Xt) is the correlation of random variables Xs and Xt. (Definitions of expected

value, covariance and correlation are given in App. A.)

If E(Xt) = 0 for all t ∈ T we say that a random process is centred. Note that the variance of

an element Xt ∈ X is k(t, t).4 Note also that if a random process has covariance function k then it

has correlation function given by

r(s, t) = k(s, t)√
k(s, s)k(t, t)

(2.10)

(since r(s, t) = corr(Xs,Xt) = var(Xs,Xt)/
√

var(Xs)var(Xt) = k(s, t)/
√
k(s, s)k(t, t)).

Definition 37 (positive-semidefinite kernel). Let Ξ be an arbitrary set. A symmetric function

k ∶ Ξ × Ξ Ð→ R is a positive semi-definite kernel (respectively, a positive definite kernel) if the

matrix

(k(ξi, ξj))ij(2.11)

is positive semi definite (respectively, positive definite), for all distinct ξ1, ξ2, . . . , ξn ∈ Ξ.
4Some authors refer to the variance of a random process as the average power of X at t.
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Equivalently, a symmetric function k is a positive-semidefinite kernel (respectively, a positive-

definite kernel) if

∑
i,j
k(ξi, ξj)uiuj(2.12)

is nonnegative (respectively, positive) for all distinct ξ1, ξ2, . . . , ξn ∈ Ξ and all u1,u2, . . . ,un ∈

R. This is simply the definition of a positive-semidefinite matrix (respectively, positive-definite

matrix) applied to the matrix (k(ξi, ξj))ij.

Example 38 (dot product). The dot product,

f ∶ Rn ×Rn Ð→ R(2.13)

(ν, ξ)z→ νtξ(2.14)

is a positive-definite kernel. First, note that f is symmetric, and consider the set of elements (xi)ni=1
where xi ∈ Rn. By definition, the function f is positive definite if the matrix K = (xt

ixj)ij is positive

definite, i.e. if condition 2.12 holds. Recall that a matrix is positve definite if its eigenvalues are

positive. As the eigenvalues of K are indeed positive, so K is positive definite.

Remark 39. The word ‘kernel’ has at least three meanings in the mathematical literature. There

is the kernel in the algebraic sense, namely the preimage of zero under a homomorphism be-

tween algebraic structures, such as groups, rings, vector spaces, etc. (Bourbaki, 1989, Ch. I Sec.

4, No 5 Def. 8, and Ch. II Sec. 1, No 3). There is the integral kernel, namely the two-variable

function used in an integral transform (Courant and Hilbert, 1989, Ch. III). And there is is the

positive-semidefinite kernel, as defined above. I will only use the last of these three definitions.

Nonetheless, for the sake of clarity, I will always use the term ‘positive-semidefinite kernel’, and

never the term ‘kernel’. Positive-semidefinite kernels and integral kernels are related concepts ,

but positive-semidefinite kernels and algebraic kernels are unrelated. Aronszajn (1950) discusses

the relationship between positive-semidefinite kernels and integral kernels.)

Theorem40 (characterization of covariance functions). A function, k, is the covariance function

of a random process if and only if it is a positive-semidefinite kernel.

Proof. A proof is given by Parzen (1959, p. 15).

This theorem justifies my use of the symbol k for both covariance functions and positive-

semidefinite functions. The non-trivial direction of this theorem (the only if part of the state-

ment) is the existence of a random process that has a given positive-semidefinite kernel as its

covariance function.
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2.1.1 Stationary and isotropic random processes

We now wish to define stationary and isotropic random processes. These are random processes

for which the mean and covariance are invariant under translations and rotations of the index

set, T. Of course it must be possible to define such translations and rotations. This is not pos-

sible on all index sets. The most general case is that of a group G acting on the index set T (see

App. A). For example, T might be real three-dimensional space and G the group of rotations.

I therefore introduce a more general definition of invariant random processes. Stationary and

isotropic random processes then become special cases of this definition.

Definition41 (invariant andweakly invariant randomprocesses). LetX = {Xt}t∈T be a random

process, and suppose that G = (G, ⋅) is a group acting on T (on the left, say). We say that X is

G-invariant if

F(Xt1 ,...,Xtn) = F(Xgt1 ,⋯,Xgtn),(2.15)

for all g ∈ G, t1, . . . , tn ∈ T. We say that X is weakly G-invariant if

E(Xt) = E(Xgt),

for all g ∈ G, t ∈ T and

cov(Xt1 ,Xt2) = cov(Xgt1 ,Xgt2),

for all g ∈ G, t1, t2 ∈ T.

Remark 42. We might think of the group (R,+) acting onR (translations), or of the group SO(n)

acting on Rn (rotations).

In other words, a process is G-invariant if the joint cumulative distribution functions of all

finite subsets of X is invariant under the action of G on T. A process is weakly stationary if the

mean and variance of the random process both exist and are invariant under under the action of

G on T. AG-invariant process fails to be weaklyG-invariant if either the mean or covariance do

not exist. (Note that the definition of G-invariance does not require the mean or covariance of

the random process process to exist.) A weakly G-invariant process fails to be G-invariant if the

cumulative distribution functions are not invariant under the action of G on T despite the mean

and covariance being invariant under the action of G on T.

Given this new definition of invariance, we may now view the normal definition of station-

arity as a special case. Specifically , we may now define stationary random processes as follows.
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Definition43 (stationary andweakly stationary randomprocess). LetX = {Xt}t∈T be a random

process. Suppose that T itself admits an Abelian group operation, +, and consider the regular

action of (T,+) on T (i.e. s ∈ T acts by t z→ s + t). We say that X is stationary5 if X is (T,+)-

invariant. Similarly, we say that X is weakly stationary6 if X is weakly (T,+)-invariant.

Remark 44. If X is a stationary random process, its distributions are invariant under translations

of T. For all sequences (Xt1 ,Xt2 , . . . ,Xtn) and for all u ∈ T it is the case that

F(Xt1 ,Xt2 ,...,Xtn) = F(Xu+t1 ,Xu+t2 ,...,Xu+tn).(2.16)

IfX is a weakly stationary random process then for all s, t,u ∈ T it is the case that E(Xs) = E(Xu+s)

and cov(Xs,Xu+s) = cov(Xt,Xu+t).

If a random process is weakly stationary then its mean and variance are constant. Denote the

variance by σ2. Then k(t, t) = σ2 for all t ∈ T. Furthermore, it is the case that

k(s, t) = σ2r(s, t)(2.17)

for all s, t ∈ T. If a random process is neither stationary nor weakly stationary, it is nonstationary

(also, evolutionary).

The covariance of two elements of a stationary random process depends only on the separa-

tion of their indices in parameter space. Hence, the covariance function may be expressed as a

function of this separation. We will see examples of such functions later (Exs 58–55).

Definition 45 (metacovariance and metacorrelation function). Let X = {Xt}t∈T be a weakly

stationary random process with covariance function k, and correlation function r. The metaco-

variance function7 for X is the function

κ ∶ TÐ→ R(2.18)

tz→ k(s, s + t),(2.19)

for some (equivalently, all) s ∈ T. The metacorrelation function for X is the function

ρ ∶ TÐ→ R(2.20)

tz→ r(s, s + t),(2.21)

5Some authors use the terms ‘stongly stationary’, ‘strictly stationary’, and ‘homogeneous’ as synonyms for ‘stationary’.
6Some authors use the terms ‘second-order stationary’, ‘stationary in the wide-sense’, ‘covariance stationary’, or ‘weakly

homogeneous’ as synonyms for ‘weakly stationary’.
7Some authors use the term ‘covariance function’, despite this term already being used for k. I have coined the term

‘metacovariance function’ to avoid this ambiguity.
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for some (equivalently, all) s ∈ T. These are well defined since X is weakly stationary.

Definition 46 (positive definite function). Let G be a group. A function κ ∶ G Ð→ R is positive

semi-definite (respectively, positive definite) if the function

f ∶ G ×GÐ→ R(2.22)

(s, t)z→ κ(s − t)(2.23)

is a positive semi-definite kernel (respectively, positive definite kernel).

Proposition 47 (existence of metacovariance functions). A function, κ, is the metacovariance

of a weakly stationary random process if and only if it is a positive-semidefinite function.

Proof. To show the if part of the claim, observe that if κ ∶ G Ð→ R is a metacovariance function

then by definition (of the metacovariance function) there exists a covariance function k ∶ G ×

G Ð→ R, which must be a positive-semidefinite kernel (by Thm 40). Hence κ is a positive-

semidefinite function. To show the only if part of the claim, observe that if κ ∶ G Ð→ R is

a positive-semidefinite function then by definition (of the positive-semidefinite function) there

exists a function f ∶ G × G Ð→ R that is a positive-semidefinite kernel and hence a covariance

function (again, by Thm 40). Hence κ is a metacovariance function.

This proposition justifies my use of the symbol κ for both metacovariance functions and

positive-definite functions. Just as stationarity is a special case of invariance, so is isotropy. In

fact, we may define isotropic random processes as follows.

Definition 48 (isotropic and weakly isotropic random process). Let X = {Xt}t∈T be a random

process. Suppose that T is the set Rn, and that G is the special orthogonal group SO(n), which

acts on T = Rn in the usual way. Then X is isotropic8 if X is G-invariant. Accordingly, we say that

X is weakly isotropic9 if X is weakly G-invariant.

Remark 49. If X is an isotropic random process, its distributions are invariant under rotations of

T. For all sequences (Xt1 ,Xt2 , . . . ,Xtn) and for all rotations g it is the case that

F(xt1 ,xt2 ,...,xtn) = F(xgt1 ,xgt2 ,...,xgtn).(2.24)

If X is a weakly isotropic random process then for all s, t,u ∈ T and all g ∈ G it is the case that

E(Xt) = E(Xgt) and cov(Xs,Xt) = cov(Xgs,Xgt). (See Ivanov and Leonenko, 1989, p. 11.)
8Some authors use the terms ‘strictly isotropic’ and ‘strongly isotropic’.
9Some authors use the terms ‘isotropic in the wide-sense’.
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If a random process, X, is both weakly isotropic and weakly stationary then it is the case that

the metacovariance κ(r) = κ(∥r∥), and that the metacorrelation ρ(r) = ρ(∥r∥).

2.1.1.1 Increments of a randomprocess

Two final definitions concern the increment of a random process.

Definition 50 (increment of random process). Let X = {Xt}t∈T be a random process. An incre-

ment of X is the difference of any two of its elements, Xs − Xt.

Definition 51 (intrinsically stationary random process). Let X = {Xt}t∈T be a random process.

Suppose again that T admits an Abelian group operation, +. Then X is instrinsically stationary if

E(Xs) = E(Xt)(2.25)

and

var(Xs − Xu+s) = var(Xt − Xu+t),(2.26)

for all s, t,u ∈ T.

The class of random processes with stationary increments includes the class of weakly-

stationary random processes, as we see in the following theorem.

Proposition 52. If a random process is weakly stationary then it has stationary increments.

Proof. Let Xt∈T be a weakly-stationary random process. Then for all u, s, t ∈ T it is the case that

E(Xs) = E(Xt), that var(Xs) = var(Xt), and thatcov(Xs,Xu+s) = cov(Xt,Xu+t) =. Hence

var(Xs − Xu+s) = var(Xs) + var(Xu+s) + 2cov(Xs,Xu+s)(2.27)

= var(Xt) + var(Xu+t) + 2cov(Xt,Xu+t)(2.28)

= var(Xt − Xu+t).(2.29)

Hence, Xt∈T has stationary increments.

2.1.1.2 Examples of randomprocesses

Random processes are used to model numerous physical phenomena. Perhaps the two most im-

portant randomprocesses in physics are theWiener process and the Poisson process. TheWiener

process is used to model Brownian motion (Wiener, 1923). The Poisson process was first used to
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model α-particle detections (Rutherford et al., 1910), and calls received at a telephone exchange

(Erlang, 1909).10 It may be used to model numerous other phenomena, including particle col-

lisions in an ideal gas. The most important of all random processes, however, is the Gaussian

random process.

Definition 53 (Gaussian random process). Let X = {Xt}t∈T be a random process. Let T ⊆ Rn.

Then X is Gaussian (also, normal) if any finite subset of X is normally distributed.

Recall that a q-dimensional Gaussian random vector, X ∼ N(μ, Σ), has joint PDF given by

fX(x) =
1√
(2π)q∣Σ∣

exp(−1
2
(x − μ)tΣ−1(x − μ))(2.30)

where μ ∈ Rn and Σ ∈ Rn×n is a positive-definite matrix. In the case that n = 1, μ = 0, and Σ = 1,

X is said to have the standard normal distribution.

Remark 54. Note that the distribution of a Gaussian process is determined by its mean and co-

variance function (Kallenberg, 1997, p. 200, Lemma 11.1). Furthermore, note that a Gaussian

process is stationary if and only if it is weakly stationary. To see this recall the discussion follow-

ing our definition of invariant random processes (Def. 43, Rem. 44). For a stationary random

process to be weakly stationary it is sufficient that the mean and covariance exist, which they do.

For a weakly-stationary random process to be stationary it is sufficient that the mean and covari-

ance of the random process completely define the joint CDF of all finite subsets of that random

process, which they also do.

We now discuss some common examples of covariance functions used to define Gaussian

processes on the parameter space T = Rn, equipped with a norm ∥ ⋅ ∥. These are found through-

out the literature (e.g. Sacks et al., 1989; Rasmussen and Williams, 2006). They are necessarily

positive definite. Assume that we have chosen a basis and that in this basis the norm is given by

∥t∥ =
√
ttMt(2.31)

whereM is a positive-definitematrix, whichwe call the ‘metricmatrix’. IfM is the identitymatrix,

then this is the usual Euclidean norm. If it is some other positive-definite matrix, we will refer

to it as the generalized Euclidean norm. In a vector space equipped with the Euclidean norm, the

set of all vectors with unit norm defines a n-dimensional sphere. In a vector space equipped with

the generalized Euclidean norm, the set of all vectors with unit norm defines an n-dimensional

ellipsoid.
10A history of the Poisson process is given by Stirzaker (2000).
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Example 55 (white-noise covariance function). A covariance function, k, is a white-noise covari-

ance function if there exists σ2 ∈ R>0 such that

k(s, t) = σ2δ(s, t)(2.32)

for all s, t ∈ T, where δ is the Kronecker delta. If the random process has white-noise covariance

function and constant mean then it is stationary and isotropic. The metacorrelation function is

then given by

ρ(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if r = 0,

0 otherwise.
(2.33)

(To see this note that by definition ρ(r) = r(t, t + r). Hence ρ(r) = k(t, t + r)/σ2 = δ(t, t + r).)

Example 56 (Matérn covariance function). A covariance function, k, is a Matérn covariance func-

tion (Matérn, 1986, p. 18)11 if there exist σ2, a, ν ∈ R>0 such that

k(s, t) = σ2 21−ν

Γ(ν)
(a∥s − t∥)νKν(a∥s − t∥))(2.34)

where Kν is the modified Bessel function of the second kind, and Γ is the Gamma function. The

constant a is called the scale constant. If the random process has Matérn covariance function and

constant mean then it is stationary and isotropic. The metacorrelation function is then given by

ρ(r) = 21−ν

Γ(ν)
(ar)ν Kν (ar) .(2.35)

Suppose that ν = p + 1/2 for p ∈ N, i.e. suppose that that ν is half integer. In this case the

metacorrelation function is given by

ρ(r) = exp(−ar) p!
2p!

p

∑
i=0

(p + i)!
i!(p − i)!

(2ar)p−i.(2.36)

We call a Matérn covariance function with half-integer ν the (p + 1)-th order autoregressive co-

variance function. Note that the first-order autoregressive metacorrelation function is given by

ρ(r) = exp(−ar).(2.37)

We also call this the exponential metacorrelation function.

Example 57 (Ornstein-Uhlenbeck covariance function). In the case that the parameter space has

dimensionn = 1, and ν = 1/2 theMatérn covariance function is known as theOrnstein-Uhlenbeck
11A history of the Matérn covariance function is given by Guttorp and Gneiting (2006).
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covariance function. In this case, the covariance function is given by

k(s, t) = σ2 exp(−a∥s − t∥)(2.38)

for all s, t ∈ T. The metacorrelation function is given by

ρ(r) = exp(−ar).(2.39)

This is the exponential metacorrelation function (Eq. 2.37) for the special case of one-

dimesensional parameter space.

Example 58 (p-exponential covariance function). A covariance function, k, is a p-exponential co-

variance function if there exist σ2, a ∈ R>0 and p ∈ N ∖ {0} such that

k(s, t) = σ2 exp(−a∥s − t∥p).(2.40)

for all s, t ∈ T. If the random process has p-exponential covariance function and constant mean

then it is stationary and isotropic. The metacorrelation function is then given by

ρ(r) = exp(−ar p).(2.41)

The 1-exponential covariance function is normally called the ‘exponential covariance function’.

The 2-exponential covariance function is normally called the ‘squared-exponential covariance

function’. A constant-mean Gaussian process with p-exponential covariance is stationary. In

Figures 2.1 and 2.2 I plot realizations of a centred Gaussian process for dimension n = 1 and

n = 2, with covariance given by the squared-exponential covariance function. Note that these

realizations are continuous.12

Theabove examples are of covariance functions defined on the real index setT = Rn. Typically

we imagine that T is time (n = 1) or space (n = 1, 2, or 3). In the case of constant mean, all

of these examples define stationary and isotropic random processes. Stationary and isotropic

random processes are of use to us if we believe that the mean and variance of the phenomenon

we are modelling is invariant under translations and rotations of T.

2.2 GENERAL THEORY OF REPRODUCING KERNEL HILBERT SPACES

We have said that we are interested in linear prediction, and that the proper setting for linear pre-

diction is the Hilbert space and the reproducing kernel Hilbert space (Aronszajn, 1950; Parzen,

1959). Let us now consider these subjects formally.
12This is a consequence of the Kolmogorov continuity theorem, which we will not consider here.
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Figure 2.1 Three realizations of a centred Gaussian process defined on the real interval [−1, 1]

with squared-exponential covariance function (Ex. 58) where a = 1/2 and ∥ ⋅ ∥ is the usual Eu-

clidean norm, given by ∥v∥ = ∣v ∣. Note that the realizations are continuous.
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Figure 2.2A realization of a centred Gaussian process defined on the real region [−1, 1]×[−1, 1]

with squared-exponential covariance function (Ex. 58) where a = 1/2 and ∥ ⋅ ∥ is the usual Eu-

clidean norm, given by ∥v∥ =
√
vtv. Note that the realization is continuous.
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2.2.1 Hilbert spaces

Definition 59 (Hilbert space). Let V = (V, ⟨⋅, ⋅⟩) be a real inner product space. Let ∥ ⋅ ∥ be the

norm induced by the inner product, and let d be the metric induced by this norm. Then V is a

Hilbert space if the metric space (V,d) is complete (Def. 117, App. A).

Let V = (V, ⟨⋅, ⋅⟩) be a Hilbert space. We denote by V∗ the dual space of V, namely the real

vector space consisting of linear functionals on V, together with the usual addition and scalar

multiplication of real-valued functions. Note that a Hilbert space is in particular a topological

vector space: the norm, ∥ ⋅ ∥, induces a topology, Ts, which we call the strong topology. (For the

reader unfamiliar with general topology, please consult the App. A.)

We denote by V′ the subspace of V∗ consisting of those linear functionals on V that are con-

tinuous with respect to the strong topology onV. Note that such a linear functional is continuous

with respect to Ts if and only if it is bounded (see, for example, Rudin, 1991). We may endow V′

with the norm

∥φ∥V′ ∶= sup{∣φ( f )∣ ∶ ∥f∥ ≤ 1, f ∈ V},(2.42)

for φ ∈ V′. It can be verified that ∥ ⋅ ∥V′ satisfies the parallelogram law, and that it thus defines an

inner product,

⟨φ,ψ⟩V′ ∶=
1
2
(∥φ + ψ∥2V′ − ∥φ∥2V′ − ∥ψ∥2V′),(2.43)

for φ,ψ ∈ V′.

Definition 60 (continuous dual of a Hilbert space). The continuous dual space of V is the real

inner product space V′ ∶= (V′, ⟨⋅, ⋅⟩V′).13

Recall that a set A ⊆ V of vectors in an inner product space V is orthogonal if

⟨u, v⟩ = 0,(2.44)

for all distinct u, v ∈ A. Such a set A is orthonormal if furthermore

⟨v, v⟩ = 1,(2.45)

for all v ∈ A. The span of a set A, which we denote by span(A), is the closure of the linear span of

A in V. We say that A spans V (or that A is a spanning set of V) if span(A) = V. Finally, a set A is

an orthonormal basis of V if it is both orthonormal and a spanning set of V.
13We use the word ‘continuous’ to distinguish this space from the dual of a vector space (Def. 134, App. A). Some

authors use the term ‘algebraic dual’ instead of ‘dual’, and ‘dual’ instead of ‘continuous dual’.
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Theorem 61. Every Hilbert space H has an orthonormal basis, and any two orthonormal bases of

H have the same cardinality (i.e. number of elements).

Proof. A proof is given by Bourbaki (1981).

Definition 62 (dimension of a Hilbert space). The dimension of H, as a Hilbert space, is the

cardinality of some orthonormal basis (equivalently, of all orthonormal bases) of H.

Definition 63 (congruence of Hilbert space). LetH1 = (H1, ⟨⋅, ⋅⟩1) andH2 = (H2, ⟨⋅, ⋅⟩2) be two

Hilbert spaces. A map ψ ∶ H1 Ð→ H2 is an isometry if

⟨v1, v2⟩1 = ⟨ψ(v1),ψ(v2)⟩2.(2.46)

for all v1, v2 ∈ H1. If ψ is both an isometry and a linear isomorphism then it is called a congruence.

We say that H1 and H2 are congruent if there exists a congruence ψ ∶ H1 Ð→ H2, and write

H1 ≅ H2.

We might instead call a congruence an ‘isometric isomorphism’. It is the correct notion of

isomorphism for the study of Hilbert spaces.

Remark 64. A congruence maps limits to limits, i.e. if ψ is a congruence then

u = lim(un)n ⇐⇒ ψ(u) = lim(ψ(un))n,(2.47)

for all vectors u and sequences of vectors (un)n.

Theorem 65 (congruence theorem). Let H1 = (H1, ⟨⋅, ⋅⟩1) and H2 = (H2, ⟨⋅, ⋅⟩2) be two Hilbert

spaces. Let U = {ut ∈ H1 ∶ t ∈ T} and V = {vt ∈ H2 ∶ t ∈ T} be two sets of vectors, both indexed by a

set T, such that U spansH1, V spansH2, and

⟨us,ut⟩1 = ⟨vs, vt⟩2(2.48)

for all s, t ∈ T. Then there is a congruence ψ ∶ H1 Ð→ H2 such that

ψ(ut) = vt(2.49)

for all t ∈ T.

Proof. A proof is given by Parzen (1959, p. 11).

Corollary 66. Two Hilbert spaces are congruent if and only if they are of the same dimension.
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Proof. A proof is given by Parzen (1959, p. 13).

Theorem 67 (Riesz representation theorem). LetH be a Hilbert space. The map

Φ ∶ HÐ→ H′(2.50)

fz→ [Φf ∶ gz→ ⟨f, g⟩](2.51)

is a congruence.

Proof. A proof is given by Bourbaki (1981, Ch. V Sec. 1 No 7 Thm 3).

Corollary 68. IfH is a Hilbert space then the continuous dual spaceH′ is a Hilbert space.

2.2.2 Hilbert spaces of functions

A vector space of (real-valued) functions is a pair (V, Ξ) where V is a vector space and Ξ is a set.

Moreover we suppose that V is a set of functions on Ξ (i.e. V is a subset of RΞ) and that addition

and scalar multiplication in V are addition and scalar multiplication of functions, i.e.

(f + g)(ξ) = f(ξ) + g(ξ)(2.52)

(λf)(ξ) = λf(ξ),(2.53)

for f, g ∈ V, λ ∈ R, and ξ ∈ Ξ. An inner product space (respectively, Hilbert space) of functions

is a pair (V, Ξ), where V is an inner product space (respectively, Hilbert space) with underlying

vector spaceV such that (V, Ξ) is a vector space of functions. We do not assume, unless otherwise

stated, that the inner product satisfies any additional properties involving Ξ.

An inner product space of functions posseses not only a strong topology, Ts, induced by the

norm but also a weak topology, Tw, induced by the topology of pointwise convergence on RΞ: that

is, a sequence (fn)n in V converges in Tw to f if and only if for all ξ ∈ Ξ we have fn(ξ) Ð→ f(ξ).

Accordingly, we say that a sequence in an inner product space of functions weakly converges if it

converges in the weak topology.

Definition 69 (evaluation map). Given (V, Ξ), the evaluation map is the function

ev ∶ ΞÐ→ V∗(2.54)

ξz→ [evξ ∶ fz→ f(ξ)].(2.55)

We will often be concerned with the case that the image ev(Ξ) is contained in the continuous

dual V′, which is not always so, as the following example illustrates.
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Example 70. Consider C([0, 1]), the space of continuous functions [0, 1] Ð→ R endowed with

the L2-norm, given by

∥ f ∥ = (∫
1

0
∣f(x)∣2 dx)

1/2
.

The map ev0 evaluates each function at 0. For each n > 0, consider the piecewise linear function

fn ∶ [0, 1]Ð→ R given by

fn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 − xn for x ≤ 1/n

0 for x > 1/n.

Then fn Ð→ c0, the constantly zero function. Nevertheless, ev0(fn) /Ð→ ev0(c0), and so ev0 is not

continuous.

Example 71. Every inner product space is congruent to a space of functions: the map

Φ ∶ VÐ→ V′(2.56)

xz→ [Φx ∶ yz→ ⟨x, y⟩](2.57)

is a non-singular linear transformation and an isometry.

2.2.2.1 Functional completion

Any metric space (X,d) admits a completion, which is unique up to isometry over (X,d). Sim-

ilarly, any real inner product space V = (V, ⟨⋅, ⋅⟩) admits a completion, which is unique up to

congruence over V.

Definition 72 (functional completion). Let (V, Ξ) be an inner product space of functions. A

functional completion of (V, Ξ) is an extension, (V, Ξ) ⊆ (V̄, Ξ), of inner product spaces of func-

tions such that

(a) V̄ is complete,

(b) V is dense in V̄, and

(c) the image of Ξ under the evaluation map ēv is contained in V̄′.

We say (V, Ξ) is functionally complete if it is equal to its own functional completion.

The third condition (c) is equivalent to requiring that ēv(ξ) ∶ V̄ Ð→ R is continuous with

respect to the strong topology for each ξ ∈ Ξ. Note that the functional completion of an inner

product space of functions is unique, if it exits.

39



Theorem 73 (existence of functional completions). Let (V, Ξ) be an inner product space of func-

tions. The following are equivalent.

(i) The inner product space of functions (V, Ξ) admits a functional completion.

(ii) We have both:

(a) ev(Ξ) ⊆ V′, and

(b) every Cauchy sequence inV which weakly converges to 0must strongly converge

to 0.

Proof. A proof is given by Aronszajn (1950).

2.2.3 Reproducing kernels and reproducing kernel Hilbert spaces

Having introducedHilbert spaces, I now introduce the reproducing kernel, and reproducing ker-

nel Hilbert spaces. In this section (H, Ξ), with H = (H, ⟨⋅, ⋅⟩), will denote a Hilbert space of

functions. The general theory of reproducing kernel Hilbert spaces was developed by Aronszajn

(1950).

Definition 74 (reproducing kernel). A function k ∶ Ξ×ΞÐ→ R is a reproducing kernel for (H, Ξ)

if

(i) for all x ∈ Ξ, the map

k(x, ⋅) ∶ ΞÐ→ R

yz→ k(x, y)

is in H, and

(ii) for all x ∈ Ξ and f ∈ H, we have

⟨k(x, ⋅), f⟩ = f(x).

If a function meets the second of these conditions it is said to have the reproducing property. We

say (H, Ξ) is a reproducing kernel Hilbert space if there exists a reproducing kernel for it.

Example 75. Afinite dimensional inner product space of functions is a reproducing kernelHilbert

space. To see this, let (V, Ξ) be an inner product space of functions of dimension n. Immediately,
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V is a Hilbert space, because it is complete under the norm induced by the inner product. More-

over, there is an orthonormal basis for V, which we denote by {e1, . . . , en}. Indeed, {e1, . . . , en}

is also a linear basis for V. Define the function

k ∶ Ξ × ΞÐ→ R(2.58)

(x, y)z→
n
∑
i=1

ei(x)ei(y).(2.59)

For each x ∈ Ξ, the function k(x, ⋅) is an element of V since it is the finite sum

k(x, ⋅) =
n
∑
i=1

ei(x)ei.(2.60)

Moreover, k possesses the reproducing property: given x ∈ Ξ and f = ∑i αiei ∈ V, we have

⟨k(x, ⋅), f⟩ = ⟨∑
i
ei(x)ei,∑

j
αjej⟩(2.61)

=∑
i
αiei(x)(2.62)

= f(x).(2.63)

Thus (V, Ξ) is a reproducing kernel Hilbert space.

Lemma 76 (representation of a reproducing kernel). If k is a reproducing kernel for (H, Ξ), then

k is symmetric and

⟨k(x, ⋅), k(y, ⋅)⟩ = k(x, y)(2.64)

for all x, y ∈ Ξ.

Proof. By (i), the function k(y, ⋅) is in H. Applying (ii) to f = k(y, ⋅), we have

⟨k(x, ⋅), k(y, ⋅)⟩ = k(y, x).(2.65)

The result now follows from the symmetry of the inner product.

Lemma 77 (Aronszajn inequality). If k is a reproducing kernel for (H, Ξ), then we have

∣f(x) − g(x)∣ ≤
√
k(x, x)∥ f − g∥(2.66)

for f, g ∈ H and x ∈ Ξ.
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Proof. Using the reproducing property of k, the Cauchy-Schwarz inequality, the definition of the

norm, and Lemma 76 (in that order) we see that

∣f(x) − g(x)∣ = ∣⟨k(x, ⋅), f − g⟩∣(2.67)

≤ ∥k(x, ⋅)∥∥ f − g∥(2.68)

=
√
⟨k(x, ⋅), k(x, ⋅)⟩∥ f − g∥(2.69)

=
√
k(x, x)∥ f − g∥(2.70)

as required.

We name the above inequality after Aronszajn. It is useful in proving the following theorems.

Theorem 78 (uniqueness of the reproducing kernel). AHilbert space of functions (H, Ξ) admits

at most one reproducing kernel.

Proof. Let k1, k2 ∶ Ξ × ΞÐ→ R be two reproducing kernels for (H, Ξ), and let x ∈ Ξ. Then, for all

f ∈ H, it is the case

⟨k1(x, ⋅), f⟩ = f(x) = ⟨k2(x, ⋅), f⟩,(2.71)

by the reproducing property. In particular, taking f = k1(x, ⋅) − k2(x, ⋅), we have

⟨k1(x, ⋅) − k2(x, ⋅), k1(x, ⋅) − k2(x, ⋅)⟩ = 0,(2.72)

by linearity. By positive-definiteness, we have k1(x, ⋅) = k2(x, ⋅). Since this in turn holds for all

x ∈ Ξ, we have k1 = k2, as required.

Theorem 79 (existence of reproducing kernel Hilbert spaces). For a Hilbert space of functions

(H, Ξ), the following are equivalent:

(i) (H, Ξ) is a reproducing kernel Hilbert space,

(ii) the image ev(Ξ) is contained inH′.

Proof. Our proof follows that of Aronszajn (1950). We begin by showing that the first condition

implies the second. Suppose that (H, Ξ) is a reproducing kernel Hilbert space with reproducing

kernel k ∶ Ξ×ΞÐ→ R. Let x ∈ Ξ. We must show that evx ∶ HÐ→ R is continuous with respect to

Ts. By the Aronszajn inequality, we have

∣evx( f ) − evx(g)∣ = ∣f(x) − g(x)∣ ≤
√
k(x, x)∥ f − g∥(2.73)
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for all f, g ∈ H. Since
√
k(x, x) does not depend on f or g, this shows that evx is continuous. Thus

the image ev(Ξ) is contained in H′.

We now show that the second condition implies the first. Conversely, we suppose that ev(Ξ)

is contained inH′. Let x ∈ Ξ. We consider the functional evx ∈ H′. By Theorem 67, Φ ∶ HÐ→ H′

is a congruence which maps f ∈ H to the function Φf ∶ g z→ ⟨f, g⟩. In particular, Φ is surjective,

so there exists fx ∈ H such that Φfx = evx. By writing k(x, ⋅) = fx, we have defined a function

k ∶ Ξ×ΞÐ→ R. It remains to verify that k is a reproducing kernel. Condition (i) of the definition

is automatically satisfied since k(x, ⋅) = fx ∈ H. For condition (ii) of the definition, let g ∈ H. Then

⟨k(x, ⋅), g⟩ = Φk(x,⋅)(g) = evx(g) = g(x),(2.74)

as required.

Theorem 80. LetHk be a reproducing kernel Hilbert space with reproducing kernel k. Then the set

{k(t, ⋅) ∶ t ∈ T} spansHk.

Proof. A proof is given by Parzen (1959, p. 49, Theorem 5B)

The following proposition is whatmakes reproducing kernel Hilbert spaces so interesting and

useful.

Proposition 81. If (H, Ξ) is a reproducing kernel Hilbert space then convergence in the strong

topology implies convergence in the weak topology.

Proof. This follows from the Aronszajn inequality.

Remark 82. Let (H, Ξ) be a Hilbert space of functions. Then (H, Ξ) is functionally complete if

and only if it is a reproducing kernel Hilbert space, by the existence theorem.

2.2.4 TheMoore–Aronszajn theorem

The following theorem is given by Aronszajn (1950) who attributes it to E. H. Moore. It provides

a characterization of reproducing kernels without explicit reference to their corresponding repro-

ducing kernelHilbert space. It can be thought of as the converse of the uniqueness of reproducing

kernels (Thm 78).

Theorem 83 (Moore–Aronszajn theorem). Let k ∶ Ξ × Ξ Ð→ R be a function. The following are

equivalent.

(i) The function k is a positive semi-definite kernel.
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(ii) The function k is a reproducing kernel for a unique Hilbert space of functions (H, Ξ).

Proof. A proof is given by Aronszajn (1950).

Remark 84. As before, one would perhaps expect the phrase ‘up to congruence’ to appear in the

above theorem. However, by definition, such a Hilbert space must be a subspace of the space of

functions from Ξ to R, namely RΞ.

2.2.5 Reproducing kernel Hilbert space representations of Hilbert spaces

An arbitrary Hilbert space (not necessarily a Hilbert space of functions) may be identified with a

reproducing kernel Hilbert space by means of a congruence, i.e. we may always use a congruence

to map an arbitrary Hilbert space into a reproducing kernel Hilbert space. Such a reproducing

kernel Hilbert space is said to represent this arbitrary Hilbert space. The following congruence

allows a natural representation of this kind (Parzen, 1959). It will be of crucial importance later,

where we will represent Hilbert spaces of random variables by reproducing kernel Hilbert spaces

in order to exploit their additional structure.

Definition 85 (canonical congruence). Let H = (H, ⟨⋅, ⋅⟩H) be the Hilbert space with a basis

{vt ∶ t ∈ T}, and let Gk = (G, ⟨⋅, ⋅⟩G, k) be the reproducing kernel Hilbert space with reproducing

kernel

k ∶ T × TÐ→ R(2.75)

(s, t)z→ ⟨vs, vt⟩H.(2.76)

The canonical congruence between H and Gk is the congruence ψ ∶ HÐ→ Gk such that

vt z→ k(t, ⋅).(2.77)

The canonical congruence exists by the congruence theorem (Thm 65). A vector v ∈ H may

be repesented as v = ∑i aivti (I leave the height of the sum ambiguous). Then there is a unique

function f ∈ Gk such that f = ψ(v). In fact:

f = ψ(v)(2.78)

= ψ(∑
i
aivti)(2.79)

=∑
i
aiψ(vti)(2.80)

=∑
i
aik(ti, ⋅).(2.81)

For convenience I list these relationships in Table 2.1.
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H Gk

vt k(t, ⋅)

∑t atvt ∑t atk(t, ⋅)

Table 2.1Equivalent objects inH (aHilbert spacewith basis {vt ∶ t ∈ T}), andGk (the reproducing

kernel Hilbert space with reproducing kernel given by k(s, t) = ⟨vs, vt⟩H) under the canonical

congruence ψ ∶ H Ð→ Gk (Def. 85). The space H is not necessarily a Hilbert space of functions.

The space Gk is necessarily a Hilbert space of functions (specifically, functions on T). We make

use of the congruence between H and Gk to exploit the structure of reproducing kernel Hilbert

spaces.

Example 86 (finite index set). Given a function f ∈ Hk, we may wish to find the coefficients {ai}i
explicitly. Suppose that T = {t1, t2, . . . , tn} is finite. Then we have the n simultaneous equations

f(tj) =∑
i
aik(ti, tj)(2.82)

for all tj ∈ T. Because {vt}t∈T is linearly independent, the matrix K = (k(si, tj))ij is nonsingular,

meaning that the inverse, K−1, exists. We denote the ij-th element of K−1 by K−1ij . The above

simultaneous equations then have solutions

ai =∑
j
K−1ji f(tj)(2.83)

for all i ∈ {1, 2, . . . ,n}. Note that this gives an explicit expression for the inverse congruence,

ψ−1(f) =∑
i,j
K−1ij f(ti)vtj .(2.84)

2.3 REPRODUCING KERNEL HILBERT SPACE REPRESENTATIONS OF RANDOM PRO-

CESSES

We are now in a position to give an account of random processes in the setting of reproducing

kernel Hilbert spaces, and to use this formalism to give a geometric account of prediction. In is

this account that was devoped by Parzen in the 1950s. First, let us fix in advance a probability

space Ω = (Ω,M ,P), where Ω is an arbitrary set, M is a σ-algebra on Ω, and P is a probability

measure on (Ω,M ). (A brief account of the basics of probability theory is included in App. A.)

We will necessarily be interested in second-order random processes. Let L2(Ω) denote the set
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of all second-order random variables with domain Ω. That is, the domain of L2(Ω) is the set of

Lebesgue- and square-integrable functionsΩÐ→ Rmodulo the equivalence relation of equality

almost everywhere.14 The set L2(Ω) admits the structure of a vector space. The function

⟨⋅, ⋅⟩ ∶ L2(Ω) × L2(Ω)Ð→ R(2.85)

(X,Y)z→ E(XY)(2.86)

is an inner product on L2(Ω). In fact, the space L2(Ω) = (L2(Ω), ⟨⋅, ⋅⟩) is complete with respect

to the norm induced by this inner product, and is therefore a Hilbert space. Note, however, that

elements of L2(Ω) are not functions onΩ, so a fortiori L2(Ω) is not a Hilbert space of functions.

Now consider the following subset of these random variables.

Definition 87 (linear span of a random process). Let X = {Xt}t∈T be a random process. The

linear span of X is the set of all linear combinations of elements of X, i.e. the set15

L(X) = {
n
∑
i=1

aiXti ∶ n ∈ N,Xti ∈ X, ai ∈ R}.(2.87)

Definition 88 (Hilbert space spanned by a random process). Let L(X) be the linear span of a

second-order random process X. This linear span admits the structure of a vector space, which

in turn admits a completion under the norm induced by the inner product. Denote this complete

linear span by L̄(X). Then L(X) ∶= (L̄(X), ⟨⋅, ⋅⟩) is a Hilbert space. We say that L(X) is the Hilbert

space spanned by the random process X.

For the sake of completeness we note that the norm is given by

∥X∥ =
√
⟨X,X⟩(2.88)

=
√

E(X2).(2.89)

This in turn induces a metric, given by

d(X,Y) = ∥X − Y∥(2.90)

=
√

E((X − Y)2).(2.91)

As ever, a set {Yi ∶ i ∈ I} of random variables is orthogonal if

⟨Yi,Yj⟩ = E(YiYj)(2.92)

= 0(2.93)

14Taking the equivalence classes modulo this equivalence relation ensures that ⟨⋅, ⋅⟩ is positive definite.
15Some authors (for example, Parzen, 1959) call the linear span of a random process the ‘the linear manifold spanned

by a random process’.
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for i ≠ j, and is orthonormal if moreover

⟨Yi,Yi⟩ = E(YiYi)(2.94)

= 1,(2.95)

for all i. Note that

cov(X,Y) = E(XY) − E(X)E(Y)(2.96)

= ⟨X,Y⟩ − E(X)E(Y).(2.97)

If a set of random variables is centred, i.e. if all its elements have zeromean, then it is orthogonal if

all its elements are uncorrellated, and orthonormal if furthermore its elements have unit variance.

Having defined theHilbert space spanned by a randomprocess, wemay nowdefine the repro-

ducing kernel Hilbert space representation of that Hilbert space, following Definition 85. There

is then a canonical congruence between the Hilbert space spanned by a random process and

its reproducing kernel Hilbert space representation. We may formalize this with the following

theorem.

Theorem 89 (Loève representation theorem). Let X be a second-order random process with co-

variance function k. Then L(X) is congruent with the reproducing kernel Hilbert spaceHk.

Proof. The theorem is a restatement of the existence of canonical congruences.

2.4 PREDICTION

In what follows X = {Xt}t∈T is a random process on a probability space Ω = (Ω,M , p). We wish

to predict a random variable, Z ∶ ΩÐ→ R defined on the same probability space. As usual, L(X)

is the Hilbert space spanned by X.

Definition 90 (linear predictor). A linear predictor based on X is an element of L(X). (See

Parzen, 1959, p. 53, and Berlinet and Thomas-Agnan, 2004, p. 77.)

Definition 91 (best linear predictor of a random variable). A linear predictor, Y ∈ L(X), of Z

based on X, is the best linear predictor (BLP) of Z if it minimizes the mean-squared error

MSE ∶ L(X)Ð→ R(2.98)

Yz→ E((Z − Y)2).(2.99)

(See Parzen, 1959, p. 125.)
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Definition 92 (unbiased linear predictor of a random variable). A linear predictor, Y ∈ L(X)

of Z based on X, is said to be unbiased if

E(Y) = E(Z).(2.100)

(See Parzen, 1959, p. 126.)

Definition 93 (best unbiased linear predictor of a random variable). An unbiased linear pre-

dictor, Y ∈ L(X), of Z based on X, is the best unbiased linear predictor16 (BLUP) of Z if it mini-

mizes the mean-squared error

MSE ∶ L(X)Ð→ R(2.101)

Yz→ E((Z − Y)2).(2.102)

(Parzen, 1959, p. 125.)

We will denote the both the BLP and BLUP of a random variable Z by Ẑ.

Remark 94. Note that

MSE(Y) = E((Z − Y)2)(2.103)

= var(Z − Y) + (E(Z − Y))2(2.104)

= var(Z − Y) + bias(Y)2(2.105)

where bias(Y) = E(Z − Y). For an unbiased linear predictor, bias(Y) = 0. Therefore, the mean-

squared error of an unbiased linear predictor of Z is

MSE(Y) = var(Z − Y).(2.106)

Proposition 95. The BLP of Z based on X is the conditional expectation E(Z ∣ X), and its MSE is

E(var(Z ∣ X)).

Proof. Let Y ∈ L(X) be a linear predictor of Z based on X. The mean-squared error of Y is

MSE(Y) = E((Z − Y)2))(2.107)

= E((Z − E(Z ∣ X) + E(Z ∣ X) − Y)2))(2.108)

= E((Z − E(Z ∣ X))2 + 2(Z − E(Z ∣ X))(E(Z ∣ X) − Y) + (E(Z ∣ X) − Y)2)(2.109)

= E(E((Z − E(Z ∣ X))2 ∣ X)) + E(2(E(Z ∣ X) − Y)E((Z − E(Z ∣ X)) ∣ X)))+(2.110)

E((E(Z ∣ X) − Y)2)(2.111)

= E(var(Z ∣ X)) + E((E(Z ∣ X) − Y)2).(2.112)
16Also called by some authors ‘the best linear unbiased predictor’ (for example, Sacks et al., 1989).
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This expression is a minimum when the second term vanishes, i.e when Y = E(Z ∣ X). When this

is the case, we have that MSE(Y) = E(var(Z ∣ X)).

Remark 96. Recall that the conditional expectation E(Z ∣X) is a random variable, not a real num-

ber.

Example 97 (known joint normal distribution). In the case that the joint distribution of X and

Z is known, we may use the above theorem to calculate the BLP explicitly. Suppose that X =

(Xt1 ,Xt2 , . . . ,Xtn) is a finite random vector and that we know Z and X to have a joint normal

distribution. We may form the augmented random vector X′ = (Z,X). By indexing from zero

we may write X′ = (Xt0 ,Xt1 , . . . ,Xtn), where Xt0 = Z. Suppose that the mean of this augmented

random vector is m′ = (mXt0
,mX) and that its covariance is K′ = (k(ti, tj))ij. This is the block

matrix

K′ =

⎡⎢⎢⎢⎢⎢⎢⎣

(k(t0, t0)) (k(t0, ti))ti

(k(ti, t0))i (k(ti, tj))ij

⎤⎥⎥⎥⎥⎥⎥⎦

.(2.113)

Then, using the properties of normal distributions (see, for example, Rasmussen and Williams,

2006, p. 200), we find that

Z ∣ (X = x) ∼ N(m(x), σ2)(2.114)

where

m(x) = mt0 + (k(t0, ti))ti(k(ti, tj))−1ij (x −mX) and(2.115)

σ2 = k(t0, t0) − (k(t0, ti))ti(k(ti, tj))−1ij (k(ti, t0))i.(2.116)

By Proposition 95 the BLP is

Ẑ = E(Z ∣ X)(2.117)

= mt0 + (k(t0, ti))ti(k(ti, tj))−1ij (X −mX)(2.118)

with MSE

MSE(Ẑ) = E(var(Z ∣ X)(2.119)

= σ2.(2.120)

The BLP is a linear combination of Gaussian random variables, and hence a Gaussian random

variable itself. Note that, in this case, Ẑ is unbiased because E(Ẑ) = mt0 = E(Z).
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Figure 2.3 Let L(Ω) be the Hilbert space of all random variables on a probability space Ω. Let

Z ∈ L(Ω) be a such a random variable. Let X be a random process and let L(X) be the Hilbert

space spanned by X. Then L(X) ⊂ L(Ω). The least squares predictor for Z based on X, denoted

Ẑ, is the orthogonal projection of Z onto L(X). Themean-squared error is the norm of the vector

Z − Ẑ.

2.5 PREDICTION IN THE SETTING OF REPRODUCING KERNEL HILBERT SPACES

Having considered the theory of random processes, reproducing kernel Hilbert spaces, and pre-

diction, we are now in a position to give an account of prediction in the setting of reproducing

kernel Hilbert spaces. The key insight is that prediction may be cast as a minimization prob-

lem in the appropriate Hilbert space. We have a random variable Z ∈ L(Ω), and a subspace

L(X) ⊂ L(Ω). The norm on L(Ω) is given by ∥U∥ =
√

E(U 2). Therefore the MSE of a linear

predictor of Z is MSE(U) = E((Z − U)2) = ∥Z − U∥2. To find the BLP of Z we must therefore

find the random variable Ẑ ∈ L(X) that minimizes this norm. That such a minimum exists and

is unique is a consequence of the following theorem.

Theorem 98. LetH be a Hilbert space and let G ⊆ H be a Hilbert subspace. For all v ∈ H there is a

unique point v̂ ∈ G such that ∥v − v̂∥ = inf{∥v − u∥ ∶ u ∈ G}.

Proof. A proof is given by Bourbaki (1981, Ch. V Sec. 1 No 5 Thm 1).

As a corollary of this theorem, the BLP of a random variable exists and is unique.

Theorem 99. GivenH,G, v, and v̂ as inTheorem 98, it is the case that v̂ is the orthogonal projection

of v ∈ H onto G.

Proof. A proof is given by Bourbaki (1981, Ch. V Sec. 1 No 6 Thm 2).
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Corollary 100. In the setting of Definition 91, the BLP of Z based onX is the orthogonal projection

of Z onto L(X).

Example 101 (polynomial projection of a square-integrable function). To illustrate the value of pro-

jection, let us project a square-integrable function on the unit interval onto a polynomial subspace

of degree n, Pn([0, 1]). Denote the function by f and its projection by f̂. The space of square-

integrable functions on the unit interval is a Hilbert space. We may write Pn([0, 1]) ⊆ L2([0, 1]).

The subspace Pn([0, 1]) admits a finite orthonormal basis. One possible choice of such a basis

is the first n+ 1 normalized shifted Legendre polynomials, {p̃n}ni=0, where (Courant and Hilbert,

1989)

p̃n(x) =
2n + 1
n!

dn

dxn
(x2 − x)n.(2.121)

It is therefore the case (see Proposition 132) that

f̂(x) =
n
∑
i=0
⟨f, p̃i⟩p̃i(x)(2.122)

where

⟨f, p̃i⟩ = ∫
1

0
f(x)p̃i(x)dx.(2.123)

Suppose, for the sake of concreteness, that f is the exponential function on the unit interval, and

n = 2. The first three normalized shifted Legendre polynomials are

p̃0(x) = 1,(2.124)

p̃1(x) = 3(2x − 1), and(2.125)

p̃2(x) = 5(6x2 + 6x + 1).(2.126)

Hence

f̂(x) = (e − 1) + 3(3 − e)(2x − 1) + 5(7e − 19)(6x2 + 6x + 1).(2.127)

This is the quadratic projection of the exponential function on the unit interval. We plot it in

Figure 2.4.

2.5.1 Generalized integral equations

In the remainder of this section we work with a Hilbert space H, an indexed subset {vt ∶ t ∈ T},

and an element v ∈ H. By analogy with the notation L(X) (Def. 88) we denote by L({vt ∶ t ∈ T})
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Figure 2.4 The exponential function on the unit interval, f, and its least-squares second-degree

polynomial estimate, f̂, given by expression 2.127.

the completion of the subspace of H spanned by {vt ∶ t ∈ T}. As in Theorems 98 and 99, we let v̂

denote the orthogonal projection of v onto L({vt ∶ t ∈ T}). As a consequence, we have

⟨v − v̂,u⟩ = 0,(2.128)

for all u ∈ L({vt ∶ t ∈ T}). We view this as a family of equations for v̂, with v given and u ranging

over L({vt ∶ t ∈ T}). Equivalently, we seek v̂ ∈ H of minimum norm such that

⟨v̂,u⟩ = ⟨v,u⟩(2.129)

for all u ∈ L({vt ∶ t ∈ T}) (see Figure 2.3). This equation is a generalized integral equation (see

Parzen, 1959, p. 58). Its solution, if it exists, may be found using the theory of reproducing kernel

Hilbert spaces.

Definition 102 (generalized integral equation). LetH be aHilbert space, let {vt ∶ t ∈ T} ⊆ H be a

set of vectors indexed by a set T, let f ∶ TÐ→ R, and let v be a variable element17 of L({vt ∶ t ∈ T}).

A system of equations of the form

⟨v, vt⟩ = f(t) for all t ∈ T(2.130)

17By ‘variable element’ we mean an unknown or undetermined element, not a random variable.
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is called a generalized integral equation. Such an element v ∈ L({vt ∶ t ∈ T}) solving these equa-

tions is called a solution to the generalized integral equation.

Example 103 (integral equation). Consider the Hilbert space of square-integrable functions,

L2([a, b]). Let {k(⋅, t) ∶ t ∈ [a, b]} ⊆ L2([a, b]) be a set of functions. Let x ∈ L({k(⋅, t) ∶ t ∈

[a, b]}) be an element of the linear span of {k(⋅, t) ∶ t ∈ [a, b]}, and let f ∶ [a, b] Ð→ R be a

function. The generalized integral equation

⟨x, k(⋅, t)⟩ = f(t)(2.131)

is an integral equation of the form

∫
b

a
x(s)k(s, t)ds = f(t).(2.132)

The fact that Definition 102 generalizes this equality is the origin of the name ‘generalized integral

equation’.

Note that generalized integral equations do not necessarily have a solution. The following

theorem tells us when a solution does exist, and allows us to find the solution when it exists.

Theorem 104 (generalized integral equation theorem). Let H be a Hilbert space, let {vt ∶ t ∈

T} ⊆ H be a set of vectors indexed by a set T, and let f ∶ TÐ→ R. The following are equivalent.

(a) There exists a unique minimum-norm solution v0 ∈ L({vt ∶ t ∈ T}) to the generalized

integral equation

⟨v0, vt⟩ = f(t),

for all t ∈ T.

(b) The function f is an element of the reproducing kernel Hilbert spaceGk with kernel k defined

by

k(s, t) = ⟨vs, vt⟩,

for all s, t ∈ T.

Furthermore, in this case,

v0 = ψ−1( f )(2.133)

where ψ is the canonical congruence ψ ∶ L({vt ∶ t ∈ T})Ð→ Gk (Def. 85). The norm of v0 is

∥v0∥ = ∥ f ∥G.(2.134)
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Proof. The Hilbert space L({vt ∶ t ∈ T}) and reproducing kernel Hilbert spaceGk are congruent.

In fact the canonical congruence ψ ∶ L({vt ∶ t ∈ T}) Ð→ Gk is such that ψ(vt) = k(t, ⋅) (Def. 85).

Therefore, if f ∈ Gk then v = ψ−1( f ) is a solution, because

⟨v, vt⟩ = ⟨ψ(v), k(t, ⋅)⟩G(2.135)

= ⟨f, k(t, ⋅)⟩G(2.136)

= f(t)(2.137)

(where we have used the properties of congruences, Def. 63, the canonical congruence, Def. 85,

and the reproducing property, Def. 74, in that order). Conversely, if there exists a solution v ∈

L({vt ∶ t ∈ T}) then ψ(v) = f ∈ Gk. To show that v is unique, when also we demand that it has

minimum norm, we suppose that there exists f ′ ∈ Gk such that v = ψ−1(f ′). Then

f ′(t) = ⟨f ′, k(t, ⋅)⟩(2.138)

= ⟨v, vt⟩(2.139)

= f(t).(2.140)

By the properties of congruences, we have that ∥v∥ = ⟨v, v⟩ = ⟨f, f⟩G = ∥ f ∥G.

The theorem states that the unique minimum-norm solution of a generalized integral equa-

tion exists if f is an element of the reproducing kernel Hilbert space spanned by {vt ∶ t ∈ T} with

reproducing kernel k. In this case, the existence of the canonical congruence between the two

spaces allows us to find the solution. In fact, the solution of the equation is the preimage of f

under the canonical congruence. With this theorem now in place, we are in a position to solve

the projection equation (eq. 2.129). I show a schematic representation of this solution method

in Figure 2.5. We may use then use the generalized integral equation theorem to find the BLP.

Theorem 105 (Parzen’s BLP theorem). LetX = {Xt}t∈T be a random process, and let Z ∶ ΩÐ→ R

be a random variable defined on the same probability space as X. Let k be the function given by

k(s, t) = E(XsXt), and let Gk be the reproducing kernel Hilbert space with reproducing kernel k.

Let ψ be the canonical congruence from L(X) to Gk. Let ρZ ∶ T Ð→ R be the function given by

ρZ(t) = E(ZXt). Then the BLP of Z based on X is

Ẑ = ψ−1(ρZ),(2.141)

which has mean-squared error

MSE(Ẑ) = E(Z2) − ∥ρZ∥2Gk
.(2.142)
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Figure 2.5 Finding the orthogonal projection of a vector, v ∈ H, onto a subspace, L({vt ∶ t ∈ T}).

We denote this orthogonal projection v̂. In order to find v̂ we must solve the equation ⟨v̂, vt⟩ =

⟨v, vt⟩ for all t ∈ T (eq. 2.129). This is a generalized integral equation of the form ⟨v̂, vt⟩ = f(t)

where the function f ∶ T Ð→ R is given by ⟨v, vt⟩. Thus f ∈ RT. The reproducing kernel Hilbert

spaceGk, where k is such that k(s, t) = ⟨vs, vt⟩, is a subset ofRT. Under the canonical congruence,

ψ ∶ L({vt ∶ t ∈ T})Ð→ Gk, it is the case that v̂ exists if and only if f ∈ Gk, whereupon, v̂ = ψ−1( f )

(Thm 104).

Proof. The BLP of Z based on X is the orthogonal projection of Z onto L(X), by Corollary 100.

Hence it is the case that ⟨Ẑ,U⟩ = ⟨Z,U⟩, for all U ∈ L(X). By the generalized integral equation

theorem, Theorem 104, we have that Ẑ = ψ−1(ρZ).

2.5.2 Finding the BLUP

Instead of finding the BLPof a randomvariableZ, wewill nowfind its BLUP.Wewill do this under

the assumption the mean of Z is an element of some class of possible mean functions. As before,

we have a random variable Z ∈ L(Ω), and a random process X defined on the same probability

space. We have L(X), theHilbert space spanned by the randomprocessX = {Xt}t∈T. We haveGk,

the reproducing kernel Hilbert space with reproducing kernel k given by k(s, t) = ⟨Xs,Xt⟩L(X),

and the canonical congruence ψ ∶ L(X)Ð→ Gk. We will assume that the truemean ofX, denoted

m0, is an unknown element of a known subspace of the reproducing kernel Hilbert space, namely

M ⊆ Gk.

Any m ∈ M is a function T Ð→ R. By extending linearly, each m induces a function Em ∶

L(X) Ð→ R. If we know an explicit formula for the elements m of M, then we may extend the

domain of Em to L(Ω). Thus, when we are explicitly given M, it makes sense to write Em(Z),
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for all m ∈ M. For the sake of clarity, we will even write the expectation E(X) as Em0(X), with

which it is anyway equal, for all X ∈ L(Ω). The mean-squared error of a random variable Y is

MSE(Y) = E((Z − Y)2) = Em0((Z − Y)2), so it seems that to compute the mean-squared error

we must be able to compute the expectation, which we do not know a priori. But this is not so.

Recall that in the unbiased case (eq. 2.106), when

Em0(Z) = Em0(Y)(2.143)

we have that

MSE(Y) = var(Z − Y)(2.144)

= var(Z) + var(Y) − 2cov(Z,Y)(2.145)

where we have used the fact that var(aZ+bY) = a2var(Z)+b2var(Y)+2abcov(Z,Y). If we know

these three terms, var(Z), var(Y), and 2cov(Z,Y), thenwemay compute themean-squared error

without knowing the true mean,m0. Rather that assume that we know cov(Z,Y) directly, we will

instead assume that we know the function ρZ given by

ρZ(t) = cov(Z,Xt).(2.146)

This then allows us to compute cov(Z,Y).

We will say that Z is predictable if there exists Y ∈ L(X) such that

Em(Z) = Em(Y),(2.147)

for all m ∈ M. Such a Y is called a uniformly unbiased linear predictor for Z. (Parzen, 1959,

p. 122). Our aim is to find such a Y with minimum mean-squared error, which we couch as

a minimization problem in the reproducing kernel Hilbert space Gk. To this end we note the

following.

Lemma 106 (representation of the mean and covariance). Let g,h ∈ Gk, and write U = ψ−1(g)

and V = ψ−1(h). It is the case that

Em(U) = ⟨g,m⟩(2.148)

cov(U,V) = ⟨g,h⟩, and(2.149)

var(U) = ∥g∥2.(2.150)
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Proof. It is the case that g = ∑i aik(ti, ⋅). Using this fact, the linearity of the inner product, and

the reproducing property of k, we have that

⟨g,m⟩ = ⟨m,∑
i
aik(ti, ⋅)⟩(2.151)

=∑
i
ai⟨m, k(ti, ⋅)⟩(2.152)

=∑
i
aim(ti)(2.153)

= Em(u).(2.154)

We also have that

⟨g,h⟩ = ⟨∑
i
aik(ti, ⋅),∑

j
ajk(tj, ⋅)⟩(2.155)

= ⟨∑
i
aik(ti, ⋅),∑

j
ajk(tj, ⋅)⟩(2.156)

=∑
i,j
aiaj⟨k(ti, ⋅), k(tj, ⋅)⟩(2.157)

=∑
i,j
aiajk(ti, tj)(2.158)

= cov(u, v).(2.159)

We therefore have that

var(u) = cov(u,u)(2.160)

= ⟨g, g⟩(2.161)

= ∥g∥2,(2.162)

as required.

Given these results, we find that the MSE of a random variable Y = ψ−1(g) is

MSE(Y) = var(Z) + var(Y) − 2cov(Z,Y)(2.163)

= var(Z) + ⟨g, g⟩ − 2⟨ρZ, g⟩(2.164)

= var(Z) + ⟨g, g⟩ − ⟨ρZ, g⟩ − ⟨g, ρZ⟩ + ⟨ρZ, ρZ⟩ − ⟨ρZ, ρZ⟩(2.165)

= var(Z) + ⟨g, g − ρZ⟩ − ⟨ρZ, g − ρZ⟩ − ⟨ρZ, ρZ⟩(2.166)

= varZ + ⟨g − ρZ, g − ρZ⟩ − ⟨ρZ, ρZ⟩(2.167)

= var(Z) − ∥ρZ∥2 + ∥g − ρZ∥2.(2.168)
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Thus, to find the BLUP of Z we must find g such that ψ−1(g) is uniformly unbiased, subject to

which g minimizes the norm ∥g − ρZ∥. (The term ∥ρZ∥ is a constant.)

We may formalize this argument in the following theorem, due to Parzen (1959, p. 123,

Thm 11A). This is the principle result of the reproducing kernel Hilbert space approach to pre-

diction.

Theorem 107 (Parzen prediction theorem). Let X = {Xt}t∈T be a second-order random process

with covariance function k andmean functionm ∈M ⊂ Gk. Let Z be a predictable random variable.

The BLUP of Z is

Ẑ = ψ−1(ρ̂Z)(2.169)

where ρ̂Z is the minimizer of ∥ρZ − f ∥, for all f ∈ Gk, subject to the constraint that ⟨ρ̂Z,m⟩ = Em(Z),

for all m ∈M. Furthermore, the mean-squared error of Ẑ is

MSE(Ẑ) = var(Z) − ∥ρZ∥2 + ∥ρZ − ρ̂Z∥2.(2.170)

Proof. We first define the set of functions which correspond to uniformly unbiased linear pre-

dictors:

U ∶= {g ∈ Gk ∶ ∀m ∈M ⟨g,m⟩ = Em(Z)}.(2.171)

Thus Y ∈ L(X) is a uniformly unbiased linear predictor for Z if and only if ψ(Y) ∈ U. Such a

predictor Y is best (subject to uniform unbiasedness) if and only if g = ψ(Y)minimizes

∥g − ρZ∥(2.172)

among g ∈ U. By the projection theorem (Thm 99), this amounts to choosing g to be the projec-

tion of ρZ onto U. Denote this projection by ρ̂Z and write Ẑ ∶= ψ−1(ρ̂Z). Then Ẑ is the required

BLUP. For the final claim, we compute the mean-squared error:

MSE(Ẑ) = Em0((Z − Ẑ)2)(2.173)

= var(Z) − ∥ρZ∥2 + ∥ρZ − ρ̂Z∥2,(2.174)

by Lemma 106.

2.5.3 Finite-dimensional space of mean functions

Having established the Parzen prediction theorem, we may consider the special case of finite-

dimensionalM. This will yield a readily computably expression for the BLUP that we may use to
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construct metamodels. Let us suppose, then, that M is of finite dimension, q, with known basis

(φj)qj=1. Recall that ρZ is given and our aim is the compute ρ̂Z. For convenience, we introduce a

function h defined by h ∶= ρ̂Z − ρZ. Our task may now be re-expressed in terms of h. We seek h

of minimum norm subject to the constraint

⟨h,m⟩ = ⟨ρ̂Z,m⟩ − ⟨ρZ,m⟩,(2.175)

for all m ∈ M. The orthogonal projection of such an h onto M must still satisfy this constraint,

and thus we equivalently seek h ∈M satisfying Equation 2.175, for allm ∈M. Since (φj)qj=1 spans

M, it even suffices to find h ∈ M satisfying ⟨h,φj⟩ = dj, where dj ∶= ⟨ρ̂Z,φj⟩ − ⟨ρZ,φj⟩, for all

j ∈ {1, 2, . . . , q}. If we write h = ∑q
i=1 aiφi then ⟨h,φj⟩ = ∑q

i=1 ai⟨φi,φj⟩. Therefore, it suffices that

dj = ∑q
i=1 ai⟨φi,φj⟩ for all j. Let us define the Gram matrix, M = (⟨φi,φj⟩)ij. We may rewrite the

last expression as dj = ∑q
i=1 aiMij. This is a family of simultaneous equations, which we may solve

to find that ai = ∑q
j=1 M−1ji dj. Therefore h = ∑i,j djM−1ji φi. Furthermore,

Ẑ = ψ−1(ρ̂Z)(2.176)

= ψ−1(ρZ) + ψ−1(h)(2.177)

= ψ−1(ρZ) +∑
i,j
djM−1ji ψ−1(φi)(2.178)

with mean-squared error

MSE(Ẑ) = var(Z) − ∥ρZ∥2 + ∥h∥2(2.179)

= var(Z) − ∥ρZ∥2 +∑
i,j
djM−1ji di.(2.180)

This is an agreement with Parzen (1959, p. 124), who gives the same expressions without proof.

It is convenient to put this in matrix notation. Let φ = (φi(t0))i, let A = (φj(ti))ij, let k =

(k(t0, ti))i, and let Β̂ = (AtK−1A)−1AtK−1X. Then the above expressions are equivalent to the

following:

Ẑ = φt(AtK−1A)−1AtK−1X + ktK−1(X −A(AtK−1A)−1AtK−1X)(2.181)

= φtΒ̂ + ktK−1(X −AΒ̂),(2.182)

and

MSE(Ẑ) = k(t0, t0) − ktK−1k + (φt − ktK−1A)(AtK−1A)−1(φ −AtK−1k).(2.183)

These expressions are the same as those found by Sacks et al. (1989, eq. 7, p. 413) using differ-

ent means. Howeve, nowhere in the literature is an explicit connection made between Parzen’s

prediction theorem and these expressions. We have therefore derived them in a novel manner.
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Note that the expression for the BLUP, Ẑ, is a sum of two terms. The first is an estimate of

the mean, m(t0). Recall that m(t0) = ∑q
i=1 βiφi(t0), or in matrix notation m(t0) = φtΒ. By

comparing this expression with the first term of the expression 2.182, namely φtΒ, we identify Β̂

as the estimator of Β, i.e. as an estimator of the unknown coefficients (βi)qi=1. This is referred to as

the generalized least-squares estimator of Β (Seber and Lee, 2003). The second term is a weighted

sum of the residuals (X −AΒ̂). Note that AΒ is just the tuple of mean values (m(t))t∈T, and that

AΒ̂ is the generalized least-squares estimator of this tuple. Hence (X − AΒ̂) is indeed a tuple of

residuals for this estimator. The tuple ktK−1 may be thought of a tuple of weights, whereupon

the second term of expression 2.182, namely ktK−1(X − AΒ̂), becomes a weighted sum of the

residuals.

2.5.4 Gaussian process emulation

The BLUP, as given in expression 2.182, is used in computer science to create emulators for com-

putationally expensive simulations. Recall that we think of a simulation as a means of evaluating

a parameterized function, (f(⋅; t))t∈T, where T is the parameter space of that function. We create

a metamodel consisting of a random process, Z = {Zt}t∈T, and then select a subset of that process

X ⊂ Z, which we use to generate the BLUP of an arbitrary element Z ∈ Z, along with its associated

MSE. A realization of X is generated, which gives a realization of Ẑ. This is our best guess for the

true value of Z. To create confidence regions for this best guess, we must know something about

the distribution of our process, Z. It is common to assume that Z is Gaussian. In this case predic-

tion is known as ‘Gaussian process emulation’ (Rasmussen and Williams, 2006).18 We may then

compute a confidence region for our best guess in the usual way. This assumption of Gaussianity

is useful but not necessary, and wemight do well to refer to prediction in the context of computer

experiments as ‘random process emulation’ to emphasize this fact. It is also worth mentioning

the use of the BLUP in spatial statistics and, in particular, geostatistics. In this context, prediction

is known as kriging (Krige, 1951). Typically, the predicted quantity is the density of a mineral de-

posit within a potential mining field. The density of the deposit is represented as the realization of

a random process Z = {Zt}t∈T where T = R3 represents the three-dimensional volume of mining

field in question. Again, a subset of that process is chosen,X ⊂ Z, a realization ofX is generated by

practical experiment, i.e. by sinking bore-holes to the correct positions. Kriging comes in three

18Presumably the term ‘emulation’ originates with the fact that one computer programme is being used to emulate

another. This is somewhat analagous to the use of software (emulators) to allow one operating system to run programmes

written for another.
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flavours: ordinary kriging, simple kriging, and universal kriging. In ordinary kriging (Matheron,

1963; Cressie, 1988) we compute the BLUP under the assumption that the random process X is

intrinsically stationary (Def. 51). In simple kriging (Cressie, 1990) we compute the BLP (Def. 91)

under the assumption that the mean is a known constant. In universal kriging (Cressie, 1986) we

compute the BLUP under the assumption that the mean, m, is a polynomial of given order, and

the condition that the random process Z −m is intrinsically stationary.

Much of the work in random process emulation has been borrowed from kriging. Indeed

Sacks et al. (1989) state that themethod of emulation has been ‘adopted fromkriging in the spatial

statistics literature’. But there is a fundamental difference that has been ignored by the literature.

In spatial statistics the parameter space is R3. In random process emulation, the parameter space

is far more general, as we have discussed in Chapter 1. Concepts of stationarity and isotropy that

apply in the case of R3 (or, indeed, Rn) do not necessarily apply in the case of such parameter

spaces. To this end, the literature implicitly assumes that parameter space is either embedded

in Rn, or mapped to Rn under some continous transformation. This is deeply unsatisfactory

and should be remedied by the development of new covariance functions based on the instrinsic

structure of parameter space. I plan to pursue this goal in future work.

Bower et al. (2010) do anOLS fit first. They fix the correlation length by eye, using knowledge

of the function they
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Chapter 3

Mean and covariance specification in

Gaussian-process emulation

In finding the BLUP we have assumed that the covariance function, k, is known and that the

mean belongs to some known family of means. In practice we know neither the covariance nor

the family to which the mean belongs. Similarly, in finding the BLP we have assumed that the

joint distribution of the process X and the random variable Z is known. In the Gaussian case

(Ex. 97) this amounts to assuming that the mean and covariance of the distribution are known.

In practice, we do not know this joint distribution. What then, should we do? In the case of the

BLUP we must approximate the covariance and the family of means. And in the case of the BLP

we must approximate the joint distribution.

For the BLUPwe will use themethod of ordinary kriging, assuming that the random process,

X, is stationary, and hence has constantmean. For the BLPwewill use themethod of simple krig-

ing, assuming that the random process, X, has constant mean. Moreover, we will assume in both

cases that the random vector, X and the predictable random variable Z are both drawn from the

same stationary Gaussian random process. Further, we will assume that the covariance function

itself is an element of some family of covariance functions. The assumption of Gaussianity then

allows us to optimize the parameter of this covariance function using the principle of maximum

likelihood (Santner et al., 2003). Given a covariance function, and a family of mean functions in

this way, we are then in a position to compute the BLUP directly. To to compute BLP, however,

we must assume some value for the mean function. There is no good way to do this, and it is fre-

quently assumed, arbitrarily, to be zero (Rasmussen and Williams, 2006). We will avoid making
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this this assumption, but will instead attempt to quantify the bias of the resulting predictor.

3.1 CHOOSING THE COVARIANCE FUNCTION

Following common practice (Sacks et al., 1989), we will assume that the covariance function, k,

is an element of some parameterized family of covariance functions, say one of the families given

in Examples 56–58. In other words, we will assume the covariance function to be an element of

the model (kθ)θ∈Θ. The tuple θ is the parameter of the covariance function, and the set Θ is the

set of all possible parameters of the covariance function.

Under the assumption of known covariance function, we had a single predictor for the BLUP

or BLP, which we denoted Ẑ in each case. Under the assumption that the covariance function is

one element of a family of covariance functions, we now have multiple predictors, one for each

element of the family of covariance functions. Wemay denote each such predictor Ẑθ. In the case

of the BLP (Ex. 97, Eq. 2.118) we may write

Ẑθ = mZ + kt
θK
−1
θ (X −mX)(3.1)

where mZ is the mean of Z, mX is the mean of X, kθ = (kθ(t0, ti))i and Kθ = (kθ(ti, tj))ij. And in

the case of the BLUP we may write

Ẑθ = φtΒ̂θ + kt
θK
−1
θ (X −AΒ̂θ)(3.2)

where φ = (φi(t0))i is a tuple of basis functions for the space of mean functions, A = (φj(ti))ij,

and Β̂θ = (AtK−1θ A)−1AtK−1θ X. However, the predictor should not be understood as a parame-

terized function. It has been derived on the assumption that the covariance function is known.

To emphasize this fact we will refer to θ not as a parameter of the predictor but rather as a hyper-

parameter of the predictor, Z.

We may optimize our choice of hyperparameter using the principle of maximum likelihood.

Assume that we have a realization of the random vector X, giving data ((ti, xi))ni=1. We choose

the parameter of the covariance function that makes the data most probable. By assumption, the

random process from which our data are drawn is Gaussian. The PDF for the random vector X

is therefore

fX(x;mX, θ) =
1√

(2π)n∣Kθ∣
exp(−1

2
(x −mX)tK−1θ (x −mX)) .(3.3)

where x = (x1, x2, . . . , xn), mX = (mt1 ,mXt2
, . . . ,mXtn

). By definition, the likelihood of θ is

LΘ(θ;mX, x) = fX(x;mX, θ)(3.4)
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and hence the support for θ is

SΘ(θ;mX, x) = −
1
2
(x −mX)tK−1θ (x −mX) −

1
2
ln(∣Kθ∣) −

n
2

ln(2π).(3.5)

If we make the further assumption that the random process has uniform variance then there

exists a correlation function r such that kθ = σ2rθ (Def. 36).1 Let us define the correlation matrix,

Rθ ∶= (rθ(ti, tj))ij = Kθ/σ2. Then

SΘ(θ;mX, x) = −
n
2

ln(σ2) − 1
2
ln(∣Rθ∣) −

1
2σ2 (x −mX)tR−1θ (x −mX) −

n
2

ln(2π).(3.6)

Assuming that the support is differentiable, we find that

∂S
∂σ2 = −

n
2σ2 −

1
2σ4 (x −mX)tR−1θ (x −mX).(3.7)

This has a unique root in σ2, namely

σ2 = 1
n
(x −mX)tR−1θ (x −mX).(3.8)

Hence (by substituting into expression 3.6) we find that

SΘ(θ;mX, x) = −
n
2

ln( 1
n
(x −mX)tR−1θ (x −mX)) −

1
2
ln(∣Rθ∣) −

n
2
− n

2
ln(2π).(3.9)

If we are computing the BLP, in which case we know the mean, we may maximize this directly. If

we are computing the BLUP, we do not know the mean vector mX, but do have an estimator for

it, AΒ̂θ (see eq. 2.181 and the subsequent disccussion). Note also that Β̂θ = (AtK−1θ A)−1AtK−1θ x =

(AtR−1θ A)−1AtR−1θ x. We may therefore form the concentrated support,

SΘ(θ; x) = −
n
2

ln( 1
n
(x −AΒ̂θ)tR−1θ (x −AΒ̂θ)) −

1
2
ln(∣Rθ∣) −

n
2
− n

2
ln(2π).(3.10)

This depends only on the parameters of the correlation function, and not the variance.

To find themaximum-likelihood estimate of θ, namely θ̂, wemaymaximize this function sub-

ject to the constraint that Rθ is positive-semidefinite (positive-semidefiniteness being a necessary

property of covariance matrices). Given θ̂ we may then compute

σ̂2 = 1
n
(x −AΒ̂θ̂)

tR−1θ̂ (x −AΒ̂θ̂).(3.11)

Expression 3.9 consists of three terms. Rasmussen andWilliams (2006) point out that the first

is ameasure of fit quality, the second a complexity penalty, and the third a normalization constant.

The function SΘ will in general have multiple maxima, each maximum giving a different tradeoff
1This is necessarily the case if the random process is stationary (Rem. 44 and Eq. 2.16).
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between fit quality and complexity. Note that the complexity penalty is a function of Rθ only,

and quantifies the complexity of our attempted fit independent of the data. For a complicated fit,

the covariance of any two points is low. Hence the determinant of the covariance matrix Rθ is

small, and ln(∣Rθ∣) diverges with complexity (i.e. as ∣Rθ∣Ð→ 0 so ln(∣Rθ∣)Ð→ −∞). This strongly

penalizes complex models.

3.2 KRIGINGMETHODS

By far the most common methods used in the construction of meta models are those of simple

and ordinary krigingCressie (1986, 1990). Despite the fact that they ignore the intrinsic statistical

structure of the random process in question, we will follow the crowd and adopt these methods

also. Recall that in ordinary kriging we compute the BLUP under the assumption of stationarity.

In this case the mean is necessarily constant. Recall also, that in simple kriging compute the

BLP under the assumption of constant mean. In this case it also common to further impose the

assumption of stationarity. We thus have two cases: stationary Gaussian random process with

known mean (the BLP) and unknown mean (the BLUP).

We must choose a family of covariance functions that ensures stationarity. By far the most

commonly used covariance function is the squared-exponential (Def. 58) for a = 1/2, given by

k(s, t) = σ2 exp(−1
2
∥s − t∥2) .(3.12)

where

∥s − t∥ =
√
(s − t)tM(s − t).(3.13)

(In fact this covariance function ensures that the random process is isotropic as well as

stationary.) Furthermore, it is common to assume that the metric matrix is diagonal,

M = diag(m1,m2, . . . ,mD). The hyperparameter of the predictor is therefore the tuple

θ = (σ2,m1,m2, . . . ,mD). The parameter of the covariance function is the tuple θ, and the

parameter of the correlation function is the tuple m.

We may show (see, for example, Loeppky et al., 2009) that the mean squared gradient is

(3.14) E(∂X(t)
∂ti
)

2

= σ2mi,

and therefore call mi the sensitivity of the model to the i-th parameter. Because M is positive-

semidefinite it has a unique positive-semidefinite inverse, which in turn has a unique square root,
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i.e. there exists a unique matrix L (not to be confused with the likelihood, L) such that M = L−2.

We may rewrite the squared exponential as

k(s, t) = σ2 exp(−1
2
(s − t)L−2(s − t)) .(3.15)

IfM is diagonal then so is L and L = diag(l1, l2, . . . , lD)wheremi = l−2i for all i. This is a Gaussian

function (not playing the role of a PDF) with root-mean square widths l1, l2, …, lD. We call the

value li the correlation length (also scale length) for the i-th component of the parameter. It is the

characteristic scale length of the correlation function for the i-th component of the parameter.

To compute the BLUP, we assume constant but unknown mean, such that m(t) = μ for all

t ∈ T. Then we have a single basis function, φ = 1. Recalling the definitions associated with

Equations 2.181 and 2.183, we now have that

φ = (φi(t0))i = 1(3.16)

and

A = (φj(ti))ij = 1n(3.17)

where 1n is the ones vector of lengthn. Thenwe require that the generalized least-squares estimate

of the mean is φtΒ̂ = μ̂, and find that Β̂ = μ̂. We then have that

μ̂ = (AtK−1A)−1AtK−1x(3.18)

= (1t
nK−11n)−11t

nK−1x(3.19)

= 1t
nK−1x

1t
nK−11n

.(3.20)

By subsituting the expressions φ = 1, A = 1n, and Β̂ = μ̂ into Equation 2.181 we find the ordinary

kriging predictor:

Ẑ = μ̂ + ktK−1(X − 1t
n μ̂).(3.21)

Similarly (by subsituting the same expressions into Eq. 2.183) we find the MSE of the ordinary

kriging predictor:

MSE(Ẑ) = k(t0, t0) − ktK−1k + (1 − k
tK−11n)2

1t
nK−11n

.(3.22)

These expression are consitent with those found by Cressie (1986) using different means. Note

that if the random process has constant variance then the mean, μ̂, and the predictor, Ẑ, are

independent of this variance. The variance is required only to compute the MSE.
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Example 108 (Forrester function). Let us return to the example of the Forrester function (Eq. 1.41).

We may now see in detail how we create a metamodel of this function. We will use ordinary

kriging to compute the BLUP for an arbitrary value of the function, which we denote ŷ(x). We

assume the squared-exponential covariance function with diagonal metric matrix. First we gen-

erate a sample of the Forrester function, size n = 10. Second, we optimize the parameters of the

covariance function using the maximum-likelihood method (expressions 3.10 and 3.11). The re-

sults of this optimization are shown in Table 3.1. We plot the support for the covariance function

parameters in Figure 3.2. Third, we compute the predictor for the desired value of the function,

along with the associated MSE. Because, by assumption, the random process is Gaussian this

MSE is equal to the variance of the function and we may hence compute a confidence interval

for our prediction directly. We plot the predictions for 100 such values in Figure 3.1, along with

their 5σ confidence intervals. Note the values of the Forrester function are everywhere within 5σ

of their predicted values.

It is enlightening to compute predictions for the values of the function given a parameter of

the covariance function that differs from its MLE. According to Table 3.1 the MLE of the cor-

relation hyperparameter is m = 39.2857. The associated correlation length is l = 39.2857−1/2 =

0.1595. Let us suppose that we choose a correlation length of factor four either side of this value,

i.e. suppose that l = 0.1595/4 = 0.03989 (whereupon m = 628.5712) or that l = 0.1595 × 4 =

0.6382 (whereupon m = 2.4554).2 We retain the MLE of σ2 = 58.2386. Using these values we

recompute the predictions shown shown in Figure 3.1. These are shown in Figure 3.3.

In the first case the predictions exhibit overfitting: predictions are biased towards the mean,

m̂u, with high MSE. In the second case, the predictions exhibit underfitting: they have low MSE.

In the first case, the length scale is in fact shorter than the separation of samples, meaning that

even adjacent samples are poorly correlated, when in fact they are well correlated. In the second

case, the length scale is comprable to that of the width of the domain, meaning that all samples are

well correlated, when in fact only adjacent samples are well correlated. In the first case theMSE is

so large as to make the prediction useless. We can have very little confidence in the predictions.

In the second case, the MSE is so low that the values of the Forrester function are not everywhere

within 5σ of their predicted values.

2We would choose a more natural factor of 10 but a length scale of 10l results in numerical instability, and prevents

us from computing predictions. We address the issue of numerical instability later in the chapter.
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σ2 m l μ̂

58.2386 39.2857 0.1595 4.0956

Table 3.1 Maximum-likelihood estimate for the hyperparameter elements, σ2 and m, of the

squared-exponential covariance function used in emulating the Forrester function. Also shown

are the length scale, l = m−1/2, and the the maximum-likelihood estimate of the random process

mean, μ̂ = (1t
nK−1x)/(1t

nK−11n) (Eq. 3.20).
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Figure 3.1 The Forrester function (Ex. 108), and its predicted values computed using GPE and

the sample shown (filled black circles). The five-sigma confidence intervals for the predictions

are also shown.

3.3 VALIDATING THE EMULATOR

We would like to know how good our predictions are. In the example of the Forrester function

given above we were able to compare our predictions with the function’s values. This will in gen-

eral not be possible. Our principal tool in assessing the quality of our predictions is a procedure

known as validation (Wasserman, 2007). Having constructing a predictor, we would ideally test

it by evaluating the model at some number of parameters t ∈ T, not used in the construction of

the predictor. In the case that the model is expensive to evaluate, this imposes an impractical

computational burden. Instead we use leave-one-out cross-validation (LOOCV). We omit the i-

th pair, (xi, ti), from our data to give the reduced data, {(xj, tj)}j≠i. Using these reduced data we

then compute a prediction for xi. We will call this the i-th LOOCV prediction, and denote it x̂−i.
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Figure 3.2 Support for the correlation hyperparameters of the squared-exponential covariance

function used in emulating the Forrester function.

The omission of a single datum should not significantly affect the performance of the predictor,

and we therefore expect this prediction to be close to the value xi. Wemay quantify this closeness

using the i-th LOOCV residual (Wasserman, 2007), i.e.

r−i = xi − x̂−i.(3.23)

By assumption, the random process is Gaussian, meaning the variance of the predictor is equal to

the MSE. The standard deviation of the predictor is the square root of its MSE (Eq. 3.22), which

we denote σ−i. We may therefore form the i-th standardized LOOCV residual (Jones et al., 1998),

i.e.

e−i =
r−i
σ−i

.(3.24)

A further useful statistic is the LOOCV score (Wasserman, 2007), i.e. the mean-squared LOOCV

residuals

R2 = 1
n

n
∑
i
r2−i.(3.25)

We expect the LOOCV residuals to be normally distributedwith zeromean and unit variance.

In particular, according to three-sigma rule, we should not expect to observe values outside the

interval [−3, 3]. Moreover we expect the LOOCV residuals to exhibit no trend in parameter

space, T. The LOOCV score tends to zero in the infinite-training data limit. Typically, we require

it to be less than 10% of the range of the sample, range(x) ∶= max(x)−min(x) (Jones et al., 1998).
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Figure 3.3 When the length scale is too small (top) the metamodel exhibits overfitting: predic-

tions are biased towards the mean, and the MSE is large. When the length scale is too large

(bottom) the metamodel exhibits underfitting: the MSE is small.

We may use these statistics to validate the predictor, since we should observe these properties

in our results. A failure to observe these properties is diagnostic of poor performance of the

predictor.

One way to compare two distributions is by means of a quantile-quantile plot, in which we

plot the quantiles of one distribution against the quantiles of the other (Wilk and Gnanadesikan,

1968). If the two distributions are the same, then the points will lie on the diagonal. If either

distribution is empirical we may substitute its ordered observed values for its quantiles. To check

that the standardized LOOCV residuals are distributed as required, we therefore plot the n or-

dered LOOCV residuals of our fit against the n-th quantiles of the normal distribution. We may
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check for trends in the LOOCV residuals by plotting them against their coordinates in T.

In summary then, the validation of our predictor consists of computing the cross-validation

score and making the following plots:

(a) LOOCV predictions against equivalent values,

(b) LOOCV residuals against coordinates in T, and

(c) quantile-quantile plot showing ordered LOOCV residuals against equivalent quantiles

of the standard Gaussian distribution.

Example 109. Wemay perform validation for the example of the Forrester function (Ex. 108). The

plots are shown in Figure 3.4. Looking at the plot of the LOOCV predictions against equivalent

values, we see that the points lie on the diagonal, indicating good prediction accuracy. Looking

at the plot of the cross-validation residuals against their coordinates in T, we see that the points

exhibit no trend parameter space, T. Looking at the quantile-quantile plot we see that the points

depart somewhat from the diagonal, indicating in this case, that the distribution of the cross-

validation residuals is lighter in the tails than is the normal distribution. However, this plot is of

limited use for such a small sample size of n = 10, so this fact should not overly concern us. We

compute the LOOCV score to be R = 1.5693. We say that our predictor for the Forrester function

has not failed validation.

We expect poor performance of our predictor when neighbouring points are poorly corre-

lated, i.e. when the scale of features in our function is approximately equal to or less than the

point separation. We also expect the accuracy to be poor at the boundary of parameter space,

where the model is constrained by data on one side only.

3.4 AVOIDINGMEANMISSPECIFICATION

In computing the BLP we must know the mean of the joint distribution of Z and X. This leaves

us needing to know the mean of our random process. Rasmussen and Williams (2006) compute

the BLP under the assumption that this mean is zero. They thus derive the expressions

Ẑ = ktK−1X.(3.26)

and

MSE(Ẑ) = k(t, t) − ktK tk.(3.27)
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Figure 3.4 Validation plots for the emulation of the Forrester function. LOOCV predicted val-

ues against equivalent true values. LOOCV residuals. Quantile-quantile plot showing ordered

LOOCV residuals against equivalent quantiles of the standard Gaussian distribution.
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(These are Eqs 2.118 and 2.120 for mt0 = 0 and mX = 0n, where 0n is the zero vector of length n.)

They state that this may be done without loss of generality, arguing that the use of zero mean is

only a notational convenience.3 Regrettably, however, they are not able to make such a simplifi-

cation for notational convenience. In doing so, we are assuming that the mean is constant, and

that this constant is zero. These are both strong assumptions. If the random process does not

satisfy them, the results of our emulation will be biased. The biasedness of the BLP is, to the best

of my knowledge, acknowledged nowhere in the literature on GPE.

It is worthwhile asking how the BLP computed under the assumption of zero mean will differ

from the BLUP computed under the assumption of constant but unknownmean. In other words,

what is the bias of the BLP computed under assumption of zero mean? To this end we note that

the mean-squared error may be decomposed into a variance and a bias term, as follows:

MSE(Ẑ) = E((Ẑ − Z)2)(3.28)

= var(Ẑ − Z) + (E(Ẑ − Z))2(3.29)

= var(Ẑ − Z) + bias(Ẑ)2(3.30)

where bias(Ẑ) ∶= E(Ẑ−Z). If, as Rasmussen and Williams assume, Ẑ = ktK−1X then we find that

var(Ẑ − Z) = var(Z) + var(Ẑ) − 2cov(Ẑ,Z)(3.31)

= var(Z) + var(ktK−1X) − 2cov(ktK−1X,Z)(3.32)

= k(x, x) + var(ktK−1X) − 2cov(ktK−1X,Z)(3.33)

= k(x, x) + ktK−1KK−1k − 2ktK−1k(3.34)

= k(x, x) + ktK−1k − 2ktK−1k(3.35)

= k(x, x) − ktK−1k(3.36)

where we have used the fact that var(atX) = atKa, and that cov(atX,Z) = atk. We also find that

bias(Ẑ) = E(ktK−1X − Z)(3.37)

= ktK−1E(X) −m(t)(3.38)

where E(X) = (E(X1), E(X2), . . . , E(Xn)) = (m(t1),m(t2), . . . ,m(tn)). The bias is dependent

on the mean and the covariance of the random process, X. We can, in general, say no more about

it. The zero-mean BLP is therefore unbiased only in the case that ktK−1E(X) = m(t).
3They state that ‘for notational simplicity we will take the mean function to be zero, although this need not be done’

(Rasmussen and Williams, 2006, p. 13), referring to fact that non-zero mean may used, as we have in deriving the BLUP.
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Suppose that the mean of the random process is in fact constant, but not necessarily zero, i.e.

suppose that m(t) = μ for all t ∈ T. Then the bias is

bias(Ẑ) = μktK−11 − μ(3.39)

= μ(ktK−11 − 1).(3.40)

In this case the zero-mean BLP is unbiased only in the cases that μ = 0 or ktK−11 = 1. This latter

requirement is equivalent to the elements of the tuple K−1k summing to 1.

It is also worthwhile asking when the BLUP reduces to the zero-mean BLP. For this to be the

case we require that the generalized least-squares estimate of the mean, μ̂, is zero. Recall that

μ̂ = 1t
nK−1X

1t
nK−11n

.(3.41)

Therefore, μ̂ = 0 if

1tK−1X = 0.(3.42)

Note that this is the requirement that the realized value of 1tK−1X be zero. In other words we

require that 1tK−1x = 0. This is equivalent to the requirement that the elements of the tuple K−1x

sum to zero.

Both the BLUP and the BLP are in use in machine learning literature. Use of the BLP results

in both biased predictions (eq. 2.118, cp. 2.182) and biased confidence intervals for those pre-

dictions (eq. 2.120, cp. 2.183). However, the biasedness of the BLP is never acknowledged. In

particular is not acknowledged in the textbook by Rasmussen and Williams (2006). The BLP is

used exclusively in the astrophysical literature. The consequences of this are not clear. In the case

that the assumed mean function (be it zero or nonzero) is well-motivated then the biasedness is

presumably not too severe. For example, Gibson et al. (2012) use GPE to fit exoplanetary transit

light curves. They assume the mean function to be a transit function of the kind proposed by

Mandel and Agol (2002) and determine the parameters of both the mean and covariance func-

tions using maximum likelihood (eq. 3.9). In such a case, the use of the BLP rather than the

BLUP is entirely appropriate. When the mean is not well-motivated the consequences are not so

predictable. For example, Bower et al. (2010) use GPE to create metamodels of the luminosity

functions that are the output of galactic evolutionmodel GALFORM (Bower et al., 2006). Specif-

ically, they use GPE to model the residuals of an ordinary least squares (OLS) regression analysis.

They first fit a cubic polynomial to a sample of GALFORM’s output using OLS, and then fit the

resulting residuals using GPE. If the residuals are normally distributed then GPE is suitable for
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modelling them. But this is not necessarily the case. Moreover, this two-stage process fails to

take advantage of the BLUP’s abiliity to predict both mean and residuals at once (eq. 2.182 and

following discussion).

3.5 CONDITIONING THEMODEL

We have assumed that the random process,X is Gaussian. This assumptionmay be unwarranted.

In this case, the predictor will perfom poorly, and may fail validation. If this is the case, however,

wemay transform the random process tomake it Gaussian. To simplify matters, we will continue

to assume that the random process is stationary, and hence has constant variance. The fact that

the variance is constant means that elements of the sample, x1, x2, ..., xn, are drawn from identical

normal distributions. Considered together, we expect them to be distributed normally withmean

μ and variance σ2. If we do not observe this distribution in our training data we may transform

it to ensure that we do. Such a transformation is said to be variance stabilizing (Bartlett, 1947).

Note, however, that althought the elements of the sample (xi)i should be drawn from identical

Gaussian distibutions, we should not expect to see a full Gaussian distribution in our data. There

is no reason the sample spans the mean of this distribution, let alone symmetrically, and may be

preferentially drawn from some region of the distribution. This is especially true of unimodal

functions, for which the data are dawn entirely from one side of the mean of the random process.

Variance-stabilizing transformations are normally chosen by practical experiment from a

number of a number of standard transformations. One such transformation is the Box–Cox

transformation (Box and Cox, 1964). Let (xi)ni=1 be a sample of the random process Xi. Then

the Box–Cox transformation is the function g such that

g(xi; λ1, λ2) =
(xi + λ2)λ1 − 1

λ1
(3.43)

for some real λ1, λ2 such that λ2 > −xi for all i. Note that this expression is just a scaled power law,

with the scaling chosen such that limλ1Ð→0 g(xi) = ln(xi + λ2). For λ > 1 (respectively λ < 1) the

Box–Cox transformation has the effect of compressing (respectively expanding) relatively large

values, and expanding (respectively compressing) relatively small values. It is common to round

the value of λ1 to the nearest half-integer, e.g. to use one of the values 2, 1, 1/2, 0,−1/2,−1, or

−2 (the square, identity, square root, logarithm, reciprocal square root, reciprocal, or reciprocal

square) which give the transformation a ready interpretation. Frequently, a Box–Cox transfor-

mation is powerful enough that a predictor that failed validation for a given data set, may no

longer fail validation once that data set has been transformed. In the case of ordinary least-
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squares regression there is a more rigorous way of choosing the parameter of the Box–Cox trans-

formation, but it is of limited use in the case of GPE.4

3.6 COMPUTATIONAL PRACTICALITIES

The expressions for the BLP and BLUP are simple matrix expressions, and very well-suited for

evaluation by computer. The only complication in their evaluation is in the inversion of the

covariance matrix K. This inverted matrix, K−1, appears once in the expression for the BLP

(Eq. 3.1), in the term ktK−1(X −mX), and three times in the expression for the ordinary-kriging

BLUP (Eqs 3.21), in the terms ktK−1(X − μ̂1n), 1t
nK−1X, and 1t

nK−11n. The explicit inversion of

K can be numerically inaccurate, and unduly expensive. Instead of inverting K−1 explicitly we

therefore introduce the variables α and β, and solve the expressions Kα = 1n and Kβ = x. The

solutions give values for K−11n and K−1x without our having to invert K explicitly. This method

is preferrable even when the inverted matrix is being used multiple times, as it is in the case of

the BLUP.

One efficient method for solving the system Kξ = ψ (for ξ = α and ψ = 1n or ξ = β and ψ = x)

is by means of the Cholesky decomposition (Serre, 2002, Thm 8.2.1). Because K is positive-

semidefinite there exists a lower-triangular matrix L such that K = LLt. (The same statement is

true of positive-definite matrices, in which case L is furthermore unique.) Thus we may write

LLtξ = y. We may then solve for Ltξ by forwards substitution, and in turn for ξ by backwards

substitution. Whereas the decomposition of K has computational complexity order O(n3), the

forward and backward substitutions are of order O(n2). The factorization must be performed

only once of course. We may also use the Cholesky decomposition to compute the determinant

of the covariance matrix, which is

∣K∣ = ∣LLt∣(3.44)

= ∣L∣∣Lt∣(3.45)

= (
n
∏
i=1

Lii)
2

(3.46)

(where we have used the fact that the determinant of a triangular matrix is equal to the product

of its diagonal elements), and has logarithm,

ln(∣K∣) = 2
n
∑
i=1

ln(Lii).(3.47)

4See the paper by Box and Cox (1964) for details.
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This latter expression is required for the maximum-likelihood estimate of the parameters of the

covariance function (eq. 3.5).

Nonethless, it may still be the case that the matrix K is nearly singular, and this will result

in numerical instability in the computation of α and β. Recall that a matrix is singular when

its rows are linearly dependent. This occurs in the case of K in the following case. Let Xj ∈ X

be a random variable. Its covariance with all random variables (Xi)ni=1 forms the j-th row of K:

(k(tj, ti))ni=1. Now let Xl ∈ X, where m ≠ j, be a different random variable. Its covariance with all

random variables (Xi)ni=1 forms the l-th row of K: (k(tl, ti))ni=1. If (k(tj, ti))ni=1 and (k(tl, ti))ni=1
are nearly equal then K is nearly singular. The random variables Xj and Xl may be thought of as

being effectively identical. One provides no more information than the other. This occurs when

two points are very close together, in the sense that their separation is very much less than the

scale length. If the length scale is very large then all points are equally well correlated with all

points. We should therefore expect K to be nearly singular, and our predictor to be numerically

unstable in the case of very large length scales, and should be alert to this possibility in practice.
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Chapter 4

Gaussian-process emulation and galactic

modelling

In constructing a distribution functionmodel of a stellar system (Ex. 6), we treat stellar positions,

X, and velocities, V , as random vectors, meaning that the state of a star is represented by the

random vector, W = (X,V). The phase-space probability density function for a single star is

then denoted fW . We assume that the PDF is an element of the model (f(⋅ ;a))a∈A, where the

parameter a is a d-dimensional real vector, the elements of which represent the total galactic

mass, galactic scale length, velocity anisotropy, etc.

From the phase-space PDF we may calculate the observable properties of the system. For a

dSph these observables are typically the projected stellar positions, (represented by the random

variables X and Y) and the line-of-sight velocity (represented by the random variable Vz), which

we represent by the random vector Wp = (X,Y,Vz). The PDF for these observables is given by

the marginalization of the phase-space PDF:

fWp(wp;a) = ∫
R3
fW(w;a)dzdvx dvy.(4.1)

Of course, we do not observe realizations of Wp directly because there are errors associated

with our measurements. Let us represent these errors by the random variables EX, EY, and EVz ,

which we assume to be normally distributed with known variances.1 We may then form the

random vectorEWp = (EX,EY,EVz), which has a joint probability density function (PDF) denoted

fEWp
. We therefore observe realizations of the random vectorW′

p =Wp +EWp , the PDF of which

1Following convention, we have used italic type for the variable, E, and roman type for the expectation operator, E.
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is given by

fW′p(w
′
p;a) = (fWp ∗ fEWp

)(w′p;a)(4.2)

= ∫
R3
fWp(wp;a)fEWp

(w′p −wp)dwp.(4.3)

We can reasonably assume that the states of stars are independent and identically distributed. If

the errors are also independent and identically distributed then the joint marginalized PDF for

N stars is given by

f(W′p,1 ,...,W′p,N)(w
′
p,1, . . . ,w′p,N;a) =

N
∏
i=1

fW′p(w
′
p,i;a).(4.4)

We may then optimize the parameter of the phase-space PDF using the maximum likelihood

method. By definition, the likelihood of model parameter a is (Def. 20)

L(a;w′p,1, . . . ,w′p,N) = f(W′p,1 ,...,W′p,N)(w
′
p,1, . . . ,w′p,N;a).(4.5)

We recover the parameter bymaximizing this function for given data, namely the observed values

ofw′p,1, . . . ,w′p,N, aware that the functionmay havemultiplemaxima. Even the simplest physically

interesting phase-space PDF will fail to have closed-form integrals of the kind required (Eqs 4.1

and 4.3). These integrals will have to be computed numerically, and can be computationally

expensive. It is in these cases that GPE can be used to reduce the computational burden. In this

chapter, we will illustrate the use of GPE by emulating the likelihood of a Plummer model of a

dSph galaxy, which we fit to synthetic data generated using the true PDF.

4.1 EMULATING THE LIKELIHOOD FUNCTIONS

We are interested in proof-of-concept, and will therefore adopt the most straightforward

method—simple kriging. We will compute the BLP assuming a Gaussian random process with

zero mean, and the squared-exponential covariance function, given by

k(a,a′) = σ2
SE exp(−1

2
(a − a′)tM(a − a′))(4.6)

where we assume M is diagonal and positive definite. To accommodate the assumption of a

Gaussian random process with zero mean, we first make a Box–Cox transformation of the like-

lihood and subtract its mean. To accommodate the assumption of stationarity and isotropy that

is implicit in using the squared-exponential covariance function, we make a suitable reparam-

eterization of the model. Let us denote the Box–Cox transformation of the likelihood of a pa-

rameter, L(a), by Y(a). We evaluate this quantity for n distinct values of a, giving us a vector
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y = (y(a1), y(a2), . . . , y(an)). According to this prescription, the BLP (Ex. 97, Eq. 2.118) of the

likelihood of a parameter a∗ is

ŷ(a∗) = kt(a∗)K−1y,(4.7)

with MSE (or variance)

σ2(a∗) = σ2
SE − kt(a∗)K−1k(a∗).(4.8)

We call the set {(ai, y(ai))}ni=1 the data, we call the set (ai)ni=1 the design and we call the set

(y(ai))ni=1 the sample. Assuming we are able to choose some region of parameter space for which

we wish emulate a function, we must chose a design (i.e. an arrangement of points in parameter

space at which we will compute our sample). If a priori we know nothing about our function we

wish the design to be space-filling, i.e. to have uniform density throughout parameter space. We

also wish all projections of the design onto lower-dimensional subspaces to be space-filling, as

themodelmay have low sensitivity to some parameter components. Lattices are a poor choice for

such a design, as their size grows exponentially with the dimension of the parameter space. The

most commonly used designs satisfying the above space-filling requirements are Latin hypercubes

(McKay et al., 1979). In Latin hypercube sampling (LHS), a d-dimensional parameter space is

partitioned into a d-dimensional hypergrid of nd cells and n points are placed in these cells such

that there is only one point in any hyper-row or hyper-column of cells.

We may optimize the space-filling property of the design by maximizing the minimum sepa-

ration of pairs of points in all projections of the design onto lower-dimensional subspaces (Sant-

ner et al., 2003). LHS designs are restricted to rectangular regions. It is possible to form space-

filling designs on nonrectangular regions (e.g. Draguljić et al., 2012) but we do not consider these

here.

We choose the size of our design, n, so that the GPE model has acceptable accuracy. This size

depends on the difficulty of the problem, i.e. the complexity of the function we are emulating.

The more difficult the problem, the greater n will need to be. The question obviously arises: how

do we choose an appropriate value of n for a particular problem?

We note that n is satisfactory if theMSE (Eq. 4.8) is small, and that theMSE is a function ofM

(through the covariance function, k), n (through the size of thematrixK), and d (the dimensional

of the parameter space). We wish to understand the relationship between these quantities. To

this end, Loeppky et al. (2008) introduce the total sensitivity,

(4.9) τ ∶=
d
∑
i=1

mi,
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and the sparsity,

(4.10) ψ ∶=
d
∑
i=1

m2
i ,

where (mi)di=1 is the set of elements of the metric matrix. Recall that the length scale li is defined

such that mi = l−2i . Consider the squared separation of a pair of design points, ai and aj, namely

d2(ai,aj). For a random LHS design, this separation is the realization of a random variable, H.

Loeppky et al. show that for such a designH is distributed withmean E(H) = μ(n)τ and variance

var(H) = ν(n)ψ where μ and ν are weak and strictly decreasing functions of n that converge to

a positive constant. The accuracy of our emulator will be good when E(H) is small (i.e. when

the mean separation of sample points is small, and hence mean correlation is good) and when

var(H) is large (i.e. when many pairs of points have separations smaller than the mean and are

hence even better correlated).

If we minimize ψ whilst keeping τ constant (i.e. if we minimize ψ subject to the constraint

∑d
i=1 mi = c for some real c) we find that mj = c/d for all j, i.e. we find that ψ is a minimum (and

hence the accuracy poor) when the parameter components are equally active, and henceψ = c2/d.

On the other hand, if we maximize ψwhilst keeping τ constant we find thatmj = c for some j and

mi = 0 for i ≠ j, i.e. we find that ψ is a maximum (and hence the accuracy good) when only one

parameter is active, and hence ψ = c. For fixed τ, therefore, ψ quantifies the sparsity of the matrix

M. In the case that all parameter components are equally active it is the case that E(H) = dc and

that ψ = dc2, i.e. that both the mean and the variance of the separation are proportional to the

number of parameter components, and that for a sufficiently large number, the accuracy will be

poor.

The accuracy of our predictor depends on both the total sensitivity and the sparsity. It does

not depend on the total number of parameter components but rather on the number of active

parameter components. Suppose that the parameter space has been mapped to a hypercube of

side h. Motivated by practical experiment, Loeppky et al. propose that if τh2 = 3 then the problem

is “easy”, and if τh2 = 40 the problem is “very difficult”. If τh2 = 10 the the problem will be

tractable if ψ is small but intractable if ψ is large. Moreover, for easy problems the convergence

of the LOOCV score, R2 (Eq. 3.25), to zero is fast whereas for difficult problems the convergence

is slow. As a rule of thumb, easy problems will have good accuracy for n = 10d, whereas difficult

problems will require significantly greater n.

Training is therefore best done iteratively. We first take a sample of size 10d and validate the

emulator. If the model accuracy is poor the covariance function is misspecified, in which case
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we must use a different covariance function, or an unduly large number of training data. Due

to the slow convergence of the MSE in this case (i.e. the case where a sample size of 10d is too

small), we will need to resample the function in a smaller region of parameter space. If themodel

accuracy is good, we augment our data. To do this we require some figure of merit for choosing

new design points. If we wish to emulate the function faithfully across the region, we might

resample at points of maximum variance. If we wish to maximize the function, as we do here,

we might use the expected improvement. In this case the procedure is known as efficient global

optimization (Jones et al., 1998).

We follow the presentation of Schonlau and Welch (1996), which we reproduce here in our

own notation, for clarity. In the mathematical literature, optimization problems are couched in

terms of minimization rather thanmaximization. We adopt this convention here, understanding

of course that we may maximize a function by minimizing its negative.

Suppose that we are performingGPE, and using training data {(ai, y(ai))}ni=1. Theminimum

of our sample is ymin = min(y(ai))ni=1. We would like to know where to sample in order to

improve the accuracy of this minimum. To this end we define the improvement in the minimum,

IY(a)(Y(a)) ∶= max(ymin − Y(a), 0).(4.11)

This is a random variable, the PDF of which is

fIY(y(a)) = max(ymin − y(a), 0)(4.12)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ymin − y(a) if y(a) < ymin,

0 otherwise.
(4.13)

By definition the expected improvement is

E(IY(a)(Y(a))) = ∫
R
IY(a)(y(a))fY(a)(y(a))dy(a),(4.14)

where fY(a) is the PDF of Y(a). In the case of GPE we know that Y(a) ∼ N(ŷ(a), σ̂2(a)), i.e.

fY(a) is the normal (i.e. Gaussian) PDF φ(y(a); ŷ(a), σ̂2(a)) (see Eqs 4.7 and 4.8). If σ̂2(a) =

0 then the value y(a) is known with certainty and we cannot expect any improvement, hence

E(IY(a)(Y(a))) = 0. If σ̂2(a) > 0 then we may make the change of variables from y(a) to u′(a) =

(y(a) − ŷ(a))/σ̂(a) to find that the expected improvement is

E(IY(a)(Y(a)))

= σ̂(a)∫
u(a)

−∞
(u(a) − u′(a))φ(u′(a); 0, 1)du′(a)

(4.15)

82



Algorithm 1 Efficient global optimization
Require: objective function, y, sample of objective function, D ∶= {(ai, y(ai))}ni=1, and stopping

threshold, ε.

Ensure: global minimum of objective function.

Emax ← max({E(IY(a)(y(a)) ∣a ∈ A}))

amax ← argmax({E(IY(a)(y(a)) ∣a ∈ A}))

while Emax > ε: do

D← D ∪ (amax, y(amax))

Emax ← max({E(IY(a)(y(a)) ∣a ∈ A}))

end while

return argmin({y(ai)}ni=1).

where u(a) ∶= (ymin − ŷ(a))/σ̂(a). Thus,

E(IY(a)(Y(a)))

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ̂(a)(u(a)Φ(u(a); 0, 1) + φ(u(a); 0, 1)) if 0 < σ̂(a),

0 otherwise

(4.16)

where Φ(u(a); 0, 1) is the normal cumulative distribution function. We augment our training

data, with the pair (an+1, y(an+1)) where an+1 = argmax(E(IY(a)(Y(a)))), and then iterate this

procedure until E(IY(a)(Y(a))) is smaller than some threshold, ε. Efficient global optimization

(EGO) is implemented by Algorithm 1.

The expected improvement for 0 < σ̂2(a) is the sum of two terms in u(a). The first term

dominates if u(a) is large, while the second term dominates if u(a) is small. For given ŷ(a)

it is the case that u(a) is large if σ̂(a) is small (which will be the case close to design points,

including the current minimum) and u(a) is small if σ̂(x) is large (which will be the case away

from design points, including the current minimum). The expected improvement is therefore a

tradeoff between probable small improvements (near to the current minimum) and improbable

large improvements (remote from the current minimum), or between local and global search.

The fact that the expected improvement is a trade off between local and global search in this

way makes multistart optimization a sensible choice. We may use gradient-based methods as the

gradient of the expected improvement has closed form.

The efficient global optimization algorithm reduces the problem of the prohibitively expen-

sive optimization of y to the cheap optimization of the expected improvement. There is a con-
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vergence theorem (Vazquez and Bect, 2010) that guarantees that the expected improvement pro-

duces a sequence of points that is dense in the parameter space under mild assumptions about

the covariance function, so that the result is guaranteed to be a global minimum in the infinite-

sample limit. However, we do not know of any theorems concerning the rate of convergence.

We illustrate EGO by reproducing an example given by Jones et al. (1998), namely the min-

imization of the Branin function, a real-valued function of two variables used as a test for opti-

mization. For the sake of completeness, we also produce figures equivalent to theirs. The Branin

function is defined by the formula

(4.17) y(a1, a2) = α(a2 − β2 + γa1 − δ)2 + ζ(1 − η) cos a1 + η,

where α = 1, β = 5.1/(4π2), γ = 5/π, δ = 6, ζ = 10, η = 1/(8π). It has three global minima, at

(a1, a2) = (−π, 12.275), (π, 2.275), and (9.425, 2.475) where the function takes the value 0.398.

It is evaluated on the domain a1 ∈ [−5, 10], a2 ∈ [0, 15]. We treat the function as a realization

of a random process, {Ya}a∈A, where the parameter space, A = [−5, 10] × [0, 15]. We create a

LHS design for the parameter space, namely the set (ai)ni=1, of size n = 10d = 20 and evaluate

the function, y, at these points, giving the data {(ai, y(ai))}ni=1. The function and the design

are plotted in Figure 4.1. We assume a squared-exponential covariance function, kSE(a,a′) =

σ2
SE exp(−(a−a′)tM(a−a′)/2)whereM = diag(m1,m2), and then optimize its hyperparameter

vector, (σ2
SE,m1,m2), using the maximum likelihood method, finding that σ2 = 36 500, m1 =

0.0633, andm2 = 0.00580, or equivalently that l1 = 3.98, l2 = 13.1. For the sake of illustration, we

plot the likelihood of the hyperparameter vector in Figure 4.2 as well as the mean and variance of

theGaussian-process predictor for the entire domain in Figure 4.3. We also compute the LOOCV

score finding that
√
R2 = 2.36, and the maximum standardized predicted error, finding that the

most extreme value of the standardized residuals is e−i is 2.63 (Eq. 3.24). Diagnostic plots are

shown in Figure 4.4. We see that the standardized LOOCV residuals are distributed normally

and exhibit no trend across the parameter space. The total sensitivity, τh2 = 14.0, is moderate,

explaining this success. Satisfied that our model is accurate, we then iteratively augment the data

using themaximum expected improvement and a stopping criterion of ε = 0.001. For illustration

we plot the expected improvement for the first iteration (Figure 4.5) and see that it has three

maxima close to the three minima of the Branin function. The algorithm requires a total of eight

iterations to find aminimum to an accuracy of 1.3%. We plot the augmented design in Figure 4.5.

Aswith any global optimizationmethod, it is sensible to polish the result, whichmay lack pre-

cision. We may do so by resampling the function in the neighbourhood of this result, and again
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Figure 4.1 The Branin function (Eq. 4.17) and the Latin square design (marked with filled cir-

cles) used in its emulation. Arbitrary, equally-spaced contours are shown. Following Jones et al.

(1998), we use it to illustrate the methods of Gaussian process emulation (Sacks et al., 1989)

and efficient global optimization (Jones et al., 1998). It has three global minima (marked with

crosses).

0.5

1.0

L
(σ

2 S
E

)

0.08

0.12

0.16

m
1

0.0 0.5 1.0 1.5

σ2
SE ×105

0.00

0.01

0.02

0.03

m
2

0.08 0.12 0.16

m1

0.01 0.02 0.03

m2

Figure 4.2The likelihood (Eq. 3.9) of the hyperparameter of the squared-exponential covariance

function (Eq. 4.6), used in the emulation of the Branin function (Eq. 4.17). In each panel the

marginal likelihood is shown (i.e. the likelihood has been integrated over the parameter compo-

nents not shown), scaled to the unit interval. Arbitrary, equally-spaced contours are shown. The

maximum likelihood is found at (σ2
SE,m1,m2) = (36 500, 0.0633, 0.00580, ), i.e. for length scales,

l1 = 3.98, and l2 = 13.1.
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Figure 4.3Themean (left) and variance (right) of GPE estimate of the Branin function, computed

using the squared-exponential covariance function and the design shown (filled circles). In the

left panel contours are drawn at the same levels as in Figure 4.1. The variance is high in regions of

parameter space that have been poorly sampled, or near the boundary of parameter space, where

the predictor is constrained by fewer data than elsewhere.
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Figure 4.4 Diagnostic plots for the emulation of the Branin function. Top-left: distribution

of function values. Top-right: predicted values from a LOOCV analysis against true values.

Bottom-left: standardized LOOCV residuals from a LOOCV analysis (Eq. 3.24) against true val-

ues. Bottom-right: quantile-quantile plot showing the ordered standardized LOOCV residuals

from a LOOCV analysis against the equivalent quantiles of the normal distribution.
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Figure 4.5 The expected improvement in the minimum (left) of our sample of the Branin func-

tion, computed using the design shown (filled circles). There are three maxima (marked by

crosses), each close to a minimum of the Branin function. The Branin function and the aug-

mented design (marked with filled triangles) determined by the EGO algorithm (right). The new

data cluster about the function’s three minima. Once the initial design has been computed only

eight additional design points are required to find a global minimum with an accuracy of 1.3 %.

performing GPE. The length scales of the GPE fit provides a guide to the size of this neighbour-

hood. If a0 = (a0,1, a0,2, a0,3) is the result of the EGO algorithm then we resample the function in

the region A′ = [a0,1 −δl1, a0,1 +δl1]× [a0,2 −δl2, a0,2 +δl2]× [a0,3 −δl3, a0,3 +δl3], where (l0, l1, l2)

is the vector of length scales found in the final iteration, and δ is some positive real number less

than one. Our polished minimum is then the minimum of the GPE predictor. We can find this

minimum using gradient-based optimization, or, as the GPE predictor is cheap, by brute force

i.e. by searching over a fine lattice of test points covering the whole region A′. (This brute force

method returns more than the minimum, of course. It maps out the function over the entirety

of A′. In general the cheapness of the GPE predictor will allow us to do just this. When working

in very high-dimensional parameter spaces the inversion the covariance matrix, K , may not be

so cheap, and we may wish to map out the region using, for example, Markov chain Monte Carlo

methods.) There are two additional benefits to this polishing step. First, we may use a high ter-

mination threshold, ε, which reduces the number of iterations required by the EGO algorithm.

Second, the Hessian of the GPE estimate is available in closed form, and provides an estimate

of the Hessian of the function. If the function in question is a likelihood, this allows us to com-

pute an estimate of the Fisher information matrix. The derivative of a Gaussian process is itself a

Gaussian process (Adler, 2010):

∂Y
∂a
∼ ( ∂ŷ

∂a
, ∂

2k(a,a′)
∂a∂a′t

) .(4.18)
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If H = ∂2y/∂a∂at is the Hessian of the function y, then an estimate for the Hessian is

Ĥ = ∂2ŷ
∂a∂at .(4.19)

We compute the Hessian for the case of the squared-exponential covariance function in Ap-

pendix B.

4.1.1 Computational expense

The computational complexity of Equations 4.7 and 4.8 is dominated by the inversion of the ma-

trix K , which is of order O(n3) or better. This inversion may be done indirectly by solving the

systems Kα = y and Kβ = k(a) for α and β respectively. Moreover, it must be performed only

once in each case, regardless of the number of test evaluations required. Once the inversion has

been performed, evaluation of the mean involves one matrix-vector multiplication, with com-

plexityO(n2), followed by one vector-vector multiplication for each evaluation, with complexity

O(n). Each evaluation of the variance involves one matrix-vector multiplication and one vector-

vector multiplication. Thus the computational complexity is O(n3). The covariance matrix K

must also be inverted for every step in the optimization of the hyperparameter, which must be

done at each iteration of the EGO algorithm. Furthermore, it must be computed explicitly for

the validation step. Nonetheless, the total computational expense of these inversions is negligi-

ble compared with the expense of any interesting astrophysical simulation. The expense of the

method is largely in the computation of the training data, and their augmentation when using

the EGO method. The initial sampling is trivially parallel, and linear in the dimension of param-

eter space, but the EGO method is necessarily sequential. (A batch-sequential extension of EGO

is available, which makes it possible to perform up to 10 function evaluations at each iteration.)

In general we cannot estimate in advance the number of iterations required for EGO without

knowing the rate of convergence of the EGO algorithm, and we do not explore this further here.

4.2 PLUMMERMODEL OF A DWARF SPHEROIDAL GALAXY

4.2.1 The anisotropic Plummer sphere

We illustrate the use of GPE for stellar dynamicalmodelling using the toymodel of an anisotropic

Plummer sphere of the Osipkov-Merritt type. The relative potential of the Plummer sphere is

given by the formula

Ψ(r) = GM√
r2 + b2

,(4.20)
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Figure 4.6 The log-marginalized likelihood for the anistropic Plummer model with parameter

(log(M), log(b), log(ra)) = (0, 0, log(2)) = (0, 0, 0.301) computed using data for 1000 stars

generated by the same model (Eq. 4.30). In each panel the likelihood has been marginal-

ized over the unshown parameter components, scaled to the unit interval, and its natu-

ral logarithm plotted. The peak therefore has a value of zero. Contours are shown at

−40.650,−27.342,−16.729,−8.740,−3.247 corresponding to a Gaussian approximation of the

likelihood at the 68.268%, 95.449%, 99.730%, 99.993%, and 99.999% levels. The darkest regions

have likelihoods of zero. The maximum likelihood is found at logM = 0.0327, log b = −0.0213,

log ra = 0.305. We do not emulate this function directly, but rather its Box-Cox transformation

ln(L + λ), where λ is an arbitrary small constant, here taken to be the smallest non-zero element

of our sample of L. The design used in the emulation of L is shown with filled circles.
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and its density given by the formula

ρ(r) = 3M
4πb3 (1 +

r2

b2 )
−5/2

(4.21)

where M is the galactic mass, r the radius, and b the galactic scale length (Plummer, 1911). Let

us consider an isotropic system described by this potential-denisty pair. The phase-space PDF

may be expressed as a function of relative energy only Binney and Tremaine (2008).

Following Osipkov (1979) and Merritt (1985), we define the variable Q = E − L2/2r2a where

E is the relative energy, L is the magnitude of the angular momentum, and ra is the anisotropy

radius. By use of Eddington’s inversion formula we then find that the phase-space DF for a star

may be expressed as a function of Q:

fQ(Q) =
3Mb2

π3
√

2r2a
(16(r

2
a − b2)
7

Q7/2 + (GM)2Q3/2) .(4.22)

ThemarginalizedDF is given by the integral of fQ with respect to the line-of-sight position and

proper-motion velocities. If we define the parameter vector a = (M, b, ra) andwork in cylindrical

coordinates with the z-axis parallel to the line of sight, this PDF is

f(Rp ,Vz)(rp, vz;a) = 2π∫
R
∫
R
∫
R
fQ(Q)dvrpvφ dz.(4.23)

The inner double integral may be computed analytically using the method given by Carollo et al.

(1995):

∫
R
∫
R
fQ(Q)dvrp dvφ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2πg(r, rp)F(Qmax) if 0 < Qmax,

0 otherwise
(4.24)

where

g(rr,p) ∶=
a2

√
(r2a + r2)(r2a + r2 − r2p)

,(4.25)

F(Q) ∶= 6b2

π3
√

2r2a(GM)5
(16(r

2
a − b2)
63

Q9/2 + (GM)
2

5
Q5/2) ,(4.26)

and

Qmax(rp, z, vz) = Ψ(r) − ( r2a + r2

r2a + r2 − r2p
) v

2
z
2
.(4.27)

However, the outer integral in Equation 4.23 must be computed numerically.

We may account for observational errors using Equation 4.3:

(4.28) f(R′p ,V′z)(r
′
p, v′z;a) = (f(Rp ,Vz) ∗ f(ERp ,EVz))(w

′
p;a),
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where f(ERp ,EVz) is the joint PDF for the errors on our measurements. Using Equation 4.4 we may

form the joint marginalized PDF for a galaxy of N stars:

f((Rp,1 ,Vz,1),...,(Rp,N ,Vz,N)(rp,1, vz,1, ..., rp,N, vz,N;a)

=
N
∏
i=1

f(Rp ,Vz)(rp,i, vz,i;a).
(4.29)

We recover the parameter, a, by maximizing the likelihood

L(a; rp,1, vz,2, ..., rp,N, vz,N)

= f((Rp,1 ,Vz,1),...,(Rp,N ,Vz,N))(rp,1, vz,1, ..., rp,N, vz,N;a).
(4.30)

We will assume that the error is zero, as this presents the maximally difficult case for GPE for

the following reason. If the error is zero then there exist regions of parameter space for which

the likelihood is also zero (these are the regions of parameter space for which the line-of-sight

velocity exceeds the local escape velocity). In this case it impossible to transform the sample so

that is normally distributed (Section 3.5). The squared-exponential is therefore necessarily mis-

specified and the emulator necessarily underperforms. Despite this misspecifation, it is possible

to successfully emulate the likelihood. The inclusion of errors would only improve the emulator’s

performance by reducing the mean square error.

4.2.2 Optimization of the likelihood

We work in mass units of 109M⊙, and distance units of kpc (meaning that the gravitational con-

stant is G = 4.302 × 103kpcM−1⊙ km2s−2). We use synthetic data generated using the same model

and parameter (M, b, ra) = (1, 1, 2). The data consist of sky positions and line-of-sight velocities

for 1000 stars, each with zero error. In the case of the anistropic Plummer model the likelihood

is cheaply computed, and is shown in Figure 4.6.

It happens to be unimodal and approximately Gaussian, but note that in general this is not

the case. Suppose that the likelihood were not cheaply computed. In this case we would proceed

as follows. First we choose the region of parameter space on which we wish to emulate. By the

virial theoremwe know that 3⟨v2z⟩ = GMvirial/rg where ⟨v2z⟩ is the line-of-sight velocity dispersion,

Mvirial is the virial mass, and rg is the gravitational radius (Binney and Tremaine, 2008). We may

approximate the gravitational radius by r1/2/0.45 (Binney and Tremaine, 2008), where r1/2 is the

half-light radius, and note that for the Plummer sphere, r1/2 = b/
√

22/3 − 1. We might estimate

the true value ofM to be within a factor of three either side ofMvirial. Similarly, wemight estimate
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Figure 4.7 The likelihood (Eq. 3.9) of the hyperparameter of the squared-exponential covari-

ance function (Eq. 4.6), used in the emulation of the Plummer-model likelihood (Eq. 4.30). In

each panel the marginal likelihood is shown (i.e. the likelihood has been integrated over the

parameter components not shown), scaled to the unit interval. Arbitrary, equally-spaced con-

tours in linear space are shown. Themaximum likelihood is found at (σ2
SE,mlogM,mlog b,mlog ra) =

(81 000, 58.0, 14.5, 5.10), i.e. for length scales, llogM = 0.131, llog b = 0.262, and llog ra = 0.443.
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Figure 4.8 Diagnostic plots for the emulation of the transformed Plummer model likelihood.

Top-left: distribution of likelihood values. Top-right: predicted values from a LOOCV analy-

sis against true values. Bottom-left: standardized LOOCV residuals from a LOOCV analysis

(Eq. 3.24) against true values. Bottom-right: quantile-quantile plot showing the ordered stan-

dardized LOOCV residuals from a LOOCV analysis against the equivalent quantiles of the nor-

mal distribution.
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Figure 4.9The log-marginalized likelihood for the anisotropic Plummer model evaluated on the

region of parameter space X′ = [−0.0249, 0.0961] × [−0.0738, 0.0162] × [0.240, 0.416] (dashed

line), and the mean of the GPE estimate (solid line). The likelihood is resampled on this region

in order to polish the maximum-likelihood estimate of the parameter vector. Although both the

true log-marginalized likelihood and its GPE estimate are plotted they are barely distinguishable.
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the true value of b to be a factor of three either side of its estimate, and that the true value of ra to

be within an order of magnitude either side of its estimate.

However, in the case that the observed data have no error, the feasible region is bounded

below by the curve Qmax = 0 (the minimum value Q can take). For a given projected radius, the

maximum line-of-sight velocity is therefore set by the condition

(4.31) v2z =
2Ψ(r)(r2a + r2 − r2p)

r2a + r2

where rp ≤ r. Wemustmaximize this expression. Themaximumvalue, (vz)max, occurs at a radius

determined by the equation

dvz
dr
∣
r=rmax

= 0(4.32)

which, if it exists, is unique, or (if this equation has no solution on account of the constraint

r ≥ rp) at a radius r = rp.

In the isotropic limit, ra =∞, we have vz = vz,max at r = rp, and therefore

(4.33) M2

(v2zrp/2G)2
− b2

r2p
= 1,

a hyperbola in M and b. Each pair (rp, vz) defines such a hyperbola. In the anisotropic case,

Equation 4.32 gives

(4.34) r2max =
(3r2p − 2r2a) − rp

√
9r2p − 8r2a + 8b2

2

if the discriminant and numerator are real and nonnegative, i.e. if

rp ≥
r2a√

r2a + 2b2
, and(4.35)

ra ≥ b.(4.36)

Otherwise, rmax = rp. In the point-mass limit, b = 0, and upon substituting Equation 4.34 into

4.31 we find an equation inM and ra. Again, each pair (rp, vz) defines such an equation. A given

parameter vector is forbidden if the observed line-of-sight velocity of any star is greater than this

maximum allowed velocity.

For our data we find that ⟨v2z⟩ = 504 km2 s−2, and r1/2 = 0.944 kpc. Thus b = 0.723 kpc

and Mvirial = 0.737 × 109 M⊙. The total mass, M, is bounded below by the maximum value

of v2zrp/2G, namely 0.461 × 109 M⊙. We therefore choose to emulate on the region of param-

eter space A = [0.461, 2.21] × [0.241, 2.17] × [0.241, 7.23]. We make a logarithmic transfor-

mation of the parameter space (according to the prescription given in section 3.5), mapping a
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parameter vector a = (M, b, ra) to x = (logM, log b, log ra). The transformed parameter space

is X = [−0.336, 0.345] × [−0.618, 0.337] × [−0.618, 0.860]. We also transform the likelihood

(again according to the prescription given in section 3.5) from L(a) to ln(LX(x) + ε) where

ε = min(LX(xi))ni=1. We sample this transformed likelihood using a LHS design of size n =

10d = 30 giving the training data {(xi, ln(LX(xi) + ε))}ni=1. We then optimize the model hy-

perparameter vector, (σ2
SE,mlogM,mlog b,mlog ra), using the maximum-likelihood method (Ch. 3

Sec. 3.1), finding that σ2
SE = 81 000,mlogM = 58.0,mlog b = 14.5,mlog ra = 5.10, or equivalently that

llogM = 0.131, llog b = 0.262, and llog ra = 0.443. We find that the LOOCV score is
√
R2 = 69.3,

and that the extreme value of the standardized LOOCV residuals is 2.33. Diagnostic plots (Fig-

ure 4.8) show that the standardized LOOCV residuals are distributed normally and show no

trend across the parameter space. The results of the validation are acceptable, meaning that we

may proceed to maximize the transformed likelihood using EGO. Using a stopping threshold of

ε = 0.001, the EGO algorithm requires 33 iterations to find the maximum at logM = 0.0356,

log b = −0.0288, and log ra = 0.328. At the last iteration the maximum LOO-likelihood es-

timate of the hyperparameter vector is θ = (203 000, 17.0, 30.8, 8.10), meaning that the length

scales are llogM = 0.242, llog b = 0.180, and llog ra = 0.351. We then polish this result by resam-

pling the likelihood in its neighbourhood, and again performing GPE. We choose the region

that is within one quarter of a length scale in each element of the parameter vector, namely

X′ = [−0.0249, 0.0961] × [−0.0738, 0.0162] × [0.240, 0.416]. We again transform our sample

of the likelihood, finding that the most-appropriate transformation is to lnL(x), where no offset

is required as the likelihood is everywhere nonzero in this new region of parameter space. The

maximum LOO-likelihood estimate of the hyperparameter vector is θ̂ = (436, 24.1, 28.3, 1.42),

meaning that the length scales are llogM = 0.204, llog b = 0.188, and llog ra = 0.839. We find the

maximum at logM = 0.0327, log b = −0.0213, and log ra = 0.305. In Figure 4.9 we plot the log-

likelihood and its GPE estimate for the region X′, and in Figure 4.10 we plot the variance of this

estimate.

We note that for this three-dimensional model we have recovered the MLE with approxi-

mately 100 evaluations of the likelihood. The first and last sets of 30 evaluations may each be

made in parallel, effectively reducing this number to many fewer than 100. Batch-sequential

EGO, would reduce the effective number of runs still further.

The total sensitivity in the initial step of emulation is τ = 47.9, indicating that this problem

is very difficult. In explaining this we note that the likelihood is very sharply peaked. Another

way of putting this is to say that it has multiple length scales (the function is highly sensitive
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to changes in the parameter vector around its maximum, but insensitive to such changes away

from its maximum). The squared-exponential covariance function, which assumes a single set of

length scales is thus grossly misspecified. The sharpness of this peak is due to several factors: (1)

that our data are drawn from the same model we are fitting, (2) that the dimension of our param-

eter space is small, and (3) that there is no error associated with our synthetic observations. The

dynamical model is well-specified and its parameter tightly constrained by the data. The problem

ofmultiple length-scales persists even in the transformed data, to which we see an approximation

in Figure 4.6. In this case there is a sharp cliff on the boundary of the permitted and forbidden

regions of parameter space. Such forbidden regions exist only for data with zero errors. We thus

expect the task of fitting this perfectly specified, low-dimensional toy model to perfect data to

be the maximally difficult case for emulation. We expect it to be considerably harder than the

task of fitting more sophisticated models to imperfect data, the likelihoods of which will be less

sharply peaked, and for which forbidden regions of parameter space do not exist.

4.2.3 Confidence region

The Hessian of the log-likelihood is available to us as a consequence of the polishing step

(Eq. 4.19). Hence, we may compute an estimate of the Fisher information matrix, I (Def. 25),

without further evaluation of the dynamical model. However, our predictor ŷ is for the log-

likelihood, lnL(x), expressed as a function of the transformed parameters, x. Thus, the first

derivative is

∂ lnL
∂aj

= ∂ŷ
∂aj

(4.37)

= ∂ŷ
∂xj

∂xj
∂aj

,(4.38)

and the second derivative is

∂2 lnL
∂ai∂aj

= ∂2ŷ
∂ai∂aj

(4.39)

= ∂2ŷ
∂xi∂xj

∂xi
∂ai

∂xj
∂aj
+ ∂ŷ

∂xj
∂2xj

∂ai∂aj
,(4.40)

where the second term vanishes at the maximum. Given that xi = log ai we have that

∂xi
∂ai
= 1
ai ln 10

, and(4.41)

∂2xi
∂ai∂aj

= − 1
a2
i ln 10

δij.(4.42)
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Figure 4.11 The 68 %, 95 % and 99.7 % confidence regions for the maximum-likelihood esti-

mate of the Plummer-model parameter, (M, b, ra), computed using the Fisher information ma-
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Figure 4.12 The maximum-likelihood estimates of the Plummer-model density and anisotropy

parameter computed using GPE (top panels), together with the deviation of these estimates from

their true values (bottom panels).

In Figure 4.11 we plot the confidence regions for themaximum-likelihood estimate of the param-

eter. The galactic mass, M, and scale length, b, are well constrained but the anistropy parameter,

ra, is less so. This is as we would expect. For a self-consistent model of this kind the mass and

extent of a galaxy are functions of one another through Poisson’s equation. All of the observa-

tional data therefore contain information about the M and b. In the anisotropic case, however,

there is an additional length scale, ra, which we must determine using data at radii greater than

this value. Stars at smaller radii do not constrain the length scale, meaning that only a subset of

our data contain information about it.

Given the distribution of the MLE for the parameter vector we may also compute the distri-

bution of the MLE for the density and for Binney’s anisotropy parameter using Proposition 30.

The density is given by Equation 4.49 and hence the MLE for the density at radius r is

(4.43) P̂(r) ∼ N(ρ(r; â), σ2
ρ),

where

(4.44) σ2
ρ = (

∂ρ(r; â)
∂a

)
t

I−1(â)∂ρ(r; â)
∂a

.
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For an Ossipkov-Merritt model, Binney’s anisotropy parameter (Binney and Tremaine, 2008),

β(r) = 1
1 + r2a/r2

.(4.45)

Hence, the MLE for Binney’s anisotropy parameter,

B̂(r) ∼ N(β(r; â), σ2
β),(4.46)

where

(4.47) σ2
β = (

∂β(r; â)
∂a

)
t

I−1(â)∂β(r; â)
∂a

.

We plot the distributions of these quantities in Figure 4.12. These are the principal results of our

work.

In the upper-left panel of these plots we plot the GPE predictions for the density, ρ̂, and the

GPE prediction for its one-sigma confidence region, σρ. In the lower-left panel we plot the dif-

ference of the GPE predictions for the density, and the true maximum-likelihood values, which

we denote Δρ̂ = ρtrue − ρ̂. In this panel we also plot the difference of the GPE predictions for

the confidence region and the true maximum-likelihood confidence region, which we denote

Δσρ = σρ,true − σρ. In the upper-right panel of these plots we plot the GPE predictions for the

velocity anisotropy, β̂, and the GPE prediction for its one-sigma confidence region, σβ. In the

lower-right panel we plot the difference of the GPE predictions for the velocity anisotropy, and

the true maximum-likelihood values, which we denote Δβ̂ = βtrue − β̂. Again, we also plot the

difference of the GPE predictions for the confidence region and the true maximum-likelihood

confidence region, which we denote Δσβ = σβtrue − σβ.

Both the GPE predictions for density and velocity anisotropy as well as the GPE predictions

for their confidence regions are excellent. In the case of density, the error in the predicted values

Δρ̂ is at greatest less than 0.3 %. The error in the predicted confidence region Δσρ is similarly at

greatest less than 0.3 %. In the case of velocity anisotropy, the error in the predicted values Δβ̂ is

at greatest less than 1.2 %. The error in the predicted confidence region Δσρ is at greatest 0.8 %.

4.2.4 Contamination of data

We have assumed throughout that our model of the data is perfect: that every star in our sample

is known to be a bound member of the galaxy in question, and that this galaxy is well described

by a Plummer model. In practice we do not know that our model is perfect. It may fail in two

significant ways: our model of the galaxy may be misspecified, or our observations may include
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Figure 4.13 The log-marginalized likelihood for the anistropic Plummer model with parameter

(log(M), log(b), log(ra)) = (0, 0, log(2)) = (0, 0, 0.301) computed using data for 1000 stars gen-

erated by the same model (Eq. 4.30) and an additional 10 % contaminating stars. Contours are

the same as those shown in Fig. 4.6.
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stars that are not bound members of the galaxy. Our data may be contaminated by foreground

and background stars. In fact our data will necessarily be contaminated in this way. This can bias

the results of our maximum-likelihood anaylsis, and we must be alert to this fact.

To help understand the problem of contamination let us recall the way in which stellar cat-

alogues of dSphs are created. First, we identify red giants that are candidates for belonging to

the dSph in question. This is done using stellar photometry to produce a color-magnitude dia-

gram for the appropriate portion of the sky. Stars from the red giant branch are identified, and

their spectra then taken. This allows us to compute their line-of-sight velocities. The resulting

sample is contaminated by foreground and background stars belonging principally to the Milky

Way’s stellar halo. The stars of the halo and the dwarf are kinematically distinct, forming two dis-

tinct populations, each with a different mean velocity and velocity dispersion. Typically the halo

stars have a small mean velocity and broad velocity dispersion, while the dSph stars have high

mean velocity and narrow velocity dispersion. This reflects the fact that the dSphs are tightly

bound systems, undergoing mean orbital motion around the Milky Way. Typically, the majority

of these contaminating stars are eliminated from our sample kinematically, using sigma clipping

(e.g. Kleyna et al., 2004): a Gaussian is fitted to dSph velocity dispersion, and all stars with velici-

ties greater than, say, 3σ from themean are rejected. The remaining stars form our catalogue. The

sigma-clipping method is crude, and alternatives are available (Walker, Mateo, Olszewski, Sen

and Woodroofe, 2009 use a more sophisticated statistical method that takes advantage of both

the kinematic and metallicity information provided by the stellar spectra). However, no method

will completely eliminate contamination of our catalogue. We can only reduce it to an acceptable

level.

Contamination modifies both the velocity distribution and spatial distribution of stars.

The resulting sample is no longer a likely realization of our model and as a consequence the

maximum-likelihood estimate of the parameter will be biased. In particular the contamination

increases the velocity dispersion of our sample, inflating the wings of the velocity distribution.

In particular, the maximum velocity of stars in our sample increases. In order to allow for

such increased velocities the maximum-likelihood estimate of the dSph mass will have to be

greater than its true value. We have noted that, in the case that our data have zero errors, regions

of parameter space are forbidden due to any single star having a line-of-sight velocity greater

than the local escape velocity for the parameters in these regions. Contaminating stars, being

unbound, may exceed the local escape velocity for a given parameter, causing that parameter

incorrectly to have zero likelihood. Thus, contaminating stars also modify the forbidden region
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of parameter space. In general we expect the forbidden region to be more extensive than it in

fact is. Additional regions of parameter space are incorrectly deemed impossible.

In the Osipkov-Merritt model, stars are isotropic in the inner part of the dSph (i.e. inside

the anisotropy radius, ra), and radially anisotropic in the outer parts (i.e. outside the anisotropy

radius, ra). This means that line-of-sight velocities decrease with radius across the face of the

galaxy. (Of course the speed of stars must also decrease with radius as their potential increases

and they become decreasingly well-bound.) However, the line-of-sight velocities of the contam-

inating stars do not vary with radius in this way. Instead, their distribution is independent of

position. Contamination has the effect of reducing the velocity anisotropy in the outer parts. We

therefore expect the maximum-likelihood estimate of the anisotropy radius to also increase.

The effect of contamination on the maximum-likelihood estimate of the length-scale of the

galaxy will be less dramatic. We have increased the surface density by a constant uniformly across

the extent of the galaxy. The fall-off in density, which the scale-length quantifies, is therefore

unaffected. Thus we expect the maximum-likelihood estimate of the length-scale to increase, but

only marginally.

To illustrate these effects, we add 100 contaminating stars to our synthetic data set of 1000

stars drawn from the Plummer model. We then recompute the likelihood. We choose our con-

taminating stars to be drawn from uniform distributions in both space and velocity. We assume

that stars are distributed uniformly within a radius of 5 kpc, and that line-of-sight velocities are

distributed uniformly between -100 km s−1 and 100 km s−1. This choice is consistent with the

maximum observed speeds of halo stars (Helmi, 2008). The resulting sample is akin to that of

the Fornax dSph, which has mean line-of-sight velocities approximately equal to those of the

contaminating population (Walker, Mateo, Olszewski, Sen and Woodroofe, 2009). The new log-

likelihood is plotted in Figure 4.13.

Aswe expect, themaximum-likelihood estimate of the galacticmass is significantly increased:

from logM = 0.0327 to logM = 0.625. This is also true of the velocity anisotropy radius, which

increases from log ra = 0.305 to log ra = 54.1667. This very large anisotropy radius is effectively

infinite, corresponding to an isotropic rather than anisotropic system. The scale-length, however,

changes onlymarginally, from log b = −0.0213 to log b = 0.04167. The addition of contamination

has therefore resulted in the system being incorrectly identified as isotropic, and as having a

mass nearly four times greater than its true value. It is worth noting that the log-likelihood is

very far from being quadratic (Prop. 27), meaning that we are not in the asymptotic limit where

likelihood methods are reliable . This itself alerts us to the fact that either we have insufficient
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Figure 4.14The log-marginalized likelihood for the anistropic Plummer model computed using

data for 1000 stars generated by the isotropic Hernquist model (Eq. 4.50). The maximum like-

lihood is found at logM = 2.25, log b = 0.2825, log ra = 0.25. Contours are the same as those

shown in Fig. 4.6.

data, or our model is unsuitable for the data. In practice contaminating stars are likely to account

for less than 10% of our observations (a few percent ismore realistic.) We have introduced severe

contamination of our data to illustrate the dominanting effect it may have on our analysis, and to

emphasize the importance of clean kinematic data or appropriate modelling.

4.2.4.1 Modelmisspecification

It is also worth briefly considering the effect of misspecification of the galaxy model itself, inde-

pendently of the question of data contamination. Suppose, for the sake of illustration, that we fit

our Osipkov-Merritt Plummer model to data drawn from an altogether different galaxy model.

For the illustration we choose to generate data from an isotropic Hernquist model (Hernquist,

1990). The potential and density of the Hernquist model are given by

Ψ(r) = GM
r + b

,(4.48)
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and

ρ(r) = M
2πb3 (

r
b
)
−1
(1 + ( r

b
))
−3

(4.49)

where again, M is the galactic mass, r the radius, and b the galactic scale length. By use of Ed-

dington’s inversion formula we may find a phase-space PDF with isotropic velocity distribution.

This is given by (Hernquist, 1990; Baes and Dejonghe, 2002)

fE (E ) =
1

8
√

2π3
(
√

E (1 − 2E )(8E 2 − 8E − 3)
(1 − E )2

+ 2 arcsin(
√

E )
(1 − E )5/2

) .(4.50)

Using this PDF, we generate sky-positions and line-of-sight velocities for 1000 stars using a galac-

tic mass of M = 109 and length-scale b = 1 k pc.2 Again, we assume zero errors on our data.

We note that in the inner part of the galaxy, theHernquist density is ρ(r) ∼ r−1, and that in the

outer part of the galaxy, theHernquist density is ρ(r) ∼ r−4. Thediffers from the Plummer density,

which is ρ(r) = const. in the inner part, and is ρ(r) ∼ r−5 in the outer part. We also note that

the Hernquist model results in line-of-sight velocity distributions with lower dispersion than for

the Plummer model. We might therefore expect the maximum-likelihood estimate of the mass

to decrease. However, this effect is dominated by the fact that the central density of a Hernquist

model is higher than that of Plummermodel. By fitting a Plummermodel to this data, we require

an inflated total mass to satisfy this excess central density. The maximum-likelihood estimate of

the galactic mass will therefore again be greater than the true value. Again, the forbidden region

of parameter space will be too great.

In an isotropic system, this increasedmasswould increase the velocity dispersion, by allowing

for greater escape velocities. However, as we have noted, the velocity dispersion of the Hernquist

model is smaller than that of the Plummer model. By reducing the isotropy, however, we may

reduce the velocity dispersion. By making the system anisotropic, we assume that the measured

line-of-sight velocity at that large radii is only a small component of the total velocity. By over-

estimating the total velocity of stars in the outer part of the galaxy in this way, we reduce the

velocity dispersion of the galaxy as a whole.

We plot the likelihood of the Plummer-model parameters using data from the Hernquist

model in Figure 4.14. As we expect, the maximum-likelihood estimate of the galactic mass is too

great. In this case, logM = 2.25, meaning that the mass is overestimated by nearly two orders of

magnitude. The scale-length, log b = 0.2825, is nearly twice as great as its true value. The velocity

anisotropy radius, log ra = 0.25, is much too small, meaning that the galaxy has been incorrectly
2In fact these data have kindly been generated by Walter Dehnen, using his code MKsphere.
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identified as anisotropic rather than isotropic. Again, it is worth noting that the log-likelihood

is far from being quadratic, indicating that likelihood methods have failed in this instance.

The toy model we have used in this chapter is deliberately simple. Moreover, our assumption

of perfect data drawn from the same model has been driven by by the fact that this perfection

results in sharply peaked likelihoods, with multiple length-scales, and that this is the maximally

difficult case for GPE. We wished to know that, as our data and modelling improve the method

of GPE will not fail. The question of model misspecification is distinct from the question of

GPE’s usefulness. The method of GPE is agnostic about the quality of the model data it is trained

on. Indeed it is the need for more-sophisticated modelling, with its additional computational

expense, that drives the need for increased computational efficiency.
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Chapter 5

Gaussian-process emulation and the

generalized Hernquist model

We would like to consider more general distribution-function models of dwarf spheroidal galax-

ies than the Plummer model we have considered so far. To construct distribution functions of

this kind we may specify a potential-density pair and then solve the integral equation

ρ(x;a) = ∫
R3
f(x, v;a)dv(5.1)

for f(x, v;a). If the density is spherically symmetric then the phase-space PDF, f, depends only

on the energy and angular momentum (Binney and Tremaine, 2008). Moreover, if the system is

spherically symmetric in all its properties then the phase-space PDF depends only on the energy

and magnitude of the angular momentum. We write this PDF f(E,L). To preserve the distinction

between random variables and their realized values, we write E and L for the random variables

representing energy and the magnitude of angular momentum, and e and l for their realized

values. Thus, f(E,L) takes values f(E,L)(e, l) for all e, l ≥ 0. For convenience, we work with relative

potential, Ψ ∶= −Φ+Φ0, and relative energy, ε ∶= e+Φ0, where Φ0 is chosen such that the relative

energy is always positive. We denote the random variable associated with relative energy by E ,

and the PDF f(E ,L).

5.1 FACTORIZING THE PHASE-SPACE PROBABILITY DENSITY FUNCTION

By definition of conditional probability it is the case that

f(E ,L)(ε, l) = fL ∣ E (l ∣ ε)fE (ε).(5.2)
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where the function fE is the PDF for the relative energy, and the function fL ∣ E is the conditional

PDF for the magnitude of the angular momentum at a given relative energy. If the distribution

of the magnitude of angular momentum is constant then the distribution function depends only

on the energy. In this case we may use Eddington’s method to solve the density integral (Eq. 5.1).

If this is not the case, then a number of methods are available for performing this inversion. We

will do this by constructing a model for the PDF fL ∣ E , and then numerically solving the density

integral using the method of Cuddeford and Louis (1995). To construct our model of fL ∣ E we

follow Gerhard (1991) by introducing the function x given by

x(l, ε) = l
l0 + lc(ε)

(5.3)

where l0 ∈ R≥0 is the angular momentum constant, and where lc(ε) is the angular momentum of

a circular orbit of relative energy ε. We then introduce the circularity function h which gives the

function g = h ○ x. We assume that fL ∣ E is an element of the family of such functions.

Note that l ∈ [0, lc(ε)]meaning that x(l, ε) ∈ [0, lc(ε)/(l0+lc(ε))], with x able to take themax-

imum value of one only if l0 = 0. If x = 0 for a given star, then that star is on a plunge orbit, and

if x = x(lc(ε), ε) then that star is on a circular orbit. If x takes a value between 0 and 1 for a given

star then it is on an elliptical orbits. The circularity function therefore suppresses or enhances

orbits of a particular type, thus controlling the velocity anisotropy at a given radius. Decreas-

ing circularity functions suppress circular orbits, while increasing circularity functions suppress

plunge orbits. The constant circularity function gives an isotropic distribution of velocities.

Wemay think of l0 as a the angularmomentumof the equivalent circular orbit of some charac-

teristic energy, which in turn defines a characteristic radius, which we call the ‘anisotropy radius’.

The most tightly bound stars have energies approximately equal to the potential at the centre of

the system. Therefore l < lc(e) ≪ l0, and x ≈ 0. Hence, the velocity distribution is isotropic in

the core. The most loosely bound stars, have energies approximately equal to zero. Therefore

l ≈ lc(e)≫ l0. Hence, the velocity distribution is anisotropic outside the anisotropy radius.

5.1.1 Solving the density integral

We must now specify the potential-density pair, for which we use the generalized Hernquist

model (or α-β-γ model), proposed by Zhao (1996) as a model for spherical galaxies and galactic

bulges. The density is given by

ρ(r; ρ0,α,β, γ) = ρ0 (
r
b
)
−γ
(1 + ( r

b
)
α
)
(γ−β)/α

(5.4)
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Figure 5.1The unnormalized generalized Hernquist density, ρ/ρ0, for outer log-slope β = 3, and

inner log-slope γ = 0, and 1, and sharpness α = 0.5, 1, and 2.

where α, b > 0 and β, γ ≥ 0, and the normalizing constant is

ρ0 =
M

4παΒ(α(3 − γ),α(β − 3), 1)
.(5.5)

Here, Β is the incomplete Beta function, given by

Β(a, b, x) = ∫
x

0
ta−1(1 − t)b−1 dt.(5.6)

The constant b is called the scale length. It is a split-power law, with gradients −γ and −β in the

small- and large-radius limits. The parameter α determines the width of the transition between

these two regimes. The greater α, the greater the width of the transition. We therefore call γ

the inner log-slope, β the outer log-slope, and α the sharpness. We plot the density for a range of

parameter values in Figure 5.1. If the inner log-slope is zero, then the density is approximately

constant at small radii, and the galaxy is said to exhibit a core. If, however, the inner log-slope

is greater than one, then the density diverges at small radii, and the galaxy is said to exhibit a

cusp. Our principal interest is in distinguishing between cored and cusped dSphs, and hence in

resolving the core-cusp problem (Ch. 1).
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Zhao (1996) shows that the relative potential associated with the generalized Hernquist den-

sity model is given by

Ψ(r; ρ0, b,α,β, γ) = 4πρ(r; ρ0, b,α,β, γ)f0,0(r;α,β, γ)r2,(5.7)

where

f0,0(r;α,β, γ) =
αΒ(α(3 − γ),α(β − 3), (1 + rα)−1)
(1 + rα)−α(3−γ)(1 − (1 + rα)−1)α(β−3)

+

αΒ(α(β − 2),α(−γ + 2), 1 − (1 + rα)−1)
(1 − (1 + rα)−1)α(β−2)(1 + rα)−α(−γ+2)

.

(5.8)

Using the generalized Hernquist density, we construct a model of a dwarf spheroidal galaxy

that consists of a dark-matter halo and a single stellar population, which makes no contribution

to the galactic potential. The stars act as a tracers of the dark-matter potential. The dark-matter

halo and stellar population both have generalized Hernquist density profiles, given by

ρi(r) = ρ(r; ρ0,i,αi,βi, γi)(5.9)

for i = DM,∗. The galactic relative potential is therefore given by

Ψ(r) = ΨDM(r)(5.10)

= Ψ(r; ρ0,DM, bDM,αDM,βDM, γDM).(5.11)

We will write ρ0,DM as ρ0 for convenience. The stellar density is therefore given by

ρ∗(r) = ∫
R3
f(E ,L)(ε, l)dv(5.12)

where the relative energy is

ε = ΨDM −
1
2
v2.(5.13)

This integral equation may be solved using the method described by Cuddeford and Louis

(1995), as follows. First, we perform a change of variables to find that

ρ∗(Ψ) = 4
√

2π∫
Ψ

0
∫

π/2

0

√
Ψ − ε fE (ε)fL ∣ E (lmax sin(θ), ε) sin(θ)dθdε(5.14)

where lmax =
√

2(Ψ − ε).We then make the the definition

K(Ψ, ε) ∶= ∫
π/2

0
fL ∣E (lmax sin(θ), ε) sin(θ)dθ(5.15)

and rewrite the density integral as

ρ∗(Ψ) = 4
√

2π∫
Ψ

0

√
Ψ − εK(Ψ, ε)fE (ε)dε.(5.16)
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We also rewrite the interval [0,Ψ) as the union of n intervals of width h:

n
⋃
i=1
[(i − 1)h, ih).(5.17)

The density at Ψ = jh is then given by

ρ∗(jh) = 4
√

2π
j

∑
i=1
∫

jh

(i−1)h

√
jh − εK(jh, ε)fE (ε)dε.(5.18)

This expression is still exact. We have onlymanipulated expression 5.12. However, we continue to

follow Cuddeford and Louis (1995) by now making some simplifying assumptions. Specifically,

we assume that f and K are slowly varying over any subinterval, and may be replaced by their

midpoint values. Let fi and Ki be these midpoint values, i.e. let

fi ∶= f((1 − 1/2)h)(5.19)

Kij ∶= K(jh, (1 − 1/2)h).(5.20)

Furthermore, we make the definition

Iij ∶= ∫
ih

(i−1)h

√
jh − εdε.(5.21)

Under these assumptions, the density at Ψ = jh is now given by

ρ∗(jh) = 4
√

2π
j

∑
i=1

KijfE ,iIij.(5.22)

We may now write fE ,i as a recurrence relation by observing that

ρ∗(jh) = 4
√

2π
⎛
⎝
KjjfE ,jIjj +

j−1

∑
i=1

KijfE ,iIij
⎞
⎠

(5.23)

and that hence

fE ,j =
ρ∗(jh)/(4

√
2π) −∑j−1

i=1 KijfE ,iIij
KjjIjj

.(5.24)

The term fE ,n is then the solution to the density equation (eq. 5.16). To find this explicitly we

observe that the first term of the recurrence relation is

fE ,1 =
ρ∗(h)

4
√

2πK(h,h/2)I11
,(5.25)

and that

Iij = −
2
3
(jh)3/2((1 − i/j)3/2 − (1 − (i − 1)/j)3/2),(5.26)
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which gives us that

I11 =
2
3
h3/2.(5.27)

Having inverted the integral in this way we are left needing to compute the observable quan-

tities. The joint PDF for a single star is given by

fRp ,V = ∫R ∫R ∫R
fE ∣ L(ε, l)fE (ε)dzdvx dvy(5.28)

where l(r, v) = ∣r × v∣, and ε(r, v) = Ψ(r) − 1
2
v2 where r = (x, y, z). As we have discussed in

Chapter 4 (eq. 4.3) this PDFmust be convolvedwith the PDF for velocity errors, whichwe assume

to be Gaussian with known variance. The resulting integral is then performed numerically, using

Gaussian quadrature. Given data consisting of sky positions and line-of-sight velocities for n

stars, D = ((rp,i, vz,i))ni=1, we may compute the support of a given parameter, S(α) ∶= ln(L(α)) by

taking the product of these integrals. This is implemented by Mark Wilkinson’s C programme,

HernDF.

We would like to recover the the model parameter by maximizing this likelihood. However,

in this high-dimensional parameter space direct maximization of the likelihood is entirely im-

practical. Even maximization of an MCMC sample, which we might expect to require several

hundred thousand sequential evaluations of the likelihood, is impractical. Instead, we explore

the potential of GPE for the maximization of the likelihood. We test our method on synthetic

data, leaving the use of observational data, specifically that for the Fornax dwarf, for future work.

5.2 GAIA CHALLENGE

The Gaia challenge test suite is a database of synthetic kinematic data released to accompany the

‘Gaia challenge’ workshop held at the University of Surrey, 19–23 August 2014, with attendants

‘invited to apply their favourite methods to these mock data to recover the underlying gravita-

tional potential and/or phase space distribution function.’

The Gaia Challenge data is drawn from a model that consists of a dark-matter halo and a

single stellar population, which does not contribute to the galactic potential. Like our model, the

density of both halo and stars are is modelled by generalized Hernquist model. The PDF for each

stellar component is constructed according to the method of Osipkov (1979) and Merritt (1985),

resulting in a model parameterized by a tuple of 10 real numbers,

α = (ρ0,DM, bDM,αDM,βDM, γDM, b∗,α∗,β∗, γ∗, ra,∗),(5.29)
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where ra,∗ is the Osipkov–Merritt anisotropy radius. Sky positions and line-of-sight velocities are

given for 32 distinct parameter values, as follows. The dark-matter parameter components are

set to αDM = 1, βDM = 3, and γDM = 0 or 1, with bDM = 1 k pc and ρ0,DM = 0.064 M⊙ pc−3 in

the case that γDM = 1 and ρ0,DM = 0.4 M⊙ pc−3 in the case that γDM = 0. The stellar parameter

components are set to α∗ = 2, β∗ = 5, and γ∗ = 0.1 or 1, with b∗/bDM = 0.1, 0.25, 0.5, or 1, and

ra,∗ = 1 or∞ k pc. (An infinite Osipkov–Merritt anisotropy radius, ra,∗ =∞ k pc, corresponds to

an everywhere isotropic velocity distribution.) We consider the case of ρ0,DM = 0.064 M⊙ pc−3,

bDM = 1 k pc, αDM = 2, βDM = 3.5, γDM = 1, b∗ = 0.25 k pc, α∗ = 1, β∗ = 5, γ∗ = 0.1, ra,∗ =

∞ k pc. This describes a Plummer-type stellar population with an isotropic velocity distribution,

embedded within a cusped dark-matter halo.

We use a sample size of n = 10 000, as recommended by the Gaia Challenge, although sample

sizes of order 1000 are more realistic. The Gaia Challenge data consist of stellar radii with zero

errors, and line-of-sight velocities with a median error of approximately 2 km s−1. The error as-

sociated with these line-of-sight velocities is consistent with real data (Walker, Mateo, Olszewski,

Sen and Woodroofe, 2009). However, in practice we do know the stellar radii exactly. Although

sky-positions have very small errors compared to those of velocity, and may be neglected, there

is non-neglible error associated with stellar radii due to the fact that we must estimate the centre

of the galaxy. The Gaia Challenge ignores this fact, and we will too.

We here restrict ourselves to exploring the likelihood for the dark-matter components of the

parameter, and fix the stellar components of the parameter to their true values. We also assume

that we know the dSph to be istropic, and hence use a circularity function that is constantly one.

For convenience, we transform the parameter components ρ0, bDM, and b∗ to log(ρ0/109M⊙),

log(bDM/1 kpc), and log(b∗/1 kpc). The true values of these transformed parameter components

are then log(ρ0/109M⊙) = 7.8062, log(bDM/1 kpc) = 0, and log(b∗/1 kpc) = −0.6021. Our

model of the phase-space PDF is parameterized by a tuple of five real numbers,

α = (ρ0,DM, bDM,αDM,βDM, γDM).(5.30)

We choose to emulate the support within the bounds shown in Table 5.1. Simple mass esti-

mators may always be used to constrain the galactic mass (and hence the normalizing density)

to within a factor three, as we have discussed in Chapter 4 (Sec. 4.2.2). In fact our range spans

an order of one magnitude, centred on the true normalizing density, log(ρ0/109M⊙) = 7.8. The

outer-slope, βDM, takes a minimum value of 3.5 (determined by the computational necessities

of HernDF), and includes both the Hernquist and Plummer density models (corresponding to
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component
interval

min. max.

log(ρ0/109M⊙) 7.5 8.5

bDM 0.6 5

αDM 0.5 2

βDM 3.5 5

γDM 0 1.5

Table 5.1 Bounds on the dark-matter parameter components used in the emulation of the sup-

port.

βDM = 4 and 5 respectively). The inner log-slope ranges between 0 and 1.5, thus spanning the

interesting cases of 0 and 1. The sharpness, α, ranges over values that allow for very steep (α = 2)

and very gradual (α = 0.5) transitions between the inner and outer density profiles. HernDF takes

6.5 s to evaluate the support for a parameter given a stellar sample size of n = 10 000, meaning

that it is just feasible to evaluate the support for all five dark-matter components using a coarse

lattice of 105 points.

We perform GPE of the support by sampling it using a LHS design and squared-exponential

covariance function, and generate predictions using the same lattice of parameter values used to

evaluate the true support. We require that the results ofGPEpass LOOCVcross validation (Ch. 3,

Sec. 3.3) with good precision. Typically, we might require that
√
R2/ range(y) < 0.1, but for our

purposes would like that
√
R2/ range(y) < 0.01. Morever, we require that nowhere is the absolute

value of the residual unduly large. In this case, the fact that we have a lattice of support values

allows us to also perform out-of-sample validation of our GPE predictions. We have seen (Ch. 4,

Sec. 4.1) that the rule of thumb is that a sample size of n = 10d should produce acceptable results.

However, there is no reason that this rule should hold in our case. The likelihood, which might

be unimodal and sharply peaked, is somewhat different from the functions usually considered in

theGPE literature. We therefore performGPE for a range of sample sizes. In fact, we evaluate and

emulate three-, and four-dimensional subspaces also. In each case, we have fixed the remaining

parameter components to their true values.

Three dimensions. Figure 5.2 shows the log-likelihood for the inner log-slope, normalizing
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sample size μ σ2 mγDM mlog(ρ0/109M⊙) mlog(bDM)

30 1.1065 0.5310 1.1232 1.1213 3.2601

60 1.4368 1.5649 0.4135 2.2385 3.7679

120 1.5320 1.1768 0.6456 1.3324 6.0596

180 2.2466 2.1951 0.5447 1.8445 7.5362

Table 5.2 Hyperparameters of the random process for the GPE of the support of (γDM,

log(ρ0/109M⊙), log(bDM)) triples.

sample size R2
√
R2/range(y) max(∣r/ range(y)∣)

30 0.001265 0.03557 0.09538

60 0.0001981 0.01408 0.05862

120 0.000003094 0.001759 0.01016

180 0.0000001633 0.000404 0.002200

Table 5.3 LOOCV score, R2, root-LOOCV score,
√
R2/range(y), and greatest absolute residual,

max(∣r/ range(y)∣) for the GPE of the support of (γDM, log(ρ0/109M⊙), log(bDM)) triples.

αi MLE
argmax(L̂)

30 60 120 180

γDM 1.3333 1.1667 1.5 1.5 1.3333

log(ρ0/109M⊙) 7.6111 7.5 7.5 7.5 7.6111

bDM -0.01722 0.08509 -0.01722 -0.01722 -0.01722

Table 5.4 MLE and maximum of the GPE predictions of the support of (γDM, log(ρ0/109M⊙),

log(bDM)) triples.
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ŷ
−2.5 0.0 2.5

q

−4

−2

0

2

4

e

0.0 0.5 1.0 1.5

γDM

−1

0

1

2

e

7.50 7.75 8.00 8.25 8.50

log(Mvir,DM)

−1

0

1

2

e

0.0 0.5

log(bDM)

−1

0

1

2

e

Figure 5.6 Validation plots for the GPE predictions of the support of (γDM, log(ρ0/109M⊙),

log(bDM)) triples for sample sizes n = 30 (left) and n = 60 (right).
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Figure 5.7 Validation plots for the GPE predictions of the support of (γDM, log(ρ0/109M⊙),

log(bDM)) triples for sample sizes n = 120 (left) and n = 180 (right).
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density and length-scale together, under the assumption that the remaining parameter com-

ponents (outer log-slope, and sharpness) have been fixed at their true values. The results of

GPE are shown for n = 10d = 30 in Figure 5.3, for n = 20d = 60 in Figure 5.4, and for

n = 60d = 180 in Figure 5.5. In Table 5.2 we show the GPE hyperparameters, computed using the

maximum-likelihood method (Ch. 3, Sec. 3.1). The MLE of the tuple (γDM, log(ρ0), log(bDM))

is (1.3333 ± 0.1667, 7.6111 ± 0.1111,−0.01722 ± 0.1023), where the error is equal to the pixel

size we have used to the evaluate likelihood. Note that the true value of the MLE is not equal

to true value of the parmameter, but rather the parameter value found by maximizing the sup-

port, not its emulation. The true value of the MLE and the true value of the parameter are not

necessarily equal due the finite size of our sample, and the existence of observational errors. The

maximum in the GPE predictions is shown, for each value of n, in Table 5.4. These maxima are

consistent with their true values for all values of n. Validation plots are shown for n = 10d = 30

and n = 20d = 60 in Figure 5.6, and for n = 40d = 120 and n = 60d = 180 in Figure 5.7. LOOCV

statistics are shown in Tables 5.3.

For n = 30 we see (Fig. 5.6, left-hand side, top panel) that the LOOCV predictions show sig-

nificant scatter when compared to their equivalent true values. Moreover, theQ-Q plots indicates

(left-hand side, panel second from top) that the LOOCV residuals are significantly non-Gaussian,

although they are all well within the interval [−3,−3]. Furthermore, the LOOCV residuals when

plotted against each parameter component (left-hand side, lower three panels) show significant

bias. In all cases, the LOOCV residuals are negatively biased. For the component γDM there is

also significant boundary bias. The residuals are much larger for small values of γDM than they

are for large γDM. The normalized LOOCV score,
√
R2/ range(y) = 0.03557 (Tab. 5.3) is well

below the useful threshold of 0.1, but not at the level of 0.01 we would like. GPE therefore fails

validation for the case of n = 30.

We can compare the GPE predictions with the true log-likelihood directly by inspecting Fig-

ures 5.3 and 5.2). We see clearly that the predictor is failing, and that in particular it is failing at

the boundaries. The support takes on dramatically negative values in the region of the boundary,

and these are not adequately represented in the sample y. The least sample value is −11146.9,

which occurs at (γDM, log(ρ0/109M⊙), log(bDM)) = (1.1250, 8.3500, 0.5302). Compare this

with the least support value of −21357.0, which occurs at (γDM, log(ρ0/109M⊙), log(bDM)) =

(1.5000, 8.500, 0.6990). (Note that this is a vertex of the sampled parameter space.) There is a dif-

ference of almost a factor two between these support values, despite their arguments being close

in parameter space. The GPE prediction for the least value is log(L̂(1.5000, 8.500, 0.6990)) =
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−16807.1339, and hence the residual of this prediction is −78.7%. This is vastly different from

the normalized LOOCV score
√
R2/ range(y).

The problem persists as we increase the sample size. For n = 60 (Fig. 5.4), the validaton

plots (Fig. 5.6, right-hand side) show there is improvement in the scatter of the LOOCV predic-

tions plotted against their equivalent true values. Moreover, the Q-Q plot indicates the LOOCV

residuals are consistent with being Gaussian. However, the LOOCV residuals are again biased.

This time they show a small positive bias, although they all remain in the interval [−3, 3]. They

also show significant boundary bias for the parameter component ρ0,DM. The residuals are much

larger for small values of ρ0,DM than they are for large ρ0,DM. The normalized LOOCV score,
√
R2/ range(y) = 0.01408 is again well below the useful threshold of 0.1, but still greater than

0.01. GPE therefore fails validation for n = 60.

For n = 180, we see that GPE still fails validation. Although the LOOCV predictions are

accurate, the LOOCV standardized residuals now clearly non-Gaussian. The Q-Q plot tells us

that their distribution is more heavily tailed than that of a Gaussian distribution. Indeed they no

longer fall within the range [−3, 3]. The LOOCV residuals are now biased for each of the param-

eter components: they increase with γDM, and decrease with both log(ρ0,DM and log(bDM. This

failure of validation occurs despite the fact that the normalized LOOCV score is
√
R2/ range(y) =

0.002200, which is significantly smaller than we require. What is clear from the validation plots

is the existence of boundary bias, and in particular one-sided boundary bias. By comparing Fig-

ures 5.2 and 5.5 We see clearly that the predictor is failing at the boundaries. We have noted that

this is were the support takes on dramatically negative values, and that these are not adequately

represented in our sample, y. In this case, the least element of the sample is −15629.6, and oc-

curs at (γDM, log(ρ0/109M⊙), log(bDM)) = (1.2792, 8.4361, 0.6146). In this case, the LOOCV

residual is −35.50%.

The failure of validation suggests that the assumption of normality required for GPE is vio-

lated. The support function is not well modelled by a Gaussian random process with the mean

or squared-exponential covariance functions we have specified. We note that the log-likelihood

has multiple lenth-scales, and changes rapidly near the large-γDM and small log(ρ0) boundaries.

We propose that this failure of validation is typical of functions which rapidly change value near

the boundary, noting that a similar problem is observed by Jones et al. (1998) in emulating the

Goldstein–Price function (Goldstein and Price, 1971).

Four dimensions. Figure 5.8 shows the log-likelihood for the inner log-slope, normalizing

density, length-scale and outer log-slope together. Just as GPE failed validation in three dimen-
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−0.5

0.00.00.0

S
(γ

D
M

)

8.0

8.58.58.5

lo
g
(ρ

0
)

0.0

0.50.50.5

lo
g
(b

D
M

)

0.0 0.5 1.0 1.5

γDM

3.5

4.0

4.5

5.0

β
D

M

8.0 8.58.58.5

log(ρ0)

0.0 0.50.50.5

log(bDM)

4.0 4.5 5.05.0

βDM

Figure 5.11GPEpredictions for the support for the components γDM, log(ρ0/109M⊙), log(bDM),

and βDM of the parameter of the generalized Hernquist model (Fig. 5.8), sample size n = 60d =

240.
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sample size μ σ2 mγDM mlog(ρ0/109M⊙) mlog(bDM) mβDM

40 0.6819 0.2197 0.9390 1.3023 1.4915 0.003208

80 0.8347 0.2920 0.5528 1.4235 4.4425 0.04491

160 0.9140 0.3453 0.9789 1.6861 4.8925 0.07708

240 0.9945 0.7102 0.5437 1.4950 7.8548 0.09595

Table 5.5 Hyperparameters of the random process for the GPE of the support of (γDM,

log(ρ0/109M⊙), log(bDM), βDM) tuples.

sample size R2
√
R2/range(y) max(∣r/ range(y)∣)

40 0.0002209 0.01486 0.04818

80 0.0001898 0.01378 0.06867

160 0.00002410 0.004909 0.02661

240 0.000002616 0.001618 0.006743

Table 5.6 LOOCV score, R2, root-LOOCV score,
√
R2/range(y), and greatest absolute residual,

max(∣r/ range(y)∣) for the GPE of the support of (γDM, log(ρ0/109M⊙), log(bDM), βDM) tuples.

αi MLE
argmax(L̂)

40 80 160 240

γDM 1.3333 1.5 1.0000 1.0000 1.3333

log(ρ0/109M⊙) 7.6111 7.6111 8.1667 7.8333 7.6111

bDM -0.01722 -0.2218 -0.2218 -0.01722 -0.01722

βDM 3.5000 3.5000 3.5000 3.6667 3.5000

Table 5.7 MLE and maximum of the GPE predictions of the support of (γDM, log(ρ0/109M⊙),

log(bDM), βDM) tuples.
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Figure 5.12 Validation plots for the GPE predictions of the support of (γDM, log(ρ0/109M⊙),

log(bDM), βDM) tuples for sample sizes n = 30 (left) and n = 60 (right).
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Figure 5.13 Validation plots for the GPE predictions of the support of (γDM, log(ρ0/109M⊙),

log(bDM), βDM) tuples for sample sizes n = 120 (left) and n = 180 (right).
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sions, so it fails in four dimensions. The results of this GPE are shown for n = 10d = 40 in

Figure 5.9, for n = 20d = 80 in Figure 5.10, and for n = 60d = 240 in Figure 5.11. In Ta-

ble 5.5 we show the GPE hyperparameters. The MLE of the tuple (γDM, log(ρ0), log(bDM),βDM)

is (1.3333 ± 0.1667, 7.6111 ± 0.1111,−0.01722 ± 0.1023, 3.5 ± 0.1667), which may be compared

with the maxima of the GPE predictions shown, for each value of n, in Table 5.7. Again, these

maxima of the GPE predictions for (γDM, log(ρ0/109M⊙), bDM) are consistent with their true

values for all values of n. Validation plots are shown for n = 10d = 40 and n = 20d = 80 in Fig-

ure 5.12, and for n = 40d = 180 and n = 60d = 240 in Figure 5.13. LOOCV statistics are shown

in Tables 5.6,

For n = 10d = 40, the the LOOCV predictions show significant scatter when compared

to their equivalent true values. Although the Q-Q plot shows that the distribution of LOOCV

residuals is consistent with being Gaussian, they are not uniformly distributed over param-

eter space. Again, they are display a small negative bais, and are greater for small values of

ρ0,DM than for large values of ρ0,DM. The same is true for log(bDM), and βDM. The normalized

LOOCV score is
√
R2/ range(y) = 0.01486, which is again well below the useful threshold

of 0.1, but too great for our requirements. We can again compare the GPE predictions with

the true log-likelihood directly in Figures 5.8 and 5.9. We see clearly that the predictor is

failing, in particular at the boundaries. The support takes on dramatically negative values

in the region of the boundary, and In this case, the least sample value is −11905.5, which

occurs at (γDM, log(ρ0/109M⊙), log(bDM)) = (1.0688, 8.3875, 0.6414, 4.6813). Compare this

with the least support value of −21357.0, which occurs at (γDM, log(ρ0/109M⊙), log(bDM)) =

(1.5000, 8.5000, 0.6990, 3.5000). (Again, this is vertex of sampled parameter space.) The pre-

diction for the least value is log(L̂(1.5000, 8.5000, 0.6990, 3.5000)) = 21078.9476. The residual

of the prediction is −1.302%, which is good. However, the worst residual occurs for the

predicted value for L(0.0000, 7.5000,−2.2185, 5.0000), which is 51.560%. Again, this occurs

at a vertex, and again it is vastly different from both LOOCV quantities
√
R2/ range(y) and

max(∣r/ range(y)∣).

Again, the problem persists as we increase the sample size. Let us consider n = 60d = 240.

(The story is very much the same for n = 80 and n = 180.) Althought the LOOCV predic-

tions are good, the Q-Q plot shows the distribution of the LOOCV residuals to be dramati-

cally non-Gaussian, with very heavy tails. Moreover, these residuals no longer fall within the

interval [−3, 3], with some being greater that five. Again, this is due to boundary bias, due to

the GPE failing to precisely predict the very negative values of the log-likelihood at the bound-
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ary. The least sampled value is −16314.2, which occurs at (γDM, log(ρ0/109M⊙), log(bDM)) =

(1.4969, 8.4646, 0.4553, 3.5656). In this case, the residual of prediction is −1.889%. The worst

residual, however, occurs for the predicted value for log(L̂(0.0000, 7.5000,−2.2185, 5.0000)),

which is 278.41%. It is clear that in four dimensions, as in three dimension, the assumption of

normality required for GPE is violated. The support is not a likely realization of a randomprocess

with constant mean and squared-exponential covariance.

The usual solution to failed validation is to transform the function we are emulating, in the

transform function is better suited for emulation (Jones et al., 1998). However, we find that the

standard transformations—
√
−S, arcsinh(S), etc. (Bartlett, 1947)—do not significantly improve

the validation statistics or diagnostic plots. We might, alternatively, preferentially sample the

support at the the boundary. But the support is in principle arbitrarily negative at the bound-

ary, and may in practice be undefined there due to numerical overflow in its computation. This

points to a more significant problem with attempting to emulate the support: we may not be able

to choose the parameter bounds to satisfy the requirements of GPE. In emulating the support,

we may require unduly tight bounds on the model parameter. These results emphasizes the im-

portance of the validation step, which has been entirely neglected in the application of GPE to

astrophysics thus far in the literature (for example, Bower et al., 2010; Gibson et al., 2012; Sale

and Magorrian, 2019). It should be regarded as a strength of the method that we may recognize

when it underperforms.

Satisfied that GPE is failing to adequately predict the support for a given parameter, we do

not attempt GPE in five dimensions. Nonetheless, we do plot the support for five dimensions in

Figure 5.14. It is clear from this that HernDF itself is not working properly. It indicates that the

MLE of the model parameter occurs outside the sampled parameter space. This is too great a

difference from the true parameter value to be due to stellar sample size or observational error.

It must be a problem with the implemenation of our method. The problem appears to be less

severe when the component α has been marginalized out of the support, suggesting that the

problem may be associated with the component α. It is also the case that the marginalizations

(log(βDM),αDM) and (log(ρ0/100M⊙), log(βDM)) appear unexpectedly noisy. This problem

with HernDF is independent of the failure of GPE. GPE has failed neither because of the loca-

tion of the support’s maximum nor the support’s unexpected noisiness, but because of its very

negative values near the boundary of parameter space.

We conclude that ordinary kriging with a squared-exponential covariance function is inadequate
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Figure 5.14 Support for the components γDM, log(ρ0/109M⊙), log(bDM), βDM, and αDM of the

parameter of the generalized Hernquist model. A total of 105 evaluations of the likelihood have

been required.
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for constructing metamodels of the support. The natural next step is to change the coviance

function, or to consider universal kriging (Ch. 2 Sec. 4.1). In universal kriging we use poly-

nomial mean rather than constant mean. What degree polynomial should we consider? We

leave this for future work, but note that in certain circumstances the likelihood is asymptotically

normal (Thm 27), meaning that the support is therefore asymptotically quadratic. If we believe

that these circumstances hold, we might therefore consider a polynomial basis of degree two:

(xi1x
j
2 . . . xk1)i+j+⋅⋅⋅+k≤2. For a high-dimensional parameter space, the size of this basis is large. But

note that the number of basis functions does not affect the number of hyperparameter compo-

nents.1 Looking again at Equation 2.181 we may think of the term φtΒ̂ as accounting for the

quadratric trend, and the term ktK−1(X −AΒ̂) as accounting for departures from this trend.

1The number of basis functions does affect the size of the matrix A in Eq. 2.181, however, and hence the complexity

of compututing At and (AtK−1A)−1.
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Conclusion

In this thesis I have shown how we may construct dynamical metamodels of isolated dSph

galaxies. This method is a novel combination of distribution-function modelling, maximum-

likelihood parameter recovery, and GPE. The essentials of the method were presented in

Chapter 4: we construct a model of the distribution-function for a given dSph galaxy, and then

marginalize this model to form the PDF of the observable quantities, namely the sky positions

and line-of-sight velocities of its constituent stars. We then identify a feasible region of param-

eter space, and compute the likelihoods for a sample of parameters within this region. With

this information we construct a metamodel of the likelihood, which allows us to predict the

likelihood of a given parameter without having to again evaluate the likelihood directly. In the

case that the likelihood is unimodal, we may then use EGO to maximize the emulated likelihood

and hence recover the model parameters and their associated confidence regions. In the case

the likelihood is not unimodal, we may use the emulator to reconstruct the likelihood for the

entirety of the feasible region of parameter space.

The advantage of this method is in the enormous reduction in computational complexity,

and hence in the quantity of computing time we need. Likelihoods are expensive to evaluate.

Even for simple models the likelihood has no closed-form expression, and can require of order

10 s of computing time to evaluate numerically. In high-dimensional parameter spaces this is

prohibitive. The parameter space is simply too large for us to use conventional maximization

schemes, or even to evaluate the likelihood on a coarse lattice. GPE therefore makes possible

the use of sophisticated dynamical models that have previously been impossible. In Chapter 4 I

presented a toy implementation ofmymethod, inwhich I constructed ametamodel of a Plummer

sphere with a distribution function of the Osipkov–Merritt type. I showed that it was possible to

recover themodel parameter, in this case a tuple of length three, using fewer than 100 evaluations

of the likelihood. This is two orders of mangitude less than the number of evaluations required

by a very coarse lattice search of 103 evaluations.
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The methods of GPE and EGO are widely used. However there are some particular issues in

their application to astrophysics. Most significantly, we must be careful to distinguish between

the BLP (eq. 2.181) and the BLUP (eq. 2.118). The BLP is a biased predictor, a fact that is never

commented upon. In many applications it seems that this is not problematic. But it may well be

problematic in the case of unimodal functions. Hence we must be particularly wary when using

it to construct metamodels of likelihoods. In this case it is by far preferable to use the BLUP for

our metamodels.

It is also the case that the use of GPE in the prediction of computation experiments relies

heavily on the methods developed for geostatistics, where GPE goes by the name ‘kriging’. The

BLP goes by the name ‘ordinary kriging’, and the BLUP by the names ‘ordinary kriging’ (if the

mean is taken to be constant) and ‘universal kriging’ (if the mean is taken to be polynomial).

The most significant difference between the two fields is in the strucuture of the input space. In

geostatistics the input space is Euclidean, Rn, and covariance functions are untroublingly taken

to be functions of the distance between two points in input space. In computer experimentation

the input space is not necessarily Euclidean, and we are not free to equip these input spaces with

the Euclidean metric. We may frequently be able to embed these spaces in, or transform them to,

Rn, but it is not clear what effect this has on the covariance of the resulting Gaussian process. The

rigorous approach here is to define a proper metric on the input space, and construct covariance

functions using this metric. I have shown how this may be done in Chapter 1. This opens the

door to the construction of new covariance functions, each tailored to the physical problem at

hand. I leave the construction of such covariance functions for future work.

In the presence of such issues, I have emphasized the importance of validating the results of

GPE. Validation appears to a limited extent in the machine learning literature (for example, it is

considered briefly by Jones et al., 1998), but not at all in the astrophysical literature. For exam-

ple is does not appear in any of the papers by Gibson et al. (2012), Evans et al. (2015), Sale and

Magorrian (2014), Sale and Magorrian (2019), Bower et al. (2010), or Heitmann et al. (2009),

that I listed in Chapter 1. We do not know a priori that the function we are seeking to emulate is

a likely realization of a Gaussian random process with the mean and variance we have chosen. If

it is not then GPE will give unreliable predictions and, moreover, unreliable confidence intervals

for those predictions. The importance of validation was made manifest in Chapter 5, in which I

have constructed a more realistic metamodel of a dSph galaxy than the one presented in Chap-

ter 4. This assumed that the dSph in question consisted of a single stellar population tracing the

potential of a dark-matter halo. The density of both stellar population and halo were assumed
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to be described by the generalized Hernquist model, and the stellar distribution function was

constructed using the methods of Gerhard (1991), Cuddeford and Louis (1995). Here, ordi-

nary kriging, in which we construct a metamodel under the assumption of intrinsic stationarity

(Def. 51) results in predictions that fail validation. We should consider it a virtue of the method

of GPE that we can tell when it fails, and we should be wary of results that are not validated in

this way.

Throughout, my interest has been inwhat an observational data set can tell us about the stellar

system from which it is drawn. In particular, for a dSph, I would like to know which dark-matter

distributions a kinematic data set rules out, and which dark-matter distributions best account

for the data. Once we have constructed a metamodel of the likelihood of our model parameters

we may easily construct metamodels for other physically interesting quantities. In Chapter 4 I

used the results of GPE to constructed maximum-likelihood estimates for the galactic density

profile and for Binney’s anosotopy parameter. These were in excellent agreement with the true

quantities. Both predictions and the confidence intervals for those predictions were accurate to

the order of 1 % or less.

5.3 FUTUREWORK

The most pressing task at hand is the resolution of the issues outlined in Chapter 5. Here, the

ordinary kriging predictions failed validation. This was not due to the increase in the dimen-

sion of parameter space, but rather to the presence of multiple length scales in the likelihood.

The assumptions of ordinary kriging, and in particular the adoption of the standard squared-

exponential covariance function are unsuitable for such a problem. I expect that the the use of

universal kriging or the adoption of a better-specified covariance function will resolve this issue.

The natural next step is then to use GPE to construct very general metamodels of dSph galaxes,

which include multiple stellar populations and non-spherical density distributions.

I also plan to develop an information-theoretic analysis of the existing data. The information

content of this data may be quantified by the Fisher information (Def. 25), which determines

the confidence region for the maximum-likelihood estimate of the parameter vector (eq. 1.33).

Again, the expense of dynamical modelling makes it difficult to evaluate the Fisher information

using standardmethods, as wemustmaximize the support (i.e. the log-likelihood) for themodel’s

parameter tuple. However, the problem should yield to the application of EGO.Thiswill allowme

to answer the question, ‘What can the kinematic data tell us?’. Can they satisfactorily constrain the
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model parameter vector? Do they allow us to discriminate between competing models? If not,

which data are needed? In the same spirit, it makes sense to investigate the principal components

of the parameter space using the emulated likelihood. This is equivalent to finding the orthogonal

decomposition of the random process we use to construct its metamodel (a fact that goes by the

name of theKarhunen-Loéve theorem, Parzen, 1959). By finding the principal components of the

parameter space we are finding the natural parameterization of the system in hand. Wemight, for

example, expect this to be the random variable representing the actions and angles of the system.

Alongside a continued exploration of likelihoodmethods, it would also be interesting to con-

sider the emulation of other quantities of physical interest. For example, we might use GPE to

construct metamodels of the phase-space distribution function directly, rather than metamodels

of the likelihood. There are two potential advantages of this approach: the distribution function

may be more suitable for emulation than the likelihood function, and, having found a GPE es-

timate for the distribution function, the integrals that give the galaxy’s observable quantities are

cheaply computed using stochastic calculus.

Throughout this thesis I have have been interested in static dynamical model of a dSph galax-

ies. These assume that the galaxy is in dynamical equilibrium. This is a good assumption for

the isolated dSph galaxies, like Fornax. Others, such as the Sagittarius dSph galaxy, are clearly

not in equilibrium, and are instead stongly interacting with the Milky Way. In the process of

this interaction they are stripped of their outer envelope of stars, which form tidal tails. GPE,

however, is suitable for constructing metamodels of all kinds of model. I therefore plan to use it

to fit N-body models of these galaxies to observations of tidally disturbed dSphs. This work is a

natural extension of that by Ural et al. (2015), who constructed an N-body evolutionary model

of Carina that included both its internal dynamics and its bulk motion within the Galactic po-

tential to determine its preinfall mass. Ural et al. used Markov-chain Monte Carlo (MCMC)

methods to sample the likelihood of the parameters of these N-body models. This required a

total of 19 000 model evaluations. Whereas MCMC methods require the sequential evaluation

of theseN-body models, GPE is trivially parallelizable, and hence provides a clear computational

advantage. Ural et al.’s work has shown that the existing observational data can tell us a lot more

about the history of the Milky Way satellites than we might have expected, provided we have the

modelling tools and computational resources. I would be able to fit models to all the dSph galax-

ies for which we have good enough data. This would allow me to determine the masses of the

Milky Way satellites both now and in the past, when they first fell onto the Milky Way. We might

emulate the likelihood obtained by matching the final simulation snapshot to the observed data,
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or we might emulate the snapshots themselves. It is not clear which approach would gives us the

greater insight, or which is most computationally efficient. Both approaches are worth exploring.

It is also the case that I have considered only the application ofGPE to scalar-valuedmultivari-

able functions. But GPE may also be applied to vector- or matrix-valued multivariable functions,

in which case it is known asmultitask GPE (Bonilla et al., 2008). We may thus use GPE when the

output of our simulation is an image, or full probability distribution function. Whereas GPE has

been applied to a variety of astrophysical and cosmological tasks, multitask GPE is, to the best of

my knowledge, new to these fields. Using this method I plan to characterize the dependence of

tidal tails on their pre-infall properties. Like scalar-valued GPE, multitask GPE has broad appli-

cability and may be used for fields outside galactic dynamics. Some possible applications include

the emulation of: the distribution of exoplanetary orbits after migration through their exosolar

systems and the distribution of exoplanetary orbits in stellar clusters. In both cases multitask

GPE could be used to predict a tuple quantifying the PDF in question (say, the mean, variance,

and skewness of that PDF).

Ultimately I would like to develop robust methods for modelling the complete evolutionary

histories of dSph galaxies. This would involve the development of hybrid N-body and hydro-

dynamical models that contain both dynamics and chemistry. Again, GPE would allow me to

explore greater regions of parameter space than has been possible, allowing me to vary the orbit,

pre-infall mass, initial gas distribution, and supernova history. Thesemodels would then be fitted

to observations of dwarf-spheroidal bulk motions and detailed chemical histories known from

Gaia and high-resolution spectroscopic data respectively. Can GPE be made robust for problems

of this kind? If it can then it will provide a powerful tool for the study of galactic dynamics.
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Appendix A

Basic definitions

For the sake of convenience I here recall some basic definitions concerning topological vector

spaces (Sec. A.1) and probability theory (Sec. A.2).

A.1 SPACES

A space is a set endowed with some structure. In the following definitions, X is an arbitrary set.

The definitive text on the subject is that by Bourbaki (1981).

Definition 110 (topological space). We say that a set T of subsets of X is a topology on X if

(a) ∅,X ∈ T ,

(b) T is closed under arbitrary unions, i.e. for all U ⊆ T we have ⋃U∈U U ∈ T , and

(c) T is closed under finite intersections, i.e. for all U1, . . . ,Un ∈ T we have ⋂n
i=1 Ui ∈ T .

In this case we say that (X,T ) is a topological space.

Definition 111 (Hausdorff space). A topological space (X,T ) isHausdorff if for all a, b ∈ Xwith

a ≠ b there exist U,V ∈ T with a ∈ U, b ∈ V, and U ∩V = ∅.

Definition 112 (metric). We say that a function d ∶ X × XÐ→ R≥0 is a metric on X if

(a) it is positive definite, i.e. if for all x, y ∈ X

d(x, y) = 0⇐⇒ x = y,
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(b) it is symmetric, i.e. if for all x, y ∈ X

d(x, y) = d(y, x),

(c) it obeys the triangle inequality, i.e. if for all x, y, z ∈ X

d(x, z) ≤ d(x, y) + d(y, z).

In this case we say that (X,d) is a metric space.

Definition 113 (pseudometric). We say that d ∶ X × X Ð→ R≥0 is a pseudometric on X if it is

symmetric and it obeys the triangle inequality. In this case we say that (X,d) is a pseudometric

space.

Remark 114. Apseudometric d induces onX a topology, which wewill denote byTd. This applies

in particular to metrics d. A topology induced by a metric will be Hausdorff, but a topology

induced by a pseudometric need not be Hausdorff in general.

Example 115 (pseudometric). Consider the function d ∶ Z × ZÐ→ R≥0 given by

d(m,n) ∶= ∣∣m∣ − ∣n∣∣,

for m,n ∈ Z. Then d is a symmetric positive semi-definite function, which satisfies the triangle

inequality. To see this, without loss of generality suppose that m ≥ n ≥ 0 and l ≥ 0, then

∣∣m∣ − ∣n∣∣ = m − n(A.1)

= m − l + l − n(A.2)

≤ ∣m − l∣ + ∣l − n∣(A.3)

= ∣∣m∣ − ∣l∣∣ + ∣∣n∣ − ∣l∣∣.(A.4)

Therefore (Z,d) is a pseudometric space but not a metric space. Nevertheless, since for example

d(1,−1) = 0, d is not a metric.

Definition116 (Cauchy sequence). Let (X,d) be ametric space. A sequence (an)n inX isCauchy

if for all ε > 0 there exists N ∈ N such that for all m,n > N we have

∣an − am∣ < ε.(A.5)

Definition 117 (completeness of a metric space). A metric space (X,d) is complete if every

Cauchy sequence has a limit in X.
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Remark 118 (completeness of a pseudometric space). Just as for a metric space, we say that a pseu-

dometric space (X,d) is complete if every Cauchy sequence is convergent. However, since the

topology induced by a pseudometric need not in general be Hausdorff, limits of sequences need

not be unique.

A.1.1 Vector spaces

We consider only vector spaces over the field R.

Definition 119 (vector space). A vector space is a tuple V = (V;+,−, 0,μ), where (V;+,−, 0) is

an Abelian group and μ ∶ R × V Ð→ V is called ‘scalar multiplication’, and written αu = μ(α,u),

which together satisfy the axioms below.

The axioms are as follows. For all u, v ∈ V and α,β ∈ R we have:

(a) α(u + v) = αu + αv,

(b) (α + β)u = αu + βv,

(c) (αβ)u = α(βu), and

(d) 1u = u.

Definition 120 (linear independence, linear spanning, linear bases). Let V be a vector space.

A set A ⊆ V of vectors is linearly independent if

n
∑
i=1

αivi = 0 Ô⇒ α1 = α2 = ⋅ ⋅ ⋅ = αn = 0,

for all pairwise distinct v1, v2, . . . , vn ∈ A, and all α1,α2, . . . ,αn ∈ R. The linear span of A, which

we denote by span(A), is the set of elements

n
∑
i=1

αivi,(A.6)

for v1, v2, . . . , vn ∈ A and α1,α2, . . . ,αn ∈ R. We say thatA linearly spans V if span(A) = V. Finally,

A is a linear basis if it is linearly independent and linearly spans V.

Fact 121. Every vector space V has a linear basis, and any two linear bases of V have the same

cardinality. Moreover, for a set A the following are equivalent:

(a) A is a linear basis,

(b) A is a minimal linear spanning set,
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(c) A is a maximal linearly independent set.

Here, A ismaximal linearly independent if every proper superset B ⊃ A is not linearly independent.

Similarly, A is minimal spanning if every proper subset B ⊂ A is not linear spanning.

Definition 122. The linear dimension of V is the cardinality of some linear basis (equivalently, of

all linear bases) of V.

Definition 123 (normed vector space). Let V be a vector space and let ∥ ⋅ ∥ be a nonnegative

function

∥ ⋅ ∥ ∶ VÐ→ R≥0(A.7)

vz→ ∥v∥.(A.8)

The function ∥ ⋅ ∥ is a norm on V if

(a) it is positive-definite, i.e. if for all v ∈ V

∥v∥ = 0⇐⇒ v = 0,

(b) it is absolutely scalable, i.e. if for all k ∈ K and for all v ∈ V

∥kv∥ = k∥v∥,

(c) it obeys the triangle inequality, i.e. for all u, v ∈ V,

∥u + v∥ ≤ ∥u∥ + ∥v∥.

A pair (V, ∥ ⋅ ∥) is called a normed vector space.

Definition 124 (induced metric). Let (V, ∥ ⋅ ∥) be a normed vector space. The function

d ∶ V ×VÐ→ R≥0(A.9)

(v1, v2)z→
√
∥v1 − v2∥(A.10)

is a metric on V. Such a metric is said to have been induced by the norm.

Definition 125 (inner product). Let V be a vector space, and let ⟨⋅, ⋅⟩ be a function

⟨⋅, ⋅⟩ ∶ V ×VÐ→ R(A.11)

(v,w)z→ ⟨v,w⟩.(A.12)

The function ⟨⋅, ⋅⟩ is an inner product on V if
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(a) it is positive definite, i.e. if for all v ∈ V

⟨v, v⟩ = 0⇐⇒ v = 0,

(b) it is symmetric, i.e. if for all v,w ∈ V

⟨v,w⟩ = ⟨w, v⟩,

(c) it is linear in the first argument, i.e. if for all k ∈ R and for all u, v,w ∈ V,

⟨k(u + v),w⟩ = k(⟨u,w⟩ + ⟨v,w⟩).

A pair (V, ⟨, ⟩) is called an inner product space.

Remark 126. Because every inner product induces a norm, and every norm induces a metric, we

may naturally view every inner product space and every normed vector space as a metric space.

Thus is makes sense to speak of complete inner product spaces and complete normed vector

spaces.

Definition 127 (Banach space). A complete normed vector space is called a Banach space.

Definition 128 (Hilbert spaces). A complete inner product space is called a Hilbert space.

Remark 129. As we have seen, each inner product induces a norm, and this gives a function from

the set of inner products to the set of norms, which is not surjective in general.

Definition 130 (projection of a vector). Let U, V and W be vector spaces such that U = V⊕W.

An endomorphism π ∶ UÐ→ U is a projection if

π ∶ UÐ→ U(A.13)

v +wz→ v,(A.14)

for all v ∈ V and w ∈W.

Proposition 131. Let V be a vector space and let π ∶ V Ð→ V be a projection. Then π is idempo-

tent, i.e. π ○ π = π.

Proof. Clearly the map given in Definition 130 is idempotent.
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Proposition 132. Let V be a Hilbert space. Let {ei}i∈I be an orthonormal set, and let W ≤ V be

the closure of the span of {ei}i∈I. Write V = W ⊕W⊥, and form the orthogonal projection πW

such that πW(w + x) = w for all w ∈W and x ∈W⊥. Then for all v ∈ V,

πW(v) =∑
i∈I
⟨v, ei⟩ei,(A.15)

of which only countably many terms are non-zero.

Proof. A proof is given by Bourbaki (1981, Ch. V Sec. 2 No 3 Prop. 4).

A.1.2 Duals of vector spaces

Having defined a vector space, we may now define its dual.

Definition 133 (linear functional). LetV be a vector space. A linear functional (also linear form)

on V is a linear map f ∶ VÐ→ R.

Definition 134 (dual vector space). Let V be a vector space. Its dual vector space, V∗, is the set

of all linear functionals on V, endowed with the structure of a vector space.

Theorem 135. Let V be a vector space of finite dimension, and let V∗ be its dual vector space. Then

dimV∗ = dimV.

Proof. A proof is given by Bourbaki (1989, Ch. II Sec. 7 No 5 Thm. 4).

A.2 PROBABILITY

An excellent text on the foundations of probability is that by Kallenberg (1997).

A.2.1 Measure theory

If Ω is a set, then we denote its power set (i.e. the set of all subsets of Ω) by P(Ω).

Definition 136 (σ-algebra). A set M ⊆P(Ω) is a σ-algebra on Ω if

(a) ∅, Ω ∈M ,

(b) M is closed under complements, i.e. if A ∈M then Ω ∖A ∈M , and

(c) M is closed under countable unions, i.e. if Ai ∈ M for all i in a countable index set I

then ⋃i∈IAi ∈M .
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The pair (Ω,M ) is then called a measurable space.

Note that a σ-algebra is closed under countable intersections, by De Morgan’s Laws.

Definition 137 (measure). A measure on (Ω,M ) is a function μ ∶M Ð→ R≥0 ∪ {∞} such that

(a) μ(∅) = 0 and

(b) μ is countably additive, i.e. for (Ai)i∈I a countable family of pairwise disjoint elements of

M we have

μ(⋃
i∈I

Ai) =∑
i∈I

μ(An),

where the sum is interpreted as∞ if it diverges.

The triple (Ω,M ,μ) is then called a measure space.

Definition 138 (measurable function). Given two measurable spaces (Ω1,M1) and (Ω2,M2),

a function f ∶ Ω1 Ð→ Ω2 is measurable if

f−1(A) ∈M1,

for all A ∈ M2. (Note that f−1(A) denotes the preimage of A.) We write f ∶ (Ω1,M1) Ð→

(Ω2,M2) to indicated that f is measurable.

Definition 139 (push-forward measure). Let (Ω1,M1,μ) be a measure space, let (Ω2,M2) be

a measurable space, and let f ∶ (Ω1,M1) Ð→ (Ω2,M2) be a measurable function. We define the

push-forward measure to be

μf ∶M2 Ð→ R≥0 ∪ {∞}(A.16)

Az→ μ(f−1(A)),(A.17)

for A ∈M2. Some authors prefer the notation f∗μ for the push-forward measure μf.

Lemma 140.The push-forward measure μf, as defined above, really is a measure on (Ω2,M2).

Proof. The complement of a pre-image is the pre-image of the complement, and the union of

pre-images is the pre-image of the union.

Definition 141. Let (Ω1,M1,μ) be a measure space, and let f ∶ (Ω1,M1) Ð→ (Ω2,M2) be a

measurable function. The σ-algebra generated by f, which we denote by σ(f), is by definition the

smallest σ-algebra on Ω1 with respect to which f is measurable. In fact σ(f) is the pre-image of

M2 under f, i.e. the set of pre-images f−1(B), for B ∈M2.
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A.2.2 Lebesguemeasure

If I ⊆ R is an interval, then it is equal to either (a, b), (a, b], [a, b), or [a, b], for some a, b ∈

R ∪ {±∞}. The length of I is l(I) ∶= b − a, with appropriate meaning if either a or b is∞ or −∞.

Definition 142 (Outer measure). We define the outer measure on R to be the function

μout ∶P(R)Ð→ R≥0 ∪ {∞}(A.18)

Az→ inf{
∞
∑
n=0

l(In) ∣ A ⊆
∞
⋃
n=0

In, (In)n a countable family of intervals}.(A.19)

Importantly, we note that μout is not a priori a measure! We say A ∈P(R) is Lebesgue mea-

surable if

μout(X) = μout(X ∩A) + μout(X ∖A),

for all X ∈P(R).

Definition 143. We denote by MLeb the set of Lebesgue-measurable subsets of R.

In fact MLeb is a σ-algebra.

Definition 144 (Lebesgue measure). The Lebesgue measure, which we denote by μLeb, is the re-

striction of μout to MLeb.

Then (R,MLeb,μLeb) is a measure space.

Definition 145. The Borel σ-algebra, denoted MBor, is the σ-algebra generated by open subsets of

R.

Theorem 146 (Radon-Nikodym theorem). Let (X,M ) be a measurable space. Let μ and ν be

σ-finite measures on (X,M ). If ν is absolutely continuous with respect to μ then there exists a

measurable function f ∶ XÐ→ R≥0 such that

ν(A) = ∫
A
fdμ(A.20)

for all A ∈M ; and f is unique up to equality μ-almost everywhere.

Proof. A proof is given by Kallenberg (1997, Thm A1.3, p. 456).

The function f is called the Radon-Nikodym derivative and is denoted

dν
dμ

,(A.21)

and may be called the density of ν with respect to μ.
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A.2.3 Probability spaces

Definition 147 (probability measure). A measure P on (Ω,M ) is a probability measure if

P(Ω) = 1. Then the measure space (Ω,M ,P) is called a probability space.

If P is a probability measure, then P(A) ∈ [0, 1], for allA ∈M . As is customary, when dealing

with a probability measure P, we say ‘P-almost sure’ instead of ‘P-almost everywhere’.

Definition 148 (random variable). A random element of (Σ,N ) is a measurable function X ∶

(Ω,M )Ð→ (Σ,N ), for somemeasurable space (Ω,M ). A random variable is simply a random

element of (R,MBor). A random vector is a random element of (Rn,M n
Bor), where M n

Bor is the

σ-algebra of Borel subsets of Rn.

Remark 149. Let (Ω,M ,P) be a probability space and letX ∶ (Ω,M )Ð→ (R,MBor) be a random

variable. Recall that PX is the push-forward of P along X. Let B ∈ MBor be any Borel set. To

recover the usual notion of the ‘probability that X takes its value in B’, we may introduce the

following notation

p(X ∈ B) ∶= PX(B)(A.22)

P({ω ∈ Ω ∶ X(ω) ∈ B}).(A.23)

Recall the definition of a random process from Chapter 2.

Definition 150 (randomprocess). A random process (also stochastic process, random function, or

just process) is an indexed family of random variables on a probablity space Ω, which we denote

X = {Xt ∶ ΩÐ→ R}t∈T. We call T the index set, and any element t ∈ T an index.

Following (Kallenberg, 1997, p. 92), we let T̂ denote the set of finite subsets of T. ForA,B ∈ T̂,

with A ⊆ B, there is a projection

πB,A ∶ RB Ð→ RA

(xt)t∈B z→ (xt)t∈A.

A family P = (PA ∶ A ∈ T̂), where PA is a probability measure on RA, indexed by T̂, is projective if

PB ○ π−1B,A = PA, for all A ⊆ B ∈ T̂. A foundational result in the theory of random processes is the

following, due to Kolmogorov.

Theorem151 (Kolmogorov’s extension theorem). Let P = (PA ∶ A ∈ T̂) be a family of probability

measures, as above. Then P is projective if and only if there is a random process X = (Xt ∶ t ∈ T)

such that PA is the joint probability distribution of (Xt)t∈A, for all A ∈ T̂.

145



Proof. A proof is given by Kallenberg (1997, p. 92, Theorem 5.16).

A.2.4 Expectation and conditional expectation

For the rest of this chapter we fix a probability space Ω ∶= (Ω,M ,P). Given a random variable

X ∶ (Ω,M )Ð→ (R,MBor), and a set A ∈M , we write

PX(A) ∶= ∫
A
XdP,(A.24)

when the integral converges, when it does not we leave PX(A) undefined.

Definition 152 (expectation). Let X ∶ (Ω,M ) Ð→ (R,MBor) be a random variable which is

absolutely P-integrable. The expectation (also expected value) of X is

E(X) ∶= PX(Ω) = ∫
Ω
XdP.(A.25)

If X is not absolutely P-integrable then we leave the expectation of X undefined. We will say that

a random variable has finite expectation to mean that it is absolutely P-integrable.

Definition 153 (conditional expectation). Let X ∶ (Ω,M )Ð→ (R,MBor) be a random variable

with finite expectation, and let M0 ⊆M be a σ-algebra. A conditional expectation of X given M0

is a random variable X0 ∶ (Ω,M0)Ð→ (R,MBor) such that

∫
A
X0 dP = ∫

A
XdP, for all A ∈M0.(A.26)

In other words, X0 is such that PX0 = PX∣M0 . We denote such a random variable X0 by E(X ∣M0).

If Y ∶ (Ω,M )Ð→ (Σ,L ) is another random variable, the conditional expectation of X given

Y is E(X ∣ Y) ∶= E(X ∣ σ(Y)).1

We will justify the existence and uniqueness (up to P-almost sure equality) of E(X ∣M0) in

Proposition 156.

Remark 154. We may think of E(X ∣M0) as an approximation of X which is constrained by the

requirement of being a measurable function (Ω,M0) Ð→ (R,MBor). In particular, if M∅ =

{∅, Ω} denotes the most trivial σ-algebra on Ω, then E(X ∣M∅) is the constant function with

value E(X). To see this, note that any measurable function (Ω,M∅)Ð→ (R,MBor) is constant.

Lemma 155. Let X ∶ (Ω,M ) Ð→ (R,MBor) be a random variable with finite expectation. Then

PX ≪ P.
1Recall from Definition 141 that σ(Y) is the σ-algebra generated by Y.
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Proof. Let A ∈M and suppose that P(A) = 0. Then any integral on A with respect to P will be

zero, so in particular PX(A) = 0.

Proposition 156 (existence and uniqueness of conditional expectation). Let X ∶ (Ω,M ) Ð→

(R,MBor) be a random variable with finite expectation, and let M0 ⊆ M be a σ-algebra. The

conditional expectation E(X ∣M0) exists and is unique up to P-almost sure equality.

Proof. We have already argued in Lemma 155 that PX ≪ P. Therefore PX∣M0 ≪ P∣M0 . Moreover,

both PX∣M0 and P∣M0 are finite: in the former case by assumption that X has finite expectation,

and in the latter case by assumption that P is a probability measure. Therefore, we may apply the

Radon–Nikodym Theorem (for signed measures) to obtain a measurable function

X0 ∶=
dPX∣M0

dP∣M0

∶ (Ω,M0)Ð→ (R,MBor),(A.27)

which is absolutely P∣M0-integrable such that

PX∣M0(A) = ∫A
X0 dP∣M0 , for all A ∈M0.(A.28)

Note that X0 is unique up to P-almost sure equality. Unpacking the equation in (A.28), we have

∫
A
XdP = ∫

A
X0 dP∣M0 , for all A ∈M0.(A.29)

Finally, since integration is ‘insensitive to refinement’ (see (Tao, 2011, Exercise 1.4.40(v))), X0 is

absolutely P-integrable and

∫
A
XdP = ∫

A
X0 dP, for all A ∈M0,(A.30)

as required.
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Appendix B

Derivatives of the squared-exponential

covariance function

The squared-exponential covariance function (Ch. 2, Ex. 58) is given by the formula

k(s, t) ∶= σ2 exp(−1
2
(s − t)tM(s − t)) .(B.1)

Its first- and second-order partial derivatives are given by the formulas

∂k(s, t)
∂s

= −k(s, t)M(s − t),(B.2)

∂k(s, t)
∂t

= −∂k(s, t)
∂s

,(B.3)

∂2k(s, t)
∂s∂st

= k(s, t)M ((s − t)(s − t)tM − I) ,(B.4)

∂2k(s, t)
∂s∂st

= ∂2k(s, t)
∂s∂st

, and(B.5)

∂2k(s, t)
∂s∂st

= −∂
2k(s, t)
∂s∂st

.(B.6)
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