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Abstract

This thesis contains three main chapters that explore various issues related to natu-

ral resources, climate change and long-term economic growth. In Chapter 2, we exam-

ine the conditions under which endogenous long-term economic growth will emerge in an

overlapping-generation model with productive non-renewable resources. We formally prove

that the elasticity of substitution between labour and natural resource input plays a crucial

role in generating endogenous long-term economic growth. In Chapter 3, we examine how

the substitutability between renewable and non-renewable resources will affect long-term

economic growth. To achieve this, we develop two discrete-time endogenous growth models

with both renewable and non-renewable natural resources. These two types of resources

enter into the production function through a constant-elasticity-of-substitution (CES) ag-

gregator. The ease or difficulty in substituting between these two inputs is then captured

by a single parameter, namely the elasticity of substitution. We then analyse how changes

in this elasticity will affect long-term economic growth. Finally, in Chapter 4, we develop a

multi-sector neoclassical growth model to analyse the effects of climate change on economic

growth and the allocation of productive inputs and outputs across sectors. A novel feature

of this model is that it takes into account the differential impact of global warming on

agricultural and non-agricultural productivity growth. In particular, the effect of climate

change on long-run growth is well-characterised. However, the impacts on long-run alloca-

tion of labour across sectors as well as value-added shares are ambiguous due to ambiguity

effect of the climate impact on capital return.
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Chapter 1

Introduction

This thesis consists of three self-contained essays on issues related to natural resource util-

isation, climate change and economic growth. We focus on three research questions. The

first question concerns the conditions under which endogenous long-term economic growth

can emerge in neoclassical growth models with productive non-renewable resources. The

second question is about how the substitutability between renewable and non-renewable

resources will affect long-term economic growth. The last question is about how global

warming will affect economic growth and sectoral allocation of productive inputs. These

questions will be addressed in Chapter 2-4, respectively. Chapter 5 provides a brief sum-

mary of the entire thesis.

In Chapter 2, we present an overlapping-generation model in which non-renewable re-

sources are used as input of production. The main objective of this chapter is to investigate

the conditions under which endogenous long-term economic growth will emerge. As is well-

known in the macroeconomics literature, endogenous growth models predict that long-run

economic growth is endogenously determined by the primitives (or deep parameters) of

the model economy. This type of model is in stark contrast to the standard neoclassical

model which predicts that long-run economic growth is solely determined by exogenous

technological improvements (Solow, 1956). Endogenous growth models have proved to be

useful in furthering our understanding of the factors and government policies that would

affect the long-run growth performance of an economy.

The study in Chapter 2 is motivated by the results in Agnani et al. (2005). These

authors extend a standard overlapping-generation model to take into account the necessity

of the flow of non-renewable resources in producing final goods. Assuming a Cobb-Douglas

production function in three inputs (physical capital, labour and natural resources), they

show that a unique balanced growth path exists in this economy under certain conditions,

and the long-term growth rate is endogenously determined. This raises a natural follow-up

question of whether the same result can be obtained under a more general specification of

production function. The main objective of Chapter 2 is to address this question. To this

1



end, we replace the Cobb-Douglas production function in Agnani et al. (2005) with a more

general specification. Our main findings can be summarised as follows: If the elasticity

of substitution between labour and natural resource is unitary, then long-term growth

rate is endogenously determined as in Agnani et al. (2005). However, if this elasticity is

not equal to one (or bounded away from one), then long-term economic growth is solely

determined by an exogenous technological factor as in the standard neoclassical growth

model. These results are useful because a unitary elasticity of substitution (i.e., the Cobb-

Douglas specification) is frequently rejected by empirical studies [see Henningsen et al.

(2018) and the references therein].

Chapter 3 considers how the long-run growth of output per capita will be affected by the

elasticity of substitution between renewable and non-renewable resources. It is now widely

accepted that renewable resource utilisation is important in reducing our dependency on

fossil energy. However, empirical evidence suggests that the process of switching from

non-renewable to renewable energy is no easy feat (Papageorgiou et al., 2017). Also, the

ability to switch is likely to differ across countries (Malikov et al., 2018). If this difference

reflects the heterogeneous supply-side structures across countries, how could it affect the

rate of long-run economic growth?

To address this question in Chapter 3, we extend two endogenous growth models à

la Romer (1986) and Barro (1990) by introducing renewable and non-renewable resources

as inputs of production. These two types of resources are combined in the production

function through a constant-elasticity-of-substitution (CES) aggregator. After developing

the models, we characterise the long-run growth rate of output per capita and examine

how changes in the elasticity of substitution between the two natural inputs will affect

the macroeconomy. To ensure a consistent comparison between different CES functions,

we adopt the CES normalisation procedure as proposed by Klump and de La Grandville

(2000). Under this normalisation, we find that changing the elasticity of substitution will

have no effect on the long-term growth rate in the Romer-style model, but it can affect

growth in the Barro-style model. The growth effect arises because changing the elasticity

of substitution between the two natural resource inputs will affect the allocation of labour

across sectors. We also provide the conditions under which increasing the substitutability

between these two inputs will promote growth.

Chapter 4 examines the macroeconomic implications of climate change for poor coun-

tries. By poor countries, we refer to those countries that rely heavily on agricultural

output and have insignificant contribution to global pollution and hence climate change.

We choose to focus on low-income countries because a number of reports have revealed

an unfair burden of climate change between advanced economies and under-developed

economies (Althor et al., 2016; IMF, 2017, among others). For example, IMF (2017) re-

ports how low-income countries will bear the economic brunt of climate change; despite

2



contributing very little to global greenhouse gas (GHG) emissions. On a deeper level, the

empirical investigation by Burke et al. (2015) suggests that climate change hits the poor

countries more heavily due to their reliance on agricultural activities and their geographical

location. In the same vein, the estimates from econometric models according to Dell et al.

(2012), and Letta and Tol (2019) show that the adverse consequences of higher tempera-

tures will hit poorer countries the hardest while the impacts on the rich are negligible and

inconclusive.

To investigate the long term impacts of climate change, we develop a multi-sector

neoclassical growth model along the line of Kongsamut et al. (2001), Ngai and Pissarides

(2007) and Acemoglu and Guerrieri (2008). Based on the empirical evidence in Burke et al.

(2015), we postulate that a rising global temperature will negatively affect productivity

growth in both agricultural and non-agricultural production, but the effect on agricultural

production is more damaging. We then investigate the effects of global warming on eco-

nomic growth and sectoral allocation. The comparison of two steady states reveals that

climate change always hurt the long-run growth rate of the poor. However, the structural

change effects in terms of employment share and value-added share are ambiguous.

Finally, Chapter 5 concludes and summarises the results in this thesis.
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Chapter 2

Endogenous Growth Implication in

Standard Neoclassical Growth

Models with Productive

Non-Renewable Resources

2.1 Introduction

The interdependence between long-run economic growth and non-renewable resource util-

isation has been extensively studied since the 1970s, a time when natural resource scarcity

was viewed as a potent threat to economic growth. Since then, most of the theoretical stud-

ies have focused on the conditions under which the depletion of non-renewable resources

would not limit long-run economic growth.1 Most of these studies have developed an en-

dogenous growth model that features a Cobb-Douglas production technology. However,

recent empirical studies [such as Kemfert (1998), Kemfert and Welsch (2000), van der Werf

(2008) and Henningsen et al. (2019)] have provided evidence showing that the elasticity of

substitution between different productive inputs are not equal to one. This raises the ques-

tion of whether the results of previous studies will continue to hold under a general form of

production function. The main objective of this paper is to examine the conditions under

which endogenous long-term economic growth will emerge in an overlapping-generation

model with productive non-renewable resources.

The general framework of non-renewable resources based economy is that the flow of

the natural resources will be combined with capital and labour to produce composite goods
1The analysis is conducted in both overlapping generations and infinitely-lived representative agent

models. See Dasgupta and Heal (1974), Solow (1974), Stiglitz (1974a), Stiglitz (1974b), Hartwick (1978),
Barbier (1999), Grimaud and Rouge (2003), Agnani et al. (2005), Groth and Schou (2007), Valente (2011)
, Benchekroun and Withagen (2011), Antony and Klarl (2019) among many others.
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that can be either consumed or invested to accumulate capital and then potentially gen-

erate perpetual growth. Existing studies show that even without exogenous technological

progress, perpetual growth in per-capita output is possible under certain conditions on

consumers’ preferences and production technology. For example, Solow (1974) extends an

infinitely-lived agent model of neoclassical growth to show that non-declining in per capita

consumption is possible if and only if the share of capital in production exceeds that of the

non-renewable resources in constant returns to scale Cobb-Douglas production function.

Hartwick (1978) extended this and showed how increasing returns to scale in Cobb-Douglas

production economy can ’override’ scarcity. Another example is Agnani et al. (2005) who

analyse the problem in an overlapping generations (OLG) model. They show that discount

factor must be sufficiently high to avoid global contraction, which refers to the situation un-

der which per capita consumption is declining overtime. The general mechanism of these

models is that the long-run depletion rate is constant and endogenously determined by

model parameters and this endogenous property is transferred to determining the long-run

economic growth. This property is common among existing studies and is valid regardless

of whether the fundamental structure of the model is an exogenous growth model or an

endogenous growth model.2

In this paper, we show that the elasticity of substitution between labour and natural

inputs play a crucial role in generating endogenous long-run economic growth. To achieve

this, we replace the Cobb-Douglas production function in Agnani et al. (2005) with a two-

level nested constant elasticity of substitution (CES) production function. The rest of the

model economy is the same as in Agnani et al. (2005). More specifically, we consider a

two-level CES function where the inner function combines effective natural input (natural

resource flow times exogenous resource-augmenting technology) with effective labour input

(labour force times exogenous labour-augmenting technology) and the outer function com-

bines physical capital with the composite input generated from the inner CES. We then

show that if the elasticity of substitution of the inner CES (i.e., between labour and natural

resource) is one, then the endogenous growth solution in Agnani et al. (2005) is preserved.

This result holds even if the outer CES is not Cobb-Douglas. But on the other hand, if

the elasticity of substitution between labour and natural resource is not equal to one, then

the long-run economic growth is solely determined by the exogenous labour-augmenting

technological factor. In this case, the model will feature exogenous economic growth.

An intuitive explanation of this finding is as follows. When the combination of the

effective flow of non-renewable input and the effective labour is under Cobb-Douglas, the

flow of non-renewable input can be combined with the combination of the labour and the
2By the fundamental structure of the model, we refer to that without natural input essentiality the

model is fundamentally exogenous or endogenous. See Stiglitz (1974b), Stiglitz (1974a), Benchekroun and
Withagen (2011), among others, for exogenous growth setting. For endogenous growth setting, see Barbier
(1999), Grimaud and Rouge (2003) and Groth and Schou (2007), for example.
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natural resource augmenting technologies as another layer of technologies. This property

turns the production technology out to be an equivalent technology that combines capital

and labour with a modified labour augmenting technology. The modified labour augment-

ing technology contains natural resource decay rate as a component of the growth factor.

Since the depletion rate is determined by various factors within and beyond the parame-

ters containing in the inner CES, the endogenous growth feature emerges. In contrast, if

Cobb-Douglas assumption is ruled out, the effective flow of non-renewable input and the

effective unit of labour cannot be combined but has to grow at a common growth rate

which is exogenously determined by the growth rate of population and the labour aug-

menting technology. This turns out that the long-run depletion rate will be determined by

the parameters in the inner CES. More importantly, the long-run output per capita must

grow by the rate of growth of the labour-augmenting technology along the long-run growth

path, and then, the long-run economic growth is exogenously given.

As a sensitivity analysis, we also consider two other possible ways of nesting the two-

level CES. Assuming that one and only one between the inner and the outer function is

Cobb-Douglas while the other is assumed to be a CES that the elasticity of substitution

differs from unity, our sensitivity examination reveals that if a long-run growth path exists,

it is an exogenous growth. This results arise because the pure combination of labour and

natural input in Cobb-Douglas fashion is impossible.

The analysis we introduce here can create some connections to Uzawa’s Steady State

Theorem (Uzawa, 1961). The Uzawa Theorem states that, within a neoclassical growth

model of two inputs including capital and labour, the existence of the long-run growth equi-

librium requires that the production technology must be either Cobb-Douglas or labour-

augmenting. The main similarity between the two studies is that our and his studies try to

find a condition under which a long-run stationary growth path exists. However, these two

studies have two main differences. First, our study focuses on the existence of endogenous

growth engine under exogenous growth setting; whereas, Uzawa highlights the condition

under which a long-run stationary growth path exists no matter the engine of growth is

exogenous or endogenous . Second, not only does our analysis concern capital and labour

but also the role of productive natural resources.

The rest of this chapter is organized as follows: In section 2.2, we describe the behaviour

of economic agents, and define the competitive equilibrium. We illustrate the conditions

under which the long-run competitive equilibrium exists and unique in subsection 2.3.1

and compare our results with related literature. In subsection 2.3.2, we extend the anal-

ysis by considering alternative production specifications. Some discussion is contained in

subsection 2.3.3. Finally, section 2.4 summarises the study.
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2.2 The Model

The basic assumptions of this framework are virtually identical to those of the Agnani

et al. (2005) model (AGI, herein after) except that the functional form of the production

function is generalised. The notations used here are identical to those given in AGI unless

otherwise stated, so we can compare our results with theirs.3

Consider a perfectly competitive economy where economic activity is demonstrated

over infinite discrete time periods, indexed by t ∈ {0, 1, 2, ...}. On the demand-side, we

consider a two-period OLG model, in which young and old agents coexist in each period.

On the supply-side, we considers a neoclassical growth model with two commodities, a

composite good and non-renewable natural resources (e.g., fossil fuels). The composite

good is produced with three factors of production, namely labour, physical capital and a

flow of non-renewable resources. This good can be either consumed in the same period, or

accumulated as capital for the next period. The flow of non-renewable resources is extracted

from the the entire stock of natural resources held by the old agents. The extraction cost

is nil in this model. All prices are expressed in units of the composite goods.

2.2.1 Consumers

In each time period t, a generation which consists of Nt consumers is born. The population

size of generation t is Nt = (1 + n)t, where n > 0 is the rate of population growth.

Consumers are identical within as well as across generations.

There is one representative consumer in each generation t who derives her lifetime

utility from consumption when young c1,t and consumption when old c2,t+1. Her lifetime

utility function is a log-linear function:

U(c1,t, c2,t+1) ≡ lnc1,t +
1

1 + θ
lnc2,t+1 (2.1)

where θ > 0 is the rate of time preference. The representative agent maximises the above

intertemporal utility function subject to her budget constraints faced all periods. In the

first period of life, the young receives a real wage income wt from supplying a unit of labour

supply inelastically to the composite good firms. A part of the real wage is then spent on

current consumption c1,t. The rest is devoted to buy assets in order to transfer the income

to the retirement period. There are two assets available including saving related to capital

accumulation st and the purchase of mt ownership rights of non-renewable resource stock.
3Fundamental contributions on the subject has been illustrated in both continuous-time infinite horizon

formulation and discrete-time overlapping generations setting [such as Stiglitz (1974b), Stiglitz (1974a),
Groth and Schou (2002), Agnani et al. (2005) and Benchekroun and Withagen (2011)]. We choose to
address the issue via a discrete time OLG model with productive non-renewable resources according to
Agnani et al. (2005). This extension allows us to compare our results to those of the existing literature.
As we will show later, our main results can apply to both formulations.
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This forms the first period budget constraint:

c1,t + st + ptmt = wt. (2.2)

where pt is the price of the resource stock.

In the second period, the representative agent is old. She retires from labour market

and consumes c2,t+1 out of her entire income from sale of all assets. This means that the

second period budget constraint is

c2,t+1 = (1 + rt+1)st + pt+1mt (2.3)

where rt+1 is the real interest rate.

Taking prices {wt, rt+1, pt, pt+1} as given, the problem of the representative agent born

in generation t is to choose a consumption profile {c1,t, c2,t+1} and an investment portfolio

{st,mt} so as to maximise her lifetime utility (2.1), subject to the budget constraints

(2.2) and (2.3) and the non-negativity constraints c1,t, c2,t+1, st,mt ≥ 0. The first order

conditions of this problem imply the following conditions:

(1 + θ)c2,t+1

c1,t
= 1 + rt+1, (2.4)

pt+1

pt
= 1 + rt+1. (2.5)

Equation (2.4) is the well-known Euler condition which describes the inter-temporal op-

timal consumption choice of the individual between the current and the future period.

This condition indicates that the individual will choose her consumption path so that the

marginal rate of substitution between current and future consumption is equal to the rela-

tive price of current consumption in terms of future consumption, which is the real interest

rate. Equation (2.5) is the Hotelling condition4 which contains an important intuition

about the equilibrium allocation of wealth between natural and physical capitals. Since

capital investment yields the rate of interest rt+1 while holding a unit of non-renewable

resources yields capital gain pt+1

pt
, equation (2.5) establishes an equilibrium decision rule

in the sense that the young will allocate her assets holding so that she will be indifferent

at the margin between (extracting and) selling and holding natural resources. Strictly

speaking, at the equilibrium point, the resource price rises at the rate of interest. Using

(2.2)-(2.5), we can derive the optimal level of consumption,

c1,t =
(1 + θ

2 + θ

)
wt and c2,t+1 =

(1 + rt+1

2 + θ

)
wt, (2.6)

4This condition is widely discussed in the literature concerning intertemporal allocation of natural
resources. See, for instance, Stiglitz (1974a, p.124), among others.
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and the optimal level of investment in physical capital,

st =
wt

2 + θ
− ptmt. (2.7)

2.2.2 Composite Good Production

The composite good sector comprises a large number of identical competitive firms. In

each period t, each firm hires labour (Nt), rents physical capital (Kt) and acquires extracts

of non-renewable resource (Xt) from the competitive factor markets, and produces output

(Yt) according to the following production function:

Yt = F
(
Kt, G(QtXt, AtNt)

)
(2.8)

The terms Qt and At are the indexes of a resource-augmenting technological factor and a

labour-augmenting technological factor, respectively. Both factors are assumed to grow at

some constant exogenous rate, denoted by q > 0 and a > 0, such that Qt = (1 + q)t and

At = (1 + a)t, for all t ≥ 0.

The production function (2.8) is a version of two-stage, three-factor production technol-

ogy. The first stage is given by a function G(·) that combines effective natural input (QtXt)

and effective labour (AtNt) to form a composite input, denoted by Zt = G(QtXt, AtNt).

The inner function is then nested into the outer function F (·) that combines the composite

input (Zt) with physical capital. In the terminology of Leontief (1947a, p.363), Leontief

(1947b, p.343) and Blackorby and Russell (1976, p.286), the duplet {QtXt, AtNt} is said

to be functionally separable from Kt. Allowing this kind of functional separability will

prove to be useful in our analysis without changing the main implications of AGI solution.

We will discuss about this later. Note that the two-stage nesting structure presented in

Eq. (2.8) is only one possible structure. In general, the production function can be nested

in three ways. For the purpose of illustration we focus in this subsection on this structure,

the other two nesting structures will be considered in subsection 2.3.2.

The properties of F (·) and G(·) are summarised in Assumption 2.1 and Assumption

2.2. Recall that an input is said to be essential for production if no output can be pro-

duced without some positive amount of this input (Dasgupta and Heal, 1974; Solow, 1974).

Throughout this paper, we will use Fi(·) to denote the partial derivative of F (·) with re-

spect to the ith argument, and Fij(·) to denote the partial derivative of Fi(·) with respect

to the jth argument, i, j ∈ {1, 2}. The partial derivatives of G(·) are similarly represented.

Assumption 2.1. Both F : R2
+ → R+ and G : R2

+ → R+ are twice continuously differ-

entiable, strictly increasing, strictly concave and exhibits constant returns to scale (CRTS)

in its arguments.

Assumption 2.2. Each input I ∈ {K,X,N} is either essential for production or its
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marginal product is unbounded when I is arbitrarily close to zero.

Assumption 2.1 is a list of regularity conditions, all of which are commonly used in

the economic growth literature. These conditions imply that the composite function in

(2.8) is twice continuously differentiable, strictly increasing, strictly concave and exhibits

CRTS in all three inputs. In neoclassical growth models (without natural resources), it

is also common to impose two other assumptions on the production function: First, both

physical capital and labour are essential for production. Second, the marginal product

of these inputs are unbounded as their quantity drop towards zero. These assumptions,

however, can be quite restrictive. For instance, among those production functions with

constant elasticity of substitution (CES), only Cobb-Douglas production functions (with

unitary elasticity of substitution) satisfy both of these assumptions.5 Our Assumption 2.2

gets around this issue by requiring only one of these conditions to hold. This suffices to

ensure that in any equilibrium all three inputs will be used in all time periods.6

In Appendix A.1, we show that Assumption 2.2 is satisfied by various forms of nested

CES production functions, including those that are frequently used in empirical studies. 7

For instance, the production function in (2.8) is a nested CES production function if F (·)
and G(·) are given by

F (Kt, Zt) = [αKη
t + (1− α)Zηt ]

1
η , with α ∈ (0, 1) and η < 1,

G(QtXt, AtNt) = [ϕ(QtXt)
ψ + (1− ϕ)(AtNt)

ψ]
1
ψ , with ϕ ∈ (0, 1) and ψ < 1.

This specification encompasses the production function in AGI as a special case.8 Specif-

ically, these authors assume that both F (·) and G(·) take the Cobb-Douglas form, i.e.,

η = ψ = 0:

F (Kt, Zt) = Kα
t Z

1−α
t , with α ∈ (0, 1), (2.9)

5The same point has also been made by Dasgupta and Heal (1974, p.14) and Solow (1974, p.34) in
natural resource economics. These studies consider production functions that use physical capital and
natural resources as inputs.

6The argument goes like this: It seems natural and reasonable to focus on equilibrium with strictly
positive output in every period. If an input is deemed essential for production, then a strictly positive
amount must be used in every period in this kind of equilibrium. On the other hand, since both factor
markets and goods markets are competitive, the price of any input must be equated to its marginal product
in equilibrium. If the marginal product of an input is unbounded at or around zero, then the marginal
benefit of increasing this input from zero to ε > 0, where ε is infinitesimal, will be infinitely large but the
marginal cost will be finite. Hence, it is never optimal to use a zero amount of this input.

7Several existing studies have estimated the input elasticities using all possible kinds of the two-level
nested CES. It seems that "double Cobb-Douglas" specification is statistically rejected. Examples of these
empirical studies include Kemfert (1998), Kemfert and Welsch (2000), van der Werf (2008) and Henningsen
et al. (2019). For instance, Henningsen et al. (2019) use German data for the years 1991-2014 to estimate
the CES production function with capital, labour, and energy as inputs for the nesting CES structure
(2.8); K(XN). They found perfect substitution for the inner CES and found gross substitution at the rate
of 1.42 for the outer CES. For estimations of the other specifications; X(KN) and N(XK), see their Table
4.

8See equation (5) in Agnani et al. (2005, p.391).
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G(QtXt, AtNt) = (QtXt)
v

1−α (AtNt)
β

1−α , with β, v ∈ (0, 1), (2.10)

and β + v = 1 − α. Under this double Cobb-Douglas specification, the two technological

factors At and Qt are observationally equivalent to a single Hicks neutral technological

factor (total factor productivity), Bt ≡ QvtA
β
t . Hence, the separate effects of At and Qt

are not considered in AGI.

Because all the composite good firms have the same CRTS production function, an

aggregate production function immediately appears and turns out to be the same as the

identical CRTS production functions of the individual firms. We are able to focus on just

a single representative firm whose production represents the aggregate production in this

sector. Let Rt be the rental price of physical capital and δ ∈ (0, 1) be the depreciation

rate. The representative firm hires inputs to maximise profit:

max
{Kt,Xt,Nt}

{
F
(
Kt, G(QtXt, AtNt)

)
−RtKt − ptXt − wtNt

}
and the first-order conditions imply that each factor is paid according to its marginal

product:

Rt = rt + δ = F1

(
Kt, G(QtXt, AtNt)

)
, (2.11)

pt = QtF2

(
Kt, G(QtXt, AtNt)

)
G1(QtXt, AtNt), (2.12)

wt = AtF2

(
Kt, G(QtXt, AtNt)

)
G2(QtXt, AtNt). (2.13)

2.2.3 Natural Resources

At time t = 0, the economy is endowed with a (finite) stock of non-renewable resources,

M0 > 0.9 As in Agnani et al. (2005), we assume a grandfathering process: at the beginning

of period t, the entire stock of natural resources Mt is held by the old agents. Then,

the old agents sell the entire stock of natural resources at the unit price pt to support

their consumptions. Part of Mt is extracted costlessly as natural input in composite good

production, Xt, while the remaining stock is sold to the young agents to constitute resource

assets,Mt+1.10 Define the extraction rate at time t as τt ≡ Xt
Mt
∈ (0, 1). The stock of natural

9At time 0, the initial stock of physical capital and non-renewable resources are owned by a group of
"initial old" consumers. The decision problem of these comsumers is trivial and does not play any role in
the analysis of balanced growth equilibrium.

10This notation is slightly different from the one in AGI. Specifically, these authors define Mt as the
stock remaining at the end of time t (after extraction). This difference is immaterial since we both focus
on balanced growth path along which Mt depletes at a constant rate.

11



resources then evolves over time according to

Mt+1 = Mt −Xt = (1− τt)Mt. (2.14)

2.2.4 Competitive Equilibrium

The competitive equilibrium can be defined as follows.

Definition 2.1. Given the initial conditions: K0 > 0 and M0 > 0, a competitive equi-

librium of this economy includes sequences of allocation {c1,t, c2,t+1, st,mt}∞t=0, aggregate

inputs {Kt, Nt, Xt}∞t=0, natural resources {Mt}∞t=0 and prices {wt, Rt, pt, rt+1}∞t=0 such that,

(i) Given prices, {c1,t, c2,t+1, st,mt} solves the consumer’s problem in each period t ≥ 0.

(ii) Given prices, {Kt, Nt, Xt} solves the firm’s problem in each period t ≥ 0.

(iii) The stock of natural resources evolves according to (2.14).

(iv) All market clear in every period, i.e., Kt+1 = Ntst and Mt+1 = Ntmt for all t ≥ 0.

2.3 Balanced Growth Path Competitive Equilibria

2.3.1 Theoretical Results

As in AGI, we focus on a balanced growth path (BGP) competitive equilibrium which is

defined as follows.

Definition 2.2. A BGP competitive equilibrium is a competitive equilibrium that satisfy

three additional conditions:

(v) Output per worker (Yt/Nt) grows at a constant rate γ∗ − 1, for some γ∗ > 0.

(vi) The physical capital-output ratio is constant over time, i.e., Kt = κ∗Yt, for some

κ∗ > 0.

(vii) The rate of return from physical capital is constant over time, i.e., rt = r∗ for

some r∗ > 0.

(viii) The extraction rate of non-renewable resources is positive and constant over time,

i.e., τt = τ∗, for some τ∗ ∈ (0, 1).

Strictly speaking, a BGP competitive equilibrium is a competitive equilibrium along

which output per worker grows steadily, capital to output ratio and the rate of return on

capital are constant and the extraction rate is time-invariant.

Combined with Assumption 2.1, Assumption 2.2 and the BGP restrictions (v)-(vii),

a competitive equilibrium (if exists) constitutes the long-run trajectories of all quantities

and prices. Conditions (v) and (vi) are very common restrictions in the literature of long-

run economic growth: these conditions imply that the long-run behavior of the model is

consistent with the long-term economic growth observations made by Kaldor (1961) and
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many subsequent studies.11 Taken together, these two conditions imply that Yt and Kt

must be growing steadily at the common growth rate γ∗(1 + n) in any BGP competitive

equilibrium, i.e.,
Kt+1

Kt
=
Yt+1

Yt
= γ∗(1 + n)

Condition (viii) is a common assumption in economic growth models with natural re-

sources.12 An immediate implication of this is that Xt and Mt must be decreasing at the

same rate (1− τ∗) in any BGP competitive equilibrium, i.e.,

Xt+1

Xt
=
Mt+1

Mt
= 1− τ∗.

Before proceeding any further, it will prove useful to review some fundamental results

in AGI in order to create comparison between our results and theirs. In AGI study, they

propose the Cobb-Douglas production function:

Yt = BtK
α
t N

β
t X

v
t , α, β, γ > 0 α+ β + γ = 1

where Bt refers to total factor productivity (TFP) and is assumed to grow at an exogenous

constant rate b. Based on this specification, a BGP competitive equilibrium exists if there

exists a stationary growth rate γ∗ > 0 and a stationary extraction rate τ∗ ∈ (0, 1) satisfying

γ∗(1 + n)

1− τ∗
=

α(1 + n)(2 + θ)γ∗

β − (2 + θ)v
(

1−τ∗
τ∗

) + 1− δ, (2.15)

γ∗ = (1 + b)
1

1−α
(1− τ∗

1 + n

) v
1−α

. (2.16)

As illustrated in their Lemma 1 and Proposition 1, a BGP competitive equilibrium exists

and unique.13 In addition, the stationary extraction rate is strictly greater than (2+θ)v
β+(2+θ)v ≡

τAGI and less than one, i.e., τ∗ ∈ (τAGI , 1). Once (τ∗, γ∗) is obtained, we can get the steady

state real interest rate r∗ and the stationary capital to output ratio κ∗:

1 + r∗ =
γ∗(1 + n)

1− τ∗
and κ∗ =

α

r∗ + δ
. (2.17)

In the sequel, we will refer to this as the AGI solution.

A crucial implication of the AGI solution is that long-run economic growth engine is

endogenous. The long-run growth rate of output per worker is endogenously determined
11According to Kaldor’s facts, in an economy, (i) the growth rate of output, (ii) the capital-labor ratio,

(iii) the capital-income ratio, (iv) capital and labor shares of income and (v) the rate of return on capital
are constant (in an approximate sense) over a long period of time. For subsequent studies, see Jones and
Romer (2010), for example.

12See, Stiglitz (1974a), Barbier (1999), Grimaud and Rouge (2003), Groth and Schou (2007), among
many others.

13See Agnani et al. (2005, p.394-395).
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by a number of factors; including the TFP growth rate (b), population growth rate (n), de-

preciation rate (δ), the share of factor incomes in total output (α, β, v), and the consumers’

rate of time preference (θ).

For clarity, consider two alternative economies. For the AGI economy, if we decompose

Bt according to Bt ≡ QvtA
β
t and define k̂t ≡ Kt

AtNt
as physical capital per effective unit of

labour, and x̂t ≡ QtXt
AtNt

as effective unit of resource input. Then, the AGI solution implies

that
k̂t+1

k̂t
=
( x̂t+1

x̂t

) v
1−α

=
[(1 + q)(1− τ∗)

(1 + a)(1 + n)

] v
1−α

, (2.18)

where At+1

At
≡ 1 + a and Qt+1

Qt
≡ 1 + q. Depending on (2.15) - (2.16), k̂t and x̂t can be

monotonically increasing, monotonically increasing or constant over time along the unique

BGP competitive equilibrium. Since the output per worker is:

Yt
Nt

= Atk̂
α
t x̂

v
t ,

the growth rate of output per worker is not necessarily equal to that of the factor At. In

particular, if the solution of (2.18) satisfies (1 + q)(1 − τ∗) > (1 + a)(1 + n), then the

long-term growth rate under the AGI solution is strictly greater than 1 + a. Alternatively,

consider an economy without productive natural input, i.e., an economy with v = 0 in AGI

production. In this economy, non-renewable resource is not essential in the production

process and Bt ≡ A1−α
t .14 In any BGP competitive equilibrium, the constancy of rt

immediately implies a constant k̂t. As a result, capital per worker and output per worker

must be growing at the rate At+1

At
≡ 1 + a, so that γ∗ = 1 + a. Obviously, this is in

stark contrast to the results from AGI. Nevertheless, this result is nothing new. When

natural input necessity is muted, the AGI model turns out to be a standard OLG model

with exogenous technological progress. As is widely known, the neoclassical growth model

predicts that, in the long run, output per capita will grow at the exogenously determined

rate of technological progress.15

An interesting question is whether the endogenous growth feature is still preserved un-

der more general production function specifications. To answer the question, we introduce

a more generalised functional form within the class of two-level CES production functions

into the general form (2.8). We, then, show our main findings in Theorem 2.1 and Theorem

2.2.

To begin with, let us briefly review the CES functional form. Define g(x̂) ≡ G(x̂, 1),

for all x̂ ≥ 0. Under Assumption 2.1, g(·) is twice continuously differentiable, and satisfies
14It follows immediately that τt = τ∗ = 0 for all t.
15This result holds in both overlapping generations models and models with infinitely lived consumers.

14



g′(·) > 0 and g′′(·) < 0. Due to the linear homogeneity of G(·), we can write

G(QX,AN) = AN · g(x̂).

As shown in Arrow et al. (1961), Palivos and Karagiannis (2010) and Moysan and Senouci

(2016) , the elasticity of substitution of G(·) can be expressed as16,

σG(x̂) = − g
′(x̂)

x̂g(x̂)
· g(x̂)− x̂g′(x̂)

g′′(x̂)
> 0, for all x̂ > 0. (2.19)

If σG(·) is a constant function, say σG(x̂) = 1
1−ψ , ψ < 1, for all x̂ > 0, the G(·) takes the

CES form, i.e.,

G(QX,AN) =
[
ϕ(QX)ψ + (1− ϕ)(AN)ψ

] 1
ψ
, with ϕ ∈ (0, 1) and ψ < 1. (2.20)

If, in addition, ψ = 0 so that σG(·) is identical to unity, then G(·) has the Cobb-Douglas

form. We can illustrate the CES form of F (·) using the same argument.

In what follows, we will state two main theorems of our study. In Theorem 2.1, we will

show that if σG(·) is equal to one, then the long-term growth factor γ∗ and the extraction

rate τ∗ can be determined similarly as in the AGI solution. In this case, endogenous

growth feature is preserved while the Cobb-Douglas specification of F (·) is sufficient but

not necessary. This finding provides a partial generalisation of AGI result. However,

Theorem 2.2 show that if σG(·) differs from one, then any balanced growth equilibrium (if

exists) must satisfy γ∗ = (1 + a) and (1 + q)(1− τ∗) = (1 + a)(1 + n). This means that γ∗

and τ∗ are determined exogenously and, thus, the AGI solution is no longer valid.

Theorem 2.1. Suppose that Assumptions 2.1 and 2.2 are satisfied and G(·) takes the

following Cobb-Douglas form:

G(QtXt, AtNt) = (QtXt)
1−φ(AtNt)

φ, with φ ∈ (0, 1). (2.21)

Then any BGP competitive equilibrium (if exists) must satisfy

γ∗ = (1 + a)φ
[(1 + q)(1− τ∗)

1 + n

]1−φ
, (2.22)

F1(1, χ∗) = r∗ + δ, (2.23)

(1 + r∗)(1− τ∗) = γ∗(1 + n), (2.24)
16As explained in (Arrow et al., 1961, p. 228–229) this expression is derived under two assumptions: (i)

both the factor markets and goods markets are competitive and (ii) G(·) exhibits CRTS. Both assumptions
are satisfied in our model.
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γ∗(1 + n) = χ∗F2(1, χ∗)
[ φ

2 + θ
−
(1− τ∗

τ∗

)
(1− φ)

]
, (2.25)

where χt ≡ x̂1−φt

k̂t
. In addition, if a BGP competitive equilibrium exists, then

τ ∈ (τ , 1)

where τ ≡ (2+θ)(1−φ)
φ+(2+θ)(1−φ) ∈ (0, 1).

Theorem 2.1 imposes four necessary conditions that must be jointly fulfilled in any BGP

competitive equilibrium. In effect, the theorem provides a system of non-linear equations

that can be used to characterise the steady state values of four key variables including the

growth factor of per-worker output (γ∗), the extraction rate of natural resources (τ∗), the

net rate of return on physical capital (r∗) and the transformed variable χt (χ∗). If a BGP

competitive equilibrium exists, the trajectories of all other variables in that equilibrium

can be derived using these four values. Similar to the AGI solution, the existence of a BGP

competitive equilibrium implies that the steady state extraction rate τ∗ must be strictly

greater than a certain threshold τ .

If F (·) takes the CD form as in AGI, then

χ∗ =
(r∗ + δ

α

) 1
1−α and χ∗F2(1, χ∗) =

1− α
α

(r∗ + δ).

Upon substitution these into the system (2.22) - (2.25) and setting φ = β
1−α and 1− φ =

v
1−α , we can obtain

α(2 + θ)(1 + n)γ∗

β − (2 + θ)v
(

1−τ∗
τ∗

) = r∗ + δ =
γ∗(1 + n)

1− τ∗
− (1− δ),

which is the same equation that appears in AGI’s Lemma 1 part (i). Their Proposition 1

then establishes the existence and uniqueness of a BGP competitive equilibrium.

We now show that similar results exist when F (·) is a CES function with elasticity of

substitution greater than one.

Proposition 2.1. Suppose F (·) is given by

F (Kt, Zt) =
[
αKη

t + (1− α)Zηt

] 1
η
, (2.26)

with α ∈ (0, 1) and elasticity of substitution σF ≡ (1 − η)−1 ≥ 1. Suppose G(·) takes

the Cobb-Douglas form as in (2.21). The the economy has at least one BGP competitive
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equilibrium. If, in addition,[
(1 + a)φ(1 + q)1−φ

(1 + n

1− τ

)φ
− (1− δ)

]η
> α(1− η)1−η (2.27)

where τ is defined as stated in Theorem 2.1, then a unique BGP competitive equilibrium

exists.

Under certain situations, the inequality (2.26) is always satisfied. For example, when

η = 0 the condition (2.26) is immediately implied. In this case our and AGI economies

turned out to be identical. This proposition subsumes the AGI solution as a special case.

Thus, assuming double Cobb-Douglas is sufficient but not necessary when concerning en-

dogenous growth feature induced by an introduction of productive non-renewable resources.

Another example is when capital fully depreciates at the end of each period; δ = 1, which

is a common assumption in OLG models.

However, it seems to be more difficult to verify whether a BGP competitive equilibrium

exists and unique when σF < 1; or equivalently η < 0. In this situation, slight changes in

σF < 1 can often lead to drastic changes in the results. We will demonstrate this via the

following numerical example. To do so, we combine (2.21)-(2.26) to form a single non-linear

equation of τ . A BGP competitive equilibrium exists if there is τ∗ ∈ (τ , 1) satisfying:

(2 + θ)(1 + a)φ(1 + q)1−φ(1− τ)1−φ(1 + n)φ

φ−
(

1−τ
τ

)
(2 + θ)(1− φ)︸ ︷︷ ︸
≡Λ(τ)

=

[(r(τ) + δ

α

) η
1−η − α

]
r(τ) + δ

α︸ ︷︷ ︸
≡Γ(τ)

(2.28)

where r(τ) ≡ (1+a)φ(1+q)1−φ(1−τ)−φ−1. Next, we assign value to the model parameters.

Suppose that one period lasts for 25 years. We set θ = 1.775 to ensure the annual subjective

discount factor of 0.96. As the average annual employment growth rate of U.S. employment

during 1953 and 2008 is 1.6 %, we choose n = (1 + 0.016)25 − 1 = 0.4857. The average

annual growth rate of TFP is taken to be 1.05%. The estimate is based on Feng and Serletis

(2008) who estimate productivity measurement in United States manufacturing based on

annual data over the period from 1953 to 2001. The implied value of (1+a)φ(1+ q)1−φ−1

is (1+0.0105)25−1 = 0.2984. Also, we set δ = 1, φ = 0.38 and α = 0.24. Finally, we assign

σF = 0.62 and 0.65. These values are chosen according to empirical studies concerning

estimations of CES production functions with capital, labour and energy. Some of the

estimations are summarised in Henningsen et al. (2019, Table 4).17 Once all the parameter

are assigned their value, we can verify numerically whether the economy possesses its BGP

or not.
17In Henningsen et al. (2019, Table 4), the elasticity of substitution between the inputs of F (·) is denoted

by σ(LE)K . Also, in the existing empirical studies, it is conventional to use commercial energy consumption
as a proxy for natural resource input. See section 3.3 for a brief discussion on the empirical literature.
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Figure 2.1: Existence of BGP competitive equilibria when σF < 1. Parameter values are:
θ = 1.775, n = 0.4857, (1 + a)φ(1 + q)1−φ − 1 = 0.2984, δ = 1, φ = 0.38, α = 0.24, σF =
0.62, 0.65.

The numerical example is displayed in Figure 2.1. In the figure, we plots Λ(τ) and Γ(τ)

under two different values of σF , namely 0.62 and 0.65. As can be seen in the diagram,

(2.28) has no solution when σF = 0.62 (or equivalently, η = -0.6129). This means that

there is no BGP competitive equilibrium in this situation. In contrast, when σ = 0.62 (or

equivalently, η = -0.5385), (2.28) has two solutions including τ∗ = 0.9695 and τ∗∗ = 0.9964.

In this situation, two BGP competitive equilibria exist.

Before moving forward, the first finding is reminded here. When considering a two-level

CES production technology where the inner function combines effective natural input and

effective labour while the outer one combines capital with corresponding input derived from

the inner function, we have shown that restricting the elasticity of substitution of the inner

production to unitary plays a crucial role in preserving the AGI solution of neoclassical

growth model with productive non-renewable resource. This result is valid no matter what

is the assigned value of the elasticity of substitution of the outer production. An interesting

question is what will happen when we deviate the elasticity of substitution of the inner

production from one. This is the next task we are going to investigate.

We now turn to the case when σG(x̂) 6= 1 for all x̂ > 0. The following theorem provide

the main finding in this case.

Theorem 2.2. Suppose that Assumption 2.1 and 2.2 are satisfied. Suppose that the elas-

ticity of substitution of G(·) is never equal to one. Then, any balanced growth path (if

exists) must satisfy

γ∗ = (1 + a), r∗ = q, and 1− τ∗ =
(1 + a)(1 + n)

1 + q
(2.29)
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In addition, such an equilibrium will have k̂t = k̂∗ and x̂t = x̂∗ for all t, where k̂∗ and x̂∗

are jointly determined by

F1

(
k̂∗, G(x̂∗, 1)

)
= q + δ, (2.30)

(1 + a)(1 + n)k̂∗ = F2

(
k̂∗, G(x̂∗, 1)

)[G2(x̂∗, 1)

2 + θ
−
(1− τ∗

τ∗

)
x̂∗G1(x̂∗, 1)

]
. (2.31)

An explanation of Theorem 2.2 is as follows. If the elasticity of substitution of G(·) is

not equal to one; i.e. if G(·) is not a Cobb-Douglas function, then either there is no BGP

competitive equilibrium or any BGP competitive equilibria will always have a common

growth rate in per-capita variables that is solely determined by the exogenous growth

factor At. Thus, endogenous growth feature as in AGI does not hold. In other words,

there is no room for the AGI solution. The theorem also clarifies two major differences

between the two exogenous growth factors At and Qt. Firstly, the growth rate of per

worker variables are entirely determined by the growth rate of At, while the real interest

rate is entirely determined by the growth rate of Qt. Secondly, all else unchanged, a higher

growth rate in At will suppress the extraction rate τ∗ whereas a higher growth rate in Qt
will promote it. Since τ∗ must be confined between zero and one, it is necessary to impose

the restriction 1 + q > (1 + a)(1 + n). Note that the solution in Theorem 2.2 is still valid

even if there is no population growth (i.e., n = 0) and no labour-augmenting technological

improvement (i.e., a = 0). But the growth rate of resource-augmenting technological factor

Qt must remain strictly positive. This shows that a sufficiently high growth rate of this

factor is most crucial for this type of solution.

We use specific forms in here to prove existence and uniqueness. To do so, let both F (·)
and G(·) take the CES forms (2.26) and (2.20), respectively. But here we do not impose

any restriction on σF = (1− η)−1. Define the notation Θ according to

Θ ≡ q + δ

α(2 + θ)

[(q + δ

α

) η
1−η − α

]
.

Then, a characterization of the existence and uniqueness of a BGP competitive equilibrium

is summarized in the following proposition.

Proposition 2.2. Suppose that F (·) takes the CES form in (2.26), with α ∈ (0, 1) and

η < 1, and G(·) takes the CES form in (2.20). Suppose further that min{Θ, 1 + q} >
(1 + a)(1 + n). Then, there exists a unique BGP competitive equilibrium that satisfies

(2.29)-(2.31).

It is worth noting that the above result covers the special case in which F (·) and G(·)
have the same constant elasticity of substitution, i.e., ψ = η. In this case, the overall
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production becomes

Yt =
[
αKη

t + (1− α)ϕ(QtXt)
η + (1− α)(1− ϕ)(AtNt)

η
] 1
η

which is a familiar a Dixit-Stiglitz aggregator.

2.3.2 Alternative Specifications of Production Function

In this subsection we consider two alternative ways of combining the three inputs in the

composite good production. These alternative specifications are:

Yt = F
(
AtNt, G(Kt, QtXt)

)
, (2.32)

Yt = F
(
QtXt, G(Kt, AtNt)

)
. (2.33)

As can be seen, we still use G(·) to represent the "inner" aggregate function and F (·) to

represent the "outer" aggregate function in (32) and (33). This primitive is nothing but

used in order for consistency preservation across all three specifications. If both G(·) and

F (·) take the Cobb-Douglas form, then the production functions (2.8), (2.32) and (2.33)

coincide with AGI’s production function. The long-run endogenous growth feature arises in

these specifications. However, an interesting question is whether the long-run endogenous

growth feature is still preserved if either G(·) or F (·) but not both is allowed to take the

Cobb-Douglas form.

In order to investigate this, we consider four different parametric production functions

based on (2.32) and (2.33). In the first two specifications, the inner aggregator function is

Cobb-Douglass but the outer one is given by a CES function, so that

Yt =

{
ϕ(AtNt)

ψ + (1− ϕ)
[
Kα
t (QtXt)

1−α
]ψ} 1

ψ

, (2.34)

Yt =

{
ϕ(QtXt)

ψ + (1− ϕ)
[
Kα
t (AtNt)

1−α
]ψ} 1

ψ

, (2.35)

with α ∈ (0, 1), ϕ ∈ (0, 1) and ψ < 1. For the other two specifications, the inner aggregator

function is a CES function but the outer one is given by a Cobb-Douglas function:

Yt =
[
ϕKψ

t + (1− ϕ)(QtXt)
ψ
] 1−β

ψ
(AtNt)

β, (2.36)

Yt = (QtXt)
v
[
ϕKψ

t + (1− ϕ)(AtNt)
ψ
] 1−v

ψ
, (2.37)
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with β ∈ (0, 1), v ∈ (0, 1), ϕ ∈ (0, 1) and ψ < 1.18 Even though the functional forms (2.34)

- (2.37) may look very different in appearance, they all share the same implications for the

long-run growth engine. In particular, the existence of any BGP competitive equilibrium

would imply that γ∗ = 1 + a, r∗ = q and (1 − τ∗) = (1 + a)(1 + n)/(1 + q). It follows

that the two transformed variables k̂t and x̂t are time-invariant in this type of equilibrium.

Strictly speaking, the long-run endogenous growth feature does not hold in these cases.

These results are formally stated in the following theorem.

Theorem 2.3. Suppose that the production function takes one of the forms in (2.34)-

(2.37). Then any balanced growth equilibrium (if exists) must satisfy γ∗ = 1 + a, r∗ = q,

and

(1− τ∗) =
(1 + a)(1 + n)

1 + q
.

2.3.3 Discussions

Our analysis in sub-sections 2.3.1 and 2.3.2 reveal that the AGI solution will be valid in a

more generalised OLG model with productive non-renewable resources only if the elasticity

of substitution between labour and natural resource is constant and equal to one. If we

write the function (21) as

G(QtXt, AtNt) =
[
At(QtXt)

1−φ
φ Nt

]φ
then the variable X̃t ≡ At(QtXt)

1−φ
φ can be viewed as a labour augmenting technological

factor. This means that the AGI solution is preserved in our more generalised model only

when the effective unit of natural input is labour augmenting in the final good production.

In particular, the composite good production function must take any form that is consistent

with

Yt = F
(
Kt, (X̃tNt)

φ
)
.

Our finding seems to be consistent with Uzawa’s Steady State Growth Theorem (Uzawa,

1961) which states that if a neoclassical growth model (and its variants) exhibits BGP,

then technical change must be labour-augmenting, at least along the BGP.

Nevertheless, there are at least two key differences between our study and the Uzawa

Growth Theorem. Firstly, the Uzawa Growth Theorem and its variants are typically de-

rived from a CRTS production function with only two inputs, namely capital and labour

(Uzawa, 1961; Schlicht, 2006; Jones and Scrimgeour, 2008; Grossman et al., 2017; Irmen,

2018, among others). It is not immediately clear how the Uzawa Growth Theorem can be

applied when a CRTS production has more than two inputs, such as the one studied here.
18The parameters β and v have the same economic meaning as in AGI. Specifically, they represent the

share of total output distributed as labour income and spent on natural resource input, respectively.
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Secondly, and more importantly, in our analysis we show that under certain conditions

the standard neoclassical growth with productive non-renewable resources can exhibit en-

dogenous growth feature. This is in contrast with the Uzawa Growth Theorem and the

related studies as these studies aim at showing conditions under which a BGP competitive

equilibrium exists, regardless of whether the engine of growth is exogenous or endogenous.

An interesting question is whether the elasticity of substitution between labour and

natural input is unity. There are a number of empirical studies providing estimated values

of the elasticities of substitution between capital, labour and energy of nested CES pro-

duction functions.19 Regarding the elasticity of substitution for the nest between labour

and energy, these studies usually report a less-than-unity elasticity of substitution [ see,

for example, Kemfert (1998), Kemfert and Welsch (2000) and van der Werf (2008) ].

2.4 Conclusion

In this study we investigate under which conditions the long-run engine of growth in neo-

classical growth model with productive non-renewable resources will be endogenous. While

many studies suggest that deep parameters in both preference and production sides could

affect the long-run behaviour, we have shown that this endogenous growth feature is im-

plied only if production function is formed in certain ways. In particular, the combination

of effective labour and effective flow of non-renewable resources in the basis of our Cobb-

Douglas is necessary. Since the interpretation strongly depends on model specifications,

policy implications should come with reasonable choice of functional forms that claims to

supporting empirical evidence.

19See van der Werf (2008) and Henningsen et al. (2019) for literature review and discussions on different
estimation strategies.
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Chapter 3

Natural Resource Substitution and

Long-Run Economic Growth: the

Role of Labour Allocation Effect

3.1 Introduction

There is no doubt that natural resources are essential in the production process for any

economy. To produce a unit of output, it is unavoidable to exploit an amount of natural

resources as fuel or intermediate inputs. The overwhelming majority of natural resources

consumption are non-renewable such as oil, coal, natural gas, etc (BP, 2019). To illus-

trate this, the data provided by Eurostat (Eurostat, 2019) and U.S. Energy Information

Administration (EIA, 2019) show that more than 85 percent of final energy consumption

within 28 countries in the EU and the US between 1990 and 2016 had been provided by

non-renewable resources. Since the entire stock of non-renewable resource is finite, a seri-

ous concern for our society is how to overcome this constraint to maintain a sustainable

growth in per-capita output. One possibility is to rely more heavily on renewable resources

such as solar and wind. There are signs that this shift is already underway. For example,

the EU has planned that by 2030, 27.0 percent of gross final energy consumption will be

generated by renewable resource (EU, 2018). The figure in 2016 was 14.2 percent. As

evident from Figure 3.1, a rising importance in renewable resources can also be seen in the

U.S. data.

Even though the importance of renewable energy is widely acknowledged, changes are

likely to be slow in some countries. For instance, BP (2019) projects that the EU will be

the world leading renewable resource user in coming decades. In particular, it is estimated

that the share of renewable resource in primary energy consumption will be 29 percent in

this region in the year 2040. However, the share for other major economies are projected
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Figure 3.1: Natural resource shares in final energy consumption in the EU and the US
between 1990 and 2016.

Source: Eurostat and EIA.

to be much lower (18 percent for the U.S. and China, and 16 percent for India). At least

part of these difference is likely due to technical difficulties in substituting between non-

renewable and renewable resources. This raises the question of how the substitutability

between these two resources will affect long-run economic growth. The main objective of

this chapter is to analyse this question theoretically using a dynamic general equilibrium

model.

At the heart of our analysis is a constant-elasticity-of-substitution (CES) aggregator

that combines renewable and non-renewable resources in the production function. The ease

or difficulty in substituting between these two resources is thus captured by a single param-

eter, namely the elasticity of substitution. There are now a number of growth-theoretic

studies that adopt a similar CES function to combine the flows of renewable and non-

renewable resources. These studies mainly focus on three aspects of the theoretical model.

The first aspect is the role of the elasticity of substitution on the potential trajectories of

the two natural inputs (Andre and Cerda, 2005). The second aspect, analysed by Silva

et al. (2013), Golosov et al. (2014) and Engström and Gars (2016), concerns the dynamic

general equilibrium impact of pollution externalities generated by non-renewable resource

extraction. These works allow for various possibilities of natural resource substitution in

the CES aggregator and show numerically how the degree of natural resource substitu-

tion will affect macroeconomic variables along the transitional path. Finally, Growiec and

Schumacher (2008) have analysed how an exogenous technical change in the elasticity of

substitution between the two natural resources will affect the short and long-term trajec-

tories of macroeconomic variables. This study, however, assumes that these two types of
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natural inputs are perfect substitute in the long run. Thus, there is no room for comparing

two economies that differ in the elasticity of substitution. In sum, the growth effect of

natural resource substitution remains largely unexplored in the existing literature. Our

study attempt to fill in this research gap.

For this purpose, we develop two discrete-time endogenous growth models with natural

resource substitution to examine how changes in the degree of natural resource substi-

tutability affects long-run economic growth. These two models share the following common

features. In both economies, there are three production sectors, namely the final-good sec-

tor, the non-renewable resource extraction sector, and the renewable resource extraction

sector. Producers in final-good sector rent capital, hire labour, and buy energy from per-

fectly competitive input markets to produce final output. Energy input is produced by the

two natural inputs via a CES aggregator. The natural resources are extracted by private

firms using labour as input. The two models differ only in the source of long-run economic

growth. In the first setup, perpetual growth in per-capita variables is made possible by

the positive externalities created by learning-by-doing as in Romer (1986). In the second

model, perpetual growth is made possible by the introduction of productive government

spending as in Barro (1990). One novelty of our analysis is that the allocation of labour

across three sectors is explicitly considered. This specification allows the models to be

more realistic as we can capture the evidence of labour allocation among final-good sector

and the two natural resource extraction sectors.

The present study is close in spirit to Golosov et al. (2014) but differs from it in

two important ways. Firstly, economic growth in their model is driven by exogenous

improvements in total factor productivity, whereas in our models economic growth is en-

dogenously determined. This allows us to examine how changes in the degree of natural

resource substitutability would affect the long-term growth via adjusting the rate of return

on capital. Secondly, we do not consider any negative externalities (pollution) created

by non-renewable resources. In this context, the long-run growth effect (if exists) result-

ing from changing in the elasticity of substitution will be driven by scarcity problem not

pollution externalities.

The present study is also related to the work by Grandville (1989) and Klump and

de La Grandville (2000). These authors argue that a normalisation procedure is neces-

sary when analysing the potential influences of the elasticity of substitution on long-run

economic growth. This normalisation procedure has been frequently adopted in macroe-

conomic research to address a wide range of issues related to capital-labour substitution.

Nevertheless, to the best of our knowledge, this method has not yet been applied in natural

resource substitution analysis.

Our main findings can be summarised as follows. When economic growth is driven by

externalities and learning-by-doing, we show that changing the degree of natural resource
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substitutability will not affect the long-run allocation of labour across sectors. However,

this does not mean that changing the elasticity of substitution will not affect economic

growth. In fact, we show numerically that when we do not normalise the CES function, an

increase in the degree of natural resource substitutability will promote economic growth

when the share of labour employed in renewable resource extraction is sufficiently high.

But once we adopt the normalisation procedure, the long-run growth rate is independent

of the degree of natural resource substitutability.

In the model with productive government spending, changing in the elasticity of sub-

stitution creates a labour allocation effect, i.e. equilibrium labour allocation is changed in

response to such parameter changes. This effect continues to hold when normalisation is

imposed. As a result, long-run growth effect remains. Under plausible parameter values,

we can numerically show that an increase in the elasticity of substitution can exert positive

influences on economic growth if the labour share devoted to renewable resource extraction

sector is sufficiently high, the two natural inputs are gross substitute and the growth rate

of non-renewable resource augmenting technology is strictly positive but not too large.

This chapter is structured as follows. The second section presents a discrete-time ver-

sion of learning-by-doing endogenous growth model with natural resource substitution. In

the third section, we examine the growth effect via the normalisation procedure. Then,

the fourth section introduces a discrete-time version of productive government spending

endogenous growth model and then examine the growth effect via the normalisation pro-

cedure. Some discussions will be addressed in the fifth section. The conclusion reassesses

the main findings of the chapter.

3.2 Benchmark Model: A Romer (1986) Model with Natural

Resource Substitution

In this section, we develop a discrete-time version of endogenous growth model à la Romer

(1986) where natural resource input is essential in the final-good production process. After

setting up the model, we characterise conditions that are necessary for existence of a

balanced growth path. Also, we provide sufficient conditions for the existence of a unique

balanced growth path. Lastly, we analyse analytically the impact of changes in the degree

of natural resource substitution on the long-run economic growth.

3.2.1 The Model Setting

Time is discrete with an infinite horizon. We assume that there are two types of agents:

households and firms. The households are identical and infinitely-lived, and they decide

how much to consume in each period in order to maximise their lifetime utilities. Firms

are operating in three sectors including final-good sector, renewable resource extraction
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sector and non-renewable resource extraction sector. The firms in the final-good sector

produce a homogeneous product that can be either consumed or invested. The firms in

the renewable resource extraction sector produce renewable energy used as an input in

the final-good sector. The firms in non-renewable resource extraction sector produce non-

renewable energy used as an input in the final-good sector. All markets are perfectly

competitive. The model nests the Romer (1986) framework with strong spillovers in the

final-good production at the aggregate level.

Households

The size of the representative household is constant over time and normalised to one.

In each period, the household supplies one unit of labour endowment to labour market

inelastically. In the initial period, t = 0, it has capital endowment K0 > 0. In addition,

we assume that the household owns all firms in the economy and these firms return profits

to the household in every period.

Denote by ct the individual’s consumption at time t. Individual utility is defined

over sequences of consumption {ct}∞t=0. Assuming instantaneous log-utility with constant

discount factor β ∈ (0, 1), the preference of the representative household is represented by

the utility function

U0 =
∞∑
t=0

βtlnct. (3.1)

Denote by πt the aggregate profit at time t, wt the real wage at time t, δ ∈ [0, 1] the

depreciation rate of capital and Rt the rental price of capital at time t. The household’s

sequential budget constraint is

ct +Kt+1 − (1− δ)Kt = RtKt + wt + πt. (3.2)

Equation (3.2) states that in each period a typical household will allocate income to either

consumption, ct, or saving in terms of gross investment, Kt+1 − (1− δ)Kt.

Given the sequence of prices {wt, Rt}∞t=0 and initial asset K0, the household solves

max
{ct,Kt+1}∞t=0

∞∑
t=0

βtlnct

subject to Equation (3.2) and non-negativity constraints; ct,Kt+1 ≥ 0. This problem leads

to the following first order condition:

1

ct
= β

(
1 +Rt+1 − δ

) 1

ct+1
(3.3)
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and the transversality condition (TVC):

lim
T→∞

[
T∏
t=1

(1 +Rt − δ)

]−1

(KT+1) = 0. (3.4)

Equation (3.3) is the well-known Euler condition which states that an optimal (inter-

temporal) consumption plan {ct}∞t=0 must equalise the present-value marginal utility from

consumption across periods. Combined with the sequential budget constraint (3.2), Equa-

tion (3.3) implies that any admissible sequence of consumption and next period’s capital

stock {ct,Kt+1}∞t=0 that maximises the lifetime utility must satisfy these conditions. Equa-

tion (3.4) states that the present discounted value of wealth (physical capital) at infinity

must be zero as there is no reason to leave any wealth behind after T = ∞ is reached.

In sum, we say that, given initial wealth K0, if there exists a sequence {ct,Kt+1}∞t=0 that

satisfies the sequential budget constraint (3.2), the Euler equation (3.3) and the TVC (3.4),

then such sequence is the solution of this utility maximisation problem.1

Final-Good Sector

In the final-good sector, there is a continuum of identical firms, each indexed by i ∈ [0, 1].

In any period t, firm i accesses the following production technology

Yi,t = kα1
i,tL

α2
i,Y,tΩ

1−α1−α2
i,t H1−α1

t ;αj ∈ (0, 1), 0 <
∑
j

αj < 1, j = 1, 2 (3.5)

where Yi,t is the amount of final goods produced by the firm i, ki,t, LY,i,t,Ωi,t are the

amounts of three private inputs including physical capital, labour input, and energy input

hired by the firm i, respectively, and finally Ht is the aggregate knowledge of the economy.

Note that α1, α2 and thus 1 − α1 − α2 are the elasticities of output with respect to

capital, labour working in the final-good sector, and energy, respectively. The production

technology is strictly concave and homogeneous of degree one in ki,t, Li,Y,t and Ωi,t.

Two other assumptions regarding the above production function require some explana-

tion. First, as in Romer (1986), Le Van et al. (2002), and Acemoglu (2009), among others,

we consider the knowledge stock Ht as a by-product of a learning-by-doing process. In

particular, we assume

Ht = Kt =

1∫
0

ki,tdi (3.6)

Intuitively, following Romer (1986) suggestion, capital input used in each firm is associated

with a certain fraction of the state of the knowledge of the economy. Transforming a unit

of consumption good to a unit of capital input requires some knowledge in order to achieve
1The derivation of this optimization problem is illustrated in Appendix B.1
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the task. Even if the capital input itself is purely private, this knowledge cannot be kept

secret; an individual’s knowledge will be embodied into the capital and by learning and

spillover process this knowledge will be finally available to other firms. Accordingly, the

stock of aggregate knowledge can be measured by the aggregate stock of capital. The

second assumption is relating to the structure of the energy input. In this context, we

assume that the energy input of a particular firm i , Ωi,t, is a CES aggregate of the flow

of renewable resource used in the firm, denoted by Zi,t, and the flow of non-renewable

resource used in the firm, denoted by Xi,t, as follows:

Ωi,t = Ω[AtXi,t, Zi,t] = D
[
$(AtXi,t)

ρ + (1−$)(Zi,t)
ρ
] 1
ρ
; ρ ≤ 1, D > 0 (3.7)

where D > 0 is a productivity parameter, $ ∈ (0, 1) is a distribution parameter which

determines the relative importance between the two natural factors, ρ ∈ (−∞, 1] is the

substitution parameter which is related to the elasticity of substitution between the two

natural factors ε ≡ 1
1−ρ ∈ [0,∞), and At ≡ (1+gA)t, where gA > 0, is a technological factor

that augments the use of non-renewable resource. Other things being equal, an increase in

At lowers the amount of non-renewable resource needed to generate the same amount of

energy input. The variable At can be interpreted as a fossil energy saving technology.2

All prices are expressed in units of final goods. Let px,t and pz,t be the unit prices

of non-renewable and renewable resources, respectively. Given the sequence of prices

{Rt, wt, px,t, pz,t}∞t=0 and the state of aggregate knowledge {Ht}∞t=0, the firm i solves

max
{ki,t,Li,Y,t,Xi,t,Zi,t}

{πi,Y,t ≡ Yi,t −Rtki,t − wtLi,Y,t − px,tXi,t − pz,tZi,t},

subject to Equations (3.5) and (3.7). Under the assumption that input markets are per-

fectly competitive, the first order conditions for the maximum entail

α1
Yi,t
ki,t

= Rt, (3.8)

α2
Yi,t
Li,Y,t

= wt, (3.9)

(1− α1 − α2)Yi,t(
1 +

(
1−$
$

)(
Zi,t
AtXi,t

)ρ) · 1

Xi,t
= px,t, (3.10)

2See Smulders et al. (2014) and Casey (2017) for more detail.
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(1− α1 − α2)Yi,t((
$

1−$

)(
AtXi,t
Zi,t

)ρ
+ 1

) · 1

Zi,t
= pz,t. (3.11)

The above conditions state that the final good firms will hire each private input up to

the point at which its marginal cost equals its marginal product in order to maximise its

profit. Since the final goods production function exhibits constant returns to scale and all

markets are perfectly competitive, profit is zero; i.e. πi,Y,t = 0.

Finally, due to linear homogeneity of final goods production function, the corresponding

function capturing the marginal product of each private input (the LHS of Equations (3.8) -

(3.11)) will be homogeneous of degree zero. Using this fact, the aggregate demand functions

for capital, labour, renewable resource, and non-renewable resource are, respectively,

α1
Yt
Kt

= Rt (3.12)

α2
Yt
LY,t

= wt (3.13)

(1− α1 − α2)Yt(
1 +

(
1−$
$

)(
Zt
AtXt

)ρ) · 1

Xt
= px,t (3.14)

(1− α1 − α2)Yt((
$

1−$

)(
AtXt
Zt

)ρ
+ 1

) · 1

Zt
= pz,t (3.15)

where Yt ≡
∫ 1
i=1 Yi,tdi, LY,t ≡

∫ 1
i=1 Li,Y,tdi, Xt ≡

∫ 1
i=1Xi,tdi, and Zt ≡

∫ 1
i=1 Zi,tdi are the

aggregate output, the aggregate labour input employed in final-good sector, the aggregate

flow of non-renewable resource, and the aggregate flow of renewable resource, respectively.

Renewable Resource Extraction Sector

The stock of renewable resource is available in infinite supply, but it is costly to extract.3

These resources are extracted by private extraction firms. After having extracted, they

sell the resources to the firms in the final-goods sector. Similar to Golosov et al. (2014),

the renewable resource can be extracted according to the following technology:

Zt = Lz,t, (3.16)
3Examples of this type of renewable resources include solar energy and wind.
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where Lz,t is the labour input devoted to renewable resource extraction sector. Regarding

the choices of renewable resource extraction technologies, it is worth mentioning that the

usage of non-renewable resources might be needed for renewable resource provisions (Ace-

moglu et al., 2012). For example, we might need the non-renewable resources in terms of

batteries to store the energy from renewable. We abstract from this issue and apply the

same specification of renewable resource extraction technology as in Golosov et al. (2014)

in order to focus on the role of labour allocations among different sectors.

Given the prices {pz,t, wt}, for any period t, the representative firm solves:

max
Lz,t
{πz,t ≡ pz,tLz,t − wtLz,t}.

This leads to the following first order condition:

pz,t = wt, (3.17)

which states that the renewable resource price equals to the marginal cost of extraction

because of the perfectly competitive nature of this sector. Since the renewable resource

market is perfectly competitive and the stock of this kind of resource is infinite, then all

firms in this sector make zero profit in equilibrium, i.e. πz,t = 0 for all t.

Non-Renewable Resource Extraction Sector

Consider the representative firm in the non-renewable resource extraction sector. Let Mt

be the (finite) stock of non-renewable resources available at time t. We assume that the

stock is owned by the extraction firms. Given the initial stock of non-renewable resources

M0 > 0, in each period the representative firm hires labour, Lx,t, to extract a flow of

non-renewable resource, Xt, according to

Xt = Lx,tMt. (3.18)

The same extraction technology is also used in Engström and Gars (2016) and Le and Van

(2016).4 Equation (3.18) implies that it is more costly to extract a unit of resource when

the stock size Mt becomes smaller. The stock of non-renewable resources available in the

next period, Mt+1, is the remainder after extraction, i.e.,

Mt+1 = Mt −Xt. (3.19)

We now turn to the firm’s problem. After extracting the resources, the firm sells its

output to the firms in the final-goods sector at a competitive price px,t. Also, since labour
4In Golosov et al. (2014), non-renewable resource extraction is assumed to be costless.
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is the only private input used in the production process, the total cost of extraction is

then given by wt XtMt
. Hence, its profit at time t is πx,t ≡ px,tXt − wt XtMt

. These profits are

discounted at the market interest rate, i.e., qt =
∏t
j=1(1 + Rj − δ)−1. The representative

firm wishes to identify the sequence {Xt,Mt+1}∞t=0 that maximises the total present value

of its profits, i.e.,

max
{Xt,Mt+1}∞t=0

∞∑
t=0

qt

[
px,tXt − wt

Xt

Mt

]
,

subject to the evolution of the stock of non-renewable resources; Equation (3.19), and

non-negativity constraints; Xt,Mt+1 ≥ 0, where the initial stock M0 > 0 is given.5

Let λt be the Lagrange multiplier with respect to Equation (3.19). The first order

conditions with respect to Xt and Mt+1 are, respectively, given by

qt

[
px,t − wt

1

Mt
− λt

]
= 0 (3.20)

and

λt =
qt+1

qt

[
wt+1

Mt+1

Xt+1

Mt+1
+ λt+1

]
. (3.21)

Since qt > 0 for all t, Equation (3.20) states that the Lagrange multiplier must be equal

to the difference between price and unit cost, i.e. λt = px,t − wt 1
Mt

. Intuitively, λt can

be interpreted as the current value scarcity rent of (a unit of) the remaining stock of the

non-renewable resource. This value is strictly positive as current use of the non-renewable

resources diminishes future opportunities. In each period the unit price will be set higher

than its extraction cost reflecting the fact that the resource is limited in all future time

periods. Next, Equation (3.21) states that the current value of a unit of resources left

unused must equal to the discounted value of future value of a unit of resources left in

the ground plus an additional extraction cost resulting from declining in future stock; note

that qt+1

qt
= 1

1+Rt+1−δ . By combining Equations (3.20) and (3.21), we will get the so called

Hotelling condition

px,t −
wt
Mt

=
1

1 +Rt+1 − δ

[
px,t+1 −

wt+1

Mt+1
+
Xt+1wt+1

(Mt+1)2

]
. (3.22)

Intuitively, this condition states that if an extraction profile {Xt}∞t=0 maximises the firm’s

objective function, in any period t the current value scarcity rent - measured by px,t − wt
Mt

- must equal to the discounted value of the future scarcity rent sacrificed - measured by
1

1+Rt+1−δ

[
px,t+1− wt+1

Mt+1

]
- plus the discounted value of the marginal increase in extraction

cost resulting from a smaller size of resource stock - measured by 1
1+Rt+1−δ

[
Xt+1wt+1

(Mt+1)2

]
.

5The derivation of this optimization problem is illustrated in Appendix B.
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Finally, the transversality condition is given by

lim
T→∞

qTλTMT+1 = 0. (3.23)

Intertemporal Equilibrium

Since the size of population is normalised to unity, the labour market clearing condition

requires that

Lx,t + LY,t + Lz,t = 1. (3.24)

This states that the sum of the labour demands in the three sectors must be equal to

the exogenously given endowment constraint, provided by the representative household.

Next, by the linear homogeneity of final goods production and perfect competition, it is

straightforward to show that

Yt = wt +RtKt + πt (3.25)

where πt = πx,t + πY,t + πz,t. As a result, the economy-wide resource constraint dictates

that, at each date t ≥ 0, total output is the sum of private consumption ct and gross

investment Kt+1 − (1− δ)Kt:

ct +Kt+1 − (1− δ)Kt = Yt. (3.26)

Lastly, by using Equations (3.6), (3.16), (3.18), with linear homogeneity property of the

final-good production function, we obtain the aggregate (final-good) production function

which is

Yt = Lα2
Y,tD

(1−α1−α2)

[
$(BtLx,t)

ρ + (1−$)(Lz,t)
ρ

] 1
ρ

(1−α1−α2)

Kt (3.27)

where Bt ≡ AtMt can be seen as the effective stock of non-renewable resources.

Using Equations (3.1) - (3.27) and all assumptions imposed so far, an intertemporal

equilibrium can be defined as follows:

Definition 3.1. Given initial conditions (K0,M0) ∈ R2
++ and the exogenous process

{At}∞t=0, an intertemporal equilibrium of the economy is a sequence of prices, profit, and

allocations

{wt, Rt, px,t, pz,t, πt, Lx,t, LY,t, Lz,t, Xt, Zt, Yt, ct,Kt+1, Ht+1, Bt+1,Mt+1}∞t=0

so that

(i) the allocation of consumption and capital {ct,Kt+1}∞t=0 chosen by consumer satisfies

Equations (3.2)-(3.4), taking the sequence {wt, Rt, πt}∞t=0 as given;
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(ii) the aggregate inputs and final goods choices {Kt, LY,t, Xt, Zt, Yt}∞t=0 chosen by a

continuum of identical firms in final-good sector satisfies Equations (3.12)-(3.15), taking

the sequence {wt, Rt, px,t, pz,t}∞t=0 as given;

(iii) the input and output choices {Lz,t, Zt}∞t=0 made by the representative firm in renew-

able resource extraction sector satisfies Equation (3.17), taking the sequence {wt, pz,t}∞t=0

as given;

(iv) the input and output choices {Lx,t, Xt}∞t=0 made by the representative firm in non-

renewable resource extraction sector satisfies Equations (3.19), (3.22)-(3.23), taking the

sequence {wt, px,t}∞t=0 as given;

(v) all markets clear.

In subsequent subsections, we will focus on a special type of the intertemporal equilib-

rium which is known as balanced growth path.

3.2.2 Balanced Growth Path

Since the aim of this study is to examine the long-run economic growth effect of different

degrees of natural resource substitutability, it suffices to focus on a balanced growth path

(BGP hereafter). Regarding this matter, we provide a formal definition of a BGP and

sufficient conditions ensuring the existence and uniqueness of such a long-run growth path.

A formal definition of a BGP is as follows.

Definition 3.2. A BGP is an intertemporal equilibrium such that

(i) final goods Yt, capital stock Kt, consumption ct, and aggregate knowledge stock Ht

all grow at the same constant rate, say g∗, i.e.

Yt+1

Yt
=
Kt+1

Kt
=
ct+1

ct
=
Ht+1

Ht
= 1 + g∗,

(ii) the rate of returns on capital is constant, i.e. Rt+1 = Rt = R∗,

(iii) labour allocation is stationary, i.e. Li,t+1 = Li,t = L∗i where i ∈ {x, Y, z}.

In other words, a BGP is an intertemporal equilibrium such that Yt,Kt, ct and Ht

grow at a common (constant) growth rate while the rate of return on capital and labour

allocation are stationary.

In order to characterise a BGP associated with the economy, we focus on eight variables:

Lx,t, LY,t, Lz,t, Bt, Rt,Θt, gt and Ωt

where Θt ≡ px,tXt
wtLx,t

. These variables will be stationary along a BGP and jointly determined

by a set of eight non-linear equations. These equations will be illustrated in Lemma 3.1.
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Lemma 3.1. If a BGP exists, then there is a stationary point

(L∗x, L
∗
Y , L

∗
z, B

∗, R∗,Θ∗,Ω∗, g∗) ∈ (0, 1)3 × R4
++ × R

such that all quantities are jointly determined by

L∗x =
gA

1 + gA
, (3.28)

L∗Y = 1− L∗x − L∗z, (3.29)

g∗ = β
(

1 +R∗ − δ
)
− 1, (3.30)

Ω∗ = D
(
$(B∗L∗x)ρ + (1−$)(L∗z)

ρ
) 1
ρ
, (3.31)

R∗ = α1(L∗Y )α2(Ω∗)1−α1−α2 , (3.32)

Θ∗ − 1 =
1

1 +R∗ − δ
· 1 + g∗

1− Lx
· (Θ∗ − 1 + L∗x), (3.33)

1− α1 − α2

α2
·
L∗Y
L∗z

= 1 +
$

1−$

(B∗L∗x
L∗z

)ρ
, (3.34)

Θ∗ =
1− α1 − α2

α2
·
L∗Y
L∗x
·

(
1 +

1−$
$

( L∗z
B∗L∗x

)ρ)−1

. (3.35)

The proof of this lemma and other theoretical results in this study are relegated to

appendices.

Again, suppose that a BGP exists, Lemma 3.1 states that the long-run behaviour of

the economy can be characterised by using the set of equations (3.28)-(3.35). By equation

(3.28), labour employed in non-renewable resource extraction sector is exogenously de-

termined by the growth rate of energy efficiency. Equation (3.29) guarantees that labour

market clears along the BGP. Next, Equation (3.30) is Euler condition that holds along the

BGP. This condition determines the long-run growth rate of output per head. Equation

(3.31) quantifies the stationary value of the aggregate energy input used in the final-good

sector. Equation (3.32) determines the long-run equilibrium rate of return on physical

capital. Equation (3.33) is another expression of the Hotelling condition. This condi-

tion also expresses the no-arbitrage condition according to the equalised labour costs of

the final-good and non-renewable resource extraction sectors. Equation (3.34) is another
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no-arbitrage condition ensuring that labours woking in final-good and renewable resource

extraction sectors will be paid equally. Lastly, Equation (3.35) determines the revenue-

to-cost ratio of the non-renewable resource extraction firm. This ratio shows the level of

revenue generated by every dollar of labour cost.

Our next proposition provides a sufficient condition that establishes the existence and

uniqueness of a BGP.

Proposition 3.1. Suppose the following condition is satisfied:

gA <
( 1

β
− 1
) 1

1 +
(

α2
1−α1−α2

)(
1
β − 1

) . (3.36)

Then there exists a unique balanced-growth equilibrium and the allocation of labour is given

by (3.28), L∗Y = 1− l∗z − L∗x, and

L∗z =
1

1 + gA

{
1− α2

1− α1

[
1 +

gA(1− β)

1− β(1 + gA)

]}
<

1

1 + gA
. (3.37)

In other words, Proposition 3.1 provides parameter restriction (3.36) that guarantees

the existence and uniqueness of the labour market equilibrium allocation. Intuitively, the

inequality states that the growth rate of non-renewable resource saving technology cannot

be too large in order to ensure the existence of a unique BGP. Once the labour allocation

{L∗x, L∗Y , L∗z} is uniquely determined, the other stationary values {g∗,Ω∗, R∗, B∗,Θ∗} can
be uniquely determined by (3.30)-(3.32) and (3.34)-(3.35). This proves that a unique

balanced growth equilibrium exists. Based on the long-run equilibrium allocation, it is

remarkable that the parameter ρ disappears from (3.37). Combined with the fact that L∗x
is solely determined by gA, we can see that a change in ρ will never alter labour allocation

among the three sectors.

3.2.3 Natural Resource Substitution and Long-Run Economic Growth

In this subsection, we will examine the role of substitution parameter ρ on the long-run

economic growth. Throughout this part we assume that the condition (3.36) is met so that

a unique BGP always exists. The analysis will proceed as follows.

From Euler condition (3.30), after differentiating both sides with respect to ρ, we have

dg∗

dρ
= β

dR∗

dρ
. (3.38)

This means that an increase in the substitution parameter ρ can affect the long-run eco-

nomic growth if and only if it causes a change in the long-run rate of return on capital.

Moreover, because β is positive, the impacts on both R∗ and g∗ work in the same direction

as well. Accordingly, it suffices to examine the influence of ρ on R∗.
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The following lemma provides an alternative expression for R∗. Especially, this expres-

sion depends only on the model parameters and L∗z.

Lemma 3.2. In the long-run, the rate of return on capital can be evaluated by

R∗ = O[Lz]×

(
(1−$)

(1− α1 − α2

α2

1

1 + gA

1

L∗z
− 1− α1 − α2

α2

)) 1−α1−α2
ρ

(3.39)

where O[Lz] ≡ α1(DL∗z)
1−α1−α2

(
1

1+gA
− L∗z

)α2

> 0.

As mentioned before, a crucial implication of Proposition 3.1 is that the equilibrium al-

location in labour market is essentially unchanged while the substitution parameter changes

arbitrarily. This implies that any change in ρ will never cause a change in L∗z. In other

words, natural resource substitution has no effect on labour reallocation among the three

production sectors. Accordingly, Lemma 3.2 tells us that O[Lz] remains unchanged as ρ

changes and, thus, the impact of ρ on R∗ can be explained by the second term on the RHS

of Equation (3.39) only.

From Equation (3.39) and the fact that L∗z ∈
(

0, 1
1+gA

)
, we can show that

dR∗

dρ


> 0 iff L∗z ∈

(
L̃z,

1
1+gA

)
= 0 iff L∗z = L̃z

< 0 iff L∗z ∈
(

0, L̃z

)
.

(3.40)

where L̃z = (1−$)(1−α1−α2)
α2+(1−$)(1−α1−α2) ·

1
1+gA

∈ (0, 1) can be seen as a cut-off share of labour

employed in renewable resource sector beyond which the substitution parameter is growth-

enhancing.6 This means that an increase in the degree of the natural resource substitution

matters for enhancing the rate of return on capital if and only if the share of labour

employed in the renewable resource extraction sector L∗z is sufficiently high. Combined

with Equation (3.38) the parameter ρ is growth enhancing if and only if the share of

labour employed in the renewable resource extraction sector L∗z is sufficiently high.

Measuring whether and how the elasticity of substitution between the two natural

inputs could create the long-run growth effect require some careful treatments. The sensi-

tivity analysis that we have done before is based on the primitive that any change in the

substitution parameter ρ would cause a change in the long-run economic growth through

changing in the rate of return on capital. The conclusion drawn on this primitive is valid as

long as a change in the rate of return on capital is driven solely by the change in the state

of the elasticity of substitution. However; as mentioned in Klump and de La Grandville

(2000), Klump and Saam (2008) and Alvarez-Cuadrado et al. (2018), among many others,
6See Appendix B.6.
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without CES normalisation the results created by changes in the substitution parameter

ρ does not derive purely from the different states of the substitutability among inputs.

In the next section, we therefore work with a normalised version of the CES aggregated

energy input to re-examine if results in this section will remain valid and to draw a general

conclusion based on this model.

3.3 Reassessment of the Growth Effect via CES Normalisa-

tion

3.3.1 Theoretical Analysis

As suggested by Klump and de La Grandville (2000), a “valid” comparison between two

CES functions with different elasticity of substitution can be conducted only if two condi-

tions are satisfied: (i) the marginal rate of technical substitution (MRTS) between the two

inputs must be kept constant, and (ii) the output of the CES function must also be kept

constant. To explain this more formally, we start with a CES aggregator between renewable

and non-renewable resources with elasticity of substitution ε1 ≡ 1/(1 − ρ1), distribution

parameter $1 and scaling parameter D1. Using these parameter values and the procedure

described in the previous sections, we can derive a unique balanced growth equilibrium. To

highlight the dependence on these parameter values, we will denote the stationary values as

g∗ (ρ1, $1, D1) , R∗ (ρ1, $1, D1) , B∗ (ρ1, $1, D1) , etc. It is important to mention that the

allocation of labour {L∗x, L∗Y , L∗z} is not only independent of ρ1, but also $1 and D1. Thus,

this allocation is unaffected by the normalisation procedure. The corresponding marginal

rate of technical substitution between renewable and non-renewable resources can now be

expressed as

m∗ (ρ1, $1, D1) ≡ 1−$1

$1

[
B∗ (ρ1, $1, D1)L∗x

L∗z

]1−ρ1
, (3.41)

and the output of the CES aggregator is

Ω∗ (ρ1, $1, D1) ≡ D1 {$1 [B∗ (ρ1, $1, D1)L∗x]ρ1 + (1−$1) (L∗z)
ρ1}

1
ρ1 . (3.42)

Suppose now the elasticity of substitution is changed to ε2 ≡ 1/(1 − ρ2). Then under

the normalisation procedure, the scaling parameter and the distribution parameter need

to be adjusted in order to maintain the same MRTS and the same level of output at the

same level of inputs, i.e., B∗ (ρ1, $1, D1)L∗x and L∗z. Formally, the new parameters $2 and

D2 must satisfy

1−$2

$2

[
B∗ (ρ1, $1, D1)L∗x

L∗z

]1−ρ2
= m∗ (ρ1, $1, D1) , (3.43)
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D2 {$2 [B∗ (ρ1, $1, D1)L∗x]ρ2 + (1−$2) (L∗z)
ρ2}

1
ρ2 = Ω∗ (ρ1, $1, D1) . (3.44)

Once $2 and D2 are determined, we can then solve for the corresponding balanced

growth equilibrium. We will denote the variables in this equilibrium using g∗ (ρ2, $2, D2) ,

R∗ (ρ2, $2, D2) , B∗ (ρ2, $2, D2) , etc.

Note that the normalisation procedure does not necessarily imply that Ω∗ (ρ1, $1, D1) =

Ω∗ (ρ2, $2, D2) . This is because they are evaluated under different input values [specifically,

B∗ (ρ1, $1, D1) may be different from B∗ (ρ2, $2, D2)]. But, in the current framework, we

can show that B∗ (ρ1, $1, D1) = B∗ (ρ2, $2, D2) and Ω∗ (ρ1, $1, D1) = Ω∗ (ρ2, $2, D2) are

both true. First, consider equation (3.34). Since the left-hand side is independent of the

parameters of the CES aggregator, we can get

$1

1−$1

[
B∗ (ρ1, $1, D1)L∗x

L∗z

]ρ1
=

$2

1−$2

[
B∗ (ρ2, $2, D2)L∗x

L∗z

]ρ2
.

On the other hand, (3.41) and (3.43) imply

$2

1−$2

[
B∗ (ρ1, $1, D1)L∗x

L∗z

]ρ2
=

$1

1−$1

[
B∗ (ρ1, $1, D1)L∗x

L∗z

]ρ1
.

These two conditions immmediately imply B∗ (ρ1, $1, D1) = B∗ (ρ2, $2, D2) . Substituting

this into (3.44) gives Ω∗ (ρ1, $1, D1) = Ω∗ (ρ2, $2, D2) . Furthermore, substituting this

into (3.32) gives R∗ (ρ1, $1, D1) = R∗ (ρ2, $2, D2) . Since there is no change in the rate

of return, it follows from (3.30) that g∗ (ρ1, $1, D1) = g∗ (ρ2, $2, D2) . This leads to the

following proposition.

Proposition 3.2. Under the normalisation procedure, any change in ρ will neither increase

nor decrease the long-run economic growth. Then ρ is a growth-neutral parameter in Romer

(1986) model with natural resource substitution.

Clearly, the rate of return on capital remains unchanged - and thus the long-run growth

rate - due to the lack of labour resource reallocation induced by changes in the state of

natural resource substitutability. Labour reallocation plays a crucial role in explaining

the long-run growth effect when the normalisation procedure is introduced. In the next

section, we introduce an alternative model in order to show that labour-allocation effect

appears under the normalisation procedure and, thus, the change in the degree of natural

resource substitution can cause changes in the long-run growth rate. Before moving on

to the next section, we give a numerical example aimed at delivering important messages

initiated by the model.
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3.3.2 Numerical Example

To gain more insight into the story of the long-run economic growth and natural resource

substitutability that emanate from the model, we resort to numerical analysis. In partic-

ular, our numerical illustrations are drawn on the US data and some relevant literature.

Parameterisation

We calibrate a benchmark economy using the U.S. data and relevant literature. The

parameters to be calibrated consists of the income share of physical capital (α1), the

income share of labour employed in final-good sector (α2), the growth rate of exhaustible

input augmenting technology (gA), the discount factor (β), the depreciation rate (δ), the

distribution parameter ($) and the substitution parameter (ρ). For the scale parameter

(D), we normalise to unity.

Our calibration procedure is to choose the bundle of parameters (α1, α2, gA, β, δ,$, ρ)

so that the benchmark economy can match some targeted real-world statistics. The targets

include GDP per capita growth, capital to output ratio, real interest rate (rate of return on

capital minus depreciation rate), the share of renewable resource sector employment, the

share of non-renewable resource sector employment and labour income relative to GDP.

These values are provided in Table 3.1.

Target Value Source
Labour Share 0.6211 Giandrea and Sprague (2017)
GDP per capita growth 0.0200 BEA (2019)
Capital-Output ratio 3.2255 BEA (2019)
Real interest rate 0.0385 WDI (2019)
Renewable resource sector employment (%) 0.0045 BLS (2019) and DOE (2017)
Non-renewable resource sector employment (%) 0.0084 BLS (2019) and DOE (2017)

Table 3.1: Selected the US economy Indicators

The source of the data and a description of the targets are as follows. Firstly, we use

the U.S. labour share of income on average between 1961 and 2016 as a target. We adopt

Giandrea and Sprague (2017)’s estimation which reveals that the U.S. labour share is 0.6211

on average. Secondly, using the data provided by the U.S. Bureau of Economic Analysis

(BEA, 2019), real gross domestic product per capita of the U.S. increased at an annual

rate of 2 percent between 1961 and 2016 while the average ratio aggregate fixed assets plus

consumer durables to gross domestic product is 3.2255. Thirdly, from World Development

Indicator (WDI, 2019), the value for real interest rate in the United States was on average

3.85 percent during 1961-2016. Finally, in Quarter 1 2016, the employed labour force of

the United States numbered 150.959 million (BLS, 2019). Of these, the data provided

by U.S. Department of Energy (DOE, 2017) reveal that the renewable energy sector and
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non-renewable energy sector accounted for 677.544 and 1,266.074 thousand jobs in such

period, respectively.7 This implies that the share of renewable resource sector employment

and non-renewable resource sector employment are 0.45 and 0.84 percent, respectively.8

Table 3.2 summarises the parameterisation for the calibration targets. Firstly, we

calibrate gA by using Equation (3.28):

Lx =
gA

1 + gA
⇒ gA =

Lx
1− Lx

.

When Lx is set to satisfy the fact that the share of labour working in non-renewable

resource sector is 0.0084, we obtain gA = 0.0085. Secondly, we calibrate β by using the

condition

β =
1 + GDP per capita growth

1 + real interest rate

where this condition can be derived by Euler condition. Using 0.0200 for GDP per capita

growth and 0.0385 for real interest rate, we get 0.9822 for β. Thirdly, we calibrate α2 by

arguing that if total income is distributed to all labour force by 62.11 percent, then it will

be for labour work for non-energy extraction activities by

α2 = Labour Share× (1− 0.0045− 0.0084)

which implies that α2 = 0.6131. Fourthly, the value of α1 is chosen as follows. We know

from Proposition 3.1 that L∗z is determined by (3.37), provided that (3.36) holds. If we fix

the parameters gA = 0.0085, β = 0.9822, α2 = 0.6131 and the worker share Lz = 0.0045,

then Equation (3.37) can be seen as an equation with one unknown, i.e. α1. A single

root of the equation is 0.3743. Accordingly, we set α1 = 0.3743. Up until now, we have

gA = 0.0085, β = 0.9822, α1 = 0.3743 and α2 = 0.6131. Then we calibrate δ by using

another variation of Euler condition:

δ = α1

(
Capital to Output ratio

)−1
+ 1−

(1 + GDP per capita growth
β

)
to obtain δ = 0.0776. Finally, we calibrate ρ and $ simultaneously to ensure that the

steady state match the US moments. To do so, we follow recent empirical studies which

suggest that the the two types of natural inputs are gross substitute. Evidently, Papa-

georgiou et al. (2017) estimates that the substitution parameter between clean (renewable)

and dirty (fossil) inputs in energy-generating sector to be around 0.46; based on the data
7The proxy of renewable resource extraction employment are the employment for electric power gener-

ation and fuel extraction activities relying on solar, wind, geothermal, bioenergy/CHP, low impact hydro,
and traditional hydro. Also, the proxy of non-renewable resource extraction employment are the em-
ployment for electric power generation and fuel extraction activities based on nuclear, coal, natural gas,
oil/petroleum, advanced gas, and others.

8The data for labour allocation among energy sectors and non-energy sector is very limited. In partic-
ular, DOE started to collect the data in 2015.
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of 26 countries (including the U.S.) for the year 1995 to 2009. Moreover, the estimated

cross-price elasticities of the U.S. industrial sector demand for fuels by Suh (2016) reveals

the substitutable relationships between coal and biomass and between natural gas and

biomass. Thus, it seems that assuming the two types of natural inputs are gross substitute

is sensible. We choose ρ = 0.01 as a benchmark. Combined with the choice of $ = 0.9070,

we obtain all parameters required to illustrate our numerical example. Table 3.2 provides

the set of parameter values selected here.

Parameter Value Source
$ 0.9070 Calibration
ρ 0.0100 Calibration
gA 0.0085 Calibration
β 0.9822 Calibration
α2 0.6131 Calibration
δ 0.0776 Calibration
α1 0.3743 Calibration
D 1.0000 Normalisation

Table 3.2: Benchmark Parameter Values

Numerical Illustration of the baseline BGCE

After obtaining the benchmark economy, we can demonstrate the balanced growth

equilibrium corresponding to the benchmark economy.

Variable Steady State Result U.S. Data
Non-renewable resource sector employment (Lx) 0.0084 0.0084
Renewable resource sector employment (Lz) 0.0044 0.0045
Capital-Output Ratio (K/Y) 3.1492 3.2255
Real Interest Rate (r) 0.0413 0.0385
Long-Run Output per capita growth (g) 0.0227 0.0200

Table 3.3: Benchmark Result

The stationary values of the real interest rate, the long-run growth rate, capital-output

ratio as well as the corresponding shares of employment in renewable resource and non-

renewable resource sectors are listed in Table 3.3. It can be observed that these values

match the targets very well.

Numerical Illustrations of Growth-Resource Substitutability Interaction

We have shown analytically in subsection 3.2 that if normalisation is taken into ac-

count, the variation of the natural resource substitutability will never affect the long-run

economic growth in this model. Nevertheless, illustrating the numerical analysis here will
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Figure 3.2: Growth Sensitivity induced by Natural Resource Substitutability

be beneficial since it can emphasise the importance of normalisation as it can isolate the

effect of different degrees of natural resource substitution of others.

Figure 3.2 shows the sensitivity to natural resource substitution variability within a

certain range. To illustrate this, we vary the state of the substitution parameter within

the range (0, 1) while maintaining all the other parameters constant, i.e. we do not re-

calibrate the remaining parameters but keep all as in Table 3.2. In this figure, the thin

solid line is the rate of return on capital and the bold solid line is the per capita output

growth when normalisation is ignored. Clearly, as the substitution parameter ρ increases

from the benchmark value, the long-run growth rate increases. This result arises because

the equilibrium employment in renewable resource extraction sector L∗z is greater than

the cut-off level L̃z so that the rate of return on capital increases when the state of the

substitution parameter changes.9 However, if normalisation is taken into account growth

rate will neither increase nor decrease as the substitution parameter changes. The bold

dashed line passes through the vertical axis at 0.0227 which is equal to the initial growth

rate. This conclusion is drawn on the fact that under normalisation the rate of returns on

capital will never change as it remains constant at the rate 0.1189 despite the variation of

the states of natural resource substitutability (See the thin dashed line).

3.4 Alternative Model: A Barro (1990) Model with Natural

Resource Substitution

In this section, an alternative endogenous growth model is introduced in order to examine

the effects of an increase in the degree of natural resource substitution on long-run economic
9In the benchmark L̃z ∼= 0.0019 while L∗z = 0.0044.
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growth. In particular, long-run economic growth in this model is endogenously determined

and is generated by productive government spending as in Barro (1990).

3.4.1 The Model Setting

Consider an economy formulated in discrete time (t = 0, 1, ...,+∞). We assume that

there are three types of agents: households, firms and a government. The households

are infinitely-lived individuals who decide how much to consume in each period in order

to maximise their lifetime utilities. Firms are operating in three sectors including final-

good sector, renewable resource extraction sector and non-renewable resource extraction

sector. The firms in the final-good sector produce a homogeneous product that can be

either consumed or invested. The firms in the renewable resource extraction sector produce

renewable energy used as an input in the final-good sector. The firms in the non-renewable

resource extraction sector produce non-renewable energy used as an input in the final-good

sector. The government imposes income tax and spends all the tax revenues in productive

ways. All markets are perfectly competitive. Finally, we assume that all agents are identical

so that the economy can be characterised by means of a representative agent model.

In order to present the model environment and the optimising behaviours, we begin

by formulating the economic structures of the representative household, the representative

firm in final-good sector and the government. We omit the presentations of the two natural

resource extraction sectors here because the precise formulations of these two sectors are

in fact identical to their counterparts in the previous model. After getting the general

structure, we define an intertemporal equilibrium of this economy.

Households

The representative household in this model is defined almost identical to that in Section

3.2. The only difference is that in this model the representative household have to pay

income taxes to the government by a constant rate τ ∈ (0, 1).

As a result, the household’s optimising behaviour will be governed by the household’s

sequential budget constraint:

ct +Kt+1 − (1− δ)Kt = (1− τ)
(
RtKt + wt + πt

)
, (3.45)

Euler condition:
ct+1

ct
= β

(
1 + (1− τ)Rt+1 − δ

)
, (3.46)

and the transversality condition (TVC):

lim
T→∞

[
T∏
t=1

(1 + (1− τ)Rt − δ)

]−1

(KT+1) = 0. (3.47)
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Final-Good Sector

In any period t, the representative firm in the final-good sector maximises profits subject

to a technology that produces a single commodity, Yt. The stock of physical capital,

Kt, together with productive services provided by the government, Gt, are used together

with the labour force devoted to the final-good sector, LY,t, and the energy input, Ωt, as

production inputs in a technology:

Yt = Kα1
t Lα2

Y,tΩ
1−α1−α2
t G1−α1

t ;αj ∈ (0, 1), 0 <
∑
j

αj < 1, j = 1, 2 (3.48)

where α1, α2 and thus 1 − α1 − α2 are the elasticities of output with respect to capital,

labour working in the final-good sector, and energy, respectively. Note that the production

technology exhibits constant returns to scale with respect to the private inputs, namely

physical capital, labour and energy.

As in Barro (1990) and Cazzavillan (1996), we assume that the public service Gt is

a public good, i.e., it is nonrival and nonexcludable. Hence, public services provided to

private producers by the government is not only available without financial cost but the

use by a firm will never diminish the quantity available to others.10

All prices are expressed in units of final goods. Let px,t and pz,t be the unit prices

of non-renewable and renewable resources, respectively. Given the sequence of prices

{Rt, wt, px,t, pz,t}∞t=0 and the sequence of public service {Gt}∞t=0, the representative firm

solves

max
{Kt,LY,t,Xt,Zt}

{πY,t ≡ Yt −RtKt − wtLY,t − px,tXt − pz,tZt},

subject to Equations (3.7) and (3.48). Under the assumption that input markets are

perfectly competitive, the firm’s optimality conditions are the same as in Equations (3.12)-

(3.15).

Government

For any period t, the government provides productive services, Gt, to final good firms.

We denote by τ ∈ (0, 1) the proportion of the proceeds from income taxes that are used

each period to finance public production services, Gt. The government is assumed to run

a balanced budget, thus the government budget constraint is given by:

Gt = τ
[
wt +RtKt + πt

]
. (3.49)

10In this study, we assume that there is no congestion even if it might be possible in the real world. For
more details about productive spending with congestion, see, for example, Glomm and Ravikumar (1994).
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Intertemporal equilibrium

Both Equations (3.24) and (3.25) are still satisfied in the present model. In addition, the

government balanced budget condition

Gt = τYt (3.50)

holds in equilibrium. As a result, the economy-wide resource constraint dictates that,

at each date t ≥ 0, total output is the sum of private consumption ct, gross investment

Kt+1 − (1− δ)Kt and the productive government spending Gt:

ct +Kt+1 − (1− δ)Kt +Gt = Yt (3.51)

Lastly, we use Equations (3.7), (3.16), (3.18) and (3.48) to obtain another expression of

final-good production which is

Yt = Kα1
t G1−α1

t Lα2
Y D

1−α1−α2

(
$(BtLx,t)

ρ + (1−$)(Lz,t)
ρ

) 1
ρ

(1−α1−α2)

. (3.52)

An intertemporal equilibrium of this economy can be formulated almost exactly the

same way as in the Romer (1986) model with natural resource substitution but the source of

growth is different in the two economies. In the next subsection we will consider behaviours

of the intertemporal equilibrium of this economy along a balanced growth path.

3.4.2 Balanced Growth Paths

In this subsection, a BGP in Barro (1990) model with natural resource substitution will

be defined precisely. Not only that, necessary and sufficient conditions for the existence

and uniqueness of the BGP will be formulated.

Definition 3.3. A BGP is an intertemporal equilibrium such that

(i) final goods Yt, capital stock Kt, consumption ct, and productive government spending

Gt all grow at the same constant rate, say g∗, i.e.,

Yt+1

Yt
=
Kt+1

Kt
=
ct+1

ct
=
Gt+1

Gt
= 1 + g∗,

(ii) the rate of return on capital is constant, i.e., Rt+1 = Rt = R∗,

(iii) labour allocation in each sector is constant, i.e., Li,t+1 = Li,t = L∗i where i ∈
{x, Y, z}.

In other words, a BGP is an intertemporal equilibrium such that Yt,Kt, Gt and ct grow

at a constant rate while the rate of return on capital and labour allocation across sectors

are time-invariant.
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Similar to the previous model, we focus on eight variables including

Lx,t, LY,t, Lz,t, Bt, Rt,Θt, gt and Ωt

where these variables will be stationary along a BGP and jointly determined by a set of

eight non-linear equations. The system of equations will be stated in the following lemma.

Lemma 3.3. If a BGP exists, then there is a stationary point

(L∗x, L
∗
Y , L

∗
z, B

∗, R∗,Θ∗,Ω∗, g∗) ∈ (0, 1)3 × R4
++ × R

such that all quantities are jointly determined by

L∗x =
gA

1 + gA
∈ (0, 1), (3.53)

L∗Y = 1− L∗x − L∗z, (3.54)

β
(

1 + (1− τ)R∗ − δ
)

= 1 + g∗, (3.55)

Ω∗ = D
(
$(B∗L∗x)ρ + (1−$)(L∗z)

ρ
) 1
ρ
, (3.56)

R∗ = α1τ
1−α1
α1 (L∗Y )

α2
α1 (Ω∗)

1−α1−α2
α1 , (3.57)

Θ∗ − 1 =
1

1 +R∗ − δ
· 1 + g∗

1− L∗x
(Θ∗ − 1 + L∗x), (3.58)

1− α1 − α2

α2
·
L∗Y
L∗z

= 1 +
$

1−$

(B∗L∗x
L∗z

)ρ
, (3.59)

Θ∗ =
1− α1 − α2

α2
·
L∗Y
L∗x
·

(
1 +

1−$
$

( L∗z
B∗L∗x

)ρ)−1

. (3.60)

By comparing this lemma with Lemma 3.1, these two non-linear systems are almost

identical. It is clear that the government tax and productive expenditure will play a role

here in the growth process so that the Euler condition (3.55) and the rate of return on

capital condition (3.57) differ from Equations (3.30) and (3.32), respectively. Similar to the

previous model, we can apply Lemma 3.3 to obtain an equation determining the long-run

employment share in renewable resource extraction sector and this equation is stated in

the following lemma.
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Lemma 3.4. Let S ≡ (0, sM ) such that sM ≡ 1
1+gA

· 1−α1−α2
1−α1

. If a BGP exists, then there

exists L∗z ∈ S satisfying

(1− α1 − α2)− (1− α1)(1 + gA)L∗z
α2gA

= 1 +
gA

1+Φ[L∗z ]−δ
β(1+(1−τ)Φ[L∗z ]−δ) − (1 + gA)

(3.61)

where Φ[L∗z] ≡ α1τ
1−α1
α1 D

1−α1−α2
α1

(
(1−$)(1−α1−α2)

α2

) 1−α1−α2
ρα1

(
1

1+gA
−L∗z

) 1−α1−α2+ρα2
ρα1 (L∗z)

1−α1−α2
α1

(1− 1
ρ

).

By comparing Lemma 3.2 and Lemma 3.4, the substitution parameter ρ appears in

Equation (3.61) whereas it does not have in Equation (3.37). This implies that the states

of such parameter matter in determining L∗z in this model. Thus, labour allocation effect

appear and growth effect could exist under normalisation.

Under a certain set of parameters, if we are able to find a root of non-linear equation

(3.61), then a BGP exists. The following lemma shows sufficient conditions ensuring the

existence and uniqueness of a BGP.

Lemma 3.5. Suppose that β < β(1 + gA) < 1 is satisfied. Then the following results hold:

(i) Suppose that ρ ∈ (0, 1). Then a unique balanced-growth equilibrium exists if and

only if

gA <

(
1−α1−α2

α2

)
(β−1(1− τ)−1 − 1)

(β−1(1− τ)−1 − 1) +
(

1−α1−α2
α2

) . (3.62)

(ii) Suppose that ρ < 0. Then a balanced-growth equilibrium exists if

gA <

(
1−α1−α2

α2

)
(β−1 − 1)

(β−1 − 1) +
(

1−α1−α2
α2

) . (3.63)

Put differently, a sufficient condition for the existence of a BGP is that the growth rate

gA is strictly positive but cannot be too large. The set of sufficient conditions to ensure the

uniqueness is more restrictive as it requires that the growth rate gA cannot be too large

and the two types of natural resources are gross substitute.

3.4.3 Natural Resource Substitution and Long-Run Economic Growth

This subsection is devoted to examine the influence of natural resource substitution on the

long-run growth rate under the normalisation.

Normalisation

As in the previous model, we apply the normalization technique to capture the effect of

the elasticity of substitution on the long-run economic growth. To do so, we assume that
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Lemma 3.5 holds so that there exists a BGP for any ρ. Then, a BGP associated with a

particular ρ will be chosen as a reference point.

Before analysing the long-run growth effect, we define some useful notations and nor-

malise fundamental structure of the model. To begin with, we define et ≡ BtLx,t
Lz,t

and by

linear homogeneity of Ω[·, ·] we have Ω[et, 1] =
Ω[BtLx,t,Lz,t]

Lz,t
. As in subsection 3.1, given

the parameter values ρ1, $1, D1 and the rest, we can have a BGP associated with

e∗1 ≡ e∗(ρ1, $1, D1) > 0,Ω[e∗1, 1] > 0,m∗1 ≡ m∗(ρ1, $1, D1) > 0.

Suppose that ρ changes arbitrarily from ρ1 to ρ2. The normalisation procedure requires

that both D and $ have to adjust such that

D[ρ] = Ω[e∗1, 1]

(
(e∗1)1−ρ +m∗1
e∗1 +m∗1

) 1
ρ

and

$[ρ] =
(e∗1)1−ρ

(e∗1)1−ρ +m∗1
.

For more details of such derivations, see Klump and de La Grandville (2000). Next,

we normalise our economy by replacing D and $ with the right-hand side of above two

conditions, respectively, in all conditions stated in Lemma 3.3 and Lemma 3.4.

Based on the normalised economy, we can analyse the problem using two key conditions.

The first equation is the normalised version of Φ[·]:

Φ[Lz, ρ] = Õ[Lz]
( m∗1
m∗1 + e∗1

) 1−α1−α2
ρα1

(1− α1 − α2

α2

1

1 + gA

1

Lz
− 1− α1 − α2

α2

) 1−α1−α2
ρα1

(3.64)

where Õ[Lz] ≡ α1τ
1−α1
α1 (Ω[e∗1, 1]Lz)

1−α1−α2
α1

(
1

1+gA
− Lz

)α2
α1 . The second equation is the

normalised version of (3.61):

(1− α1 − α2)− (1− α1)(1 + gA)Lz
α2gA︸ ︷︷ ︸
≡LHS[Lz ]

= 1 +
gA

1+Φ[Lz ,ρ]−δ
β(1+(1−τ)Φ[Lz ,ρ]−δ) − (1 + gA)︸ ︷︷ ︸

≡RHS[Lz ,ρ]

. (3.65)

Obviously, the left-hand side of the above expression is independent of the substitution

parameter ρ whereas the right-hand side depends on such parameter. This observation

tells us that a change in the state of natural resource substitution could create labour

allocation effect if it induces a change in the value of the RHS[Lz, ρ].

In the next part, we will investigate the growth effect of the substitution parameter

in Barro (1990) model with natural resource substitution under the normalisation. As

mentioned before, our analysis will rely on Equations (3.64) and (3.65).
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Growth effect under normalisation

From now, we will provide a heuristic discussion on how changing the elasticity of substi-

tution between renewable and non-renewable resources would affect the rate of return of

physical capital in a balanced growth equilibrium, and hence long-term economic growth.

To facilitate a precise analysis, we focus our attention on the case that the two natural in-

puts are gross substitutes. Throughout the analysis we assume that β < (1+gA)β < 1 and

the statement (i) in Lemma 3.5 holds. As mentioned before that the gross-substitutability

has received some empirical supports, we argue that our theoretical analysis would present

a theoretical contribution within real-world consistent environment.11

Changing in the degree of natural resource substitutability creates both direct and

indirect effects on the rate of return on capital. On the one hand, define

Lz ≡
(1− α1 − α2)(

m∗1+e∗1
m∗1

)
α2 + (1− α1 − α2)

1

1 + gA
∈ S.

Then, using Equation (3.64),

∂Φ[Lz, ρ]

∂ρ


> 0 iff L∗z ∈

(
Lz, sM

)
= 0 iff L∗z = Lz

< 0 iff L∗z ∈
(

0, Lz

) . (3.66)

While keeping Lz unchanged, condition (3.66) states that raising the parameter ρ increases

(decreases) the term Φ[Lz, ρ] if Lz > (<)Lz. In addition, Φ[Lz, ρ] remains constant as ρ

changes if Lz = Lz. Intuitively, an increase in the degree of natural input substitution can

stimulate the rate of return on capital only if the share of renewable energy employment

is sufficiently high, say greater than Lz. We refer to this effect as a direct effect (or

general equilibrium effect) of natural resource substitution on R∗. On the other hand,

variations in natural resource substitution could also create an indirect effect on R∗ via

labour reallocation between the final good and renewable extraction sectors. In particular,

a shifting in Φ[Lz, ρ] could also affect the equilibrium value of Lz, which will create an

indirect effect on R∗. These two effects, however, often lead to opposite changes in R∗,

rendering the overall effect ambiguous. In what follows, we will explain these two effects

and discuss the conditions under which changing ρ is growth-enhancing, growth-neutral or

growth-reducing by using a graphical analysis.

In Figure 3.3 we depict the effect of a permanent increase in the state of substitution

parameter from ρ1 to ρ2. The upper panel illustrates the impact on the rate of return

on capital for any level of renewable resource extraction employment. As the rate of
11As mentioned before, Papageorgiou et al. (2017) estimates that the degree of natural inputs substi-

tutability is larger than one, using data from developed countries.
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natural resource substitution increases, the marginal product of capital curve Φ[Lz, ρ]

rotates around the point Lz in the counter-clockwise direction. The properties of Φ[Lz, ρ]

reflect the features of RHS[Lz, ρ]. The lower panel of the figure illustrates the impact

on the value of the right-hand side of Equation (3.65) for any level of renewable resource

extraction employment. Such increase in the rate of natural resource substitution cause

a clockwise rotation in the RHS[Lz, ρ] curve around the cut-off Lz. This property arises

because RHS[Lz, ρ] is decreasing in Φ[Lz, ρ]; see Equation (3.65). Capturing this variation

is crucial as it can tell us about the indirect effect (the labour allocation effect) due to

changes in the substitution parameter. Adding LHS[Lz, ρ] to the framework, we can

specify the long-run equilibrium and thus the growth effect of the substitution parameter.

Figure 3.3: Graphical Illustrations of Φ[Lz, ρ] and RHS[Lz, ρ].

Three possible long-term implications including growth-detrimental, growth-neutral

and growth-enhancing scenarios can be classified regarding the location of the initial share

of renewable extraction employment relative to the cut-off level. Firstly, if the initial

employment share is lower than the cut-off one, growth-detrimental scenario is revealed.

As illustrated in Figure 3.4 we can see that without the indirect effect, i.e. keeping the

labour allocation unchanged, an increase in ρ from ρ1 to ρ2 causes a decrease in R from

R∗1 to a rate lower than R∗2. This capital return change captures the direct effect of an

improvement in the degree of natural resource substitutability. However, such improvement

will alter the equilibrium allocation in labour market in this case. As can be seen from

the lower panel of Figure 3.4, the equilibrium L∗z will decrease to a point which is strictly

greater than γ ,i.e. L∗2 ∈ (γ, L∗1). This labour market reallocation leads to an increase in

the rate of return on capital which is the indirect effect in our context. Summing up these

two isolated effects yields the net effect of the change in the degree of natural resource

substitutability. Since the two effects act in opposite directions, the sign of the net effect
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will depend on the relative strength of these two forces. It is noteworthy that if L∗z,2 were

less than or equal to γ, then R∗2 would be greater than or equal to R∗1 and the total effect

would be positive. However, this situation would happen only if the slope of LHS[Lz, ρ]

were positive or zero. Thus, the direct effect always dominates the indirect effect and an

improvement in the degree of natural resource substitutability will always reduce the long-

run economic growth when the initial share of renewable extraction employment share is

too low. Graphically, the economy moves from point P1 to point P2, where LHS[Lz] and

RHS[Lz, ρ] curves intersect.

Figure 3.4: Growth-detrimental scenario

Secondly, if the initial employment share is equal to the cut-off one, growth-neutral

scenario is revealed. As illustrated in Figure 3.5 an increase in ρ from ρ1 to ρ2 will neither

cause a change in the return on capital and the labour market allocation. In other words,

both direct and indirect effects are nil in this case. Hence, an improvement in the degree of

natural resource substitutability will exhibit no long-run economic growth effect when the

initial share of renewable extraction employment share is exactly the same as the cut-off

allocation.

Finally, if the initial employment share is greater than the cut-off one, growth-enhancing

scenario is revealed. As illustrated in Figure 3.6 we can see that without the indirect effect,

i.e. keeping the labour allocation unchanged, an increase in ρ from ρ1 to ρ2 causes an

increase in R from R∗1 to a rate higher than R∗2. This capital return change captures the

direct effect of an improvement in the degree of natural resource substitutability. However,

such improvement will alter the equilibrium allocation in labour market as well. As shown

in the lower panel of Figure 3.6, the equilibrium L∗z will increase to a point which is strictly

lower than γ ,i.e. L∗2 ∈ (L∗1, γ). This labour market reallocation leads to a decrease in

the rate of return on capital which is the indirect effect in our context. As in previous
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Figure 3.5: Growth-neutral scenario

cases, summing up these two isolated effects yields the net effect. It is noteworthy that

if L∗z,2 were greater than or equal to γ, then R∗2 would be lower than or equal to R∗1 and

the total effect would be negative. However, this situation would happen only if the slope

of LHS[Lz, ρ] were positive or zero. Thus, the direct effect always dominates the indirect

effect and an improvement in the degree of natural resource substitutability will always

stimulate the long-run economic growth when the initial share of renewable extraction

employment share is sufficiently high. Graphically, the economy moves from point P1 to

point P2, where LHS[Lz] and RHS[Lz, ρ] curves intersect.

Figure 3.6: Growth-enhancing scenario

In sum, what we have learned from this experiment is as follows: An increase in the

ability to substitute renewable resource for non-renewable resource will stimulate the long-
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run economic growth if the two types of natural inputs are gross substitute, the growth

rate of non-renewable resources augmenting technology is positive but not too large and

the initial stationary fraction of worker employed in renewable resource sector is sufficiently

high.

3.4.4 Numerical Example

To get a better understanding of the role of labour allocation effect in determining long-

term economic growth as the degree of natural resource substitution changes we resort to

numerical illustration. To do this, we will use the U.S. data and relevant literature to

construct a benchmark economy. Nevertheless, the economy presented here do not aim at

approximating the U.S. economy, it is intended for illustrative propose only.

Benchmark Case

Table 3.4 summarises the benchmark parameters upon which our economy relies on.

Firstly, we normalise D whereas we calibrate α2, β and gA on the same data as in the

previous model.12 Applying the strategies used in the previous model13 to get D = 1, α2 =

0.6131, β = 0.9822 and gA = 0.0085. These parameter values are identical to those of the

previous model.

Secondly, the choice of parameter $ is drawn from the existing literature whereas the

specific value of τ is assigned using the U.S data. The distribution parameter $ is set at

0.5008, following Golosov et al. (2014). In addition, the choice of benchmark value for τ is

assigned the number 0.2. According to BEA (2019), the productive government spending

to GDP ratio is around 0.14 - 0.22 between 1961 and 2016.14 In our numerical illustration,

we use 0.20 which is consistent with literature (e.g., Escobar-Posada and Monteiro (2015)).

Finally, three parameters including ρ, α1 and δ are calibrated simultaneously to make

the model predictions as close as possible to the selected real-world statistics in Table 3.1.

This implies a value 0.0005, 0.3740, 0.0550 for ρ, α1 and δ, respectively.

Table 3.5 summarises the model predictions using the benchmark parameters. The

model predictions in the baseline case seem to be consistent with the U.S. economy in

many aspects. Especially, the predictions of the percentage of labour input devoted to

non-renewable resource extraction activity, capital to output ratio and long-run growth

rate. The benchmark predictions of the percentage of labour input devoted to renewable
12See subsection 3.3.2 for clarifications of the sources and the periods of the data used in our calibration.
13Under this framework, the real interest rate depends on the gap between after-tax marginal produc-

tivity of capital and depreciation rate so that we pick a set of parameters so that (1 − τ)R− δ sufficiently
close to 0.0385.

14Irmen and Kuehnel (2009) suggests that the productive spending includes the government current
expenditures on public order and safety, economic affairs, health, education and government investment in
fixed assets. Under this definition, the productive government spending will take place around 0.17 - 0.22
during 1961 - 2016.

54



Parameter Value Source
α2 0.6131 Calibration, as in the previous model
β 0.9822 Calibration, as in the previous model
gA 0.0085 Calibration, as in the previous model
D 1.0000 Normalisation
$ 0.5008 Golosov et al. (2014)
τ 0.2000 BEA (2019)
α1 0.3740 Calibration
ρ 0.0005 Calibration
δ 0.0550 Calibration

Table 3.4: Benchmark Parameter Values

resource extraction activity seems to be a bit high. However, the numerical economy is

not intended for representing the U.S. economy but used to explain economic intuitions

implied by the model. Thus, we will use this set of parameters to illustrate the benchmark

economy.

Figure 3.7 provides a graphical representation of the long-run equilibrium of the baseline

economy. The upper panel shows LHS and RHS curves. At the intersection point, we can

determine the long-run equilibrium employment in renewable resource extraction sector.

Specifically, the equilibrium employment share in the baseline is about 1.0052 percent. The

lower panel depicts the rate of return on capital, Φ[Lz], and the growth rate, β(1 + (1 −
τ)Φ[Lz] − δ). Given the long-run equilibrium employment, we can get R∗ and g∗ as the

values assigned at L∗z.

Variable Steady State Result U.S.Data
Non-renewable resource sector employment (Lx) 0.0084 0.0084
Renewable resource sector employment (Lz) 0.0101 0.0045
Capital-Output Ratio (K/Y) 3.1310 3.2255
(After-tax) net user cost of capital((1− τ)R− δ) 0.0406 0.0385
Long-Run Output per capita growth (g) 0.0220 0.0200

Table 3.5: Benchmark Result

Natural Resource Substitution and the Long-Run Economic Growth in the

Benchmark Model

In this part, we examine the impact of changes in the substitution parameter on the

long-run economic growth. As in the previous model, we examine growth effect via nor-

malisation. We assume the BGP associated with ρ = 0.0005 is our baseline economy. The

sensitivity analysis is illustrated in Figure 3.8.

Figure 3.8 shows the sensitivity to natural resource substitution variability within a

range neighbouring the benchmark value 0.0005, from 0.0003 to 0.99. The top panel
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Figure 3.7: A specific BGP in Barro (1990) Model with Natural Resource Substitution

depicts the change in the share of labour devoted to renewable resource extraction sector,

the middle panel depicts the change in the rate of return on capital and the bottom panel

shows the change in the long-run growth rate of output per capita. It can be seen from the

graph that as the substitution parameter increases the share of labour working in renewable

resource extraction sector declines. In addition, the rate of return on capital decreases and

thus the long-run growth rate decreases.

Figure 3.8: Growth effect under steady state normalisation in Barro (1990) Model with
Natural Resource Substitution

Why does the substitution parameter weaken the long-run economic growth in the

baseline economy? We can see that cut-off level Lz of the the benchmark economy is
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strictly greater than the equilibrium employment in renewable resource sector associated

with ρ = 0.0005. Since L∗z < Lz, then increases in the state of natural resource substitution

will weaken the percentage of employment in renewable resource sector.15 This reduces

the rate of return on capital and the the long-run growth rate as suggested by Proposition

3.2.

3.5 Discussions

Two points will be discussed here. To begin with, we emphasise that the labour allocation

effect is necessary for the existence of the long-run growth effect. Even though labour

allocation effect is an indirect effect when considering the impact of changes in the substi-

tution parameter, the long-run growth effect will not appear without such an effect. Form

the graphical analysis stated in subsection 3.4.3, if labour allocation is independent of the

variations in ρ; consider the case that L∗z,old = Lz, the rate of return on capital will neither

increase nor decrease. This result emphasises a vital role of the labour allocation effect.

In addition, policy implications based on our study seem to be practically beneficial.

On the one hand, we are unsure if an increase in the ability to substitute renewable to

non-renewable resources will enhance the long-run economic growth since it depends on the

economic structure which reflects the percentage of employment in the renewable energy

sector. In particular, the model suggests that if the share of worker in renewable energy

sector is high enough, the improvement in such degree would guarantee the positive growth

effect. On the other hand, one find that it is unlikely for the government to control the

substitution parameter since this parameter is deep and it depends on the production

technique of the economy. Improvement this parameter takes time, efforts, technological

advancement and so on. These matters mostly rely on private decisions. The government

should, instead, focus on how to stimulate the renewable resource employment to support

the improvement in the degree of natural resource substitution.

3.6 Conclusion

There is by now a number of natural resource based economic growth models with natural

resource substitution. What is lacking is a work determining a marginal effect of long-run

economic growth when the degree of natural resource substitution increases. In this paper

we have examined the analytical implications of such mechanism in two endogenous growth

models: Romer (1986) and Barro (1990) models.

In order to analyse the effect of changes in the elasticity of substitution, isolation the

impact from other arbitrary impacts is needed. To do so, we have introduced the concept
15In this benchmark economy, we have Lz = 0.0100523419953 and L∗z = 0.0100523187529.
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of CES normalisation into the study. Apply this into the Romer (1986) model with natural

resource substitution, we have shown that the degree of natural resource substitutability is

growth-independent. This result is due to the fact that as such degree changes, the labour

allocation across the three production sectors remains the same.

We, then, introduce an alternative model, á la Barro (1990) productive government

spending endogenous growth model. In this model, we can show that labour allocation

effect exists as the degree of natural resource substitution changes. The existence of labour

allocation effect induces a change in the rate of return on capital so that growth effect

appears. However, the direction is unclear depending on the initial equilibrium allocation in

labour market and the state of natural resource substitution. In particular, improvement in

natural resource substitutability will foster economic growth if the equilibrium employment

in renewable resource extraction sector is sufficiently high, and the growth rate of non-

renewable resource augmenting technology is strictly positive but not too large and the

two types of natural inputs are gross substitute.
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Chapter 4

Cross-Border Pollution: Growth and

Structural Change Effects of Poor

Countries

4.1 Introduction

It is widely accepted that climate change problem is one of the most pressing issues of

our time. According to NASA (2019), as of August 2019, the average global temperature

has increased by 0.85◦C since 1880. The rapid increase in global temperature is alarming

because it will affect every aspect of human life.

It is well-known that the main culprit of global warming is the stock of greenhouse gas

emissions (chiefly CO2) produced by fossil fuel based industrial activities and accumulated

in the Earth’s atmosphere (IPCC, 2014).1 When fossil energies are extracted and utilised,

the emitted greenhouse gases spread freely across the globe to integrate with the global

climate system. This creates an unfair burden of climate change because most of the emis-

sions are originated from developed and emerging countries who are also better equipped

to deal with the impact of global warming than underdeveloped countries. According to

WDI (2019), the OECD and BRICS countries account for 73 percent of global annual CO2

emissions between 1960 and 2014 (see Figure 4.1). Moreover, recent studies reveal that

countries that are most vulnerable to temperature increases are the poor ones, especially

those in sub-Saharan Africa, South Asia, and the Pacific islands. The major emitters, on

the other hand, do not seem to suffer any significant drawback from global climate changes

(Althor et al., 2016; Bathiany et al., 2018; King and Harrington, 2018; Letta and Tol,

2019, among many others). The disproportionate burden of climate change effects on poor
1The report from IPCC (2014) reveals that 74 percent of such emissions come from industrial sectors

around the world while the rest including agriculture, forestry, and other land use accounted for 24 percent
in 2010.
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Figure 4.1: The share of CO2 emissions (kt) of BRICS and OECD members relative to
global emission, 1960-2014.
Source: WDI (2019)

countries is an issue that warrants our attention.

In parallel with the studies on the differential effects of climate change across na-

tions, there is now a large body of theoretical research in macroeconomics and devel-

opment economics that aim at explaining the historical development of today’s advanced

economies and projecting the potential development trajectories of currently less-developed

ones (Gollin et al., 2007; Yang and Zhu, 2013, among many others). A main research agenda

of this literature is to reconcile two sets of empirical observations, known as the Kaldor

facts and the Kuznets facts, within the neoclassical growth framework. The main objec-

tive is to ensure that this framework is consistent with the empirical observations in both

aggregate and sectoral levels.2 On the one hand, the Kaldor facts is a list of stylized facts

regarding the generally stable pattern of major aggregate variables, such as the growth

rate of per-capita output, capital-labour ratio, capital-output ratio, factor income shares,

over a long period of time. On the other hand, the Kuznet facts summarise the main obser-

vations regarding sectoral transformation during economic development. Most notably, as

economies grow, the employment share and valued-added share of non-agriculture increase

but those of agriculture shrink.

Theoretical models of structural transformation are developed based on the now stan-

dard neoclassical growth model á la Ramsey (1928), Solow (1956), Koopmans (1963) and

Cass (1965). The standard neoclassical growth model is a single-sector dynamic general
2See Herrendorf et al. (2014), for an intensive review of theoretical contributions and see van Neuss

(2019) which also provides an integrated survey of the literature devoted to identifying the drivers of struc-
tural transformation. In addition, see Kaldor (1961) and Kuznets (1955) for both empirical regularities.
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equilibrium model that can satisfactorily explain the Kaldor facts. While the assumption

of a single final goods is convenient, it sidesteps the relationship between sectoral structure

and aggregate growth. In particular, abstracting from multiple productive sectors implies

that the Kuznets facts cannot be analysed. To overcome this limitation, studies in the

structural transformation literature have extended the standard neoclassical framework to

allow for multiple final goods and explore different mechanisms that can initiate structural

change. Such extension broadens the ability of the theory as it can capture the Kaldor facts

and the Kuznet facts at the same time. Examples of these studies include Kongsamut et al.

(2001), Ngai and Pissarides (2007), Acemoglu and Guerrieri (2008) and Alvarez-Cuadrado

et al. (2017).

Theoretically, structural change mechanisms can be classified into two groups, namely

demand side and supply side mechanisms. Studies that explore demand side mechanisms

typically postulate that consumers have non-homothetic preferences over different types

of goods. This captures the idea that consumers have a well-defined priority over differ-

ent types of consumption. In particular, goods with higher priority (e.g., necessities like

food consumption) will account for a large share of total expenditure when income level

is low. Then, the expenditure share declines in relative terms as the economy develops

and general income level rises. This variation in relative demand pattern, then, generates

structural transformation. Studies that explore this mechanism include Echevarria (1997),

Kongsamut et al. (2001) and Gollin et al. (2007). The supply side mechanism, on the other

hand, uses sectoral differences in production technology to explain structural transforma-

tion. For example, Ngai and Pissarides (2007) focus on the bias in technological change

across production sectors, while Acemoglu and Guerrieri (2008) focus on differences in cap-

ital intensity across sectors. These differences will induce changes in relative price which

then lead to structural changes. More recently, Alvarez-Cuadrado et al. (2017) consider

another supply-side factor, namely differences in the sectoral elasticity of substitution be-

tween capital and labour. They show that this type of differences can also induce a process

of structural transformation via the imbalance in the marginal product of labour across

sectors.

Building on these existing studies, in this chapter we explore a potential channel

through which climate change can affect economic growth and the allocation of produc-

tive inputs across sectors. As mentioned before, Ngai and Pissarides (2007) suggest that

biased technological change among production sectors could generate structural change.

In particular, these authors analyse the conditions for structural transformation and ag-

gregate balanced growth in a multi-sector model in which different sectors have the same

production function but different growth rates in labour productivity. Biased technological

change means that labour productivity tends to grow faster in one than in another sector,

so supply could outgrow demand for the higher productive sector. This then leads to a
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rebalance of employment and value-added. A natural follow-up question is what causes the

differences in productivity growth rate across productive sectors. One possible answer is

climate change. In a recent study, Burke et al. (2015) provide evidence showing that agri-

cultural productivity is more affected by global warming than in other sectors. This means

that climate change could induce technological biasedness. As a consequence, it could af-

fect the long-term development pattern in poor countries. These fundamentals lead us to

address the question: how are the long-run growth and structural transformations affected

by climate change?

Recent evidence on macroeconomic impacts of climate change suggest that such effects

vary across countries and economic activities. To begin with, Burke et al. (2015) use data on

economic production for 166 countries over the period 1960-2010 to estimate the country-

specific output changes due to stochastic atmospheric changes. The study shows that

countries located in tropical areas are more sensitive to climate changes than those located

in temperate zones. The main finding of the study is that there is a hump-shaped relation

between output growth and temperature. Specifically, if the initial level of temperature is

around 13◦C, then an increase in temperature has insignificant impact on the growth rate

of per-capita output . However, this growth rate will significantly decline with a marginal

increase in temperature if the initial temperature is higher than the threshold 13◦C and

the negative impact accelerates at higher temperatures. This non-linear and concave effect

is affirmed by more recent studies (Althor et al., 2016; Pretis et al., 2018; IMF, 2017;

Bathiany et al., 2018, for example). For example, IMF (2017) trace an impulse response

of real per capita GDP to a 1◦C increases in temperature of more than 180 economies

during 1950-2015. They find that an increase in temperature lessens economic activity in

countries with high average temperatures, while having the opposite effect in much colder

countries. In terms of channels of effect, the IMF study also suggests that the adverse effect

of climate change is biggest on agricultural output. Adverse effect on industrial output is

also observed. The services sector is the only one that appears to be immune from bad

weather.

The above discussion suggests at least two reasons why poor countries are more vulner-

able to climate changes than rich countries. The first one is geographical location. Most

of the poor countries are located in tropical areas which are most sensitive to tempera-

ture changes. In contrast, more affluent countries generally locate in temperate zones (See

Figure 4.2). Based on the study of Burke et al. (2015), the average temperature in high

income countries are very close to 13◦C but for the poor the average weather is 25◦C. Thus,

with the same increase in temperature, the adverse effect of climate change will fall more

heavily on the poor countries than on the rich countries. The second reason is that the

poor countries rely more heavily on agriculture. The shares of agricultural employment

and output tend to be higher in these countries than in developed countries. To illustrate

62



Figure 4.2: Income per capita and country location, 1992-2016.
Source: World Bank Data

Table 4.1: Employment Share 1997-2015 (World Bank)

Group Agriculture Non-Agriculture
OECD 0.06 0.94
Sub-Saharan Africa 0.57 0.43
South Asia 0.54 0.46
Pacific Islands and small states 0.37 0.63

this, the data from WDI (2019) reveal that the share of labour devoted to agricultural

activities in OECD countries is approximately 6 percent but 57 percent in Sub-Saharan

Africa between 1997 and 2015 (See Table 4.1). Also, in the same period, agricultural GDP

in OECD countries is approximately 2 percent whereas 21 percent in Sub-Saharan Africa

(See Table 4.2). As agricultural activity is mostly sensitive and being a core in tropical

zone economies, climate change could generate the larger gap of agricultural productivity

between the rich and the poor. This problem could further amplify the income difference

between these countries (Gollin et al., 2002, 2007). In sum, the unequally distributional

impact of climate change on rich and poor countries arises from relative geography and

relative economic structure.

To analyse the effects of climate change on economic growth and the allocation of pro-

ductive inputs across sectors, we develop a multi-sector neoclassical growth model along

Table 4.2: real GDP Share 1997-2015 (World Bank)

Group Agriculture Non-Agriculture
OECD 0.02 0.98
Sub-Saharan Africa 0.21 0.79
South Asia 0.21 0.79
Pacific Islands and small states 0.17 0.83
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the line of Kongsamut et al. (2001), Ngai and Pissarides (2007), Acemoglu and Guerri-

eri (2008) and Alvarez-Cuadrado et al. (2017). In the model, there are two final-good

sectors including agricultural sector and non-agricultural sector. Household preference is

non-homothetic such that agricultural consumption is necessity. The interactions between

the environment and macro-economy are specified as follows. Firstly, greenhouse gas emis-

sions are exogenous in poor countries perspective. This assumption is reasonable as the

emission from a single low-income country emission is negligible (WDI, 2019). Secondly,

we follow Burke et al. (2015) by assuming that the temperature change affects productivity

in agricultural and non-agricultural activities. It is important to note that climate-induced

productivity changes are not necessarily identical across sectors. Within this framework,

we characterise the market equilibrium and analyse the sensitivity of local growth and

structural change when global temperature increases/decreases marginally. Comparative

steady states analysis suggests that climate change always deteriorate the long-run eco-

nomic growth. However, the effect on the long-run shares of sectoral employment and

value-added are ambiguous.

We argue that analysing the problem using the model developed here is advantageous.

To begin with, the general structure of our analysis is consistent to the literature concerning

the climate-macroeconomic modelling according to Nordhaus (2008), among others, as the

one-sector neoclassical growth model is the common ground of our and their frameworks.

Secondly, structural change augmented-neoclassical growth model explicitly illustrates the

stage of the economic development in a country. In particular, the shares of agricultural

output and employment can be depicted so that the interactions between climate change

and the stage of the development can be captured. Finally, as climate change effect varies

across sectors, allowing multi-sectoral setting can highlight the role of sectoral heterogeneity

corresponding to climate change.

To the best of our knowledge, Engstrom (2016) is the only work studying the inter-

action between climate change and macroeconomic impacts based on structural change

augmented-neoclassical growth model. In that paper, the author develop a growth-climate

model combining structural change originated by heterogeneity in the growth rates of TFP

across sectors as in Ngai and Pissarides (2007). Also, the analysis follows Nordhaus (2008)

by assuming that climate change only impacts on current output. The model is developed

to set the optimal carbon tax. Also, numerical examples based on US and India data are

provided to show the sensitivity of tax changes in various macro variables.

Our work is closely related to Engstrom (2016) but differs in some crucial aspects.

Firstly, optimal policy setting is the main object of that paper but our work is the poor’s

growth and structural change effects of the global climate change problem. Secondly,

Engstrom model uses supply-side mechanism to generate structural change; as in Ngai and

Pissarides (2007) and Acemoglu and Guerrieri (2008), but we add demand-side mechanism
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to the analysis as well. As a consequence, the role of heterogeneity in income elasticities

among various kinds of consumption goods will be emphasised here. We argue that our

approach is more appropriate to study the poor countries as recent study suggests that

the demand-side mechanism is the main source of structural change in the poor countries

(Swiecki, 2017). Lastly, instead of applying Nordhaus (2008) measurement of climate

damage, we follows Burke et al. (2015) by assuming that global warming will curb economic

growth of the poor through deteriorating sectoral productivity growth rates.

This chapter will be organised as follows. In Section 4.2, we illustrate the structure

of the model. Market equilibrium allocation is derived in Section 4.3. In Section 4.4, we

illustrate comparative steady state analysis when climate change occurs. Section 4.5 makes

concluding remarks.

4.2 The Model

We develop a closed economy in discrete time; indexed by t = 0, 1, 2, ..., to represent a hy-

pothetical poor country with a potential mechanism through which climate change could

affect it. The economy is comprised of two production sectors and populated by a rep-

resentative infinitely-lived household whose preferences are derived from non-homothetic

preferences towards two goods produced from the two sectors. Climate change is exoge-

nously given and affects the hypothetical economy via altering productivity growths on

both production technologies. Our economy is modeled along the line of structural trans-

formation literature; inspired by the works by Kongsamut et al. (2001) and Ngai and

Pissarides (2007). Furthermore, climate change-macro economy interaction is motivated

by recent empirical investigations by Burke et al. (2015). The model description is as

follows.

4.2.1 Production and Accumulation Technology

Consider the supply side of the economy with two productive sectors including agricultural

sector (a) and non-agricultural sectors (n). Sector a employs workers to produce agricul-

tural goods which are purely consumed. Sector n employs workers and hires physical

capital to produce non-agricultural goods which are available for consumption or invest-

ment. These two goods are sold in competitive markets.

The general structures of input-endowments and technologies are as follows. In any

period t, the economy is endowed with Kt > 0 units of physical capital and Nt > 0

units of labour. We assume that these two inputs are supplied inelastically in competitive

markets. Given such endowments, the production technology of the sectors a is given by
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the following linear technology:

Ya,t = Aa,t(la,tNt). (4.1)

In the sector n it is

Yn,t = Kαn
t (An,tln,tNt)

1−αn . (4.2)

In the above expressions, Yi,t > 0 and li,t ∈ (0, 1) represent outputs and employment

share of sector i in period t, where i ∈ {a, n}, respectively. The parameter αn ∈ (0, 1)

is the capital share of non-agricultural output. The variables Aa,t > 0 and An,t > 0

represent sector-specific labour-augmenting productivity terms. The sector-specific growth

factors are allowed to be different. In regard to this matter, we assume that Ai,t will grow

exogenously by the time-variant rate γ̃i,t. Specifically, we assume Ai,t = Ai,0(1 + γ̃i,t)
t,

where Ai,0 is the sector i’s initial stock of technology. Time-varying exogenous process of

the growth rate of Ai,t reflects the evidence that changes in the average annual temperature

will affect the growth rates of Aa,t and An,t in different degrees (Burke et al., 2015). We

will discuss more about this later. Throughout, the non-agricultural good will be acting

as the numerare. Then, its price is normalized to unity every period and all other prices

and quantities are expressed in terms of the numerare good.

Let pt, wt, Rt and rt be the unit price of agricultural good, wage rate, the rate of return

on capital and the real interest rate in any period t, respectively. The representative firm

in agricultural sector solves

max
{la,tNt}

{
ptYa,t − wt(la,tNt)

}

and the representative firm in non-agricultural sector solves

max
{ln,tNt,Kt}

{
Yn,t − wt(ln,tNt)−RtKt)

}
.

Under perfect competition each factor will be paid according its (value of) marginal prod-

uct. Also, and no-arbitrage condition in labour market ensures that workers will be paid

equally across sectors. These imply

wt = ptAa,t = (1− αn)An,t

( Kt

An,tln,tNt

)αn
(4.3)

and

Rt ≡ rt + δ = αn

( Kt

An,tln,tNt

)αn−1
, (4.4)

must hold in every period, where δ ∈ [0, 1] is the capital depreciation rate.
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We finish the supply-side structure by expressing the input-output market clearing

conditions. To begin with, labour market clearing condition requires

la,t + ln,t = 1. (4.5)

Next, agricultural goods market clearing requires that

Ya,t = Ntca,t , ∀t (4.6)

and non-agricultural market clearing requires that

Yn,t = Ntcn,t +Kt+1 − (1− δ)Kt , ∀t (4.7)

where ca,t and cn,t are agricultural consumption per capita and non-agricultural consump-

tion per capita, respectively. As mentioned before, the agricultural goods market clearing

condition (4.6) states that the aggregate output will only be used for the aggregate con-

sumption Ntca,t whereas market clearing condition in the non-agricultural goods market

(4.7) states that the total amount of non-agricultural goods is allocated between the ag-

gregate consumption Ntcn,t and gross investment Kt+1 − (1− δ)Kt.3

4.2.2 Preferences, Endowments, and Utility Maximisation

Let us move to the demand side of the economy. On this side, there is an infinitely long

lived representative household, composed of Nt identical individuals in any period t. In

each period, the representative agent derives his utility by consuming agricultural and

non-agricultural goods. The individual preference over the two goods is defined along the

line of macroeconomic development literature; see Gollin et al. (2004), Gollin et al. (2007)

and Yang and Zhu (2013), for example. In particular, we assume that the individual will

always prioritise his spendings. He begin spending for agricultural goods until a subsistence

level is met. An intuitive explanation of this preference relation is that agricultural goods

, i.e. fruit, vegetables, milk products, cereals, bread and fishery products, are necessity

prerequisite for sustaining life. Once this level is met, the individual will allocate the

remaining income to either consume over the two goods or to save in terms of capital

accumulation. This preference relation can be represented by the following Stone-Geary

function:

u(ca,t, cn,t) =

[
(ca,t − ca,t)θc1−θ

n,t

]1−σ

1− σ
(4.8)

3In poor countries the financial markets are incomplete and, in turn, no any good can be transformed
to an investment good.
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where c̄a,t ≥ 0 is subsistence level of consumption which is assumed to be time-varying,

σ > 0 is the degree of relative risk aversion which is the reciprocal of the intertemporal

elasticity of substitution (IES) and θ ∈ (0, 1) represents a preference weight for agricultural

goods. The assumption that c̄a,t can change overtime implies that primarily necessary

amount of agricultural goods needed could vary as the economy develops.4 Here, we

assume that c̄a,t has a linear time trend, i.e. c̄a,t = (1 + χ)tµ where χ ≥ 0 and µ ≥ 0 are

the growth rate and the initial subsistence level of agricultural consumption, respectively.

At the beginning of time t, the household is endowed with the physical capital Kt

and Nt units of labour input. They earn their income from supplying both endowments

inelastically to input markets at the rates of returns wt and rt, respectively. The periodic-

income will be then allocated to consumption Nt(ptca,t+ cn,t) and savings Kt+1−Kt. The

household’s sequential budget constraint can be formally stated as

(1 + rt)Kt +Ntwt = Nt(ptca,t + cn,t) +Kt+1. (4.9)

Given an initial capitalK0 > 0, the sequence of prices {p,t, rt, wt}∞t=0, and the sequence

of primary necessity {ca,t}∞t=0, the representative household solves

max
{ca,t,cn,t,Kt+1}∞t=0

∞∑
t=0

βtNtu(ca,t, cn,t) (4.10)

subject to (4.9) and the regularity constraints: cn,t ≥ 0, ca,t ≥ ca,t and Kt+1 ≥ 0, for all t,

where β ∈ (0, 1) is the discount factor.5 The first-order conditions for utility maximisation

are

ca,t :
( θ

ca,t − ca,t

)[
(ca,t − ca,t)θc1−θ

n,t

]1−σ
− λtpt = 0,

cn,t :
(1− θ
cn,t

)[
(ca,t − ca,t)θc1−θ

n,t

]1−σ
− λt = 0,

Kt+1 : −βtλt + βt+1λt+1(1 + rt+1) = 0,

where λt is the co-state variable associated to the state variableKt. The first two conditions
4The subsistence level ca,t is usually treated as a constant level; see Gollin et al. (2004), Gollin et al.

(2007), Dekle and Vandenbroucke (2012) and Leukhina and Turnovsky (2016), among others. We subsume
this restriction by allowing a more flexible trajectory for this value. The time-varying assumption is also
used in previous studies as in Christiano (1989), Alvarez-Pelez and Diaz (2005) and Alonso-Carrera et al.
(ming), among others. Potentially, he climate change problem could drive an increased minimum demand
including expenditure on adaptation and mitigation (Stern, 2007). Intuitively, due to climate changes, as
temperature rises, the tendency of diseases rises and more food is necessary to compensate the negative
consequences of temperature rises. Thus, assuming time-varying subsistence level of consumption seems
to be sensible.

5Given the utility function in (4.8), it is never optimal to have cn,t = 0 or ca,t = ca,t. Hence, we can
focus on the interior solution of the household problem.
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imply
cn,t
ptca,t

=
1− θ
θ

(
1− ca,t

ca,t

)
, (4.11)

known as an intratemporal tradeoff condition. This condition determines an equilibrium

allocation of individual consumption expenditure across consumption goods.6 Next, the

second and the third conditions imply the Euler condition:

β(1 + rt+1) =
(cn,t+1

cn,t

)σ(pt+1

pt

)θ(1−σ)
. (4.12)

which governs the intertemporal decision between current and future consumptions of non-

agricultural goods. Optimising behaviour must also satisfy the following transversality

condition (TVC, hereafter):

lim
t→∞

βtλtKt+1 = 0 (4.13)

which states that the rational household have no interest in holding valuable assets at the

end of their life. Together with the TVC (4.13) and the household budget constraint (4.9),

the first order conditions (4.11) and (4.12) characterise the optimising behaviour of the

representative household.

4.2.3 Temperature and Productivity Growth

The climate change component is modelled consistently with the evidence from empirical

studies focusing on poor countries as well as the literature concerning macroeconomics of

climate change. According to recent empirical studies, it is observed that poor countries

have contributed negligible emissions but suffered the greatest devastation from climate

change (Dell et al., 2012; Burke et al., 2015; Althor et al., 2016; IMF, 2017, for example).

The observed problem comes from the fact that the effects of GHG emissions can be felt

beyond a country’s border. Since the poor have contributed far less to climate change we

assume that for a hypothetical poor economy the emission is exogenous. Next, we know

that climate change problem can be approximated by the tendency of the annual average

temperature observation (Shakun et al., 2012; Haustein et al., 2017). In particular, Shakun

et al. (2012) have found the tightly co-varying atmospheric CO2 levels and surface temper-

ature anomalies during the last 20,000 years. Let Tt be the period t average temperature

6Note that if ca,t = 0 for all t the consumption expenditure share in the agricultural good
(
Ea,t ≡

ptca,t
ptca,t+cn,t

)
will be constant and equal to θ. In another case, if ca,t > 0 for all t and growing at the

same rate as ca,t, then Ea,t will be constant and equal to θ

θ+

(
1−θ
θ

)(
1− µ

ca,0

) . If ca,t > 0 for all t and

growing at the rate which is less than that of ca,t, the consumption expenditure share in the agricultural

good is decreasing as the economy develops such that Ea,t =
θ+(1−θ)

ptca,t
cn,t

1+(1−θ)
ptca,t
cn,t

. This feature is as a result of

non-homothetic preferences.
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of the hypothetical poor country. Then, exogenous emissions implies that the sequence

{Tt}∞t=0 is also exogenously given.

In order to relate the climate change problem to the economy, we follow Burke et al.

(2015) by assuming that climate change affect the economy via altering the sectoral total

factor productivity growths. In particular, for i ∈ {a, n}, the growth rate of Ai,t between

time t− 1 and time t is given by

ln
( Ai,t
Ai,t−1

)
≡ ln(1 + γ̃i,t) = γi + Ωi(Tt). (4.14)

From the above expression, γi is a non-climate sensitive component labour-augmenting

technological progress whereas Ωi(Tt) is the growth-rate sensitivity to temperature.7 In

addition, as in their study, we introduces a non-linear specification:

Ωi(Tt) = ξi,1Tt + ξi,2(Tt)
2, i ∈ {a, n}. (4.15)

Combined with the quadratic specification (4.15), sectoral productivity growth condition

(4.14) describe a quadratic relationship between sectoral peroductivity growth and temper-

ature. In particular, if ξa,2 and ξn,2 are strictly negative, then there exist optimal levels of

temperature under which the growth factors of Aa,t and An,t are maximised. This feature

is consistent with the empirical findings of Burke et al. (2015), which show a hump-shaped

relationship between annual growth rate of GDP per capita and annual average tempera-

ture. Another remarkable point is that given an exogenous process of the average annual

temperature {Tt}∞t=0, a sequence of sectoral productivities {Aa,t, Aa,t}∞t=0 is given as well.

The climate-change induced economic loss through sectoral productivity growth effect

is a channel that we emphasise in this study. In mainstream studies of macroeconomic

impacts of climate change, pioneered by Nordhaus’s DICE Model (Nordhaus, 2008), the

scholars intorduce a damage function which is increasing and convex in average tempera-

ture anomalies (relative to pre industrials) and it performs as a scale factor. This factor

multiplies the aggregate production function in each period to decompose net output out

of damages. An implicit implication of this measurement of climate change effect is that

climate change appears to have temporary impacts on economic output, and thus temper-

ature anomalies has only level effects (Dietz and Stern, 2015). It is argued if this scale

quantification is under estimating the climate change effect in terms of production loss.

Recent studies, e.g. Dell et al. (2012), Burke et al. (2015) and Letta and Tol (2019), have

shown that the impact seems to be long lasting as they have found that climate change
7Some potential functional forms of Ωi(Tt) have been specified and tested empirically. It is assumed

to be linear and tested in Dell et al. (2012). After that, Moore and Diaz (2015) applies this empirical
specification to extend DICE Nordhaus (2008) model to compare the social cost of carbons between their
model and the original DICE. However, the sectoral heterogeneity is ignored in both studies. More recently,
a study from Burke et al. (2015) introduce a non-linear specification with sectoral decomposition.
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can potentially cause GDP per capita growth reduction. We follows this finding when

developing the model to rationalise the effect on the hypothetical poor economy. Alterna-

tively, some other channels; for example physical capital depreciations and poorer human

health, have been discussed as some potential channels as well (IMF, 2017). However, in

this analysis, we focus only on the sectoral productivity growth effect.

4.3 Dynamic General Equilibrium

In this section competitive equilibrium allocation will be defined. Then, dynamical system

associated with the competitive equilibrium will be characterised. Finally, the balanced

growth equilibrium will be illustrated.

4.3.1 Market Equilibrium

Definition 4.1. A market equilibrium is a sequence of prices {pt, wt, rt}∞t=0, an allocation

for the representative household {ca,t, cn,t,Kt+1}∞t=0, an allocation for representative firms

in both sectors {la,t, ln,t}∞t=0 such that:

(i) the allocation {ca,t, cn,t,Kt+1}∞t=0 solves the household problem (4.10) subject to (4.9)

given the sequence of prices {pt, wt, rt}∞t=0, the sequence of subsistence level of agricultural

consumptions {ca,t}∞t=0 and the initial stock of capital K0 > 0,

(ii) factor prices satisfy (4.3) and (4.4) given the sequence of sectoral productivities

{Aa,t, An,t}∞t=0,

(iii) markets clear, i.e. (4.5), (4.6) and (4.7) hold.

4.3.2 Intertemporal Equilibrium Characterisation

It will prove useful to characterise an intertemporal equilibrium using a modified dynamical

system that contains a steady state corresponding to an (original) intertemporal equilib-

rium along which all variables grow at constant rates (possibly zero), if exists.8 To begin

with, we define the following de-trended variables:

p̃t ≡ pt
(Aa,t
An,t

)
, c̃n,t ≡

cn,t
An,t

and zt ≡
Kt

An,tNt
.

Next, given such de-trended variables, we combine the sectoral zero-profit conditions

(4.3)-(4.4), the market-clearing conditions (4.5)-(4.7), and the conditions (4.9), (4.11)-

(4.13) which deliver the solution to the household’s problem to obtain a set of three static

conditions, two dynamic equations, one transversality condition:

p̃t = (1− αn)
( zt
ln,t

)αn
, (4.16)

8Formal definitions of stationary equilibria will be defined in the next subsection. See Definition 4.2.
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c̃n,t =
(1− θ

θ

)
p̃t

[
1− ln,t −

ca,t
Aa,t

]
, (4.17)

β(1 +Rt+1 − δ) =
( c̃n,t+1

c̃n,t

)σ
(1 + γ̃n,t+1)σ

( p̃t+1

p̃t

)θ(1−σ)(1 + γ̃n,t+1

1 + γ̃a,t+1

)θ(1−σ)
, (4.18)

zαnt l1−αnn,t = c̃n,t + (1 + n)(1 + γ̃n,t+1)zt+1 − (1− δ)zt, (4.19)

Rt = αn

[ zt
ln,t

]αn−1
, (4.20)

and

lim
t−→∞

βt
∂u(·)
∂cn,t

An,t+1Nt+1zt+1 = 0 (4.21)

, given an exogenous process {Aa,t, An,t, ca,t}∞t=0 and an initial condition z0 > 0. Again, all

proofs are relegated to several appendices at the end of the document.

Brief interpretations of these equilibrium conditions are in order. Firstly, similar to

Alvarez-Cuadrado et al. (2017), condition (4.16) is known as the labour mobility condition.

This condition ensures that the two sectors pay the same wage. Secondly, condition (4.17)

is a version of the intratemporal tradeoff condition which ensures that the marginal utility

per last dollar spent must be equal across all consumption goods. Thirdly, condition (4.18)

is a restatement of the Euler condition (4.11). Fourthly, condition (4.19) is an alternative

expression of the resource constraint which governs the evolution of the state variable

zt. Next, condition (4.20) is another expression of the rate of return on capital. Lastly,

condition (4.21) is a version of the TVC (4.13).

In sum, we can formally state that an inter-temporal equilibrium is characterised by a

sequence {ln,t, Rt, p̃t, c̃n,t, zt+1}∞t=0 that satisfies (4.16)-(4.21), given an exogenous process

{Aa,t, An,t, ca,t}∞t=0 and an initial condition z0 > 0.

Before moving onto the next steps of this study, it would be beneficial to characterise

another crucial variable in structural transformation literature which is non-agricultural

output share. The total output in period t, denoted by Ya,t, is equal to the value of

production Yt = pa,tYa,t+Yn,t. We can apply (4.1)-(4.3) and (4.5) to the previous expression

to obtain the total output function:

Yt = An,tNt

[ zt
ln,t

]αn
(1− αn + αnln,t). (4.22)

Non-agricultural output share is defined as sY n,t ≡ Yn,t
Yt
. Since Yn,t =

[
zt
ln,t

]αn
ln,tAtNt, then

sY n,t =
ln,t

1− αn + αnln,t
(4.23)
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is an expression of non-agricultural output share represented as a function of ln,t. Note

that
dsY n,t
dln,t

=
1− αn

[1− αn + αnln,t]2
> 0. (4.24)

This means that the non-agricultural output share is strictly increasing in the non-agricultural

labour share.

4.3.3 Steady State Equilibria and Stationary Growth Paths

In this subsection, we will discuss about a special case of dynamic general equilibria, known

as balanced growth paths (BGPs, hereafter). We start with featuring stationary state of

climate change. Then, we define a formal definition of BGPs. Next, we characterise

equilibrium allocation corresponding to this long-run equilibrium as well as the sufficient

conditions under which the equilibrium allocations exists and is unique.

Zero Anomaly and Stable Sectoral Productivity Growths

To characterise a stationary equilibrium of a growth model with climate change phenom-

ena, a precise definition of stationary situation of climate change is needed. In regard

to this matter, we state that the climatic steady state corresponds to the state in which

the temperature anomaly disappears. Combined with Paris Agreement assertion, there

are scientific studies projecting some possible trajectories of average annual temperature

anomalies; see Goodwin et al. (2018) and Nicholls et al. (2018), for example. The studies

generally accept that no matter whether the Paris agreement will be achieved, the long-run

temperature will reach a stable level as it is widely agreed that the main source of climate

change is generated from burning fossil energy which is finite.9

We rationalise the climatic steady state as follows. Suppose that there is τ ≥ 0 such

that

t ≥ τ ⇒ Tt = T ∗ > 0.

After defining the climatic steady state precisely, we can evaluate the stationary growth

rates of the labour augmenting technologies in agricultural and non-agricultural sectors.

Then, by using (4.14) and (4.15), we can state that in the long-run

Ai,t+1

Ai,t
= 1 + γ̃∗i ; i ∈ {a, n}, ∀t ≥ τ (4.25)

where γ̃∗i is a stationary net growth rate of the labour augmenting technologies in sector i.
9It does not mean that climate change is not as serious as we expect. We just clarify the physical

constraint of this kind of natural resources. Without limiting the depletion of fossil fuels, the climate
change problem would reach a very high degree that could cause an environmental catastrophe; see Hope
et al. (2017, p.87).
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Balanced Growth Path

We define a balanced growth path (BGP) under the assumption that temperature remains

constant all the time.10 Suppose that Tt = T ∗ > 0 for all t. Then, the constant sectoral

growth rates can be derived, denoted by γ̃∗a and γ̃∗n. Given these constant productivity

growths, we can define a BGP as follows.

Definition 4.2. A market equilibrium is said to be a BGP if it satisfies three additional

conditions:

(iv) the sectoral allocation of labour input is constant overtime, so that

ln,t = l∗n ∈ (0, 1),

(v) the rate of return on capital is constant overtime, so that

rt = r∗ andRt = R∗ = r∗ + δ > 0,

(vi) growth rates of all variables are constant over time.

Some restrictions on parameters are required in order to establish the existence of a

BGP. The following lemma highlight two such restrictions.

Lemma 4.1. The following results hold:

(i) a BGP exists only if ca,t = µAa,t, for some µ > 0.

(ii) The TVC (4.13) is satisfied in any BGP if and only if

β(1 + n)
[
(1 + γ̃∗n)(1−θ)(1 + γ̃∗a)θ

]1−σ
< 1. (4.26)

Lemma 4.1 is standard in models with perpetual growth in per-capita variables and

a minimum consumption requirement. Specifically, the statement (i) states that the sub-

sistence level of consumption must be growing over time in order for a balanced growth

equilibrium to remain in existence. In particular, it must grow at the same rate as that of

Aa,t to maintain the equality in (4.17) along the BGP. On the other hand, the statement

(ii) provides a parameter restriction which ensures that the TVC (4.21) condition; and

thus (4.13), is satisfied.

Proposition 4.1. Suppose that conditions (i) and (ii) in Lemma 4.1 and 0 ≤ µ < 1 hold.

Then there exists a unique BGP such that

R∗ =
1

β
(1 + γ̃∗n)σ

(1 + γ̃∗n
1 + γ̃∗a

)θ(1−σ)
− (1− δ) > 0, (4.27)

10In practice, Tt may be interpreted as the average temperature within a certain time period, i.e., a
calendar year. In this case, constant temperature means a stable pattern of average temperature across
years.

74



p̃∗ = (1− αn)
[R∗
αn

] αn
αn−1

> 0, (4.28)

l∗n =

(
1−θ
θ

)
(1− αn)(1− µ)(

1−θ
θ

)
(1− αn) + 1− αn

Γ∗1
R∗

∈ (0, 1), (4.29)

z∗ =
[R∗
αn

] 1
αn−1

l∗n > 0 (4.30)

c̃∗n =
(1− θ

θ

)
p̃∗
[
1− l∗n − µ

]
> 0 (4.31)

where Γ∗1 ≡
[
(1 + n)(1 + γ̃∗n)− (1− δ)

]
> 0.

The above proposition states that if the temperature is stationary, the life-time utility

converge and subsistence level of agricultural consumption is growing at a proper rate while

its initial level is not too large, then there exist a unique BGP.

4.4 Comparative Steady States

In this section, we compare the long-run BGPs with and without climate change. In

particular, we compare the two BGPs that differ only in their stationary temperatures.

Regarding this issue, we emphasise four aspects including the long-run growth rate of

output per capita, the rate of return on capital and structural transformations including

employment share and value-added share.

4.4.1 General Picture

Before doing so, we need a primitive about the climate damages. As mentioned in literature,

climate change induces heterogeneous effects on poor nations through reducing sectoral

output growth rates (Burke et al., 2015; IMF, 2017). We follows Burke et al. (2015) by

assuming that
∂γ̃∗a
∂T ∗

<
∂γ̃∗n
∂T ∗

< 0. (4.32)

The above inequalities states that the sectoral growth rates will decreases with a slightly

increase in temperature change such that the magnitude is larger for agricultural sector.

After imposing the climate damage primitive, we analyse the two stationary states that

differs only in their steady state temperatures. First, we consider the effect on the long-run

growth rate of output per capita. Apply the Euler condition (4.18) with the stationary

rate of return (4.24) and the restriction cn,t+1

cn,t
= 1 + g∗, where g∗ is the long-run growth
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rate of output per capita. Then, g∗ = γ̃∗n. This implies

∂g∗

∂T ∗
=
∂γ̃∗n
∂T ∗

< 0. (4.33)

The result is consistent with structural transformation literature concerning agricultural

and non-agricultural disaggregation as it appears that the long-run economic growth is

equal to the growth rate of labour-augmenting technological factor in the sector that pro-

vides goods used for capital accumulation (Kongsamut et al., 2001). As non-agricultural

productivity growth determines the long-run economic growth, the climate change effect

plays a role in determining the long-run growth effect via altering the non-agricultural

productivity growth factor.

Second, we draw an impact on the rate of return on capital. From (4.27), straightfor-

ward differentiation yields

∂R∗

∂T ∗
=

1

β

(1 + γ̃∗n)σ+θ(1−σ)

(1 + γ̃∗a)θ(1−σ)

{
σ + θ(1− σ)

1 + γ̃∗n

∂γ̃∗n
∂T ∗

+
θ(σ − 1)

1 + γ̃∗a

∂γ̃∗a
∂T ∗

}
. (4.34)

The sign of ∂R∗

∂T ∗ is ambiguous. In particular, it depends on the sign of the term in the

bracket {•} on the RHS of (4.34). Nevertheless, one can observe that the parameter σ

plays a crucial role in determining the sign of this expression:

σ ≥ 1⇒ {•} < 0⇒ ∂R∗

∂T ∗
< 0,

σ < 1⇒ {•} S 0⇒ ∂R∗

∂T ∗
S 0.

It is obvious that climate change will always weaken the rate of return on capital when

σ ≥ 1. However, when σ < 1 the impact on the capital return becomes ambiguous.

Particularly, climate change will weaken the rate of return on capital as long as the value

of σ in not too low. Otherwise, it could stimulate the rate of return on capital if σ is

sufficiently low. Evidently, meta-analysis from Havranek et al. (2015) suggest that the

estimated EIS differs across countries (both rich and poor) but typically lying between 0

and 1. This implies that σ ≥ 1 is very likely and climate change seems to harm the rate

of return on capital in poor countries.

The effects of climate change on the long-run structural transformations are generally

ambiguous. We begin by considering the impact on the sectoral employment share. As

we have illustrated in Proposition 4.1, the long-run non-agricultural employment share is
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given by the condition (4.29). By differentiating this equation with respect to T ∗, we get

∂l∗n
∂T ∗

=

(
1−θ
θ

)
(1− αn)(1− µ)[(

1−θ
θ

)
(1− αn) + 1− αn

Γ∗1
R∗

]2 ×
αn

(R∗)2
×
[
R∗

∂Γ∗1
∂T ∗

− Γ∗1
∂R∗

∂T ∗

]
. (4.35)

Intuitively, we argue that the ambiguity of the impact on the employment share arises due

to the influence of the climate change on the rate of return on capital. To illustrate this,

let’s consider (4.35). There are two potential effects of climate change that could influence

on the employment share. These two effects include the direct non-agricultural productivity

growth effect ; measured by ∂Γ∗1
∂T ∗ , and the capital return effect ; measured by ∂R∗

∂T ∗ . For the

former effect, when the average annual temperature increases, it induces a decrease in the

non-agricultural productivity growth. While keeping R∗ unchanged, a decrease in γ̃∗n will

induce a decrease in Γ∗1 and thus the non-agricultural labour share. In other words, without

other influences the share of non-agricultural employment will be negatively affected by

climate change. However, the ambiguity arises because the increasing in the average annual

temperature also induces a change in the rate of return on capital through changes in both

agricultural and non-agricultural productivity growth rates; see (4.34). This change will

induce a change in the labour share indirectly via changes in R∗ in ambiguous ways.

Finally, the impact on the non-agricultural value-added share is consistent with that

of the labour share. Based on (4.23) and (4.24), it is obvious that

∂sY n∗
∂l∗n

=
1− αn

[1− αn + αnl∗n]2
> 0.

Thus, the climate change affects the employment and value-added shares in the same

direction.

In sum, what we have learnt from the general picture are as follows. Firstly, climate

change matters for the long-run economic growth if it hurts the non-agricultural produc-

tivity growth rate. Climate change will affect the rate of return on capital via dampening

the productivity growth rates in both sectors. Labour share will be affected via two chan-

nels including the direct non-agricultural productivity growth effect and the capital return

effect. The ambiguity of the employment share is solely driven by the capital return effect.

Finally, the impact on the value-added share is co-varied with that of the employment

share.

4.4.2 A Special Case: The Role of Agricultural Productivity Growth
Effect

Since poor countries rely heavily on agricultural activities, it would be useful if we em-

phasise the impacts of climate change through changes in the long-run growth rate of
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agricultural productivity. Regarding this matter, this subsection will be devoted to anal-

yse the impacts on the long-run economic growth and structural transformation resulting

from agricultural productivity growth detrimental.

As before, the analysis requires a primitive about climate change damages. In sub-

section 4.4.1, we conjecture that climate change harms productivity growth rate in both

sectors. Now, we assume that
∂γ̃∗a
∂T ∗

<
∂γ̃∗n
∂T ∗

= 0 (4.36)

That is climate change will affect only the agricultural productivity growth and not that

of another sector. Note that this analysis can be seen as a counter-factual experiment of

the general picture that we have illustrated before.

Firstly, agricultural productivity growth plays no role in determining the long-run eco-

nomic growth, i.e.
∂g∗

∂T ∗
= 0.

As mentioned before, along a balanced growth path, the long-run growth rate is determined

by the productivity growth in the non-agricultural sector. When assuming that climate

change will not affect non-agricultural production in poor countries, even if the negative

effect on agricultural production remains, the long-run growth effect disappears.

Secondly, the impact on the rate of return on capital is unclear as before. From (4.34),

the capital return effect turns out to be

∂R∗

∂T ∗
=

1

β

(1 + γ̃∗n)σ+θ(1−σ)

(1 + γ̃∗a)θ(1−σ)

{
θ(σ − 1)

1 + γ̃∗a

∂γ̃∗a
∂T ∗

}
.

As in the general picture, the relative risk aversion parameter σ plays a crucial role in

determining the sign of the effect. In particular, climate change will decrease (increase)

the rate of return on capital if σ > (<)1. In addition, when σ = 1; which implies that the

utility function is logarithmic, climate change will create no effect on the rate of return on

capital.

Next, the effects on structural changes including labour share and value-added share

are also ambiguous. For employment share, even if the direct non-agricultural productivity

growth effect disappear, the capital return effect remains and turns out to be the only

driver causing the reallocation in labour market. As a result, the climate change impact

on the employment share remains but in ambiguous direction. For the value-added share,

as in the general case, climate change still alters the share since the capital return effect

is still functioning. In a specific situation when utility function is logarithmic, climate

change will affect neither employment share nor value-added share. This happens because

of two reasons. Firstly, in this experiment we mute the non-agricultural productivity

growth detrimental. This turns out that ∂l∗n
∂Γ∗1

= 0, i.e. there is no direct non-agricultural
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productivity growth effect. Secondly, when the utility function is logarithmic, the capital

return effect disappears. Thus, the effects on the employment share and the value-added

share disappear.

In sum, this experiment suggests that agricultural productivity growth detrimental

plays no role in determining the growth effect of climate change. Still, agricultural produc-

tivity growth detrimental causes changes in the stationary rate of return on capital and

thus structural change. However, the directional effects are ambiguous.

4.5 An Extension

Having shown that climate change always weakens the long-run economic growth but may

or may not induce de-industrialisation in a poor country, we explore the robustness of such

predictions to the model with more generalised production technologies. We extend an

otherwise baseline model by allowing the sectoral outputs to be produced under two CES

production functions, using capital and labour. One may think that the generalisation of

productions may affect some of the baseline results.

The model extension is straightforward. Firstly, we add another market clearing con-

dition. Let si,t be the share of capital input used in sector i ∈ {a, n}. In each period

t,capital market clearing condition is

sa,t + sn,t = 1. (4.37)

Secondly, we specify the new sectoral technologies. Sector i’s output in period t, Yi,t,

is produced by a representative firm using physical capital devoted to the sector i, si,tKt,

and labour, li,tNt, according to a CES production technology with substitution parameter

ψi ∈ (−∞, 1],

Yi,t =

[
αi

(
si,tKt

)ψi
+ (1− αi)

(
Ai,tli,tNt

)ψi] 1
ψi

;αi ∈ (0, 1), i ∈ {a, n} (4.38)

where Ai,t is defined as in the baseline model and αi is the sector i’s distributive share

parameter. The specification (4.37) allows for two additional sector-specific features in

the production technologies. First, the two CES production functions may have different

substitution parameter values. This relaxation reflects that the elasticity of substitution

between capital and labour can be different across sectors and, then, potentially affects

structural change via factor rebalancing effect as suggested by (Alvarez-Cuadrado et al.,

2017). Second, the two CES production functions may have different distributive parameter

values. While capital input can be utilised in both sectors, the difference on the impor-

tance of capital input among sectors could generate different capital intensities between
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the two sector which could affect structural change as shown in Acemoglu and Guerrieri

(2008). Combined with the fact that structural changes via non-homothetic preference

effect (Kongsamut et al., 2001) and via biased technological change effect (Ngai and Pis-

sarides, 2007) have been addressed in the baseline model, the extended model can be seen

as a hybrid model of structural change allowing the four generators into one model.

Finally, we re-characterise the input price equations. The representative firm in agri-

cultural sector solves

max
{la,tNt,sa,tKt}

{
ptYa,t − wt(la,tNt)−Rt(sa,tKt)

}

and the representative firm in non-agricultural sector solves

max
{ln,tNt,sn,tKt}

{
Yn,t − wt(ln,tNt)−Rt(sn,tKt)

}
.

Under perfect competition and no-arbitrage conditions each factor will be paid according

its (value of) marginal product and will be paid equally across sectors. This implies

wt = ptY
1−ψa
a,t (1− αa)(Aa,tla,tNt)

ψa−1Aa,t = Y 1−ψn
n,t (1− αn)(An,tln,tNt)

ψn−1An,t, (4.39)

Rt ≡ rt + δ = ptY
1−ψa
a,t αa(sa,tKt)

ψa−1 = Y 1−ψn
n,t αn(sn,tKt)

ψn−1, (4.40)

must hold in every period. It is notable that the baseline model can be seen as a special

case of this extension by setting ψa = ψn = αa = sa,t = 0.

While this extension does not alter consumer behaviour and climate component, these

two parts of the economy remain unchanged. With the revised technologies (4.37), input

prices (38)-(39) and the capital market clearing condition (4.38), we can characterise an

inter-temporal equilibrium, balanced growth path and the climate change impacts as in

the baseline model. The equilibrium can be formally stated by the following definition.

Definition 4.3. A market equilibrium is a sequence of prices {pt, wt, rt}∞t=0, an allocation

for the representative household {ca,t, cn,t,Kt+1}∞t=0, an allocation for representative firms

in both sectors {sa,t, sn,t, la,t, ln,t}∞t=0 such that:

(i) the allocation {ca,t, cn,t,Kt+1}∞t=0 solves the household problem (4.10) subject to (4.9)

given the sequence of prices {pt, wt, rt}∞t=0, the sequence of subsistence level of agricultural

consumptions {ca,t}∞t=0 and the initial stock of capital K0 > 0,

(ii) factor prices satisfy (4.39) and (4.40) given the sequence of sectoral productivities

{Aa,t, An,t}∞t=0,

(iii) markets clear, i.e. (4.5)-(4.7) and (4.37) hold.
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4.5.1 Intertemporal Equilibrium Characterisation

Let us redefine the de-trended relative price as p̃t ≡ pt

(
Aa,t
An,t

)1−αa
. Then, we apply a

procedure similar to Alvarez-Cuadrado et al. (2017) to construct an equilibrium sequence

{sn,t, ln,t, Rt, p̃t, c̃n,t, zt+1}∞t=0.11 In particular, such a sequence can be characterised by

using a system of four static conditions, two dynamic equations and one transversality

condition: (1− αa
αa

)( αn
1− αa

)(Aa,t
An,t

)ψa(1− sn,t
1− ln,t

zt

)1−ψa
=
(sn,tzt
ln,t

)1−ψn
, (4.41)

(1− αa
1− αn

)
p̃t

(Aa,t
An,t

)αa[
αa

(Aa,t
An,t

)−ψa(1− sn,t
1− ln,t

zt

)ψa
+ (1− αa)

] 1−ψa
ψa

=
(sn,tzt
ln,t

)1−ψn Rt
αn
,

(4.42)

p̃t

(
Aa,t
An,t

)αa−1(
θ

1−θ

) ((Aa,t
An,t

)
(1−ln,t)

[
αa

(Aa,t
An,t

)−ψa(1− sn,t
1− ln,t

zt

)ψa
+(1−αa)

] 1
ψa

− ca,t
An,t

)
= c̃n,t,

(4.43)

β(1 +Rt+1 − δ) =
( c̃n,t+1

c̃n,t

)σ
(1 + γ̃n,t+1)σ

( p̃t+1

p̃t

)θ(1−σ)(1 + γ̃n,t+1

1 + γ̃a,t+1

)(1−αa)θ(1−σ)
, (4.44)

ln,t

(sn,tzt
ln,t

)(Rt
αn

) 1
1−ψn = c̃n,t + (1 + n)(1 + γ̃n,t+1)zt+1 − (1− δ)zt, (4.45)

Rt = αn

[
αn + (1− αn)

(sn,tzt
ln,t

)−ψn] 1−ψn
ψn

(4.46)

and the TVC condition:

lim
t−→∞

βt
∂u(·)
∂cn,t

An,t+1Nt+1zt+1 = 0 (4.47)

11Alvarez-Cuadrado et al. (2017) construct a two-sector Solow growth model with structural transfor-
mation to show that difference in elasticity of subsitutions among sectors could cause a structural change
during the transition dynamics. To do so, the authors develop two static conditions, called contract curve
and labour mobility condition, to determine equilibrium allocations in input markets. Then, given the
static equilibrium allocation, the model is closed by developing a transition equation governing the state
variable of the economy. Since the consumption/saving decision is given, by definition of Solow model, the
only dynamic problem in their model is the evolution of the capital stock of the economy. Nevertheless,
we cannot decompose the system into two sub-systems as in their study. The simplified decomposition
is impossible because when determining the equilibrium consumption plan (ct, ct+1); and thus (zt, zt+1),
using Euler condition we need to know (ln,t, sn,t) as well as (ln,t+1, sn,t+1) at the same time. Instead, we
have to solve the whole system simultaneously.
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, given an exogenous process {Aa,t, An,t, ca,t}∞t=0 and an initial condition z0 > 0.12

According to Alvarez-Cuadrado et al. (2017), conditions (4.41) and (4.42) are called

the contract curve (CC) and the labour mobility condition (LM), respectively. The CC

represents the equilibrium pairs (sn,t, ln,t) where the marginal rates of technical substitution

are equalised across the two sectors, given Aa,t, An,t and zt. Next, the LM collects input

market allocations (sn,t, ln,t) where sectors pay the same wage, given Aa,t, An,t and zt. If

we depict the CC and the LM in sn,t, ln,t space, the two curve will necessarily cross at the

equilibrium point.

The other conditions are standard. Conditions (4.43) is a version of the intratemporal

tradeoff condition (4.11). Condition (4.44) is a restatement of the Euler condition (4.12).

Condition (4.45) is an alternative expression of the resource constraint which governs the

evolution of the state variable zt. Condition (4.46) is another expression of the rate of

return on capital. Condition (4.47) is a version of the TVC (4.13).

re

4.5.2 Balanced Growth Path

Suppose that Tt = T ∗ > 0 for all t. Then, the constant sectoral growth rates can be

derived, denoted by γ̃∗a and γ̃∗n. Given these constant productivity growths, a BGP can be

defined by Definition 4.2 with an additional condition:

sn,t = s∗n ∈ (0, 1).

, which ensure that the sectoral allocation of capital input is constant overtime.13

As in the baseline model, some restrictions on parameters are required in order to es-

tablish the existence of a BGP. The following two lemmas highlight three such restrictions.

Lemma 4.2. A BGP exists only if ψa(γ̃∗a − γ̃∗n) = 0.

Lemma 4.2 states that some restrictions on either the sector-specific productivity

growth rates or the agricultural production function are necessary in order to ensure the

existence of a BGP. More specifically, if Aa,t and An,t are assumed to grow at different

rates in the long run, then it is necessary to have ψa = 0 which means the elasticity of

substitution between capital and labour is one in the agricultural sector; i.e., the agri-
12See Appendix C.4.
13When discussing about the long-run behaviour of economic growth with structural transformation,

most structural change models also feature another kind of long-run stationary equilibria which is known
as asymptotic balanced growth paths (ABGPs, hereafter), e.g. Echevarria (1997), Kongsamut et al. (2001),
Acemoglu and Guerrieri (2008) and Alonso-Carrera and Raurich (2018). One can find a formal definition
of ABGPs in, e.g. Palivos et al. (1997). In our study, we will not focus on this kind of long-run equilibria.
However, we devote an optional section in Appendix to Chapter 4 to characterise this kind of equilibrium
paths.
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cultural production function must be Cobb-Douglas.14 Alternatively, if ψa 6= 0 then the

two technological factors must have the same long-run growth rates, i.e., γ̃∗a = γ̃∗n.15 This

result holds even if the manufacturing production is Cobb-Douglas (ψn = 0) or the two

production functions have the same elasticity of substitution, i.e., ψa = ψn.16

Lemma 4.3. Suppose that ψa = 0. Then the following results hold:

(i) a BGP exists only if ca,t = µA1−αa
a,t Aαan,t, for some µ > 0.

(ii) The TVC (4.13) is satisfied in any BGP if and only if

β(1 + n)
[
(1 + γ̃∗n)(1−θ)+θαa(1 + γ̃∗a)θ(1−αa)

]1−σ
< 1. (4.48)

Economic intuitions of Lemma 4.3 is analogous to that of Lemma 4.1. Actually, this

lemma is a more generalised version of Lemma 4.1. If we set αa = 0, then this lemma

turns out to be Lemma 4.1.

We now provide a formal characterisation of a balanced growth path under the assump-

tion that there is a finite τ ≥ 0 such that γ̃i,t = γ̃∗i > 0 for i ∈ {a, n} and for all t ≥ τ . We

need the following auxiliary notations:

Λ∗1 ≡
[
(αn)

−1
1−ψn (R∗)

ψn
1−ψn − 1

]−1
ψn
(1− αn

αn

) 1
ψn ,

Λ∗2 ≡
( p̃∗αa
R∗

) 1
1−αa ,

Γ∗1 ≡
[
(1 + n)(1 + γ̃∗n)− (1− δ)

]
,

Γ∗2 ≡
[
(αn)

−1
1−ψn (R∗)

ψn
1−ψn − 1

]− 1
ψn
[
(1− αn)(R∗)

ψn
1−ψn (αn)

− 1
1−ψn

] 1
ψn ,

where p̃∗ is the stationary value of p̃t along the BGP.

Proposition 4.2. Suppose ψa = 0, ca,t = µA1−αa
a,t Aαan,t for some µ > 0, and (4.48) is

satisfied. Then, the following results hold.

(i) In any BGP (provided that one exists), the value of R∗ and p̃∗ are given by

R∗ =
1

β
(1 + γ̃∗n)σ

(1 + γ̃∗n
1 + γ̃∗a

)(1−αa)θ(1−σ)
− (1− δ), (4.49)

p̃∗ =
(1− αn

1− αa

)
(Λ∗1)(1−αa)(1−ψn)

( αa
1− αa

· 1− αn
αn

)−αa(R∗
αn

)
. (4.50)

14Assuming Cobb-Douglas in agricultural sector is widely used in recent literature; see Alvarez-Cuadrado
and Poschke (2011), Alonso-Carrera and Raurich (2015) and Alonso-Carrera and Raurich (2018) for ex-
ample, concerning structural transformation.

15The equality γ̃∗a = γ̃∗n can be justified by assuming that productivity growth in both sectors are driven
by some general purpose technological improvements that benefit all the workers in the economy.

16Under the assumption that ψa = 0, the condition (4.43) turns out to be (C.5.4); See Appendix C.5.

83



(ii) Suppose the following conditions are satisfied:

(R∗)ψn > αn (4.51)

and [
(Λ∗2)αa − µ

]
(Γ∗2 − Γ∗1Λ∗1) > Γ∗1Λ∗2µ. (4.52)

Then, a unique BGP exists and the value of l∗n, s∗n, z∗ and c∗n are determined by

l∗n =
Γ∗1Λ∗2 + p̃∗(1−θ

θ )(Λ∗2)αa − µp̃∗(1−θ
θ )

Γ∗1Λ∗2 + p̃∗(1−θ
θ )(Λ∗2)αa + Γ∗2 − Γ∗1Λ∗1

∈ (0, 1), (4.53)

s∗n =
Λ∗1l
∗
n

Λ∗1l
∗
n + Λ∗2(1− l∗n)

∈ (0, 1), (4.54)

z∗ = Λ∗1l
∗
n + Λ∗2(1− l∗n) > 0, (4.55)

c̃∗n = p̃∗
(1− θ

θ

)(
(1− l∗n)(Λ∗2)αa − µ

)
> 0. (4.56)

Proposition 4.2 states that if the temperature is stationary, agricultural production is

Cobb-Douglas, subsistence level of agricultural consumption is growing at a proper rate

and the life-time utility converge, then there exist a unique BGP only if parameter values

are assigned properly so that the long-run labour share is feasible. Parameter restrictions

(4.50) and (4.51) ensure that c̃∗n, p̃∗ > 0, s∗n, l∗n ∈ (0, 1) while R∗ > 0 holds due to (4.48).

4.5.3 Climate Change Effects in the Extended Model

As in the baseline model, we assume that ∂γ̃∗a
∂T ∗ <

∂γ̃∗n
∂T ∗ < 0, i.e. climate change will adversely

affect the sectoral productivity growth rates and that of the agricultural sector is higher

vulnerable to climate change impacts. Given this climate damage primitive, we begin by

illustrating the long-run growth effect. After that, we explore the capital return effect and

then the long-run structural change effects.

Firstly, climate change also weakens the long-run growth rate of the extended model.

To illustrate this, we can apply (4.44), (4.48) and the restriction cn,t+1

cn,t
= 1 + g∗ to show

that g∗ = γ̃∗n. As a consequence, we can conclude that climate change is growth-detrimental

since ∂g∗

∂T ∗ = ∂γ̃∗n
∂T ∗ < 0.

Secondly, the impact on the rate of return on capital is unclear as in the baseline model.

From (4.48), the capital return effect turns out to be

∂R∗

∂T ∗
=

1

β

(1 + γ̃∗n)σ̂

(1 + γ̃∗a)σ̂−σ

{
σ̂

1 + γ̃∗n

∂γ̃∗n
∂T ∗

+
(1− αa)θ(σ − 1)

1 + γ̃∗a

∂γ̃∗a
∂T ∗

}
(4.57)
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where σ̂ ≡ σ + (1 − αa)θ(1 − σ) ≥ 0. As in the general picture, the relative risk aversion

parameter σ plays a crucial role in determining the sign of the effect:

σ ≥ 1⇒ {•} < 0⇒ ∂R∗

∂T ∗
< 0,

σ < 1⇒ {•} S 0⇒ ∂R∗

∂T ∗
S 0.

Thirdly, the impact on employment share is ambiguous and such ambiguity arises from

the impacts of the capital return effect. To illustrate this, when considering (4.46) we can

show that
∂l∗n
∂T ∗

=
(p̃∗θ̂µ−Θ)

(Θ + Γ∗2 − Γ∗1Λ∗1)2
·
(∂Γ∗2
∂T ∗

− Γ∗1
∂Λ∗1
∂T ∗

− Λ∗1
∂Γ∗1
∂T ∗

)
+

(Γ∗2 − Γ∗1Λ∗1 + p̃∗θ̂µ)

(Θ + Γ∗2 − Γ∗1Λ∗1)2
· ∂Θ

∂T ∗

+
(−1)(Θ + Γ∗2 − Γ∗1Λ∗1)θ̂µ

(Θ + Γ∗2 − Γ∗1Λ∗1)2
· ∂p̃

∗

∂T ∗

(4.58)

where Θ ≡ Γ∗1Λ∗2 + p̃∗θ̂(Λ∗2)αa > 0 and θ̂ ≡ 1−θ
θ > 0. According to the feasibility for

l∗n ∈ (0, 1), we can show that

(4.26) and (4.27)⇒ (•)︸︷︷︸
(-)

·

(
∂Γ∗2
∂T ∗

− Γ∗1
∂Λ∗1
∂T ∗

− Λ∗1
∂Γ∗1
∂T ∗

)
+ (•)︸︷︷︸

(+)

· ∂Θ

∂T ∗
+ (•)︸︷︷︸

(-)

· ∂p̃
∗

∂T ∗
, (4.59)

The sign of ∂l∗n
∂T ∗ is ambiguous depending on the parameter values which reflect the magni-

tudes and directions of (
∂Γ∗2
∂T ∗

− Γ∗1
∂Λ∗1
∂T ∗

− Λ∗1
∂Γ∗1
∂T ∗

)
,
∂Θ

∂T ∗
,
∂p̃∗

∂T ∗
.

In Appendix C.5, we show that the magnitudes and directions of these derivatives are

inconclusive. As a consequence, the climate change impact on the non-agricultural em-

ployment share is ambiguous. To show that the ambiguity of the impact on the employment

share arises due to the influence of the capital effect, let’s consider (4.52). While keeping

R∗ unchanged (so that p̃∗,Λ∗1,Λ∗2 and Γ∗2 remain unchanged as well), a decrease in γ̃∗n will

induce a decrease in Γ∗1 and thus the non-agricultural labour share because:

∂l∗n
∂Γ∗1

=
Γ∗2Λ∗2 + Λ∗1p̃

∗(1−θ
θ )[Λ∗2)αa − µ] + p̃∗(1−θ

θ )µΛ∗2[
Γ∗1Λ∗2 + p̃∗(1−θ

θ )(Λ∗2)αa + Γ∗2 − Γ∗1Λ∗1

]2 > 0. (4.60)

This means that without other influences the share of non-agricultural employment will be

negatively affected by climate change. However, the ambiguity arises because the increasing

in the average annual temperature also induces a change in the rate of return on capital

85



(in an inconclusive direction) through changes in both agricultural and non-agricultural

productivity growth rates; see (4.56). This change will induce a change in the labour share

indirectly via changes in p̃∗,Λ∗1,Λ∗2 and Γ∗2 in ambiguous ways.

Similar to the impact on the sectoral employment share, the climate change impact on

the sectoral value-added share is also ambiguous. To illustrate this, we begin by charac-

terising the total output. Based on (4.2) and the assumption that ψa = 0, we have

Yn,t = An,tNt

[
αn(sn,tzt)

ψn + (1− αn)(ln,t)
ψn

] 1
ψn

and

ptYa,t = An,tNtp̃t(1− sn,t)αaz
αa

t (1− ln,t)1−αa .

The total output at time t, denoted by Yt, is given by the sum of the gross value-added in

both sectors, i.e. Yt = ptYa,t + Ya,t. Or equivalently,

Yt = An,tNt

{[
αn(sn,tzt)

ψn +(1−αn)(ln,t)
ψn
] 1
ψn + p̃t(1−sn,t)αaz

αa

t (1− ln,t)1−αa

}
. (4.61)

Next, we define the the non-agricultural value-added share, denoted by sY n,t, such that

sY n,t ≡ Yn,t
Yt

. Along a BGP the share can be expressed as

s∗Y n =

[
αn

(
s∗n
l∗n
z∗
)ψn

+ (1− αn)

] 1
ψn

[
αn

(
s∗n
l∗n
z∗
)ψn

+ (1− αn)

] 1
ψn

+ p̃∗
(

1−s∗n
1−l∗n

z∗
)αa(1−l∗n

l∗n

) .

Since
(
s∗n
l∗n
z∗
)

= Λ∗1 and
(

1−s∗n
1−l∗n

z∗
)

= Λ∗2, then

s∗Y n =

[
αn

(
Λ∗1

)ψn
+ (1− αn)

] 1
ψn

[
αn

(
Λ∗1

)ψn
+ (1− αn)

] 1
ψn

+ p̃∗
(

Λ∗2

)αa(1−l∗n
l∗n

) ∈ (0, 1). (4.62)

In Appendix C.6, we show that the sign of ∂s∗Y n
∂T ∗ is ambiguous due to the influence of

the capital return effect. As we can see, the value of s∗Y n depends on Λ1,Λ2, p̃
∗ and l∗n.

Without the capital return effect, climate change will not induce changes in Λ1,Λ2, p̃
∗ but

weaken l∗n. As a result, the non agricultural value-added share will decrease. However, if

the capital return effect is activated, the net effect of such a share becomes ambiguous due

to the the unclear magnitudes and directions of ∂Λ1
∂T ∗ ,

∂Λ2
∂T ∗ and ∂p̃∗

∂T ∗ which are solely driven
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by changes in the rate of return on capital. As a consequence, the long-run impact on the

non agricultural value-added share is ambiguous.

In sum, it seems that climate change will lead to deteriorating the long-run economic

growth. However, the climate change effects on the rate of return on capital as well as

structural change are inconclusive. This confirm the robustness of our results.

4.6 Conclusion

This chapter is devoted to investigate the long-term consequences of cross-border pollu-

tion on poor countries in terms of growth and structural transformation. To investigate

such long-term impacts, we develop a two-sector growth model along the line of struc-

tural transformation literature. In the long-run, climate change clearly reduces long-run

growth of output per capita due to the impact on the growth rate of labour augmenting

technological progress in non-agricultural sector. However, the impact on the structural

changes are ambiguous but it depends on various model parameters. A policy implication

is that when imposing Paris agreement it is helpful for a poor country, if achieved, by stim-

ulating the long-run economic growth. However, the gain from structural change seems

to be inconclusive. Due to this limitation, matching the model with empirical evidence

to see the long-run structural change effect and economic growth as well as the counter

part impacts during transitional dynamic effects would be interesting to go further in this

research direction.
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Chapter 5

Conclusion

This thesis consists of three original research studies. The studies in Chapter 2 and Chapter

3 cover interesting topics related to theoretical economic growth analysis and utilisation

of natural resources whereas the impact of cross-border pollution on the long-run growth

and structural changes in poor countries is addressed in Chapter 4.

In Chapter 2, we investigate for which partition of the CES class of production func-

tional forms that allows endogenous growth to emerge in a neoclassical growth model with

productive non-renewable resources. To do so, we examine the preservation of this prop-

erty by extending Agnani et al. (2005) model in a certain way. In particular, we relax the

Double Cobb-Douglas specification by replacing it with a more generalised CES functional

form. The main finding is that the combination of the effective flow of non-renewable input

and the effective labour under Cobb-Douglas basis is necessary for endogenous growth to

emerge. It is also noteworthy that the analysis is consistent with the celebrated Uzawa’s

Steady State Growth Theorem(Uzawa, 1961) as it shows that the Cobb-Douglas combi-

nation between these two effective inputs implies the aggregate production function is

equivalent to labour-augmenting technology.

In Chapter 3, we explain when the degree of the elasticity of substitution between

renewable and non-renewable resources in final good production matters for the long-

run economic growth. By extending the two endogenous growth models including Romer

(1986) and Barro (1990) along the line of Golosov et al. (2014), we find that natural

resource substitution will create the long-run growth effect if it induces a change in labour

allocation across sectors. However, the directional impact is ambiguous. In particular, the

substitutability will stimulate growth if the two natural resources are gross substitute while

parameters are restricted in a proper way. What we find shed the light on both theoretical

and empirical motivations. For the former, we highlight the role of labour reallocation

effect that becomes necessary for the growth effect. For the latter, as we show that growth

enhancing occurs when the initial share of renewable resource employment share is high. It

seems that motivating people to get involved more and more on renewable resource-related
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activities is necessary to promote sustainable growth.

Chapter 4 is motivated by a crucial observation that poorer countries, which tend to

have contributed less to climate change, seem to be more seriously affected by climate

change. According to this evidence, we develop a climate change-augmented two-sector

neoclassical model with structural transformations [along the line of Kongsamut et al.

(2001); Ngai and Pissarides (2007); Acemoglu and Guerrieri (2008) and Alvarez-Cuadrado

et al. (2017)] to illustrate the potential mechanisms that climate change could hurt the

poor economy. Comparative steady states analysis suggests that climate change always

deteriorate the long-run economic growth. Nevertheless, the impacts on the employment

and value-added shares are unclear. Such ambiguities arise because of the influence of the

capital return effect.

In sum, the economic system and the environment are closely related: the environment

acts as a source that provides natural resources to the economy, and acts as a sink for

emissions. As the true connection is complicated, it is unlikely to generate a general

conclusion using only a single study. Small-scale analysis might be necessary even if it is

questionable due to its generalisation.
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Appendix A

Appendix to Chapter 2

A.1 Nested CES Production Functions

In this appendix, we will verify that Assumption 2.2 is satisfied by all the nested CES pro-

duction functions considered in Subsections 2.2.2 and 2.3.2. We begin with the specification

considered in Section 3.1, which is

F (Kt, Zt) = [αKη
t + (1− α)Zηt ]

1
η , with α ∈ (0, 1) and η < 1,

G (QtXt, AtNt) ≡
[
ϕ (QtXt)

ψ + (1− ϕ) (AtNt)
ψ
] 1
ψ
, with ϕ ∈ (0, 1) and ψ < 1.

First, consider capital input. If η ≤ 0, then

lim
Kt→0

F (Kt, G (QtXt, AtNt)) = 0

regardless of the value of ψ. In other words, physical capital is essential for production

when η ≤ 0. If η ∈ (0, 1) , then

lim
Kt→0

F1 (Kt, G (QtXt, AtNt)) =∞,

regardless of the value of ψ. Next, consider the inputs of G (·) . When ψ ≤ 0, we have

lim
Xt→0

G (QtXt, AtNt) = lim
Nt→0

G (QtXt, AtNt) = 0,

lim
Xt→0

G1 (QtXt, AtNt) = ϕ
1
ψQt and lim

Nt→0
G2 (QtXt, AtNt) = (1− ϕ)

1
ψ At.

There are now two sub-cases to consider: If ψ ≤ 0 and η ≤ 0, then both natural resources

and labour are essential for production. In particular, we can show that

lim
Xt→0

F (Kt, G (QtXt, AtNt)) = lim
Nt→0

F (Kt, G (QtXt, AtNt)) = 0.
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If ψ ≤ 0 and η ∈ (0, 1) , then we can show that

lim
Xt→0

∂Yt
∂Xt

= (1− α)

{
α lim
Xt→0

[
G (QtXt, AtNt)

Kt

]−η
+ 1− α

} 1
η
−1

· lim
Xt→0

G1 (QtXt, AtNt) ,

lim
Nt→0

∂Yt
∂Nt

= (1− α)

{
α lim
Nt→0

[
G (QtXt, AtNt)

Kt

]−η
+ 1− α

} 1
η
−1

· lim
Nt→0

G2 (QtXt, AtNt) .

Both of these limits diverge to infinity as

lim
Xt→0

[
G (QtXt, AtNt)

Kt

]−η
= lim

Nt→0

[
G (QtXt, AtNt)

Kt

]−η
=∞.

If ψ ∈ (0, 1) , then we have

lim
Xt→0

G (QtXt, AtNt) = (1− ϕ)
1
ψ (AtNt) and lim

Nt→0
G (QtXt, AtNt) = ϕ

1
ψ (QtXt) ,

lim
Xt→0

G1 (QtXt, AtNt) = lim
Nt→0

G2 (QtXt, AtNt) =∞.

Using these we can obtain

lim
Xt→0

∂Yt
∂Xt

= F2

(
Kt, (1− ϕ)

1
ψ AtNt

)[
lim
Xt→0

G1 (QtXt, AtNt)

]
=∞,

lim
Nt→0

∂Yt
∂Nt

= F2

(
Kt, ϕ

1
ψQtXt

)[
lim
Nt→0

G2 (QtXt, AtNt)

]
=∞.

Note that these results hold regardless of the value of η. Q.E.D.

A.2 Nested CES Production Functions(Con’t)

Next, we turn to the production function in (2.34). There are now only two possible cases:

If ψ ≤ 0, then all three inputs are essential for production. If ψ ∈ (0, 1) , then we can

obtain

lim
Nt→0

∂Yt
∂Nt

= ϕAt

ϕ+ (1− ϕ) lim
Nt→0

[
AtNt

Kα
t (QtXt)

1−α

]−ψ
1
ψ
−1

=∞,

lim
Kt→0

∂Yt
∂Kt

= α (1− ϕ)

ϕ lim
Nt→0

[
Kα
t (QtXt)

1−α

AtNt

]−ψ
+ 1− ϕ


1
ψ
−1 [

lim
Nt→0

(
Kt

QtXt

)α−1
]

=∞,
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lim
Xt→0

∂Yt
∂Xt

= (1− α) (1− ϕ)

ϕ lim
Xt→0

[
Kα
t (QtXt)

1−α

AtNt

]−ψ
+ 1− ϕ


1
ψ
−1 [

lim
Xt→0

(
Kt

QtXt

)α]
= ∞.

Note that the production functions in (2.34) and (2.35) are essentially identical, except

that AtNt and QtXt have switched place. Thus, using the same line of argument we can

show that (2.35) satisfies Assumption 2.2.

We now consider the production function in (2.36). The first thing to note is that labour

input is essential for production regardless of the value of ψ. If ψ ≤ 0, then both physical

capital and natural resources are essential for production. What remains is to consider the

marginal product of these inputs when ψ ∈ (0, 1) . Straightforward differentiation gives

∂Yt
∂Kt

= (1− β)ϕ (AtNt)
β

[
ϕ+ (1− ϕ)

(
Kt

QtXt

)−ψ] 1
ψ
−1 [

ϕKψ
t + (1− ϕ) (QtXt)

ψ
]− β

ψ
,

∂Yt
∂Xt

= (1− β) (1− ϕ) (AtNt)
β

[
ϕ

(
QtXt

Kt

)−ψ
+ (1− ϕ)

] 1
ψ
−1 [

ϕKψ
t + (1− ϕ) (QtXt)

ψ
]− β

ψ
.

Since

lim
Kt→0

[
ϕ+ (1− ϕ)

(
Kt

QtXt

)−ψ] 1
ψ
−1

= lim
Xt→0

[
ϕ

(
QtXt

Kt

)−ψ
+ (1− ϕ)

] 1
ψ
−1

=∞,

it follows that

lim
Kt→0

∂Yt
∂Kt

= (1− β)ϕ (1− ϕ)
− β
ψ

(
QtXt

AtNt

)−β
lim
Kt→0

[
ϕ+ (1− ϕ)

(
Kt

QtXt

)−ψ] 1
ψ
−1

=∞,

lim
Xt→0

∂Yt
∂Xt

= (1− β)ϕ
− β
ψ (1− ϕ)

(
Kt

AtNt

)−β
lim
Xt→0

[
ϕ

(
QtXt

Kt

)−ψ
+ (1− ϕ)

] 1
ψ
−1

=∞.

Since (2.36) and (2.37) are symmetric, the same line of argument can be used to show the

desired properties for (2.37). Q.E.D.

A.3 Proof of Theorem 2.1

The proof is divided into a number of steps:

Step 1 This part of the proof uses the same line of argument as in Schlicht (2006) and

Jones and Scrimgeour (2008). In any balanced growth equilibrium, Yt grows at a constant
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rate γ̂ ≡ γ∗(1 + n) in every period, so that

Yt+1 = γ̂Yt,∀t. (A.3.1)

Rearranging terms and applying the CRTS property of F (·) gives

Yt = F
(
γ̂−1Kt+1, γ̂

−1G(Qt+1Xt+1, At+1Nt+1)
)

= F
(
Kt, γ̂

−1G(Qt+1Xt+1, At+1Nt+1)
)

The second line uses the condition that Kt and Yt grow at the same rate in any balanced

growth path competitive equilibrium. For any Kt > 0, F (Kt, ·) is a strictly increasing

function. Hence, the following equality must be satisfied in any balanced growth path

competitive equilibrium,

G(QtXt, AtNt) = γ̂−1G(Qt+1Xt+1, At+1Nt+1). (A.3.2)

In other words, G(·) grows at the same rate as Yt and Kt along a balanced growth path.

Note that (A.3.2) holds even if G(·) is not a Cobb-Douglas function.

Suppose now G(·) is given by

G(QtXt, AtNt) = (QtXt)
1−φ(AtNt)

φ, for some φ ∈ (0, 1).

Combining this with At+1 = (1 + a)At, Qt+1 = (1 + q)Qt, Xt+1 = (1 − τ∗)Xt and

Nt+1 = (1 + n)Nt, we can rewrite (A.3.2) as

(QtXt)
1−φ(AtNt)

φ = γ̂−1
[
(1 + a)(1 + n)

]φ[
(1 + q)(1− τ∗)

]1−φ
(QtXt)

1−φ(AtNt)
φ.

If we ignore the trivial case in which (QtXt)
1−φ(AtNt)

φ = 0, then (A.3.2) is valid if and

only if

γ∗ = (1 + a)φ

[
(1 + q)(1− τ∗)

1 + n

]1−φ

.

This is equation (2.22) in the theorem.

Step 2 In this step, we will prove that the ratio χt ≡ x̂1−φt

k̂t
is constant, say χt = χ∗, along

any balanced growth path competitive equilibrium.

Using the fact that rt+1 = rt = r∗ along a balanced growth path competitive equi-

librium and the fact that the marginal product of capital F1(·) is homogeneous of degree

zero, then (2.11) implies

F1

(
1,
G(·)
Kt

)
= F1

(
1, χt

)
= r∗ + δ > 0.
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Since F1(1, χt) is continuous and strictly decreasing in χt, then, by intermediate value

theorem, there exists a unique χ∗ > 0 such that

F1

(
1, χ∗

)
= r∗ + δ (A.3.3)

It follows that χt must be time-invariant in any balanced growth equilibrium. This is

equation (2.23) in the theorem.

Step 3 Equation (2.24) can be derived by showing that ptXt
Yt

is constant along a balanced

growth path competitive equilibrium. By the linear homogeneity property of F (·) and

F2(·), we can write

F2

(
Kt, G(QtXt, AtNt)

)
= F2(1, χ∗),

F
(
Kt, G(QtXt, AtNt)

)
= KtF (1, χ∗).

Using these and (2.12), we can get

ptXt

Yt
=
QtXt

Kt
· F2(1, χ∗)G1(QtXt, AtNt)

F (1, χ∗)

=
F2(1, χ∗)

F (1, χ∗)
· G(QtXt, AtNt)

Kt
· QtXtG1(QtXt, AtNt)

G(QtXt, AtNt)

=
F2(1, χ∗)

F (1, χ∗)
· χ∗ · (1− φ).

Hence, ptXtYt
must be strictly positive and time-invariant. This in turn implies

pt+1

pt
· Xt+1

Xt
=
Yt+1

Yt
⇒ (1 + r∗)(1− τ∗) = γ∗(1 + n).

This is equation (2.24) in the theorem.

Step 4 We now derive equation (2.25), which is based on the capital market clearing

condition. In any competitive equilibrium, the market for physical capital clears when

Kt+1 = Ntst = Nt ·
( wt

2 + θ
− ptmt

)
.

The second equality follows from (2.7). Substitution (2.12) and (2.13) into the above

equation gives

Kt+1 = F2

(
Kt, G(QtXt, AtNt

)[ 1

2 + θ
AtNtG2(QtXt, AtNt)−NtmtQtG1(QtXt, AtNt)

]
.

(A.3.4)

As shown in Step 3, we can rewrite F2

(
Kt, G(QtXt, AtNt)

)
as F2(1, χ∗). In addition, the
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market clearing condition for natural resources implies that

Ntmt = Mt+1 = (1− τ∗) · Mt

Xt
·Xt =

(1− τ∗

τ∗

)
Xt.

Substituting these into (A.3.4) gives

Kt+1 = F2(1, χ∗)

[
1

2 + θ
AtNtG2(QtXt, AtNt)−

(1− τ∗

τ∗

)
XtQtG1(QtXt, AtNt)

]
.

Finally, using the Cobb-Douglas specification for G(·), we can simplify this to become

Kt+1 = F2(1, χ∗)

[
φ

2 + θ
−
(1− τ∗

τ∗

)
(1− φ)

]
G(QtXt, AtNt).

Dividing both sides by Kt and using the fact that G(·)
Kt

= χ∗ along a balanced growth

equilibrium once more gives (2.25):

Kt+1

Kt
= γ∗(1 + n) = χ∗F2(1, χ∗)

[
φ

2 + θ
−
(1− τ∗

τ∗

)
(1− φ)

]
.

Step 5 In this step, we are to show that the steady state value of extraction rate (if exists)

is strictly greater than τ . Consider (2.25). We can see that the γ∗(1 + n) and χ∗F2(1, χ∗)

are positive. This means that
[

φ
2+θ −

(
1−τ∗
τ∗

)
(1−φ)

]
must be positive as well. This is true

as long as τ∗ > τ . This completes the proof of Theorem 2.1. Q.E.D.

A.4 Proof of Proposition 2.1

Using (2.22) and (2.24), we can get

γ∗(1 + n) = (1 + a)φ(1 + q)1−φ(1− τ∗)1−φ(1 + n)φ, (A.4.1)

r∗ = (1 + a)φ(1 + q)1−φ(1− τ∗)−φ(1 + n)φ − 1 ≡ r(τ∗). (A.4.2)

Next, we differentiate F (·) with respect to K to get

F1(1, χ∗) = α
[
α+ (1− α)(χ∗)η

] 1−η
η
. (A.4.3)

Since capital input is paid its marginal product, we can say that

r(τ∗) + δ = α
[
α+ (1− α)(χ∗)η

] 1−η
η (A.4.4)
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Figure A.1: Proof of Proposition 1

which also implies

(1− α)(χ∗)η =
(r(τ∗) + δ

α

) η
1−η − α. (A.4.5)

Then, we differentiate F (·) with respect to Z to get

χ∗F2(1, χ∗) = (1− α)(χ∗)η
[
α+ (1− α)(χ∗)η

] 1−η
η
. (A.4.6)

Recall (2.25):

γ∗(1 + n) = χ∗F2(1, χ∗)
[ φ

2 + θ
−
(1− τ∗

τ∗

)
(1− φ)

]
.

Apply (A.4.1)-(A.4.6) so that the above expression becomes

(2 + θ)(1 + a)φ(1 + q)1−φ(1− τ∗)1−φ(1 + n)φ

φ−
(

1−τ∗
τ∗

)
(2 + θ)(1− φ)

=

[(r(τ∗) + δ

α

) η
1−η − α

]
r(τ∗) + δ

α
.

(A.4.7)

This equation is a non-linear equation of τ . If a BGP competitive equilibrium exists, then

there is τ∗ ∈ (τ , 1) satisfying the above expression.

Define two auxiliary functions Λ(·) and Γ(·) according to

Λ(τ) ≡ (2 + θ)(1 + a)φ(1 + q)1−φ(1− τ)1−φ(1 + n)φ

φ−
(

1−τ
τ

)
(2 + θ)(1− φ)

,

Γ(τ) ≡

[(r(τ) + δ

α

) η
1−η − α

]
r(τ) + δ

α
.
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To illustrate key properties of Λ(·), we adopt a proof that is so similar to that of Propo-

sition 1 in Agnani et al. (2005, p.403). It is straightforward to show that limτ→τ+Λ(τ) =

∞, limτ→τ−Λ(τ) = −∞, limτ→0Λ(τ) = 0 and Λ(1) = 0. In addition, we can show that

Λ′(τ) =
(2 + θ)(1 + n)φ(1 + a)φ(1 + q)1−φ

(1− τ)φ

[
(1−φ)

(
φ−
(1− τ

τ

)
(2+θ)(1−φ)

)
−τ
−2(2 + θ)(1− φ)

1− τ

]

is strictly negative for all τ ∈ (τ , 1). Consider the function Γ(·). We can see that Γ(0)

is finite and Γ(τ) reaches to infinity as τ approaches one; Γ(τ) has a vertical asymptote

at τ = 1. In addition, by continuity of r(τ) over (τ , 1), Γ(τ) will be continuous in that

domain as well. Since Λ(τ) and Γ(τ) are both continuous over (τ , 1), there will be at least

one value τ∗ ∈ (τ , 1) such that Λ(τ∗) = Γ(τ∗).

If Γ(τ) is a strictly increasing function over (τ , 1), the steady state solution is unique.

Straightforward differentiation shows that

Γ′(τ) =

[
1

1− η

(r(τ) + δ

α

) η
1−η 1

α
− 1

]
r′(τ).

Since r′(τ) is strictly increasing over (0, 1), then Γ(τ) is strictly increasing over (τ , 1) if

1

1− η

(r(τ) + δ

α

) η
1−η 1

α
− 1 > 0,∀τ ∈ (τ , 1).

It suffices if
1

1− η

(r(τ) + δ

α

) η
1−η 1

α
− 1 > 0.

Then, it is straightforward. This completes the proof of Proposition 1. Q.E.D.

A.5 Proof of Theorem 2.2

The proof is divided into a number of steps:

Step 1 We derive two additional conditions that are satisfied along a BGP competitive

equilibrium. Recall (A.3.2):

G(QtXt, AtNt) = γ̂−1G(Qt+1Xt+1, At+1Nt+1).

This condition holds along a BGP competitive equilibrium. In addition,

Qt+1 = (1 + q)Qt, Xt+1 = (1− τ∗)Xt, At+1 = (1 + a)At and Nt+1 = (1 + n)Nt
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also hold along this path. Then

G(QtXt, AtNt) = γ̂−1G((1 + q)(1− τ∗)QtXt, (1 + a)(1 + n)AtNt). (A.5.1)

Since G(·) is homogeneous of degree one, then (A.5.1) can be expressed as

G(x̂t, 1) = ς2G
( ς1
ς2
x̂t, 1

)
. (A.5.2)

where x̂t ≡ QtXt
AtNt

, ς1 ≡ (1+q)(1−τ∗)
γ̂ and ς2 ≡ (1+a)(1+n)

γ̂ . Define g(x̂t) ≡ G(x̂t, 1). Then, the

first additional condition that must hold along any BGP competitive equilibrium is

g(x̂t) = ς2g
( ς1
ς2
x̂t

)
. (A.5.3)

Since g(·) is continuously differentiable and (A.5.3) holds for all x̂ > 0, we can derive

another condition that must hold along any BGP competitive equilibrium:

x̂tg
′(x̂t)

g(x̂t)
=

ς1
ς2
x̂tg
′( ς1ς2 x̂t)

g( ς1ς2 x̂t)
. (A.5.4)

Step 2 Claim that

d

dx̂t

(
x̂tg
′(x̂t)

g(x̂t)

) 
>

=

<

 0 if and only if σG(x̂t)


>

=

<

 1. (A.5.5)

To show this, we start with straightforward differentiation which yields

d

dx̂t

(
x̂tg
′(x̂t)

g(x̂t)

)
=
g′(x̂)

g(x̂)
− x̂[g′(x̂)]2

[g(x̂)]2
+
x̂g′′(x̂)

g(x̂)
. (A.5.6)

Next, using the expression in (2.19), σG(x̂) T 1 if and only if

g′(x̂)[g(x̂)− x̂g′(x̂)]

g(x̂)
T −x̂g′′(x̂)

⇔ g′(x̂)

g(x̂)

[
1− x̂g′(x̂)

g(x̂)

]
T
−x̂g′′(x̂)

g(x̂)

⇔ g′(x̂)

g(x̂)
− x̂[g′(x̂)]2

[g(x̂)]2
+
x̂g′′(x̂)

g(x̂)
=

d

dx̂

[
x̂g′(x̂)

g(x̂)

]
T 0. (A.5.7)

By combining (A.5.6) and (A.5.7), the intermediate result can be obtained. This result

essentially says that if σG(x̂) is not equal to one, then x̂g′(x̂)/g(x̂) must be either strictly

increasing or strictly decreasing for all x̂ > 0.
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Step 3 We will now apply (A.5.5) to (A.5.3) and (A.5.4). As mentioned before, if σG(·)
differs from one, then x̂g′(x̂)/g(x̂) must be either strictly increasing or strictly decreasing

for all x̂ > 0. Hence, the equality in (A.5.4) holds if and only if ς1 = ς2. Using this equality,

we can write (A.5.3) as

g′(x̂t) = ς2g
′(x̂t),

which implies that ς2 = 1. In sum, when σG(·) differs from one, the existence of a BGP

competitive equilibrium requires

ς1 = ς2 = 1. (A.5.8)

Step 4 Claim that

ς1 = ς2 = 1 implies k̂t+1 = k̂t = k̂∗ and x̂t+1 = x̂t = x̂∗

along a BGP competitive equilibrium when σG(x̂t) 6= 1. Due to CRTS of F (·) and G(·),
we obtain

Yt
AtNt

= F (k̂t, g(x̂t)). (A.5.9)

Since ς2 = 1, then the LHS of (A.5.9) is constant along a BGP competitive equilibrium

and hence the RHS. Constancy of the RHS of (A.5.9) is possible when both k̂t and x̂t

oppositely change in a proper way or both variables remain unchanged. Nevertheless, we

claim that only the latter is applied. To illustrate this, we recall that the rate of interest

must be constant along any BGP competitive equilibrium. Recall (2.11):

r∗ = F1

(
Kt, G(QtXt, AtNt)

)
− δ.

, provided that rt = r∗ along any BGP competitive equilibrium. Linear homogeneity of

F (·) implies that F1(·) is homogeneous of degree zero. Using this property, the above

condition can be expressed as

r∗ = F1

(
k̂t, g(x̂t)

)
− δ. (A.5.10)

The only way to keep the RHS of (A.5.10) constant is to keep k̂t and x̂t unchanged. We,

then, reach the conclusion.

Step 5 Claim that

ς1 = ς2 = 1 implies γ∗ = 1 + a, 1− τ∗ =
(1 + a)(1 + n)

1 + q
and r∗ = q

along a BGP competitive equilibrium when σG(x̂t) 6= 1. The first two conditions are
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obvious, we are to illustrate the last equality. To do so, recall (2.12):

pt = QtF2

(
Kt, G(QtXt, AtNt)

)
G1(QtXt, AtNt).

Since F2 and G1 are homogeneous of degree zero, the above condition can be expressed as

pt = QtF2(k̂t, g(x̂t))G1(x̂t, 1) (A.5.11)

Having shown that (k̂t, x̂t) = (k̂∗, x̂∗) along a BGP competitive equilibrium when σG(x̂t) 6=
1, we can apply this with Hotelling condition (2.5) to show that r∗ = q.

Step 6 We derive (2.30) and (2.31) that can be used to jointly determine the steady state

values k̂∗ and x̂∗. We can derive (2.30) using (A.5.10) with the facts that (k̂t, x̂t) = (k̂∗, x̂∗)

and that r∗ = q along a BGP competitive equilibrium when σG(x̂t) 6= 1. Next, we derive

(2.31) as follows. As shown in the proof of Theorem 2.1, the capital market clearing

condition can be expressed as

Kt+1 = F2

(
Kt, G(QtXt, AtNt)

)[ 1

2 + θ
AtNtG2(QtXt, AtNt)−

(1− τ∗

τ∗

)
XtQtG1(QtXt, AtNt)

]
.

Dividing both sides by AtNt gives

(1 + a)(1 + n)k̂t+1 = F2

(
k̂t, G(x̂t, 1)

)[G2(x̂t, 1)

2 + θ
−
(1− τ∗

τ∗

)
x̂tG1(x̂t, 1)

]
.

Equation (2.31) can be obtained by setting k̂t+1 = k̂t = k̂∗ and x̂t = x̂∗. This completes

the proof of Theorem 2.2. Q.E.D.

A.6 Proof of Proposition 2.2

Suppose the F (·) and G(·) take the CES forms (2.26) and (2.20), respectively. Also, as

before, define k̂t ≡ Kt
AtNt

and x̂t ≡ QtXt
AtNt

. Then, the partial derivatives of F (·) with respect

to the first and the second arguments yield, respectively,

F1(k̂t, G(x̂t, 1)) = α

[
α+ (1− α)

(G(x̂t, 1)

k̂t

)η] 1−η
η

, (A.6.1)

F2(k̂t, G(x̂t, 1)) = (1− α)

(
G(x̂t, 1)

k̂t

)η−1[
α+ (1− α)

(G(x̂t, 1)

k̂t

)η] 1−η
η

(A.6.2)
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where G(x̂t, 1) =
[
ϕ(x̂t)

ψ+(1−ϕ)
] 1
ψ . Similarly, the partial derivatives of G(·) with respect

to the first and the second arguments yield, respectively,

G1(x̂t, 1) =
ϕ(x̂t)

ψ−1G(x̂t, 1)

ϕ(x̂t)ψ + (1− ϕ)
, (A.6.3)

G2(x̂t, 1) =
(1− ϕ)G(x̂t, 1)

ϕ(x̂t)ψ + (1− ϕ)
. (A.6.4)

Next, we suppose that the economy is established along a BGP competitive equilibrium.

In such a path, k̂t+1 = k̂t = x̂∗ and x̂t+1 = x̂t = x̂∗. We, then, characterise the BGP

competitive equilibrium as follows. To begin with, we apply (2.30) to get

α

[
α+ (1− α)

(G(x̂∗, 1)

k̂∗

)η] 1−η
η

= q + δ (A.6.5)

, which implies

(1− α)
(G(x̂∗, 1)

k̂∗

)η
=

((q + δ

α

) η
1−η − α

)
. (A.6.6)

We, then, combine (A.6.2) and (A.6.6) to get

G(x̂∗, 1)

k̂∗
F2(k̂∗, G(x̂∗, 1)) =

(q + δ

α

)((q + δ

α

) η
1−η − α

)
= (2 + θ)Θ. (A.6.7)

Next, we manipulate (2.31) by using (A.6.3), (A.6.4):

(1 + a)(1 + n)k̂∗ = F2

(
k̂∗, G(x̂∗, 1)

)[G2(x̂∗, 1)

2 + θ
−
(1− τ∗

τ∗

)
x̂∗G1(x̂∗, 1)

]

= F2

(
k̂∗, G(x̂∗, 1)

)[ (1− ϕ)G(x̂∗, 1)

ϕ(x̂∗)ψ + (1− ϕ)

1

2 + θ
−
(1− τ∗

τ∗

)
x̂∗
ϕ(x̂∗)ψ−1G(x̂∗, 1)

ϕ(x̂∗)ψ + (1− ϕ)

]

= F2

(
k̂∗, G(x̂∗, 1)

) G(x̂∗, 1)

ϕ(x̂∗)ψ + (1− ϕ)

[
1− ϕ
2 + θ

−
(1− τ∗

τ∗

)
ϕ(x̂∗)ψ

]

= F2

(
k̂∗, G(x̂∗, 1)

) G(x̂∗, 1)

ϕ(x̂∗)ψ + (1− ϕ)

1

2 + θ

[
(1− ϕ)−

(1− τ∗

τ∗

)
ϕ(x̂∗)ψ(2 + θ)

]

, which leads to

(1+a)(1+n)
(
ϕ(x̂∗)ψ+(1−ϕ)

)
= F2

(
k̂∗, G(x̂∗, 1)

)G(x̂∗, 1)

k̂∗
1

2 + θ

[
(1−ϕ)−

(1− τ∗

τ∗

)
ϕ(x̂∗)ψ(2+θ)

]
.

101



Apply (A.6.7), the above expression becomes

(1 + a)(1 + n)
(
ϕ(x̂∗)ψ + (1− ϕ)

)
= Θ

[
(1− ϕ)−

(1− τ∗

τ∗

)
ϕ(x̂∗)ψ(2 + θ)

]
. (A.6.8)

Next, we solve the previous condition for (x̂∗)ψ:

(x̂∗)ψ =

1−ϕ
ϕ

[
Θ

(1+a)(1+n) − 1
]

1 + Θ
(1+a)(1+n)

(
1−τ∗
τ∗

)
(2 + θ)

. (A.6.9)

We can characterise the BGP competitive equilibrium x̂∗ using (A.6.9). For the other

variables, it is straightforward.

We finish the proof by finding under which conditions the BGP competitive equilibrium

is feasible. To prove this, it suffices to prove under the additional conditions that ensure

x̂∗ > 0, τ∗ ∈ (0, 1) and Θ > 0. Firstly, to ensure that x̂∗ > 0, it is necessary that

Θ > (1 + a)(1 + n); see (A.6.9). Secondly, in order to have τ∗ ∈ (0, 1), it is necessary

that 1 + q > (1 + a)(1 + n); see (2.29). Finally, in order to have Θ > 0, it is necessary

that δ + q > α
1
η ; see the definition of Θ. These conditions can be combined into one by

imposing that min{Θ, 1 + q} > (1 + a)(1 + n). This completes the proof of Proposition

2.2. Q.E.D.

A.7 Proof of Theorem 2.3

We will consider each specifications in (2.34)-(2.37) separately.

Specification 1 We begin with the production function in (2.34). Under this specifi-

cation, the-first order conditions for the representative firm’s are given by

(1− ϕ)αY 1−ψ
t Kψα−1

t (QtXt)
(1−α)ψ = rt + δ, (A.7.1)

(1− ϕ)(1− α)Y 1−ψ
t Kψα

t (QtXt)
(1−α)ψ−1Qt = pt, (A.7.2)

ϕY 1−ψ
t (AtNt)

ψ−1At = wt. (A.7.3)

In any balanced growth equilibrium, the capital-output ratio is constant over time, i.e.,

Yt =
1

κ∗
Kt for some κ∗ > 0.
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Using this claim, (A.7.1)-(A.7.3) become, respectively,

(1− ϕ)α(κ∗)ψ−1

(
k̂t
x̂t

)ψ(α−1)

= rt + δ, (A.7.4)

(1− ϕ)(1− α)(κ∗)ψ−1

(
k̂t
x̂t

)1−ψ(1−α)

Qt = pt, (A.7.5)

ϕ(κ∗)ψ−1k̂1−ψ
t At = wt. (A.7.6)

Combined with the condition that rt = r∗, for some r∗ > −δ along any BGP competitive

equilibrium, (A.7.4) implies that k̂t and x̂t grow at the same rate along such a path, i.e.

k̂t+1

k̂t
=
x̂t+1

x̂t
. (A.7.7)

Using (A.7.7) and the Hotelling condition (2.5), we obtain the long-run real interest rate

which is

r∗ = q. (A.7.8)

Next, we derive an equation governing the state variable Kt; by using the capital market

clearing condition, saving function (2.6) and natural resource market clearing condition,

as follows.

Kt+1 = NtSt

= Nt

[
wt

2 + θ
− ptmt

]

= Nt

[
wt

2 + θ
− pt

Mt+1

Nt

]
.

Then, apply Mt+1 =
(

1−τ∗
τ∗

)
Xt so that

Kt+1 = Nt

[
wt

2 + θ
−
(1− τ∗

τ∗

)
pt
Xt

Nt

]
. (A.7.9)

This equation will be very useful throughout the proofs of all specifications.

Now, we state an equation of motion for the transformed variable k̂t. Substitute (A.7.5)
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and (A.7.6) into (A.7.9) so that

(1 + a)(1 + n)
k̂t+1

k̂t
=

[
ϕ(κ∗)ψ−1k̂−ψt

2 + θ
−
(1− τ∗

τ∗

)
(1− ϕ)(1− α)(κ∗)ψ−1

(
k̂t
x̂t

)ψ(α−1)]
.

(A.7.10)

Since k̂t+1

k̂t
and

(
k̂t
x̂t

)
are constant along any BGP competitive equilibrium, these imply

that k̂t+1 = k̂t = k̂∗ and thus
k̂t+1

k̂t
=
x̂t+1

x̂t
= 1. (A.7.11)

This implies that

γ∗ = 1 + a and (1− τ∗) =
(1 + a)(1 + n)

(1 + q)
. (A.7.12)

We finish the proof the the first specification by characterising a set of equations char-

acterising a BGP competitive equilibrium (if exists). Using (2.34) and Ytκt = Kt, we can

show that

(κt)
−1 =

[
ϕk̂−ψt + (1− ϕ)

( k̂t
x̂t

)ψ(α−1)
] 1
ψ

. (A.7.13)

We use (A.7.4), (A.7.10) and (A.7.13) to characterise a BGP competitive equilibrium (if

exists). In particular, if such a path exists, then (κ∗, k̂∗, x̂∗)� 0 can be jointly determined

by the following system:

(1− ϕ)α(κ∗)ψ−1

(
k̂∗

x̂∗

)ψ(α−1)

= r∗ + δ,

(1 + a)(1 + n) =

[
ϕ(κ∗)ψ−1(k̂∗)−ψ

2 + θ
−
(1− τ∗

τ∗

)
(1− ϕ)(1− α)(κ∗)ψ−1

(
k̂∗

x̂∗

)ψ(α−1)]
,

(κ∗)−1 =

[
ϕ(k̂∗)−ψ + (1− ϕ)

( k̂∗
x̂∗

)ψ(α−1)
] 1
ψ

.

Specification 2 Consider the production function in (2.35). Under this specification, the

first-order conditions for the representative firm’s are given by

(1− ϕ)αY 1−ψ
t Kψα−1

t (AtNt)
(1−α)ψ = rt + δ, (A.7.14)

ϕY 1−ψ
t (QtXt)

ψ−1Qt = pt, (A.7.15)

(1− ϕ)(1− α)Y 1−ψ
t Kαψ

t (AtNt)
ψ(1−α)−1At = wt. (A.7.16)
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In any balanced growth equilibrium, the capital-output ratio is constant over time, i.e.,

Yt =
1

κ∗
Kt for some κ∗ > 0.

Using this claim, (A.7.14)-(A.7.16) become, respectively,

(1− ϕ)α(κ∗)ψ−1
(
k̂t

)ψ(α−1)
= rt + δ, (A.7.17)

ϕ(κ∗)ψ−1

(
k̂t
x̂t

)1−ψ

Qt = pt, (A.7.18)

(1− ϕ)(1− α)(κ∗)ψ−1k̂
1−ψ(1−α)
t At = wt. (A.7.19)

Combined with the condition that rt = r∗, for some r∗ > −δ along any BGP competitive

equilibrium, (A.7.17) implies that k̂t is time-invariant along such a path, i.e.

k̂t+1 = k̂t = k̂∗. (A.7.20)

This also implies that

γ∗ = 1 + a. (A.7.21)

Recall (A.7.9):

Kt+1 = Nt

[
wt

2 + θ
−
(1− τ∗

τ∗

)
pt
Xt

Nt

]
.

Apply (A.7.18) and (A.7.19), we get

(1 + a)(1 + n)
k̂t+1

k̂t
= (κ∗)ψ−1

[
(1− ϕ)(1− α)k̂

−ψ(1−α)
t

2 + θ
−
(1− τ∗

τ∗

)
ϕ

(
k̂t
x̂t

)−ψ]
. (A.7.22)

Since k̂t is constant along any BGP competitive equilibrium, this implies

x̂t+1 = x̂t = x̂∗. (A.7.23)

This also implies that

1− τ∗ =
(1 + a)(1 + n)

1 + q
. (A.7.24)

Also, we use the result that k̂t/x̂t is constant along any BGP competitive equilibrium with

Hotelling condition (2.5) and (A.7.18) to get

r∗ = q. (A.7.25)
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We state a system of equations that can be used to characterise the steady state values

κ∗, k̂∗ and x̂∗ as follows. To begin with, we formulate an equation determining capital to

output ratio. In particular, by using (35) and the definition of κt:

Yt
Kt

= (κt)
−1 =

[
ϕ
( x̂t
k̂t

)ψ
+ (1− ϕ)(k̂1−α

t )ψ

] 1
ψ

. (A.7.26)

We use (A.7.17), (A.7.22) and (A.7.26) to characterise a BGP competitive equilibrium (if

exists). In particular, if such a path exists, then (κ∗, k̂∗, x̂∗)� 0 can be jointly determined

by the following system:

(1− ϕ)α(κ∗)ψ−1
(
k̂∗
)ψ(α−1)

= r∗ + δ,

(1 + a)(1 + n) = (κ∗)ψ−1

[
(1− ϕ)(1− α)(k̂∗)−ψ(1−α)

2 + θ
−
(1− τ∗

τ∗

)
ϕ

(
k̂∗

x̂∗

)−ψ]
,

(κ∗)−1 =

[
ϕ
( x̂∗
k̂∗

)ψ
+ (1− ϕ)(k̂∗)ψ(1−α)

] 1
ψ

.

Specification 3 Consider the production function in (2.36). Under this specification,

the-first order conditions for the representative firm’s are given by

(1− β)ϕY
1− ψ

1−β
t (AtNt)

βψ
1−βKψ−1

t = rt + δ, (A.7.27)

(1− β)(1− ϕ)Y
1− ψ

1−β
t (AtNt)

βψ
1−β (QtXt)

ψ−1Qt = pt, (A.7.28)

βYt(AtNt)
−1At = wt. (A.7.29)

In any balanced growth equilibrium, the capital-output ratio is constant over time, i.e.,

Yt =
1

κ∗
Kt for some κ∗ > 0.

Using this claim, (A.7.27)-(A.7.29) become, respectively,

(1− β)ϕ(κ∗)
ψ

1−β−1
(k̂t)

− βψ
1−β = rt + δ, (A.7.30)

(1− β)(1− ϕ)(κ∗)
ψ

1−β−1
k̂

1− ψ
1−β

t (x̂t)
ψ−1Qt = pt, (A.7.31)

β(κ∗)−1k̂tAt = wt. (A.7.32)
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Combined with the condition that rt = r∗, for some r∗ > −δ along any BGP competitive

equilibrium, (A.7.17) implies that k̂t is time-invariant along such a path, i.e.

k̂t+1 = k̂t = k̂∗. (A.7.33)

This also implies that

γ∗ = 1 + a. (A.7.34)

Recall (A.7.9):

Kt+1 = Nt

[
wt

2 + θ
−
(1− τ∗

τ∗

)
pt
Xt

Nt

]
.

Apply (A.7.31) and (A.7.32), we get

(1+a)(1+n)k̂t+1 =

[
β(κ∗)−1k̂t

2 + θ
−
(1− τ∗

τ∗

)
(1−β)(1−ϕ)(κ∗)

ψ
1−β−1

k̂
1− ψ

1−β
t (x̂t)

ψ

]
. (A.7.35)

Since k̂t is constant along any BGP competitive equilibrium, this implies

x̂t+1 = x̂t = x̂∗. (A.7.36)

This also implies that

1− τ∗ =
(1 + a)(1 + n)

1 + q
. (A.7.37)

Also, we use this results (A.7.33) with (A.7.36) with Hotelling condition (2.5) and (A.7.31)

to get

r∗ = q. (A.7.38)

We state a system of equation that can be used to characterise the steady state values

κ∗, k̂∗ and x̂∗ as follows. To begin with, we formulate an equation determining capital to

output ratio. In particular, by using (2.36) and the definition of κt:

Yt
Kt

= (κt)
−1 = k̂−βt

[
ϕ+ (1− ϕ)

( x̂t
k̂t

)ψ] 1−β
ψ

. (A.7.39)

We use (A.7.30), (A.7.35) and (A.7.39) to characterise a BGP competitive equilibrium (if

exists). In particular, if such a path exists, then (κ∗, k̂∗, x̂∗)� 0 can be jointly determined

by the following system:

(1− β)ϕ(κ∗)
ψ

1−β−1
(k̂∗)

− βψ
1−β = r∗ + δ,

(1 + a)(1 + n) =

[
β(κ∗)−1

2 + θ
−
(1− τ∗

τ∗

)
(1− β)(1− ϕ)(κ∗)

ψ
1−β−1

(k̂∗)
− ψ

1−β (x̂∗)ψ

]
,
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(κ∗)−1 = (k̂∗)−β

[
ϕ+ (1− ϕ)

( x̂∗
k̂∗

)ψ] 1−β
ψ

.

Specification 4 Consider the production function in (2.37). Under this specification,

the-first order conditions for the representative firm’s are given by

(1− v)ϕY
1− ψ

1−v
t (QtXt)

vψ
1−vKψ−1

t = rt + δ, (A.7.40)

vYt(QtXt)
−1Qt = pt, (A.7.41)

(1− v)(1− ϕ)(QtXt)
vψ
1−v Y

1− ψ
1−v

t (AtNt)
ψ−1At = wt. (A.7.42)

In any balanced growth equilibrium, the capital-output ratio is constant over time, i.e.,

Yt =
1

κ∗
Kt for some κ∗ > 0.

Using this claim, (A.7.40)-(A.7.42) become, respectively,

(1− v)ϕ(κ∗)
ψ

1−v−1
( x̂t
k̂t

) vψ
1−v

= rt + δ, (A.7.43)

v(κ∗)−1
( k̂t
x̂t

)
Qt = pt, (A.7.44)

(1− v)(1− ϕ)(κ∗)
ψ

1−v−1k̂1−ψ
t

( x̂t
k̂t

) vψ
1−v

At = wt. (A.7.45)

Combined with the condition that rt = r∗, for some r∗ > −δ along any BGP competitive

equilibrium, (A.7.43) implies that k̂t are growing at a common growth rate along such a

path, i.e.
k̂t+1

k̂t
=
x̂t+1

x̂t
. (A.7.46)

Using this result with the Hotelling condition (2.5) and (A.7.44), we obtain

r∗ = q. (A.7.47)

Recall (A.7.9):

Kt+1 = Nt

[
wt

2 + θ
−
(1− τ∗

τ∗

)
pt
Xt

Nt

]
.
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Apply (A.7.44) and (A.7.45), we get

(1+a)(1+n)
k̂t+1

k̂t
=

[
(1− v)(1− ϕ)(κ∗)

ψ
1−v−1k̂−ψt

(
x̂t
k̂t

) vψ
1−v

2 + θ
−
(1− τ∗

τ∗

)
v(κ∗)−1

]
. (A.7.48)

Since k̂t+1

k̂t
and

(
x̂t
k̂t

)
are constant along any BGP competitive equilibrium, (A.7.48) implies

k̂t+1 = k̂t = x̂∗. (A.7.49)

Combined with (A.7.46), (A.7.49) implies k̂t+1

k̂t
= x̂t+1

x̂t
= 1 which leads to

1− τ∗ =
(1 + a)(1 + n)

1 + q
(A.7.50)

and

γ∗ = 1 + a. (A.7.51)

We state a system of equation that can be used to characterise the steady state values

κ∗, k̂∗ and x̂∗ as follows. To begin with, we formulate an equation determining capital to

output ratio. In particular, by using (2.36) and the definition of κt:

Yt
Kt

= (κt)
−1 =

( x̂t
k̂t

)v[
ϕ+ (1− ϕ)

( 1

k̂t

)ψ] 1−v
ψ

. (A.7.52)

We use (A.7.43), (A.7.48) and (A.7.52) to characterise a BGP competitive equilibrium (if

exists). In particular, if such a path exists, then (κ∗, k̂∗, x̂∗)� 0 can be jointly determined

by the following system:

(1− v)ϕ(κ∗)
ψ

1−v−1
( x̂∗
k̂∗

) vψ
1−v

= r∗ + δ,

(1 + a)(1 + n) =

[
(1− v)(1− ϕ)(κ∗)

ψ
1−v−1(k̂∗)−ψ

(
x̂∗

k̂∗

) vψ
1−v

2 + θ
−
(1− τ∗

τ∗

)
v(κ∗)−1

]
,

(κ∗)−1 =
( x̂∗
k̂∗

)v[
ϕ+ (1− ϕ)

( 1

k̂∗

)ψ] 1−v
ψ

.

We finish the proof. Q.E.D.
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Appendix B

Appendix to Chapter 3

B.1 Household Optimization

The Lagrangian is1

max
{ct,Kt+1}∞t=0

∞∑
t=0

βt

[
lnct − µt

(
ct +Kt+1 − (wt +RtKt + πt)− (1− δ)Kt

)]
(B.1.1)

where µt is the (undiscounted) shadow value of (a unit of) Kt+1. The first order conditions

are
∂(·)
∂ct

= 0⇔ µt =
1

ct
(B.1.2)

and
∂(·)
∂Kt+1

= 0⇔ µt+1

µt
=

1

β

1

(1 +Rt+1 − δ)
. (B.1.3)

Combining these two conditions yields Euler condition:

ct+1

ct
= β

(
1 +Rt+1 − δ

)
. (B.1.4)

In order to obtain TVC, we assume for the moment that the problem was finite with

terminal date T <∞. The Lagrangian would become

max
{ct,Kt+1}Tt=0

T∑
t=0

βt

[
lnct − µt

(
ct +Kt+1 − (wt +RtKt + πt)− (1− δ)Kt

)]
. (B.1.5)

The objective function is strictly concave in −KT+1. Then, the Kuhn-Tucker condition

with respect to −KT+1 will give

∂(·)
∂KT+1

≥ 0;KT+1 ≥ 0;with complementary slackness (B.1.6)

1Since marginal utility at zero and time frame are infinite we can ignore non-negativity constraint for
every choice variable.
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or equivalently,

βTµT ≥ 0;KT+1 ≥ 0;with βTµTKT+1 = 0. (B.1.7)

This means that either leaving nothing after the terminal period (KT+1 = 0) or otherwise

leaving something only if the shadow value of (a unit of) KT+1 is zero, i.e. µT = 0; note

that βT is finite, is needed. When T →∞, the terminal condition βTµTKT+1 = 0 will be

replaced by the transversality condition

lim
T→∞

βTµTKT+1 = 0. (B.1.8)

That is the (discounted) shadow value of (a unit of) KT+1 converge to zero. Equivalently,

we can write

lim
T→∞

βTu′[cT ]KT+1 = 0. (B.1.9)

where u′[·] is the marginal utility in any period.

Note that if we iterate Equations (B.1.2) and (B.1.3) we obtain

µ0 =
1

c0
;

µ1 =
1

β

1

1 +R1 − δ
µ0;

µ2 =
1

β

1

1 +R1 − δ
1

β

1

1 +R2 − δ
µ0;

:

:

µT =
1

βT
1∏T

v=1(1 +Rv − δ)
µ0.

Thus, Equation (B.1.8) becomes

lim
T→∞

1∏T
v=1(1 +Rv − δ)

µ0KT+1 = 0. (B.1.10)

Since λ0 = 1
c0
> 0, then the transversality condition can be expressed as

lim
T→∞

KT+1∏T
v=1(1 +Rv − δ)

= 0. (B.1.11)

which is stated in the main text. Q.E.D.

B.2 Non-Renewable Resource Extraction Firm Optimization

By Lagrangian method, the firm solves
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max
{Xt,Mt+1}∞t=0

∞∑
t=0

qt

[
px,tXt − wt

Xt

Mt
+ λt(Mt −XtMt+1)

]
Two first order conditions are:

∂(�)
∂Xt

= 0⇐⇒ qt

[
px,t − wt

1

Mt
− λt

]
= 0 (B.2.1)

∂(�)
∂Mt+1

= 0⇐⇒ −qtλt + qt+1

[
wt+1

Mt+1

Xt+1

Mt+1
+ λt+1

]
= 0 (B.2.2)

and the transversality condition is:

lim
T→∞

qTλTMT+1 = 0 (B.2.3)

Combine Equations (B.2.1) and (B.2.2) to yield

px,t −
wt
Mt

=
qt+1

qt

[
wt+1

Mt+1

Xt+1

Mt+1
+ px,t+1 −

wt+1

Mt+1

]

=
qt+1

qt

[
px,t+1 +

(
wt+1

Mt+1

Xt+1

Mt+1
− wt+1

Mt+1

)]

=
qt+1

qt

[
px,t+1 −

wt+1

Mt+1

(
1− Xt+1

Mt+1

)]
(B.2.4)

By using the definition of qt, we get the Hotelling condition which is

px,t −
wt
Mt

=
1

1 + rt+1

[
px,t+1 −

wt+1

Mt+1

(
1− Xt+1

Mt+1

)]
(B.2.5)

, which is equivalent to Equation (3.22) in the text.

Finally, in order to get Equation (3.23), we know from Equation (B.2.1) that px,t− wt
Mt

=

λt > 0. Use this with the fact that qt > 0, we can get the result. Q.E.D.

B.3 Proof of Lemma 3.1

The proof is divided in nine steps as follows.

Step 1.We claim that Equation (3.34) holds along a BGP. We also claim that this condition

is the first-no arbitrage condition in labour market.

By the free mobility of workers across different sectors, the wage rates must be equalised

across sectors in equilibrium. Thus, there is no difference between the wage rates between

the final-good sector and renewable resource extraction sector. Using Equations (3.13),
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(3.15) and (3.17), we obtain the first no-arbitrage condition:

α2
Yt
LY,t

=
(1− α1 − α2)Yt((
$

1−$

)(
AtXt
Zt

)ρ
+ 1

)
Zt

. (B.3.1)

We can insert the RHSs of Equations (3.16) and (3.18) into the above equation to express

the first no-arbitrage condition in terms of LY,t, LY,t, LY,t and Bt. That is(( $

1−$

)(BtLx,t
Lz,t

)ρ
+ 1

)
=

1− α1 − α2

α2
·
LY,t
Lz,t

. (B.3.2)

Along a BGP, this condition is(( $

1−$

)(B∗L∗x
L∗z

)ρ
+ 1

)
=

1− α1 − α2

α2
·
L∗Y
L∗z

(B.3.3)

which is Equation (3.34) in the main text.

Step 2.We claim that Bt is constant along any BGP.

From Equation (B.3.2), as LY,t, LY,t and LY,t are all constant along any BGP, the term

Bt must be constant as well.

Step 3.We claim that Equation (3.28) holds along any BGP.

By definition, Bt = AtMt. Along a BGP, we have Bt+1 = Bt ⇔ At+1Mt+1 = AtMt.

Moreover, by Equations (3.18) and (3.19), we can show that Mt+1 = (1− Lx,t)Mt. Thus,

At+1

At

Mt+1

Mt
= (1 + gA)(1− Lx,t) = 1.

This implies

L∗x =
gA

1 + gA
(B.3.4)

along the BGP. Moreover, gA
1+gA

∈ (0, 1) as gA > 0, by assumption. Thus, equation

(3.28) is verified, i.e., the size constancy of Bt along a BGP implies that the stationary

value of labour share employed in the non-renewable resource extraction sector L∗x is solely

determined by the rate gA such that L∗x = gA
1+gA

.

Step 4.We claim that Equation (3.29) holds along any BGP.

By using labour market clearing condition, it is straightforward to show that

L∗Y = 1− L∗x − L∗z (B.3.5)

This condition is Equation (3.29) in the main text.

Step 5.We claim that along a BGP Euler condition can be expressed by Equation (3.30).

Recall Equations (3.3). Then, use the facts that ct+1

ct
− 1 = g∗ and Rt+1 = Rt = R∗
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along any BGP to obtain

1 + g∗ = β(1 +R∗ − δ). (B.3.6)

This is Equation (3.30) in the main text.

Step 6.We claim that Equation (3.31) holds along any BGP.

By using Equations (3.7), (3.16) and (3.18), it is straightforward to show that, along a

BGP,

Ω∗ = Ω[B∗L∗x, L
∗
z] = D

(
$(B∗L∗x)ρ + (1−$)(L∗z)

ρ
) 1
ρ (B.3.7)

This condition is Equation (3.31) in the main text.

Step 7.We claim that Equation (3.32) holds along any BGP.

By using Equations (3.7), (3.12) and (3.27), it is straightforward to show that, along a

BGP,

R∗ = α1(L∗Y )α2(Ω∗)1−α1−α2 (B.3.8)

This condition is Equation (3.32) in the main text.

Step 8.We claim that Θt is constant along any BGP.

Apply (3.12)-(3.15) so that

Yt

{
α1+α2+(1−α1−α2)

(
1

1 + (1−ω
ω )( Zt

AtXt
)ρ

+
1

( ω
1−ω )(AtXtZt

)ρ + 1

)}
= RtKt+wt+px,tXt−wtLx,t.

The second term on the LHS of the above expression is one. Thus, along a BGP:

Yt = RtKt + wt + px,tXt − wtLx,t = RtKt + wt + ΘtwtLx,t − wtLx,t.

Along a BGP, we have Rt = R∗, Lx,t = L∗x and

Yt+1

Yt
=
Kt+1

Kt
=
wt+1

wt
= 1 + g∗.

As a consequence, Θt is constant along any BGP. Q.E.D.

Step 9.We claim that along a BGP Hotelling condition can be expressed by Equation

(3.33). In addition, we claim that this condition can be seen as the second no-arbitrage

condition in labour market.

Recall Hotelling condition:

px,t −
wt
Mt

=
1

1 +Rt+1 − δ

[
px,t+1 −

wt+1

Mt+1
+
Xt+1wt+1

(Mt+1)2

]
. (B.3.9)

This implies

wt
Mt

(px,tMt

wt
− 1
)

=
1

1 +Rt+1 − δ
· wt+1

Mt+1

(px,t+1Mt+1

wt+1
− (1− Lx,t+1)

)
. (B.3.10)
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Along any BGP, px,tMt

wt
=

px,tXt
wtLx,t

must be constant. Also, along any BGP, we have wt+1

wt
=

1 + g∗. Since Θt =
px,tXt
wtLx,t

, then along any BGP we have

(
Θ∗ − 1

)
=

1

1 +R∗ − δ
· 1 + g∗

1− L∗x

(
Θ∗ − 1 + L∗x)

)
. (B.3.11)

As no-arbitrage condition holds in equilibrium, workers in final-good sector and non-

renewable resource extraction sector will be paid an equal wage. As long as no-arbitrage

condition holds, i.e. as long as Equation (3.9) holds, Hotelling condition can be seen as

the second no-arbitrage condition.

Step 10.We claim that Equation (3.35) holds along any BGP.

By definition, Θt =
px,tXt
Lx,twt

. Thus, using the factor demand conditions (3.13) and (3.14),

we get

Θt =
(1− α1 − α2)Yt(

1 +
(

1−$
$

)(
Zt
AtXt

)ρ) · 1

Xt
·Xt ·

1

Lx,t
·
LY,t
α2Yt

. (B.3.12)

Use extraction technologies, the above condition becomes

Θt =
(1− α1 − α2)(

1 +
(

1−$
$

)(
Lz,t
BtLx,t

)ρ) · 1

Lx,t
·
LY,t
α2

. (B.3.13)

This equation is equivalent to Equation (3.35) when evaluated along a BGP, i.e.

Θ∗ =
(1− α1 − α2)(

1 +
(

1−$
$

)(
L∗z

B∗L∗x

)ρ) · 1

L∗x
·
L∗Y
α2

. (B.3.14)

Q.E.D.

B.4 Proof of Proposition 3.1

To begin with, we solve the Hotelling condition (3.33) for Θ∗ to obtain

Θ∗ = 1 +
(1 + g∗)L∗x

(1 +R∗ − δ)(1− L∗x)− (1 + g∗)
.

Use Euler condition to eliminate g∗ so that the previous condition becomes

Θ∗ = 1 +
βL∗x

(1− L∗x)− β
. (B.4.1)
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Using (3.28), we can simplify (B.4.1) to become

Θ∗ =
1− β

1− β(1 + gA)
. (B.4.2)

Next, rewrite (3.35) as

Θ∗ =

(
1− α1 − α2

α2

L∗Y
L∗x

) $
1−$

(
B∗L∗x
L∗z

)ρ
1 + $

1−$

(
B∗L∗x
L∗z

)ρ .
Using (3.34), we can simplify this to become

Θ∗ =
L∗z
L∗x

(
1− α1 − α2

α2

L∗Y
L∗z
− 1

)
=

L∗z
L∗x

[
1− α1 − α2

α2

(
1− L∗x − L∗z

L∗z

)
− 1

]
=

L∗z
L∗x

[
1− α1 − α2

α2

1

1 + gA

1

L∗z
− 1− α1

α2

]
=

1− α1 − α2

α2

1

gA
− 1− α1

α2

1 + gA
gA

L∗z.

Combining this and (B.4.2) gives

1− α1 − α2 − (1− α1) (1 + gA)L∗z =
α2 (1− β) gA
1− β (1 + gA)

⇒ L∗z =
1

(1− α1) (1 + gA)

{
1− α1 − α2

[
1 +

(1− β) gA
1− β (1 + gA)

]}
. (B.4.3)

The condition

1 >
α2

1− α1

[
1 +

(1− β) gA
1− β (1 + gA)

]
> 0 (B.4.4)

ensures that L∗z ∈
(

0, 1
1+gA

)
.

In order to gain some economic intuitions, we rearrange (B.4.4) as follows. Firstly, we

consider the case that 1 − β(1 + gA) > 0; i.e. gA < 1−β
β . This implies that the second

inequality holds automatically. Not only that, the first inequality is equivalent to

gA <
1− β
β
· 1

1 + 1−β
β

α2
1−α1−α2

. (B.4.5)

If this condition holds, then gA < 1−β
β holds automatically. Thus, it suffices to impose

(B.4.5) to guarantee the feasibility. Secondly, we consider the case that 1− β(1 + gA) > 0;
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i.e. gA > 1−β
β . In this case, the second inequality of (B.4.4) implies that

0 >
1− β
2β − 1

> gA

, which is infeasible. As a consequence, we eliminate this one. Finally, the case that

1− β(1 + gA) = 0; i.e. gA = 1−β
β will be eliminated as it implies that the right-hand side

of (B.4.3) will be undefined.Q.E.D.

B.5 Proof of Lemma 3.2

We combine Equations (3.28), (3.29), (3.31) and (3.32) to obtain

R∗ = α1

( 1

1 + gA
− L∗z

)α2

(DL∗z)
1−α1−α2

(
$
(B∗L∗x

L∗z

)ρ
+ (1−$)

) 1−α1−α2
ρ

. (B.5.1)

After rearranging, the condition (3.34) becomes

B∗L∗x
L∗z

=
(1−$

$

) 1
ρ
Ξ[L∗z]

1
ρ . (B.5.2)

where Ξ[L∗z] ≡
((

1−α1−α2
α2

)(
1

1+gA

)
1
L∗z
−
(

1−α1
α2

))
.

Use the RHS of (B.5.2), (B.5.1) becomes

R∗ = α1

( 1

1 + gA
− L∗z

)α2

(DL∗z)
1−α1−α2

(
$
((1−$

$

) 1
ρ
Ξ[L∗z]

1
ρ

)ρ
+ (1−$)

) 1−α1−α2
ρ

= α1

( 1

1 + gA
− L∗z

)α2

(DL∗z)
1−α1−α2

(
(1−$)Ξ[L∗z] + (1−$)

) 1−α1−α2
ρ

= α1

( 1

1 + gA
− L∗z

)α2

(DL∗z)
1−α1−α2(1−$)

1−α1−α2
ρ

(
Ξ[L∗z] + 1

) 1−α1−α2
ρ

From now, it is straightforward. Q.E.D.

B.6 Derivation of condition (3.40)

Using Equation (3.39), it is fairly straightforward to show that

dR∗

dρ


> 0 iff 0 < (1−$)

(
1−α1−α2

α2

1
1+gA

1
L∗z
− 1−α1−α2

α2

)
< 1

= 0 iff (1−$)
(

1−α1−α2
α2

1
1+gA

1
L∗z
− 1−α1−α2

α2

)
= 1

< 0 iff (1−$)
(

1−α1−α2
α2

1
1+gA

1
L∗z
− 1−α1−α2

α2

)
> 1

. (B.6.1)
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Or equivalently,

dR∗

dρ


> 0 iff L∗z ∈

(
(1−$)(1−α1−α2)

α2+(1−$)(1−α1−α2)
1

1+gA
, 1

1+gA

)
= 0 iff L∗z = (1−$)(1−α1−α2)

α2+(1−$)(1−α1−α2)
1

1+gA

< 0 iff L∗z ∈
(

0, (1−$)(1−α1−α2)
α2+(1−$)(1−α1−α2)

1
1+gA

) . (B.6.2)

This means that ρ is a growth-enhancing parameter if the share of labour employed in the

renewable resource sector is sufficiently high. Otherwise, this parameter becomes either

growth-neutral or even growth-reducing. Q.E.D.

B.7 Proof of Lemma 3.3

The proof contains nine steps as follows.

Step 1: Show that Bt+1 = Bt = B∗ ≥ 0 along a BGP.

We use the same argument stated in Step 2 in Proof of Lemma 3.1.

Step 2: Show that condition (3.53) along a BGP.

We use the same argument stated in Step 3 in Proof of Lemma 3.1.

Step 3: Show that condition (3.54) along a BGP.

It is obvious by labour market clearing condition (3.24) and the definition of a BGP.

Step 4: Show that condition (3.55) holds along a BGP.

It is obvious by Euler condition (3.46) and the definition of a BGP.

Step 5: Show that condition (3.56) holds along a BGP.

It is obvious by the CES aggregate condition (3.7), the extraction technologies (3.16)

and (3.18) and the definition of a BGP.

Step 6: Show that condition (3.57) holds along a BGP.

By using Equations (3.50) and (3.52), we get

Yt = Ktτ
1−α1
α1 L

α2
α1
Y,tΩ

1−α1−α2
α1

t (B.7.1)

which implies
Yt
Kt

= τ
1−α1
α1 L

α2
α1
Y,tΩ

1−α1−α2
α1

t . (B.7.2)

Next, combine Equation (B.7.2) and the final-good firm’s demand for capital (3.12) to

eliminate Yt
Kt

again. Accordingly,

Rt = α1τ
1−α1
α1 L

α2
α1
Y,tΩ

1−α1−α2
α1

t . (B.7.3)
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This condition holds in competitive equilibrium. Thus, along a BGP we have

R∗ = α1τ
1−α1
α1 (L∗Y )

α2
α1 (Ω∗)

1−α1−α2
α1 . (B.7.4)

Then, we get the result.

Step 7: Show that condition (3.58) holds along a BGP.

See Steps 8 and 9 in Proof of Lemma 3.1.

Step 8: Show that condition (3.59) holds along a BGP.

Apply Equations (3.13), (3.15)-(3.18) along a BGP. Then(( $

1−$

)(B∗L∗x
L∗z

)ρ
+ 1

)
=

1− α1 − α2

α2
·
L∗Y
L∗z

(B.7.5)

which is the equation (3.59).

Step 9: Show that condition (3.60) holds along a BGP.

See Step 10 in Proof of Lemma 3.1. Q.E.D.

B.8 Proof of Lemma 3.4

Having derived Equations (3.53) - (3.60) stated in Lemma 3.3, we now can get Equation

(3.61) using these conditions.

By using conditions (3.53), (3.54), (3.58) and (3.60), we can get(
1−α1−α2

α2

)(
1−(1+gA)L∗z

gA

)
(

1 +
(

1−$
$

)(
L∗z
B∗

)ρ(
1+gA
gA

)ρ) = 1 +
(1 + g∗)gA

(1 +R∗ − δ)− (1 + gA)(1 + g∗)
. (B.8.1)

Next, we rearrange condition (3.59) to obtain

B∗ =

((1−$
$

)(1− α1 − α2

α2

)( 1

1 + gA

) 1

L∗z
−
(1−$

$

)(1− α1

α2

)) 1
ρ(1 + gA

gA

)
L∗z.

(B.8.2)

As the same as in the previous model, B∗ > 0 for all ρ if and only if L∗z ∈ S. Thus, this

restriction is necessary.

Next, we combine Equations (3.53), (3.55), (3.56) and (3.57) to obtain

1 + g∗ = β
(

1 + (1− τ)R∗ − δ
)
. (B.8.3)
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and

R∗ = α1τ
1−α1
α1

( 1

1 + gA
− L∗z

)α2
α1D

1−α1−α2
α1

(
$(

gA
1 + gA

)ρ(B∗)ρ + (1−$)(L∗z)
ρ
) 1
ρ

1−α1−α2
α1 .

(B.8.4)

If Equations (B.8.2)-(B.8.4) hold, then the equation (B.8.1) is a single non-linear equation

with one unknowns - namely L∗z. This equation can be used to determine a BGP.

Define V [L∗z] =

((
1−$
$

)(
1−α1−α2

α2

)(
1

1+gA

)
1
L∗z
−
(

1−$
$

)(
1−α1
α2

))
. ThenB∗ = V [L∗z]

1
ρ

(
1+gA
gA

)
L∗z.

The LHS of Equation (B.8.1) becomes(
1−α1−α2

α2

)(
1−(1+gA)L∗z

gA

)
(

1 +
(

1−$
$

)(
L∗z

V [L∗z ]
1
ρ

(
1+gA
gA

)
L∗z

)ρ(
1+gA
gA

)ρ) =
(1− α1 − α2)− (1− α1)(1 + gA)L∗z

α2gA
.

(B.8.5)

Note that this term is independent of ρ. For the RHS of (B.8.1), we can apply Euler

condition so that

1 +
(1 + g∗)gA

(1 +R∗ − δ)− (1 + gA)(1 + g∗)
= 1 +

β
(

1 + (1− τ)R∗ − δ
)
gA

(1 +R∗ − δ)− (1 + gA)β
(

1 + (1− τ)R∗ − δ
)

= 1 +
gA

1+R∗−δ

β

(
1+(1−τ)R∗−δ

) − (1 + gA)
.

(B.8.6)

By using Equations (B.8.5) and (B.8.6), Equation (B.8.1) becomes

(1− α1 − α2)− (1− α1)(1 + gA)L∗z
α2gA

= 1 +
gA

1+R∗−δ

β

(
1+(1−τ)R∗−δ

) − (1 + gA)
. (B.8.7)

Similarly, using V [L∗z] , the RHS of Equation (B.8.4) becomes

α1τ
1−α1
α1 D

1−α1−α2
α1

((1−$)(1− α1 − α2)

α2

) 1−α1−α2
ρα1

( 1

1 + gA
−L∗z

) 1−α1−α2+ρα2
ρα1 (L∗z)

1−α1−α2
α1

(1− 1
ρ

)
.

(B.8.8)

Hence, an alternative expression of R∗ is

R∗ = α1τ
1−α1
α1 D

1−α1−α2
α1

((1−$)(1− α1 − α2)

α2

) 1−α1−α2
ρα1

( 1

1 + gA
−L∗z

) 1−α1−α2+ρα2
ρα1 (L∗z)

1−α1−α2
α1

(1− 1
ρ

)
.

(B.8.9)

We define the RHS of the above expression as Φ[L∗z]. Note that Φ[L∗z] can be seen as an

alternative expression of the long-run equilibrium rate of returns on capital.

To sum up, a BGP exists if there exists L∗z ∈ S that solves Equation (B.8.7) subject to
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Equation (B.8.9). Q.E.D.

B.9 Proof of Lemma 3.5

This proof consists of three steps. In the first and second steps, we verify some properties

of the terms on the LHS and RHS of the equation (3.65). Given the properties have

been given from the previous steps, the sufficient conditions ensuring the existence and

uniqueness of a BGP will be shown in the last step.

Step 1 : Properties of the LHS of Equation(3.65)

Consider the LHS term of Equation(3.68). Define

LHS[Lz] =
(1− α1 − α2)− (1− α1)(1 + gA)Lz

α2gA
(B.9.1)

as a function of Lz. Having shown that L∗z ∈ S, it suffices to focus on Lz ∈ [0, sM ]. Ob-

viously, LHS[Lz] is a linear function. In addition, according to the parameter restrictions

α1, α2, α1 + α2 ∈ (0, 1) and gA > 0, this function is linear with negative slope. The line

crosses the vertical axis at the point
(

0, 1−α1−α2
α2gA

)
while it crosses the horizontal axis at

the point (sM , 0).

Step 2 : Properties of the RHS of Equation(3.65)

Define ξ ≡ α1τ
1−α1
α1 D

1−α1−α2
α1

(
(1−$)(1−α1−α2)

α2

) 1−α1−α2
ρα1 > 0. Then from Φ[Lz] we can

see that the rate of returns on capital can be expressed as a function of Lz, i.e.,

Φ[Lz] = ξ
( 1

1 + gA
− Lz

) 1−α1−α2+ρα2
ρα1 (Lz)

1−α1−α2
α1

(1− 1
ρ

)
. (B.9.2)

Clearly, the rate of returns on capital is unbounded above but bounded below by zero for

all Lz ∈ [0, sM ].

After having restricted the domain on the closed interval [0, sM ], some properties of

Φ[Lz] can be verified. First of all, we specify the properties at boundaries. If Lz = 0 we

have

Φ[0]

=∞ if ρ ∈ (0, 1)

= 0 if ρ ∈ (−∞, 0)
(B.9.3)

Also, when Lz = sM we have Φ[sM ] > 0 and finite. The interior properties is investigated

by differentiating Φ[Lz] which yields

Φ′[Lz] = ξΦ[Lz]

(
(Lz)

−1 1− α1 − α2

α1

(
1− 1

ρ

)
− 1− α1 − α2 + ρα2

ρα1

( 1

1 + gA
− Lz

)−1
)
.

(B.9.4)

If ρ ∈ (0, 1), then Φ′[Lz] < 0 for all Lz ∈ (0, sM ). Combining with the two boundaries

conditions, we can say that if ρ ∈ (0, 1), then Φ[Lz] is strictly decreasing on [0, sM ]. On
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the other hand, if ρ ∈ (−∞, 0), (B.11.4) implies Φ′ [Lz] ≷ 0 if and only if

1− α1 − α2

α1

(
1− ρ−1

)
L−1
z ≷

1− α1 − α2 + ρα2

ρα1

(
1

1 + gA
− Lz

)−1

⇔ (1− α1 − α2)
(
1− ρ−1

)( 1

1 + gA
− Lz

)
≷
[
(1− α1 − α2) ρ−1 + α2

]
Lz

⇔
(
1− ρ−1

) (1− α1 − α2)

(1− α1) (1 + gA)
≷ Lz.

Note that (
1− 1

ρ

)
(1− α1 − α2)

(1− α1) (1 + gA)
=

(
1− 1

ρ

)
sM > sM

for ρ < 0. Hence, for any Lz ∈ [0, sM ] , we have Φ′ [Lz] > 0.

Now, let us consider crucial properties of the function RHS[·]. After rearranging and

using the fact that Φ[Lz] = R, RHS[·] can be expressed as

RHS [R] =
(1− δ) (1− β) +R [1− β (1− τ)]

(1− δ) [1− β (1 + gA)] +R [1− β (1 + gA) (1− τ)]
.

We are only interested in non-negative values of RHS [·] over the range [0,∞) . Note that

the numerator is always strictly positive for all R ≥ 0. For the denominator, there are 3

possible cases:

Case 1:

0 < gA <
1

β
− 1 <

1

β (1− τ)
− 1.

In this case, RHS [R] > 0 for all R ≥ 0 and we have

RHS [0] =
1− β

1− β (1 + gA)
> 0,

lim
R→∞

RHS [R] =
1− β (1− τ)

1− β (1 + gA) (1− τ)
> 0,

RHS′ [R] = − τβgA (1− δ)
{(1 +R∗ − δ)− β (1 + gA) [1 + (1− τ)R∗ − δ]}2

< 0.

Case 2:
1

β
− 1 < gA <

1

β (1− τ)
− 1.

Then RHS (R) > 0 if and only if

R >
(1− δ) [β (1 + gA)− 1]

1− β (1 + gA) (1− τ)
.
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Case 3:
1

β
− 1 <

1

β (1− τ)
− 1 < gA.

In this case, RHS (R) < 0 for all R ≥ 0 so we should rule out this case.

We consider that Case 2 will create a lot of (unnecessary) complications which are

largely technical in nature. Thus, we choose to avoid these by focusing on Case 1. Thus,

in Lemma 5 we begin with the primitive that β < β(1 + gA) < 1 holds.

Step 3 : The Existence and Uniqueness of a BGP

Thus, if ρ ∈ (0, 1) , then Φ (Lz) is a strictly decreasing function with Φ (0) = +∞ and

Φ (sM ) > 0. Hence, RHS = Θ [Φ (Lz)] is strictly increasing over the range (0, sM ) with

Θ [Φ (0)] = Θ (∞) =
1− β (1− τ)

1− β (1 + gA) (1− τ)
> 0,

Θ [Φ (sM )] > 0.

Thus, a unique solution L∗z exists if and only if

1− α1 − α2

α2

1

gA
>

1− β (1− τ)

1− β (1 + gA) (1− τ)

⇔

(
1−α1−α2

α2

) [
β−1 (1− τ)−1 − 1

]
β−1 (1− τ)−1 − 1 +

(
1−α1−α2

α2

) > gA.

Next, consider the case that ρ < 0. Combining with the results shown in Steps 1 and

2, we now know that if gA < β−1− 1 and ρ < 0, then RHS [Φ (Lz)] is a strictly decreasing

function over the range [0, sM ] with

RHS [Φ (0)] = RHS (0) =
1− β

1− β (1 + gA)
> 0 and RHS [Φ (sM )] > 0.

Hence, (3.61) has at least one solution if

1− α1 − α2

α2

1

gA
>

1− β
1− β (1 + gA)

⇔

(
1−α1−α2

α2

) (
β−1 − 1

)
β−1 − 1 +

(
1−α1−α2

α2

) > gA. (B.9.5)

Q.E.D.
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Appendix C

Appendix to Chapter 4

C.1 Characterisation of the Dynamical System (4.16) - (4.21)

The intertemporal equilibrium is governed by a system of six conditions governing five

variables including ln,t, zt+1, Rt, p̃t and c̃n,t , provided that z0 > 0 is given. These con-

ditions are (i) labour mobility condition, (ii) intratemporal tradeoff condition, (iii) the

Euler condition, (iv) the resource constraint, (v) the rate of return on capital and (vi) the

transversality condition.

To get the labour mobility condition, we apply the definitions of zt and p̃t to (4.3) so

that

p̃t = (1− αn)
( zt
ln,t

)αn
. (C.1.1)

To get the intratemporal tradeoff condition, we manipulate (4.11) by using (4.6) and the

definitions of c̃n,t and p̃t so that

c̃n,t =
(1− θ

θ

)
p̃t

[
1− ln,t −

ca,t
Aa,t

]
. (C.1.2)

For the Euler condition, it is straightforward by applying the definitions of p̃t and c̃n,t to

(4.12) so that

β(1 +Rt+1 − δ) =
( c̃n,t+1

c̃n,t

)σ
(1 + γ̃n,t+1)σ

( p̃t+1

p̃t

)θ(1−σ)(1 + γ̃n,t+1

1 + γ̃a,t+1

)θ(1−σ)
. (C.1.3)

For the resource constraint, we manipulate (4.7) so that

Yn,t
An,tNt

=
cn,t
An,t

+ (1 + n)(1 + γ̃n,t+1)
Kt+1

An,t+1Nt+1
− (1− δ) Kt

An,tNt
.

Use (4.2) and apply the the definitions of zt and c̃n,t to the above expression so that

zαnt l1−αnn,t = c̃n,t + (1 + n)(1 + γ̃n,t+1)zt+1 − (1− δ)zt. (C.1.4)
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For the rate of return on capital, we revise (4.4) by using the definition of zt so that

Rt = αn

[ zt
ln,t

]αn−1
. (C.1.5)

For the transversality condition, it is straightforward. Q.E.D.

C.2 Proof of Lemma 4.1

Along a BGP, the rate of return Rt must be constant. This implies that zt and ln,t must

grow at the same rate along such a path; see (4.20). Taking into account that ln,t is

bounded by (0, 1), the common growth rate of them must be zero. Using this fact with

(4.16) and (4.19), we can also show that both c̃n,t and p̃t must be constant along a BGP

as well. Since ln,t, c̃n,t and p̃t are constant along a BGP, condition (4.17) implies that ca,t
and Aa,t must grow at the same rate along such a path. Then, we finish the proof of (i) in

the lemma.

For the proof of (ii) in Lemma 4.2, we observe that

∂U

∂cn
= (1− θ)(ca − ca)θ−θσc−σ−θ+σθn = (1− θ)(ca − ca)θ(1−σ)c(1−σ)(1−θ)−1

n .

Thus, the growth factor of the above marginal utility is

(1 + γ̃∗a)θ(1−σ)t(1 + γ̃∗n)(1−σ)(1−θ)t(1 + γ̃∗n)−t.

Then, we can use this growth factor with (4.21) to get the inequality (4.26). Q.E.D.

C.3 Proof of Proposition 4.1

A BGP is a time-invariant path associated with the system (4.16)-(4.20) and Lemma 4.1.

To begin with, we solve for R∗. By using the Euler condition (4.18), we obtain

R∗ =
1

β
(1 + γ̃∗n)σ

(1 + γ̃∗n
1 + γ̃∗a

)θ(1−σ)
− (1− δ). (C.3.1)

Secondly, we solve for p̃∗. By using (4.16) and (4.20), we obtain

p̃∗ = (1− αn)
[R∗
αn

] αn
αn−1

. (C.3.2)

Thirdly, we solve z∗ and c̃∗n in terms of l∗n. By using (4.20), we obtain

z∗ =
[R∗
αn

] 1
αn−1

l∗n. (C.3.3)
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By using 4.17) and Lemma 4.1 (i), we obtain

c̃∗n =
(1− θ

θ

)
p̃∗
[
1− l∗n − µ

]
. (C.3.4)

Fourthly, we solve for l∗n. Apply (C.3.2), (C.3.3) and (C.3.4) to (4.19) so that

[R∗
αn

] αn
αn−1

l∗n =
(1− θ

θ

)
(1− αn)

[R∗
αn

] αn
αn−1

[
1− l∗n − µ

]
+ Γ∗1

[R∗
αn

] 1
αn−1

l∗n.

We, then, solve the above expression for l∗n so that

l∗n =

(
1−θ
θ

)
(1− αn)(1− µ)(

1−θ
θ

)
(1− αn) + 1− αn

Γ∗1
R∗

. (C.3.5)

Finally, we want to ensure feasibility. The inequality (4.26) guarantees that R∗ >

Γ∗1 > 0, this implies that R∗ and p̃∗ > 0. It suffices to guarantee the feasibility if we can

guarantee that both c̃∗n > 0 and l∗n ∈ (0, 1) hold. To begin with, we can see that (4.26)

ensures that l∗n < 1 for any µ ≥ 0 because this condition guarantees that
(

1−αn
Γ∗1
R∗

)
> 0.

Next, from (C.3.4) we can show that

c̃∗n > 0⇔ 1− l∗n > µ.

Combined with (C.8.5), we have

c̃∗n > 0⇔
1− αn

Γ∗1
R∗ + µ(1− αn)

(
1−θ
θ

)
1− αn

Γ∗1
R∗ + (1− αn)

(
1−θ
θ

) > µ.

Condition (4.26) ensures that 1− αn
Γ∗1
R∗ > 0. Thus,

c̃∗n > 0⇔ 1 > µ. (C.3.6)

Restricting 1 > µ not only ensures c̃∗n > 0, but also l∗n > 0; see (C.3.5). Then, we reach

the conclusion.

In sum, we can say that if Lemma 4.1 and µ ∈ (0, 1) hold, then there exists a unique

BGP:

(l∗n, R
∗, c̃∗n, z

∗, p̃∗) ∈ (0, 1)× R4
++

where these values are given by (C.3.1) - (C.3.5). Q.E.D.
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C.4 Characterisation of the Dynamical System (4.41)-(4.47)

The contract curve: As we have mentioned in the main text, the contract curve refers

to the equilibrium pairs (sn,t, Ln,t) where the marginal rates of technical substitution are

equalised across the two sectors, given Aa,t, An,t and zt. We know that the equilibrium

rate of technical of substitution is the relative input price wt
rt+δ

. Accordingly, combining

(4.39) and (4.40) yields:

wt
rt + δ

=
(1− αa

1− αn

)αn
αa

[
la,t

sa,t

(
Kt

An,tNt

)]ψa−1(Aa,t
An,t

)ψa
=

[
ln,t

sn,t

(
Kt

An,tNt

)]ψn−1

.

Imposing the two input market clearing conditions (4.5) and (4.37) and then using the

definition of zt to the above expression yields the contract curve:

CC
(
ln,t, sn,t;Aa,t, An,t, zt

)
≡
(1− αa

1− αn

)αn
αa

[
1− ln,t

(1− sn,t)zt

]ψa−1(Aa,t
An,t

)ψa
=

[
ln,t
sn,tzt

]ψn−1

(C.4.1)

, which is (4.41) in the main text.

The labour mobility condition: As we have mentioned in the main text, the labour

mobility condition refers to the equilibrium pairs (sn,t, ln,t) where workers in both sectors

will be paid at the same rate, given Aa,t, An,t and zt. Thus, by manipulating (4.39) using

(4.38) and some algebras:

wt = pt(1− αa)
Y 1−ψa
a,t

(Aa,tla,tNt)1−ψaAa,t =
Y 1−ψn
n,t

(An,tln,tNt)1−ψn (1− αn)An,t

⇔ pt(1− αa)
Y 1−ψa
a,t

(Aa,tla,tNt)1−ψaAa,t =
Y 1−ψn
n,t

(An,tln,tNt)1−ψn (1− αn)An,t

⇔ pt
Aa,t
An,t

(1− αa
1− αn

)
[
αa

(
sa,tKt

)ψa
+ (1− αa)

(
Aa,tla,tNt

)ψa] 1−ψa
ψa

(Aa,tla,tNt)1−ψa =
Y 1−ψn
n,t

(An,tln,tNt)1−ψn

⇔ pt
Aa,t
An,t

(1− αa
1− αn

)[
αa

(sa,t
la,t

Kt

An,tNt

)ψa(Aa,t
An,t

)−ψa
+ (1− αa)

] 1−ψa
ψa

=
Y 1−ψn
n,t

(An,tln,tNt)1−ψn

⇔

[
αa

(
sa,t
la,t

Kt
An,tNt

)ψa(Aa,t
An,t

)−ψa
+ (1− αa)

] 1−ψa
ψa

[
pt
Aa,t
An,t

(
1−αa
1−αn

)]−1 =

[
αn

(
sn,tKt

)ψn
+ (1− αn)

(
An,tln,tNt

)ψn] 1−ψn
ψn

(An,tln,tNt)1−ψn
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⇔

[
αa

(
sa,t
la,t

Kt
An,tNt

)ψa(Aa,t
An,t

)−ψa
+ (1− αa)

] 1−ψa
ψa

[
pt
Aa,t
An,t

(
1−αa
1−αn

)]−1 =

[
αn

(sn,t
ln,t

Kt

An,tNt

)ψn
+ (1− αn)

] 1−ψn
ψn

which eventually leads to

[
αa

(
sa,t
la,t

Kt
An,tNt

)ψa(Aa,t
An,t

)−ψa
+ (1− αa)

] 1−ψa
ψa

[
pt

(
Aa,t
An,t

)1−αa+αa(
1−αa
1−αn

)]−1 =

[
αn

(sn,t
ln,t

Kt

An,tNt

)ψn
+ (1− αn)

] 1−ψn
ψn

.

Applying the definitions of p̃t and zt and input market clearing conditions stated in (4.5)

and (4.37) to the above expression yields

[
αa

(
1−sn,t
1−ln,t zt

)ψa(Aa,t
An,t

)−ψa
+ (1− αa)

] 1−ψa
ψa

[
p̃t

(
Aa,t
An,t

)αa(
1−αa
1−αn

)]−1 =

[
αn

(sn,t
ln,t

zt

)ψn
+ (1− αn)

] 1−ψn
ψn

. (C.4.2)

From (4.38) and (4.40), the rate of return on capital is

Rt = αn
Y 1−ψn
n,t

(sn,tKt)1−ψn

= αn

[
αn

(
sn,tKt

)ψn
+ (1− αn)

(
An,tln,tNt

)ψn] 1−ψn
ψn

(sn,tKt)1−ψn

= αn

[
αn + (1− αn)

( sn,tKt

An,tln,tNt

)−ψn] 1−ψn
ψn

.

Apply the definition of zt to the above expression. Then,

Rt = αn

[
αn + (1− αn)

(sn,t
ln,t

zt

)−ψn] 1−ψn
ψn

. (C.4.3)

We then combine (C.4.2) and (C.4.3) to get LM
(
ln,t, sn,t;Aa,t, An,t, zt

)
≡:

(1− αa
1− αn

)
p̃t

(Aa,t
An,t

)αa[
αa

(Aa,t
An,t

)−ψa(1− sn,t
1− ln,t

zt

)ψa
+ (1− αa)

] 1−ψa
ψa

=
(sn,tzt
ln,t

)1−ψn Rt
αn

(C.4.4)
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, which is (4.42) in the main text.

The intratemporal tradeoff condition: We revise the intratemporal tradeoff condition

(4.11) as follows. To begin with, we manipulate (4.11) using the definitions of p̃t and c̃n,t
to get

p̃t

(Aa,t
An,t

)αa−1( ca,t
An,t

− ca,t
An,t

)
=

θ

1− θ
c̃n,t.

Apply (4.6) and (4.38) to the above expression:

p̃t

(Aa,t
An,t

)αa−1
([

αa

(
sa,tKt

)ψa
+ (1− αa)

(
Aa,tla,tNt

)ψa] 1
ψa

NtAn,t
− ca,t
An,t

)
=

θ

1− θ
c̃n,t

⇔ p̃t

(Aa,t
An,t

)αa−1
(
la,t

(Aa,t
An,t

)[
αa

(sa,t
la,t

Kt

An,tNt

)ψa(Aa,t
An,t

)−ψa
+(1−αa)

] 1
ψa− ca,t

An,t

)
=

θ

1− θ
c̃n,t.

Apply (4.5), (4.37) and the definition of zt, we get the intratemporal tradeoff condition

p̃t

(Aa,t
An,t

)αa−1
(

(1−ln,t)
(Aa,t
An,t

)[
αa

(1− sn,t
1− ln,t

zt

)ψa(Aa,t
An,t

)−ψa
+(1−αa)

] 1
ψa

− ca,t
An,t

)
=
( θ

1− θ

)
c̃n,t

(C.4.5)

, which is (4.43).

The Euler condition: We revise the Euler condition (4.12) by using the definitions of p̃t
and c̃n,t and Rt = rt + δ. Then, it is straightforward to get (4.44).

The resource constraint: We revise the economy wide resource constraint as follows.

Premultiply both sides of (4.7) by 1
An,tNt

. Then,

Yn,t
An,tNt

=
Ntcn,t
An,tNt

+
Kt+1

An,tNt
− (1− δ) Kt

An,tNt

=
cn,t
An,t

+
Kt+1

1

1

An,tNt
− (1− δ) Kt

An,tNt

=
cn,t
An,t

+
Kt+1

An,t+1Nt+1

An,t+1Nt+1

An,tNt
− (1− δ) Kt

An,tNt
.

This leads to

Yn,t
An,tNt

=
cn,t
An,t

+ (1 + n)(1 + γ̃n,t+1)
Kt+1

An,t+1Nt+1
− (1− δ) Kt

An,tNt
. (C.4.6)

By using (4.38), we can show that

Yn,t
An,tNt

= ln,t

[
αn

(sn,t
ln,t

Kt

An,tNt

)ψn
+ (1− αn)

] 1
ψn

. (C.4.7)

By combining (C.4.6) and (C.4.7), we can get (4.45) by using the definitions of c̃n,t and zt.
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The rate of return on capital: We have verified already; see (C.4.3).

The TVC: Since λt = ∂u(·)
∂cn,t

and by asset market clearing at+1 = Kt+1

Nt+1
, then

lim
t→∞

βt
∂u(·)
∂cn,t

An,t+1Nt+1
Kt+1

An,t+1Nt+1
= 0. (C.4.8)

By using the definitions of zt, we get (4.46). We finish the proof. Q.E.D.

C.5 Proof of Lemma 4.2

Based on Definition 4.2, the constancy of Rt along a BGP requires that lt,n and st,nzt must

grow at a common rate; see (4.46). Taking into account that lt,n, st,n ∈ (0, 1), these two

variables cannot grow (or decay) along a BGP and thus zt must be time-invariant along a

BGP as well. Formally, along a BGP,

ln,t+1 = ln,t = l∗n ∈ (0, 1), sn,t+1 = sn,t = s∗n ∈ (0, 1) and zt+1 = zt = z∗ > 0. (C.5.1)

Since (C.5.1) must hold along a BGP, the conditions (4.41) and (4.42) implies that either

the growth rates of labour augmenting technologies in both sectors are equal (unbiased

technological progress) or the elasticity of substitution between capital and labour is unity

along a BGP. In our context, the former requirement seems to be too restricted as climate

change would affect the growth rates of Aa,t and An,t in different degrees. In the long-run,

it is very unlikely that the two growth rate will be identical. In stead, we assume the latter.

If we assume that ψa → 0 which implies Ya,t = (sa,tKt)
αa(Aa,tla,tNt)

1−αa . Then, the

conditions (4.41)-(4.43) becomes, respectively,

(1− αa
αa

)( αn
1− αa

)(1− sn,t
1− ln,t

zt

)
=
(sn,tzt
ln,t

)1−ψn
, (C.5.2)

(1− αa
1− αn

)
p̃t

(1− sn,t
1− ln,t

zt

)αa
=
(sn,tzt
ln,t

)1−ψn Rt
αn
, (C.5.3)

p̃t

(
(1− ln,t)

(1− sn,t
1− ln,t

zt

)αa
− ca,t

A1−αa
a,t Aαan,t

)
=
( θ

1− θ

)
c̃n,t. (C.5.4)

Q.E.D.

C.6 Proof of Lemma 4.3

We omit the proof as this lemma is a more generalised version of Lemma 4.1. Q.E.D.
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C.7 Proof of Proposition 4.2

The proof is divided into a number of steps:

Step 1 Evaluate R∗. According to (4.44), the rate of return on capital along a BGP

is

R∗ =
κ

β
− (1− δ) (C.7.1)

where κ ≡ (1+γ̃∗n)σ
(

1+γ̃∗n
1+γ̃∗a

)(1−αa)θ(1−σ)
. This is the condition (4.49) stated in the main text.

Step 2 Ensure R∗ > 0. The inequality (4.48) implies that

(1 + n)(1 + γ̃∗n) <
κ

β
. (C.7.2)

From (C.7.1) and (C.7.2), we have

R∗ > Γ∗1 > 0. (C.7.3)

Note that R∗ > Γ∗1 holds due to (4.48) while Γ∗1 > 0 holds because of the parameter values

of n, γ∗n and δ.

Step 3 Evaluate p̃∗. From (C.4.3) we get

(R∗
αn

)
=

[
αn + (1− αn)

(s∗n
l∗n
z∗
)−ψn] 1−ψn

ψn

(C.7.4)

and (s∗n
l∗n
z∗
)

=
(1− αn

αn

) 1
ψn
[
(αn)

−1
1−ψn (R∗)

ψ
1−ψn − 1

]−1
ψn = Λ∗1. (C.7.5)

Apply (C.7.5) to (C.5.2) so that

(1− s∗n
1− l∗n

z∗
)

= (Λ∗1)1−ψn
( αa

1− αa
· 1− αn

αn

)
. (C.7.6)

Then, we can apply (C.7.5) and (C.7.6) to (the stationary expression of) the condition

(C.5.3) to get

p̃∗ =
(1− αn

1− αa

)
(Λ∗1)(1−αa)(1−ψn)

( αa
1− αa

· 1− αn
αn

)−αa(R∗
αn

)
, (C.7.7)

, which is the condition (4.50) in the main text.

Step 4 Ensure p̃∗ > 0. From (C.7.7), p̃∗ > 0 for all ψn when Λ∗1 > 0. In particu-
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lar, this equation implies that Λ∗1 > 0 if and only if

(R∗)ψn > αn. (C.7.8)

In this study we assume that this inequality holds.

Step 5 Show that if (R∗, p̃∗,Λ∗1) � 0 , then there exists a unique Λ∗2 > 0. Af-

ter rearranging (C.7.7), we obtain

Λ∗2 ≡
( p̃∗αa
R∗

) 1
1−αa =

( αa
1− αa

· 1− αn
αn

)
(Λ∗1)(1−ψn) (C.7.9)

Then it is straightforward. Note that (C.7.6) and (C.7.9) imply

Λ∗2 ≡
( p̃∗αa
R∗

) 1
1−αa =

( αa
1− αa

· 1− αn
αn

)
(Λ∗1)(1−ψn) =

(1− s∗n
1− l∗n

z∗
)
. (C.7.10)

Step 6 Evaluate (s∗n, z
∗, c̃∗n) in terms of l∗n. For s∗n, we can use (C.7.7) and (C.7.10) so

that

s∗n =
Λ∗1l
∗
n

Λ∗1l
∗
n + Λ∗2(1− l∗n)

. (C.7.11)

For z∗, we can use (C.7.5) and (C.7.11) so that

z∗ = Λ∗1l
∗
n + Λ∗2(1− l∗n). (C.7.12)

For c̃∗n, we can use (C.5.4), (C.7.10) and Part (i) in Lemma 4.3 so that

c̃∗n =
(1− θ

θ

)
p̃∗

[
(1− l∗n)(Λ∗2)αa − µ

]
. (C.7.13)

These are (4.54), (4.55) and (4.56), respectively.

Step 7 Evaluate l∗n. We use (C.7.13) to eliminate c̃∗n from (4.45) so that

l∗n(Λ∗1)

(
R∗

αn

) 1
1−ψn

=
(1− θ

θ

)
p̃∗

[
(1− l∗n)(Λ∗2)αa − µ

]
+ Γ∗1z

∗.

Apply (C.7.4), (C.7.5) and (C.7.12) to the above expression so that

l∗n(Λ∗1)
[
αn+(1−αn)(Λ∗1)−ψn

] 1
ψn =

(1− θ
θ

)
p̃∗
[
(1− l∗n)(Λ∗2)αa−µ

]
+Γ∗1(Λ∗1−Λ∗2)l∗n+Γ∗1Λ∗2.
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We solve the above expression for l∗n so that

l∗n =
(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 − µ(1−θ

θ )p̃∗

(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 + (Λ∗1)

[
αn + (1− αn)(Λ∗1)−ψn

] 1
ψn − Γ∗1Λ∗1

. (C.7.14)

It would be useful to show; by using (C.7.5), that

(Λ∗1)
[
αn + (1− αn)(Λ∗1)−ψn

] 1
ψn =

[
αn(Λ∗1)ψn + (1− αn)

] 1
ψn

=
[
αn

(1− αn
αn

)ψn
ψn (Υ∗)

−ψn
ψn + (1− αn)

] 1
ψn

=
[(1− αn)

Υ∗
+ (1− αn)

Υ∗

Υ∗

] 1
ψn

= (Υ∗)
−1
ψn

[
(1− αn)(Υ∗ − 1)

] 1
ψn ≡ Γ∗2

where Υ∗ ≡ (αn)
− 1

1−ψn (R∗)
ψn

1−ψn − 1. In sum, the stationary labour share devoted to

non-agricultural sector corresponding to a BGP is

l∗n =
(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 − µ(1−θ

θ )p̃∗

(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 − (Γ∗1Λ∗1 − Γ∗2)

(C.7.15)

which is (4.53) in the main text.

Step 8 Ensure feasibility. We finish the proof by showing parameter restrictions en-

suring the feasibility of the solution. Regarding this matter, we want to ensure that

(l∗n, s
∗
n, c̃
∗
n, z
∗) ∈ (0, 1)2 × R2

++. However, since (C.7.8) holds; so Λ∗1,Λ
∗
2 > 0, it suffices to

guarantee the feasibility by ensuring that l∗n ∈ (0, 1) and c̃∗n > 0.

To begin with, we claim that

(R∗)ψn > αn ⇒ l∗n < 1. (C.7.16)

To illustrate this, we begin by showing an alternative expression of Γ∗2 such that

Γ∗2 = Λ∗1

(
R∗

αn

) 1
1−ψn

.

This implies that

Γ∗2 − Λ∗1Γ∗1 = Λ∗1

[(
R∗

αn

) 1
1−ψn

− Γ∗1

]
. (C.7.17)

Under the assumption that (R∗)ψn > αn, we have
(
R∗

αn

) 1
1−ψn > R∗. Since R∗ > Γ∗1; see

(C.7.3), then (C.7.17) is strictly positive and thus l∗n < 1.
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Next, we claim that

c̃∗n > 0⇒ l∗n > 0. (C.7.18)

From (C.7.13), we can see that c̃∗n > 0 if and only if

(1− l∗n)(Λ∗2)αa − µ > 0.

By using (C.7.15), we can show that

1− l∗n =
Γ∗2 − Γ∗1Λ∗1 + µ(1−θ

θ )p̃∗

(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 + Γ∗2 − Γ∗1Λ∗1

,

(1− l∗n)(Λ∗2)αa =
Γ∗2(Λ∗2)αa − Γ∗1Λ∗1(Λ∗2)αa + µ(1−θ

θ )p̃∗(Λ∗2)αa

(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 + Γ∗2 − Γ∗1Λ∗1

and

(1− l∗n)(Λ∗2)αa − µ =

[
(Λ∗2)αa − µ

][
Γ∗2 − Λ∗1Γ∗1

]
− Λ∗2Γ∗1µ

(1−θ
θ )p̃∗(Λ∗2)αa + Γ∗1Λ∗2 + Γ∗2 − Γ∗1Λ∗1

.

This means

c̃∗n > 0⇐⇒
[
(Λ∗2)αa − µ

][
Γ∗2 − Λ∗1Γ∗1

]
> Λ∗2Γ∗1µ > 0 (C.7.19)

Since
[
Γ∗2 − Λ∗1Γ∗1

]
> 0, the above inequalities will hold only if

[
(Λ∗2)αa − µ

]
> 0 which

turns out that l∗n > 0 is necessarily true.

In sum, assuming Lemma 4.3 holds, inequalities (C.7.8) and (C.7.19) ensure that there

exists a unique BGP. Q.E.D.

C.8 Further Characterisations of Employment Share Effect

From now, we go further by investigating the expressions of (4.58). This exposition will give

us some more accurate conclusions about the climate impact on the long-run employment

share.

The sign of ∂p̃∗

∂T ∗ : From Proposition 4.2, the detrended relative price can be expressed

as

p̃∗ = (α̂)1−αa(Λ∗1)(1−αa)(1−ψn)R
∗

αa
.

The feasibility condition (4.51); which implies Λ∗1 > 0, ensures that p̃∗ > 0. This parameter

restriction implies that the long-run rate of return on capital (4.49) must be bounded below

by a certain value which is strictly positive but less than one when the two inputs are gross

substitute (ψn > 0) and bounded above by a certain value which is strictly greater than
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one when the two inputs are gross compliment (ψn < 0):

p̃∗ > 0⇒ R∗ ∈

(α
1
ψn
n ,+∞) ;ψn > 0

(0, α
− 1
|ψn|

n ) ;ψn < 0
(C.8.1)

where α̂ ≡ αa
1−αa ·

1−αn
αn

. Note that when ψn → 0, (4.51) is always satisfied. Define

Υ∗ ≡ (αn)
−1

1−ψn (R∗)
ψn

1−ψn − 1 > 0; due to (4.51). Then differentiating p̃∗ with respect to T ∗

yields

∂p̃∗

∂T ∗
=

(α̂)1−αa

αa
·
(1− αn

αn

) (1−αa)(1−ψn)
ψn · (Υ∗)−

(1−αa)(1−ψn)
ψn ·

[
αa(Υ

∗ + 1)− 1
]∂R∗
∂T ∗

(C.8.2)

Clearly, the sign of ∂p̃∗

∂T ∗ is as the same as that of

[
αa(Υ

∗ + 1)− 1
]∂R∗
∂T ∗

=
[
αaα

− 1
1−ψn

n (R∗)
ψn

1−ψn − 1
]∂R∗
∂T ∗

.

Depending on the signs of ∂R
∗

∂T ∗ and ψn, we can state that

case i
∂R∗

∂T ∗
< 0 and ψn < 0 :

∂p̃∗

∂T ∗


>

=

<

 0⇔ R∗


>

=

<

α
1+|ψn|
|ψn|

a

( 1

αn

) 1
|ψn| , (C.8.3)

case ii
∂R∗

∂T ∗
< 0 and ψn → 0 :

∂p̃∗

∂T ∗


>

=

<

 0⇔ αa


<

=

>

αn, (C.8.4)

case iii
∂R∗

∂T ∗
< 0 and ψn > 0 :

∂p̃∗

∂T ∗


>

=

<

 0⇔ R∗


<

=

>

α
1
ψn
n

( 1

αa

) 1−ψn
ψn (C.8.5)

case iv
∂R∗

∂T ∗
= 0 :

∂p̃∗

∂T ∗
= 0,∀ψn ∈ (−∞, 1), (C.8.6)

case v
∂R∗

∂T ∗
> 0 and ψn < 0 :

∂p̃∗

∂T ∗


>

=

<

 0⇔ R∗


<

=

>

α
1+|ψn|
|ψn|

a

( 1

αn

) 1
|ψn| , (C.8.7)

case vi
∂R∗

∂T ∗
> 0 and ψn → 0 :

∂p̃∗

∂T ∗


>

=

<

 0⇔ αa


>

=

<

αn, (C.8.8)
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case vii
∂R∗

∂T ∗
> 0 and ψn > 0 :

∂p̃∗

∂T ∗


>

=

<

 0⇔ R∗


>

=

<

α
1
ψn
n

( 1

αa

) 1−ψn
ψn . (C.8.9)

In sum, the sign of ∂p̃∗

∂T ∗ is inconclusive in general. In order to explore the climate change

impact on the detrend price we need to know the impact on the rate of return on capital

and the degree of substituability between capital and labour in the non-agricultural sector

as well as the stationary value of the rate of return on capital.

The sign of ∂Γ∗1
∂T ∗ : By definition of Γ∗1, it is straightforward to show that

∂Γ∗1
∂T ∗

= (1 + n)
∂γ̃∗n
∂T ∗

< 0. (C.8.10)

The signs of ∂Γ∗2
∂T ∗ ,

∂Λ∗1
∂T ∗ ,

∂Λ∗2
∂T ∗ : By definition of Γ∗2,Λ

∗
1 and Λ∗2, it is straightforward to

show that
∂Γ∗2
∂T ∗

= − Γ∗2
1− ψn

1

Υ∗
1

R∗
∂R∗

∂T ∗
, (C.8.11)

∂Λ∗1
∂T ∗

= − Λ∗1
1− ψn

Υ∗ + 1

Υ∗
1

R∗
∂R∗

∂T ∗
, (C.8.12)

∂Λ∗2
∂T ∗

= −(Λ∗1)1−ψnα̂
Υ∗ + 1

Υ∗
1

R∗
∂R∗

∂T ∗
. (C.8.13)

Clearly, the signs of these are as the same as that of
(
− ∂R∗

∂T ∗

)
.

The sign of
(
∂Γ∗2
∂T ∗ − Γ∗1

∂Λ∗1
∂T ∗ − Λ∗1

∂Γ∗1
∂T ∗

)
: After some mathematical manipulations, we

can show that

∂Γ∗2
∂T ∗

− Γ∗1
∂Λ∗1
∂T ∗

− Λ∗1
∂Γ∗1
∂T ∗

=

Γ∗1
R∗

{
Γ∗1(Υ + 1)−

[
αn + (1− αn)(Λ∗1)−ψn

] 1
ψn
}
∂R∗

∂T ∗

(1− ψn)Υ∗
− Λ∗1(1 + n)

∂γ̃∗n
∂T ∗

.

(C.8.14)

In general, the sign of ∂Γ∗2
∂T ∗ −Γ∗1

∂Λ∗1
∂T ∗ −Λ∗1

∂Γ∗1
∂T ∗ is ambiguous. In some cases, if the sign of the

term {•}∂R∗∂T ∗ on the right-hand side of the above expression is positive, we can conclude

that ∂Γ∗2
∂T ∗ − Γ∗1

∂Λ∗1
∂T ∗ − Λ∗1

∂Γ∗1
∂T ∗ > 0.

Another interesting point from this expression is that

{•}


>

=

<

 0⇔ (1 + γ̃∗n)


>

=

<


1

1 + n

[
1 +R∗ − δ

]
. (C.8.15)

This will be very useful when analysing the structural change effect. We will discuss about
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this later.

The sign of ∂Θ
∂T ∗ : Straightforward differentiating Θ with respect to T ∗ yields

∂Θ

∂T ∗
= Γ∗1

∂Λ∗2
∂T ∗

+ Λ∗2
∂Γ∗1
∂T ∗

+ θ̂p̃∗αa(Λ
∗
2)αa−1 ∂Λ∗2

∂T ∗
+ θ̂(Λ∗2)αa

∂p̃∗

∂T ∗
. (C.8.16)

After some mathematical manipulations, we can show that

∂Θ

∂T ∗
= Λ∗2(1 + n)

∂γ̃∗n
∂T ∗

+

[
∂R∗

∂T ∗

]
Υ∗



θ̂(Λ∗2)αa α̂
1−αa
αa

(
1

Υ∗ ·
1−αn
αn

) (1−αa)(1−ψn)
ψn

×[αa(Υ
∗ + 1)− 1]

−
[Γ∗1 + θ̂p̃∗αa(Λ

∗
2)αa−1](Λ∗1)1−ψnα̂

(
Υ∗+1
R∗

)


. (C.8.17)

Clearly, the sign of the above expression is unclear since the term
[
∂R∗

∂T ∗

]
{•} on the righ-

hand side can be positive, zero or negative. However, if
[
∂R∗

∂T ∗

]
{•} ≤ 0, we can conclude

that ∂Θ
∂T ∗ < 0.

In sum, the impact on employment share is inconclusive as it depends on the parameter

values and a certain set of feasibility restrictions. In some cases, we can say that

σ ≥ 1, ψn < 0, R∗ > α
1+|ψn|
|ψn|

a

( 1

αn

) 1
|ψn| ⇒ ∂R∗

∂T ∗
< 0,

∂p̃∗

∂T ∗
> 0.

Combined with

(1 + γ̃∗n) <
1

1 + n

[
1 +R∗ − δ

]
⇒
(∂Γ∗2
∂T ∗

− Γ∗1
∂Λ∗1
∂T ∗

− Λ∗1
∂Γ∗1
∂T ∗

)
> 0,

[∂R∗
∂T ∗

]
{•}on the RHS of (C.8.17) ≤ 0⇒ ∂Θ

∂T ∗
< 0

, then we can say ∂l∗n
∂T ∗ < 0 if the restrictions (4.51) and (4.52) holds. Q.E.D.

C.9 Further Characterisations of Value-Added Share Effect

Define yn,t ≡ Yn,t
An,tNt

as the non-agricultural output per effective unit. Then,

yn,t =
[
αn(sn,tzt)

ψn + (1− αn)(ln,t)
ψn
] 1
ψn (C.9.1)

Along a BGP, yn,t = y∗n is constant and

∂y∗n
∂T ∗

=
[y∗n
l∗n

]1−ψn
·
{
αn

(s∗nz∗
l∗n

)ψn−1(
s∗n
∂z∗

∂T ∗
+ z∗

∂s∗n
∂T ∗

)
+ (1− αn)

∂l∗n
∂T ∗

}
. (C.9.2)
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Similarly, define ptya,t ≡ ptYa,t
An,tNt

as the value of agricultural output per effective unit. Then,

ptya,t = p̃t[(1− sn,t)zt]αa(1− ln,t)1−αa (C.9.3)

Along a BGP, ptya,t = (ptya)
∗ is constant and

∂(ptya)
∗

∂T ∗
=
∂p̃∗

∂T ∗
+ p̃∗(1− s∗n)αa(1− l∗n)1−αa(z∗)αa

{αa
z∗

∂z∗

∂T ∗
− 1− αa

1− l∗n
∂l∗n
∂T ∗

− αa
1− s∗n

∂s∗n
∂T ∗

}
.

(C.9.4)

Clearly, the signs of both and are ambiguous depending on the signs of ∂s∗n
∂T ∗ and ∂z∗

∂T ∗ .

The sign of ∂s∗n
∂T ∗ : Using (4.54), we obtain

∂s∗n
∂T ∗

=
1

(Λ∗1l
∗
n + Λ∗2(1− l∗n))2

·


Λ∗2(1− l∗n)

[
Λ∗1

∂l∗n
∂T ∗ + l∗n

∂Λ∗1
∂T ∗

]
+

Λ∗1l
∗
n

[
Λ∗2

∂l∗n
∂T ∗ − (1− l∗n)

∂Λ∗2
∂T ∗

]
 (C.9.5)

which is ambiguous.

The sign of ∂z∗

∂T ∗ : Using (4.55), we obtain

∂z∗

∂T ∗
= (Λ∗1 − Λ∗2)

∂l∗n
∂T ∗

+
(∂Λ∗1
∂T ∗

− ∂Λ∗2
∂T ∗

)
+
∂Λ∗2
∂T ∗

(C.9.6)

which is ambiguous. Note that

(Λ∗1 − Λ∗2) = − 1

1− αa

[
αa(Υ

∗ + 1)− 1
]
.

It turns out that

case i ψn < 0 : (Λ∗1 − Λ∗2) T 0⇔ R∗ T α
1+|ψn|
|ψn|

a α
− 1
|ψn|

n , (C.9.7)

case ii ψn → 0 : (Λ∗1 − Λ∗2) T 0⇔ αa S αn, (C.9.8)

case iii ψn > 0 : (Λ∗1 − Λ∗2) T 0⇔ R∗ S α
1
ψn
n α

− 1−ψn
ψn

a . (C.9.9)

For that of
(
∂Λ∗1
∂T ∗ −

∂Λ∗2
∂T ∗

)
, we can show that

(∂Λ∗1
∂T ∗

− ∂Λ∗2
∂T ∗

)
=
[
(Λ∗1)1−ψnα̂− Λ∗1

1− ψn

]Υ∗ + 1

Υ∗
1

R∗
∂R∗

∂T ∗
.

Clearly, the sign of the above expression depends on that of
[
(Λ∗1)1−ψnα̂− Λ∗1

1−ψn

]
∂R∗

∂T ∗ and
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we can show that

case i
∂R∗

∂T ∗
< 0andψn < 0 :

(∂Λ∗1
∂T ∗
−∂Λ∗2
∂T ∗

)
T 0⇔ R∗ T α

− 1
|ψn|

n

(
1+
(1− αa

αa

) 1

1+ | ψn |

)− 1+|ψn|
|ψn|

,

(C.9.10)

case ii
∂R∗

∂T ∗
< 0andψn → 0 :

(∂Λ∗1
∂T ∗
− ∂Λ∗2
∂T ∗

)
T 0 ⇔ αa S αn, (C.9.11)

case iii
∂R∗

∂T ∗
< 0andψn > 0 :

(∂Λ∗1
∂T ∗
− ∂Λ∗2
∂T ∗

)
T 0 ⇔ R∗ S α

1
ψn
n

(
1+

1

1− ψn

(1− αa
αa

)) 1−ψn
ψn

,

(C.9.12)

case iv
∂R∗

∂T ∗
= 0 :

(∂Λ∗1
∂T ∗

− ∂Λ∗2
∂T ∗

)
= 0 ∀ψn ∈ (−∞, 1), (C.9.13)

case v
∂R∗

∂T ∗
> 0andψn < 0 :

(∂Λ∗1
∂T ∗
−∂Λ∗2
∂T ∗

)
T 0⇔ R∗ S α

− 1
|ψn|

n

(
1+
(1− αa

αa

) 1

1+ | ψn |

)− 1+|ψn|
|ψn|

,

(C.9.14)

case vi
∂R∗

∂T ∗
> 0 and ψn → 0 :

(∂Λ∗1
∂T ∗
− ∂Λ∗2
∂T ∗

)
T 0 ⇔ αa T αn, , (C.9.15)

case vii
∂R∗

∂T ∗
> 0andψn > 0 :

(∂Λ∗1
∂T ∗
−∂Λ∗2
∂T ∗

)
T 0 ⇔ R∗ T α

1
ψn
n

(
1+

1

1− ψn

(1− αa
αa

)) 1−ψn
ψn

.

(C.9.16)

Value-Added Share: We define the aggregate output in any period t, denoted by Yt,

as

Yt = ptYa,t + Yn,t. (C.9.17)

Let sY n,t be the share of non-agricultural output: sY n,t =
Yn,t
Yt

. Then, we can show that

sY n,t =
yn,t

ptya,t + yn,t
. (C.9.18)

To evaluate the climate impact on the value-added share, we differentiate the above ex-
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pression with respect to T ∗ so that

∂s∗Y n
∂T ∗

=
1

(ptya,t + yn,t)2

{
(ptya,t + yn,t)

∂y∗n
∂T ∗

− y∗n
∂(ptya,t)

∗

∂T ∗

}
. (C.9.19)

Clearly, in general, the impact is ambiguous. Q.E.D.

C.10 Optional: Characterisation of an Asymptotic Balanced

Growth Path(ABGP)

Definition C.1. A market equilibrium is said to be an asymptotically balanced growth path

(ABGP) if such equilibrium path implies that the rate on return on capital converges to a

positive value and for any variable Xt, limt→∞

(
Xt+1

Xt
− 1
)

= gX exists and is finite, where

gX is a constant growth rate of the variable Xt.

By definition, BGP can be seen as an ABGP. To distinguish between the two equilibria,

we will only consider ABGP as a path along which the rate of return on capital and the

growth rates of all endogenous variables converge but will never be constant in finite

periods. As a result, the constancy in limit of Rt requires

lim
t→∞

ln,t = l∗∗n ∈ (0, 1), lim
t→∞

sn,t = s∗∗n ∈ (0, 1), lim
t→∞

zt = z∗∗ > 0. (C.10.1)

If we consider (4.41) and (4.42), eventual convergences of these three variables require either

eventually unbiased technological progress or unitary elasticity of substitution between

capital and labour in agricultural sector. By logical consistency, we keep assuming ψa = 0.

Under the assumption ψa = 0, the intratemporal tradeoff condition is given by (C.2.4),

as illustrated in the proof C.5. Condition (C.5.3) still holds in ABGP, this condition implies

that

lim
t→∞

p̃t = p̃∗∗ > 0. (C.10.2)

To ensure the existence of an ABGP, it is required that

lim
t→∞

c̃n,t = c̃∗∗n > 0. (C.10.3)

Focusing on (C.5.4), this means that the ratio ca,t

A1−αa
a,t Aαan,t

must disappear in limit in order

to establish an ABGP. This leads to the following assumption.

Assumption C.1. There exists τ > 0 such that

ca,t+1

ca,t
<
A1−αa
a,t+1A

αa
n,t+1

A1−αa
a,t Aαan,t

for all t ≥ τ .
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Strictly speaking, this assumption requires that the growth factor A1−αa
a,t Aαan,t will even-

tually dominate the subsistence level of agricultural consumption ca,t in the long-run. An

immediate implication of this assumption is that the intratemporal tradeoff condition in

limit is given by

p̃t

(
(1− ln,t)

(1− sn,t
1− ln,t

zt

)αa)
=
( θ

1− θ

)
c̃n,t. (C.10.4)

Note that if ca,t is constant as usual assumed in literature, Assumption C.1 will be satisfied

automatically.

An ABGP exists under certain conditions and the following proposition verify such a

path. The following theorem provide an ABGP characterisation.

Theorem C.1. Let ψa = 0 and Assumption C.1 hold. Suppose that there is a finite

τ > 0 such that γ̃i,t = γ̃∗∗i for i ∈ {a, n}, t ≥ τ . Then, there exists a unique (non-trivial)

ABGP along which the rate of return on capital converges to

R∗∗ =
κ

β
− (1− δ) (C.10.5)

where κ ≡ (1 + γ̃∗n)σ
(

1+γ̃∗n
1+γ̃∗∗a

)(1−αa)θ(1−σ)
. Suppose that the parameter restrictions

R∗∗ > 0 and Υ∗∗ ≡ (αn)
−1

1−ψn (R∗∗)
ψn

1−ψn − 1 > 0 (C.10.6)

hold. Then, the unique (non-trivial) ABGP is associated with the fixed point (s∗∗n , l
∗∗
n , z

∗∗, p̃∗∗, c̃∗∗n ) ∈
(0, 1)2 × R3

++ such that

p̃∗∗ =
(1− αn

1− αa

)
(Λ∗∗1 )(1−αa)(1−ψn)

( αa
1− αa

· 1− αn
αn

)−αa(R∗∗
αn

)
, (C.10.7)

l∗∗n =
Γ∗∗1 Λ∗∗2 + p̃∗∗(1−θ

θ )(Λ∗∗2 )αa

Γ∗∗1 Λ∗∗2 + p̃∗∗(1−θ
θ )(Λ∗∗2 )αa + Γ∗∗2 − Γ∗∗1 Λ∗∗1

, (C.10.8)

s∗∗n =
Λ∗∗1 l

∗∗
n

Λ∗∗1 l
∗∗
n + Λ∗∗2 (1− l∗n)

, (C.10.9)

z∗∗ = Λ∗∗1 l
∗∗
n + Λ∗∗2 (1− l∗∗n ), (C.10.10)

c̃∗∗n = p̃∗∗
(1− θ

θ

)(
(1− l∗∗n )(Λ∗∗1 )αa(1−ψn)

( αa
1− αa

· 1− αn
αn

)αa)
, (C.10.11)

if the inequality Γ∗∗1 Λ∗∗1 −Γ∗∗2 < 0 holds, where Λ∗∗1 ≡ (Υ∗∗)
−1
ψn

(
1−αn
αn

) 1
ψn , Λ∗∗2 ≡

(
p̃∗∗αa
R∗∗

) 1
1−αa ,

Γ∗∗1 ≡
[
(1 + n)(1 + γ̃∗n)− (1− δ)

]
and Γ∗∗2 ≡ (Υ∗∗)

− 1
ψn

[
(1− αn)(R∗∗)

ψn
1−ψn (αn)

− 1
1−ψn

] 1
ψn .
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Proof: The proof is analogous to that of Proposition 4.2 except that we use the

intratemporal trade off condition (C.10.4) instead of (C.5.4). As a result, we can see that

the (non-trivial) fixed point in this proposition is a special case of the one obtained in

Proposition 4.2. Clearly, R∗∗ = R∗ > 0. In addition, the fixed point here is the point

(z∗, l∗n, s
∗
n, p̃
∗, c̃∗n) while setting µ = 0. From now, it is straightforward. Q.E.D.
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