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Pollution, all around.

Sometimes up, sometimes down.

But always... around.

Pollution, are you coming to my town?

Or am I coming to yours? Ha!

Were on different buses, pollution, but were both using petrol ... bombs!!!

- Rik, the People’s Poet



Abstract
The purpose of this work is to improve measurement capabilities for urban pollu-
tion monitors, making use of small, rapidly deployable and low-cost sensing solu-
tions. A complete pollution monitoring instrument was designed and introduced
in the course of this project, capable of supporting a wide variety of sensors. In
this work, Metal Oxide Semiconductor gas sensors were used to measure concen-
trations of NO2 and O3 at an urban background site on University campus. These
two gases are closely linked to traffic pollution and harmful to human health. The
sensors were extensively tested in multiple experiments:

• Over one month the instrument achieved a residual standard error compared
to the AURN reference (a chemiluminescence/UV fluorescence monitor) of
23.6 ± 3.9 µg m−3 for NO2 and 23.3 ± 3.9 µg m−3 for O3.

• Analysis techniques were introduced to allow comparison of multiple calibra-
tions over a long period. These could then be used to discard poor-quality
calibrations, improving performance to a residual standard error of 22.9 ±
5.3 µg m−3 for NO2 and 20.0 ± 5.1 µg m−3 for O3.

• Analysis techniques using separate calibrations for day and night were at-
tempted, but produced very marginal results. Using multiple calibrations
produced an improvement in residual standard error for NO2 of 3.4± 6.2 µg m−3

and 1.72 ± 1.85 µg m−3 for O3. The effects of wind on sensor calibration were
demonstrated, but an improvement in sensor performance through analysis
could not be practically achieved.

• Using these analysis techniques, the effects of instrument design, such as
active airflow, sensor “warm-up” time after power-up, and manufacturing
variation in the sensors were investigated and two experiments using the
unique characteristics of the instrument platform to examine the variation
of pollutant gas on a small scale are described.

Some of these data analysis procedures are not specific to instruments making
use of Metal Oxide Semiconductor gas sensors and may prove generally useful for
other types of instrument.
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Chapter 1

Introduction

1.1 Overview

This chapter provides context for the scientific work given in this thesis. In section

1.2 a description of the structure and dynamics of the Earth’s atmosphere leads us

down into the troposphere. The chemistry of the troposphere, pollutants within

it and their relation to human health are discussed in sections 1.2 to 1.3.1, which

gives some grounding to the decision to focus on the measurement of NO2 and O3.

Finally, an overview of the various instruments available for investigating these

chemicals provides a motivation to develop and refine novel small sensors using

Metal Oxide Semiconductor technology.

1.2 The Human Atmosphere

The atmosphere of our planet is not a homogeneous sphere of gas. It has a layered

structure with considerable variation in composition and temperature. Gravity is

responsible for the generally decreasing pressure of the atmosphere with increasing

1
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altitude and is a driving force in the movement of gas throughout it. A larger influ-

ence on the structure and chemical nature of the atmosphere is solar radiation[1],

which is both absorbed throughout the atmosphere resulting in changes in tem-

perature, and is a reagent in photochemical reactions. The interaction between

these mechanisms divides the atmosphere into layers, and the most common way

to delineate these layers is on the basis of vertical temperature profile[2, p. 28] -

see figure 1.1

Figure 1.1: Diagram of the changes in Earth’s atmospheric temperature (bot-
tom axis, solid line) and pressure/density (top axis, dashed lines.) with height.
Four atmospheric layers are labelled here, alongside the temperature inversions
that define the different layers. The Exosphere starts and extends well beyond
the vertical scale of this diagram. Pressure and density both decrease with
height, but not quite in the exponential way one would expect mathematically,
based on the hydrostatic equation. The different layers are picked out with an

orange tint. Adapted from [2, fig 2.6]

1.2.1 Atmospheric structure

The theoretical definition of the upper limit of the Earth’s atmosphere is the

altitude at which the dynamics of the gases within start to be dominated by the
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solar wind, rather than Earth’s gravity and magnetic field[1]. This is the outer

limit of the exosphere, the highest layer of the atmosphere, and is not a solid border

but a gradual and blurry transition to interplanetary space. Much of the gas in

the exosphere is molecular hydrogen, and the ultraviolet light reflected off this gas

forms the geocorona, seen by spacecraft looking back toward Earth with ultraviolet

cameras as a glowing shroud around our planet. The approximate extent of this

corona is a colloquial definition for the maximum height of the exosphere, some

100,000 km above the Earth’s surface[3], although the theoretical boundary is at

roughly twice this altitude.

The lowest part of the exosphere, the exobase, is the point at which the Earth’s

atmosphere becomes dilute enough that it cannot be said to meaningfully have

a pressure. Here collisions are so infrequent that the ideal gas equation does not

apply. Depending on solar activity, this physical transition is between 500 km and

1000 km from the Earth’s surface[4].

Beneath the exosphere is the thermosphere. Density in this region is so low that

the mean distance a molecule travels before colliding with another can be several

kilometers, and the constituents are simple molecular gases like N2 and O2, and

atomic oxygen. These gases are stratified in the thermosphere according to their

molecular masses[2, p. 30]. Calculated from molecular kinetic energy, temperature

here gradually increases from the most frigid cold found naturally in the Earth

environment to over a thousand degrees, but the scarcity of particles means heat is

conducted extremely slowly to solid objects like spacecraft, and instead radiation

is the dominant means of heat exchange[4].

One consequence of the low density is a lack of chemical reactivity in this part

of the atmosphere, and molecules excited by interactions with cosmic rays cannot

kinetically dissipate their energy and instead must radiate it as photons[4]. The

colourful displays of the aurora thus occur in this layer of the atmosphere.
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For the purposes of spaceflight, the very low density of the thermosphere means it

can be considered as “space”, as spacecraft are capable of flying through it without

atmospheric drag causing them to dissipate so much of their velocity that they fall

back to Earth after a few orbits. It encompasses a significant volume, extending

down as far as the mesopause, roughly 85-90 km above the surface.

The mesosphere is the next layer down, and temperature increases with decreas-

ing altitude. This is because the higher gas densities absorb more solar radiation

to counteract the dissipation of thermal kinetic energy through radiative emis-

sion. Within the mesosphere turbulent mixing ensures that gas concentrations are

roughly uniform, and this is the highest location in the atmosphere where H2O

and CO2 can be found[1].

The presence of water vapour means the mesosphere is capable of forming (very

high, cold) clouds in certain circumstances. The air density is high enough that

spacecraft cannot remain in orbit and meteorites begin to burn up within this layer.

In the mesosphere the atmosphere starts to act like an ideal gas, and is capable

of turbulence on a very large scale, with gravity waves the size of continents. The

energy driving the dynamics of the mesosphere is mostly transmitted upward from

the denser atmospheric regions[4, p. 30].

The mesosphere transitions into the stratosphere at an altitude of roughly 50 km.

The stratosphere is defined by temperature that increases with altitude. This

is because the stratosphere contains the ozone layer, which absorbs ultraviolet

radiation from sunlight. Where such wavelengths are most intense at the top of

the layer, temperatures can approach zero degrees Celsius, but the dwindling UV

light further down makes the lowest parts of the stratosphere very cold.

Because of the temperature profile of the stratosphere, with the hottest air already

at the top, it is very dynamically stable and doesn’t experience the weather that

marks the troposphere, although it contains low concentrations of water vapour

and occasionally can form clouds.
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The troposphere exists at altitudes of around 15 km at the equator, but tapers

off to 10 km and below at higher latitudes. Because it is heated by the surface,

the air lower down in the troposphere is generally warmer than at the tropopause,

and consequently convection occurs within it, particularly during daytime. This

movement is the driving force behind Earth’s weather. Most of the water vapour in

the atmosphere exists in this layer, which consequently is the home of precipitation

and almost all cloud.

Closest to the surface is the boundary layer, where the motion of the air is directly

affected by the geometry of the terrain. The effects of surface features that channel

and sculpt the air currents propagate through the boundary layer with a timescale

of an hour, or less[5, p. 2]. The rest of the free atmosphere in the troposphere is

also affected by the surface, but the timescale can be much longer. The boundary

layer’s border can be a few hundred meters up on clear, calm days, but generally

it lies about a thousand meters from the surface, and it breaks apart and reforms

over the day-night cycle.

It is the troposphere can be most easily and directly affected by human activity,

and that comprises the habitat for almost all of us. The quality of the air in the

troposphere is thus a matter of universal concern.

1.3 Airborne pollution

Many negative health effects of poor air quality are well understood, and the his-

tory of serious legislative efforts to mitigate the problem spans over a hundred

years in the UK[6]. While early laws concentrated on smoke, including the Clean

Air Act passed after the Great Smog of 1952[7], improvements in sensing technol-

ogy and a better understanding of the environment have changed the focus of air

pollution research. Metrics like “black smoke”, which were defined empirically by
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appearance of the filters in simple pollution detectors, were supplanted by metrics

based on the constituent species that make up pollution.

“Pollutant” is a broad term applied to several substances which are harmful to hu-

man life, and whose presence or elevated concentration in the environment is due

to human activity[8]. While many pollutants are harmful when directly ingested

or inhaled by humans, some instead affect humans indirectly by influencing the

ecological systems necessary to sustain life, and many airborne pollutants have dif-

ferent, even positive effects depending on their location in the atmosphere. Ozone,

for example, is a toxic gas if it is produced or transported to ground level and in-

haled, but in the lower stratosphere it exists as part of a photochemical system,

which along with oxygen, is responsible for absorbing the majority of the sun’s

incident radiation at ultraviolet wavelengths of less than 290 nm, which otherwise

would be harmful if it reached the Earth’s surface[9].

Pollutants exist as part of a complex and interwoven system of chemical interac-

tions, with some being emitted into the atmosphere directly (primary air pollu-

tants) and some being generated through chemical reactions in the atmosphere

itself (secondary air pollutants). These interactions vary depending on the loca-

tion and time of day, and mean that different environments (indoor and outdoor,

urban and rural) will typically contain different sets of pollutants.

1.3.1 Pollutants in the urban environment

Measurement of NO2 and O3 in urban environments is the focus of this thesis,

for which the following text provides context and justification. This section con-

tains an overview of the types of airborne pollution found in urban environments,

elaborates on the ways they directly affect human health, as well as their sinks,

sources and interactions. The different types of pollution environment throughout
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the troposphere are defined, and their characteristics given, in section 1.3.3. Sec-

tion 1.3.5 on page 22 is a closer examination of the way pollution moves through

cities, shaped by their buildings and industry.

Most pollutants can be measured in several ways, and standardized methods of

doing so have been developed by both the Department for the Environment and

Rural Affairs (DEFRA) in the UK and the Environmental Protection Agency

(EPA) in the United States. DEFRA runs the Automatic Urban and Rural Net-

work (AURN)[10], a set of air monitoring stations that ensure compliance against

the European Union’s Ambient Air Quality directives, which provide most of the

statistics in this section. In addition to these, this section makes use of the EPA’s

equivalent method report[11]. Of all these detection methods, particular attention

will be paid in this section to sensor types that are small enough to be portable,

as well as selective.

1.3.1.1 Particulate matter

Particulates consist of a variety of solid and liquid chemicals, suspended as an

aerosol in the atmosphere. For examining health effects they are classified based

on diameter, not composition, as this determines both their movement and lifetime

in the atmosphere and how easily they can penetrate into people’s lungs [12, p.58].

Particulate matter is defined in two categories for the purposes of legislation,

PM2.5 and PM10, being those particles with diameters that let them pass through

a size-selective inlet with a cutoff at 2.5 µm and 10 µm respectively[13]. Such

inlets use inertia to filter the different classes of particle and are required for non-

optical measurement instruments. Beyond their potential for cardiovascular and

respiratory system injury through long-term inhalation[14], particulate matter also

influences the broader biosphere in important ways and anthropogenic particulates

have been linked to suppressing rainfall by 10-25% in some areas[15].
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The dynamics of particulate formation and growth are complex and diverse. Par-

ticulates might be emitted directly as soot from combustion reactions, dust from

abrasive processes or sea spray, or produced as secondary particles. They grow as

they accrete soluble particles from the atmosphere. The interior of waterlogged

particles allows for aqueous chemical reactions to take place on a large scale in the

polluted atmosphere[16].

The average urban background concentration of particulate matter in the UK

was 14.7 µg m−3 for PM10 and 10 µg m−3 for PM2.5 in 2018. Roadside levels have

been around 3 µg m−3 higher for PM10 and 1 µg m−3 higher for PM2.5 for the last

ten years[17]. Peaks of above 35 µg m−3 are useful for detecting short term high

pollution events, and dust storms and bush fires are capable of increasing PM10

concentrations to over 300 µg m−3[18] for several hours.

Figure 1.2: A gravimetric sensor. Air
enters through A, a size-selective inlet
which rejects particles above a certain
mass, and is drawn through the filter B

by the pump C at a constant rate.

The in-stack particulate filtration tech-

nique is the Federal Reference Method

for counting particulate matter[11]. Also

known as “Gravimetric” sensors, these de-

vices have a long history and are accepted

as an equivalent reference by DEFRA[19,

p. 128]. Figure 1.2 shows the operation of

a gravimetric sensor, which loads particulate matter into a filter. After the sam-

pling period is over, the filters are then extracted from the instrument, dried out

and weighed. The mass increase of the filter during the experiment, combined

with the volume of air pumped through it, can be used to calculate the mean

density of particles in the atmosphere.

Sensors of this type are reliable due to their mechanical simplicity, and are the

most commonly deployed in the USA. However extracting and weighing the filter

must be done by hand, a major disadvantage. The sampling period depends on

how attentive the operator is, and day-long periods are not uncommon.
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A related method was commonly used some fifty years ago in the UK when much

of the particulate matter pollution was in the form of black soot from domestic

fires. The “black smoke” sensors had a similar principle of operation to a gravi-

metric sensor, except that the filter was scanned with a reflectometer instead of

being weighed, with a darker stain implying a higher concentration of soot in the

atmosphere.

Figure 1.3: Schematic of a Beta At-
tenuation Monitor. Air enters through
the size selective inlet A, and is pulled
through a porous ribbon by the pump
B. The ribbon drawn from reel C onto
F, across the airstream at a steady
speed, and after exposure it passes un-
der a beam of beta radiation from a ra-
dioactive source D. The more particle
mass is stuck in the ribbon, the more
attenuated the radiation will be when

it reaches the detector E.

The “black smoke index” from this method

was not directly comparable to PM10 or

PM2.5, and no reliable relationship could

be found between the colour of the fil-

ter and the amount of soot in the atmo-

sphere, because different particle composi-

tions could have different albedos and mis-

lead the reflectometer[19, p. 134]. Despite

these shortcomings, long term experiments

using this method have been carried out

around the world and a few such sensors

are still in operation.

The AURN still makes use of gravimetric

sensors, but for a fully automated network,

methods that are less manually intensive

are preferable. BAM, TEOM and the more specific FDMS instruments are also

used in the network as equivalent sensors[20] for PM2.5 and PM10.

Figure 1.3 shows the operation of a Beta Attenuation Monitor (BAM). BAM in-

struments are the second most common means of detecting particulate matter

among EPA weather stations in the USA and UK, although they are the most

popular in mainland Europe[19, p.131]. They are more precise than filter-based

sensors, and can give continuous real-time readings at hourly rather than daily
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intervals, although the presence of a radioactive source complicates their deploy-

ment.

Figure 1.4: Schematic of a Tapered
Element Oscillating Microbalance. Air
enters through the size selective inlet
A, before splitting in two at B, to cre-
ate a bypass that is used to regulate
the amount of air passing through the
sensor element, a tapered glass cylinder
C. One end of this cylinder is fixed to
the instrument, but the other is free to
vibrate at its natural frequency. This
frequency is continually measured elec-
tronically D, and as particles accrete
onto the cylinder, their mass affects
this frequency, like a singing wineglass
changing its note as your pour in more
liquid. The valves E control the amount
of air flowing through the sensor and by-

pass line to the exhaust pump F.

Figure 1.4 shows a Tapered Element Oscil-

lating Microbalance (TEOM) sensor. By

using an inlet to only permit particles of a

desired diameter or smaller, measuring the

mass deposited on the filament over time

and controlling the air flow rate through

the sensor, the concentration of particulate

matter can be determined.

The Filter Dynamics Measurement System

(FDMS) used by the AURN network con-

tains a TEOM-based sensor and additional

filters that dry out a portion of the in-

let air, allowing the fraction of volatile

to non-volatile particulate matter to be

determined[21].

TEOM sensors use proprietary technology

from Thermo-Scientific and can only be

found in instruments made by that com-

pany. The University of Leicester AURN station makes use of an FDMS to give

hourly PM readings.

There are several methods that measure particulate matter using its interaction

with dust. The simplest way is to simply measure air opacity, using a light source

and detector. Transmissometers can have a very long open path length, while

nephalometers such as the inexpensive Shinyei PPD42[22] are compact and use a

photodiode and LED for the atmosphere within a small housing (see figure 1.5.

These methods give a qualitative indication of such pollution, although like black
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soot sensors there is no direct relation to PM2.5 or PM10. A PPD42 sensor was

used as part of the instrument developed over the course of this thesis, although

the results are not relevant to the scope of this work.

Figure 1.5: Schematic of a Shinyei
PPD42 nephalometer. Air beneath the
housing A is heated by the resistive el-
ement B, drawing air up through the
sensor. An infrared LED C shines into
this air, and the diffuse reflected glow
from particles within the rising stream
D will be detected by the photodiode
E, which is obscured from the LED.

Light interacting with roughly spherical

particles undergoes Mie scattering, produc-

ing an angular spectrum related to the size

of the particle. Optical dust sensors con-

tain an array of photosensors and a laser

that can produce and capture a Mie scat-

tering spectrum, and process it to return a

mass spectrum of particulates. These in-

struments are small enough to be handheld

and seem an attractive solution for small

sensors, except that once again their read-

ings depend on assumptions about the com-

position of particulates that are difficult to

verify[19, p.133].

These are the principal current and historical methods for in-situ measurement

of particulate matter for air quality monitoring purposes. More advanced instru-

ments such as aerosol mass spectrometers and cloud condensation nuclei counters

are able to provide more detailed mass spectra for atmospheric aerosols, but they

are complex and expensive enough to be overkill for day-to-day air quality mon-

itoring purposes. They find a use among scientists developing new techniques as

well as for PM source attribution[23].

1.3.1.2 Sulphur compounds

Sulphur pollution is produced primarily from fossil fuel burning in power generation[13].

Unrefined coal and oil contain up to 5% sulphur compounds by volume [24, p.396]
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and these are converted directly into sulphur oxides when the fuel is burned. Re-

fined fuels frequently have had a large proportion of the sulphur removed, although

shipping, power generation and domestic heating frequently do not use such fuels

and consequently are a major anthropogenic source of SO2[13]. Metal smelting

is also a significant source in industrialized areas, but thanks to changes in fuel

treatment SO2 does not generally exist in dangerous concentrations in European

cities.

That the sulphur dioxide is removed from some fossil fuels but not others makes

it a potential tracer for its specific sources of pollution, but only in concert with

measurements of other fossil fuel byproducts.

Figure 1.6: Schematic of a UV flu-
orescence sensor. Air A is pumped
through the sensor and exposed to light
pulses from lamp B, at a frequency ca-
pable of exciting SO2 molecules. The
photons these re-emit pass through the
optical filter C and are detected by the

photodiode D.

Sulphur can exist in the atmosphere both as

a gas such as SO2, which is by far the most

common sulphur compound in the tropo-

sphere and causes acute health issues if

inhaled[13], and condensed as a secondary

particulate, in the form of sulphite (for ex-

ample (NH4)2 SO4). Sulphur in this form

can significantly affect the climate through

scattering solar radiation[25], in addition to

potentially causing injury as a particulate

aerosol[14].

UV florescence monitors are the DEFRA standard for measuring atmospheric

SO2[26]. A diagram showing the mechanism of this sensors action is given in

figure 1.6. The lamp within such sensors can be pulsed or continuous and typically

emits wavelengths of 214 nm. The SO2 re-emits longer UV wavelengths (typically

between 300 nm to 390 nm), although the band-pass optical filter is necessary to

remove emissions from other fluorescing gases, such as NO[27]. A higher intensity

of florescence corresponds to higher SO2 concentration.
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In the UK, SO2 levels have remained low for decades. DEFRA counts “mod-

erate” SO2 levels as being higher than 267 µg m−3, and between 2010 and 2018

there has not been a single year when the average urban measurement site was

experienced more than a day over the year when SO2 concentrations exceeded this

threshold[17]. Understandably given the sources of SO2 in the troposphere, rural

sites have even less of a problem.

1.3.1.3 Volatile organic compounds

Figure 1.7: Schematic of a 2D
Gas Chromatograph. Air is pumped
into the sensor and split into two
streams at A. The airstreams pass
through valves which controls the pres-
sure in the ’columns’ C and D. The
two columns contain different granu-
lar material, through which different
gas species will percolate at different
speeds. At the end of the columns is
a Flame Ionization Detector (FID) E,
which ignites the gas output (the ’elu-
ate’) in a hydrogen flame and detects
the intensity of the ionized combustion
products using electrostatic plates F.

The term “Volatile Organic Compound”

(VOC) encompasses a range of hydrocar-

bons that have a high enough vapour

pressure that they will remain in the

atmosphere in normal conditions. EU

Law states that any hydrocarbon with

a boiling point at standard atmosphere

of less than 250 centigrade may be a

VOC[28]. Humans contribute VOCs to

the atmosphere principally through the

use of fossil fuels, both from incomplete

burning in engines and fuel evaporation.

VOCs consist of many different long-chain

hydrocarbons, aromatic compounds and

formaldehyde[13]. Plants are a major

natural source of VOCs, and isoprene

(CH2 ––C(CH3)–CH––CH2) and other ter-

pene compounds dominate their emissions[29]. VOCs have enough in common

chemically, but enough diversity in their structure and sources, that they can

be measured individually using gas chromatographs to allow for quite advanced

source attribution[30] - see figure 1.7.
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VOCs can cause respiratory disease by themselves, with the aromatic compounds

often produced as a byproduct of combustion being linked to cancer and other

morbidities[8]. Aside from their direct health effects, VOCs play an active role in

tropospheric chemistry, chiefly in the production of ozone[31] and secondary or-

ganic aerosols, which can occasionally dominate aerosol concentration[32]. Methane

is also an important greenhouse gas with an atmospheric lifetime of around 8

years[33].

The importance of VOCs, particularly in their production of secondary pollutants[16],

make them a worthy candidate for study. However, while broad VOC sensors are

available, the diversity of chemical structure among VOCs means that attributing

measured pollution to a specific source is difficult if only total VOC information is

available. Instruments capable of distinguishing VOC species, such as two dimen-

sional gas chromatographs, mass spectrometers and Fourier Transform Infrared

Spectrometers (FTIR), are all bulky and expensive devices. While they have

given important results as part of measurement campaigns in the field, their size

and cost precludes their use in small sensor networks.

1.3.1.4 Carbon dioxide

The natural consequence of burning any carbonaceous fuel in air, carbon dioxide is

the most significant human-produced pollutant that affects the Earth’s climate[34,

p.678]. Carbon is removed from the atmosphere through several processes such

as uptake in the biosphere and dissolving in the oceans[35], which complicates

estimation of a typical atmospheric lifetime. CO2 molecules can last in the atmo-

sphere on a scale of decades, but perturbations of overall CO2 concentration can

persist for hundreds of years, and the climate effects resulting from this can last

for thousands[36].

Unlike many other pollutants it is not directly toxic to humans unless its con-

centration reaches upwards of 100,000 mg m−3[37] - around 5% concentration by
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volume. Global mean ground level CO2 concentrations have every year for decades,

and as of April 2018 surpassed 748 mg m−3[38]. Note this is of order four orders

of magnitude more abundant than pollutants like methane and nitrogen oxides.

Figure 1.8: A Nondispersive Infrared
CO2 sensor. A lamp produces infrared
light B of a specific wavelength which
is absorbed by CO2 molecules in the air
A, causing attenuation that can be de-
tected by the properly calibrated pho-

todiode C.

Because of its long lifetime, CO2 is well

mixed throughout the troposphere. Com-

pared to the substantial variability of pol-

lutants like NO2, mean CO2 concentra-

tion at the tropopause varies annually by

around 3%[39], and it decreases with alti-

tude through the troposphere by a similar

amount[40].

Consequently, despite CO2 emission being critically important for the study of

climate change, and being easy to measure with small Nondispersive Infrared

(NDIR) sensors (see figure 1.8), it is not a very precise or useful tracer of specific

pollution sources.

1.3.1.5 Heavy metals

Another broad category containing metals such as lead, nickel, cadmium, mercury

and arsenic. The high toxicity of these substances has driven strong emissions

regulation; for example, after lead additives were banned from petrol in the UK

in 1999, emissions of airborne lead compounds fell by 98%[13]. These pollutants

can also poison groundwater and soil. Industrial processes and fossil fuel burning

are now the largest sources of heavy elements in the UK atmosphere.

1.3.1.6 Nitrogen oxides and ozone

In the urban atmosphere two nitrogen oxides, NO2 and NO (known together as

NOx), are important pollutants. Together with ozone (O3), which is harmful in



Introduction 16

its own right, they exist in a closely linked null cycle reaction system (see section

1.4 for information). Two thirds of the nitrogen oxides present in the atmosphere

are a result of fossil fuel burning [41], and in the UK road transport is the largest

single source, accounting for a third of all such emissions[13]. The remainder is

evolved from biomass and produced by lightning strikes[41].

Around 85% of ozone in the atmosphere as a whole is produced from photolysis

of oxygen molecules with UV light in the stratosphere, a process obviously not

tied to human activity, but only around 10-15% of the ozone that reaches the

troposphere is transported from above. Most of the ozone in the lower atmosphere

ozone is a secondary pollutant, produced in photochemical reactions that require

both NOx and hydrocarbons. While VOCs and NOx exist naturally to a degree,

human industry can supply both of them and this mechanism is responsible for

an estimated 39% of ozone in the troposphere[42].

The reactions between NOx and O3 occur on a timescale of a few minutes during

the daytime, but sinks of NOx out of the atmosphere can take several hours (6

hours in the summer, 18-24 in winter)[43], short enough that NOx does not become

widely dispersed from its source, but long enough that the pollutant gas can diffuse

from a source and still be detectable, allowing good spatial and time resolutions

for pollution mapping. In the absence of any interfering factors, these gases have

concentrations predicted by the Leighton relationship[44], but in practise each

species has its own distinct sinks and sources related to other parts of atmospheric

chemistry.

NO2 and O3 pollution has well documented adverse health effects[45][13]. NO2 in

particular causes acidification and eutrophication of soil, groundwater and surface

waters and can decrease ecosystem vitality and biodiversity, and cause groundwa-

ter pollution[46][47]. Elevated tropospheric ozone can cause respiratory disorders
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as well as reduced crop yields[48]. Ozone levels are higher on average in rural envi-

ronments; moreover ozone production often is highest in rural areas, downstream

of urban sources (see section 1.3.3.2 on page 19).

The importance of NOx as both a health risk and a tracer for vehicular and in-

dustrial pollution has led to a variety of measurement techniques being developed

and deployed. Satellite retrievals using the OMI instrument [49] have been devel-

oped and are fairly mature, and chemiluminescence sensors are the government

standard for measuring NOx in both the EU and USA. Smaller and cheaper sen-

sors for measuring nitrogen oxides have transitioned from their original purpose

as workplace safety warning devices and are beginning to be used in air pollution

monitoring applications[50]. More detail on measurement techniques for nitrogen

oxides is given in section 1.5 on page 31

Average NO2 concentrations at urban background sites have steadily reduced over

the last fifteen years and were 20.1 µg m−3 as of 2018[17]. At rural sites over the

same period concentrations have been within a microgram of 7.3 µg m−3. Roadside

concentrations in 2018 were much higher at 32.8 µg m−3. This variation in concen-

tration underscores how useful NO2 can be in identifying pollution hotspots. Aver-

age O3 concentrations in 2018 were 62.8 µg m−3 at urban and 73.2 µg m−3 at rural

measurement sites, higher thanks to the scarcity of NO in this environment[17].

1.3.2 Pollutant focus in this work

The combination of potential for adverse health effects, usefulness as a traffic

emissions indicator for other pollutants, potential for more advanced chemical in-

vestigations, multitude of relevant measurement techniques and, most importantly

here, the opportunity for genuine frontline research into new sensors make nitrogen

oxides and highly attractive as the topic of this research.
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1.3.3 Classifying environments

Airborne pollution environments can be divided into three main categories - In-

door, Rural ambient and Urban ambient pollution. Each represents its own unique

characteristics and issues.

1.3.3.1 Indoor

Indoor pollution is a significant issue for global health, particularly in developing

countries. Around half the human population rely on burning biomass for domes-

tic energy, and while it is hard to estimate precisely, the effects of the particulate

aerosols released by these fuels might be up to 4% of the world’s total disease

burden [51][52] through respiratory and cardiac illness and cancer. Social and

technical efforts to reduce this toll are underway - since 1980 the Chinese govern-

ment, for example, has provided simple stoves to rural families to replace their

open hearths and allow smoke to safely leave the living area[51].

However, modern buildings in affluent areas have their own set of issues. The

increasing emphasis placed on energy efficiency has led to building designs becom-

ing more airtight, and this can cause issues with air quality [53], as any pollutants

emitted inside the building are slower to percolate out into the larger environ-

ment. Dust particles, volatile organic compounds (VOCs) given off by household

chemicals and paint, and combustion products from cooking and domestic heating

are all potentially harmful. The chemical environment is very different inside to

outside, even though the latter may significantly influence the former[54].

The existence of “Sick Building Syndrome”, which produces a variety of symptoms

such as fatigue and poor concentration in office workers, has been acknowledged

since the 1970s and the term was first coined by the WHO in 1986[55]. The

“illness” is thought to be caused by poor indoor air quality (possibly caused by

molds in the walls and air ducts)[56] and steps taken to mitigate it include better



Introduction 19

design of air conditioning systems and making efforts to improve air circulation.

Total VOC concentrations and particulate matter counts are both indicators of

the freshness of air inside a building, although sick building syndrome is more

usefully correlated with specific VOCs and mold or fungal spores[57][56].

1.3.3.2 Rural Ambient

Rural areas have very different industrial output compared to cities, and in much

of the world the domestic sources covered in the preceding section provide the

majority of the pollutants inhaled by people who live in the countryside. The

outdoor rural environment has a lower industrial pollutant load, and sparser ru-

ral populations limit total human exposure from individual sources[13]. However,

agricultural pollution can be significant; in the UK pesticide and nitrate fertil-

izer use contributes to water pollution, and ammonia evaporation from livestock

farming is responsible for 80% of the ammonia in the atmosphere. Both of these

pollutants have negative effects on human health[58].

One of the most important rural pollutants is ozone[59]. Ozone production rates

depend non-linearly on the concentration of nitrogen oxides and volatile organic

compounds (VOCs) in the troposphere during the daytime. Freshly emitted ve-

hicular nitric oxide reacts with ozone to form NO2, a process that often suppresses

ozone levels in urban areas. The processes that remove NOx from the atmosphere

become more efficient at the higher concentrations of these gases typical in cities,

reducing the opportunity for NOx molecules to engage in the catalytic cycles that

produce O3 and capping O3 production rates. In rural areas with more moderate

NOx levels and low nitric oxide, ozone production can be far higher and the pres-

ence of VOCs due to biomass burning[60] or extraction industries[61] can cause

large spikes in ozone concentration.

The mechanism of ozone production in both urban and rural environments is quite

complex, and is discussed further in section 1.4.1 on page 28.
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Among the most toxic and carcinogenic of the VOCs found in rural environ-

ments are the polycyclic aromatic hydrocarbons (PAH), which are released through

biomass burning, and some industrial processes[13] - this is obviously more of an

issue in some regions than others[59].

Plants naturally evolve reactive hydrocarbons like isoprene and terpenes, which

can cause respiratory irritation in sensitive individuals. They are a major par-

ticipant in the production of secondary pollutants in rural environments, and

are directly linked to the elevated ozone concentrations in green areas at ground

level[62][63]. Isoprene is the most abundant non-methane VOC in the atmosphere,

and the largest contributor to Secondary Organic Aerosols (SOAs) globally[64].

SOAs, a form of particulate matter, are seeded by many VOCs after oxidisation

through reactions initiated by OH or NO3 radicals. Human activities in rural en-

vironments can contribute to this process, for example through straw burning[64].

1.3.3.3 Urban

With over half of the world’s population living in cities since the year 2000[65],

managing urban air quality is a serious concern. The World Health Organization

has a summary of what are considered major urban airborne pollutants, as well

as maximum safe exposure ratings [66], but it is now being recognized by both

scientists and legislators that there is no ’safe’ level below which many pollutants

are benign[67]. The linear correlation between illness and death and exposure in

urban settings is empirically supported by a growing body of literature in cities

across the world [68] [69] [70] as well as meta-analyses tying pollutants to specific

illnesses such as stroke[71], heart attack[72] and chronic lung failure[45].

The sources of air pollution most associated with cities are automobiles and indus-

trial activity[65], with the latter being more pronounced in industrializing countries

and the former remaining a problem particularly as prosperity and scale increases.

Depending on a city’s location and surroundings, long distance transport of gas
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and particularly aerosols can comprise a significant fraction of a city’s exposure.

But ground-based measurements [23], a long history of simulations[73][74][75] and

airborne spectrographic mapping[76] all indicate that road traffic (and combus-

tion in general) accounts for a large proportion of urban pollution, across a range

of pollutants from aerosols to sulphur compounds to nitrogen oxides[77]. Partic-

ularly indicative is the fact that even relatively primitive models, if traffic data

is the only input, have substantial predictive power in air quality measurements

taken at ground level for a variety of pollutant species[78]. Regional sources, both

industrial and agricultural, can be significant enough that a purely local focus is

insufficient for understanding and mitigating pollution[79] but if anything these

cases underscore that a holistic approach to tackling air quality requires reducing

pollutant output at the source as well as dispersing its production.

The large scale of the problem, its societal cost and the potential for improvement

through intelligent city planning and regulation make urban air quality a high

priority for scientists and it will be the focus of this thesis. Every city in the United

Kingdom is bound to produce an air quality action plan, evaluating different policy

approaches in terms of their effects on urban pollution. Leicester’s plan [80] places

a justified emphasis on reducing traffic emissions, but specific proposals to this

effect require both accurate measurements of pollutants on an urban scale and

useful predictions of the consequences of legislative action.

1.3.4 Dynamics of the boundary layer

The sources of pollution are only one part of the puzzle in urban environments. The

motion of the atmosphere, which transports and disperses pollutants after they’ve

been emitted, determines human exposure to those sources. This movement is

most complex and relevant in the boundary layer, the layer in which humans (and

most of the sources of pollution harmful to humans) reside.
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Compared to the rest of the atmosphere, direct solar warming of the boundary

layer is not a significant driver of the air’s temperature or motion. Instead, the sun

warms the ground, and this heat is transmitted by contact into the air near the

surface. Turbulence is a key force throughout the boundary layer, and is highly

effective at propagating pollution, heat and air velocity throughout it[5, p. 3].

This effect keeps the boundary layer well-mixed by day, although it settles and

becomes stratified at night.

Turbulence in the boundary layer comes from a number of sources - solar heating

of patches of ground can cause large thermals to form. Moving air produces wind

shears from friction with flat surfaces, and turbulent wakes form downstream from

obstacles like trees and buildings. A mixed layer forms in the boundary layer when

turbulence has produced a uniform vertical distribution of air velocity, temperature

and pollutant contents. Conversely, when the ground is colder than the air (often

at night), the boundary layer becomes stable and stratified[5, p.16].

Pollution emitted into the boundary layer from sources forms plumes, the down-

stream shape of which is governed by the size of turbulent eddies, and turbulence

also mixes the gases from elevated plumes down to ground level. Conversely, pol-

lution plumes can be lifted away from the ground if a stable region of the boundary

layer forms beneath the pollution plume[5, p.19].

1.3.5 The interactions of air in cities

The urban environment has quite complex air dynamics, and there are many

considerations for an air quality manager[81], only a few of which are summarised

in this section. Man-made structures affect the motion of air in the boundary

layer, and so the geometry of cities influences air pollution exposure[82, 19]. While

buildings and roads in cities are more commonly shaped by the forces of the local

economy, these structures are starting to be designed with features to mitigate
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pollution, and urban vegetation is increasingly seen as a solution that is both easy

to implement and contributes to livability[83].

Vegetation, in the form of trees and hedges as well as artificial structures like

green walls and roofs, is capable of absorbing airborne pollutants. However, it

also changes the movement of the air and hence affects the rate at which pollution

disperses[84].

Figure 1.9 shows profiles of four common environments involving roads - two with

vegetation, two without; two in a street canyon and two involving an open road-

way. The four environments are characterized by different dynamics, the most

Figure 1.9: Four representations along two axes of road environments, with
a cars and pedestrians nearby. Blue arrows indicate wind direction, and the
green shaded area represents an example shape of an exhaust plume in those

environments. Adapted from [83].

important for pollution mitigation being how likely it is for the road pollution to

be channeled away into the higher parts of the atmosphere before it can be inhaled

by nearby pedestrians.

• Road, no vegetation: Exhaust gases can easily be breathed by nearby pedes-

trians, but are not necessarily trapped there.
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• Road, vegetation: With either a hedge between the road and pedestrian

walkways, the road pollution is either adsorbed or deposited onto the veg-

etation, or lifted away from the ground as it travels over it, making it less

likely to be breathed in by pedestrians provided the air is not too calm.

• Street canyon, no vegetation: Wind blowing across the roofs of buildings

in a street canyon causes circular eddies within it. If the weather promotes

ventilation, gas produced at ground level can be lifted away from the road

and into the atmosphere above.

• Street canyon, vegetation: Contrary to vegetation’s beneficial effects in the

open road case, tree canopies can interfere with downward or upward air

flows, blocking the circulation that is required to disperse pollution away

from head-height and the road and potentially increasing exposure.

While these examples are far from exhaustive, they demonstrate that there is no

simple solution to this issue for urban planners. Computational Fluid Dynamics

(CFD) can be used to examine the flow of pollutant gases and their interaction

with buildings and vegetation[84], but a summary of this tool is beyond the scope

of this work.

However, as shown in Abhijith et al. [83], generally the closer people are to a road,

the more pollution they will be exposed to, that hedges and especially parks can

reduce exposure considerably; conversely street canyons with trees produce poor

air quality, particularly where there is congestion or collections of idling vehicles.
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1.4 Atmospheric chemical reactions of nitrogen

oxides

Further discussion of the research goals of this work will require some grounding

in nitrogen oxide atmospheric chemistry in the troposphere. Material underlying

the following discussion can be found in reference [12].

1.4.1 Nitrogen oxides and ozone

The gases within an internal combustion engine can reach temperatures of a thou-

sand degrees centigrade, causing the decomposition of molecular oxygen, which

then catalyses a reaction between molecular nitrogen and molecular oxygen to

produce nitric oxide (NO) as shown in reactions 1.1 and 1.2 [85].

O + N2 −−→ NO + N (1.1)

N + O2 −−→ NO + O (1.2)

Postemission, nitric oxide and nitrogen dioxide are bound together by a set of

reactions, such that in the troposphere they have similar typical concentration.

One set of interactions occur after the nitric oxide produced above has left an

engine, when its concentration is still high enough that it can combine into nitrogen

dioxide as in reaction 1.3.

NO + NO + O2 −−→ 2 NO2 (1.3)

Generally in the atmosphere NO concentrations are too low, and hence collisions

between NO molecules are too rare, for this reaction to be important. Instead,

NO reacts with atmospheric ozone to give NO2 (reaction 1.4), and the NO2 can

be photolysed to produce an oxygen atom by sunlight (hν, reaction 1.5). The



Introduction 26

oxygen atom will rapidly react with molecular oxygen to regenerate the ozone.

This involves an anonymous nearby molecule M, collisions with which remove

the additional energy produced when the new chemical bond forms. M is left

unscathed after reaction 1.6 [44].

NO + O3 −−→ NO2 + O2 (1.4)

NO2 + hν −−→ NO + O(3P) (1.5)

O + O2 + M −−→ O3 + M (1.6)

The timescale for these reactions is a few minutes in daylight, although at night

these reactions stop and another set occur producing the nitrate radical NO3,

which will be discussed later. The oxidation of NO to NO2 and back has such a

short timescale that they are referred to collectively as NOx. The proportion of

NO2 to NO within NOx, in the absence of other factors, is given by the Leighton

Relationship:
[NO]

[NO2]
=

J

k[O3]
(1.7)

Where k is the rate coefficient of the NO + O3 −−→ NO2 + O2 reaction 1.4 at a

given temperature, and J is the photolysis rate constant for NO2, which depends

on solar radiation levels and thus varies with time, weather and location. Square

brackets signify concentration. NOx is a useful metric because while the balance

NO2 and NO can shift on a scale of seconds, the total NOx is much longer lived.

The relationship is derived from the equilibrium concentrations of the three gases,

in a photochemical steady state, given the rates at which they react.

While the interaction described by the Leighton relationship is important, it does

not always hold. Additional gases supplied to an environment will make the

Leighton relationship a less reliable predictor - for example, freshly emitted NO

from car exhausts makes the relationship particularly unreliable in urban areas.
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One important such unbalancing factor involves volatile organic compounds. VOCs

are oxidised by hydroxyl (OH) radicals, which themselves are produced in the tro-

posphere primarily through the photolysis of ozone into molecular oxygen and

electronically excited atomic oxygen (the excitation is denoted by the term sym-

bol label 1D) in reaction 1.8. The excited oxygen has enough energy to initiate a

reaction with water (reaction 1.9). The resulting hydroxyl radicals have a lifetime

of a few seconds due to their very high reactivity, and their propensity for ab-

stracting hydrogen atoms from other compounds (particularly VOCs) make them

a major initiator of chemical reactions in the lower atmosphere during the daytime.

O3 + hν −−→ O(1D) + O2 (1.8)

O(1D) + H2O −−→ 2 OH (1.9)

Hydroxyl radicals readily react with VOCs (denoted RH), robbing them of a hydro-

gen atom and producing an alkyl radical R that immediately reacts with oxygen,

giving an organic peroxy radical.

OH + RH −−→ H2O + R (1.10)

R + O2 + M −−→ RO2 + M (1.11)

Hydroxyl radicals also react with carbon monoxide (CO) but with a different

mechanism, which produces hydroperoxy (HO2) radicals. While not a VOC per

se, carbon monoxide is also found in car exhausts.

OH + CO −−→ H + CO2 (1.12)

H + O2 + M −−→ HO2 + M (1.13)

The peroxy radicals produced in the previous two pairs of reactions react with

nitric oxide to produce nitrogen dioxide, as well as regenerating the peroxy radicals
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and producing secondary VOCs (aldehydes) in the case of the organic peroxy

reaction.

RO2 + NO −−→ RO + NO2 (1.14)

RO + O2 −−→ R′CHO + HO2 (1.15)

HO2 + NO −−→ OH + NO2 (1.16)

Reaction 1.16 closes the cycle by converting HO2 to OH, such that the hydroxyl

radicals can then proceed to react with another VOC. Because the peroxy and

hydroxyl radicals are regenerated, whenever there are VOCs available NO will be

oxidised to NO2. Second, photolysis of the NO2 will lead to the production of

tropospheric ozone (reaction 1.5).

Since ozone is consumed in the process of generating hydroxyl radicals in the

first place, and the two nitrogen oxides are so closely linked together, the first

important conclusion is that ozone production during the day is a process that

has two requirements - the presence of VOCs, and the presence of NOx. If there

is not sufficient NOx, reaction 1.15 can proceed to:

HO2 + O3 −−→ OH + 2 O2 (1.17)

which consumes O3 in very clean regions of the atmosphere. Peroxy radicals can

also react with each other to produce aldehydes and peroxides, taking them (and

by implication the ozone that produced them) out of circulation. And without

sufficient VOCs, there is nothing to replace ozone in the nitrogen oxide system

and it will thus not build up in the atmosphere.

For this reason, the level of ozone during the day can be sensitive to either NOx or

VOCs, depending on their relative abundance, as shown in figure 1.10. In Beijing,

VOCs and aerosols from multiple sources dominate, whereas NOx from traffic

pollution dominates the atmosphere in Paris.[12, p.3] Thus in the former, ozone
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Figure 1.10: Isopleths giving the net rate of ozone production (in part-per-
billion per hour) as a function of VOC (part-per-billion carbon) and NOx (part-
per-billion) concentrations, for mean summer daytime meteorology and clear
skies. The curved lines represent production rates of 1, 2.5, 5, 10, 15, 20, and

30 ppb/h. Image credit[86].

concentration tends to follow NOx (ie. Beijing is NOx limited), and in the latter

it instead follows VOC levels (VOC limited).

An important sink for both peroxy radicals and NO2 is conversion to highly soluble

nitric acid (HNO3)

OH + NO2 + M −−→ HNO3 + M (1.18)

At night, when hydroxyl radicals are no longer produced and nitrogen dioxide is no

longer photolysed, ozone and nitrogen oxides react to produce the nitrite radical

NO3:

NO + O3 −−→ NO2 + O2 (1.19)

NO2 + O3 −−→ NO3 + O2 (1.20)

The resulting nitrate radical acts as the major oxidizing species at night, but it is

rapidly photolysed during the day. It exists as part of a rapid equilibrium system
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with nitrogen dioxide to form the reservoir species dinitrogen pentoxide:

NO2 + NO3 + M←−→ N2O5 + M (1.21)

The dinitrogen pentoxide can react with water to produce nitric acid HNO3, the

deposition of which is the main night-time sink of NOx from the atmosphere.

Another important and interesting sink of NO2 is a reaction with peroxyacetyl

derivatives. The simplest reagent in this class of molecules is acetaldehyde, which

is produced both through vehicle emissions and naturally during the respiration

of trees[87, p.320]. Acetaldehyde reacts with hydroxyl radicals and oxygen in the

atmosphere to produce peroxyacetyl radicals:

CH3CHO + OH −−→ CH3CO + H2O (1.22)

CH3CO + O2 + M −−→ CH3C(O)OO + M (1.23)

The resulting radical combines with nitrogen dioxide to produce peroxyacetylni-

trate, or PAN.

CH3C(O)OO + NO2 + M←−→ CH3C(O)OONO2 + M (1.24)

PANs can refer to a large class of such aldehyde derivatives and all are formed in a

similar way. The importance of this reaction lies in its energetics. At higher tem-

peratures (ie. close to the ground), PAN exists in equilibrium with its constituents.

However, when the temperature decreases PANs become much more stable. This

mechanism can cause nitrogen dioxide to be transported over long distances, as

a parcel of air containing PAN can move on a scale of several hours to nearby

regions[88] before descending to the ground and releasing nitrogen dioxide. While

the sources of pollution in cities have a far stronger effect on NOx concentration,

PAN transport is important for introducing nitrogen dioxide into rural areas.
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Transport of polluted air away from cities can be measured by comparing the

combined concentration of ozone and nitrogen dioxide to the concentration of

NOx[89]. A high abundance of ozone relative to nitrogen dioxide indicates that

polluted air has arrived at a location [12, p.53] from elsewhere.

Thus, beyond the obvious importance of measuring the concentration of harmful

gas species, broader information about the dynamics of the atmosphere can be

deduced from instruments that can identify and measure the molecules involved in

the Leighton relationship[89][12, p.53]. A distributed network of small sensors that

could do this would be a major advance and allow transport models of pollution

to be validated, as well as improving understanding of local and regional pollution

sources.

1.5 Measuring nitrogen oxides

Environmental sensors can be divided into two broad categories: in-situ instru-

ments, which sample from the environment immediately surrounding them, and

remote sensing instruments, which can gather information at a distance either by

passively collecting radiation, such as sunlight or the Earth’s own infra-red ther-

mal emissions, or actively sending out signals into the environment and measuring

the response. The better an environmental sensor network can map pollutants in

a region, the better scientists will be able through data analysis to attribute sinks

and sources, predict potential exposure and inform city planning. Both active and

passive sensors have disadvantages that must be taken into account to achieve this

aim.

Remote sensors often suffer interference along the path between them and their

target, which can be dealt with by characterizing (either though some other form

of measurement or by modelling) the ambient conditions around the sensor and
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compensating for any known sources of error. Multiple instruments are required

to map the locations of three dimensional signal sources.

In-situ monitors, by contrast, measure only the air directly in front of the sensor,

thus how representative the sensor is of the surrounding environment can be a very

significant problem. In some cases, such instruments also can produce incorrect

information because the sensor itself interferes with the quantity that is being

measured. A turbine anemometer is a good example of this, as the housing and

support structure for the blades inevitably interferes with airflow. This kind of

problem can be very difficult to overcome.

However, in-situ monitors do have relative advantages. For a start, remote sensors

do not always give information in the same format as the variable you wish to

measure; for example an open-path spectrometer gives column densities of gases

but not actual molar concentration, and the latter is much more useful. Remote

sensing, on the other hand, allows a single instrument to cover a wide area, and

because fewer instruments are needed the individual units can be more expensive.

The concentration of NO2 can vary in urban settings on a time scale of seconds and

a length scale of meters. For estimating exposure levels, any sensor must be able

to integrate measurements of a rapidly varying quantity, and produce results with

high enough resolution to get an impression of how pollutant concentrations change

over time. Source attribution additionally requires measuring pollutants before

they undergo chemical reactions[90]. To identify realistic avenues of research, the

costs involved in deployment and operation of each measurement technology must

also be considered, as this cost will determine the maximum number of sensors

that can be employed for a given budget over a given time period, and thus the

spatial resolution that a measurement campaign can achieve[91]. A campaign to

characterize urban air quality may involve several kinds of instruments working

simultaneously together.
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1.5.1 Optical spectrometry

Figure 1.11: Diagram of a generic grating
spectrometer. Collimated light enters aper-
ture A and is focused by mirror B onto the
diffraction grating C. The diffraction pat-
tern is refocused by D onto an array of pho-
todiodes (or a CCD) indicated by E. Signals
from the detector F must be interpreted by
computer to determine from the diffraction

pattern which frequencies are present.

Figure 1.12: A simple optical spec-
trometer. The prism splits light from a
source, changing photon trajectories based
on their wavelength - an incandescent light-
bulb (middle) produces a different spectrum
to a fluorescent bulb (bottom). Image credit

[92].

A “spectrometer” is an instrument that

determines the abundance of different

components within a sample with re-

spect to some variable. A mass spec-

trometer would take a material and

determine the proportion of its con-

stituent molecules, segregating them in

terms of mass. A light-based spectrom-

eter splits incoming light using a prism

or diffraction grating, separating it into

a spectrum of individual wavelengths,

and then measuring the intensity of

each part of the spectrum. Figures 1.11

and 1.12 show examples of optical spec-

trometers. Spectrometry is a diverse

discipline, and visible light spectrom-

eters of various types lie at the heart

of many of the techniques for deter-

mining concentrations of gases in the

atmosphere described in the following

sections.
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1.5.2 Ground-based DOAS

Figure 1.13: Diagram of a DOAS in-
strument taking a measurement. Light
from the sun A scatters as it passes
through atmospheric gases B, and the
light that is scattered along the line of
the instrument aperture C enters the
instrument D. The situation in reality is
complicated by the curvature of the at-
mosphere, refraction and multiple scat-

tering.

Differential Optical Absorption Spectroscopy

(DOAS) is a technique used to determine

concentration of gases that incoming visible

and near-infrared light has passed through.

DOAS instruments look for the character-

istic absorption lines in the spectrum of

a broad light source that has been shone

through the target gas[93]. It can use either

resonant cavities and internal light sources

(closed path) or can have the spectrometer

and light source in two separate locations

(fixed path), measuring the density of trace

gases between them. Fixed path DOAS in-

struments can use xenon arc lamps as a

source of light[94], but it’s also possible to use ambient scattered light to make

measurements (open path). Without the requirement to measure along a fixed

line, open path DOAS can be a lot more flexible as a way of measuring gases over

large areas.

Ground-based DOAS makes use of sunlight that has been scattered from molecules

in the atmosphere, as shown in figure 1.13. DOAS instruments are capable of mea-

suring multiple gases at the same time, but bad weather (heavy rain, snow and fog)

can limit coverage[95, p.33]. While the first such measurements were made with

instruments that looked directly upward (ie. zenith pointing), today MAX-DOAS

(Multi-AXis DOAS) instruments are widely used. These open-path instruments

either have a turntable that can change the elevation angle of a telescope that

feeds into the spectrometer, or use a line-shaped aperture and specialised optics
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to measure multiple angles at once. The latter produce a two dimensional spectro-

graphic image, with one dimension for the elevation angle, and the other different

wavelengths within the spectrum.

(a) CityScan (b) Two dimensional retrieval

Figure 1.14: (a) Cityscan atop a roof in London. (b) Example of data from
a CityScan deployment in London[96], a heatmap of NO2 concentration. The

“hotter” colour corresponds to higher concentrations.

The CityScan instrument is an example of a MAX-DOAS type instrument, with

a turret fitted with a compact spectrometer (COMPAQS) which observes the

atmosphere through a linear aperture[97]. A single CityScan instrument is capable

of measuring column densities in a hemisphere extending from zenith to 5o below

the horizon, out to a range of roughly 5-6 km, with column pixels that translate

to a spatial resolution of 50m. Because of the combination of turret and aperture,

when processed CityScan data can return a panorama of NOx concentrations

(figure 1.14.

1.5.3 Airborne and satellite DOAS

DOAS techniques can also be used with light that has been scattered from the

ground, from a spectrometer that looks down, rather than up as in MAX-DOAS

- see figure 1.15. Ground level NOx concentration can be derived from these with

methods of varying sophistication, for example making use of chemical modelling

software (such as GEOSChem in the case of OMI[49]) or comparison with in-situ

monitoring[98].
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Figure 1.15: Open path DOAS us-
ing a downward-pointing spectrometer.
Light from the sun A is reflected off the
ground B and into the spectrometer on
the air or spacecraft C. The gas concen-
tration E within the column D formed
by the path of the light from the ground
to the spectrometer can be retrieved.

This calculation is aided somewhat by the

fact that higher concentrations of NOx

in the atmosphere generally have anthro-

pogenic sources close to the ground, and the

lifetime of NOx in the atmosphere (hours)

is much shorter than the typical mixing

time between the troposphere and strato-

sphere (of order a few months)[99], and con-

sequently a column with significant NOx

will have most of this density contributed

by NOx at ground level and in the bound-

ary layer. Still, the retrievals can differ

significantly from ground-based in-situ sensors. In urban environments, OMI

has a consistent seasonal bias, reporting concentrations around 17% lower than

GEOSChem during summer and up to 36% lower during winter, and this is likely

a consequence of limitations in the retrieval itself[49].

Several satellite missions have carried instruments capable of retrieving ground

level NO2, among them:

• The Global Ozone Monitoring Instrument (GOME) operational from 1995[100],

launched aboard the ERS-2 satellite.

• The SCanning Imaging Absorption spectroMeter for Atmospheric CHartog-

raphY (SCIAMACHY)[101] aboard ENVISAT which launched in 2002 and

went dark in 2012.

• The Ozone Monitoring Instrument (OMI)[49], launched on the Aura space-

craft in 2004.

• GOME-2[102], carried on the METOP series of satellites since 2006.
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Environmental monitoring satellites are usually placed in orbits that allow them

to achieve full coverage of the Earth, but the time over which a full map of the

world’s pollution can be obtained varies depending on the mission and instrument

- GOME achieved full coverage every 3 days, OMI is capable of mapping the Earth

every day. Spatial resolution also tends to be very low for satellites. GOME pixels

are 40 km by 320 km wide. OMI has a better resolution at 24 km by 13 km, but this

is still large enough for a single pixel to completely encompass cities and prevent

satellites from being able to attribute particular pollution sources.

Figure 1.16: Airborne air quality mapper, the precursor to ANDI, aboard an
aircraft operated by BlueSky, with data from over Leicester[96].

Spectrometers mounted on aircraft can make open path DOAS measurements

using backscattered light from the ground in much the same way as satellite in-

struments can. While aircraft are capable of mapping pollution at meaningful

resolutions, a key limitation is that the flight is necessarily a snapshot of the level

of pollution - planes must land eventually, making Airborne DOAS more a tool

for confirming predictions and identifying hotspots than long term study.

The AVIRIS (Airborne Visual/Infra Red Imaging Spectrometer) series of spec-

trometers have been flown in various aircraft for the last 40 years[103], producing

a very large dataset that can be used for retrievals of a variety of gases, and

has recently had its specification updated to the “next generation” AVIRIS-NG.

The instrument aperture cuts perpendicular to the flightpath. The Facility for

Airborne Atmospheric Measurements (FAAM) aircraft can also be equipped with

DOAS-capable spectrometers[104].
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A Leicester-based example is the ANDI instrument, which makes use of the same

spectrometer as CityScan and can retrieve NO2 with a resolution of 80 m by 20 m

on the ground[76].

1.5.4 Chemiluminescence gas sensors

Figure 1.17: Diagram of the opera-
tion of a chemiluminescence sensor. In-
take air is split at A, one stream of
which is put into a catalytic converter
B that reduces NO2 to NO. The valves
at C control which stream enters the
chamber E and reacts with ozone pro-
duced with the UV lamp at D. The
photons emitted by this reaction are de-
tected with the light sensor F, and the
gas is then exhausted through the pump

G.

The principle of this detection method is

fairly simple: Some chemical reactions pro-

duce light, and if a reagent exists that does

so for the target gas, and is introduced in

excess to it, the luminescence produced by

the reaction will be proportional to the tar-

get gas concentration. Implementing a sen-

sor based around this is more complex. Lu-

minol has been used as a reagent in nitrogen

dioxide detectors for some decades[105], us-

ing a nebulizer and photodiode to minimize

detector size and filtration to make the oxi-

dising reaction more specific to NO[106]. In

spite of being a rapid and sensitive means

of detection, there are several factors that

must be corrected for which make it less reliable[107].

Most modern chemiluminescence monitors do not use luminol however, instead re-

lying on the photons produced when NO reacts with O3. In about 8% of reactions,

this produces NO2 in an excited state, which, if it isn’t quenched through collisions

with other molecules that relieve it of its energy, can return to the ground state

by emitting a photon[108].

NO + O3 −−→ NO2* + O2 (1.25)
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NO2* −−→ NO2 + hv (1.26)

Reaction 1.26 produces a broad selection of photon wavelengths, peaking at 600 nm

and stretching into the infrared with a second peak at 1200 nm.

Figure 1.18: A
typical modern
commercial chemilu-
minescence monitor,

from Ecotech.

The intensity of the light is affected by pressure and tem-

perature, but both of these can be controlled in a sensor,

an example of which is shown in figure 1.17. These instru-

ments alternate between detecting solely NO in a sample,

and converting the NO2 in the sample to NO to give a com-

bined NOx reading, from which the NO2 concentration can

be derived by subtraction[109]. Several methods of conver-

sion are used in commercial instruments, such as photolysis

or a heated molybdenum catalyst. These have varying levels of efficiency, and

don’t necessarily only convert NO2. Molybdenum catalysts suffer interference

from HONO, in a fairly well characterized manner which can introduce a typical

bias in these instruments of around 2%. Photolytic converters can produce peroxy

radicals from the concentrated VOCs found in exhaust gas samples, which can

reduce NO in the NOx channel and cause the instrument to infer negative NO2

concentrations, and due to the unpredictable nature of these reactions they are

harder to compensate for[110]. Cross sensitivity with different chemical species

can occasionally cause much more severe inaccuracies in NO2 concentration[111].

The European Union and the United States Environmental Protection Agency

defines chemiluminescence sensors as the standard reference instrument for con-

tinuous air quality measurements of NOx and NO2[112].
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1.5.5 Cavity Attenuated Phase Shift Sensors

Figure 1.19: Diagram of a CAPS in-
strument. The air sample is drawn
through the particle and humidity fil-
ter A to the cavity B. A lamp C shines
through this cavity, bouncing between
the mirrors D before leaking through to
the detector E. The cavity is drained us-
ing the pump F. Representation of the
source signal (intensity vs. time) at C
and output signal at F are also shown.

These sensors (CAPS) work through dif-

ferent principles to the other optical meth-

ods described above. While they also shine

light with a known spectrum into a tar-

get gas, instead of measuring the extent to

which the gas prevents particular frequen-

cies from reaching a detector, CAPS de-

tects the phase delay caused by the photons

interacting with the gas[113], as in figure

1.19. The cavity increases the effective path

length of the photons through the sample

chamber, making the phase shift effect eas-

ier to detect.

This type of sensor has proven very effec-

tive at measuring NO2 specifically[111], using a light source with a wavelength of

440 nm, with a narrow bandwidth of 20 nm. Such optical instruments are sim-

pler than a full spectrometer, and don’t have the same problems with chemical

interference as chemiluminescence. Although some 1,2 dicarbonyl species can ab-

sorb on similar wavelengths, this can be compensated for with an appropriate

optical bandpass filter. The solid-state optical systems are also relatively easy

to maintain. Commercial instruments with similar form factors to rack-mounted

chemiluminescence monitors are currently available[114][115].
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1.5.6 Advanced spectrometry techniques

Two particular types of spectrometer are used make precise and sensitive mea-

surements of gases in the context of air pollution.

Figure 1.20: Diagram of an FTIR
gas spectrometer. The beam from light
source A is split by C, and one of the
resulting beams bounces from the fixed
mirror B. The other shines through the
sample chamber D, and bounces off the
movable mirror E. The beams merge
again at the splitter and are detected by
the sensor F. The computer G controls
the mirror position, and uses a Fourier
transform to reconstruct the spectrum
of light from the position-dependent in-

terferogram.

Figure 1.21: Diagram of a BBCEAS
cavity arrangement. The light source A
shines through the mirror B, and is then
repeatedly reflected through the sample
chamber C. The mirrors are not per-
fectly reflected and photons from the
source light can eventually escape to the

spectrometer D.

Fourier transform infrared spectroscopy

uses mid-infrared light sources, can be used

to measure solid, liquid of gas composi-

tion, and can use either an open or closed

path and sample chamber[116]. It incor-

porates a Michelson interferometer which

can very precisely select a light frequency,

and uses computer post-processing to cal-

culate its attenuation by the sample - see

figure 1.20. FTIR spectrometers are expen-

sive and bulky, but have good resolution

and accuracy, and more advanced models

are capable of giving results at very rapid

intervals[117].

Broad-Band Cavity-Enhanced Absorption

Spectroscopy (BBCEAS) instruments use

a “resonating cavity” as the sample cham-

ber. With two highly reflective mirrors ei-

ther side of the gas sample, the photon

path length through it can be greatly in-

creased, leading to more chances for ab-

sorption and thus improved sensitivity - see

figure 1.21. The “Broad-Band” refers to the

broad spectrum of the light source; some-

times the name of the instrument makes it
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clear that it the light is incoherent, as opposed to the more monochromatic light

from a laser[118], which cannot be easily tuned to different frequencies of interest.

Such systems have been used for a wide variety of gas[119] and liquid[120] sens-

ing applications besides atmospheric chemistry[121]. Most BBCEAS instruments

use a diffraction grating spectrometer as in figure 1.11, but some make use of the

Michelson interferometer of an FTIR, giving even greater resolution.

Figure 1.22: A
laboratory Michelson-
equipped BBCEAS
system built by
University College
Cork in Ireland’s
Laser spectroscopy

group[122].

While they work on different optical principles, both

BBCEAS and FTIR instruments are capable of high lev-

els of precision, specificity with regard to target gas species

identification and low detection limits[119]. They can take

measurements very rapidly, making them ideal for exam-

ining short-lived atmospheric species[118]. Their ability to

unambiguously determine concentrations of gases through

the structure of their absorption lines make them a gold

standard, in a lab setting at least. The downside is that

FTIR and BBCEAS systems are expensive specialist equip-

ment that is often assembled by universities and companies themselves for a spe-

cific purpose, and though commercial systems are available they are large, complex

instruments that require training to operate.
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1.5.7 Metal oxide semiconductor sensors

Figure 1.23: Diagram of a MOS sen-
sor. The air outside the housing A fil-
ters through the aperture to the semi-
conductor element B, which is heated

by C.

Modern semiconductor (MOS) sensors such

as the SGX MICS series [123] are small

and lightweight, and simple enough that

they cost only a few pounds - see figure

1.23. They are well suited to air qual-

ity applications[124] and have been used

in environmental monitoring to detect NO2

[125], VOCs [126, 127], ozone [128] and CO

[129, 130]. Although semiconductor gas

sensors are very precise (of order a few parts

per billion)[131][132], they have long had issues with calibration drift over time

and cross-sensitivity to different gas species[133].

Still, metal oxide semiconductor sensors have been in use for years in industrial

applications[134] and as hydrogen safety sensors[135][136]. In safety applications,

low frequency shifts in baseline concentration can be ignored as artifacts of sensor

drift, but a rapid increase indicates danger and consequently the broad respon-

siveness to different gases can be a blessing in this field. But it’s a curse for air

quality monitoring, where absolute figures, specific to an individual component

like NO2, with characterized uncertainties are required.

For examples of instruments that use MOS sensors, see section 2.6 on page 74.
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1.5.8 Electrochemical Sensors

Figure 1.24: Diagram of an elec-
trochemical gas sensor. The sample
air A passes through the grille to the
working chemical electrode B. Isolated
from this air is a reference electrode C
which is used to compensate for tem-
perature changes and leakage currents.
The electrodes feed into amplifier cir-
cuitry through wires D and some types
are biased - that is, a voltage is applied

across them - through E.

Electrochemical sensors work like a battery

with one terminal connected to an ampli-

fier circuit and the other terminal being

the atmosphere, as in figure 1.24. An elec-

trode oxidises or reduces the target gas,

and the sensor’s electronics detect the re-

sulting current, which is typically on the

scale of picoamps[137]. While small and

relatively inexpensive, these sensors were

initially developed for measuring gas con-

centrations ranging from 1-10,000 parts per

million. Most atmospheric pollutants have

their concentrations measured in parts per

billion, and at these very low levels interfer-

ence from humidity, temperature and trace gases become very significant[138][133].
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Figure 1.25: A com-
mercial electrochemi-
cal sensor from Al-

phasense.

Power is supplied to the sensors in the form of a very sta-

ble voltage that biases an electrode inside the device. The

only power loss is due to leakage currents, and the power

needed to keep the sensors operational is a few nanoamps,

typically overshadowed by the requirements of the ampli-

fier circuits[139]. The currents they produce are also very

small, and designing support electronics that will not inject

power supply noise or absorb electromagnetic interference

that would overwhelm the signal is a technical challenge.

The sensors require several hours to stabilize after voltage

is first applied to them.

For over a decade, these sensors have formed the core of many successful air quality

monitoring instruments. See section 2.6 on page 74 for examples.

1.5.9 Diffusion tubes

Figure 1.26: A NOx
diffusion tube sold by
Gradko International.

Developed in 1976, diffusion tubes are a simple and inexpen-

sive way to take in-situ measurements of nitrogen dioxide

levels[140]. Their simple design and low cost is an advantage

and has led to widespread deployment across the world, but

measurements consist of the average concentrations over the

course of several weeks. The extremely long time between

data points make diffusion tubes helpful for identifying po-

tential urban hotspots and seasonal variation[141], but not

so much for identifying transient pollution events[142]. Still,

surveys using diffusion tubes are ongoing even today, although their sensitivity to

wind pressure is a complicating factor in an otherwise very simple and reliable

measurement technique[143]. They are viewed by DEFRA as being capable of
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less than 20% uncertainty of measurement over the course of a year if they are

deployed properly[112].

1.6 The role of small sensors

Name Type
Concentration Resolution Costs to...

Cite
Accuracy Range Time Spatial Deploy Maintain

Space DOAS Remote 10-35% ? Daily ∼20 km A lot Low [49]
Aircraft DOAS Remote 5-30% 20+ Once ∼1o ∼500k Medium [96]
MAX-DOAS Remote 10-35% 20+ 6 min ∼20 m ∼1M High [97]
Chemilum. In-Situ 15% 2+ 2 sec N/A ∼20k Medium [144]
FTIR In-Situ 5% 0.1+ 1 min N/A ∼100k Medium [145]
BBCEAS In-Situ 5% 0.02+ 1 min N/A ∼100k Medium [118]
CAPS In-Situ >1% 2+ 1 sec N/A ∼20k Low [115]
Electrochemical In-Situ ∼25% 10+ 1 min N/A ∼10k High [137]
MOS In-Situ ∼25% 10+ 1 sec N/A ∼1k High [123]
Diffusion tube In-Situ ? ? 4 week N/A ∼50 Low [143]

Table 1.1: Summary of different NO2 measurement techniques. Unmarked
concentrations are in units of µg m−3. All the in-situ instruments except for
diffusion tubes are capable of sacrificing time resolution to improve accuracy

and range.

Remote sensors generally do not have adequate temporal or spatial resolution to

be useful on urban scales. An array of ground based MAX-DOAS instruments

can give a good indication of pollution sources in cities, with considerable uncer-

tainty in absolute concentration. Satellites generally have pixel sizes that dwarf

individual settlements, and airborne instruments are limited to specific missions

and do not typically capture variation in a region throughout the day. And in

every case, these remote sensing systems must be checked against networks of

sensors on the ground to ensure they are giving realistic results[146], and these

ground-based networks are the only observational way to fill the gaps left by re-

mote instruments. Advanced optical detection methods like BBCEAS, CAPS and

FTIR can supply NOx concentrations with excellent accuracy and repeatability,

but their cost is a limiting factor in their deployment. While industrialized nations

like the UK have invested in networks of high quality chemiluminescence sensors
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in air monitoring stations, areas with tighter budgets in poorer countries do not

have the same resources, and these are areas where urban pollution can be at its

most severe[147].

A solution to this issue is the use of a single reference base station to support a de-

ployment of smaller, cheaper sensors. In the detection of NO2, both Metal Oxide

and Electrochemical sensors have questions about long-term reliability and drift, as

they have been validated only on smaller timescales[91][50]. Neither small sensing

technology can be used as a long-term reference comparable to chemiluminescence

or spectroscopic instruments, at least at our current level of understanding, and

should only be considered to give reliable outputs when they have regular opportu-

nities for comparison with a reference source. However, the manual work involved

in either redeploying or recalibrating the sensors must be taken into account when

considering overall cost of a pollution mapping experiment, and may be significant

compared to the low sensor unit cost.

Thus an experimental campaign of small sensors must be designed with their

limitations in mind in order to be successful. They should work well as part of a

limited duration campaign to understand the dynamics of air pollution in a specific,

local region for the purposes of urban planning and pollution management, either

as stationary sensors or as mobile units that can travel back to a central hub to

be re-calibrated. The duration of these campaigns is every bit as important for

practical use of small sensors as the sensors accuracy.

1.7 Research Objectives

In the course of this work, the author developed a new sensor platform for Metal

Oxide Semiconductor gas sensors, the details of which are described in chapter 2.

The research performed with these sensors permitted the literature to be built on

in the following ways:
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• As we shall see in chapter 2, there is no universally accepted “best” cali-

bration technique for MOS sensors (although work has been done elsewhere

toward this goal[91] as shown in section 3.2.3 on page 101), and there are

many variables associated with such a procedure that can affect the quality

of the sensor’s data output. The overarching work of much of this thesis is

to clarify the effectiveness of different methods of calibration (sections 3.2

on page 95 through 3.4.1 on page 120, and 3.4.3 on page 124 through 3.7.1

on page 143) for instruments carrying MOS sensors.

• Any sensor system can be influenced by its environment in unexpected ways,

and MOS sensor instruments are no different. The problem is perhaps more

severe than for most instruments, given the known issues with MOS sensor

cross-sensitivity. To clarify the work already done with these devices, nu-

merous environmental sources of error are considered, including the effects

of the day/night cycle on sensor performance, and the possibility of gases

that might cause cross-sensitivity issues being carried to the calibration site

from specific sources that can be filtered out through examining the wind di-

rection. These issues are discussed in sections 4.4 on page 166 through 4.5.2

on page 176.

• Chapter 3 describes existing analysis techniques that have been used for

MOS sensors, which once again, are not universally agreed upon. Linear

regression fits require a simple equation for matching sensor output voltages

to gas concentrations, which is not universally agreed on. Beyond this,

more advanced data analysis techniques, useful for improving performance

of MOS sensor instruments, are given in sections 3.7 on page 137, 3.4.2 on

page 120 and 4 on page 146 through 4.1. Machine learning techniques have

also occasionally been used in the literature, although a detailed investigation

into the best method for using artificial intelligence to fit data to reality is

beyond the scope of this work, an overview of one technique and results

producing it is included in appendix C.
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• The physical features of MOS sensors require special consideration in both

instrument hardware and experimental design. The effects of manufacturing

variations, the time a sensor takes to stabilise, and the difference actively

drawing air with a fan past the sensors makes to their response are all in-

vestigated in chapter 5.

• That variations in the sensor manufacturing process can produce MOS sen-

sors with different sensitivity characteristics even through the same design

has been known for some time. A large-scale systematic examination of this

issue is made possible by the unique technology of the instrument developed

by the author - as described in section 5.3 on page 190.

• There have been several deployments of mobile air quality instruments de-

scribed in the literature, which are reviewed in the next chapter. Building

on these experiments with “roving” devices, a case study is described in sec-

tions 6.2 on page 209 through 6.2.3 on page 222, leading to discussion of

representivity and the regional transport of atmospheric pollutants.

• The low cost of small sensors enable many of them to be run in the same

place, at the same time. A case study shows one way of using this ability to

attempt to pin down the rate at which nitrogen dioxide concentration in the

atmosphere changes, in sections 6 on page 195 through 6.1.5 on page 208).



Chapter 2

Review of low-cost gas sensors

and instruments

In this chapter the design of the sensor platform will be discussed, beginning with

a comparison of existing hardware components. There is a definitional distinction

that will be important in this work:

• Sensors, referring to components that detect environmental variables and

change their output accordingly.

• Instruments, which are platforms containing one or several sensors, any elec-

tronics or hardware features needed to support them, as well as a means of

recording or transmitting data.

Drawing firm conclusions on the capabilities of any one type of sensor is made

more complicated by the fact that their performance is naturally affected by the

instruments that mount them and, perhaps critically, the data analysis techniques

used to calibrate them.

A review of calibration techniques will be presented later in section 3.2 on page 95.

Here, a rundown will be made first of the individual sensor elements themselves,

50
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and then of the most prominent currently available instruments. What represents

the cutting edge will doubtless change over the course of the next few years, just

as it has over the last few in a rapidly evolving field. The lessons that can be

drawn from existing instruments are enduring, and these informed the design of

the bespoke equipment that facilitated this work even when it began four years

ago.

The objective is to produce a list of essential features for a sensor platform that

will be suited to the requirements mentioned in section 1.7 on page 47.

2.1 Metrics of performance

There are several valid criteria for evaluating the performance of a particular com-

bination of sensor, instrument and fitting technique. The simplest is the standard

deviation of the residual (equation 2.1),

σxr =

√√√√ N∑
i

(xi − ri)2 (2.1)

where x is a predicted value and r is a reference value. σxr gives a threshold differ-

ence between the sensor’s prediction and the reference that the sensor is capable

of meeting 68.2% of the time. 2σxr this gives the range of values within which

roughly 95% of the sensor’s data points lie, and this latter metric is more rigorous

for determining typical instrument performance. It is referred to in this work as

RSE, residual standard error, although occasionally the undoubled standard de-

viation is referred to explicitly. RSE is a straightforward measure of the typical

difference between predicted and actual concentrations, but for situations where

the reference instrument measures extremes of concentration, residual standard

error can be misleading - for example, an RSE of 50 µg m−3 represents a more

forgivable error if the atmosphere at the time contains 500 µg m−3 of a target gas,
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as opposed to say 10 µg m−3. An alternative is fractional error (equation 2.2),

δFE =

√√√√ N∑
i

(
xi − ri
ri

)2 (2.2)

, where a fractional error of one or greater means the sensor predictions differ

from the reference by an amount that is comparable to or larger than the actual

concentration of gas in the atmosphere. Fractional error complements RSE as

a measure of fit quality at a particular point. Another measure is the Pearson

Correlation Coefficient (PCC) (equation 2.3),

ρ(x, r) =
1

N − 1

N∑
i

xi − x
σx

ri − r
σr

(2.3)

where x is the mean and σx the standard deviation of the predicted values. This

value returns between zero and one for positively correlated values. The closer to

one it is, the closer the reference and predicted gas concentrations are to moving

in concert. A good PCC score means the instrument is sensitive - increasing its

predicted concentration when the gas becomes more concentrated, and vice versa

- but not necessarily accurate - higher PCC doesn’t mean there is not a linear

offset between prediction and validation, unlike the RSE and FE statistics.

For most of the scientific literature, sensor performance is given in terms of abso-

lute error (measured in this thesis in micro grams per meter cubed) or correlation

between a sensor’s output and a reference. Since this is a univariate comparison,

correlations given in the literature as coefficient of determination (R2) are con-

verted to PCC by taking the square root. Occasionally other statistical metrics

are used that do not directly convert into these standards; these will be noted

when used, although direct comparisons are different.

An additional important metric is the detection limit of a sensor. This is the point

above which a specific substance becomes distinguishable from no substance. By
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convention, the instrument detection limit is the level of substance that produces

an average signal equal to three times the standard deviation of the “noise” output

of the instrument, that is, the signal produced when none of the target analyte

is present. The detection limit for an entire experimental method incorporates

the instrument detection limit, along with any introduced noise due to dilution or

other complications from sample preparation.

2.1.1 Accuracy requirements

The regulatory demands on a sensing system are quite complex in Europe and vary

from region to region. As mentioned in section 1.5.4 on page 38, the standard

reference instrument for NO2 and NO is a chemiluminescence monitor system,

with typical specifications given for linearity (1-2%), lower detection limits (less

than 2 µg m−3), full-scale precision (1%), and 95% response time (less than 180

seconds)[112]. This may not be appropriate for small sensors, which as low cost

devices can be designed for a different level of performance.

As mentioned in section 1.4.1 on page 29, NO2 and O3 concentrations change in

a distinctive daily cycle. Figure 2.1 shows this in data taken from the AURN

station next to the University of Leicester (number UKA00573), an urban back-

ground site. The peaks in NO2 concentrations correspond to the increased traffic

during rush hour, although this AURN station experiences generally lower NO2

than most urban background sites[17]. Except in rare episodes, NO2 in urban set-

tings in Europe varies between 5-90 µg m−3[24]. The World Health Organization’s

European guidelines[149, p.179] for NO2 suggest a maximum one-hour threshold

of 200 µg m−3, justified by the effects acute exposure to the gas can have on asth-

matics, and a yearly average of no greater than 40 µg m−3.

The data quality objectives of EUROAIRNET[150], a project by the European

Environment Agency to produce a continent-wide sensor network, are expressed
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Figure 2.1: Data from the University of Leicester AURN site showing con-
centrations of NO2 and O3 through 2016, per hour of the day. The central
line is the median value, the shaded area represents the first and third quartile,
and the dashed lines represent the 5th and 95th percentile. Maximum 95th
percentile NO2 and O3 for this site in 2018 was 52.0 µg m−3 and 83.27 µg m−3

respectively[148].

in practical terms[150, p.25], derived from purposes toward which the data will be

put. For example, if trend monitoring is desired, the required precision depends

on the expected trend - of order 10% to 50% in either direction per decade. If

the trend is to be detectable after a year, then an accuracy of 1-5% is therefore

required.

The situation is different for small sensors, which should be seen as supplemental

to more expensive reference instruments, rather than a replacement for them. In

the case of these instruments, an RSE 95% confidence level of 20 µg m−3 is enough

to be able to discern representative levels of pollution - Since the upper regulation

limit is ten times this margin, and the annual mean requirement is twice that, such

a level of precision can be used to discern “good” days from “bad” with regard to

NO2 and O3 concentrations that are hazardous to human health.

The time accuracy requirement for a mobile sensor is more exacting than for a
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stationary device, where hour-long integration periods are the norm. A mobile

sensor, while being used to map NO2 concentrations, will need to take several

measurements per minute.

With regard to fractional error for small sensors, the ability to accurately report

absolute NO2 concentrations becomes important approaching the maximum one-

hour threshold rating of 200 µg m−3 - but if the typical concentrations are as low

as one tenth that level, then a lower fractional error threshold becomes accept-

able. For the AURN urban background site at Leicester, the average level of

NO2 throughout 2016 was 27.5 µg m−3, and 95% of the measurements were within

35.6 µg m−3 of this value. In the context of such low concentrations, a fractional

error goal of 0.5 is required to make useful observations.

PCC standards have been already set, in a way, by the capabilities of the other

instruments mentioned in this chapter. However, rather than having direct rel-

evance to human health, PCC is a measure of how well an instrument tracks a

reference - it refers more to the health of the instrument. With that in mind, a

PCC comparable to the best-performing sensors is desirable, but not vital.

Finally, the timescale over which these standards must be achieved again depends

on the application of the instruments. For mobile sensors, they might remain at

the calibration site for almost all of the time before being deployed, but for small,

stationary instruments, less frequent calibrations are practical. The length of time

over which a particular level of measurement quality can be achieved is then a

question of application. For the purpose of this work, results within one month

and five months from calibration time will be considered.

2.1.2 Uncertainty analysis

During the data analysis in this work, figures quoted to the right of a ± sign are

the 95% confidence interval of the quantity in question. Occasionally it may be
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more appropriate to quote the error in terms of standard deviation, which is half

the range of the 95% confidence interval. Unless stated otherwise it is assumed

that the uncertainty in any result conforms to the normal distribution.

2.2 Introduction to small low cost sensors

Recently the market for small air quality sensors has become quite crowded[151],

corresponding with increased interest in the potential of such devices from govern-

mental agencies for evaluating public exposure[24][151][152], as well as private citi-

zens and NGOs[153]. Particularly targeted toward the latter are numerous crowd-

funded projects[133] and startup companies that offer instruments that have vary-

ing levels of thought put into their quality and fidelity[154][155][156][157], as well

as small sensors that can be integrated into homemade “maker” projects[158][159].

This proliferation is likely due to both a reduction in costs for relevant electro-

chemical and MOS sensor technology and easy to use, powerful microcontrollers

like the Arduino[160][161], which coincided with the rise of the maker movement,

crowdfunding and Hackspaces. These compete for attention with instruments

made by more mature scientific companies and universities[91][50][162].

For all the diversity of approaches to instrument design, different levels of scientific

expertise represented in the companies, and demographics targeted by marketing,

a strong dividing line between instruments is the quality of scientific work sup-

porting the manufacturer’s claims of accuracy, sensitivity, and reproduceability.

What follows is a discussion of the sensor design for measuring NO2, NOx and O3.

Only sensors and instruments for which there is available published information

are used, and that are currently available at the time of writing - consequently this

section should not be seen as a review of the current state of the art, but instead

as the presentation of a representative assortment of currently used instruments,



Review of low-cost sensors 57

for the purpose of highlighting key design features and how they correlate with

a particular sensor or instrument’s level of performance. Performance statistics

for sensors are translated, where possible, into the metrics defined in section 2.1

on page 51. The discussion first focuses on the kinds of small sensor elements

available and the published evidence of their performance, moving on to the sensor

instruments that are most frequently deployed and whose capabilities are best

attested to in the literature. Mention will also be made of different approaches of

commercial instruments that highlight the pitfalls of sensor design.

This discussion was informed by reports into the performance of small sensors

produced by the EU[152], and the US-EPA[151], and a 2017 review of small sensor

types[163]. These are cited specifically in the text whenever they are directly used,

along with additional publications specific to individual sensors.
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2.3 Review of available sensors

As discussed in section 1.5 on page 31, there are two types of NO2 and O3 sensor

suitable for continuous measurement in small, low cost air quality monitors. They

are distinguished by their mechanisms of action: electrochemical (ECM) and metal

oxide semiconductor (MOS).

Numerous commercial sensors have been developed using these two technologies,

and are marketed toward manufacturers of air quality instruments. The following

section groups together related sensor elements with the same mechanism of action

and manufacturer (but possibly different packages) are grouped together.

2.3.1 Aeroqual SM50 O3

Figure 2.2: SM50
O3 daughterboard.
The grey cylinder on
the left is the sensor

element.

The Aeroqual SM50-O3[164] sensor is available as a daugh-

terboard for installation into larger instruments and can

be fitted with several kinds of Metal Oxide Semiconduc-

tor sensing elements[165] (of which the OZU and OZL have

a detection range appropriate for O3 air quality monitor-

ing). It is also the basis of several instruments sold by

Aeroqual[166] themselves. Such instruments have been de-

ployed as part of urban air quality monitoring experiments

for the last five years at least. The daughterboard features

a digital output and an integrated fan, and is supplied cal-

ibrated from the factory.

As part of the Community Air Sensor Network (CAIRSENSE) project[167], several

types of small sensors including the SM50 were tested in a small rainproof enclosure

(roughly the size of a Leicester city council household wheelie bin) next to a

regulatory monitoring site in suburban Atlanta, USA. For ozone measurements,
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the SM50 performed extremely well, with PCC of between 0.95 and 0.98 compared

to the Federal Equivalent Method instrument, a Thermo Fisher Scientific model

49i Ozone analyser.

Another study was performed in Haifa, a coastal city in Israel[168], mounted inside

a CanarIT[169] instrument. The six sensors were calibrated next to an O342M

analyzer (Environment S.A. LTD) with a precision of 0.94 µg m−3 in a commercial

district, before being installed in pairs at three locations near a busy road junction

in city, roughly 100 meters apart. At one point during the experiment, one sensor

from each pair was shuffled to a new location. Sensors from the same site exhibited

high correlation with each other with PCC between 0.92 and 0.97. Unsurprisingly,

sensors at different locations exhibited correlations as low as 0.4. However, even

for sensors at the same site, the factory calibration returned concentrations for

ozone that differed in absolute terms by up to 40 µg m−3, in spite of their good

correlation.

The SM50, as the core of the Series 500[166] sensor manufactured by Aeroqual,

achieved good correlation with an urban reference UV-absorption instrument in

Edinburgh, UK[170] over two months, producing PCC values of 0.95 against a

reference EnviroTechnology 400E photometer. It was found to have a small linear

offset from the factory calibration that could be simply corrected after a deploy-

ment against a reference instrument.

The conclusion is that MOS O3 sensors can display a high degree of repeatabil-

ity and are thus useful for determining spikes in the background levels of ozone,

but factory calibrations cannot be relied upon alone, particularly for measuring

absolute values of ozone concentration.
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2.3.2 SGX MICS series O3

Figure 2.3: MICS
OZ-47 demonstration

board

The SGX Sensortech MICS series of MOS sensors are avail-

able as standalone components without any support elec-

tronics, but a module with the required electronics is also

available in the form of the OZ-47[171]. The individual

ozone sensor element comes in several packages - MICS

2610, a legged component[172], MICS 2611, which has an

identical sensor element to the 2610 except with a plastic

protective cap, and the MICS 2614, which is even smaller

than the 2610 and is designed to be surface-mounted[173].

Their extremely small size and low cost make them an

attractive choice for Original Equipment Manufacturers

(OEMs) of scientific instruments.

In spite of their forming the core of many instruments, after a recent purchase of the

manufacturer by Teledyne, the MICS ozone sensors are no longer available[174].

Figure 2.4:
MICS legged

sensor

A study was carried out in the coastal city Aveiro, Portugal[175],

with a suite of reference instruments installed in a van at a road

intersection, side by side with commercial small sensors over a two

week experimental period. The reference instrument for ozone was

an Environnement O341M UV absorption instrument. Two instru-

ments contained MICS sensors: the Libellium ISAG (no longer avail-

able), and the handheld AirSensorBox instrument (developed by the

EuNetAir group[176]). The AirSensorBox was only capable of a PCC of 0.36, and

a root mean square error of 16.1 µg m−3 for O3. In the same study, the ISAG

instrument used the same sensors and scored a comparably disappointing PCC,

and was out by some hundreds of parts per billion.
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By contrast, in Zurich, Switzerland, six custom sensor enclosures based around

the OZ-47 module were deployed over three months at several urban air quality

monitoring stations[177]. The reference stations use ultraviolet photometry and

have an hourly uncertainty of 4.1 µg m−3 at the limit 120 µg m−3[178, p.44]. The

urban pollution in Zurich is moderate, as it has a service-based economy with little

heavy industry and motorized traffic accounting for 47% of NOx emissions[178].

This sensor experienced a root mean square error of 6-10 µg m−3 and PCC of

0.84 for O3, when calibrated using a linear equation that took temperature and

humidity into account. The study conclusion notes that the sensors were accurate

only in the first 1-3 months of operation, beyond which their response changed.

Figure 2.5:
MICS sur-
face mount

sensor

In 2014 a study in Denver, USA was carried out, using custom in-

struments fitted with MICS-2611 sensors[50], which were deployed

at a central air quality monitoring station for two nonconsecu-

tive weeks, separated by several months. The instrument, called

the mPod, returned varied results compared to a reference station

equipped with a Teledyne 400E ozone photometer, with residual

standard error ranging from 8.2-29 µg m−3 for O3.

The large variation in performance between different MOS sensors underscores the

importance of good instrument design in getting the best out of the fundamental

components. At the same time, the best results from these studies hint at the

potential of this class of sensor for reliable ambient air measurements.
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2.3.3 Unitec Sens-IT

Figure 2.6: Sens-
IT module, with inlet
and outlet on the top

and bottom.

The Unitec Sens-IT[179] is a MOS O3 sensor module. It has

an aluminium chassis containing a fan, support electronics

for a calibrated digital output and the sensor itself. It is

clearly intended, like the SM50, to be incorporated into a

larger instrument (although it is much bulkier, being about

the size and weight of a grapefruit[180]), and also arrives

calibrated from the factory. It can be found at the core of

the larger ETL-3000[179], a standalone air quality monitor

marketed by the same company.

In spite of being available for several years, published studies

on the Sens-IT module’s capabilities are limited. The ETL-3000 has been tested

in a closed gas cell[181], exposed to randomized concentrations of O3 of up to

200 µg m−3. It performed modestly, with a standard deviation at 200 µg m−3 of

6.6 µg m−3. These results are not directly comparable to field tests, and all other

measures of the Sens-IT’s performance are produced by Unitec themselves.

2.3.4 Alphasense OX-series

Figure 2.7:
Alphasense

A-series

Alphasense produce many types of electrochemical sensor, and the

OX series focuses on measuring ozone[182]. Unlike with MOS sen-

sors, which can have a very small sensing element compared even

to surface mount devices, the electrochemical sensors are a fuel cell

within which a reaction occurs with atmospheric gas to produce a

very small current, which is proportional to the concentration of

the gas in question. Because of this, the size of the cell affects its

performance characteristics[137], even between sensors that otherwise share the

same chemistry. This series of sensors has been supplanted by the B431, but the
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B421 sensors are compact, cost around a hundred pounds per element, and their

modest power requirements and established reputation mean they are commonly

used[152]. The most widely tested model is the OX-B421, although Alphasense

only sells the similar B431 and A431 online. The B-series[183] has a greater surface

area than the A-series[184] and is intended for use in larger instruments[137].

The OX-B421 was given a thorough investigation in a study published in 2017[185]

as part of the AQMesh instrument. The sensor was subjected both to an artificial

atmosphere in a gas cell with reference instruments, and field testing in Oslo,

Norway next to four different air quality stations equipped with Teledyne API 400

UV photometry instruments for detecting O3.

Figure 2.8:
Alphasense

B-series

Two sensors were tested in the artificial atmosphere, and demon-

strated a good linear response to the concentration of O3 present

(PCC of 0.99 compared to the chamber’s reference analyser), al-

though the factory calibration was found to be off by up to

7.5 µg m−3, from an admittedly small sample size. The chamber

concentration ranged up to 150 µg m−3.

The larger part of the study took place over six months. For the first three

months, 24 AQMesh instruments were placed together next to a reference air

quality monitoring station, before being distributed between three other stations

in groups of at least four. Ten sensors remained at the first station to provide an

assessment of their long-term performance.

The results of this experiment for the first three months are highly variable, with

the best correlation between sensor and reference being 0.8 for O3, but with eight

of the ozone sensors giving a correlation of less than 0.5 (one as low as 0.09),

and an average standard error of 44 µg m−3. By the authors’ own admission, field

calibration of such sensors remains a challenge.
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2.3.5 Citytech Sensoric O3-3E1F

Figure 2.9:
O3-3E1F
sensor,
mounted
on a circuit

board

The Citytech Sensoric is a prominent, but less widespread series of

electrochemical sensors, and the O3-3E1F[186] is available as an in-

dividual component for OEMs. In 2018 Sensoric have introduced

an ozone sensor tailored for emissions testing[187]. The O3-3E1F

ozone sensor has not been widely tested, but was part of a study

in 2015 performed in Ispra, a small coastal town in Italy[188]. The

study lasted six months, and involved placing a cluster of instru-

ments close to the inlet of a reference air quality monitoring station

equipped with a Thermo Environment 49C UV photometer.

The purpose of the study was to evaluate different calibration methods, but in

terms of comparative performance the Sensoric devices achieved a PCC of 0.92 to

0.97 between the predicted and reference datasets during a two week calibration

period, and 0.76 to 0.9 in the remaining eighteen weeks of the experiment.

2.3.6 SGX MICS series NO2

Figure 2.10:
MICS sur-
face mount

package

Like the ozone sensors by this manufacturer, the same sensing ele-

ment is sold in many different packages. Two of these have been well

tested in the literature: the MICS 2710[189], which is a through-hole

enclosure containing a single element which principally responds to

NO2, and the MICS 4514[190], a dual sensor that houses a NO2 sen-

sitive element with the same properties, and another which responds

to hydrocarbons.

These NO2 sensors have failed to perform consistently under field conditions. Dur-

ing the Aveiro study[175], the ISAG instrument returned an almost completely in-

coherent PCC of 0.14 and was once more out by several hundred micrograms per
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meter cubed for NO2 compared to the Environnement AC31M chemiluminescence

reference.

In the Colorado study[50], these sensors produced a far better match from their

two weeks of calibration as part of the mPOD instrument against a Teledyne 200E,

with a median root mean square error of 16.0 µg m−3. During the calibration period

the mean atmospheric NO2 concentration was close to 30 µg m−3

The MICS 4514-equipped sensors in the Ispra study[188] had modest PCC scores

during calibration of between 0.72 and 0.88, and for the rest of the experiment

they achieved a PCC of only between 0.1 and 0.12. The reference instrument was

a Thermo Environment 42C.

Importantly the Aveiro study[175] returned much higher PCC for the sensors dur-

ing two weeks of calibration (on average 0.86), than during the subsequent roughly

eighteen weeks of validation (between 0.24 and 0.25). Even then, this was with

a linear regression model that included a corrective term for ozone concentration,

without which the sensor performed far worse.

In spite of a mixed record of performance in the field, the sensors exhibited a good

instrument-to-instrument correlation, of between 0.93 and 0.98[50], suggesting that

they are providing indicative measures of air pollution, and would benefit from

more advanced calibration techniques incorporating corrections for O3 interference.

2.3.7 Alphasense NO2 series

There are several currently available Alphasense electrochemical NO2 sensors.

These differ in their physical size (and hence somewhat in their performance),

and in their electrode configuration. The A1 and B1 series have three terminals

and are recommended for higher NO2 concentrations. Of these the smaller A1

found use in the CitiSense instrument[151]. The A43F and B43F have four elec-

trodes and are better suited to the low NO2 concentrations found in environmental
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monitoring. The A1 and B43F sensors have not been tested against each other

under identical conditions, but nonetheless their performance is demonstrated in

several experiments.

The US-EPA performed testing of the A1 series in a gas cell as part of a CitiSense

instrument[151]. The reference instrument was a Thermo Scientific 42C chemilu-

minescence monitor. In such controlled conditions, the sensor achieved a PCC of

0.98. Mead et. al.[91], in a seminal paper, did the same with A1 sensors and their

own bespoke support electronics, and achieved PCC of better than 0.99. The gas

cell used carefully control of mixing ratios for reference NO2 and purified air as

the reference.

In field measurements by the same Cambridge University group[91], two bespoke

instruments (complete with NO and O3 sensors from the same manufacturer) were

installed with a roadside AURN station for three days. The AURN station used

a Thermo Environment 42C instrument for measuring NO2. Differing from other

field installations mentioned above, in this case the sensors used an inlet pipe and

were stored indoors, reducing interference from ambient temperature variations.

During this time, provided corrections were made using the other sensors, the

NO2-A1 achieved PCC of 0.89 and 0.97.

Field measurements were performed at Hrkingen in Switzerland, during which in-

struments equipped with B43F-NO2 and B4-NO sensors were located at reference

stations for a month[191]. The reference instrument was a chemiluminescence

monitor capable of a measurement uncertainty of 4.1 µg m−3 for concentrations

close to the limit value of 80 µg m−3. While the paper examined several advanced

means of calibration which produced better results, using simple linear regression

the sensors achieved a PCC of 0.77-0.87 against for the urban background and

urban traffic reference sites respectively, and these numbers are most comparable

to other sensors.
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By contrast, during the Ispra survey[188] two B4 series sensors were placed on a

demonstration board in a custom enclosure. The results were less encouraging in

these circumstances, capable of only PCC of 0.33 and 0.47 during the two week

calibration period, although developing the calibration model in this experiment

was harder for NO2 than for O3 because of a narrow range of ambient concentra-

tions during the calibration period.

In the Aveiro study[175], the B4 sensor (as part of the AQMesh instrument) per-

formed with distinction, achieving a PCC of 0.94, and root mean square error of

1.9 µg m−3 compared to a reference Thermo Scientific 42C. The AirSensorBox[176]

performed very differently, to say the least, with a PCC of 0.24, and a root mean

square error of 15.0 µg m−3 for NO2.

This particular study is instructive because with, several different instruments

utilizing the same sensor under identical conditions, it produced data of drastically

different quality. It shows just how critical variations in instrument hardware

design and software can be. Another lesson is that calibration becomes markedly

better, even in the outdoor atmosphere, when efforts are made to ensure that a

packet of air entering the calibration setup is split and arrives at the reference

instrument and the device under test at the same time.

2.3.8 Citytech NO2-3E50

A sister to the O3-3E1F in the Sensoric series, the NO2-3E50 is an electrochemical

sensor tailored to the measurement of nitrogen dioxide[192]. This sensor has been

tested alongside Alphasense devices.

In the Ispra study[188], two 3E50s were mounted on an evaluation board for cal-

ibration. A simple circuit that converts the raw current data from the sensor

element into voltages that can be read into a datalogger is not a full sensor sys-

tem, and thus not directly comparable to the Alphasense devices mounted in an
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AQMesh. Nonetheless the sensor performance was good, provided interfering gases

were taken into account, for the calibration period with PCC of 0.87 and 0.74.

The validation period was not nearly as good, with PCC of 0.28 and 0.24.

For the Aveiro study[175], the sensor was mounted in the ECN Airbox. This

design used a patented filtering and humidity sampling system for the NO2 sensor.

Software problems cut out roughly one third of the captured data, but during the

co-location experiment the instrument’s advanced design performed well, returning

a PCC of 0.94 and a root mean standard error of only 4.4 µg m−3. This latter value

is inferior to the one obtained by the AQMesh. The average annual concentrations

of NO2 in Aveiro are 25.1 µg m−3.

2.4 Summary: What sensors to choose?

Table 2.1 on the next page shows an overview of the capabilities of the above

sensors and their recorded sensitivity. The sensor element is the core of any in-

strument, but the principal general conclusion from the above review is that the

exact implementation of the sensor can make or break instrument performance.

Both electrochemical and MOS sensors have shown potential for air quality moni-

toring, but neither have a decisive advantage in terms of accuracy, and the physical

characteristics of such devices involve a very different set of trade-offs for each type.

Building an instrument that can be equipped with either type of sensor will in-

crease instrument size and complexity, but would also allow for maximum flexibil-

ity, or the possibility in future work of hybrid designs.

Among MOS sensors, the MICS series seems the logical choice. They are by far

the smallest and cheapest, and although reviews in the literature are mixed, these

sensors aren’t appreciably inferior to other available MOS devices.
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Primary gas Brand Sensor Type Form Cost Performance

O3

Aeroqual SM-O3 MOS Board Medium Good

Unitec
Sens-IT MOS Module High -
OZ-47 MOS Board Medium Good

SGX
MICS 2610 MOS PTH Low Poor
MICS 2611 MOS PTH Low Poor
MICS 2614 MOS SMD Low -

αSense OX-B421 ECM PTH Medium Poor-Good
Citytech O3-3E1F ECM PTH Medium Good

NO2

SGX
MICS 2710 MOS PTH Low Poor
MICS 4514 MOS SMD Low Fair-Good

αSense
NO2-A1 ECM PTH Medium Good
NO2-B4 ECM PTH Medium Poor-Good

Citytech NO2-3E50 ECM PTH Medium Fair-Good

Table 2.1: Table summarising sensor models discussed in section 2.3 on page 58
above. The types are MOS: Metal Oxide Semiconductor, and ECM: Electro-
chemical. Form abbreviations are PTH: Pin Through Hole, a legged electronic
component. These tend to be larger than SMD: Surface Mount Devices. Cost:
Low means less than ten pounds per unit. Medium means less than a hundred
pounds. High means less than a thousand pounds. Performance refers to per-
formance during calibration (next to a reference) in the field. “Good” means

achieving a PCC of greater than 0.9.

Between electrochemical sensors, the most well tested were the Citytech and Al-

phasense series. Both have exhibited inconsistent performance depending on the

design of the instrument around them, but both have proven that they respond

to an extent to pollutant gases. One possible factor that has made Alphasense

devices more prevalent is the Analog Front-End (AFE) boards, which use stan-

dardised electronics built by Alphasense. The highly sensitive electronics required

to measure variations in the sensor output current have been noted as a possible

cause of unreliability[175]. The AFE can be equipped with up to four sensors

together and provide a compact and convenient analog output voltage, using an

amplifier design built by the sensor manufacturer.

As referred to in section 1.5 on page 31, which detailed the different means of

measuring nitrogen oxides in the atmosphere, a critical factor in the deployment of

small sensors is cost. Reducing the deployment costs of sensors directly translates
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to an improvement in spatial resolution for experimental campaigns that can then

afford to deploy multiple instruments with a limited budget.

For this reason, MOS sensors will receive the most thorough examination in this

work. Both MOS and electrochemical sensors have performed inconsistently in the

field, which gives a great opportunity for understanding. But MOS sensors are far

smaller, cheaper and more compact, and thus for practical reasons they are more

attractive.

2.5 How MOS sensors work

It has been known for over forty years that heated metal oxides change resistance

in response to the composition of the atmosphere around them[193]. For example,

sensors using a SnO2 substrate are sensitive to a large number of hydrocarbons,

and they have been used in industrial safety equipment and chromatographs[194].

Other MOS materials have been investigated, including Ga2O3 and WO3, which

have different gas sensitivity profiles[195][196], and additives can also change the

sensitivity profile of the devices dramatically[197], although as mentioned previ-

ously all such sensors exhibit significant cross-sensitivity.

The resistivity of silicon-based semiconductor can be changed by doping the mate-

rial, adding impurities that inject electrons or holes into the lattice. Metal oxides

work differently, with changes in the lattice itself determining the availability of

charge carriers. Oxygen deficiency in SnO2 causes it to exhibit n-type semiconduc-

tivity, as the oxygen vacancies accompany the formation of free electrons[198]. NiO

with deficient metal atoms becomes a p-type semiconductor, with the electroneg-

ative oxygen withholding electrons from the lattice and producing holes. Such

materials used for gas sensors can be doped or plated to fine-tune the sensor’s

response to target gases[199].
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MOS sensors are manufactured with different types of porous surface geometry,

from granules to nanotubes and fibres. The structure of a typical MOS gas sensor

is shown in figure 2.11, and is based on the model of MOS sensor behaviour given

in Naisbitt et al. [200]. This equivalent circuit model defines three regions of the

semiconductor - the surface which interacts with gases in the atmosphere, the bulk

which is unaffected by it, and the particle boundary which lies inbetween these

two regions. The particle boundary is situated at a distance from any material

exposed to the atmosphere equal to the Debye length: the distance into the sensor

that chemical electrostatic effects can propagate, which is related to the material’s

physical properties.

The sensor will have a baseline resistance that is related to the bulk and particle

boundary resistance, but because of the random geometry of the granular sensor

surface[201], this baseline resistance will vary between individual sensors, as will

the gas responsiveness[200].

When the sensor material is warmed to between 100oC and 500oC oxygen molecules

will adsorb onto the surface of the semiconductor material, possibly splitting into

negative oxygen ions if the temperature is high enough. On an n-type semicon-

ductor, the oxygen molecules become ionized and draw electrons from the surface

region, and the lack of charge carriers will reduce the sensor’s conductivity. For p-

type semiconductors, the electronegative oxygen molecules inject additional holes

into the surface layer, making it more conductive than the bulk[199].

While different gases in the atmosphere react chemically in different ways to

the semiconductor material, for the purposes of this work “reducing gases” are

molecules that bond to the sensor surface and donate electrons into the lattice,

which will lower the resistance of an n-type material and do the opposite for

p-type. CH4 is a typical reducing gas. Oxidising gases like NO2 will have the

opposite effect[196][193]. Sensors are designed to respond most strongly to one

or more “target” gases. The working temperature that gives the best response



Review of low-cost sensors 72

will vary depending on the material of the element itself, any impurities and the

particular target gas[197].

Any sensor material may participate in reactions with a variety of different gas

species in addition to the target gas. In ideal conditions these reactions are re-

versible and have an equilibrium point determined by the temperature of the

sensor - however, some reactions (which vary depending on the chemistry of the

sensor’s active surface) may be irreversible and will poison the sensor, making it

less sensitive[132][196]. The natural consequence of this system of reactions is that

although the chemical properties of the sensor material and the temperature of

the element might favour reactions with a particular target gas, cross sensitivity

with many different species is unavoidable.

Although deployment of multiple different sensors can compensate for the cross-

sensitivity issues in calibration, it can’t eliminate it. MOS sensors can thus be

used only in situations where any interfering species can either be measured by

another means, or they must be calibrated regularly and used in locations where

the background levels of possible interfering gases vary in concentration more

slowly than the target gases.

Modern monolithic MOS sensors have a built-in resistive heater for bringing the

element up to optimum temperature, but the actual surface temperature is a func-

tion of the power dissipated by the heater and the ambient conditions. The heater

resistance reduces over time[203] and this variation has a corresponding effect

on the device’s operating temperature, and hence selectivity, as the sensor ages.

Ambient humidity can also influence the conductivity. Water vapour adsorbed

onto the sensing layer can react and act as a reducing gas, mitigating the sensor

response to oxidizing gases[132].

In addition to these environmental factors, an initial warm up period is required

for the sensors to achieve chemical equilibrium with the atmosphere. When cold,

volatile substances such as water vapour deposit onto the sensor surface[197][128].
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Figure 2.11: Diagram of the various types of interaction between atmospheric
gases and a MOS sensor surface. In the leftmost region the sensor is unpowered
(and exhibits the base resistance). The three other regions of the diagram de-
scribe different processes that actually occur simultaneously to varying degrees.
The sensor’s output is the resistance across the whole of the sensor material,
which forms a resistor network with contributions from both the bulk and sur-
face regions (although the non-sensitive surface will have similar properties to
the bulk). This model of the sensor material also explains the wide variation
in base resistance between individual sensors of the same type, as the random
nature of the surface geometry means an equally random network of resistances.
This diagram is a two dimensional representation of a three dimensional mate-
rial; in an actual sensor, the sensitive region is spread into the surface with a
distance dependent on the geometry of the sintering. Image first published by

the author in Peterson et al. [202].

The warm up time is the period after which changes in sensor response can be

attributed to changes in atmospheric composition, an equilibrium that can be

determined to have been achieved when sensor response no longer changes with

time in a fixed atmosphere. This must be determined pre-deployment for each

sensor. A compromise between precision (longer warm up time) and time efficiency

(shorter warm up time) must be made - to inform this, an investigation into the

warm-up time is detailed in section 5.2 on page 183.
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2.6 Review of instrument designs

Beyond choosing the right kind of sensor element, the design of the instrument

containing it is critical. Features that directly support the sensor, such as the

quality of the electronics interfacing with it or the use of fans to circulate air past

it, directly affect data quality. The ability to run off solar panels or transmit data

wirelessly can make an instrument more flexible, and thus easier to deploy. There

is a vast gulf between lab-made prototypes and complete commercial instruments

ready for deployment by anyone who buys one, and building a device more useful

to the latter demographic will allow a reliable sensor to be widely applicable.

Several instruments have been the subject of field air quality tests, and as we shall

see, many contain vital lessons on clever instrument design. But there are plenty of

instruments that fill the opposite end of the quality spectrum. Even instruments

that fail to perform well can still teach lessons about making informed design

choices, but unfortunately some of these instruments are being marketed to this

day, in many cases producing unreliable and unverified data. A comprehensive

review of Kickstarter air quality instruments is impractical here. Instead, as with

the discussion of sensor elements, a selection of notable examples will be mentioned

in this section.

2.6.1 AQMesh

The AQMesh[162] is one of the most widespread small air quality sensors. It

has been sold for nearly a decade and been through many revisions during that

time. The essential features of the instrument are a pyramidal metal enclosure

containing a number of sensors, along with a GPRS (General Packet Radio Service)

transceiver that broadcasts data over the mobile phone network[204].
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The definitive version of this instrument is equipped with a large battery and a

cluster of electrochemical sensors. Sensors are exposed directly to the environ-

ment on the underside of the housing, and because of their extremely low power

requirements, the system can run for over a year on its internal batteries, requiring

neither external electricity nor a solar panel. Other version of the sensor can be

fitted with MOS sensors, sound detectors and particle counters, some of which

require a fan to draw air into the instrument, and all these power-thirsty devices

require an external power supply. The sensor’s electronics design is semi-modular,

with a single main board carrying the principal sensors and support electronics,

and a daughterboard can be fitted to supplement these sensors.

AQMesh is one of the few commercial sensors to have rigorous procedures in place

to teach end users how to take accurate measurements, specifically with a sensor

afflicted with changing performance over time. Their calibration procedures are

standardised, and they make use of proprietary algorithms to convert raw data

into gas concentrations[167]. The unit cost is close to £10,000, which is quite high,

but includes data processing and experimental support services.

The AQMesh has been used in various studies[175][185][91][138], and is commonly

equipped with Alphasense sensors for air quality monitoring. The diversity of the

models available makes it hard to draw definitive conclusions about sensor design

from AQMesh performance, as the exact hardware being tested is not always

mentioned, but it is a concrete example of the kind of features expected in a

successful sensor.

It should be noted that a recent version of the AQMesh has demonstrated improved

sensitivity in field testing, but these results have yet to be published[205].
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2.6.2 Cairpol CairClip

Figure 2.12: The interior
structure of the CairClip in-
strument with an electrochem-
ical sensor. Image credit [206].

The CairClip is among the most compact complete

sensor instruments. A schematic of the device’s in-

terior is shown in figure 2.12. The single electro-

chemical sensor sits behind a filter, and is accom-

panied by humidity and temperature sensors. It

features an extremely small fan, to ensure fresh air

reaches the sensor.

The CairClip contains an electrochemical sensor of

unknown make in an extremely compact package,

A number of different internal sensors are available,

although for the purposes of this work the important sensors are an NO2 sensor,

and a combined NO2/O3 sensor that returns a signal proportional to the combined

concentration of the two gases. These sensors showed promising results during

reference chamber testing[207] with injected NO2 concentrations up to 288 µg m−3,

recording a PCC of 0.99, but during deployment in the Ispra survey it was a

different story.

A running theme during this review has been the issues of cross-sensitivity which

must be accounted for. During the Ispra deployment calibration[188] against a

Thermo Scientific 42C, the two NO2 instruments alone only matched the reference

with a PCC of 0.24 and 0.46. With external reference instruments supplying O3

data to correct the output from the CairClip, using a multiple linear regression,

the PCC improved to 0.76 and 0.86, however during the longer validation period

PCC reached no better than 0.14 no matter the circumstances.

A survey near Houston, USA[208] underscored this result by including the com-

bined sensor. Part of the experiment was performed directly by citizen scientists,

but at two different calibration sites (one in Denver, USA and one at a local airport
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near Houston) one each of the combined sensor CairClips and a solo NO2 Cair-

Clip were placed next to each reference station (equipped with Federal Reference

Method instruments) for 24 and 30 days. During this period the reference sites

reported very low NO2 concentrations of 10 µg m−3 on average, and a combined

NO2 and O3 average concentration of 74.5 µg m−3 and 144 µg m−3. After a linear

regression was used to fit the output signal to the references, the fractional error

of the combined sensor was 1.02 and 1.16 for each site respectively with a PCC of

0.88, whereas the solo NO2 sensor managed a fractional error of 3.87 with PCC of

0.54.

The sensor is well engineered for ruggedness and its small size is impressive, but

the difference in performance between the two models illustrates the importance of

cross-sensitivity for such instruments. If the solo NO2 sensors were less vulnerable

interference from changing levels of O3, it would likely be an extremely useful

device. On the other hand, the combined oxidant gas (NO2 + O3) model can

return very useful data for distinguishing between local and regional sources of

pollution as discussed in section 1.4.1 on page 31. Provided there is also a reliable

way to measure NOx too, this might be the most exciting use of this sensor.
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2.6.3 Aeroqual Series 500

Figure 2.13: Aeroqual Series
500 handheld pollution sensor.
Image credit Aeroqual [166].

Aeroqual is a modular handheld sensor system[166],

costing $500. The Series 500 has swappable “heads”

that allow different gases to be measured, and one

of these is fitted with the SM-50 MOS O3 sensor

as reviewed in section 2.3.1 on page 58. It features

an integrated GPS antenna for location stamping

data, which thanks to its small size and eight hour

battery mean it has found a use in mobile air quality

experiments[209][210] [163]. It can also be directly

connected with a computer via USB to collect long-

term static data.

In the Edinburgh study[170] the instrument was mounted roughly two meters

away from the inlet to the urban background air quality monitoring station at St

Leonard’s. When looking at ozone alone, the instrument was capable of PCC=0.95

against an EnviroTechnology 400E photometric reference. The factory calibration

for the Series 500 instrument had a slight linear offset for O3 that could be easily

corrected for. The Series 500 can also fit an NO2 sensing head, which performed

far worse using factory settings. However, when a linear correction combining O3

readings from another Series 500 was used, the NO2 instrument achieved a PCC

of 0.94 against an EnviroTechnology 200E chemiluminescence reference.
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2.6.4 Unitec SENS-IT and ETL-3000

Figure 2.14: Weatherproof
enclosure of the Unitec ETL-
3000 instrument, which makes
use of the SENS-IT sensor. Im-

age credit S.R.L. [179].

Unitec manufacture both the SENS-IT OEM sen-

sor module and the ETL-3000[179]. The former is

bulkier than most of the sensors aimed at OEM in-

strument manufacturers, and the ETL-3000, while

more complete, is among the most expensive in-

struments in this category. It is also necessary to

re-calibrate it after a period of six months[163].

The ETL-3000 is a very complete instrument, as

befits its size (52cm high) and cost ($2250)[179]. It

has a wide array of peripheral options, including a

GPRS modem and solar panel to allow it to oper-

ate independently in the field, but it is intended as

a permanent installation and by default takes ex-

ternal power. It is clearly marketed as a rival to

bulky and expensive reference instruments, and while it is almost certainly easier

to install than a chemiluminescence sensor and boasts lower running costs[179],

its weak performance reported in reviews since its release in 2015 implies that if

someone has the space and facilities for a larger, more expensive permanent in-

strument, they’re better to go for a reference instrument that uses a technique

directly recommended by the EU and US-EPA standards[112].
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2.6.5 mPod

Figure 2.15: The interior
structure of the mPod. Image

credit Piedrahita et al. [50].

The mPod is an example of an academically de-

veloped small sensor from the University of Boul-

der, Colorado USA. First in development from

2009[211], the mPod was designed from the outset

to support scientific measurements and has already

been deployed as part of measurement campaigns

by the University of Boulder[212]. Equipped with

metal oxide sensors, it can return results for both

ozone and nitrogen dioxide. Due to its academic

background, several conclusions relevant to the use

of such sensors have been published[50], including

the importance of calibration at a specific location.

Technology from this instrument was incorporated

into the open-source U-POD instrument[213], which has a bill of materials costing

around $1000.

2.6.6 ELM

The ELM[214] is produced by Perkin-Elmer, a well-established company in the

field of scientific instruments with a history going back to 1937. Formerly known

as the Canar-IT until 2014, the ELM made use of an array of metal oxide sensors

to give readings on pollutant gases. However, it was withdrawn from production in

mid-2016 after failing to achieve its accuracy goals. Despite a superficial similarity

to the AQMesh, the ELM’s choice of sensor component meant that it could not

run off a battery for an extended time[215], and the problems with using MOS

sensors proved insurmountable.
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2.6.7 #AirQualityEgg

Figure 2.16: Air quality
egg exterior. Image credit

Chantrell [216].

The #AirQualityEgg grew from an open source

project among makers, but was eventually com-

mercialized. It is one of the most widely deployed

open-source air quality monitors, and has a his-

tory of disappointing those who expect too much

of it. After a deployment in Louisville USA of some

one hundred #AirQualityEggs in 2014, the devices

reported such eccentric levels of carbon monoxide

measurements that they were branded “dangerously

misleading”[217] by the executive of the institute

that had paid for their installation. Nitrogen diox-

ide readings were also highly inaccurate compared

to reference instruments. The initial version of the air quality egg had no fan and

a small opening in its base, causing it to accumulate stale air, and the sensors were

not calibrated before being deployed. A newer version of the #AirQualityEgg is

now in production which includes a fan and is calibrated at the factory in a closed

chamber[218].

2.7 Summary

The market for small air quality monitors was crowded even five years ago, and

the sensors mentioned in this section are representative examples of a very large

number of products. The performance of the sensors mentioned in the preceding

sections is summarized in table 2.2 on the following page.
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Gas detection Mechanical
Name Cost Detects Sensor Paper? Portable Fan Power Comms

AQMesh 10,000
Nx Ox
Cx PM

ECM Yes Outdoor Some
Long
battery

GPRS

CairClip ? NO2 O3 ECM Yes Yes Yes Battery USB

Series 500 ∼400
Nx Ox
Cx

MOS Yes Yes Yes Battery USB

ETL-3000 ∼2,000
Nx Ox
Cx

MOS Yes Outdoor Yes
Battery
Solar

GPRS
LAN

mPod N/A NO2 O3 MOS Yes Outdoor Yes Battery ?

ELM 1,000
Nx Ox
Cx PM

MOS No Outdoor Yes
Mains
only

GPRS

#A Q Egg 230 CO NOx MOS No Outdoor Yes
Mains
only

LAN

Table 2.2: Table of sensor characteristics. Abbreviations: MOS=Metal Ox-
ide Semiconductor, ECM=Electrochemical, LAN=Local Area Network through
an ethernet connection. The gas symbols Nx Ox and Cx stand for nitrogen

compounds, oxygen compounds and carbon monoxide/VOCs respectively.

From this market research, the most important aspects of small sensor design can

be identified:

• Low unit cost - The cheaper the sensor is to deploy and operate, the more

that can be bought and operated on a given budget. This allows for redun-

dancy and greater coverage.

• Portability - Small sensors are ideally designed to be portable, including

ruggedization, low weight and the ability to run independently and without

power supply infrastructure.

• Weatherproofing - Sensors that can be mounted outside or in adverse weather

improve deployment options considerably.

• Accessibility - Sensors that are easy to use as consumer electronics have a

large market potential already, although the citizen science movement has

its own problems with lack of rigor that can throw doubts on a sensor’s

suitability.

• Communications - Data collection usually needs to be accessible online, if

not in the hands of the operator through their phone.
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But further than this, there are some traits that only a few small sensors possess,

which make them stand out from the crowd:

• Rigor - Regrettably, sensors targeted at the lay population can be made prof-

itably without ever being anything more than a platform for delivering ad-

vertisements and harvesting user data. Obtaining a degree of reproducibility

and accuracy should be a non-negotiable goal for any scientific instrument.

In the current market environment, even ensuring that minimal standards

of rigor are upheld will make a sensor notable.

• Flexibility - Sensors that can be customized or integrated into larger systems

are rare, but desirable beyond their capabilities for air quality monitoring.

• Tracking - Integrating a GPS antenna will allow a sensor to be moved around

without needing to be tethered to a smart-phone and opens up possibilities

for mobile experiments.

• Ventilation - Representative measurements of gases in the atmosphere require

a way for air to reach the sensor element. Whether sensors require active

ventilation (through a fan or pump) depends on their application and the

kind of sensors being used, and some successful instruments make use of

less complicated passive air flow systems. This is a question examined in

section 5.1 on page 179 of this thesis.

• Endurance - This stems from portability requirements. Requiring mains

power is not ideal; battery operation is better; the ability to function off

solar panels or have a long lifespan is best.

• Open source - Almost all modern sensors make use of open-source devices for

the development. Aside from a moral obligation to give information freely to

the community which should weigh in the decisions of all academics, there are

practical benefits inherent in publishing the internal workings of a sensor, in
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that it expands the potential developer base for producing additional sensors

and peripherals.

Three years ago, there was no small sensor available that fitted all of the latter

criteria, and yet all of these features were either beneficial to a small sensor project

or essential to the task of monitoring air quality outright. As a consequence, the

author was assigned by the Air Quality group at the University of Leicester to

design an instrument that could meet these requirements.



Chapter 3

Novel calibration and data

analysis techniques for a bespoke

environmental sensor

This chapter describes in detail the hardware of the new instrument platform

developed in part by the author over a period of four years, and the fundamentals

of analysing data from experiments involving it. Section 3.1 on page 87 outlines

the development process and gives the current specifications of the sensor relevant

to the rest of this work. More detailed technical information can be found in

appendix A. The design of the sensor evolved in response to newer experimental

conditions - a brief overview of what guided that evolution is also given in this

chapter, and justifications for the changes in instrument configuration are cited

and described throughout the text.

For more information on the version history of the sensor, see section A.2 on

page 234.

With the essential details of the instrument as a background, a summary of cali-

bration techniques is given in section 3.2 on page 95. The development of rigorous

85
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calibration procedures for SOGS-MOS sensor systems, and a description of the first

data analysis tools that supported them, is described in sections 3.3 on page 105

and 3.4 on page 116. Performance results and a novel way of displaying changing

sensor performance over time is shown in section 3.4.3 on page 124.

Figure 3.1: Map of Leicester city, with north is directly upward. Districts are
labelled in orange and divided by white borders. The two AURN stations are
labelled in blue, with the University of Leicester station in the Victoria Park

district.

Figure 3.1 is a map of the city of Leicester, showing the location of the two AURN

stations within the city limits. St. Matthews is one of the poorest urban areas

in the UK. Victoria Park, Riverside and Abbey Park are large areas of greenery.

North Aylestone, the Space Park and the Canals region around Frog Island are the
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more industrialised sections of the city. Leafy Stoneygate is a relatively well-off

low density residential area. The West End, Spinney Hills and Belgrave contain

largely low income terraced housing, and Braunstone and Beaumont have similarly

impoverished 1930s-era detached housing. Clarendon, Dane Hills and Aylestone

are quite diverse with both low and high income houses. Working class families

and those students who cannot afford the en-suite corporate debt traps live side-

by-side in the terraces of Highfields and Evington.

Most of the data examined in this chapter comes from the long-term experi-

ment (LTE), a single sensor installation on the University of Leicester AURN

station[148], a designated urban background station. The LTE ran from February

2016 until June 2017, giving over 15 months of data from a single sensor, although

not all the data during this time could be used due to maintenance and software

errors (see section 3.3.3 on page 112). There is also a designated roadside site in

St. Matthews next to the A594 inner ring road[219]. This has no O3 measurement

instrument and so is not used in this work. Figure 3.2 shows the statistics for the

average concentrations of NO2 during the year at both of these sites, giving con-

text to the typical concentrations likely to be experienced in Leicester and giving

the comparison with the accuracy thresholds in section 2.1.1 on page 53.

3.1 Introduction to SOGS and Zephyr

Beginning in summer 2013, the Small Open General purpose Sensor (SOGS) was

initially conceived as a general purpose air quality monitor, as well as a specific

test-bed for MOS gas sensors. Developed by the author as part of their PhD

research, it evolved with the activities of the air quality group into a more gen-

eral and flexible platform that could be carried on vehicles as well as deployed

long-term at a static site. The Zephyr instrument, derived from SOGS, is the
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Figure 3.2: Data from both the University of Leicester (urban background)
and the A594 (roadside) AURN sites showing concentrations of NO2 through
2016, per month. The central line is the median value, the shaded area repre-
sents the first and third quartile, and the dashed lines represent the 5th and

95th percentile.

commercialization of this sensor system by Earthsense Systems Ltd., and a pro-

totype Zephyr served as the instrument enclosure. Over the last three years work

has gone into developing reliable calibration techniques, non-linear fitting of sen-

sor voltages to retrieve NO2 and O3 concentrations, building up to experimental

deployments and full field campaigns.

The instrument’s main board can be incorporated as a peripheral to larger systems

or as a datalogger suited to long-term deployments using a standardized electrical

interface. As well as MOS sensors, the SOGS platform has been deployed with

air opacity sensors for measuring particulate matter, more sophisticated optical

particle counters and electrochemical gas sensors. Various prototypes of the Zephyr

instrument, built around the SOGS platform, were the sources of data for this

analysis and they all consisted of a weatherproof enclosure, peripheral sensors,

fans and optional batteries.
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3.1.1 Instrument architecture

(a) SOGS Schematic (b) Expansion options

Figure 3.3: (a) A schematic of the main board of SOGS with functional regions
labelled. (b) SOGS daughterboard example configuration. This diagram shows
base board, an expansion board (through the digital Raspberry Pi header) and
instrument boards (through the analog headers). Multiple boards can be stacked
through the digital header, and up to four different analog instruments can be

connected.

The SOGS base board is shown in figure 3.3(a). It is essentially a 32-channel

16-bit datalogger (SENSORS ) with SD card storage (STORE ), alongside a pro-

grammable battery charge regulator, solar panel maximum power point tracker

with controllable power outputs (POWER), digital I/O (COMMS ) and a header

for fitting peripherals. So far a GPS/GSM transceiver has been developed to work

with SOGS and is used for measurements from vehicles, but in theory it can work

with any device that is designed to work with a Raspberry Pi computer, or be

incorporated as a daughterboard itself into larger instruments.

Sensors using SOGS have a common architecture, shown in figure 3.3(b). The

SOGS base board is connected to “instrument boards” through either its analog

or digital headers. The MOS instrument board design used to capture the data

described in this thesis is shown in figure 3.4, and carries four gas sensors targeted

at detecting reducing gases, oxidizing gases (including NO2), ozone and ammonia.

The base board is equipped with a combined relative humidity and temperature

sensor. Details of these sensors are summarized in table 3.1 on the following page.
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Target
parameter

Part number
Method of
detection

Sensitivity Range

Reducing
gases

SGX Sensortech
MICS-4514

Redox
reaction

CO
NH3

C2H5OH
H2

CH4

1-1000 ppm
1-500 ppm
10-500 ppm
1-1000 ppm
>1000 ppm

Oxidising
gases

SGX Sensortech
MICS-4514

Redox
reaction

NO2

H2

0.05-10 ppm
1-1000 ppm

Ozone
SGX Sensortech
MICS-2614

Redox
reaction

O3 0.01-10 ppm

Ammonia
SGX Sensortech
MICS-5914

Redox
reaction

NH3

C2H5OH
H2

C3H8

C4H10

1-500 ppm
10-500 ppm
1-1000 ppm
>1000 ppm
>1000 ppm

Temperature,
humidity

GE Measurement
and control CC2D25

Capacitative
polymer

Temperature
%RH

± 0.3 oC
2%

Table 3.1: Summary of different sensors used in the instrument, with infor-
mation from the manufacturer’s datasheets. The Sensitivity column for the gas
sensors lists species that are meant to have a significant, detectable interaction

with the sensor, beyond the target parameter.

The diverse sensor array is intended to help reduce the problem of cross-interference.

NO2 may be principally detected using the oxidising gas sensor, but calibrating it

in the real atmosphere might require contributions from the other sensors.

Figure 3.4: Image of the layout of sensors on a SOGS MOS instrument board.
Visible are the (a) set of sensors; the second set of sensors (b) is on the reverse

side. The MICS4514 contains two different sensor elements.

The doubling up of each type of sensor allows one set to work as a backup in case a

manufacturing defect or sensor corruption over time renders one set unusable. The

amplifier circuitry outputs a voltage directly proportional to the sensor resistance.
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3.1.2 Other instrument hardware

The essential hardware used during all the deployments described in this thesis

consisted of a waterproof outdoor casing equipped with a SOGS, MOS instrument

board and two fans. The case fans can exchange the air inside the case in less

than a second and are positioned such that they minimize cooling of the heated

active sensors. Using the fans to draw air over the sensors is essential to proper

operation of the instrument (see section 5.1 on page 179). The instrument can

be fitted with a battery and a GPS transceiver for location and time stamping,

both essential for a mobile experiment platform. While capable of using a GPRS

transceiver to send back live data, the version of SOGS used with the instrument

had a flawed power supply that would cause brownouts and disturb the sensor

data.

Figure 3.5: Cutaway of
the prototype Zephyr en-
closure, showing layout of
vital components and in-

terfaces.

The casing is quite versatile and spacious enough to

contain several types of sensors; in figure 3.5 a cutaway

of one of the Zephyr prototypes is shown with an Al-

phasense AFE and bespoke MOS sensors installed. Al-

though the sensor electronics design evolved, the signal

processing chain was had an identical design across all

prototype versions in this thesis.

SOGS has the appropriate electronics to be powered

with an external DC supply, battery or solar panels.

When equipped with a MOS sensor and transceiver, a

7200mAh internal battery lasts approximately 12 hours

when taking measurements every minute.

The MOS sensor instrument boards fit onto SOGS via

a ribbon cable and are mounted on a plinth suspended

from the sensor’s casing wall. Throughout this thesis,
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the oxidizing gas sensor element of the MICS 4514 is

referred to as the “OX” sensor, and the ozone sensing element in the MICS 2614

is referred to as the “O3” sensor. This notation provides a distinction between

NO2 and O3 (the gases) and OX and O3 (the sensors).

3.1.3 Amplifier development

(a) Reference amplifier circuit (b) SOGS amplifier circuit

Figure 3.6: Diagrams of SOGS amplifier circuits.

The sensor manufacturers (SGX[190]) recommended the circuit shown in figure

3.6(a), which has the response equation 3.1.

Vout = V5V
Rf

Rs +Rf

(3.1)

where Rf is the sensor balance resistor, Vout is the output voltage of the amplifier,

V5V is the input voltage (five volts in the SOGS instrument), and Rs is the resis-

tance of the sensor element. The circuit is a simple buffered resistive divider, and

its voltage output is not linearly tied to sensor resistance. By design it will use only

a small section of the potential range of output voltage if Rs is much greater than

Rf . From an engineering standpoint, it also has the weakness of passing a current

through the sensing element that will vary depending on the sensor’s resistance.

Power dissipated by current through a resistor scales linearly with the resistance,
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so if Rg is much greater than Rs this will affect sensor temperature. Although

the heating element dissipated more power by a factor of a thousand (of order

a few dozen milliwatts), the sensor’s response to different gas species varies with

temperature in an unpredictable way and this circuit design could thus complicate

matters significantly.

The circuit used in the initial design of the sensor (Version 0.1) mitigated both

these issues, as shown in figure 3.6(b). The output equation for this amplifier

setup is

Vout = V5V

(
1 +

Rg1

Rg2

)
Rs

Rf

( Rf

Rs
− Rb1

Rb2

1 + Rb1

Rb2

)
(3.2)

where Rs and Rf are the resistance of the sensor itself and the feedback resistor

respectively, Rb1 and Rb2 are the “boost” resistors that add a specific voltage to the

sensor output, and Rg1 and Rg2 are the “gain” resistors that cause their amplifier

to multiply the sensor output voltage by a factor (1 + Rg1/Rg2). This equation

simplifies to

Vout = V5V (kgain) (kshiftRs + kboost) (3.3)

where k terms are constants depending on the resistor values - kgain comes from

the gain amplifier, and kboost and kshift are more complex. In addition to producing

a linear output, this circuit pulls only the input bias current through the sensor

element, which using modern CMOS circuitry can be on a scale of nanoamps.

The voltage output is the quantity recorded by the sensor’s microcontroller, but the

sensor resistance is the quantity that is physically linked to gas concentration. The

inverse of equation 3.3 is equation 3.4 - Notably, the summing amplifier produces

a voltage that is negatively related to the feedback resistor.

Rs = Rf
Rb1

Rb2

(
1− Vout

V5V

1 + Rb2

Rb1

1 + Rg1

Rg2

)
(3.4)
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The actual range in resistance of the MOS sensors was unknown before the project

began; on the initial prototype the resistor values were unset and chosen after the

sensors had been acquired and measured with an ohmmeter. However, on the next

version (0.2.3) resistor Rb1 was made a 100 kΩ potentiometer balancing a Rb2 that

had a value of 10 kΩ, and the divider Rg1 and Rg2 was likewise replaced, providing

a gain of up to 20. Maximising the gain was particularly important on version 0.1,

as the microprocessor’s onboard analog-digital converter operated at only 10 bits.

This amplifier system performed well. For the deployed sensors the resistance

values were chosen after laboratory testing, and probably constrained the full

possible range of the sensors operation in atmospheres whose composition differs

significantly from that of Leicester, as drastically different sensor resistance could

cause the amplifiers to saturate.

3.1.4 Timeline of deployments

The data analysis, hardware development and deployments were worked on simul-

taneously, but in this thesis the work is presented in logical order, rather than

chronologically. The dates over which experiments were performed, and the ef-

fects they had on the sensor design are summarized below, and links to further

exploration within this work are given.

• January 2014: First attempts at deployment on the University AURN station

using sensor version 0.1.

• March 2014: First calibration results using inverse voltage equation.

• July 2014 - Designing phase of SOGS 0.2.6

• Winter 2014 - A. Brundle’s work with active/passive aspiration (section 5.1

on page 179)
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• March 2015 - Put orders in for SOGS version 0.2.9

• December 2015 - A. Aujla’s roving sensor experiments (section 6.2 on page 209)

• February 2016 - Installation of the long-term experiment (LTE)

• September 2016 - Multiple adjacent sensors deployment on the AURN sta-

tion (section 6.1 on page 196)

• June 2017 - Conclusion of long-term experiment.

The specific design details for the sensors used in this work are important context

for their deployment history. See appendix A for more information.

3.2 Review of calibration techniques

The objective of a large portion of this thesis is to investigate as many practical

questions on the use of MOS sensors for pollution detection as possible. This was

a three step process: First, the basic response of the sensor equipment to changes

in gas concentration was examined. Next, a calibration procedure was developed

for the sensors in a single reference location, with as many complicating factors

controlled for as possible. Finally field deployments were made to verify these

calibrations work in practice for real ambient air measurements, particularly in

the light of potential interference from different background gas environments.

The first step was to determine an approximate equation relating sensor response

to a target gas concentration. When the project started, aside from some terse

information about metal oxide sensor response provided by the manufacturer

datasheets [173][190], there was no clear consensus in the literature as to what

this response equation should be. An experiment was performed in Leicester[220],

using a closed gas cell with a reference Broad-Band Cavity Enhanced Spectrome-

ter (BBCEAS)[221]. This gave a provisional relation between NO2 concentration
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and sensor output, and the results of this are discussed further in section 3.2.2 on

page 99.

The analytical techniques presented in the following sections have a well-defined

process. With data from the sensor and reference over a limited calibration period

in-hand, the constants in the candidate equation are adjusted, like a pick adjusting

the tumblers in a lock, until that equation’s prediction of the concentration comes

as close as possible to the reference - with the square of the difference between

reference and prediction being minimized. This is “least-squares regression”, also

known throughout the rest of this work as “fitting”.

The method of calibration is an important question, as is whether to use a con-

trolled environment, or whether to deploy the sensors in the vicinity of a refer-

ence instrument exposed to the same ambient environment (“co-location”). Sec-

tion 3.2.3 on page 101 discusses this issue and provides the rationale for the latter

calibration setup at the University of Leicester AURN station.

Calibration essentially means comparing an instrument’s output to that of a ref-

erence, but beyond that the experimental setup can very enormously. Various

calibration setups for small air quality sensors were used over the last four years,

with the procedure being rigorously defined from mid-2015 onward. The basic

parameters for a setup are the exact arrangement of the sensors (Section 3.3.1

on page 107) and the duration of the calibration (see Section 3.4.2 on page 120).

It’s reasonable to examine also the averaging techniques used for calibrations, and

the consequences of timestamps being offset due to clock synchronization issues

(Section 4.5 on page 174).

Running a simple least-squares fit to make raw data conform to a reference is

at the heart of the data analysis work presented, but there are opportunities to

improve precision markedly with more complex analytical techniques. These are

discussed further in chapter 4 on page 146.
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3.2.1 Background of linear calibration equations

A simple model for metal oxide sensors is to consider them as devices with a

limited active surface area A. Gases which bond to this surface (covering area a)

influence the resistance of the sensor Rs, through the function f which is different

for each gas species.

The equation describing this model is:

Rs = Rb +Rg

∑
i∈G

fi(ai([Gi]), Ta, Th) +Rerr (3.5)

where Gi is a specific atmospheric gas and [Gi] its concentration, with ai being

a function giving the fractional quantity of the target gas currently adhered to

active sites on the semiconductor surface, relative to the entire semiconductor

surface. Ta is atmospheric temperature, Th is sensor element temperature, the

Rb and Rg terms are base and gas sensitivity resistances to be found, and Rerr

constitutes any error due to the sensor aging or becoming poisoned. f is a non-

linear function unique to every gas in the atmosphere, and determining its form

is the objective of this section, and different types of metal oxide sensor will have

different responsiveness to different gas species.

The a term is also unknowable through measuring resistance alone, but physi-

cally important, as each sensor element has a limited active surface area, and the

equilibrium equations represent dynamic chemical processes[193]. Ideally when

the sensor is hot, gases cycle fairly frequently between the atmosphere and the

surface of the sensor, and this keeps the a term approximately proportional to the

concentration of each gas. This approximation holds only when the characteristic

timescale of every reaction is less than the timescale over which the atmospheric

conditions next to the sensor vary. In reality each equilibrium reaction will have its

own rate equation, and some gases may adhere permanently to the sensor surface,

which will increase the a term for that gas (as more of the limited surface area is
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taken up with that gas). The sum of all a terms is proportional to, and must be

less than, the total Asensor: ∑
i∈G

ai < Asensor (3.6)

which means that any gases that latch on to the surface permanently reduce the

device’s sensitivity to anything else, and it is possible under high enough concen-

trations of atmospheric gases for the device to become saturated.

Clues as to the form of the f function for the two sensors responsible for measur-

ing atmospheric O3 and NO2 come first from the manufacturer’s datasheets for

oxidising and ozone gas sensors[173][190], as shown in figure 3.7.

(a) Oxidising gas sensor response (b) Ozone gas sensor response

Figure 3.7: (a) MICS-4514 Oxidising gas sensor element nonlinear response
to nitrogen dioxide.[190] (b) MICS-4514 Reducing gas sensor element response
to various gases. Rs is the sensor’s actual resistance, compared to the base

resistance R0.[190]

These plots suggest the following relations over the concentrations shown:

fNO2 = k1[NO2] + k2 (3.7)

and

fNO2 = k1[O3]2 + k2[O3] + k3 (3.8)
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where the k terms are constants to be found experimentally. The constants will

be different for equations 3.7 and 3.8.

3.2.2 Cell Calibration

One of the earliest experiments, carried out as described in Grant [220] in January

2014, was used a closed gas cell to determine the sensor’s NO2 response, with all

other factors controlled for. An airtight enclosure was lined with PTFE to min-

imize reactions between NO2 and the walls of the chamber, and the instruments

were set up within, so that they co-sampled the gas pumped through. NO2 levels

were controlled by injecting samples with known concentration, and varied using

a permeation tube. A reference Broad-band Cavity Enhanced Absorption Spec-

trometer instrument (BBCEAS) verified representative NO2 concentrations from

inside the chamber. Experimental data was taken by a version 0.1 SOGS/MOS

prototype (see section A.2.1 on page 234). The results are shown in figure 3.8(a).

While only NO2 was involved in the experiment, this was nonetheless the first part

of the nontrivial task of producing useful gas equations. Somewhat surprisingly,

the response of the sensor to varying NO2 takes a different form to that suggested

in the datasheet (see equation 3.7). The inverse of the MOS sensor output voltage

was proportional to the BBCEAS readings with a PCC of 0.87 over a range of

500 µg m−3. Notably the relation held even below the manufacturer’s stated de-

tection limit of 100 µg m−3. The empirical form of f derived from this experiment

is:

fNO2(VOX) =
k1

VOX
(3.9)

where the k terms are individual constants to be found for each equation. However,

at low concentrations, systematic deviation from this simple formula can clearly

be identified. At lower concentrations where the fractional error was higher, the
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(a) Voltage/concentration comparison (b) Zoom 0-100 µg m−3

Figure 3.8: Results from the BBCEAS calibration experiment, showing both
raw output voltage and inverse voltage of the same measurement. The exper-
iment demonstrated sensitivity up to 400 µg m−3 as shown in (a), although at
high concentrations the voltages from the sensors becomes quite low. A black
dashed line in a) divides the data into reference concentrations below or above
100 µg m−3, solid lines are the least squares fit from the sensor voltage to the
reference concentrations for the low concentrations, and the inverse voltage to
the reference for the high concentrations. Typical levels of, NO2 in urban envi-
ronments are not often higher than 100 µg m−3[149], although peaks can be ten
times as high. For concentrations less than this, both normal and inverse volt-
age can be seen as approximately linear. Graph (b) shows the data for inverse

voltage at low concentrations.

data could be fitted with a linear equation:

fNO2(VOX) = k2VOX (3.10)

This equation achieved a PCC of 0.73 for concentrations below 100 µg m−3. In

the United Kingdom, nitrogen dioxide concentrations generally stay below this

level, so for most cases the sensor will respond approximately linearly. At higher

concentrations, predictions using equation 3.10 will start to underestimate actual

NO2 concentration.

The results from this experiment have some important caveats. While the in-

strument responded strongly to changes in humidity[220], this response was not
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thoroughly examined during this experiment. Furthermore a calibration of air

quality sensors taking place under conditions where the sole control variable is

the target gas can demonstrate sensitivity, but the real atmosphere is a very dif-

ferent environment with many potential sources of interference not represented in

closed-cell experiments.

In spite of its limitations, calibration in a controlled environment is attractive

if it can be carried properly out with a reliable source of zero-NO2 air, because

it can clearly illustrate the sensor’s non-linear response to the target gas while

eliminating variation in interfering background gases as a source of error.

3.2.3 Calibration strategy: controlled cells or co-location?

The atmosphere is comprised of many different gas species at different concen-

trations. Taking a single gas i from equation 3.5, if the response function fi

is approximately linear, irrespective of temperature, and the area taken up by all

gases on the sensor surface a is much smaller than A, the function can be expressed

as:

fi ≈ ki[Gi] (3.11)

, roughly the product of the concentration of gas [Gi] and the responsiveness of the

sensor to that gas, condensed into the constant ki. Equation 3.5 then becomes:

Rs = Rb +Rg

∑
i∈G

ki[Gi] +Rerr (3.12)

The ki terms, however, can vary by orders of magnitude for different gases[193][197].

The simplest way of viewing a sensor calibration is as the process of varying the

concentration of a specific target gas in a controlled way, and measuring the change
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in the sensor’s output in response. The size of that response δRi is equal to

δRi = Rgkiδ[Gi] (3.13)

where δ[Gi] is the change in target gas concentration. It can be deduced from

equation 3.13 that for a gas to be detectable at ambient atmospheric concentra-

tions, the product of the its concentration and the sensor’s sensitivity to it k

must be greater than that of other gases, lest the desired signal be overwhelmed.

This leads to problems with calibrating these sensors (and indeed any instrument

that produces a single output variable) that are distinct from spectrometer-based

instruments.

A single measurement in time with instruments like absorption spectrometers con-

sist of a set of values that each correspond to the intensity of light within a par-

ticular narrow range of wavelengths. Gas concentration is derived by fitting its

absorption spectrum onto this output. Since the number of wavelengths a spec-

trometer measures can be in the thousands and a target gas’s spectrum only needs

to be the most prominent at a subset of these, a spectrometer is capable of accu-

rately resolving gases at low concentrations - indeed, spectrometric methods can

give results for several gas species simultaneously, via the structured absorption

of the different gases at different wavelengths.

MOS sensors, on the other hand, output a single voltage that is representative of

the air in front of it, air which is made up of different gas species. When all this

diversity is condensed down into a single variable, and that variable is studied for

the response to a single gas, any response from the sensor could have an unknown

number of attributions. In a closed gas cell, it is possible in theory to control

for all gas concentrations, using inert zero air and varying only the amount of

the target gas present. But this can give a false sense of security when sensors

are deployed in the field. In practice, in a realistic atmosphere, the detection

limits for a target gas with a single-output sensor like MOS are set not just by
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the sensor’s hardware and support electronics but by the chemical composition

of the rest of the atmospheric environment. This is a known issue with low cost

gas sensors[222], for example electrochemical gas sensors have a detection floor for

NO2 that is practically determined in part by the level of CO2 in the atmosphere,

shown in figure 3.9.

Figure 3.9: This diagram of the proportion of a electrochemical sensor re-
sponse that can be ascribed to NO2 or CO2 shows a practical detection limit
of around 20-30 µg m−3, depending on CO2 concentration. The conventional
detection limit is the point at which 99.6% of the response is due to NO2, which
on the diagram is the line where the green colour starts to change to yellow.
Atmospheric NO2 tends to vary between 10-100 µg m−3, so the interference from

CO2 is significant for this sensor type[222].

All this nuance is completely lost, however, when testing in a controlled atmo-

sphere. Hints as to the correct calibration equation for these small sensors can

be gained from such experiments, but practical calibration must take place in the

same kind of environment as they will be deployed in, with realistic concentrations

of the target gas competing with naturally varying background gases.
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This conclusion has been borne out in work done by other groups, particularly

a study in Denver, USA[50], which found lower standard errors during outdoor

calibrations next to a reference source, and concluded that lab calibrations added

bias and made it difficult to reproduce the range of atmospheric conditions that

sensors would be exposed to during real experiments.

In Cambridge UK, a series of experiments were done in 2013[91] with electrochem-

ical sensors, which share the characteristics of cross sensitivity with MOS sensors -

particularly the NO2 sensor, which during a calibration against an AURN station

over five days exhibited significant cross sensitivity with ambient O3 concentrations

compared to a reference Thermo-Environmental 42C analyser. This interference

can be compensated for to achieve a PCC of 0.94 to 0.95, but only if atmospheric

concentrations of those interfering gases can be measured simultaneously with an-

other instrument to produce a compensation factor. In this case, the sensors were

mounted inside a cell that was connected to the atmosphere with a tube whose

inlet was close to that of the reference instrument. While the superiority of this

technique was not a primary conclusion of the study[91], it showed the feasibility

of calibrating outdoors for gas sensors.
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3.3 Outdoor calibration

Figure 3.10: Isometric diagram of the relative posi-
tioning of Zephyr sensors near the roof of the AURN
station. The lip of the roof is roughly 3 meters from

the ground.

Co-location is the practice of

placing a sensor next to a ref-

erence, running it for a time

and then comparing the two

datasets.

The SOGS-MOS sensors were

calibrated by calculating the

best fit to the reference instru-

ments in the DEFRA AURN

station on Leicester Univer-

sity campus[148], operated by

Bureau Veritas. The NOx

analyser is a Thermo-Scientific

model 42i, which is a chemiluminescence monitor capable of reporting NO, NO2

and NOx concentrations, switching between NO and NO2 modes in the manner

described in section 1.5.4 on page 38. It has an adjustable range, but for NO2

at 955 µg m−3 it is capable of a precision of 0.76 µg m−3 which is also the lower

detectable limit. Measuring every ten seconds, it has a 40 second response time.

The ozone monitor is a Thermo-Scientific model 49i. This UV photometer has

a precision of 2 µg m−3 and a lower detectable limit of 1 µg m−3. The instrument

response time is 20 seconds, with a 10 second lag.

The intake to the AURN station has an isokinetic pump that draws air down

to the DEFRA reference instruments. The Zephyr prototypes were mounted on

the exterior of the weather station building, as shown in figure 3.10. Aside from

the reference instruments, there are two types of instrument involved in these

experiments:
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• A “long-term” SOGS-based experiment (LTE) using MOS sensors. There

were two long term instruments - the first used a version 0.2.5 SOGS base

board and a single set of MOS sensors. While an older design, the signal

processing and support electronics were similar to those of later versions used

in this thesis. This LTE instrument was deployed at the AURN station from

December 2014, before being replaced in early 2016. The second LTE, using

a version 0.2.11 SOGS base board with a newer housing, is the one used in

the analysis in this chapter. It ran for 15 months in total from February

2016 to June 2017.

• There were temporary mounting points installed for other SOGS-based MOS

instruments, some of which were Zephyr prototypes. These were involved

in several experiments but were all calibrated by being attached to plates

along a horizontal crossbar next to the LTE as shown in figure 3.10. There

are ten mounting points for these instruments, roughly 25cm apart, and all

were used in the experiment described in section 6.1 on page 196. This

group comprises any SOGS/Zephyr instrument mentioned in this thesis not

specifically mentioned as being the long term experiment.

This calibration setup has issues with representivity, due to the distance between

the sensor and the intake to the AURN’s own instruments combined with the high

spatial variability of the target gases[84], the effect of sunlight on the surrounding

NO2 and O3 concentrations and the irregular flow of wind over the setup. The

practical consequence of these issues is discussed in section 6 on page 195.

The AURN instruments take multiple measurements every minute, but these are

averaged together into hourly intervals, with the timestamp of the resulting data

matching the beginning of the hour over which the individual measurements are

averaged[10]. For calibration, measurements taken from the Zephyr prototype

instruments and the LTE must be averaged in the same way.



Hardware design and calibration 107

3.3.1 Physical configuration of the AURN site

The AURN station is located in a brick building on the University of Leicester

campus, next to a leisure center and about 10 meters from University Road[148].

The AURN station and its environs are depicted in figure 3.11.

Figure 3.11: Map of the surroundings of the AURN station at the University
of Leicester, with the station building and adjacent leisure center labelled in

blue. North is directly up in the image.
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Welford road is a busy thoroughfare that runs from the center of town south past

the Leicester Royal Infirmary. University road is less busy except during rush

hours. An experiment partly intending to measure the effects of these roads is

described in section 6.2 on page 209. The leisure center contains a swimming

pool, the chlorine from which might affect the sensors in unknown ways when the

wind is blowing in certain directions. More information on this issue can be found

in section 4.4 on page 166.

The anemometer for measuring AURN wind speeds is mounted on the roof of the

building and operated by the university. There is a separate modelled wind speed

for the AURN compiled by DEFRA that was not used in these experiments.

3.3.2 The long-term experiment

The long-term experiment (LTE) provided data for fifteen months, albeit with

some gaps during maintenance of the DEFRA reference instruments and technical

issues with the SOGS prototype (version 0.2.3, see section A.2.2 on page 235).

The LTE sensor is fitted with four MOS sensors of each type, with sensors of

the same kind mounted about five centimeters apart. In the subsequent analysis,

these sets of sensors are referred to as a, b, c and d. Sensor sets a and b are

located on opposite sides of the same PCB, likewise with c and d. As mentioned

in the previous chapter, the two sensors most relevant to our work are the oxidising

sensor in MICS-4514, referred to as “OX”, and the ozone sensor in MICS-2614,

which is referred to as “O3”. Consequently “O3a” refers to the MICS-2614 sensor

belonging to set a.

To enhance reliability, the sensor was connected via USB to a laptop that recorded

the sensor data in real time, but the sensor also recorded data to its onboard SD

card. In spite of this, technical issues caused lengthy gaps in the reported data

and also had an influence on the data received, as will be discussed below.
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Figure 3.12 shows the full long term experiment dataset. The data, at hourly

intervals, covers 67.7% of the experiment’s duration.

Figure 3.12: Data from the LTE dataset after zero voltage readings have
been removed, showing typical voltage outputs from the OXa and O3a sensors
alongside temperature (Temp.) and relative humidity (%RH) information, and

the NO2 and O3 readings of the AURN reference instruments.

Occasional digital glitches (such as reports of zero resistance from the sensor

ADCs) can result in unphysical data points that are major outliers - beyond ten

times the standard deviation. Power supply issues could cause this to happen. To

make analysis easier, these are omitted from the LTE dataset in the following.

3.3.3 Raw sensor data

As discussed earlier, the sensors mounted outside on the AURN station will re-

spond not just to their target gas, but also to environmental influences (such as

temperature and humidity), and consequently the relation between their output

voltage might not match that given in the datasheet, which is valid at 25oC and

50% relative humidity. By trimming the LTE data to include only data points
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where the temperature and humidity are close to the datasheet conditions, the

extent of the interference of unknown gases in the outdoor environment interfere

can be determined.

Figure 3.13 shows two scatter plots taken from a sample of the long-term ex-

periment data, with each point selected on condition that relative humidity was

between 45 and 55%, and the temperature between 23 and 27oC. The left plot of

NO2 shows very poor correlation; the O3 plot is somewhat better, suggesting that

the ozone sensor is responsive primarily to the ozone concentration.

Figure 3.13: Scatter plots of the resistance response of the oxidising (OX) and
ozone (O3) sensors to target gases, for data taken within 45 and 55% relative
humidity and 23 and 27oC. Note how, in the left panel, the NO2 data for sensors
c and d occur in two distinct domains, offset vertically by one to one and a half

ohm.

The signals from O3 sensor a and OX sensor d occur in two very distinct patches

in figure 3.13. A scatter plot shows the extent of the correlation between two

variables, and the shape of the patch in the scatter plot can provide clues as

to the exact relation between them. Two well defined patches, however, imply

there are two different relations that govern the correlation between these sensor



Hardware design and calibration 111

outputs. This could be a change that occurs after a specific time, and it could be

a change that occurs to one sensor, or all of them. Critically, the higher-resistance

patch of OX sensor d shows no response at all to changing reference NO2 levels.

To investigate the relation between these sensors over time, a graph of changing

correlation over time can be plotted. This graph shows the relation of a specific

sensor to the average of all of the sensors, and is thus independent of the gas

concentration response function:

Mi =
Vi
V̄

(3.14)

Where M is the “correlation meander”, V is a sensor voltage, V̄ is the average

of all sensor voltages and i identifies the particular sensor (a, b, c or d). Plotting

the correlation meander can make explicit the time component of a change in

relation between the two patches in figure 3.13. If the form of the meander changes

suddenly at a certain point in time, it means that at the very least calibrations

performed before that change will not be valid for data afterward. The correlation

meander of the LTE timeseries is shown in figure 3.14.

For sensors that are responding purely to changes in atmospheric composition,

the correlation over time would be perfectly flat. However, there are several large

transitions in the period before May 2016, during which the relationship between

the sensors is highly variable. There is another large transition in the shape of the

meander toward mid-November 2016.

These two periods correspond with power supply issues on the AURN station.

The power supply for a set of sensors on the AURN station was not adequate for

large numbers of sensors before May 2016, and was often overloaded resulting in

multiple undervoltages of the sensor’s auxiliary power supply. The effect this has

on the sensors is significant and sustained. However the largest transition between

sensors is during the period marked on figure 3.14 with a red dashed line - a power

surge at the AURN station’s main power supply occurred on the 15th of November,
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Figure 3.14: Correlation meander over time for long term experiment sensors,
both O3 and OX. Two gaps that indicate obvious changes in correlation are
marked with dashed red lines, and have been labelled with possible explanations
given in the text. The y units are dimensionless, given that they are the ratio
between one variable and the average of several of the same kind. The meander’s
value is very close to one for most of the timeseries, varying by less than a

thousandth.

and seems to have severely affected the sensors. Another power cut occurred on

the 12th of September, which affected other sensors that were calibrating on the

AURN station, but not the LTE.

The latter event might have been significant for the instrument because the lap-

top’s USB connection power would have kept the instrument’s MCU alive with the

laptop battery, and it would have scheduled taking readings, even as the sensor

was unable to save data to the SD card which depends on the auxiliary supply

connected to the mains of the AURN station. Many of the long gaps that occurred

before this time were due to the fact that the sensor firmware would shut off the

SD card saving after a single error, and consequently any interruption in the LTE

power while it was connected to the USB cable would stop it saving any data.

This error was worked around until it was fixed in a firmware update on the 18th
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of January 2017. However, during maintenance throughout the year the sensor

would have been disconnected for up to an hour, and in no case was the change in

correlation as severe as during the power cut on the 15th of November 2016 and

in the “brownout period” before May of that year.
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(a) Scatter grid of sensor correlation

(b) Colour-coded timeseries of raw sensor resistance

Figure 3.15: (a) Scatter plots showing relation between a, b, c and d sensor
resistances for both OX (upper right graphs) and O3 (lower left). The scale is
the same on every plot of the same type of sensor: 1783 to 1786 ohms for the
OX sensors and 1781 to 1786 for the O3 sensors. The scale is less important
than the shape of the different coloured patches, and the colours correspond to
different time periods, shown in (b). These time period colours are delineated
by the end of the brownouts in May 2016 and then the power cuts in November

2016.
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A set of scatter plots for the oxidising gas and ozone sensor resistances for sensors

a-d is shown in figure 3.15(a). This plot shows the changes in relative sensor

response, identifying changes after the power supply events.

Figure 3.16: Scatter showing resistance of sensor O3b vs O3d during the long
term experiment, colour coded in the same way as 3.15(b).

Figure 3.16 is particularly clear in illustrating the effects of unreliable power, as

the date from the brownout period is split into several patches. The patch after

the power surge is mostly intact, as is the patch from the middle period. In figure

3.15(a) the split between OX sensor correlation patches is even more pronounced.

The post-surge period’s patches have horizontal bars that indicate the sensor is

insensitive at some points; while the patch for the middle period is better on
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this count, there is also some splitting in this case in every one of the OX sensor

comparisons.

The fact that the disturbances in correlation occurred at the same time as electrical

issues suggests that the sensors might not be comparable across these interrupted

periods. While serious interruptions and strains on the sensor power supply might

have affected the devices in unpredictable ways, the other data might yet be con-

sistent and it will take further analysis in section 3.4.4 on page 127 to determine

the most reliable time period.

3.4 Preliminary analysis

This section describes the two important practical issues that must be resolved

before the sensors can be calibrated. One is choosing the right fitting equation,

which relates the raw sensor output discussed in the previous section to the actual

gas concentrations. Several of these are proposed in section 3.4.1 on the next page

and tested in section 3.5 on page 130. The other is determining the best time

duration for calibrations, discussed in section 3.4.2 on page 120.

A custom set of data analysis tools were developed for use with SOGS, based

on the NumPy python package[223]. The architecture for this software revolved

around “analysis objects” which contained fields corresponding to a dataset, and

methods for manipulating and processing that data. These objects simplify ma-

nipulation of large datasets, and they also track operations applied to the data

to make debugging easier. This methodology is based on the ideas of the LISA

Technology Package Data Analysis system developed for the eLISA (Laser Inter-

ferometer Space Antenna) spacecraft program[224][225], although the codebase is

not descended from it.
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In addition to streamlining the handling of large data sets, the analysis software

was able to easily visualize sensor and housekeeping data. Fit objects were de-

veloped that allowed different methodologies for fitting data to be applied to the

analysis object timeseries in an efficient way.

3.4.1 Candidate equations

The simple linear equations (3.9 and 3.10) were adequate for tightly controlled

conditions, but they contain no correction factors for other gases, or humidity and

temperature, all of which are known to be an issue for these sensors in realistic

environments. In other work it has been demonstrated that NO2 MOS sensors have

a significant, and correctable, cross-sensitivity with O3[170]. Several equations that

incorporate this interference, in addition to possible temperature and humidity

effects, have been developed empirically. The V terms in these equations refer to

voltages, which are proportional to the sensor resistance plus a constant. The two

voltages are VOX , the voltage for the oxidising gas sensor, and VO3, the voltage

from the ozone sensor. RH and T are the outputs from the relative humidity and

temperature sensor respectively. The k terms are constants to be found during

calibration. For NO2, the equations all have the form of a linear sum of terms:

• Linear equation:

[NO2] = kc + k1VOX + k2VOXRH + k3VOXT + k4VO3 + k5VO3RH + k6VO3T

(3.15)

This equation assumes that the influence of temperature and humidity is

proportional to total sensor resistance. Both O3 and NO2 have the same form

of influence, in this case that of a linear offset to the baseline concentration

kc. Temperature changes affect the strength of the influence of each gas, to

an extend governed by the k3 and k6 terms. Humidity functions identically,

through the k2 and k5 terms.
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• Multiplicative linear equation:

[NO2] = kc + k1VOX + k2VOXRH + k3VOXT + k4VOXVO3RH + k5VOXVO3T

(3.16)

This equation assumes both the temperature and humidity and, unlike the

Linear equation, the ozone interference, are all proportional to the sensor

resistance of the oxidising gas sensor. The oxidising gas sensor is a scalar

factor multiplying the effects of the ozone interference through the k4, k5

and k6 terms. The other terms function identically to the linear equation.

• Inverse NO2 Linear O3 multiplicative equation:

[NO2] = kc +
k1

VOX
+

k2

VOX
RH +

k3

VOX
T +

k4

VOX
VO3RH +

k5

VOX
VO3T (3.17)

Similar to the Multiplicative linear equation, except using inverse terms for

the oxidising sensor voltage, which may more closely match the non-linear

response of the sensors as discussed regarding cell calibration in section 3.2.2

on page 99.

• Inverse NO2 equation: This equation uses inverse terms for both VOX and

VO3. Abbreviated as Inverse.

[NO2] = kc +
k1

VOX
+

k2

VOX
RH +

k3

VOX
T +

k2

VOXVO3

RH +
k2

VOXVO3

T (3.18)

These calibration equations for NO2 account for temperature, relative humidity

and ozone interference in the sensor response.

The equations for ozone are simpler, as they assume no interference from oxidising

gases with the O3 sensor operation:

• Linear equation:

[O3] = kc + k1VO3 + k2VO3RH + k3VO3T (3.19)
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This simple equation keeps the multiplicative terms for temperature (k3) and

humidity (k2), producing an influence proportional to the sensor voltage.

• Inverse equation:

[O3] = kc +
k1

VO3

+
k2

VO3

RH +
k3

VO3

T (3.20)

An equation for Ozone with inverted voltage terms.

• k+Inverse equation:

[O3] = kc +
k1

k4 + VO3

+
k2RH

k4 + VO3

+
k3T

k4 + VO3

(3.21)

This modification of the inverse equation has an additional term (k4) in

the denominator of each to “soften” the curve, in case this helps match the

non-linear response of the sensor.

These equations are largely designed to approximate the response of the sensors

observed during early testing in the closed gas cell (see section 3.2.2 on page 99).

To determine which equation works best in practise, first the optimal calibration

period must be found (section 3.4.2 on the following page), and a methodology

must be developed for evaluating the equations in a systematic way. While the

constants discovered during fitting will mean that each equation’s output will be

similar during the calibration period, changes in the raw sensor data will affect

each equation differently - for example, when the voltage from the oxidising gas

sensor is low, the output of the linear equation 3.15 will respond less strongly to

changes in the ozone sensor voltage than the inverse equation 3.18. Consequently

the equation outputs will diverge over the long term experiment as a consequence

of the conditions during the calibration period. Section 3.4.3 on page 124 describes

a method that can allow the quality of the predictions produced by the various

equations to be compared, incorporating the effects of calibrations taken over

the entire dataset rather than a single period. This method will also answer the
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questions raised in section 3.3.3 on page 112 regarding the integrity of different

sections of the LTE dataset.

Despite the electronic issues with the sensors, it is clear that they respond to

varying gas concentrations. For example, using equation 3.16 for NO2 and equation

3.20 for O3 fitting on a month-long dataset produces the timeseries shown in figure

3.17. Throughout the subsequent sections it will be noted where assumptions have

been made about the best fitting equation to use.

Figure 3.17: A month-long timeseries from the long term experiment between
17th of March and 17th of April 2016, with predictions from the MOS sensor
data using equations 3.16 and 3.20 for NO2 and O3 respectively. The black
lines in the NO2 and O3 sections are reference data from the AURN station
instruments. The week-long calibration period is shown as a red box on the

humidity timeseries.

3.4.2 Optimal calibration time

The optimal length of time for calibrating a sensor is an important question. Be-

yond the practical consideration that a short calibration time is more convenient,

the system being measured also imposes constraints on experiments. The level
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of NO2 in the atmosphere varies on a scale of seconds and generally follows diur-

nal cycle, but concentrations of interfering gases may vary on a daily or even a

seasonal scale[226]. If the calibration is done over a long period, the unmeasured

background gases could vary significantly enough to offset the sensor response.

With no way of compensating for this effect, the accuracy of the fit predictions

would be reduced.

For this analysis, calibrations are repeatedly taken across the entire length of the

LTE timeseries, and the quality of the fit is calculated for the week immediately

afterward - provided there is contiguous data within this time. An arbitrary

equation can be made to fit, or possibly overfit, the data, if the calibration and

validation period are the same. To avoid this trap, fits must be evaluated after

the calibration period is over[227].

Figure 3.18: Various metrics of quality of calibration vs. length of calibration
period, for all four sets of sensors. NO2 and O3 are fitted using the “inverse
NO2 linear O3” equation 3.17 and the “inverse” equation 3.20 respectively. The
different coloured lines correspond to OX and O3 sensors a, b, c, and d, and the
best point on each quality curve is marked with a circle. The metrics of quality
compare the predictions of the sensors with those of the AURN station during

the validation period, a week directly after the calibration.
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Figure 3.18 is a plot of the average quality of sensor fits as a function of the length

of the calibration period, for NO2 and O3. The average of these quality metrics

are shown for each calibration length on the y-axes of the figure.

In figure 3.18, for all the quality metrics, very short fits of less than three or so

days perform the worst, but for longer periods the quality tends to level out, or

even decline slightly. This is very clear in the NO2 fit fractional errors and RSE

(panel a). For O3, PCC is fairly flat with time (panel f), with the best results

between 4 and 7 days, but for the other metrics (in panel d and e) the fits very

gradually improve the longer the calibration period. For NO2 it is a different story

in sensors c and d especially. The phenomenon of fits becoming less accurate the

longer the calibration is taken for might be due to slowly varying background gas

interference. The becomes more significant the longer the period of calibration.

Degradation in the sensors during the calibration period itself must be mentioned.

The resistance of the heater element will decrease over time as the sensor is

used[203]. In this instrument (and most of the circuits that make use of MOS sen-

sors) the heater is driven by a constant voltage supply. This means the temperature

of the sensor element will gradually increase over time, changing its sensitivity to

different gases in the atmosphere. The sensor element itself can experience chemi-

cal changes that affect its responsiveness[228]. While significant in explaining the

degradation of the sensor performance in the long term, these phenomena affect

the sensor differently to interfering gases. The concentrations of these gases might

vary in an unpredictable way, even returning to previous levels, during the course

of an experiment. As stated in the previous paragraph, these random fluctuations

cause longer calibration periods to produce less accurate predictions. The sensor’s

degradation over time is a predictable one-way process. During the time when the

sensor must make useful predictions, the element is degrading at the same rate,

regardless of the length of calibration period. Therefore changes in calibration

length might help mitigate the effects of varying background gas concentrations,

but will not help with the effects of sensor degradation.
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A week-long calibration period seems to be optimal for getting good quality fits

with either target gas. However, leaving the sensor for longer has very minor

benefits.

For the purposes of deployment in the field, the sensors are calibrated at the AURN

station for a period of two weeks. The first week being the source of the calibration

fit, and the other being a period over which the fit can be evaluated to see if the

sensor’s output has the desired accuracy (the metrics of calibration quality are

investigated more fully in section 3.7 on page 137). The choice of time period is

backed up by the analysis in this section (and figure 3.18). This calibration period

is also practically convenient. Additionally, with hourly AURN measurements, a

week-long calibration yields a sequence of data with enough points for a fit to

be reliably found. For most purposes in this thesis the calibration is followed by

a week-long validation period, unless explicitly stated otherwise (for example in

section 4.2.1 on page 150).
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3.4.3 Combined long-term data analysis

A technique was developed to show how effective a particular calibration equation,

or method of analysis, was for predicting data at an arbitrary time from calibra-

tion. This technique involves generalizing the deployment calibration procedure

(illustrated in figure 3.19), which takes place over two consecutive weeks, toward

an entire timeseries measured in years. It requires a dataset where an instrument

under test (the LTE) is operated alongside a reference instrument (in the AURN

station, see section 3.3 on page 105) for a long period of time.

This Combined Analysis For Predictions Of Long Datasets (CAFPOLD1) is a

broadening of the scope of the simple procedure of calibration-prediction-evaluation

shown in figure 3.19, with the aim of making it general to an entire dataset.

Figure 3.19: Visual representation of a calibration taken over a weeklong part
of a larger data series (dark orange) being used to create a weeklong prediction
(light orange), from which quality metrics can be taken by comparing the pre-
diction with the reference instrument. The grey line represents the underlying

data being produced by both the sensor being calibrated and the reference.

The procedure for CAFPOLD analysis has six steps:

1. The AURN reference and LTE sensor timeseries are divided into “calibra-

tion sections” between 6 and 7 days long when data was available. This

contracting to a minimum of 6 days where there were gaps in the data. The

divisions are made at hourly intervals to match the averaging period of the

reference data.

1Better names, and hence acronyms, for this data analysis technique may be submitted for
consideration to the author’s email address.
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2. For each of these sections, a linear regression fit is taken and predictions made

for the period of the whole timeseries. Occasionally the fit algorithm would

fail to resolve the coefficients for the equation in question, in which case the

fit is ignored and the next section is processed. If the fit successfully resolves,

it produces a prediction over the entire dataset from the fitted coefficients:

Figure 3.20: Visual representation of set of predictions over the whole refer-
ence timeseries. t=0 at the beginning of the particular calibration section that

produced the predictions.

3. Ratings (statistics measuring goodness of fit) are calculated for each predic-

tion. The statistics that will be used are defined in section 2.1 on page 51:

the Pearson correlation coefficient between prediction and reference (equa-

tion 2.3), residual standard error (equation 2.1) and residual fractional error

(equation 2.2).

Figure 3.21: The grey hexagons represent ratings, the darker the hexagon the
better the rating. Effectively the closer the rating is to the calibration period,

the better it is likely to be.

4. This analytical process is repeated for every calibration period throughout

the dataset. Each repetition produces an array of ratings vs. time from

calibration, for the fit is being judged by those ratings.
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Figure 3.22: Collection of ratings arrays for different calibration sections.
This concept is further illustrated in figure 3.25.

5. The timestamps of the ratings arrays are shifted so that they are aligned at

t=0.

Figure 3.23: Shifting the ratings arrays to align their timestamps.

6. Finally, the average of all ratings are taken in day-long bins. This produces

a single timeseries, showing the likely quality of a fit for a given time from

calibration:

Figure 3.24: Averaging the ratings together. The red curve is an example of
a series of averaged ratings.

Taking the standard deviation of the ratings in each day-bin gives the level of

variation in the quality of calibrations, for the time from calibration that the

particular bin represents. For example, a higher standard deviation means

that some calibrations were far better than others for predicting data at that

point.
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The output of the CAFPOLD analysis may be plotted as a timeseries of the various

quality metrics, with respect to time from calibration. Figure 3.25 is a guide to

interpreting these graphs.

Figure 3.25: Explanation of the time axis of CAFPOLD plots. The “source”
axis shows arbitrary predicted and reference gas concentration data. The red
box shows the section of the source data used for fitting a calibration equation.
The “CAFPOLD” axis is the graph of a given quality metric over time. The
purple rectangles on the source axis show the time periods over which the quality
metric is calculated. The value of that metric corresponds to a point on the
CAFPOLD axis indicated by a circle. Point A is on negative time because it
represents a prediction made from calibration data that occurred in the future.
The blue lines at tc on the CAFPOLD graph bracket the region of points where
the quality metrics are calculated for predictions partially during calibration.
For example the first half of the rating for point B covers data just before
calibration, the latter half covers some data from within the calibration period.
Point C shows the point on the CAFPOLD graph corresponding to quality
metrics calculated directly after the calibration period ended. It should be
noted that for this graph a single calibration on a single section of reference
data is displayed. A real CAFPOLD analysis takes the average of many such

calibrations.

3.4.4 Issues with long term experiment data

A CAFPOLD analysis was taken during the three different periods of data dis-

cussed above in section 3.3.3 on page 111. The three sections of data are labelled:
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• Zeroth, the section between February 2016 and the end of May of the same

year, ie. the period during which there were power brownouts.

• First, the section from June to mid November 2016, during which the station

was functioning normally.

• Second, the section after November 15th 2016, which occurred after the

power cut at the AURN station.

To make it easier to compare the three sections, the ratings for the four sensors

from each section were averaged together. The average uses the absolute value for

time, meaning in total eight data points are averaged to produce a single output

datum. The result is shown in figure 3.26, and quantities are given in table 3.2.

This analysis used the “Inverse” equations for fitting NO2 (equation 3.18) and

O3 (equation 3.20). The other fitting equations from section 3.4.1 on page 117

produced a graph with similar appearance. For RSE and FE, a lower number

implies better performance; for PCC, higher is better.

RSE µg m−3 FE PCC
Section Typical SD Typical SD Typical SD

NO2
Zeroth

a)
263.7 573.2

b)
13.9 30.2

c)
0.52 0.11

First 26.4 6.74 1.2 0.95 0.54 0.11
Second 32.3 6.32 0.5 0.15 0.59 0.22

O3
Zeroth

d)
40.8 9.27

e)
1.4 0.92

f)
0.64 0.07

First 25.0 5.62 1.3 1.02 0.81 0.06
Second 24.7 4.71 2.6 1.64 0.74 0.07

Table 3.2: Performance statistics for analyses of all three sections. The “typi-
cal” values are averages of those statistics across the CAFPOLD timeseries and
all four of the sensors in the Long Term Experiment. The SD (standard de-
viation) values given are the squared sum of the residuals from the timeseries
average and the inter-sensor average. The relevant subfigures from figure 3.26

is shown by the bracketed letters.

The extremely high RSE and FE for the zeroth section (a full order of magnitude

higher than the first section for NO2) is a practical demonstration of the effects the

unreliable power supply had on the sensor equipment. The PCC for the zeroth
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Figure 3.26: CAFPOLD analysis comparing different sections of LTE data.
The colour scheme is the same for NO2 and O3. The start of the calibration
period is at zero on the X axis. The end of the calibration, which lasts a week,
is marked by the vertical blue line. Each data point represents an averaged
rating, and the X axis position of a point marks the start of the period within
which the rating is computed. Plots a) b) and c) give the ratings for NO2, and
d) e) and f) for O3, with one graph for each metric of quality. Gaps in the plot
traces correspond to missing data or sections where the fit could not produce a
prediction. The black horizontal lines represent different thresholds on the RSE
graphs a) and d): 20 µg m−3 for the solid line, 40 µg m−3 for the dashed line.

section is worse than the other sections, which tells us that between brownout

events the calibrated sensor outputs still followed the target gas concentration.

The deficiency of this rating is far less dramatic, however.

The distinction between the first and second sections is more subtle. Generally

the first section has marginally better RSE than the second section for NO2 and

similar RSE in subfigure d) for O3 - within one standard deviation. The fractional

error is comparable for NO2 in b). For ozone, FE is much better for the first section

than the second in as shown in panel e). PCC for NO2 is roughly equivalent for

both sections in panel c), and somewhat better for O3 in the first section as shown

in f).
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Overall the first section has lower error than the second (although the difference is

sometimes marginal). Given the prospect of damage to the sensors from the more

severe power supply issues in November 2016 only the first section will be used for

further analysis.

3.5 Comparison of fitting equations

A similar CAFPOLD analysis to that in the previous section was carried out to

determine the usefulness of the different equations described in section 3.4.1 on

page 117, evaluating them for the “first” section of data between June 1st and

November the 14th. Once again the results for the four individual sensors were

averaged together and the absolute time from calibration was used. The results

are shown in figure 3.27, with a table of values given in table 3.3.

RSE FE PCC
Equation Typical SD Typical SD Typical SD

NO2

Linear* 3.15

a)

97.7 138.9

b)

2.41 2.7

c)

0.38 0.17
Inverse 3.18 26.4 6.74 1.24 0.95 0.54 0.11

Multip.* 3.16 60.4 96.52 1.55 1.70 0.49 0.12
Inv. Lin. 3.17 29.5 8.3 1.32 1.18 0.50 0.12

O3

Linear 3.19
d)

32.0 9.09
e)

2.10 2.08
f)

0.74 0.06
Inverse 3.20 25.0 5.62 1.26 1.02 0.81 0.06

k+Inverse 3.21 36.1 31.40 1.01 0.83 0.82 0.08

Table 3.3: Table of results from the analysis of different equation performance.
The SD ratings are the combined residuals from the timeseries average and the
average of the sensors a, b, c and d. The linear and multiplicative equations
(marked with a *) for NO2 sensor b have been omitted from the statistics here.
The references to the left of each block of figures is to the graphs in figure 3.27,

and the equation numbers are listed next to the equation heading.

The graph in figure 3.27 shows spikes in all three metrics for the linear and multi-

plicative equations predicting NO2, in panels a) b) and c). This is down to sensor

b, for which the equations were unable to resolve finite results for roughly half the

time. In table 3.3, the data from sensor b have been omitted from the averages

- the rest of the sensors resolved normally, and these results are still useful for

comparison.
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Figure 3.27: CAFPOLD analysis comparing different fitting equations. The
vertical blue line signifies a week from calibration, which is at zero on the X
axis. There are three plots for each gas for the three quality metrics. Gaps in
the plot traces correspond to missing data or sections where the fit could not
produce a prediction. Once again the specification thresholds are denoted with
black horizontal lines, 20 µg m−3 for the solid line, 40 µg m−3 for the dashed line.

3.5.1 Discussion

For NO2, the Inverse equation (3.18) has the best statistics for this data accross all

three metrics. Average fractional error, at 1.24, is still unacceptably high for most

of the data series though, although figure 3.27 b) shows that for all equations the

fractional error is less than one for the first month after calibration and becomes

significantly worse after two months. The pure Linear equation 3.15 performed

very poorly, with residual standard error four times that of the Inverse equation,

and particularly poor PCC statistics even a week after calibration. The hybrid

Inverse NO2-Linear O3 equation 3.17 was second in performance to equation 3.18,

and the multiplicative equation 3.16 performed comparably to the best two close

to calibration, but was significantly worse further from calibration time.
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The comparatively superior performance of equations involving an inversely pro-

portional response to oxidising gas sensor voltage implies that the response of the

sensors in this region more closely matches the curve of an inverse function rather

than a directly proportional one. The very inferior predictions of the simple linear

equation imply further that the interference from ozone in the oxidising gas sensor

becomes more significant when the oxidising gas sensor output is higher. Of the

four, the best for general use is the Inverse equation 3.18.

The situation with ozone is more complex. While the simple linear 3.19 equation

was inferior, particularly for PCC and FE, it was nowhere near as bad as the

linear equation for NO2. The simple inverse O3 equation 3.20 predictions gave

the best RSE, but were worse in terms of fractional error than the k+inverse

equation 3.21. However the latter equation gave predictions with not just a higher

RSE, but a highly variable one. Figure 3.27 d) shows why - for the most part the

equation’s predictions were similar to the inverse O3 equation 3.20, and even better

within a month of the calibration time, but there is a period between 2.7 and 3.7

months from calibration in where the RSE of the k+inverse predictions suddenly

skyrockets. There is also a smaller blip in the k+inverse RSE performance three

weeks from calibration. The unreliability of this equation means that in spite of

its superior fractional error performance, it is not suitable for general use and the

best equation for O3 with these sensors is the inverse equation 3.20.

3.6 Calibrated sensor performance

With the best fitting equations for both gases determined and a relatively error-free

set of data, it is possible to perform a detailed CAFPOLD analysis on the sensor

data to examine their individual performance in this calibration environment. In

this analysis a “baseline” data series was included, with the MOS sensor data

“zeroed out”, with all voltages set to one but humidity and temperature data left



Hardware design and calibration 133

untouched. This provides a comparison with a completely unresponsive sensor,

which is a useful diagnostic for devices where the airflow to the sensor has stagnated

or that have experienced an electrical fault. The results are shown in figure 3.28,

and performance numbers are given in table 3.4 on the next page.

Figure 3.28: CAFPOLD residual standard error RSE, logarithmic fractional
error FE and fit correlation PCC against time from calibration tFC for indi-
vidual adjacent sensor elements, for NO2 (graphs a-c) and O3 (graphs d-f). The
black horizontal lines are the two target sensitivity levels for RSE, and at zero
for PCC. The coloured lines represent the different sensor elements, whereas the
grey line is the baseline measurement. The shaded area of subplot a) and d)
show the range of the standard deviation of the instrument RSE, within which

63% of the prediction data series lies.

To obtain figures for the change in performance over time, the prediction from all

four sensors as shown in figure 3.28 was averaged together, and the absolute value

for the time from calibration was used. The linear regression for the resulting data

is the prediction of the sensor’s performance at day zero (ie the calibration and

prediction test periods are over the same time), and more importantly the change

per day of each performance metric.
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Table 3.4: Summary of sensor performance statistics of all four sensors, for
both NO2 and O3. The colour grading indicates relative quality, with the darkest
green indicating the best performance figure relative to the other sensors, and
darker yellow means a higher standard deviation for the performance statistics,

and hence more inconsistent predictions.

RSE µg m−3 FE PCC

NO2
Day zero 20.91 ± 0.88 0.54 ± 0.086 0.60 ± 0.020
Change/day 0.079 ± 0.011 0.010 ± 0.0010 -0.00075 ± 0.00024

O3
Day 22.57 ± 1.56 0.61 ± 0.16 0.82 ± 0.015
Change/day 0.034 ± 0.019 0.010 ± 0.020 -0.00011 ± 0.00018

Table 3.5: Linear regression showing the day zero and change per day statistics
for RSE, FE and PCC from the CAFPOLD analysis of the LTE predictions
using the Inverse equation for NO2 and O3. The uncertainties listed are the

95% confidence interval for the linear regression.

3.6.1 Discussion

Figure 3.28 a) and d) shows RSE vs. time from calibration some features in

common for all four of the proximate sensors for NO2 and O3 respectively. The

large instability of RSE in earlier time periods in the a) graph indicates that fits

taken toward the end of the section were somehow not suited for measurements

at the beginning, as all four sensors perform worse than the baseline. For sensors

c and d the RSE in NO2 is substantially higher in the early period, but in figure

3.28 b) it is clear that the factional error of these two sensors is markedly lower.

Sensors c and d were spatially close together inside the Zephyr instrument, but
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not directly on the same board as sensors a and b. Their substantially worse RSE

performance toward the beginning of the analysis timeseries in figure 3.28 a) indi-

cates that calibrations taken at the end of the data do not make good predictions

for these sensors at the beginning of the dataset. Sensor a also performed worse

than the baseline during this part of the data, a serious flaw, although nowhere

near as deficient as c and d. PCC performance for all the sensors was better

than the baseline (which itself hovered around zero for the entire data series, as

should be expected mathematically) during the entire data series as shown in in

figure 3.28 c), so the sensors were at least responding to relative changes in gas

concentration, but the prediction must have had an offset from the reference data

of similar magnitude to the sensor’s analysed RSE values in this period.

Within one month of calibration all four sensors achieved similar levels of perfor-

mance in all metrics. Their dramatic increase in fractional error for c and d early

in the data series has several explanations, some based on the sensor elements

themselves, and some on the hardware driving them. The printed circuit board

(PCB) for sensors c and d share a step-down power supply for their heating el-

ement, and it is possible this is warming them to a different temperature, which

would change their sensitivity to atmospheric gases[197]. Another explanation is

simple manufacturing differences between the sensors, although the same kind of

manufacturing defect shared between each pair of sensors is suspicious. The loca-

tion of the PCB for c and d within the casing might cause a significant difference

in the quality of air reaching them, but this wouldn’t explain the similar perfor-

mance level close to calibration, nor the relatively consistent PCC values over the

whole timeseries.

Naturally fits prediction generally have the best quality statistics during the week

they were taken. The PCC recorded at day zero averages 0.74 for all sensors in

NO2 during the calibration period, but decreases rapidly beyond a month as shown

in 3.28 c). The fitted decline in PCC shown in table 3.5 on the preceding page is

more gradual, and shows the expected peak given a linear decay as around 0.60.
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For O3, the sensors perform on worse than the baseline toward +5 months in RSE,

as can be seen on graph d). Sensors c and d both have higher residual error than

the other sensors, and are again correlated with each other. Fractional error also

exceeds 1.0 for these sensors during this period. However PCC is close to 0.8 in

3.28 f) for the ozone sensors, implying the sensors are still responding to O3 in the

atmosphere, but are “drifting” away from the true values. This bears out other

studies of these sensors which show inconsistent results - some good[177], some

poor[50], particularly far from the calibration time[188].

Fits become less reliable further out, with the 3.28 a) and d) showing typical RSE

comparable to the expected concentrations of the target gases in the atmosphere.

The FE graphs b) and e) underline this fact; only in the weeks surrounding calibra-

tion is the sensor error consistently smaller than the magnitude of the reference

instrument’s reading for NO2 and O3. The relatively high PCC for both gases

throughout the dataset, which only very gradually changes, suggests that while

the sensors are still responding to changes in target gas concentration they have

become offset from the reference instruments over time. Still, this is clearly an

unsatisfactory result.

In the table of sensor performance 3.4 on page 134, the mean values were obtained

by averaging over both the whole timespan of the analysis (roughly 5 months),

and the month long section closest to calibration. The mean of the CAFPOLD

figures for each statistic (RSE, FE and PCC) is a general indication of sensor

performance, and the standard deviation of these statistics shows how much the

sensor performance can vary from these averages - so roughly 68% of the time, the

sensor calibrations will produce results that fall within those of the mean.

The “To Spec” column in table 3.4 on page 134 shows the fraction of data points

produced by each sensor that meet the design specification (standard deviation

less than 20 µg m−3) outlined in section 2.1.1 on page 53. While the sensors are

capable of RSE that is usually less than a 25 µg m−3 threshold, over five months
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no sensor measuring either gas meets the design specification more than 20% of

the time. Over one month the sensors did not meet specification more than 35%

of the time for O3, and for NO2 no more than 17%.

There are tantalizing hints in the data series and the above table that the unsatis-

factory performance of these sensors, particularly beyond two months away from

calibration, can be improved. The lowest end of the standard deviation region

(shaded area on the RSE graph a) in figure 3.28) hovers at 20 µg m−3 even when

the mean of RSE is closer to twice that amount around -4 months, and this is

the standard deviation of the quality of all the individual fits. Some fits therefore

give much better predictions than others. If the quality of these fits is due to

some environmental condition during calibration and they are consistently good

throughout the year, it might be possible to test for these conditions and discard

the poorer fits, an avenue which is now explored in section 3.7.

3.7 Selecting good fits

The predictions a fit of the LTE data can make varies greatly in quality depend-

ing on the exact days over which the calibration was made. Some fits produced

predictions that were better than the specification, some far worse.

One way to improve the overall performance of the sensors is to use a validation

period to judge the quality of the calibration, and discard that calibration if it

does not pass a statistical “goodness” test. The validation period should be im-

mediately after the calibration period. This section will test the hypothesis that a

calibration which produces predictions with poor statistical quality during the val-

idation period would likewise underperform over the rest of the data series. If this

is true, then using this technique might potentially extend the time an instrument

under test has to remain at the calibration site, in exchange for that instrument

more accurately predicting NO2 and O3.



Hardware design and calibration 138

The three statistical metrics of quality discussed so far can be used to judge fits

during the validation period. The measure of a good calibration is that one of

these metrics passes a given threshold value during the validation period.

The choice of threshold and metric will be a tradeoff depending on the applica-

tion. Setting a more stringent threshold might improve the prospects of good

sensor performance, but it will also lead to more fits being rejected. The decision

ultimately depends on the application and the needs of the sensor’s end user.

A modification of the CAFPOLD analysis can be used to determine the perfor-

mance effects of each type of threshold for the entire dataset. Referring to the six

step process described in section 3.4.3 on page 124, the prediction is tested just

after the original fit is made for the calibration section (step 2), and if it fails then

it is discarded, in the same way it would be if the fitting algorithm was unable to

resolve the equation coefficients. In some cases large numbers of predictions had

to be discarded, and if at stage 6 there were less than five timeseries to average

together, their characteristics were omitted from the final result entirely.

The thresholds for accuracy of the tests in this analysis should be set in the context

of regulatory demands and the performance of other sensing systems - as laid out

in section 2.1.1 on page 53. Requirements will thus be chosen near the thresholds

of 20 µg m−3 and 0.5 fractional error. The following analysis makes use of these

thresholds:

• With RSE, a fit qualifies if the residual standard error between its prediction

in the validation period and the reference is below 20, 25, 30, 40, or 50 µg m−3.

• For FE, the test is passed if the fractional error during the validation period

is below 0.5, 0.75, 1 or 1.25.

• For PCC, the tests are passed if the Pearson correlation coefficient during

the validation period exceeds a value of 0.5, 0.6, 0.7 or 0.8.
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The improvements these tests had on the statistics of the instrument, coupled with

the amount of coverage (that is, the fraction of calibrations that passed the test

in the first place), are shown in tables 3.6 to 3.9 on page 141.

Table 3.6: Results table for the tested CAFPOLD analyses for NO2 on a one
month scale, showing the improvement relative to untested values, averaged
across all four sensors. Each row represents a different type (and severity) of
statistical test. The statistics are coloured according to how beneficial each test
was to them; red implies a negative result, green a positive improvement, white
means no change. With the exception of PCC, coverage and “To Spec.”, lower
values are better. The standard deviation of the results on this table is that
of the average for the four sensors, and a higher figure implies that the test
had unpredictable result between sensors (and higher values are thus coloured
in darker orange). The coverage column gives the fraction of calibrations that
produced results over the month, and the To Spec column shows what fraction
of the time the resulting sensor could be expected to produce predictions with

RSE below 20 µg m−3.
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Table 3.7: Results table for the tested CAFPOLD analyses for NO2 on a five
month scale.

Table 3.8: Results table for the tested CAFPOLD analyses for O3 on a one
month scale. The column labels are identical for table 3.7.
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Table 3.9: Results table for the tested CAFPOLD analyses for O3 on a five
month scale.

3.7.1 Discussion

The coverage statistic is an important measure of the stringency of a test, and

is calculated by taking the length of the prediction arrays that passed the test

threshold, and dividing it by the length of the full LTE data series. It represents

the probability that a calibration will pass a particular test threshold. Choosing

the best test to use is a tradeoff between between achieving a high enough coverage

to be practical, and the naturally lower coverage of more stringent thresholds that

generally produce better results.

The minimum acceptable coverage is determined by an experiment’s practical con-

siderations. Experiments involving multiple instruments that must be calibrated

together before being deployed to another site will benefit from a calibration pe-

riod that is reliably short so that all the instruments can be moved together.

Experiments the use a single sensor, particularly over a short period or as part of

a mobile platform (such as the roving experiment in section 6.2 on page 209), can

afford longer calibration periods and coverage might not be as important.
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The chance p of a calibration taken over a time period Tc passing a threshold test

with coverage of C during a longer validation time T is:

p = 1− (1− C)
Tv/Tc (3.22)

Since a calibration’s predictions become less useful the further away from calibra-

tion they are (see table 3.5 on page 134), it is possible that the only calibration

that produces predictions better than the goodness threshold is far enough from

the deployment time that its predictions are no longer superior to a calibration

taken without threshold testing.

Testing data with a single performance metric tended to improve predictions with

respect to that metric, but this didn’t always carry over to other statistics. For

example, NO2 testing against an RSE of below 20 µg m−3 improved the RSE

markedly, but fractional error increased by 0.28, over a baseline of 1.24 on average,

which is already very high, and coverage was only 22%. Testing to 25 µg m−3 pro-

duces more better results, although the standard deviation of the improvements is

often larger than the results themselves. The test in this case allows the specifica-

tion of RSE lower than 20 µg m−3 31% of the time over both one and five months.

On the other hand, the relaxed stringency means coverage is also substantially

better, at 82%.

As might be expected considering the PCC of the sensors tends to remain high even

months from calibration, testing based on PCC thresholds, particularly higher lev-

els like 0.7 or 0.8, is often counter-productive for NO2. Fractional error is almost

as useful as using RSE as a threshold. Like RSE, the most stringent test has low

coverage and any improvement made have a high standard deviation between sen-

sors. Testing instead to a fractional error of 0.75 was more promising, producing

better slightly better statistics over one month, but almost no improvement over

five months. The standard deviation of the statistical improvements is once again

many times larger than the improvements themselves. The plot of this CAFPOLD
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analysis shown in figure 3.29 shows why this is - while some sections of the data

are vastly improved (particularly for the negative months corresponding to a cal-

ibration taken at toward the end of the LTE data set), the rest of the time the

improvements are marginal. For the 0.75 fractional error test, fractional error did

not show the improvement that the RSE test did around the period of -2 to -3

months, and so the best threshold for testing data from the LTE is to an RSE of

25 µg m−3.

For O3, which test to use is more clear-cut. A fractional error threshold of 0.5 pro-

duces consistently good results - for the sake of discarding a quarter of calibrations,

the sensor has a better than 50% chance of performing within the specification of

20 µg m−3, and even shows improvement in PCC, in the case of data within a month

of calibration the improvement is greater than the standard deviation. Figure 3.29

e) shows significant improvement in fractional error in particular over the untested

baseline. d) shows that the improvement in RSE on average of around 4-5 µg m−3

from tables 3.8 on page 140 and 3.9 on page 141 is quite inconsistent, explaining

the large standard deviation relative to the improvement in the RSE statistic.

A CAFPOLD plot is shown in figure 3.29 for the best tests. While the difference

is significant to the eye, the statistics tell a different story, and particularly over

one month the improvement in statistics overall is quite small compared to the

size of the standard deviation of those improvement and the original statistics

themselves.

3.8 Summary

This chapter focussed on the importance of performing a pre-deployment cali-

bration. The best calibration setup was determined from the literature and the-

oretically to be outside, adjacent to a reference instrument. It was determined

that a week-long calibration period gives the best fit results, as shown in figure



Hardware design and calibration 144

Figure 3.29: CAFPOLD plot of the fit quality using the inverse fit equations
and the best tests, verses time from calibration, for both NO2 (a-c) and O3

(d-f). The grey line is the baseline, which in this plot represents the average of
all four untested sensors.

3.18. Bespoke calibration equations were developed for the present MOS sensors

incorporated into the Zephyr prototype hardware.

One month RSEµg m−3 FE PCC

NO2
Untested 23.6 ± 3.9 0.67 ± 0.27 0.63 ± 0.05
Test RSE<25 22.9 ± 5.3 0.80 ± 0.44 0.57 ± 0.13

O3
Untested 23.3 ± 3.9 1.11 ± 0.65 0.80 ± 0.04
Test FE<0.5 20.0 ± 5.05 0.57 ± 0.43 0.85 ± 0.05

Table 3.10: Table of expected performance of sensors over one month based
on the Long Term Experiment dataset, obtained by averaging performance for
the four individual sensors, alongside the performance achieved through the two

best tests. 95% confidence intervals are given.

The best equations for predicting sensor performance used inverse terms: equa-

tions 3.18 for NO2 and 3.20 for O3 gave the highest performance using a simple

linear regression. The statistics for the Long Term Experiment dataset using these

equations are given in table 3.10. Notably the fractional error of the sensor data
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could be quite high (on average), and O3 predictions using these sensors were more

reliable than those for NO2.

Data analysis sufficient to examine the issues of sensor degradation and the con-

sequent deterioration of prediction quality over time were introduced. The results

are shown in table 3.5 on page 134. The simple linear fit to the diminishing per-

formance of the predictions over a five month timescale shows a degradation in

RSE for NO2 of 2.37 ± 0.33 µg m−3 and for O3 of 1.02 ± 0.57 µg m−3 per month.

Notably, Pearson Correlation Coefficient on average does not diminish nearly as

rapidly for either gas, implying that the degradation takes the form of a linear

offset, rather than a loss of sensor responsiveness.

Finally, after examining the sensor’s raw performance, techniques were used to

filter the calibrations most likely to produce good results. A week-long calibration

was followed by a week-long validation period over which the performance statistics

for that calibration’s predictions were determined. Predictions that fell below a

threshold of performance were discarded, necessitating longer calibration times in

some cases. The procedure improves performance for predictions that occur further

from calibration time, but particularly for NO2 improvements were marginal or

even negative for predictions within a month. For NO2, the best performance

overall was gained by using a threshold RSE of 25 µg m−3. For O3, a threshold

fractional error of 0.5 was best. The changes that result from this procedure are

illustrated in figure 3.29.



Chapter 4

Understanding pollution sensors

in changing environmental

conditions

In the previous chapter, the usefulness of a multiple linear regression model for cal-

ibrating the MOS sensor output to a reference was demonstrated. In this chapter,

more advanced analysis techniques are evaluated in order to improve the accuracy

of sensor predictions.

Several techniques will be discussed in this chapter, and these can be divided into

two categories:

• Alternative methods instead of simple linear regression

• Subdividing the data used for calibration based on external environmental

factors and using conventional linear regression fits within those divisions.

146
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4.1 Overview of advanced fitting techniques

Compensating for the sensor’s non-linear response to target gases was a key theme

in the previous chapter. As discussed in section 3.2.2 on page 99 and implied by

the sensor datasheet[190], the simple linear regression fit with the equations used

so far can only produce an approximation to the sensor’s response to target gas

concentration. The response of the sensor to an unknown non-target gas will

likely also be non-linear. This will limit the ability of the sensor to compensate

for interference in the environment when using linear equations, particularly as

atmospheric gas concentrations inevitably change beyond the range experienced

by the instrument during calibration.

However, trying to empirically derive a higher-order analytic model for the sensor

response is unlikely to produce realistic results unless the derivation is informed

by a detailed theoretical understanding[200]. Incorporating the cross-sensitivity

issues exhibited by MOS devices into these models is even more complex and error-

prone, given that there may be interference in the real atmosphere from multiple

gases, each with their own response function, undoubtedly some of which were

never considered by the sensor manufacturer. Adding additional fitting coefficients

to attempt to account for the latter issue can produce a response function that

either never converges onto any result at all, or is susceptible to overfitting[227].

There are machine learning techniques that go some way toward solving this prob-

lem. Of these, the most commonly used is the random forest[191][229], although

an alternative that shows promise is support vector regression[191]. The advan-

tages of these techniques is that they can not only fit an unknown non-linear

function, but they can also account for cross-sensitivity. Their disadvantage is a

greatly increased computation time compared to simple linear regression. A single

regression fit can be completed in a fraction of a second, but a random forest of the

same data can take several minutes to grow. Support vector regression reportedly

takes hundreds of hours to train to a single sensor with a single dataset[191].



Environmental analysis 148

Further, these machine learning fits do not start from an underlying physical

principle. If a sensor’s response function is approximated well enough by the

fitting equations, then a linear regression fit can be used to extrapolate predictions

outside the range of the inputs used to produce the regression. This is not true

with random forests or support vector regression, which only provide accurate

results if the training dataset contains the full range of possible inputs[230].

In spite of their limitations, deriving higher-order analytic equations for fitting and

using machine learning are still viable paths forward. But given the work already

done on machine learning fits for air quality sensors, the subject of this chapter

will instead be an alternate approach.

Instead of restricting the input variables for a calibration to the sensor voltages, hu-

midity/temperature and the reference instrument concentrations, other variables

from the environment can be used. These may be simplest to model as Boolean

variables (ie. day and night). A threshold in a continuous variable like temper-

ature can also be defined, and separate calibrations taken on either side of it.

Splitting the sensor timeseries into different “bands” according to these variables

allows a tried-and-tested means of fitting to incorporate additional information

and partly compensate for any non-linearity. Dividing the data necessarily means

that there will be fewer points to fit to during calibration, as multiple calibrations

will be required for each band. The tradeoff must be borne in mind; incorporating

extra variables should only be done if the improvement in prediction performance

exceeds the detrimental effect of using a different calibration period, as described

in section 3.4.2 on page 120.

For small pollution sensors there are several practical environmental variables

along which to split the data, some of which are discussed further in this chapter:

• As shown in section 1.4.1 on page 29, nitrogen and ozone chemistry varies

dramatically between day and night. While the temperature and humidity
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changes of day and night Splitting the data along the diurnal cycle is perhaps

the most obvious choice.

• The data can be split according to some of the variables already used for

the sensor - for example, making separate fits for high and low humidity and

merging them together. This stitching together of different linear fits is a

relatively crude way of approximating non-linear functions, but it has the

advantage of being relatively fast.

• Wind direction is another way of dividing the data. Different processes

emit different mixes of pollutant gases, and the motion of the air in general

determines whether those pollutants from that source reach the sensor, how

much deposition occurs and any chemical mixing or reactions that occur on

the way. This is a complex process and modelling of the wind environment

along with the physical geometry of the sensor surroundings are needed to

fully account for it[231]. But any correlation of pollutants by wind direction

could still be used to section data[232], and potentially improve sensor fitting.

• The calibration period itself can be split into two, making separate calibra-

tion periods on either end of the experiment or deployment. If the sensor

degrades or some environmental change throws off the calibration at the

start of the experiment, combining that fit with the one at the other end of

the experiment might compensate for those changes and improve prediction

performance, essentially by accounting for the transition between the two

different sets of calibration coefficients.

Using machine learning techniques to calibrate small pollution sensors is an active

area of research with the potential to improve performance significantly. However,

subdividing the data to account for environment variables has not so far received

a thorough examination in the literature regarding these sensors, and so it will be

the focus for this chapter. However, for the sake of comparison, a discussion of a
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random forest machine learning techniques in the terms used in this thesis is made

in appendix C.

4.2 Correcting for day/night chemistry

Section 1.4.1 on page 29 described some of the significant differences between day

and nighttime atmospheric chemistry. Photons are a reagent of sorts and their

sustained absence during the night transforms many chemical equilibria. The

Leighton relation does not always hold in practice during the day, for example in

the immediate vicinity of strong pollution sources, but at night the lack of UV

photons makes it irrelevant and instead the nitrogen in the atmosphere can take

other forms which may interact differently with MOS sensors.

In addition to this, changes in temperature at night, stratification of the tropo-

sphere in the absence of convective forces[233], and changes in the concentration

of other atmospheric compounds in the absence of UV light[226] are all factors

that can radically alter the composition of the atmosphere, and thus might have

an effect on sensor performance outside of the concentration of NO2 and O3 that

our models thus far have been fitting to. In this section the magnitude of such

effects on the sensor’s performance will be investigated.

4.2.1 Method

The simplest way of determining the intensity of this effect is to directly compare

fits of sensor data to the AURN, taken during the day and night. The AURN

station records Photosynthetically Active Radiation (PAR) in W/m2, a reading

proportional to the total intensity of incident sunlight. Along the axis given by this

metric it is possible to split data accordingly - an arbitrary boundary of 40 W m−2

is used throughout this section to form a clear delineation, as during the day at
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the AURN in Leicester PAR regularly exceeds 300 W m−2. A PAR below this level

for the purpose of this analysis indicates twilight and the start of night time.

As discussed above, splitting the data in two will require twice the calibration data

to achieve comparable fit quality - as demonstrated in section 3.4.2 on page 120,

doubling the standard 7-day fitting window does not significantly improve fits, but

halving it can increase error substantially. This is complicated by the fact that

a longer calibration period will be able to fit around gaps in the data from the

long term experiment far less easily. Consequently the fitting period for all these

techniques will be two weeks long, and they will be compared to a baseline 2-week

fitting period instead of the results achieved in the previous section. The only

stretch of data suited to this experiment was taken in June, where in the UK the

day was naturally longer than the night.

Five CAFPOLD analyses were performed using various types of sectioning for the

two-week-long calibration period. These were:

• Baseline: Fits are produced from the entire calibration period, as normal.

To keep the baseline fit at a comparable quality to the other ones in this

experiment, only every other data point is used for calibration (giving the

input data a period of two hours).

• Day only : Fits are produced from only those calibration periods with PAR

greater than 40 W/m2. They are then applied to predict concentrations for

the whole period.

• Night only : Fits are produced when PAR is less than 40 W/m2 and used for

all predictions, day or night.

• Diurnal : Two fits are produced during the calibration period, one each for

day and night. These then predict data that was taken during the day and

night respectively.
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• Reversed : Fits are produced during both day and nighttime as above, but

used to predict data during night and day respectively. Intuitively this should

be the worst performing sectioning method, if day verses night has a sys-

tematic effect on sensor response.

After being divided in the first stage of the analysis into fourteen-day sections (as

described in section 3.4.3 on page 124), the data sections were discarded if each

section individually contained less than six days worth of measurements - com-

bined, each would have at least twelve days of data. Comparing the consequences

of splitting the data in this way will reveal the extent to which differences in day

and night atmospheric chemistry affect the MOS sensors.

Attaining a minimum 12-day long calibration period to register a fit with the CAF-

POLD analysis was difficult in the LTE dataset, which has several discontinuous

sections. The CAFPOLD analysis with a weeklong calibration produced results

over ± 5 months, but for the two week period no results were returned beyond

a month and a half from calibration. With a more reliable experimental setup,

longer datasets using this analysis could be obtained. Nonetheless the data series

is long enough to compare performance with the baseline analysis (which did not

discriminate between day and night).

4.2.2 Results and discussion

In the following analysis and comparison for NO2 only data from sensors a and

b are used. Figure 4.1 shows the result from the CAFPOLD analysis using the

diurnal sectioning, demonstrating this behaviour, and these two sensors perform

similarly for the other sectioning methods. The NO2 results from sensors c and

d are similar to those of a and b for those predictions one month earlier than

the calibration time (see the patch at -1 month in figure 4.1), but are extremely

poor for predictions one month beyond the calibration point, with RSE nearly
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100 µg m−3 higher for sensor d shown in panel a) - this spike is over four times

the acceptable margin of error as given in section 2.1.1 on page 53. The poor

performance of the OXc and OXd sensors in certain circumstances is a recurring

theme - for further discussion see section 3.6 on page 133 regarding figure 3.28

a), where sensor d has especially poor performance in RSE around the -4 month

mark.

To clearly distinguish different sectioning methods, the predictions from all used

sensors (a and b for NO2, a b c and d for O3) are averaged together to produce

a single CAFPOLD timeseries. The results of this procedure for the different sec-

tioning methods is shown in figure 4.2. Visually the difference between them is

marginal on all statistics, less than the standard deviation of the CAFPOLD time-

series. Figure 4.3 shows more detail by plotting the difference between the different

sectioning methods and the baseline two-week calibration, with the baseline set at

zero. This procedure removes the variation over time inherent to the CAFPOLD

analysis due to any degradation in the quality of the sensor predictions.
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Figure 4.1: Example of a CAFPOLD analysis using two weeks of calibration
data with the diurnal sectioning. The output for each sensor is shown as a
separate trace. Note that both axes of the graphs are different to that of previous
CAFPOLD analysis diagrams, spanning one and a half months of time in the x
axis and different scales for the RSE and FE in graphs a) b) and d) e). Sensors
c and d exhibit poor performance, particularly around +1 month in the RSE

graph a). The blue vertical lines are the period of calibration.

Figure 4.2 shows that the performance of the fits is very similar over the different

sectioning methods, implying a null result. It is also comparable to that of the

one week long calibration. The mean RSE for the “diurnal” sectioning, produced

by averaging over the timeseries, is 19.09 ± 8.56 µg m−3 for NO2, and for O3 is

22.71 ± 8.24 µg m−3. While this is respectable, it is not directly comparable to

the figures for the CAFPOLD analysis using a one week calibration shown in

table 3.10 on page 144, especially due to the high uncertainty in these statistics

(which is obtained from the standard deviation of the time average). The mean

fractional error is 0.428 ± 0.280 µg m−3 for NO2 and 0.364 ± 0.106 µg m−3 for O3.

PCC for the NO2 timeseries is quite poor at 0.485 ± 0.278 on average, compared

to a normal CAFPOLD PCC for NO2 of between 0.6 and 0.65. For O3 it is better

at 0.825 ± 0.051. From table 4.1 on page 157, the “diurnal” method gives very
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Figure 4.2: Graph of CAFPOLD results for NO2 and O3. The graph uses
the averaged predictions of the sensors used in the experiment. Each colour of
line corresponds to a different sectioning method. Once again the vertical scales
here are different to the other CAFPOLD analyses in this work. The horizontal

black line indicates 20 µg m−3 target performance.

similar results to the others overall, with almost all differences being smaller than

the 95% confidence interval. This similarity implies that the poor PCC for NO2

is a consequence of the longer calibration period (as shown in section 3.4.2 on

page 120), rather than poor correlation caused by the splicing together of data

with different fits applied to it.

The similar performance of the sectioning methods is more clearly shown in fig-

ure 4.3, and the statistics of these data in table 4.1 on page 157. The “diurnal”

sectioning method unsurprisingly gives slightly better performance than the “re-

versed” sectioning method for both target gases. In the case of NO2 RSE, the

“reversed” sectioning produced predictions 1.71 ± 2.65 µg m−3 worse than the di-

urnal method, which is a little over one standard deviation of difference. This is

intuitive, but not a strong enough effect to be statistically significant, and is not

consistent over the other performance metrics.
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More crucially, no sectioning method was significantly better than the baseline,

which assumed no distinction in prediction between night and day. For O3, the

night only sectioning is the only one that on average improved over the base-

line, albeit by less than the confidence interval. To emphasise this point on how

marginal the reduction in RSE is numerically, note that the “night only” sec-

tioning was occasionally capable of outperforming the “diurnal” sectioning (which

might be expected to be optimal) for both gases - see figure 4.3 a) and d), par-

ticularly for O3 at -0.5 to -1.5. In panel a) at +1.0 to +1.5 months all sectioning

methods except for diurnal show RSE well above the baseline (which in the figure

is the flat grey line set at zero), and diurnal sectioning vacillates above and below

the baseline level.

Figure 4.3: CAFPOLD graph of difference between sectioning methods and
the baseline 14-day calibration. Each colour of line corresponds to the predic-
tions using a particular sectioning method minus the baseline prediction. The

scale is zoomed in to make the difference in methods clearer.
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RSE µg m−3 FE PCC

NO2

Day only +0.90 ± 1.41 +0.03 ± 0.08 -0.09 ± 0.11
Night only +0.40 ± 2.39 +0.01 ± 0.07 0.00 ± 0.06
Reversed +1.63 ± 2.53 0.05 ± 0.07 -0.11 ± 0.09
Diurnal -0.08 ± 0.80 -0.01 ± 0.03 +0.01 ± 0.04

O3

Day only +0.59 ± 1.17 +0.03 ± 0.05 -0.02 ± 0.03
Night only -0.12 ± 1.04 -0.01 ± 0.03 +0.01 ± 0.02
Reversed +0.81 ± 0.69 0.02 ± 0.03 -0.02 ± 0.01
Diurnal +0.04 ± 0.62 0.00 ± 0.01 +0.00 ± 0.01

Table 4.1: Table of statistics from the CAFPOLD analyses of different section-
ing techniques, giving the relative difference between the sectioning technique
and the baseline. The statistic is obtained by averaging this difference over
the whole timeseries. The error incorporates the uncertainty due to averaging
between sensors and over time. For all metrics, lower is better except for PCC,

where the best results are those closest to 1.

4.2.3 Summary of outcomes

The sectioning methods clearly do have a modest impact on prediction perfor-

mance. But this impact is so small that no sectioning method performed con-

sistently better than the baseline prediction in any metric by an amount greater

than the 95% confidence interval. Thus the use of this technique to improve fit

predictions cannot be recommended, especially given the practical considerations

involved in doubling the length of the calibration period. However, this negative

result proves that the difference in atmospheric chemistry between night and day

does not introduce any statistically significant complications when using MOS

sensors to measure NO2 or O3.

4.3 Transitional fits

As shown in section 3.6 on page 133, sensor fits can vary wildly in quality, with

predictions sometimes becoming markedly less accurate further away from the time

of calibration. The purpose of a transitional fit is to adjust a sensor’s calibration

values to incorporate two calibrations, performed at the beginning and the end of
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a calibration period. During an instrument deployment, rather than making the

choice to use a calibration either at the start or the end of the experiment, both

calibrations can be interpolated, showing more influence for one calibration or the

other depending on the time at which a prediction must be made, and potentially

improving accuracy.

This is not a new technique - Smooth Transition Auto-Regressive (STAR)[234]

modelling is often used in economics to transition between two time domains

governed by different statistics. For this work the transition will be a simple linear

interpolation, rather than the exponential formulae used by STAR. This different

use of interpolation could be significant, and whether the linear transformation is

a more realistic way of compensating for sensor interference due to changing gas

environments, or the degradation of the sensors over time, is a topic for future

work.

Equation 3.5 in section 3.2.1 on page 97 showed the response (in terms of changing

resistance) of a Metal Oxide gas sensor to the environment. A more general version

of this equation is:

y = f(x1, x2, x3...xi) (4.1)

where y is the desired output variable (in our case, gas concentration) and f is a

function of i input variables x. A simple linear fit uses a function with this form:

f =
∑
i

kixi (4.2)

where the k terms are, of course, the calibration constants found during the fitting

process.

When dealing with a point of raw sensor data xt taken at time t, between the time

at which the first calibration ended ts and the second began te, a linear interpola-

tion can be made between the two calibrations by transitioning the coefficients of

each (ks and ke), taking the example from equation 4.2 in the context of equation
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4.1:

yt =
∑
i

(
ksi

(
1− t− ts

te − ts

)
+ kse

(
t− ts
te − ts

))
xi (4.3)

The linear transition in this equation is accomplished by replacing the coefficients

ki with a simple function ki(t):

ki(t) = kis

(
1− t− ts

te − ts

)
+ kie

(
t− ts
te − ts

)
(4.4)

Using the inverse multiplicative equations from section 3.4.1 on page 117 that

proved most useful for fitting to NO2 and O3 gives

[NO2] = kc(t) + k1(t)/VOX + k2(t)/VOXRH+ k3(t)/VOXT + k4(t)/VOXVO3RH+ k5(t)/VOXVO3T

(4.5)

for NO2, and

[O3] = kc(t) + k1(t)/VO3 + k2(t)/VO3RH + k3(t)/VO3T (4.6)

for O3.

4.3.1 Method

To determine the improvements possible using transitional fits, a section of long

term experiment data was analysed in two different ways:

• To test the transitional fit, two separate calibrations fits were taken, over

week-long periods four weeks apart. A transitional fit prediction was made

during the intervening time.

• The control was to take two fits over the separate one week-long periods, as

above, and then produce four week long predictions for each.
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In both cases, the quality of the prediction is measured over the whole span of

the prediction - the “validation period”, which in both cases is four weeks long.

The timestamp for this analysis reads from the start point of the first calibration

period.

The question to be answered is this: does using a transitional fit improve the

sensor’s performance compared to using a single fit from the start or end of the

validation period? How consistently does the transitional fit perform? In practice,

whenever a sensor is being used on a mobile deployment, it will be impossible to

check the accuracy of the sensor during the period it is away from the reference

instruments at the AURN station. Consequently, if a decision is made to use

transitional fits, the consistency by which they improve results is just as important

as the average improvement over using a single fit.

4.3.2 Results

The transitional fit was performed over a large section of LTE data, and in figures

4.5 and 4.6 the quality achieved over time is plotted. This is not a CAFPOLD

analysis as there is no averaging over different sets of calibrations to produce a

quality metric output. Instead the graphs should be evaluated according to figure

4.4.

Figures 4.5 and 4.6 show the results of this analysis, with the calibration from

both before and after the evaluation period (green and purple respectively), as

well as the transitional fit in black. Table 4.2 on the following page shows perfor-

mance numbers for each of the individual sensors, including those omitted from

4.5 because of poor performance.
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Figure 4.4: Timing diagram for the transitional fit plots in this chapter. The
time represents the beginning of the block of starting calibration, evaluation,
and ending calibration. Each point on the output quality plot shows the quality

achieved during the evaluation period for the respective time.

Table 4.2: Table of performance statistics for each of the sensors using the
different fitting methodologies. The statistics are calculated over the whole
dataset produced by the above analysis, shown in figures 4.5 and 4.6. The
statistics in the transitional fit section are coloured according to whether the
transitional fit beat both other fit methods (blue), performed better than the
average between the two (green), were worse than average (yellow) or were the
worst option (red). The results from the substandard OXc and OXd sensors are

highlighted in red in the leftmost column.

4.3.3 Discussion

In the NO2 graphs of figure 4.5, the fractional error and RSE for both sensors

in question was quite bad for calibrations taken during the first two weeks. One

of the sensors gave predictions from the end of the validation period that was

sometimes better than the 20 µg m−3 specification when used for the same data.

In the first two weeks the transitional fit was on average 3-4 µg m−3 worse than the
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Figure 4.5: Evolution with time of residual standard error, fractional error and
Pearson correlation coefficient for the three fitting methodologies, for prediction
NO2 concentration. The two lines in each colour are for sensor a and b; sensors
c and d performed very poorly and are not shown here. The dates are all in

2016.

end-period calibration, but far and away better than the start calibration, which

often exceeded an RSE of 40 µg m−3. The fractional error graph tells the same

story even more clearly. Toward the end of the timeseries from the 19th of June,

the end calibration for one of the sensors starts producing worse predictions, and

again, the transitional fit is not affected.
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Figure 4.6: Evolution with time of residual standard error, fractional error and
Pearson correlation coefficient for the three fitting methodologies, for prediction

O3 concentration, with multiple traces for sensors a, b, c and d.

For both calibrations, however, the PCC was very low for every fit - frequently

less than 0.5, and far weaker than the week-long evaluation period results shown

in the previous chapter (see table 3.10 on page 144).

The O3 graph in figure 4.6 tells a similar story; where either the start or end

period fits produces poorer statistics (for example the end fit around the 13th

of June), the transitional fit is not affected nearly as badly. Instead of merely

sitting between the start and end fit in terms of quality, the transitional fit gives
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consistently better results than the average of the start and end fits - although it

does not always perform better than the best of the start or end fits.

Table 4.2 on page 161 shows that remarkably, for every metric, the transitional fit

has statistics that are better than the average of either the start or end fits, except

in the case of the sub-standard c and d sensors fitting NO2. The transitional fit

had the better (that is, lower) RSE than the start or end fits in the case of NO2

from sensor b, and all the O3 predictions save for sensor c - that’s four of the six

fully-performing sets of sensors.

Interference from non-target gases or changes in the weather might cause a cal-

ibration to be less relevant to the rest of an experiment’s dataset, indeed, figure

4.6’s dip in performance for the end calibration around June 13th shows particu-

larly clearly that all four sensors suffered in performance at the same time and in

roughly the same way. But the transitional fit seems able to compensate for this

phenomenon better than merely averaging the results of either calibration method.

4.3.4 Summary of outcomes

The takeaway is that in an experiment that doesn’t have regular access to a refer-

ence instrument to compare to, the transitional fit would provide a more accurate

way of determining gas concentration. For quantification, see table 4.3 on the next

page which shows the relative difference in performance statistics.

It is important to consider that in a deployment in the field, there is no check

against a reference dataset to determine the best fit, and good performance will

depend on a field environment having similar characteristics to the calibration

environment. In table 4.3 on the following page therefore, the realistic comparison

is with the average quality of the start and end period fits. With this comparison,

the transitional fit gives consistently better performance, in almost every case by a
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RSE µg m−3 FE PCC

NO2

Worst case +6.92 ± 6.20 +0.27 ± 0.18 -0.10 ± 0.09
Best case -0.05 ± 4.60 -0.07 ± 0.09 0.06 ± 0.07
Average +3.44 ± 3.00 +0.10 ± 0.05 -0.08 ± 0.09

O3

Worst case +3.19 ± 5.01 +0.10 ± 0.05 +0.08 ± 0.07
Best case -0.26 ± 3.36 +0.01 ± 0.08 -0.02 ± 0.10
Average +1.72 ± 1.85 +0.05 ± 0.03 +0.03 ± 0.03

Table 4.3: Relative increase in performance between transitional fit and either
the worst performing of the start and end period calibration for the sensor in
question, the best of them, or the average of the performance metrics of the two
calibration periods. A positive figure indicates that the transitional fit improved
performance. 95% uncertainties are computed from the standard deviation of
the difference between the two dataseries. The figures here are averaged between
the individual sensor results, although the NO2 c and d sensors were not used in
this average, partially accounting for the higher uncertainty of NO2 statistics.

margin greater than the 95% confidence interval - for the O3 RSE and NO2 PCC,

the improvement is positive and similar in size to the 95% confidence.

While in most metrics the transitional fit is slightly worse than the performance

of the best of the individual sensor calibrations, the deficiency is in no case larger

than the 95% confidence interval, and in the case of NO2 PCC it beats it.

Some of the regions of poorer fit performance have a substantial period compared

to the length of this analysis, as can be seen from the first eight days of RSE in

figure 4.5 particularly. As the LTE dataset did not return a large section of data

suited to testing transitional fits in this way a longer timeseries analysis that would

fully capture the nature of this variation is not possible, and a longer experimental

period would improve the confidence of conclusions regarding the transitional fit.

Except in cases where one of the constituent calibrations produces predictions

that are well beyond the margins for error for either the reference (or other fits

for that matter), this new analysis method is capable of producing better results

than constraining the measurements to just a single calibration at either the start

or end of the field period.
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4.4 Wind direction and calibration

The airborne chemical environment around any instrument is a combination of

gases that have been transported from regional sources, and those that have been

emitted nearby and travelled almost directly to the instrument. Local source

attribution is an important question for small sensors into which work has already

been done[90]. In the atmosphere, uneven distribution of point sources of pollutant

gas will directly affect the instruments intending to measure them by causing a

correlation between wind direction and sensor performance during calibration[232].

The data used in this analysis is from the five month period between June and

November 2016.

The objective is to determine whether there are any clear sources of nearby pol-

lution that would cause a significant difference between the measurements of the

AURN instruments and the MOS sensors, and potentially poorer MOS sensor pre-

dictions as a result - taking into account any sampling error from the immediate

environment of the sensor. If an unknown interfering gas is being emitted from

a source nearby, excluding data points representing air from a calibration could

improve performance.

4.4.1 Experimental conditions

The University of Leicester DEFRA air pollution monitoring station is assigned a

simulated wind speed and direction derived from measurement instruments across

the city of Leicester[148]. The wind data has 60 second intervals, in contrast with

the ten second measurement interval of the long term experiment, and the hourly

measurements of chemical composition produced by the AURN station.
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4.4.2 Analysis

To work with the long term experiment, then, the wind speed and wind direction

vectors must be averaged to the hour. This is complicated by the fact that the

AURN reports wind vectors using radial co-ordinates (wind speed and direction),

and these need to be converted to Cartesian co-ordinates for this analysis. Figure

4.7 shows a comparison of the two ways of doing this: converting before averaging

the resulting Cartesian wind vector, and averaging over the radial co-ordinates

before converting them. The undesirable artifacts produced by averaging the radial

co-ordinates is clear in this view. Distinct plumes are visible in figure 4.7, reflecting

that the wind is more likely to blow over the AURN station from some directions

than others.

To compare the quality of fit predictions with respect to the wind direction, a

baseline fit where the wind speed was low must be made. To do this, data for

which the wind speed was within the lowest quintile was used - for the LTE

dataset this was less than 0.242 m s−1. This data represents a “central region”

on a wind rose diagram, those data points closest to completely motionless air.

Other studies have considered wind speeds of less than 2 m s−1 to preclude regional

transportation[90].

A normal linear regression fit to both NO2 and O3 was then taken using the

inverse equations 3.18 and 3.20, using this central patch of data (which spans

in time throughout the entire dataset). This fit was used to predict data values

for the entire dataset. The difference between the resulting prediction and the

reference values, for a sensor measuring NO2 and O3, is plotted in figures 4.8(a)

and 4.8(b) as a function of the windvector.
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Figure 4.7: Wind vector data, using the two averaging methods. Wind di-
rection is given in terms of source, so a northerly wind blows air from north to

south. The positive Y axis of the graph points north.

4.4.3 Results

This plot is striking because of the clear pattern of over and underestimation de-

pending on the wind direction. Within the wind rose, spurs of blue or red coloured

points indicate wind directions that consistently correlate to over or underestima-

tion of the target gas. Particularly there is underestimation of NO2 in a broad

angle of wind coming from the north and north-west. The effects of wind on O3
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seem more moderate. Graphs of this kind are consistent with the hypothesis that

interfering gases having specific, localized sources that can be carried to the AURN

station through the wind.

(a) NO2a anomaly chart (b) O3a anomaly chart

Figure 4.8: Scatter plot of wind vectors, coloured according to the difference
between predicted and actual concentrations of a) NO2 and b) O3. Sensor a from
both cases is the one shown. Anomaly refers to the predicted gas concentration
minus the reference concentration. The segments drawn on the diagram each
contain the same number of points, and indicate density of wind vector points

that might not be apparent from the points alone.

The violin plots of figures 4.9 and 4.10 quantify the effect that was clear to the

eye in figures 4.8(a) and 4.8(b). The plumes in the wind rose, which represent

narrow bands of direction but seem to be less dependant on speed. For this reason

in figures 4.8(a) and 4.8(b) the data is divided with respect to wind direction into

eighteen 20-degree slices, excluding the low wind speed patch used for calibration.

For NO2, the tendency for the predictions to underestimate NO2 is represented

strongly in the violins for angles between zero and ninety degrees (north-northwest,
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as in the earlier scatter plot 4.9). The largest sector of data between 0 and -

20 degrees, with 65 data points for each sensor, has a mean underestimation

of 13.1 µg m−3, albeit with a standard deviation of 30 µg m−3. The largest un-

derestimation was for -20 to -40 degrees, 27.3 µg m−3 with standard deviation of

28.3 µg m−3. This offset was consistent for both sensors.

For O3, the largest sector with 65 data points has an anomalous underestimation

of 10.8 µg m−3, but with a standard deviation of 11.7 µg m−3.

The largest issue in drawing firm conclusions about the connection between wind

speed and anomalous concentrations is the high uncertainty accompanying each

data point. While visually patterns can be easy to distinguish particularly for

NO2, statistically there is enough variance that the 95% confidence interval is

roughly twice the size of the largest anomalous underestimation for both target

gases. But within each segment there is some consistency between the paired

sensors. The standard deviation of their difference is 3.13 ± 10.34 µg m−3 for NO2

and 2.19 ± 4.44 µg m−3 for O3, far less than would be expected if the variance was

solely down to random error in the sensors, as opposed to being mostly due to the

environment.

4.4.4 Further investigation

There is still a suggestion that compensating for sources of interference that can be

distinguished through wind direction. In accordance with the sectioning techniques

used in this chapter, the data is divided into six segments with respect to wind

direction, each with an equal number of data points within them (as opposed to

the 20°intervals shown in figure 4.9). The fit from the lowest quintile of wind

speed is used to make predictions for the dataset. The RSE between prediction

and reference instrument is shown in figure 4.11.
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Figure 4.9: Violin plots of difference between predicted and actual data, di-
vided according to the prevailing wind direction. For each violin plot, the thicker
the band between the vertical axis and the edge of the violin, the more data
points lie within the region quantified by the vertical axis. There are multiple
violins, each one representing a 20 degree segment of the wind rose. Some violin
strips are very narrow and represent very few overall data points in this wind
direction, the lowest having five. The (green) left and (purple) right sides of
each “violin” represent the two different sensors, a and b. The darker coloured
beads indicate the mean of the anomaly for that sensor for wind direction within

the respective angle.

Figure 4.10: As above, but for O3.
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Figure 4.11: A wind scatter plot for NO2 sensor a, overlain with boundaries
chosen such that the data is divided into six segments, excluding the innermost
quintile of wind speed data, and each containing the same number of points.
The RSE value of each segment is superimposed. The colour of the segments
emphasises this (ranging through green for the lowest RSE to red for the highest

one).

However, dividing the data up in this way reveals another problem with trying to

compensate for changing wind direction. For any calibration, there needs to be a

period of time where, however the data are divided, each division contains enough

data points for a reliable fit to be produced. For the inverse NO2 equation, this

hard minimum is six (because of the six unknowns), and for O3 it is four - compare

this to the typical calibration data in CAFPOLD analyses, which is at least six

day’s worth - that’s 144 points of hourly data.

Wind does not work this way, however. Wind can blow consistently in one direction
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for hours, and if the wind is filling one of the wind segments with data points, it

isn’t doing so for any of the others. Figure 4.12 shows this effect clearly - each trace

is either for the core (in black) or one of the segments depicted above (in colour).

To create a fit in the separate segments to use for predictions of unknown data,

all of these traces must be above the critical level of six data points, preferably

much higher. But this is not the case for almost all of the data series. This issue

makes the methodology outlined in this chapter unsuitable for correcting sensor

measurements for bias due to wind direction.

The use of simulated wind data is an obvious point for future improvement. Both

the local geometry of the buildings and the natural turbulence in the atmosphere

make in-situ wind sensors more desirable for analyses of this kind.

Figure 4.12: Timeseries showing number of data points in each sector for a
week-long section of data, throughout the timeline of the LTE in 2016. Marked
horizontally in grey is the critical level below which, for the inverse NO2 equa-

tion, no fit can be made.
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4.4.5 Summary

The dependence for sources of interfering gases on wind direction has been de-

scribed in this section, but any strategies stemming from this insight are hard to

implement for practically our calibration procedures.

Indeed, as a consequence of the way the wind moves, dividing up the data by

wind direction leads to segments that contain too few points to produce a good

fit. Excluding data when the wind direction indicates that it is likely to produce

poor fits is a possibility, but it may be less trouble (and yield better results) to

use the goodness tests described in section 3.7 on page 137.

4.5 Timeshift error analysis

The importance of accurate time on the sensor’s clock during calibration is obvious.

The extent of the degradation in fit quality caused by timing errors are interesting

by themselves and might be useful in future experiment design. Additionally, this

method may be used to discover timeshifts or inaccurately reported timestamps

as a result of mistakes (for example, failure to correct between UTC and BST).

4.5.1 Method

This analysis used a section of the Long Term Experiment data between June

1st, 2016 and November 15th, 2016. For this set of data, the following steps were

repeated:

• A time shift was added to the Long Term Experiment timestamps, moving

them in ten second increments through 24 hours, both into the future and

the past. This is the same period as the measurement interval for the Long

Term Experiment sensor.
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• The DEFRA data is reported hourly. The LTE data was divided into hour-

long sections starting at each DEFRA data timestamp, and averaged.

• A series of calibrations were made between the shifted LTE data and the

DEFRA reference instrument, offset by ten seconds each time. As usual, for

each point in time a weeklong fit was taken, and data was then predicted

during the subsequent week. The goodness metrics of this data were cal-

culated for each fit - Residual standard error, Fractional error and Pearson

Correlation Coefficient.

• The goodness metrics for these fits were averaged together over the whole

timeseries, and the resulting values represent the average goodness possible

for calibrations when the timeseries is shifted by a set amount.

The results of this analysis are shown in figure 4.13

Figure 4.13: Results of the timeshift analysis. The x data is in hours, with
zero representing zero timeshift.
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4.5.2 Discussion

As might be expected, around a timeshift of zero produces the best results. The

quality metrics do not, however, follow a simple normal distribution. Rather, the

bell of a normal distribution lies at zero timeshift, but becomes indistinct beyond a

shift of about four hours. The PCC falls until it hovers around zero beyond about

six hours of time shifting, but it has a prominent peak that makes it probably

the easiest metric to use for diagnosis. This timeshift analysis could be used to

identify clock errors, where two datasets that have a significant timestamp offset

could be reconciled.

4.6 Summary

Four different analysis were performed in this chapter. Three of these explored

ways of improving fits, and one is more a useful diagnostic tool for ensuring that

any clock errors can be caught.

Of these, the transitional fit is a promising way to improve the accuracy of pre-

dictions for field experiments. For roving experiments particularly it proved itself

capable of getting better results than the average of taking single fits during cali-

bration periods at the start and end of the experiment, as shown in table 4.3 on

page 165. Compared to the average of calibrating once at either the start or the

end of a four week test period, the mean improvement in RSE for NO2 was around

3.14 ± 3.00 µg m−3, and for O3 were 1.72 ± 1.85 µg m−3.

The analysis using wind was disappointing due to the difficulties in implementing

practical improvements using sectioning techniques, although the existence of a

non-uniform wind distribution, and non-uniform anomalies between prediction

and reference with it, hints at the possibility of using different analysis methods

to compensate for this issue.
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The day/night analysis also yielded a marginal improvement compared to the

standard methods introduced in chapter 3. Sectioning the data into day and

night, using individual fits for each and making predictions using ambient light as

a variable came at the cost of doubling the calibration time needed. The level of

improvement for this technique is indistinguishable (see table 4.1 on page 157):

for NO2 a marginal 0.08 ± 0.80 µg m−3 reduction in RSE, and for O3 an equally

slight 0.04 ± 0.62 µg m−3 increase. This suggests that the change in atmospheric

chemistry between day and night does not significantly affect MOS sensors. These

are the best conclusions that can be drawn from the LTE data set, where a longer

and more uninterrupted data set would have produced clearer results.



Chapter 5

Characteristics of MOS sensors

and their implications for

instrument design

As was described in section 2.7 on page 81, the hardware design of an instrument

has a significant effect on the fidelity of the sensors inside. While the more obvious

design issues mentioned in that section were avoided in the prototypes used in this

work, there are some design elements that are not universally applied in air quality

instruments, and these should be investigated. Specifically:

• Whether to use fans to ventilate the sensor housing.

• The “warm-up” period over which a MOS sensor becomes stable after the

heating element is turned on.

• The extent that variations in the manufacturing process affect the response

of different sensors of the same type.

This chapter describes the experiments used to find answers to these questions.

Section 5.1 on the next page examines the effects of using a fan to actively draw

178
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air into the sensor casing, as opposed to mounting sensor elements externally. Sec-

tion 5.2 on page 183 examines the time it takes for a sensor to become useful after

being powered up, including a model of the active sensor surface area. Section 5.3

on page 190 examines MOS sensor variation, both in terms of raw output and

correlation between adjacent sensors. This is possible on a large scale due to the

instrument containing multiple sensor elements in close proximity.

There is also natural variation in the humidity and temperature sensors used in

the instrument. Measurement of any change in these environmental variables are

crucial for producing accurate predictions from MOS sensors. As our calibration is

unique to each sensor any offset produced through manufacturing variation should

be compensated for, and not affect predictions of gas concentration. Although

not germane to the central theme of measuring NO2 and O3, the work done on

characterising humidity and temperature variation is described in an appendix B.

5.1 Active airflow - yes or no?

Instruments can be designed to use fans to cycle air through a vented enclosure.

Alternatively they can have an enclosure that carries the sensor elements on the

outside, exposed to the atmosphere. Which approach is best is not a settled

question among commercially available instruments[217].

Two prototype instruments (SOGS version 0.2.5) were placed in different casings.

One of these enclosures was equipped with fans; the other had a cutaway that

allowed the surface of the sensors to be directly exposed to the air beneath the

casing. These were connected to the same power supply in parallel, and installed

25 centimeters apart from each other on the AURN station for calibration over

a period of twelve days. The data used in this section was taken between the

19th and 28th of December 2014. The experimental setup is shown in figure 5.1.
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The sensors were both set to take measurements every five seconds. In the fan-

equipped casing, a measurement was immediately preceded by a second-long pulse

of the fans.

The work described in this section was carried out in collaboration with A. P.

Brundle (Brundle [235]), and first described in a paper written by the author

(Peterson et al. [202]).

Figure 5.1: Experimental setup for investigating aspirated (on the left) vs.
passive sampling (right side), on the AURN station.

5.1.1 Results

Figure 5.2 shows the timeseries and scatter of predicted data from both sensors

against the AURN reference from this brief experiment. Since only one side of

the sensors was exposed to the atmosphere for the passive airflow instrument,

only the NO2 predictions from those exposed sensors were are used. Visually the

passive airflow device appears markedly less sensitive, although it responds to a

significant increase in background NO2 late on the 27th of December. The statistics

for the predictions in this experiment are shown in table 5.1 on the following page

- note that these statistics are taken during the calibration period and are not

directly comparable with the statistics over predictions outside it, such as those

in section 3.8 on page 143. FE and RSE for the passive instrument are close to

twice that of the active airflow sensor.
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Figure 5.2: Timeseries and scatter of active airflow instrument (red) and pas-
sive airflow instrument (blue). The timeseries plots these predictions alongside
the AURN reference (black). The graph on the right is a scatter plot of the
same data in the same colours, with the 1:1 line marked as a dashed black line.

RSE µg m−3 FE PCC

NO2
Active 6.97 0.21 0.94
Passive 13.37 0.35 0.76

Table 5.1: Table of performance statistics for the passive and active airflow
instruments compared with the reference over the entire experimental period.

5.1.2 Discussion

The timeseries in figure 5.2 appears to show that the passive sensor responds

to changes in atmospheric NO2, but is unable to resolve NO2 spikes that occur

over a timescale of only a few hours. This can be modelled as the passive airflow

causing a sensor to report accurate concentrations, but averaged over a period. To

determine the equivalent integration time of the passive airflow sensor, a moving

average was applied to the predictions from the active airflow instrument. The

larger the window width of the moving average, the worse the quality statistics for

the active sensor become. The equivalent integration period for the passive sensor

is the window width at which the statistics for the two instrument configurations

crossed.
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The results of this procedure are shown in figure 5.3. The RSE of the active

instrument data becomes worse than the passive instrument at an integration time

of 20 hours, for FE the crossover is around 24 hours, and for PCC the crossover

is around 21 hours. The period varies between performance metrics, but overall is

consistent with a window of roughly a day.

Figure 5.3: Graphs of change in performance metrics for the active and passive
instruments, when the active airflow instrument has a moving average applied
to it. The period of the moving average window is shown in the horizontal
axis, and ranges from zero (ie. no averaging window) to thirty-six hours. The
horizontal dashed black line is the passive instrument’s performance statistics.
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5.1.3 Summary of findings

The instrument exhibits a marked difference in sensitivity when fans are not in

place. It is clear from figure 5.2 that under the conditions of our experiment,

passive airflow instruments sensors are not useful for hourly measurements. Passive

airflow is acceptable for experiments that require only one measurement a day, but

much of the advantage of the high time-sensitivity of MOS sensors in general is

lost in this scenario. Using a fan in an instrument design is a simple precaution

that can vastly improve sensor performance.

5.2 Warm-up experiments

The time taken for the MOS sensors to reach chemical equilibrium after a change in

their power condition was investigated. When the sensor elements are cold, many

atmospheric gases condense onto their surface. These gases inhibit sensitivity to

the target gas by taking up binding sites on the sensor element. Bringing the

semiconductor up to temperature will gradually evaporate them away.

The sensor’s heating element draws a significant amount of power. There is an

incentive to have it powered down, or at least put in a low power state, whenever

practical for battery-powered mobile sensors. The strategy chosen must be com-

promise, because changing the power supply to the MOS heater has been shown

to adversely effect performance[228].

Beyond a deliberate strategy as part of the experiment design, there are several

means by which a sensor deployed in the field might have its power interrupted

momentarily. For example, if there is no battery backup, installing the sensors in a

car means disconnecting their power supply for up to five minutes before they are

reconnected to the car battery. During one mobile campaign a sensor, equipped

with a transceiver, experienced periodic brownouts when the transceiver tried to
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connect to the GSM network to deliver data every six minutes or so. This caused

periodic spikes in the voltages from the MOS sensors.

Equation 3.5 is the pseudo-static equation giving the response of the sensor at a

point in time. The a terms are proportional to the actual concentration of gas

in the atmosphere, only when the rates of the equilibrium reactions are all faster

than the rate at which the atmospheric composition in front of them varies. In

situations where the sensor element cools to room temperature, the above can no

longer be assumed, as the Arrhenius law reminds us that reaction rate decreases

exponentially as temperature falls[236].

The net rate at which airborne molecules of a particular gas adhere to the sensor

surface can be expressed as:

dagas
dt

= [Ggas]λa(T )− λd(T )agas − (A−
∑
i∈G

ai) (5.1)

which is the sum of the positive attachment of the gas to the sensor and the

negative separation of gas from the sensor surface. λ is a constant representing

the likelihood of attaching and detaching respectively, as a function of surface

temperature T . a is the area of the sensor that is taken up by attached gas

molecules either of the gas in question or for i all other gases, A is the surface

area of the sensor. From equation 3.6, the area already taken up by other gases is

an issue if the interaction lifetime of the gases with the sensor become significant

on the timescale of the experiment. This results in sensor hysteresis and non-zero

response time during normal operation.

In a static atmosphere after a long enough period of time, in other words in steady

state conditions, equation 5.1 will settle to zero. An equivalent equation for a for

all gases is:

da

dt
=
∑
i∈G

dai
dt

= (
∑
i∈G

[Gi]λai(T )ai − λdi(T )ai)− (A− a) (5.2)
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and it is the ai term that appears in fi(ai([Gi]), Ta, Th) in equation 3.5. Conse-

quently, solving this partial differential equation can give a baseline level of gas

adsorption that the sensor will tend to on a long enough timescale. Due to the

non-linearity of f this will not help us in practical terms, and the baseline must

instead be found experimentally.

Alternatively, if power is interrupted, the surface temperature will change and the

λ terms will change with it. It is hypothesized that this will cause the amount of

gas adsorption to move toward the new baseline following an exponential curve:

a(t) = kae
(λa−λd)t + kc (5.3)

where the constant kc represents the change in voltage between powered and un-

powered states once the sensor has reached equilibrium. ka is a constant that must

be found experimentally, and t is the time since the power was turned off. The

time constant of this decay (the time in seconds for the voltage to change by 63%

of the way between the powered or unpowered baseline) is equal to λa − λd).

With this hypothesis, a power supply interruption episode will produce a sensor

output voltage jump between before, and after the interruption with the character-

istic form shown in figure 5.4. The longer the sensor is left unpowered, the larger

the effect. This hypothetical model is based on the unphysical assumption that

the temperature will instantly change when power is interrupted. In reality the

kc term will change as the temperature of the surface varies over time. This may

also contribute to a hysteresis effect, where the actual voltage change will deviate

from the exponential curve shortly after the power is connected or interrupted.

When the power supply is cut and restored, there will be a point at which the

contribution to the sensor’s resistance as a result of the power interruption event is

minimal compared to other sources of error within the sensor. This is the amount

of time until the sensor can be said to be functioning normally again. If the sensor

obeys the laws described above, then the amount of time before the sensor is ready
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for operation will be predictable, and it will vary with the duration of the power

interruption.

Figure 5.4: Example curve of net gas adsorption after a power supply inter-
ruption event.

5.2.1 Experimental method

The instrument cannot take data when the power is disconnected, so a method

was devised to allow the behaviour of the sensor voltage while unpowered to be

characterised. A MOS instrument was placed in a closed plastic container in a

dark corner of an air conditioned lab for three days to approach a stable atmo-

sphere. A number of tests were run whereby the instrument’s power supply was

interrupted for a set duration, and when the sensor was repowered the shape of the

voltage curve afterward was recorded as the sensor surface returned to its powered

equilibrium. Because the sensor takes several measurements a second, and the

exact moment of those measurements cannot be externally determined, a strategy

had to be made to ensure that the voltage increase during disconnection could be

accurately recorded.

This consisted of two extrapolations of the sensor data. The first was before the

disconnection period. The first, a linear extrapolation from the last recorded data

point of the sensor to the beginning of the time of disconnection. The second, an

exponential curve was fitted to the voltages after the power was restored, and ex-

trapolated back to the end of the disconnection period. The difference in projected
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voltage at either end of the power interruption is a single data point corresponding

to the duration of that interruption.

This process was repeated with interruptions lasting from a second to several

minutes. A time series diagram of the order and duration of these interruptions

is shown in figure 5.5. Plotting the voltage gap versus interruption time should

produce a set of points corresponding to the exponential curve in equation 5.3.

5.2.2 Results and discussion

Figure 5.5: A timeline of the power supply interruption experiment, which
took place over multiple days in December 2016. The labels for the periods
during which the power supply was interrupted are referenced in the results

section.

The voltage responses from the four sensor elements in the instrument are shown

in 5.6. The voltage curve after sensor disconnection has the characteristic form

predicted by the model illustrated in figure 5.4 after the power connection was

restored. The magnitude of the voltage jump after the power supply interruption,

once hysteresis is compensated for, follows the exponential decay law described in

equation 5.3. The statistics for this decay are given in table 5.2 on the following

page
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Sensor
Baseline

shift kc (V)
ka

Decay time
constant (s)

OXa 0.465 ± 0.031 0.405 549
OXb 0.619 ± 0.035 0.548 745
O3a 0.242 ± 0.026 0.210 423
O3b 0.209 ± 0.025 0.182 340

Table 5.2: Table of statistics for the exponential voltage decay curve following
power interruption for the four sensors. Constants are defined in equation 5.3.

Immediately after the supply was reconnected the oxidising gas sensors showed in-

creasing voltages for a couple of seconds before they began decaying down to the

powered baseline level. These indicate sensor hysteresis that was more pronounced

for the oxidising gas sensors than the ozone sensors. The presence of sensor hys-

teresis is suggested by the assumptions in the model. While it is important to

account for this during analysis, it has no bearing on the key conclusions of this

experiment.

5.2.3 Summary

As shown in table 5.2, different magnitudes of response (ka and kc) were observed

for different sensors, despite the ambient conditions being the same. This points

to the inherent differences between sensors due to the manufacturing process.

Consequently the exact form of the decay should be expected to be individual to

each sensor.

Strictly speaking the time until the sensors are usable will depend on when the

change in output voltage from the power interruption effect diminishes to below

the instrument voltage noise. Unfortunately the results given here cannot be

converted into absolute concentrations because the sensor used was not recently

calibrated.

Time constants for the decay range from just under six minutes to just over twelve.

The time constant is lower (and hence the delay before the sensor becomes usable
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Figure 5.6: Fitted curves after power supply interruption for four different
sensors, two each of oxidising (OXa and OXb) and ozone (O3a and O3b), in
a stable atmosphere. The vertical axis of each graph is the increase in voltage
either side of the disconnection period. The baseline that the sensor output
settled to when left powered for at least an hour was set at zero volts (see
figure 5.5. The blue curves are the raw voltage curves, some of which show
the hysteresis of the sensor toward the beginning each curve (particularly for
OXa and OXb). The red lines are continuations of the voltage curves to the
time at which the power supply was reconnected, ignoring the hysteresis. These
terminate in red circles at the projected voltage difference at the moment the
sensor was reconnected. The dashed green line is an exponential curve fitted to
these points showing the likely voltage curve when the power is disconnected
and the sensor is cooling. The solid green line is the unpowered baseline voltage
inferred from this fit. The grey lines either side of the likely voltage curve

delineate the 95% confidence interval of the exponential fit.
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again is shorter) for the ozone sensors. This is not an impractical amount of time.

Waiting an hour should be several times the length of the decay constant no matter

the sensor. In field experiments with mobile sensors, an hour’s delay after power

is restored has no major effect on results.

5.3 Manufacturing variation in MOS sensors

Metal Oxide Semiconductor gas sensors exhibit a high degree of individuality due

to variations in the manufacturing process[139]. The unique architecture of the

MOS sensor board used in the instrument prototype, with two sensors of the same

kind separated by a centimeter and shielded from sunlight, permits the true level

of correlation between sensors to be calculated.

5.3.1 Method

This analysis spans every single experimental dataset taken with the two-sided

MOS sensor board (see figure 3.4). Because the sensors are on either side of

a PCB, they are exposed to almost the same atmosphere. There are 173 such

datasets spanning four years of experiments, but to ensure a fair comparison,

the sensors must be fully active and ready to take measurements. Consequently

the list of datasets was trimmed to remove the first hour after power-up as per

section 5.2.3 on page 188, and only datasets with at least ten records after trimming

were included in the statistics. The list was also trimmed of duplicate sets of data.

To prevent saturation issues caused by the amplifier electronics reaching the edge

of their voltage range (see figure 6.4 in section 6.1 on page 196) - an error due to

limitations in the electronics rather than flaws with the sensors - voltages below

the 5th percentile and above the 95th were also trimmed from the datasets before

they were compared with each other. This left 136 datasets.
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Datasets that pass this criteria were aggregated, and the statistics relating sensor a

to sensor b were collated - PCC between these two sensors, as well as the slope and

intercept of their voltages. The resulting statistics, in aggregate, are represented

in figure 5.7, and in table 5.3 on the following page. This data is representative of

the sensors used in the last four years with the Earth Observation Science group

at the University of Leicester’s physics department, but each data point is from

a different experiment, and Earth Observation Science colleagues may have used

the same sensor multiple times.

The output voltage of the sensor electronics for this experiment is linearly propor-

tional to the element resistance, unless the sensor saturates.

Figure 5.7: a) Violin plot of PCC between a and b sensors. The mean correla-
tion has been marked with a white dot. b) Gradient of least-squares fit between
a and b sensor voltages, with a value of one implying a 1:1 correlation. Violin
plots are broader where more results are in the region indicated by the vertical

axis.
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PCC Percentile Number of sensors:
Sensor Mean 25th 50th 75th -0.1 to 0.1 Less than 0.1

OX 0.88 0.89 0.98 0.99 1 4
RED 0.58 0.28 0.82 0.97 14 13

O3 0.80 0.92 0.98 0.99 1 10
NH3 0.67 0.66 0.91 0.98 17 4

Table 5.3: Table of PCC - mean and percentile - between sensor pairs.

5.3.2 Discussion

The PCC between sensors is an important statistic. The sensors all will have

individual baseline resistances and sensitivities that caused them to respond to

atmospheric gas by a different magnitude, but these differences can be compen-

sated for during calibration. The PCC, on the other hand, is high only if the pair

of sensor outputs move in the same direction in response to a given change in the

atmospheric composition. Assuming the same composition of atmosphere is in

front of each sensor, PCC should be equal to one in the ideal case. PCC of zero

implies one sensor is nonfunctional, and a negative PCC implies one sensor out of

the pair is producing completely aberrant results.

From 5.3, the oxidising gas (OX) and (O3) sensors have the most consistently high

PCC. The narrow tails on the violin plot for OX sensors show that a tiny minority

of devices do not exhibit strong positive correlation with each other, and only one

out of the entire dataset had negative correlation (less than -0.1).

The O3 sensor violin has the best mean PCC out of any type of sensor, although

it has a very thin tail that stretches into negative correlation, representing 10 out

of 136 sensor pairs. Very few ozone sensors were entirely nonfunctional, with one

from the entire dataset having PCC between -0.1 and 0.1.

The reducing gas sensor (RED), not used elsewhere in this thesis, gave a very

interesting result. The PCC violin plot shows that there’s a significant proportion

of sensors that exhibited very poor PCC, and the gradient violin in figure 5.7 b) for
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this type of sensor reveals that roughly half as many sensor pairs had a gradient

of zero between them as a gradient of one. A zero gradient indicates that one

sensor in the pair had output that was locked to the same value no matter what

the other sensor’s response was. This is a very high failure rate.

The ammonia (NH3) sensors exhibited a less severe version of the same problem

that plagued the reducing gas sensors, where from 5.7 b) about a third of the

sensor pairs had a zero gradient. The poor PCC caused by this issue is reflected

in the statistics in table 5.3 on the preceding page. The median PCC for the RED

sensors is an acceptable 0.82, but the lowest quartile results are 0.28 - downright

terrible. Other sensor types showed relatively good PCC between sensor pairs

even at the lowest quartile.

However, that is not to say that the reducing gas sensor is useless. The highest

quartile of PCC performance is very good for all sensor types, including reducing

gas sensors. If the top quarter of all sensor pairs are performant, this means that

each MOS instrument board, with a pair of each sensor type, has a 50% change

of at least one sensor being consistently functional.

For those sensor pairs that do not exhibit correlation between each other, further

experiments in a closed gas cell might show more clearly what species the sensors

are responding to, or whether a large number of them are completely unresponsive.

5.4 Summary

The manufacturing variations in MOS sensors are quite pronounced, but for the

OX and O3 sensors used for the majority of this thesis experience good correlation

with one another, with 75% of them having a PCC of 0.88 for OX sensors and

0.92 for O3 sensors. Once properly calibrated the variation is less of an issue -
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except that unless the amplifier electronics for the sensors are carefully designed,

saturation might well result.

This sheds some light on the problems experience in previous chapters with long

term experiment sensors c and d (see sections 3.6 on page 133, 4.2.2 on page 152

and 4.3.2 on page 160). From the results in this chapter it is statistically likely

that the OX and O3 sensors were working well, but were still unable to produce

usable results. This implies the problem is environmental and might be related to

poor ventilation for the c and d sensors in the enclosure rather than manufacturing

error.

The warm-up time experiment found that the decay constant for the effects in-

duced after an interruption in sensor power supply can be up to 12 minutes de-

pending on the sensor (see table 5.2 on page 188), which indicates that a period

of an hour is needed before any experiments are attempted after powering up.

The usefulness of fans in ensuring fresh air is cycled onto the sensors is also shown

in this chapter, with fan-assisted MOS sensors tracking well with the one-hour

AURN data as shown in figure 5.6.



Chapter 6

Experimental study on spatial

variation of pollutants

The individual exposure of human beings to NO2 is determined by quite small-

scale variation in the concentration of the gas. Around a building or on either side

of a fence, NO2 can vary significantly and this level of granularity in pollutant

concentration on the scale of meters has itself been the subject of multiple studies

[237][238][141].

In addition, the reactions in the Leighton cycle takes place on a scale of seconds[44].

This rapid variation increases the difficulty in using highly sensitive instrument

which can measure changes with similar rapidity, like those based on MOS sen-

sors. To obtain typical concentrations of atmospheric pollutants, sensors need to

be sampled multiple times and then averaged together. Even then, there is signifi-

cant variability between measurement sites depending on the local geography[237].

The high time resolution of the instrument developed in this work presents new

opportunities to investigate NO2 in detail.

The question we seek to answer in this chapter is this: Through using mobile

MOS instruments combined with mapping data, what can we learn about the local

195
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atmosphere’s spatial and temporal variation of NOx, NO2 and O3 concentrations?

What can we learn about the performance and utility of our sensors for measuring

personal exposure?

Two experiments are described in this chapter. The first is an “adjacency” ex-

periment. A rack of adjacent sensors on the AURN were run for 14 days, and

the variation between these sensors give clues as to the characteristic length and

timescale of NO2 variation.

The second experiment is a mobile deployment, albeit a very local one. The

University of Leicester AURN site is next to a small sports field bounded by two

roads, and colleague Amrita Aujla pulled a trolley with two Zephyr-prototype

instruments strapped to it around the field. The influence of the roads on this

raw dataset can be precisely determined thanks to the high time resolution of the

sensors.

6.1 The arm’s length scale

The calibration rig on the AURN station has fittings and power connectors to host

up to ten sensors at once. Between the 26th September and 12th October 2016,

nine sensors were set running side-by-side, along with the long term experiment

previously analysed in chapter 3. While three of these sensors were found to be

unreliable, the remaining six took a fortnight’s worth of data in this way.

The purpose of this section is determine the variation in space of NO2 and O3

concentrations, in the environment near the Leicester AURN station. Since the

Zephyr instrument’s architecture has two identical sensors less than a centimeter

away from each other in each housing, it is possible to determine a baseline level

of sensor inaccuracy by looking at the difference between these pairs of sensors

which should be receiving air of the same chemical composition at the same time.
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From there, the variation of NO2 in the atmosphere may be determined by looking

at the variation between adjacent instruments, which are distributed over a couple

of meters.

6.1.1 Experimental setup

Figure 6.1: Layout of the multi-sensor adjacency experiment. Blue lines in-
dicate dimensions. Positions are given relative to the leftmost sensor’s intake.
The instruments (apart from the LTE, long term experiment) are demarcated
by a name of the form DCAxx, where xx are two numerals. The red crosses
indicate sensors that were found to not produce accurate results - see later in

this section.

Figure 6.1 shows the layout of the sensors on the side of the AURN station.

The sensors were set to take measurements every ten seconds, although the LTE

sensor (not used in this experiment) instead takes measurements every 20 seconds.

The AURN station reports data every hour (although this data is the average of

much more rapid measurements). While the sensors took measurements every ten

seconds, they are not necessarily perfectly time-synchronized; to allow comparison

between them, the timestamps of the sensors in the following analysis are averaged

to the nearest whole minute.

Critically, the sensors are shielded from the direct emissions of the nearby Univer-

sity Road by being on the far side of the AURN building. They are all roughly

20 meters from the road, but proximity to a road has been noted as a significant
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determining factor in average pollution exposure[141]. The airflow around the

building was not modelled for this experiment.

This analysis uses a subset of data from the period between the 27th of September

and 11th October 2016, starting at 12 noon and lasting two weeks.

As depicted in figure 6.1, some of the instruments did not perform well enough for

this experiment and are omitted from further analysis. Specifically, while the two

pairs of OX sensors in DCA88 and DCA79 agreed with each other well enough,

they had terrible correlation with the other sensors in the experiment, particu-

larly DCA88. These sensors also gave trouble with the humidity and temperature

sensors - this implies a problem with either the sensor ventilation or electronics.

These sensor outputs are omitted from future analysis, along with DCA41, which

had a damaged temperature sensor.

Within each sensor are two pairs of four different instrument sets, identified from

now on as a and b - such that the sensor a inside DCA66 is referred to as

“DCA66a”.

6.1.2 Voltage correlation analysis

Even raw voltages from these sensors provide interesting information. A set of

scatters from all the used sensors is shown in figure 6.2.
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Figure 6.2: This scatter grid plot shows the correlation from all six functional
sensors (that is, twenty four sensor elements, twelve each for OX and O3 MOS
sensors). The bottom left portion of the graph shows the O3 sensors, the top
right are OX. Pairs of a and b sensors are adjacent to each other and are shaded
the same colour, helping emphasize the blocks of four scatter plots. The axes
are normalised so that the center of each plot axis is the mean voltage of the
sensor for that axis. The scale is individual to each scatter, and is such that
both axes of the scatter cover a range of voltage equal to twice the sum of

standard deviations for both of the sensors indicated by the axes.
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The results from section 5.3 on page 190 are borne out here in the comparison

between sensors in the same housing. The only case where the PCC between

sensors in the same instrument fell below 0.99 was in the case of DCA82, where

the O3 sensor reported a decent PCC of 0.97 and a suspiciously poor PCC of 0.92

for the OX sensor.

Aside from this, the shape of the voltage correlation between different instruments

should be noted. The scatter plots are each normalised to the sum of standard

deviations of both sensor axes, and where the slant of the scatter deviates from

45o it implies a lower sensitivity for one of the sensors. For both of the O3 sensors

in DCA52 versus DCA46, the scatter shows a consistent slant within each instru-

ment - a narrow range of the DCA46 sensor voltage corresponds to a large range

of DCA52 voltage. This pattern is repeated elsewhere, with sensors within an

instrument exhibiting similar slants to each other compared to other instruments.

As the slant is per instrument, rather than per sensor, this implies the cause is the

change in environment between each housing, rather than due to manufacturing

variations between sensors.

Some sensors exhibit saturation - that is, their response is curtailed by the limited

range of voltages that the amplifier electronics can produce. The DCA82 OXb

sensor is a clear example. For the lower part of each scatter for the OXb sensor,

there is a flatly vertical line. This represents a range of values where the sensor

does not respond to changes in the environment that are detected by the sensor it

is being compared to.

6.1.3 Fitting analysis

For both NO2 and O3, fits were taken using the inverse equations against the

reference instruments on the AURN station. The calibration was produced from
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the entire two week dataset of the experiment. The prediction used the faster

(minute-averaged) data from the Zephyr instruments and covered the same period.

In the same way as earlier, the predicted timeseries data was compared between

sensors and instruments. The results are shown as a grid in figure 6.3. The

takeaways are similar to those of figure 6.2, in that most of the sensors in the

same enclosure correlate well to each other in their predictions. Table 6.1 on the

following page shows a summary of the correlations of the sensors with each other,

and with the reference instruments.

As might be expected, on average the sensors within the same instrument housing

correlate best with each other, followed by their neighbouring instruments, and

poorest with the AURN reference instruments. Because the prediction is occurring

during the same period as the calibration, the AURN statistics cannot be directly

compared with the results from chapter 3 (which test predictions outside the cal-

ibration period), but they were not appreciably worse. The confidence intervals

for fractional error between other instruments are very large, particularly for O3

- the variation between sensors is such that the error bar is two and a half times

larger than the average result.

Some sensors performed noticeably worse than others. The sensors in DCA45 gave

predictions with a PCC of 0.75 between its sensors, but the other scatters involving

DCA45a evidence poorer performance in general, with a consistently shape in the

scatter graph (figure 6.3. DCA82 is still poor for both a and b sensors in NO2,

with a clear cutoff where the OX sensors were saturated visible in the scatter plots.
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Comparison RSE µg m−3 FE PCC

NO2
a vs b 12.0 ± 9.7 0.38 ± 0.35 0.89 ± 0.16
vs other sensors 13.0 ± 8.8 0.73 ± 0.99 0.88 ± 0.18
vs reference 21.7 ± 6.6 0.40 ± 0.19 0.76 ± 0.18

O3
a vs b 5.7 ± 3.4 0.17 ± 0.19 0.99 ± 0.01
vs other sensors 9.48 ± 6.3 0.80 ± 2.02 0.96 ± 0.05
vs reference 8.3 ± 2.6 0.47 ± 0.27 0.97 ± 0.02

Table 6.1: Table of average correlation of the sensor predictions between each
other, divided into two categories: sensor a vs sensor b from the same instru-
ment, and the sensors compared with different instruments. Error ranges are
95% confidence interval. The graph also has statistics for how well on average
the instruments correlate with the AURN reference, using hour-averaged data

from the Zephyr prototype instruments.

6.1.4 Residuals and atmospheric variation

In this section a model with some significant assumptions will be constructed, and

used along with data from the Zephyr instruments to calculate the length scale

over which NO2 and O3 concentrations change in the atmosphere.

This “variation” of the gas in space is comprised of the change due to emission,

deposition, and any chemical reactions that produce or consume the gas. The typ-

ical variation observed between two sensors will depend crucially on wind direction

and how pollution sources in the region are carried to the sensor, as well as (in

the case of the Leighton gases whose equilibrium is moderated by the presence of

UV photons) the diurnal cycle on a longer timescale. Effects like plumes of fresh

pollution cannot be represented by a simple Gaussian noise distribution with a

characteristic length. However, for the purpose of this analysis, we will model the

atmospheric gas concentrations in these terms. The distribution of a gas then,

when measured at a single point, has a characteristic time related to the wind

speed and the rate at which chemical reactions occur.

In this model, the average change between measurements will equal zero overall

over timescales much larger than this characteristic time. The NO2 character-

istic diurnal cycle occurs over a much shorter period than the timescale of this
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Figure 6.3: This scatter grid plot, similar to 6.2, shows the correlation between
the predictions of the twenty four sensors - in the upper right for NO2, in the
lower left for O3. As with figure 6.2, the scale of the individual scatter plots
centers around the mean of the predicted data and extends to the sum of the
standard deviations. This keeps the data centered but does not transform it or
change the angle of the individual plots. Colour is used to visually group a and
b sensors from the same instrument together. These scatter plots are between

Zephyr-prototype sensors, not the AURN reference instruments.
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experiment (two weeks), and so this analysis will proceed disregarding the diurnal

effect.

The difference in the concentration of a gas [G] at a point in time, as measured

by two separate sensors i and j, is the sum of the inherent detection error of each

sensor δSi and δSj in its finite capacity to measure the actual value of the target

gas, and the actual difference in gas between the two sensors ∆[Gij].

If the overall change in gas during the course of an experiment is zero, then the

standard deviation of the local change in gas between two of these sensors is

equal to the RSE between them. The standard atmospheric variation in gas for a

particular sensor ∆[Gi], over a length scale l, can then be expressed as the average

of all ∆[Gij] terms except those where i = j (which are the same sensor) and

i = j ± 1 (which are the adjacent sensors in the same instrument housing). This

gives twelve results for each gas, one per sensor, and the average of these values is

the standard atmospheric variation among all the sensors - that is, the magnitude

of the gaussian noise model for the sensors over a characteristic length scale l.

The 95% uncertainty in the standard atmospheric variation estimate is equal to

2×
∑N

i

√
δS2

i +σ[Gi]2/
√
N (6.1)

where N is the number of sensors and σ[Gi] is the standard deviation of the

differences in gas concentration between sensor i and all other sensors:

σ[Gi] =

√∑N
j 6=i

√
∆[Gij ]/N (6.2)

If the measurement error of any sensor is Gaussian, it can be approximated with

the reference residual, which is a measure of the error between the calibrated

sensor and the reference instrument. The AURN reference instrument itself has a

fractional uncertainty of better than 14% for NOx and related gases[239, 87].
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The reference residual is a measure of the extent to which the predicted data

differs from the reference. It can be calculated as:

∆[Gs] =

√∑
i∈N ([GRef ]i − [Gs]i)

2

N − 1
(6.3)

where N is the number of data points, [G] is the concentration of the target

gas, ∆[Gs] is the error of the gas concentration for that individual sensor, [Gs] is

the sensor’s reported gas concentration and [GRef ] is the reference instrument’s

concentration. There are twelve sensor elements, and this gives us twelve results

for each target gas. In order to compute the residual, the sensor data must be

averaged to the hourly results given by the AURN.

The average of the reference residual for all of the sensors is 11.19 ± 3.12 µg m−3

for NO2 and 3.97 ± 1.24 µg m−3 for O3. The mean value gives a typical uncertainty

for sensors of this kind under these calibration conditions between their prediction

and the reference, although for the rest of this analysis the individual error values

calculated in equation 6.3 for each sensor are used as error bounds.
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Figure 6.4: Residual between sensors for NO2. Each point is the standard
deviation of the residual standard error between the labelled sensor and all the
others in the experiment. The x axis arranges the instruments in their approx-
imate position on the AURN station, with results for sensors a and b for each
instrument (in red and blue) shown next to the intra-instrument comparison
between a and b(in grey). The separate axis on the left of the diagram shows
the average of the inter-instrument comparison. The error bars are to the first

standard deviation (63% confidence).

Figure 6.5: As above, but for O3.

The residual of each sensor between different instruments σ[Gi] , and for those

sensors are shown in figures 6.4 and 6.5. For NO2, the large error bars from

individual instruments are clearly shown to the the biggest source of error for

this calculation - an error margin that the averaging between sensors will go some

way toward compensating for. For O3 the factional error is lower, consistent with

results obtained throughout this work.
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While the intra-sensor results are inside the margin for error for the adjacent

instruments, they are also generally lower - average difference between the other

instruments and the paired a and b sensors is

0.50 ± 7.75 µg m−3 for NO2, and

1.89 ± 3.86 µg m−3 for O3, with error bounds at the 95% confidence level. That the

sensors within the same casing have a lower standard deviation is to be expected,

but the margin for error is very high.

For NO2, the standard atmospheric variation averaged over all sensors is 6.5 ±

7.28 µg m−3.

For O3, it is 4.73 ± 2.75 µg m−3, to 95% confidence.

The characteristic length scale of the modelled gaussian distribution l, for this

setup, is the average of the sensor separations in the experiment - equal to 0.92 ±

0.68 m.

6.1.5 Summary

Through this experiment, the length scale of the variation in NO2 and O3 was

calculated. It is difficult to find a comparable figure to this experiment from the

literature, because the analysis requires sensor-to-sensor RSE to be calculated,

not just the residual against an reference. Surveys featuring a large number of

instruments left near the same reference station for a long period would be suitable

if the raw data from these could be acquired. The studies from Denver[50] (6-8

sensors), or Oslo[185] (24) would be suitable.

The signal to noise ratio of these results is almost 1:1 for NO2, although O3 gives

a clearer prediction with 2:1 signal/noise.
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The greater margin for error on the NO2 results might be due to the greater

number of variables going into the determination of NO2 concentration. Whereas

the O3 sensor by itself can be fitted to reference O3 concentrations, the cross-

sensitivity of the oxidizing gas sensor means that it takes two of the MOS sensors

to predict NO2 concentration. Critically, each MOS sensor comes with its own

set of unpredictable cross-sensitivities, or as figure 6.2 shows, potential electronic

issues in the form of saturation. Having two sensor inputs into the equation rather

than one can make a significant difference, above and beyond any innate difficulty

in measuring atmospheric NO2.

While successful in determining a length-scale for these forms of airborne pollution,

this section leaves open an important question. Since there is a worse correlation

between adjacent instruments than with sensors in the same instrument, this im-

plies that even over a range of half a meter or so the dynamics of the atmosphere

and chemical changes among pollutants can affect the concentration of sensible

gases significantly. But the same issue affects the correlation between the Zephyr

prototype instruments and the AURN instruments they are calibrating against.

How much of the error when calibrating Zephyr prototypes in this environment is

due to the different detection method within the reference and the Zephyr, and

how much is down to the distance between the AURN station inlet and the sen-

sor intake fan? The sensors are capable of measuring atmospheric pollutants to

a respectable accuracy using the calibration methods described in chapter 3, but

the current calibration setup, with the air gap between sensors under test and

the reference instrument intake, has serious room for improvement. Future work

involving these sensors should mean a redesign of the calibration setup.
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6.2 The garden scale

The examination of sensor response in the immediate environment of an atmo-

spheric reference base station is not the primary purpose of developing small,

portable sensors. To learn more about a population’s exposure to air pollution,

we must deploy them in more varied settings.

The experiment described in this section is a fairly straightforward one - build a

mobile sensor, and see how the concentrations of gas change across a field. The

objective is to examine the effects of road proximity, and the level of sophistication

needed to understand how that proximity can be modelled. How much of the

variation in NOx detected by the sensors is local (that is, produced by the nearby

roads), and how much is deposited in the vicinity of the experiment through

atmospheric transport?

6.2.1 Method

Between December 2015 and into early 2016, several experiments were performed

by colleague Amrita Aujla with a roving sensor platform. The data for this analysis

was taken on the 11th of December 2015. A cart was assembled with a long

vertical pole and fitted with two Zephyr prototype sensors, one held 20 cm and

one at 150 cm from the ground, as shown in figure 6.6. This cart was pulled by

hand around the sports field adjacent to the AURN station and nearby roads and

carparks, tracking the carts position using GPS data. The sensors took one data

point every five seconds, recording MOS sensor voltages, temperature, humidity

and time. GPS location information was recorded on a mobile phone GPS tracker

(at the time, the sensor’s onboard GPS was not yet available). For all the cart

experiments, the sensors were turned on in the lab the night before and the cart

was left outside for an hour to achieve equilibrium at the AURN station before

being moved.
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Figure 6.6: Roving instrument cart beside the Leicester University AURN
station. Only the instrument at 150 cm elevation is used in this analysis.

The instrument at 20 cm closer to the ground was used by Aujla to examine the

short-lived chemical species emitted by the ground. Unfortunately after calibra-

tion at the AURN station this instrument returned wildly inaccurate predictions.

Calibration is carried out two meters from the ground, and it’s possible that in-

terference from other gases threw off the sensor predictions. The results from

this sensor are not relevant to the following discussion - the measurements in this

section come from the sensor at head height (150 cm).

The instruments were mounted on the AURN (not on the cart) for calibration both

before and after the larger series of experiments performed by Aujla, giving two

calibration periods - one between the 19th and 27th of November 2015, the second

from the 21st of January to the 5th of February in 2016. A transitional fit would

have been ideal to interpolate between these two periods, but the earlier period

produced poor fits and so the second period was used. The statistics comparing

the prediction from the sensor over the calibration period is given in table 6.2.
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These statistics cannot be directly compared with the averages shown in table 3.4

on page 134, because latter are averages of predictions that were made during a

validation period that did not coincide with the calibration period.

Table 6.2: Calibration statistics for the roving sensor. RSE values are in
micro grams per meter cubed.

The cart was pulled around the small sports field next to the AURN station

between 4:17pm and 4:31pm, in the afternoon of the 11th of December. The field

is elevated from the pavement, with an embankment about a meter high, near

the junction between Welford and University Road, bordered by a scattering of

trees that go some way to shielding it from traffic. The experiment lasted fifteen

minutes, but there were other experiments performed with this setup and the

larger dataset not discussed here will be published elsewhere. The measurement

interval for the roving sensor was five seconds.

6.2.2 Results

The predicted concentrations for both NO2 and O3 from the second calibration

period, matched to their GPS location, are shown in figure 6.7. During the same

parts of the path, the paired sensors returned similar concentrations, as evidenced

by similar colours on the diagram. This is explicit in figures 6.8(a) and 6.8(b)

show scatter plots comparing the predictions of the a and b sets of sensors (not

between the sensors and the AURN reference). Subfigure a) shows NO2, for which

the predictions exhibited a RSE of 1.38 µg m−3 and a PCC of 0.99. Subfigure b)

shows O3, which had a RSE of 0.81 µg m−3 and PCC of 0.99. While the sensor
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Figure 6.7: Path and relative concentrations of the roving sensor experiment
superimposed on an aerial image of the ground near the AURN station. The

average distance moved between measurements is 6.93 ± 2.05 m.

predictions had diverged from each other slightly since calibration, they showed

excellent PCC and very low residual standard error.

The looping path described in figure 6.7 does not show a very strong correlation

between road proximity and the amount of NO2 measured. Instead, figure 6.9

shows a steady decline in NO2 concentration as time progresses. Two things make

it likely that this is not due to degradation or otherwise aberrant performance
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(a) (b)

Figure 6.8: Scatter comparing a and b sensor predictions during the mobile
sensor experiment. Predictions are made using the end calibration period.

from the sensors: First, the two sensors in the instrument correlated well with

each other, and second the dips in O3 concentration (particularly noticeable early

on in the timeseries) anti-correlate with NO2, which is consistent with the idea

that these gases are linked together by the Leighton relationship and responding to

elevated NO2 in the environment due to traffic pollution. A more detailed analysis

on the influence of the pollution from the road is needed to clarify the extent to

which correlation between the sensors proximity to it and the amount of NO2 and

O3 it detects should be expected.

Figure 6.9: Timeseries of predicted concentrations, for both NO2 and O3.
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Gaussian modelling[240] (unrelated to the Gaussian noise model of section 6.1.5

on page 207) is a popular component in simulations of the movement of pollution

in the atmosphere. A central assumption is that pollution emitted from a source

forms a plume that is carried by the wind and spreads as it dissipates. The

simplest Gaussian model neglects deposition, turbulence or atmospheric chemical

reactions, and uses wind direction to simulate a plume from a source of pollution.

The plume equation provides quite a mathematically simple and computationally

fast means for determining concentration c downwind from a source[241, 3]:

c(x, y, z) =
Q

2πσyσzu
exp

(
−y2

2σ2
y

)(
exp

(
−(z − h)2

2σz

)
+ exp

(
−(z + h)2

2σz

))
(6.4)

where x is downwind, y is crosswind, and z is vertically upward. Q is the source

term related to the amount of the emission per unit volume, and the σy and σz

terms indicate the crosswind and vertical mixing. u is the wind speed and h is the

release height of the source of emission. The last term of this equation represents

reflection from the ground.

The plume modelled in this equation does not change along the downwind (x)

axis, based on the assumption that when the wind speed is high, transport is more

dominant than diffusion. However when this is not the case then the modelling

for dispersion of the gas becomes much more complex, at least when an absolute

prediction of plume density is desired. In practical terms knowing the “extent”

of a plume from the source is difficult as it depends on the definition of when the

plume has completely dissipated - generally when the airborne concentration in a

plume reaches some fraction of the concentration outside the pollutant source[242].

If a time and wind independent pollution distribution is assumed - a fairly bold

assumption - then quantifying the effects of a nearby road can be greatly simplified.

In the case of a single point source at distance r from an instrument:

c(r) ∝ r−p (6.5)
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where for a three-dimensional diffusion p is equal to 3. In case of a linear source,

the proximity factor becomes:

c(r) ∝
∫
L

r(l)−pdl (6.6)

where r is the distance from each point along the road L. An array of road

proximity data can be used to express this as a dimensionless, normalised quantity

by dividing the collected factors c by the minimum value of the array.

To model the linear source of pollution from the road, the simulated path of

Welford Road and University Road was divided into 1 meter increments, and the

distances from each section point were summed together, performing a numerical

integration of equation 6.6. A scatter plot of this information is shown in figure

6.10. For this calculation, the different length of the longitude and latitudinal

degrees at 52oN was accounted for.

There is a very poor correlation between road proximity as measured above and

NO2 concentration observed for both sensors; if the hypothesis is true then we

should see a clear straight line on the graph for NO2 going diagonally to the top

right. The anti-correlation with O3 is to be expected, and suggests that the sensors

were operating properly. The assumptions made for this analysis may be too

audacious to produce reliable results in these conditions - particularly neglecting

the effects of wind transport.

The alternative is to replace the simple arithmetic with computational fluid dy-

namical (CFD) modelling that takes wind speed and direction into account, match-

ing the predicted exposure from the road with NO2 concentration.

The wind measurements on the AURN take place every minute, and the roving

sensor measurements every five seconds. To match the two, the roving sensor data

points were matched to the wind reading with the nearest timestamp, re-using

neighbouring wind measurements if needed.
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Figure 6.10: Scatter of predicted concentration vs. road proximity for NO2

sensors a and b. The road proximity factor is a normalized, dimensionless figure
obtained by dividing the road proximity equation (6.6) by its minimum value.

A set of CFD data was generated based on the nearby buildings, with their geom-

etry measured using LIDAR (light detection and ranging) by Infoterra, courtesy

of Leicester City Council. The dataset was the same one used by A. JeanJean for

modelling urban air quality[84]. Each data file was specific to a wind speed and

direction and the set covered 360o of wind direction in 10o increments, for wind

speeds of 2, 4, 6 and 8 meters per second. Each data file consisted of a number of

unsorted vertex definitions on a 10 meter square grid of vertices, excluding points
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that would have been inside structures.

Each data point from the experiment was matched to the nearest data files using

two rounds of linear interpolation - one between the wind speeds and directions

represented by the different CFD files, and one rounded to match the GPS position

data from the roving sensor to the nearest vertices within those files.

During the experiment, the wind speed generally stayed below 2 meters per second,

and the wind mostly blew from the west, from the direction of University Road.

For experimentally measured wind speeds lower than the lowest speed described in

the CFD dataset, the lowest values (those at 2 meters per second) were used rather

than interpolating between that and zero gas exposure. Where the wind reading

was zero, those data points were omitted completely from this analysis. A wind

scatter plot for the experiment is shown in figures 6.11(a) and 6.11(b), focusing

on the limited set of wind speeds experienced during the experiment. The anti-

correlation between NO2 and O3 is visible, but there is no clear link between wind

direction and concentration of either gas.
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(a) (b)

Figure 6.11: Scatter of wind direction during roving sensor experiment,
coloured according to a) NO2 or b) O3 concentration from sensor a within the
150 cm instrument. The colour indicates the gas concentration measured by the
sensor for a particular wind direction. A random number (between -0.05 and
+0.05 m/s) was added to the x and y direction of each wind measurement to

make distinct the different concentration in groups of data points.

6.2.3 Discussion

The results of this analysis are shown in figure 6.12. They are scarcely more

encouraging for the idea that there should be a strong correlation between road

proximity and pollutant concentration than those for the simpler model. The left

side of the graph, representing road influence of less than 4, has points covering

the full span of predicted concentrations. There are horizontal clusters of points

around 47.5 µg m−3 and 36 µg m−3, which means that closer to the road these con-

centrations were detected consistently. While the upper patch approaches higher

road influence, it is a very poor correlation overall.

The PCC between modelled influence and measured gas is 0.122 and 0.096 for the

NO2 fits, and -0.176 and -0.166 for O3. Again, the anti-correlation between NO2

and O3 that demonstrates a link between independent sensor readings and the
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atmospheric chemistry is present. Overall the data shows that the changes in re-

ported gas concentration in these experimental conditions appear to be dominated

by other factors than road proximity.

Figure 6.12: Scatter graph of simulated road influence compared to measured
NO2 and O3 concentrations of sensor a. Note the marginal influence of the road,

for the given levels of influence from the road.

One possible explanation is that transportation of pollutant gases from elsewhere

in the city might dwarf the pollution produced by traffic on University Road.

As discussed in section 1.4.1 on page 31, the NO2 in the urban environments can be

either emitted or generated photochemically in the immediate vicinity, advected

from nearby local sources, or imported from distant regions by PAN transport.

Thanks to the Leighton cycle, locally produced concentrations of NO2 and O3 are

dependant on the NOx concentration - this is not the case with NO2 that has been

deposited from elsewhere in the atmosphere. Figure 6.13(a) is an example from

[89], showing a graph of oxidant gases (the sum of NO2 and O3) and NOx, which
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is the sum of NO2 and NO. The regional contribution labelled varies seasonally

[89], although some events like fires can elevate regional production and transport.

Using plots like these to examine the AURN data can reveal how much influence

PAN transport has on the local NO2 concentration.

Figure 6.13(b) is the plot of oxidant verses NOx gas for the University of Leicester

AURN station in the month of December 2015. A high proportion of the detected

pollution is from regional sources, and the amount of this detected in the sports

field will be independent of the geometry of the nearby roads. Note however that

the hourly variation of Ox in this the AURN data, which has a standard deviation

of 11.17 µg m−3. This is the uncertainty of the regional influence cutoff point,

and is of comparable magnitude to the gradient of the trendline, which means

that from day to day the proportions might vary, and road-based pollution could

sometimes be significant.
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(a)

(b)

Figure 6.13: a) is a scatter showing of oxidant gases verses NOx taken at a six
urban and suburban sites in and around London, averaged over the nighttime
hours, during two Novembers in 1998 and 1999. Picture credit to [89]. The
values are in part per billion, the translation of which to micrograms per meter
cubed depends on the molecular weight of the gases in question. b) shows
the scatter graph of oxidant gases (NO2 plus O3) verses NOx taken at the
University of Leicester AURN station, hourly, during November in 2015. The
trendline and y intercept are marked with a solid and dashed line respectively.

The fitted trendline has the equation [Ox] = 0.353[NOx] + 65.54.
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We can in this light re-examine the timeseries for the roving sensor experiment,

plotting the NO2, O3 and total oxidant concentrations back-to-back, alongside the

CFD-simulated contribution of NO2 emissions from the road, in figure 6.14. The

grey line representing the simulated road influence bears very little relation to

the movement of the sensor predictions for either gas. The poor PCC between

the road influence and either target gases (0.09 and 0.12 for the NO2 sensors,

and -0.18 and -0.17 for the O3 sensors) backs this up. This is in line with the

measured oxidant levels, which average 73.18 and 72.76 µg m−3 for sensor a and b

respectively during the cart experiment, only slightly above the regional influence

cutoff point 65.59± 11.17 µg m−3, implying the bulk of variation in oxidant gases

comes from non-local sources, and not the nearby roads.

Figure 6.14: Timeseries showing separate readings for sensors a and b
throughout the roving sensor experiment, for each of the measured gases, and
the total oxidant level, compared with the CFD simulated contribution of gas

coming from the road, a dimensionless concentration factor.
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6.3 Summary

In this chapter, two different scales of variation for NO2 and O3 pollution were

examined. In the first experiment, it was found that the spatial variation of NO2

was 6.5 ± 7.28 µg m−3 over a characteristic length scale of 0.92 ± 0.68 m. For O3,

it is 4.73 ± 2.75 µg m−3 over the same scale.

In the second experiment, NO2 and O3 concentrations measured by a mobile sensor

did not correlate well with road proximity. After using Gaussian modelling and

then a CFD model to better measure the road proximity, the analysis in 6.1.5 on

page 208 showed that, for the immediate surroundings of where the experiment

took place, a modest result should not be unexpected. But these two case studies

show the value of a low-cost gas sensor system that can take multiple measurements

in quick succession in learning new things about the atmosphere.

A strength of small sensor systems is in their mobility. The roving sensor ex-

periment described here gave a result that, while not immediately intuitive, is in

line with what would be expected given a full consideration of the environment.

Small sensors are able to determine pollution hotspots on a scale far smaller than

is possible through measuring with the expensive static instrument suite of the

AURN network, and although the results presented here are limited, they are a

necessary step in developing robust procedures for measuring pollutant gases with

instruments of this kind.



Chapter 7

Conclusions and further work

The increasing public awareness of the dangers of urban pollution is leading to

changes in government policy in the UK, and a demand for more accurate mea-

surement systems. The advantages of small sensors in cost and mobility, in spite of

their mixed record for reliability compared to expensive chemiluminescence instru-

ments, is leading to their increasing adoption as a useful supplement to traditional

measurement systems.

It is in this context that this work was carried out. The literature regarding the

usefulness of various small sensors in limited campaigns is quite rich at the time of

writing, but there is a need not only for determining the accuracy of such devices,

but also to establish proper techniques for calibration and deployment that can

help improve reliability and deliver more useful results.

In this thesis, a bespoke sensor system is described in detail through development

to initial calibration to novel field experiments. The best practices for atmospheric

instrument design are examined in the context of measuring NO2 pollution, but

they are more broadly applicable to any instrument that samples the atmosphere

outdoors. These principles are realized in the SOGS platform, the flexibility of

224
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which is already lending itself to commercial applications such as the Earthsense

Zephyr[243].

Although not the focus of this doctorate, the author played a major role in de-

signing, building and testing the physical hardware of the instruments used. This

included circuit layouts and control software, as well as the data analysis software

briefly described in chapter 3. The author produced a paper[202] describing pre-

liminary results from the instruments, alongside many of the findings related in

chapter 5 of this thesis.

The calibration of metal oxide semiconductor gas sensors is examined at length.

The evolution of the fitting equations is tracked from the simple relations in sec-

tion 3.2.2 on page 99 used to compare performance of the sensors in a closed cell

with a spectrometer reference instrument, to a detailed comparison of several al-

ternative equations in section 3.4.1 on page 117. The equations that worked best

for the two target gases were:

[NO2] = kc +
k1

VOX
+

k2

VOX
RH +

k3

VOX
T +

k2

VOXVO3

RH +
k2

VOXVO3

T (7.1)

for NO2 and

[O3] = kc +
k1

VO3

+
k2

VO3

RH +
k3

VO3

T (7.2)

for O3, where the ki terms are constants that are found during fitting of the sensor

output voltages VO3 and VOX to the reference concentrations. RH and T are the

output of the instrument’s humidity and temperature sensor respectively. It was

determined that calibration in the environment next to a reference instrument,

rather than in a carefully controlled gas cell, were likely to produce more realistic

results.

Optimal calibration time for outdoor calibration was shown to be roughly a week

in section 3.4.2 on page 120, with longer calibrations not necessarily producing

better predictions.
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The novel CAFPOLD data analysis technique developed by the candidate during

this thesis work (see section 3.4.3 on page 124) provides a way to quantify changes

in how a sensor performs over time through long-term positioning at calibration

sites. Elsewhere in the literature, rolling calibrations are mentioned, but CAF-

POLD allows for the performance of a sensor’s technology to be evaluated in a

very general sense. Using this analysis, the average performance of a sensor over

the course of one month from calibration is shown to be:

RSE µg m−3 FE PCC
NO2 23.6 ± 3.9 0.67 ± 0.27 0.63 ± 0.05
O3 23.3 ± 3.9 1.11 ± 0.65 0.80 ± 0.04

Simple fitting is not always enough to ensure reliable results from instruments

containing these sensors, and it is shown in section 3.7 on page 137 that selecting

good calibrations by checking their predictions immediately after the calibration

period can help with this, at the cost of occasionally requiring longer calibration

times. The tests are simple thresholds above which the statistics of the predic-

tion must be for the calibration to be considered worth using. Several thresholds

were tried out, and the most practically useful were a residual standard error of

25 µg m−3 for NO2 and a fractional error of less than 0.5 for O3. This technique

achieved predictions over the month from calibration with the following statistics:

RSE µg m−3 FE PCC
NO2 22.9 ± 5.3 0.80 ± 0.44 0.57 ± 0.13
O3 20.0 ± 5.05 0.57 ± 0.43 0.85 ± 0.05

The usefulness of transitional fits, particularly for roving sensors, was demon-

strated in section 4.3.2 on page 160. These fits require two separate calibrations

on either side of an experimental period, but on average were shown to increase

performance by:



Conclusions 227

RSE µg m−3 FE PCC
NO2 +3.44 ± 3.00 +0.10 ± 0.05 -0.08 ± 0.09
O3 +1.72 ± 1.85 +0.05 ± 0.03 +0.03 ± 0.03

The record of MOS gas sensors has been mixed when tested by other groups, oc-

casionally delivering very poor results for unclear reasons. Thanks to the unique

paired-sensor equipment used in this work, the correlation between sensors and

their manufacturing variability can be demonstrated on a large scale, as in sec-

tion 5.3 on page 190. For example, 19% of reducing gas MOS sensors exhibited

zero gradient compared with their partner in the same instrument. In spite of

this, the two sensors in the same housing have better correlation and lower error

between their predictions than sensors in neighbouring housings, as demonstrated

in section 6.1 on page 196:

Comparison RSE µg m−3 FE PCC

NO2

a vs b 12.0 +- 9.7 0.38 +- 0.35 0.89 +- 0.16
vs other sensors 13.0 +- 8.8 0.73 +- 0.99 0.88 +- 0.18
vs reference 21.7 +- 6.6 0.40 +- 0.19 0.76 +- 0.18

O3

a vs b 5.7 +- 3.4 0.17 +- 0.19 0.99 +- 0.01
vs other sensors 9.48 +- 6.3 0.80 +- 2.02 0.96 +- 0.05
vs reference 8.3 +- 2.6 0.47 +- 0.27 0.97 +- 0.02

The question of airflow in sensor designs is addressed in section 5.1 on page 179,

with the conclusion that for practical air quality monitors, a fan is an essential

design feature. Sensors that didn’t have a fan but were instead directly exposed to

the atmosphere produced results consonant with an integration time of one day,

which is a major performance bottleneck with MOS sensors, which are otherwise

quite capable of returning a result every second.

In section 5.2 on page 183, the time after power-up before MOS sensors become

usable is shown to be at least one hour.

A study is made of sensor performance in the context of changing wind direction

and the different chemistry at different times of day. While the wind carrying
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plumes of interfering pollutants is shown to be a clear issue that affects sensors

in a consistent way, the effects of day and night chemistry on the fidelity of MOS

sensors are not pronounced, and might not justify the longer calibration time

necessary to compensate for the diurnal cycle.

The lessons learned in this work point toward several avenues of future research.

First, the concentration of NO2 gas in the atmosphere can change quite rapidly

through both atmospheric transport of local emissions and the Leighton cycle, and

this is one of the reasons NOx concentration, which is preserved in the Leighton

reactions, is a common marker for atmospheric pollution instead of NO2. No spe-

cific MOS sensor has been designed for measuring NOx. However, a combination

of sensors may well be capable of fixing NOx concentration, and more besides

- preliminary, albeit unpublished, results using an isokinetic gas sampling input

split between an FTIR and a SOGS-Zephyr instrument calibrated the four types

of MOS sensors equipped on our instrument for CH4 and N2O response, using a

linear gas equation (7.3) over four days.

[Gas] = kc + k1T + k2RH+

koVOX + kotVOXT + kohVOXH+

krVRED + krtVREDT + krhVREDH+

kzVO3 + kztVO3T + kzhVO3H+

koVNH3 + kotVNH3T + kohVNH3H

(7.3)

where the VOX , VOX , VOX and VOX are the amplified voltages from the oxidising,

reducing, ozone and ammonia sensors respectively, T and RH are temperature in

kelvin and relative humidity respectively, and the k terms are fitting constants to

be found. The results are shown in figure 7.1. Note that this prediction is over

the same period as the calibration, but correlation is respectable even for this very

preliminary experiment.
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(a) CH4

(b) N2O

Figure 7.1: Timeseries of reference (from FTIR instrument) and MOS pre-
dicted gases, CH4 and N2O respectively. The units are preserved from the FTIR

- part per million and part per billion.

Oxidation of CH4 by OH radicals in the presence of NOx leads to tropospheric

ozone production, in addition to being important to understand in its own right

as a greenhouse gas and a byproduct of some hydraulic fracturing (fracking) tech-

niques.
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The high degree of variability in NO2 concentration in space and time underscores

the need for good calibration setups. The effects of offsetting the timestamps of

instruments during calibration have been documented in this thesis, and the at-

mospheric variability is described in field studies. To compensate for these effects,

it might be worth rigging a calibration setup so that the same packet of air is split

between reference instrument and calibrating sensor.

This atmospheric variability is also of key relevance to health and urban design.

Further experiments using small, low-cost 3D anemometers on mobile sensors could

contribute significantly to understanding the spatial and temporal variability of

these important pollutants, from testing models to identifying pollutant hotspots

to source attribution on a second-by-second basis. Sensors with UV-light detec-

tors would allow the effects of inclement radiation on the Leighton cycle to be

investigated.

Longer term experiments may be able to test models of PAN transportation

and deposition. This transport has been noted as a significant source of urban

pollution[238], and small sensors would be able to measure this transportation

with a high degree of accuracy. Small instruments could be calibrated for NO2,

O3 and NO, and possibly using electrochemical sensors if MOS sensors proved

insufficient. The balance between these gases over a month-long experiment can

indicate the contribution of local and regional gas sources to local pollution, but

being able to measure this balance in multiple locations can give clues as to large-

scale pollution transport.

Frustratingly the MICS-2610 O3 MOS sensor, which was vital to both the NO2

and O3 predictions and performed better than the oxidising gas sensor, has been

discontinued by the manufacturers following their takeover by another company.

Similar sensor technology is not available elsewhere as of writing. It is fortunate

that many of the techniques developed in this work are applicable elsewhere.
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The limitations of a calibration procedure for such a rapidly varying and reactive

gas species as NO2 that relies on an air gap between reference and sensor under

test should be clear. In future work, care should be taken to ensure that the packet

of air entering the setup is divided evenly, travels through the same conditions and

reaches reference and sensor at the same time. This would likely permit shorter

calibration periods and better predictions. Sadly such a setup was not achievable

during this work.

Several other experiments done by the Leicester air quality group with mobile

Zephyr prototype sensors have been made but are yet unpublished in the scientific

literature. These take advantage of the key benefits of small sensor technology in

hunting for pollution hotspots and investigating issues flagged up during compu-

tational simulation of the airflow within cities. Vehicular-mounted sensors, and

sensors on bikes, are two scenarios that have been the subject of diligent work by

colleagues of the author and a fuller treatment of the data is wise. In particu-

lar, best practices for ensuring representative sampling of air from vehicles have

not been developed - isokinetic intakes that ensure even gas pressure through the

instruments, no matter the speed of the vehicle, are almost certainly required to

produce accurate data.



Appendix A

Technical Notes on the SOGS

Instrument

A.1 Introduction

This appendix describes the progression of the SOGS electronics over time. The

features of this equipment evolved considerably during the course of this work, but

the central objective has always been a modular bus for taking measurements from

atmospheric pollution sensors in the field. The author engineered the circuit layout

for SOGS and the instrument boards, and wrote all the firmware and computer

software except the control functions for the GPRS transceiver.

The SOGS base board has at its heart a Master Control Unit (MCU), a small

microprocessor. Supporting this is a power management circuit, and it in turn

controls a set of Analog-to-digital converters (ADCs). These ADCs were connected

to the amplified outputs of individual sensors, which on the oldest designs were

fixed to the same circuit board as the MCU. Data logging involved a real time

clock for timestamping and a data storage medium, and on some models a radio

transceiver.
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The final version of SOGS (0.2.11c) that participated in the experiments described

in chapter 6 was a very capable instrument platform. The SOGS base board con-

tained a battery and solar power management circuit and a custom hardware

interface for supporting several instruments at once. This allowed for both elec-

trochemical and semiconductor sensors to be installed side by side on separate

“instrument boards”, backed up by humidity and temperature sensors on the base

board. SOGS was designed to be cheap and easy to manufacture and deploy. The

descendants of this SOGS instrument form the core of the commercially deployed

“Zephyr”, produced by Earthsense Ltd.

As the instrument was developed, more and more designed capabilities were en-

abled and tested. At the beginning of the research in this thesis the board design

was at version 0.2.3, which mounted an XBee transceiver. During testing this

proved very unreliable, and the SOGS board also had numerous circuit errors that

made the battery charger unusable. During the project a new board (0.2.5) was

produced with a modified design which omitted the radio and rebuilt the power

circuits in a smaller form factor.

Throughout the development timescale, SOGS was used and tested as the core of

several experiments carried out by other researchers, adding to the data value of

performance.
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A.2 Revision history

A.2.1 Version 0.1

Only a single example of the first version of SOGS was made. This device was not

fully modular, incorporating a bank of MOS sensors onto the main board that were

fed through a 10-bit ADC. Power was supplied by inefficient linear regulators and

controlled by an Arduino Nano daughterboard. This device was capable of 10-bit

precision in its ADCs, and did not supply data for any of the work in this thesis,

but nonetheless it was an important prototype as it demonstrated the sensitivity

of the MOS sensors even at relatively low resolutions.
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A.2.2 Version 0.2.3

Figure A.1: Version 0.2.3 layout. The Raspberry-Pi header is in the lower
right. The major subsystems are identified by coloured blocks.

Version 0.1 was a limited test bed, but 0.2.3 used a different architecture and was

built for experimental deployments. It was designed to be easy to hand-solder, and

all ten SOGS were produced in this way in April 2014. The five main components

of the board are:

• POWER: The board uses a switching regulator (to the right) to provide

efficient DC power to the other components. The separate power segment

on the left contained a shutdown circuit and linear regulator for backup

purposes, but in this version of the board neither of them worked.

• MCU: The controlling computer for this board is an Arduino Nano 3.0, cho-

sen for its wide support among the open source community. Custom software

was written to interface with some components, as the default libraries were

found to be non-functional.
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• COMS: On this generation of the board, communication was provided through

an XBee radio transmitter, which had an effective urban range of 100m. This

was connected to the MCU through a four-way serial link that could also

connect it to the Raspberry Pi header. The XBee did not work as advertised

either on or off the board, and was dropped in future designs. This board

version only communicated via a direct USB connection to the MCU.

• STORE: Data storage on an SD card requires accurate time stamping, so

the board mounts a real time clock and battery. On this version of the

board, the SD card was not tested due to a board error, but the clock was

functional.

• SENSORS: This subsystem contains a 4-way multiplexer and a pair of 16-bit

ADCs coupled to a programmable gain amplifier. The amplifier effectively

allows measurements to be taken with improved resolution when they are

within a nominal voltage range. The ADCs are capable of sampling a single

bank of eight voltages at 16-bit resolution 3.5 times a second, and 40 times

a second on 12-bit resolution. For sampling a single voltage, the sample rate

can be as high as 160Hz. On this version, the sensors were limited to 15-bits

of resolution.

The MOS sensor array attached to this version of SOGS differed from the manu-

facturer’s reference design in two ways: First, the resistive element was sampled

by a low bias current amplifier rather than being tied to the input voltage rail,

which reduces passive heating, and secondly the amplifier circuit produced an out-

put linearly proportional to the element resistance, both innovations intended to

make modelling easier. The sensor amplifiers had adjustable gain settings via po-

tentiometers, as MOS sensors vary greatly in base resistance from the factory and

the required gains could not be predicted.
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A.2.3 Version 0.2.5

Figure A.2: Version 0.2.5 layout. The major systems are identified by coloured
blocks. The power subsystem is split into three locations on this design.

The first board designed for mass production, completed in August of 2014. Loss

of the requirement for hand soldering meant that many components could be

miniaturized - SOGS 0.2.5 is two thirds the size of 0.2.3, and the MOS sensors are

one third the size of the previous generation. The wiring was optimized and many

tracks were made significantly thicker to lower resistance, particularly to power

supply circuitry. Naturally many errors were also corrected, opening the way to

new systems being tested. Five boards were ordered from Newbury Electronics.

• Power: The new power supply architecture, aside from being much more

functional, wasted less heat due to a better component selection and was

much more compact. It contained a voltage-controlled switch that prevented

issues with the slow warm-up time from the main power supply, intended to

fix an issue raised during testing in Berlin. However, it still showed signs of

unreliability in the long term.

• MCU: The MCU was unchanged.
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• COMS: Gone was the troublesome XBee transmitter, and in its place a small

header for attaching a Bluetooth slave board, which has been shown to be

functional. The communication system between different components was

also simplified.

• STORE: The SD card’s fault was fixed and it had a new power supply to

play with. These modifications lead to the SD card’s full implementation as

a means of storing experimental data.

• SENSORS: The sensors were upgraded to handle full 16-bit precision from

their designed voltage range of 0-5V. Attempts to implement automatic scal-

ing of the programmable gain amplifiers lead to spurious results in field tests,

but the cause of this was isolated to the power system which was modified

in the next version.
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A.2.4 Version 0.2.11

Figure A.3: Version 0.2.11 layout

This board design is by far the most prolifically manufactured to date, with 20

models being produced by SMS Electronics who used a more controlled process.

The newest sub-version (0.2.11c) had small improvements, replacing through-hole

components with surface mount to reduce manufacturing costs; 50 instruments of

this kind were produced.

• POWER: The power subsystem had better capacitor smoothing and a smaller

loop for the switching regulator, reducing EMF noise. The better manufac-

turing process helped increase the reliability of this critical system. Many

subsystems on the board were given individual power gate switches, includ-

ing the sensor bank power supply, which could now be shut off for low power

operation.

• MCU: Perhaps the most dramatic change on the board is to the MCU, which

no longer lives on an Arduino daughterboard but is mounted directly to the

PCB, increasing manufacturing control and reducing size and cost.

• COMMS: The COMMS subsystem worked well on the previous boards and

was largely unchanged.
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• STORE: The storage system also was not changed significantly.

• SENSORS: The sensor support electronics was compactified and put well

clear of any power lines except the main supply line to reduce noise.

The board also hosted numerous corrections, some made possible due to the su-

perior manufacturing technology employed at SMS, but space was also optimized

and new features added. The form factor was kept the same for the sake of en-

closure design, but new connectors for USB communication were added and the

battery charge regulator circuit in particular was improved.
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A.3 Overview of most recent design

This version was used in all the experiments in this thesis aside from the Long

Term Experiment (which used version 0.2.5). This section goes into detail on the

components used and their design features.

A.3.1 Major component description

Figure A.4: Schematic diagram of SOGS 0.2.11c. The signals and power wires
are represented by lines coloured to indicate their function. The grey boxes are
subsystems that may be comprised of multiple electronic components. Circles
are terminals that can accept single external connections or testing probes,
rounded bars are headers that accept multiple connections. Pairs of half circles
are links that can be soldered over to change the circuit’s functionality. A

dashed outline indicates an external component.
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• MCU: The MCU is an 8-bit ATMega328. It has direct control over almost

all of the multiplexers, and can switch on power to various subsystems to

improve battery life. The MCU has three major connections: a 3x2 pin

header used exclusively for reflashing new firmware, a mini USB-B socket

which can be used for serial communication with a PC. It could also be used

for firmware updates, provided a bootloader has been burned onto the MCU

via the 3x2 header. A 5x1 pin header carried USB signals to a USB socket

on the casing.

• SD card: The board features a micro-SD card slot (labelled uSD in figure A.4.

A custom designed filesystem allows very high data density and fidelity, but

means that the card could not be removed and put in a computer to retrieve

experiments - instead a SOGS board must spool data via USB or GSM

connection before it can be analysed. The filesystem uses “header” blocks to

record the start and end blocks of separate experiment files. Each file data

block was validated using Cyclic Redundancy Checking, and the headers

were stored in triplicate in different locations on the SD card, allowing data

to be automatically recovered in case of a power failure. 8GB capacity SD

cards were used in the instruments in this thesis, but sizes up to 32GB are

supported.

• R-Pi header: This header is a 2x13 pin, 2.54 mm pitch socket, pin-compatible

with the Raspberry Pi computer. The header provides a breakout for all the

main data busses at 3.3V logic level, and any circuits connected through it

must use 3.3V logic to avoid damaging sensitive components. The power

to the header can be switched on and off by the MCU. This gave SOGS

instruments a powerful modular design, in addition to being useful for di-

agnosing problems. Two in-house peripheral daughterboards that used this

header were an XBee short-range radio and a SIM928 GPRS transceiver.

The header would allow the system to be integrated into larger devices - for
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example, with appropriate software a Raspberry-Pi can control all function-

ality on the board, and take advantage of SOGS communication, storage

and battery/solar power capabilities.

• Real time clock: A M41T83 alarm clock is present on the board along with

a socket for a 3V 20mm lithium button cell to power it. This clock is used

for two things: timestamping data when the board is operating alone, and

waking the board up if the MCU’s sleep function is enabled.

• Humidity/temperature sensor (Kelvin/%RH): The sensor is a CC2D25, op-

erating in digital output mode.

• Battery charge regulator/Maximum power point tracker (BCR/MPPT): This

is a fairly complex circuit that takes between 6V and 20V DC input and con-

verts it to 5V and 3.3V DC that the board can use. In designs that did not

use solar panels, the main external power input uses the solar panel ter-

minals. This system is also able to charge a battery and can either use

float voltages or constant current charging. A thermistor (labelled T sensor

on the schematic) can be used to provide a safety cutoff when cell tem-

perature exceeds 40 degrees. The battery charge regulator is compatible

with Lithium polymer, lead-acid and NiMH chemistries, although only Pb

and NiMH batteries were used on deployment. The Maximum Power Point

Tracker (MPPT) automatically adjusts the battery charging current to a

level that would maximise the efficiency of the solar panels.

• ADC: The board uses two MCP3428 ADCs to convert analog voltages from

the instrument board sockets into digital signals that are retrieved through

the I2C bus. The MCP3428 takes samples at either 12, 14 or 16 bits of preci-

sion. Acceptable voltages are 0-5V, and the ADC makes use of a 2.048V pre-

cision reference. The ADCs have a programmable gain pre-amplifier which

is used by the SOGS software to achieve additional precision at medium
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voltage levels. The ADCs have a noise floor of 50 microvolts, just below the

smallest detectable voltage increment of 70 microvolts.

• Instrument board sockets: There are four sockets along the top of the board

for connecting instruments. The sockets are 2x6 pin, 2.54mm pitch. There

are two ground pins, two 5V power pins and the rest are used for analog

signals. In the firmware, the sockets are referred to as banks and numbered

from 0 to 3.

• Bluetooth header: This is a pin header specifically designed for the BT-

2S BlueTooth-serial slave board. An additional connection may be made

between the status signal on the slave board and this header, which will

go high and raise the MCU’s interrupt 1 when the board is ready. Power

to the bluetooth is controlled by the MCU, or can be set permanently on

with a link. The Bluetooth functionality was used by colleagues in other

experiments but did not directly contribute to the work in this thesis.

A.3.2 Supporting component description

• Level shifter: 3.3V logic and 5V logic coexist on the SOGS board. Putting

5V into a 3.3V device may damage it, so logic signals are fed through level

shifters to protect them. The 5V digital devices on the board are the

MCU, humidity/temperature sensor, clock and ADCs. The 3.3V devices

are the bluetooth adapter (which strangely enough takes 5V power), and a

Raspberry-Pi, if one is connected. The level shifter design does not work for

signals with a frequency of greater than 10MHz.

• Multiplexers: The board carries six MCP14052B multiplexers (labelled MUX),

which can direct analog and digital voltages like a set of single pole, quadru-

ple throw switches. Four of them handle the signals from the instrument
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board sockets, and two route serial signals among the board’s four serial com-

ponents (RSW) although the latter can be disabled by closing the nearby

link. The multiplexers can only be controlled by the MCU.

• Power supplies: There is a high-current DC-DC converter on the board (an

LMZ12003) capable of providing up to three amps at 5V, supported by a

set of three low dropout regulators (labelled LDO) for low power circuitry.

At several points there are diagnostic voltmeters that measure the external

power supply voltages for housekeeping purposes.



Appendix B

Variation in temperature and

humidity sensors

When using MOS sensors, temperature and humidity information is vital. Tem-

perature affects the sensor element’s response to different gases[197], and humidity

strongly affects the device’s output by binding to its surface[193]. Beyond this such

information is useful for weather monitoring in general.

The manufacturer’s rated precision of the humidity and temperature sensors are

0.3 °C and 2 % RH respectively, but this says nothing about their accuracy. While

the calibration equations will compensate for incorrect values from the temperature

and humidity sensors so long as they are not spurious, some investigation should

be made into the accuracy of their absolute values.

B.1 Experimental setup

Between the 26th September and 12th October 2016, ten Zephyr sensors were set

running within two and a half meters of each other outside on the Leicester Uni-

versity AURN station (as detailed in section 6.1). These sensors had various ages
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(up to two years) and deployment histories prior to that point, but the temper-

ature and humidity sensors aboard them had all operated within their required

tolerances prior to the experiment.

These sensors produced data between every ten and twenty seconds. To allow

for a general comparison, these were averaged together into minute-long periods.

The resulting data series are then compared in three ways: first, the Pearson

Correlation Coefficient between each sensor is compared. Second the average offset

between the sensors is calculated by simply taking an average of the each data

series, and returning the difference between these averaged values. Finally, the

slope between sensors is calculated - a 1:1 slope on average means that a change

in temperature induces the same response in the two sensors.

B.2 Results

Three of the sensors of the nine had defective electronics (as discussed in section

6.1) and returned zero or maximal values for the temperature and humidity sensors

for this experiment. These have been omitted from this analysis.

Figure B.1 shows the correlation between temperature and humidity sensors for the

six instruments. While the temperature sensors all agree to within two degrees of

each other, with humidity it’s a different story, with DCA82 and DCA45 reporting

large (up to 10%) offsets from the other sensors. The offsets of both sensors are

quite far from the error values given in the manufacturer’s datasheet, emphasizing

the need for practical checks on given physical specifications. DCA82’s sensor also

produced the worst correlation for both humidity and temperature readings, and

evidence for this can be seen in the DCA82 scatters that have a larger grey cloud

of anomalous readings around the relatively linear coloured patch in the center of

each graph.
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Figure B.1: Grid of scatter plots between six sets of Zephyr temperature and
humidity sensors. The lower left grids show scatters between humidity sensors in
different instrument housings, the upper right grids are for temperature sensors.
The PCC between pairs of sensors is written at the bottom of the grid axes.
Above each grid square is the mean and 95% confidence of the difference between
the X and Y sensor. The scale of the grids is normalised such that the average
of the data set is in the center, and the upper and lower axis boundaries are at
points equal to this mean plus twice the standard deviation of the data. The

scale is identical among all temperature and humidity grids respectively.

Two sources of error contribute to the level of correlation between adjacent sensor

readings for humidity and temperature: different sensitivity and error for individ-

ual sensors, and the natural variation in the environment over the couple of meters
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by which the sensors were separated. Of these, the environmental effect would be-

come more pronounced for sensors that were further from each other. Figure B.2

shows a comparison between sensor separation and PCC for both humidity and

temperature. The trendlines are drawn neglecting DCA82, which was consistently

worse than the other sensors in terms of PCC and accuracy, but even including

this sensor a clear slope is visible, with the maximum correlation achievable with

different sensors decreasing with increasing distance. Even so, PCC only drops to

0.94 for the sensors two meters away from each other.

Figure B.2: Plot of PCC between sensors verses distance between sensors
being compared, for both humidity and temperature. The diamond markers
are for comparisons involving DCA82, and are omitted from the calculation

producing the trendline.

The analysis and fitting used in this thesis depended on the relative humidity

and temperature. However, the fitting does not depend on the sensor outputs

precisely matching the real environmental conditions, only that they vary in the

same way when those conditions change. Linear offsets to the sensor response

are compensated for during calibration for gas concentration. Even the weaker

sensors in this analysis produced high correlation with each other, better than 0.98

for sensors that are directly adjacent. So while using the humidity/temperature

data with these sensors might require extra calibration work, they should not be
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a major source of error for fitting pollutant gases, where NO2 PCC could be as

low as 0.62, and O3 PCC as low as 0.79 for a fit over one month (see table 3.4).



Appendix C

Case study: Random forest

machine learning

The random forest is a machine learning technique that has proved helpful to other

groups working on air quality monitoring sensors [229]. The output of a random

forest is the averaged conclusion of a large number of individual decision trees,

where each tree guesses the output gas concentration based on whether various

input variables are greater or less than critical values that are randomly selected

for each tree.

A random forest is grown from a calibration dataset, consisting of a timeseries of

reference data and a number of input variable timeseries, in the following way:

• First, for a randomly selected input variable, the reference data is subdivided

into two sets, one greater and one less than a critical point in the input data.

• Then, those two new data sets are further subdivided in the same manner.

The branches of the tree bifurcate onward for an arbitrary number of steps.
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• Each resulting “leaf” dataset is assigned an output value consisting of the

average of the reference data points corresponding to remaining input values

within that leaf.

• This process is repeated, growing a “forest” of random trees.

To produce a predicted output data point, the point is passed through each tree in

turn, with branches being selected according to the point’s value for that particular

variable, and the forest’s worth of leaf values are averaged together to give an

output.

Random forests are useful for categorizing noisy input data, as they can qualify

the prediction of the most common output of the averaged decision trees with the

the proportion of dissenting outputs, which gives a measure of confidence in that

prediction. Random forests have the weakness that they can’t extrapolate past

the furthest extents of the input dataset. When an input datapoint is beyond the

bounds of the training dataset, the forest will produce the same output for that

point no matter how far beyond the boundary the point lies, all other things being

equal. They’re also more computationally expensive than predicting based on a

limited input point. Still, they can approximate an unknown non-linear function

very effectively.



Machine learning techniques 253

C.1 Demonstration

Figure C.1 shows CAFPOLD analyses for a homemade random forest function

trained to produce fits for NO2 and O3, with the same OX and O3 sensors as are

used in our more conventional regression fits. The random forest did not produce

a functional result for NO2 measurements with two out of the four sensors. A

comparison of the performance of this analysis with the linear regression model

used earlier in the thesis is shown in tables C.1 and C.2.

Figure C.1: Results of CAFPOLD analysis using random forest to predict
NO2 and O3 concentration.
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RSE FE PCC
Method Mean SD Mean SD Mean SD

NO2
a

Regress 23.15 3.23 0.77 0.40 0.65 0.03
Forest 21.87 2.50 0.60 0.22 0.57 0.09

c
Regress 23.37 3.63 0.68 0.25 0.62 0.05

Forest 21.28 2.09 0.56 0.20 0.58 0.09

O3

a
Regress 23.84 4.02 1.25 0.80 0.80 0.04

Forest 23.58 3.48 0.91 0.29 0.79 0.04

b
Regress 23.27 3.88 0.94 0.50 0.79 0.04

Forest 24.04 3.47 0.92 0.31 0.77 0.03

c
Regress 22.37 3.72 0.99 0.55 0.81 0.04

Forest 23.42 3.35 0.90 0.34 0.79 0.04

d
Regress 23.52 4.04 1.22 0.74 0.80 0.05

Forest 23.59 3.36 0.90 0.34 0.79 0.04

Table C.1: Comparison between random forest (“Forest”) and linear regres-
sion (“Regress”) performance, in the form of averaged statistics over one month
from calibration. The linear regression used the “inverse” equations detailed in

section 3.4.1.

RSE FE PCC
Method Mean SD Mean SD Mean SD

NO2
a

Regress 27.22 5.61 1.67 1.39 0.54 0.11
Forest 23.17 5.31 0.81 0.47 0.52 0.09

c
Regress 25.44 6.78 1.14 0.79 0.56 0.11

Forest 22.18 5.31 0.81 0.47 0.52 0.09

O3

a
Regress 25.18 5.59 1.45 1.03 0.81 0.06

Forest 26.48 6.11 1.43 1.33 0.74 0.10

b
Regress 24.62 4.92 1.06 0.74 0.79 0.07

Forest 25.55 5.84 1.21 1.07 0.77 0.06

c
Regress 24.89 6.04 1.19 1.02 0.82 0.06

Forest 25.33 5.95 1.22 1.10 0.77 0.08

d
Regress 25.35 5.90 1.32 1.22 0.81 0.06

Forest 25.26 6.04 1.17 1.03 0.77 0.08

Table C.2: As above, but over five months.

The random forest technique produced better results compared with the linear

regression models used earlier in the thesis in most cases. Over the one month

average, for both target gasses the RSE and FE were both significantly lower and

with a narrower standard deviation, although PCC was slightly worse. For the

five month average the improvements for using a random forest were dramatic for
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NO2 (up to 20% better RSE, for example, and comparable PCC), but mixed for

O3.

The strength of the random forest approach is in fitting one value to another when

the relationship is unknown. The interference in the oxidising gas sensors when

used to detect NO2 from O3 is an issue that the linear regression models solved by

determining an “empirical equation”, which was capable of producing respectable

fits. The random forest, by contrast, produces predictions that match (to a degree)

the relations between the target and interfering gases that grew the forest during

the calibration period; the “true” equation underlying those relations does not

have to be known for the forest to produce these results. The markedly better

results for NO2 even five months out are likely a reflection of this advantage. The

effect is not as dramatic for O3, the sensor for which was only compensated with

temperature and humidity, without the explicit gas interference experienced by

the NO2 sensor.
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