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Abstract

Saliency Object Detection (SOD) models driven by the biologically-inspired
Focus of Attention (FOA) mechanism can obtain highly accurate saliency
maps. However, their application in the high-resolution Synthetic Aperture
Radar (SAR) images faces some intractable problems due to complex back-
ground. In this paper, we propose a novel hierarchical self-diffusion saliency
(HSDS) method for detecting vehicle targets in large scale SAR images. To
reduce the influence of cluttered returns in saliency analysis, we learn a weight
vector from the training set to capture the optimal initial saliency of the su-
perpixels during saliency diffusion. Considering the background objects have
multiple sizes, the saliency analysis is implemented in multi-scale space, and a
saliency fusion strategy then is employed to integrate the multi-scale saliency
maps. Simulation experiments demonstrate that our proposed method with
these improvements can achieve more accurate detection and lead to less false
alarms, compared to benchmark approaches.
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1. Introduction

SAR systems can implement all-weather observations for the targets of
interest by providing better quality images than optical remote sensors [1].
At present, the widely used target detection algorithms based on SAR im-
ages include two-parameter constant false alarm rate (Two-CFAR) [2], Or-
der Statistic CFAR (OS-CFAR) and Variability Index CFAR (VI-CFAR),
etc. Recently, Gao et al. proposed an adaptive and fast CFAR algorithm for
SAR target detection based on automatic censoring (AC)[3]. Cui et al. fur-
ther proposed a target detection scheme that is based on iterative censoring
[4]. The implementation of these pixel-wise methods is not efficient because
they mainly search targets pixel by pixel according to the difference between
the targets and the background clutters in the statistical models. Further,
with the explosive growth of SAR data [5], these algorithms cannot afford
high-speed data processing.

Compared with the above algorithms, the vision systems of the primates
can process 108−109 bit data per second, using their unique Focus of Atten-
tion (FOA) mechanism. FOA refers to the system in which the retinas can
be directed to the most salient parts of the scenes using the scarcity of scene
information. This mechanism can avoid the interference caused by target
displacement or background clutters, demonstrating unparalleled efficiency
and stability in signal processing. With the rapid development of neurophys-
iology and cognitive psychology in the last two decades, researchers have
achieved encouraging results on FOA, such as Change Blindness, Attentional
Blindness [6], Attentional Blink [7] and Central Fixation Bias[8], which have
demonstrated the feasibility of exploiting the biological visual mechanism for
SAR target detection.

The vision models driven by the FOA mechanism can be divided into
two main categories. The first category, namely Fixation Prediction (FP)
mechanism [9], generally achieves target detection by predicting the initial
distribution of visual focus [10] within the first 3-5 seconds when the primates
start observing a scene [11]. Representative models for processing optical
images are Itti model [12] proposed by Itti et al. in 1997 and the later models
such as Spectral Residual (SR)[13] and GBVS [14]. Harel et al. use spatial
and temporal analysis to generate spatiotemporal saliency [15]. Yu et al. [16]
introduce FP models in ship detection in SAR images. The papers [17][18]
attempt to apply modified FP models in SAR vehicles detection. Wang
et al. [19] propose a modified FP model to extract candidate target chips,
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which employs task-dependent scales, clustering and modified gist features to
effectively detect and discriminate the targets. However, due to the existence
of noises in eye tracking or observers’ saccade landing, the estimation errors
of these models are typically around 1-30 pixels. In this case, the FP models
can only detect the approximate positions of the targets and cannot obtain
their accurate locations.

Saliency Object Detection (SOD) is the another category driven by FOA
[20], which defines the saliency detection as a binary segmentation problem
on the basis of highly accurate saliency maps. It is commonly interpreted
in detection as a process with two stages: 1) segmenting the images into a
plurality of sub-regions (commonly referred to as superpixels [21]) and get-
ting the initial saliency of each sub-region; 2) calculating the saliency of
each sub-region using the spatial propagation algorithms. The representa-
tive SOD models include Saliency Optimization from Robust Background
Detection (RBD)[22], GMR [23], HDCT [24]. Although the SOD models
can significantly improve the detection precision for the optical images, they
cannot obtain satisfactory results on the SAR images.

The performance degeneration of SOD for SAR images is caused by the
differences between SAR images and optical images. First, the coherence
between the radar echo signals leads to the strong speckle noises in SAR
images. These noises will disturb the saliency initialization of superpixels
during saliency diffusion and further affect the results of saliency detection.
Second, the sizes of the objects (vehicles, ships, artificial buildings, mountain
etc.) in the SAR images vary greatly. There have been several attempts to
deal with these problems. For example, Wang et al. [25] propose an improved
SOD models to detect the vehicles in SAR images. This method constructs
a morphological saliency map, which can highlight the targets and suppress
both the natural and man-made clutters via the targets’ prior information.

This study attempts to present a hierarchical self-diffusion saliency (HSDS)
detection method for detecting vehicle targets in SAR images, as depicted
in Fig.1. For the speckle noise problem, an initial saliency optimization
rule is introduced, inspired by [26] during the saliency diffusion via a graph
model. Specifically, an optimal weight vector is learned from the training
set, whose elements represent the contributions of different kinds of features
to the initial saliency of the superpixels. The optimal initial saliency of each
superpixel is the product of its feature vector and the learned weight vector.
Then Manifold Ranking is employed for saliency propagation.

To address the problem caused by various sizes of objects, more scale
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spaces are considered in the process of the saliency detection, and we employ
a hierarchical fusion rule inspired by [27] to integrate the saliency maps.
In this strategy, the multiple saliency maps from different scale spaces are
modelled as a 3D graph structure. During the fusion process, the saliency
value of each pixel is updated based on the pixels in the adjacent lower and
upper layers. From the top layer to the bottom layer, the saliency map is
updated layer-by-layer following the proposed regulation scheme. Then a
similar fusion operation starts from the bottom layer and ends in the top
layer. In this case, the top saliency map will absorb the information from all
the other layers and is used as the final saliency map.

As shown in Fig.1, for large-scale input SAR images, a proposal detection
stage based on the edge cues are first employed to generate proposal chips
that may contain vehicle targets. Then HSDS aims to precisely segment the
targets from the proposal chips. Afterwards, the geometric properties of the
targets, such as the areas, are introduced as the prior information to further
reduce false alarms. The chips containing too large or too small targets will
be removed from the detection results. Multiple sets of comparison verify
that our proposed method outperforms state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 details
the proposal detection stage; Section 3 describes the HSDS stage in detail,
including the construction of the graph model, feature extraction, node initial
saliency optimization, saliency propagation and hierarchical saliency fusion;
Section 4 presents comparative experimental results, and Section 5 finally
concludes this paper.

Figure 1: Framework of the proposed detection.

2. Proposal Detection Based on Edge Cues (EC)

Compared with the background objects (i.e., farmland, roads, tress and
mountains) in SAR imagery, vehicle targets commonly contain sharp edges.
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In this paper, we employ edge cues to quickly locate the suspicious targets
in the large scene.

Specifically, a set of Difference of Gaussian (DOG) filters are first used to
preprocess the large-scale input SAR images Rin to suppress the clutter and
identify edges. Then we construct the edge cue-based saliency maps from
the filtered images. The preprocessed results are named intensity maps,
i.e., F (s) , s = [1, ..., S], empirically S = 3 in this paper. Since the non-linear
distortion has been made during the DoG filtering process, a linear distortion
correction is necessary for each intensity map as follows:

F̃ (s) =alog10
[
b · F 2 (s)

]
(1)

where the constant coefficients a and b can be chosen with empirical values.
Then we highlight the stimulus in the corners or edges while suppress the
clutters in the maps as follows:

H (s, x, y) =

{
0 F̃ (s, x, y) < 0

F̃ (s, x, y) F̃ (s, x, y) ≥ 0
(2)

I (s, x, y) =
1

‖H (s, x, y)‖1
H (s, x, y) (3)

where F̃ (s, x, y) denotes the intensity maps and ‖·‖1 represents 1-norm.
Eq. (2) means that all the negative pixels will be replaced by 0 and Eq. (3)
realizes the normalization. I (s, x, y) , s = 1, 2, 3 denotes the final intensity
maps.

Next the hierarchical edge features are extracted from the intensity maps
via self-information in Shannon theorem. Generally, the edges of the vehi-
cles in the SAR images are close to straight lines. The intensity difference
between the pixels at the edges of the vehicles and their adjacent pixels will
mainly concentrate on a certain direction (perpendicular to the edges). Con-
versely, if the pixels are in the speckles, their difference with surrounding
pixels will uniformly disperse in all the directions. Specifically, the 5×5 win-
dow centered on the pixel I (s, x, y) are defined as the neighboring pixels of
I (s, x, y) as shown in Fig.2. In this window, the difference between I (s, x, y)
and I (s, x+ i, y + j) is defined as

L (s, x+ i, y + j) = ϕi,j
1√

2πσs
exp

[I (s, x+ i, y + j)− I (s, x, y)]2

2σ2
s

(4)
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where σs denotes the standard deviation and ϕi,j represents a spatial weight-
ing term. Mathematically, ϕi,j= exp [− (i2 + j2) /2], where i,j are the relative
coordinate of two pixels. Farther neighboring pixel contributes less to edge
features of the center pixel.

Figure 2: A 5× 5 window centered around the red pixel.

Then, all the differences between the center pixel I (s, x, y) and the neigh-
boring pixels will be mapped to the 8 directions. For example, the pixel
I (s, x+ 2, y + 1) (the solid, black circle in Fig. 2) locates between Orienta-
tion 1 and 2, and its angles to two directions are θ1=π/4 −arctan (1/2 ) and
θ2= arctan (1/2 ). The difference between two pixels can be mapped into
these two directions, i.e., L (s, x+ 2, y + 1) · cos θ1 and L (s, x+ 2, y + 1) ·
cos θ2.

The projections of all neighboring pixels within the window in the direc-
tion k are summed up, and expressed as Ok (s, x, y). The projections on eight
directions are then normalized to ensure the sum of eight kinds of projections
equals one. Finally, we use the self-information to indicate the edge features
of the pixel I (s, x, y):

O (s, x, y) = − log
(

1− Õ (s, x, y)
)

(5)

where Õ (s, x, y) denotes the largest projection in eight Ok (s, x, y). For the
pixel I (s, x, y) located in the edges of the vehicles, its Õ (s, x, y) will be
closer to one and hence is given higher saliency values. For three intensity
maps I (s, x, y), we can obtain three edge-based saliency maps O (s, x, y) , s =
1, 2, 3.

Fig. 3(a) shows a 1300 × 1200 (in pixels) SAR image with a resolution
of 0.3m, where 10 vehicle targets are marked with the white rectangles. Fig.
3(b)-3(d) reports the three edge maps. As can be seen, these maps accu-
rately maintain the shape, area and other topological features of objectives
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in different scale spaces and effectively reduce the interference from bushes
and trees. Especially, many important boundaries and areas of interest are
highlighted.

Three edge maps are summed to obtain the edge-based saliency map
Se (x, y). As the regions with higher saliency usually considered as the sus-
picious areas (targets), an appropriate threshold T is used to carry out the
binary processing for Se (x, y) and generate the proposal chips. Inspired by
[20], T is defined as T=µs + c · σs, where µs and σs are the mean and vari-
ance of the saliency map, respectively. c is a constant empirically adjusted,
setting as 0.3 in this paper. The regions whose saliency values are higher
than threshold are classified as the suspicious targets. Then two kinds of
geometric priori knowledge (area and major minor axis ratio) of targets are
used to weed out the false alarms and obtain the candidates. As the false
alarms from roads and buildings generally have far larger major minor axis
ratio than that of vehicles, these regions can be removed from the results.
Finally, a set of potential chips can be extracted from the input SAR images.
In our experiment, the size of the proposal chips is set as 128× 128, which is
the same for the training images used in the subsequent node initial saliency
optimization stage. As can be observed from the Fig.4(b), the whole 10 tar-
gets are detected (labeled by the red rectangles), while 19 false alarms are
retained after the morphological operation.

(a) (b) (c) (d)

Figure 3: A high-resolution SAR image and its three edge maps. (a) A SAR image with
10 real vehicle targets, (b)-(d) edge maps O (1), O (2) and O (3).

3. Hierarchically Self-Diffusion Saliency (HSDS) Detection

After the proposal detection, a set of potential chips Rm,m = 1, ...,M are
extracted from the input. In this stage, a hierarchical self-diffusion saliency
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(a) (b)

Figure 4: The input SAR image and the results of proposal detection. (a) Input SAR
image, (b) Results of the proposal detection stage (the red rectangles indicate the real
targets, and the white regions represent the false alarms). In the results, the 10 targets
are all detected, while 19 false alarms are retained.

detection method is designed to accurately detect the targets from these
proposal chips. The graph diffusion is a common saliency detection algo-
rithm, such as conditional random fields [28], quadratic energy models[29],
random walks [30] and manifold ranking [31]. In these methods, the images
are first partitioned into the graphs. Saliency information then propagates
throughout the graph. In this section, we mainly promote the performance of
the saliency propagation by improving the node initial saliency optimization
strategy and the saliency map fusion rule.

3.1. Regional Features and Graph Construction

Each potential chip is first hierarchically over-segmented to the super-
pixels. Let Rg

m denotes the gth layer of the over-segmentation results of mth

proposal chips. Rg
m can be modeled as a undirected graph Gg

m (V,E), where
vi ∈ V, i = 1, ..., N denotes a node (superpixel) and wij ∈ E represents the
edge linking the node pairs (i, j). In this paper, only the nodes sharing the
boundaries are connected by edges. The edges can be expressed by an affinity
matrix W = [wij]N×N , where wij is defined by

wij = exp

(
−
√

(T i − T j)2
)

(6)

where T i and T j represent the feature vectors of two superpixels.
Most of previous SOD methods [23][32] usually adopt the average value in

the CIELAB color space as the feature vector of the superpixel. But it may
be ineffective for SAR images. In this section, we adopt a 38-dimensional
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feature vector, i.e., T i = [ti1, ..., t
i
38]

T
, which includes two types of features,

i.e., regional contrast descriptor XC,i and backgroundness descriptor XB,i,
as shown in Table 1.

Intensity and context features Contrast descriptor XC,i Backgroundness descriptor XB,i

Definition Dim Definition Dim T i Definition Dim T i

Average gray value 1 a XC,i
a 1 ti1 XB,i

a 1 ti20
Gray histogram 256 HG XC,i

HG 1 ti2 XB,i
HG 1 ti21

LM texture vector 15 Lm XC,i
Lm 15 ti3 − ti17 XB,i

Lm 15 ti22 − ti36
LM histogram 15 HL XC,i

HL 1 ti18 XB,i
HL 1 ti37

LBP histogram 256 HB XC,i
HB 1 ti19 XB,i

HB 1 ti38

Table 1: The elements of the regional feature vector.

3.1.1. Regional Contrast Descriptor

Rg,i
m is the ith superpixel of Rg

m. The regional contrast descriptor XC,i

represents the uniqueness and scarcity of superpixel Rg,i
m relative to all its

neighboring nodes. First, five kinds of features are extracted for each super-
pixel Rg,i

m , i.e., average gray values ag,im , gray histogram HGg,i
m , LM (Leung-

Malik) texture vector Lmg,i
m , LM histogram HLg,im [33], and LBP histogram

HBg,i
m [34]. For the remainder of the paper, we will drop the superscript

g and subscript m of five classes of features for notational simplicity, i.e.,
ai, HGi, Lmi, HLi and HBi. Among them, Lmi is the mean of results
from LM filtering. A LM filter set consists of fifteen 19 × 19 filters, in-
cluding 2 Gaussian Laplacian filters, 1 Gaussian filter and 12 Gabor filters
(6 directions, 2 phases). The filtering results for Rg,i

m can be represented

as F (Rg,i
m ) = [f1 (Rg,i

m ) , ..., f15 (Rg,i
m )]

T
and then the kth element of Lmi is

calculated by
Lmi (k) = mean

[
fk
(
Rg,i
m

)]
(7)

To obtain the LM histogram HLi, 15 filtered superpixels in F (Rg,i
m )

first emerge into one superpixels via a max-pooling operation, and then the
pixel values are replaced by the corresponding sequence number of the filter.
Hence, the dim of HLi is 15.

The regional contrast descriptor from ai is as follows:

XC,i
a =

∑N i
nei

j=1
βijd

(
ai, aj

)
(8)

where d (ai, aj) is defined as |ai − aj| to captures the differences between ai

and aj. aj is the average gray value of superpixel Rg,i
m and N i

nei denotes the
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number of neighboring nodes of Rg,i
m . βij= exp

[
−|pi − pj|2/2σ2

β

]
is a spatial

weighting term, where pi and pj are the mean positions of Rg,i
m and Rg,j

m . This
means that the farther superpixel from Rg,i

m has smaller effect on its saliency.
σβ controls the strength of spatially weighting effect, empirically set as 1 in
our experiments.

The regional contrast descriptor from Lmi is defined as

XC,i
Lm=

∑N i
nei

j=1
βijd

(
Lmi, Lmj

)
(9)

where d (Lmi, Lmj) = {|Lmi (1)− Lmj (1)| , ..., |Lmi (15)− Lmj (15)|}, so the
dimension of XC,i

Lm is 15. The elements of regional contrast descriptor from the
histogram features (HGi, HLi and HBi) have similar computing methods.
With HGi as an example,

XC,i
HG=

∑N i
nei

j=1
βijd

(
HGi, HGj

)
(10)

d (HGi, HGj) is defined as

d
(
HGi, HGj

)
=

∑Q
q=1

(
hiq − hjq

)2∑Q
q=1

(
hiq
)2 (11)

where hiq is the qth elements of HGi and Q is the dimension of HGi.

3.1.2. Backgroundness Descriptor

In addition to the neighboring superpixels, the differences between the
superpixels and the background areas are also informative for saliency mea-
surement. In general, the background is closer to the boundaries of the input
images. Therefore, the superpixels at the border areas of Rg

m are selected as
the background nodes Bg,j

m . We define the scarcity of a superpixel Rg,i
m rela-

tive to all the background nodes as the backgroundness descriptor. Likewise,
the backgroundness descriptor of the superpixel Rg,i

m from ai is defined as

XB,i
a =

∑Nback

j=1
βijd

(
ai, aj

)
(12)

where Nback is the number of background superpixels and aj denotes the gray
value of a background superpixel Bg,j

m . The definition of d (ai, aj) is same
as Eq. (8). The other four kinds of elements of backgroundness descriptor
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(XB,i
HG, XB,i

Lm, XB,i
HL,XB,i

HB) have the similar calculation methods with that of
regional contrast descriptor, except that the backgroundness descriptor does
not consider the spatial weighting term βij. In summary, we can obtain a 38-
dimensional regional feature vector T i for each superpixel Rg,i

m , and then all
superpixels in Rg

m can be modeled as a undirected graph Gg
m (V,E) according

to Eq. (6) .

3.2. Initial Saliency Optimization

In the saliency diffusion stage, for all the superpixels from Rg
m, we adopt

the manifold ranking method proposed in [23] to propagate the saliency in the
graph. Mathematically, the saliency of all the nodes after saliency diffusion
can be expressed as:

S̃gm =

(
I − 1

1 + u
D−1/2WD−1/2

)−1
Sgm (13)

where Sgm and S̃gm represent the initial saliency and the final saliency of all the
superpixels at the Rg

m, and u is a constant. D is the degree matrix of graph
Gg
m (V,E), which is defined as D = diag (d11, . . . , dnn) and dii =

∑
j

wij.

The saliency propagation is sensitive to the initial saliency of nodes Sgm,
which contains the vital prior information and should be calculated carefully.
In most of previous saliency diffusion methods, the initial saliency of nodes
is calculated based on some priors. For example, the boundary prior assumes
that the targets located in the central areas of images in general. Hence, the
model in [23] selects the nodes on four sides of the images as the background
seeds, and the initial saliency of these background seeds is set as zero. While
the nodes in the central areas of the input images are regarded as the target
seeds, whose initial saliency is set as one. However, this prior cannot provide
enough target information for saliency diffusion in SAR chips. Inspired by
[26], we propose a new node initial saliency optimization mechanism in this
section. In this approach, we attempt to learn a weight vector from the
training sets to calculate the optimal initial saliency of the nodes.

The contributions of each element of the feature vectors to the initial
saliency of superpixels are diverse. Some features are mainly distributed in
the background areas, while some features only occur in the target areas.
Hence, we introduce a weight vector V ∗ to represent the contribution of
different kinds of features to the superpixels’ initial saliency. The initial
saliency of each superpixel can be calculated by Sg,im = T g,im × V ∗, where T g,im
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is the feature vector of superpixel Rg,i
m . The weight vector V ∗ can be learned

by minimizing the following objective function:

V ∗ = arg min
V

{
max

(
0,

(
1−

∑
i∈Tar

T g,im ∗ V ∗
))

+ max

(
0,
∑
j∈Bg

T g,jm ∗ V ∗
)}
(14)

where i ∈ Tar and j ∈ Bg respectively indicate the superpixels belonging to
the target regions and the background regions from the training set. The first
item on the right side of the Eq. (14) ensures that the initial saliency of all
target superpixels is close to one, while the second attempts to make that of
background superpixels close to zero. Hence, the weight V ∗ can distinguish
the targets from the background as much as possible.

In the experiment, the training set includes 20 vehicle chips from the Mov-
ing and Stationary Target Acquisition and Recognition (MSTAR) database
and the corresponding manually labeled Ground Truth. These Ground Truth
images are binary images where the target areas are one and the background
areas are zero.

Once learned the optimal weight vector V ∗, the initial saliency of the
superpixels is the product of their feature vectors T g,im and V ∗. The bound-
ary priors are also considered to further optimize the initial saliency. The
superpixels along the four sides of the images will be regarded as background
seeds and their initial saliency is set to zero. Then, the saliency propagates in
the graph Gg

m (V,E) according to Eq. (13) , resulting in the optimal saliency
values of all the nodes.

3.3. Hierarchical Saliency Fusion

In this section, the saliency maps S̃gm from multi-scale spaces are inte-
grated to the final saliency map. An average or sum operation cannot achieve
ideal results [35]. Inspired by [27][36], we employ a fusion rule for combining
the multi-layer saliency maps to achieve better detection results.

Let S̃gm,(k,l) denote the pixel located at (k, l) of S̃gm. For notational sim-

plicity, we drop the subscript m of the saliency maps S̃gm,(k,l) in the remainder
of the paper. During the fusion process, an objective function is designed
to capture the final saliency maps. Integrating all the saliency maps at the
same time in the objective function requires a large amount of calculation, so
we first simplify the relation of multiple saliency maps as a 3D graph model.
The salient maps are arranged in order of the superpixels’ sizes, with the top
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layer having the largest superpixels. In this 3D graph model, pixel S̃gk,l is only

connected to the corresponding pixels in the upper and lower layer, i.e., S̃g−1k,l

and S̃g+1
k,l . We optimize the saliency map layer by layer to realize the prop-

agation of saliency information in the 3D graph. Specifically, our saliency
propagating rule includes two stage: top-down fusion and bottom-up fusion.
The top-down fusion stage starts from the second top layer, and the saliency
map of each layer is updated layer-by-layer by minimizing the loss function
until the bottom layer is updated. After the top-down stage, the bottom-up
fusion starts from the second bottom layer until the top layer is optimized.
After that, the top layer has successfully integrated the saliency information
from other scale spaces. In each propagation, only adjacent layers need to
be considered, which can decrease the difficulty of finding the optimal solu-
tion of the objective function. In the end, an updated saliency map will be
selected as the final saliency map.

In the top-down fusion stage, for the gth saliency map, we believe the
optimized map Ŝgk,l should be as consistent as possible with its initial saliency

S̃gk,l. Moreover, Ŝgk,l also should match its adjacent upper saliency map Ŝg+1
k,l to

ensure Ŝgk,l contains the saliency information from other scale spaces. Hence,
the loss function of top-down fusion is as follows:

ET−B

(
Ŝgk,l

)
= argmin

{∑
k,l

∥∥∥Ŝgk,l − S̃gk,l∥∥∥2
2
+
∑
k,l

∥∥∥Ŝgk,l − Ŝg+1
k,l

∥∥∥2
2

}
(15)

The loss function comprises two parts, the first term ensuring that the
updated saliency map Ŝgk,l maintains maximum agreement with the original

saliency map S̃gk,l. The second term can guarantee Ŝgk,l maintains the max-

imum consistency with the updated saliency map of upper layer Ŝg+1
k,l . The

updated saliency map Ŝgk,l is then used to optimize the its lower layer. The
top-down fusion achieves saliency information propagating from the higher
layers to lower layers.

In the bottom-up phase, the lower layers’ saliency information propagates
to the higher layers. Similarly, the loss function of bottom-up fusion is defined
as:

EB−T

(
Ŝgk,l

)
= argmin

{∑
k,l

∥∥∥Ŝgk,l − S̃gk,l∥∥∥2
2
+
∑
k,l

∥∥∥Ŝgk,l − Ŝg−1k,l

∥∥∥2
2

}
(16)
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In our method, the top saliency map layer is adopted as the result of
the fusion stage. The first row of Fig.5 shows eight proposal chips from the
proposal detection stage, including four real targets and four false alarms.
The results of hierarchical saliency fusion are shown in the second row of
Fig.5. Our method well preserves the contour features of the targets and
suppresses the irregular clutters.

(a) Background proposal chips (b) Target proposal chips

Figure 5: The results of HSDS detection for eight proposal chips. The first row: eight
proposal chips, second row: results of saliency fusion.

(a) (b)

Figure 6: The input SAR image and the detection results of the proposed method . (a)
Input SAR image, (b) detection results of our method (the red areas indicate real targets).
All the 10 targets are detected, while the number of false alarms drops from 19 to 6.

After acquiring the final saliency map, binarization is first implemented,
and some geometric prior properties are then used to further remove back-
ground chips. In particular, for each proposal chip, maximum between-class
variance method (OTSU) is first utilized to perform automatic image thresh-
olding, which returns a single intensity threshold that separate the pixels of
the saliency maps into two classes: targets and background. Second, the
binary images are processed using morphologic operator (open operation) to
remove the small regions caused by clusters or speckle noises. Third, prior
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knowledge about targets’ sizes are introduced to further remove the back-
ground chips. In other words, the chips whose target regions are too large
or too small will be deleted. The remaining proposal chips are considered as
the real targets, forming the final detection results. As the HSDS’s saliency
map can accurately predict the regions of the targets, the postprocessing
stage described above can effectively reduce the false alarms of the detection
results. Fig.6(b) shows the detection results of our method, where the red
rectangles indicate the real targets, and the white regions represent the false
alarms. The false alarms drop from 19 to 6 and no target is missed.

To summarize the process, the particular flow of the proposed method is
shown in Fig. 7. In the proposal detection stage, the edge cues are firstly ex-
tracted from input images. Then a set of proposal chips are selected from the
input based on the edge feature maps. The following HSDS detection stage
aims to locate the precise regions of the targets in the proposal chips. These
chips are hierarchically over-segmented into superpixels by SLIC algorithm,
which is followed by regional feature extraction and graph construction. Then
a learned weight vector is used to capture the optimal initial saliency of the
superpixels. After saliency propagating throughout the graph, we employ
a fusion rule to combine the multiple saliency maps into the final results.
Next, we postprocess the chips’ saliency maps to remove the background
chips in all potential chips. Specifically, binarization and open operation
are performed on the saliency maps to remove the small regions caused by
clusters or speckle noises. According to the geometric prior information of
the targets, those chips whose target areas are too large or too small will be
considered as the background chips and further removed from the detection
results, thereby reducing the false alarm.

4. Experiments

In this section, we first describe the data sets used in the experiments
and then discuss the detection performance of the proposed method for the
large-scale high-resolution SAR images.

4.1. Description of Database

The images used in our experiments are from MSTAR with a resolution of
0.3m. The MSTAR public database was collected using the Sandia National
Laboratories Twin Otter SAR sensor payload operating at X band, spotlight
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Figure 7: The detailed flowchart of the proposed method.

mode and HH single polarization. The MSTAR database includes 10 kinds
of vehicle targets. Their optical and SAR images are shown in Fig.8.

Figure 8: Optical and SAR images of 10 classes of targets in MSTAR database.

4.2. HSDS Detection Experiment

This section focuses on evaluating the HSDS’s performance in saliency
target detection. In the experiment, 20 images from the MSTAR dataset are
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selected as the potential chips, two images each class. And the HSDS method
is used to calculate the saliency maps of the chips. The size of the superpixel
determines the resolution of the detection results. Too small size will make
the saliency propagation vulnerable to the background clutters. Instead, too
large superpixels will decrease the precision of saliency detection. According
to the geometric prior properties of the targets, each 128 × 128 proposal
chip is respectively over-segmented into {100, 120, 140, 160} superpixels in
the experiment.

Fig.9 compares the results of HSDS and other three state-of-the-art saliency
object detection models for four chips, i.e., Saliency Detection via Dense and
Sparse Reconstruction (DSR) [37], RBD [22] and Saliency Detection via Ab-
sorbing Markov Chain (MC) [38]. Due to the application of node initial
saliency optimization and hierarchical saliency fusion, HSDS tends to de-
lineate the whole target region accurately. The heterogeneous clutters in
the background regions have been effectively suppressed and corresponding
saliency values are close to zero.

(a) Input (b) HSDS (c) RBD (d) DSR (e) MC (f) GT

Figure 9: Comparison of saliency maps of HSDS with that of three state-of-the-art SOD
algorithms, MC, RBD and DSR. (a) Four potential chips from the MSTAR dataset. (b)-(e)
Detection results of HSDS, RBD, DSR and MC. (f) Manually labeled Ground-truth.

We also introduce the precision-recall (PR) curve shown in Fig. 10 to
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quantitatively evaluate the performance of HSDS method. The precision
value is defined as the ratio of the detected real targets assigned to all the
detected targets, while the recall value corresponds to the percentage of the
detected targets in relation to the ground-truth. Specifically, a threshold
increasing from 0 to 255 is used to convert the saliency map to a binary
image, then a pair of precision and recall values can be computed. Fig.10
shows the average PR curves of HSDS and MC, RBD and DSR on 20 chips.
As can been seen, thanks to the hierarchical framework and the learned
weight vector, HSDS method has a more competitive performance. The areas
under the curve of HSDS method are larger than the other three methods.

Figure 10: Comparison of the Precision-Recall curve of HSDS with that of three state-of-
the-art algorithms on 20 potential chips from MSTAR.

4.3. Vehicle Target Detection Experiment

To verify the adaptability of the proposed method in vehicle detection,
we select 20 targets from three kinds of tanks randomly (BMP, BRT70, T72 )
and add them into two SAR scene images with different SCRs (Signal Clutter
Ratio), as shown in Fig.11(a) and Fig.12(a) , where targets are marked with
red rectangles. The sizes of the background SAR images are both 1784×1476
(in pixel). In this work, SCR is defined as SCR = uT/uB , where uT and
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uB are the mean value of the target region and background pixels in the
target-centered 100× 100 area, respectively.

(a) Scene 1 (b) Proposed method (c) SR (d) Two-CFAR

(e) RBD (f) SUN (g) GBMPM (h) Pareto-CFAR

Figure 11: The detection results of four methods for Scene 1. (a) Scene 1: 20 targets are
marked by red rectangles (SCR=2.2), (b)-(h) show the detection results of the proposed
method, SR, two-parameter CFAR, RBD, SUN, GBMPM and Pareto-CFAR, respectively.
The detected targets are marked by red rectangles, and the white regions represent the
false alarms. The missed targets are labeled by blue rectangle rectangles.

The detection results of our method for the two scenes are given in Fig.11
and Fig.12, respectively. For the comparison, the results of other methods
are also presented, i.e., two-parameter CFAR (Two-CFAR), SR[13], RBD,
SUN [39], Gated Bi-directional Message Passing Module (GBMPM) [40] and
Pareto-CFAR[41]. For Two-CFAR method, the adaptive threshold is cal-
culated by keeping the false alarm rate constant. RBD is an unsupervised
SOD method. SR model is a classical fixation prediction model, which ex-
tracts the spectral residuals of the images and constructs the corresponding
saliency maps in the spectral domain. SUN employs a Bayesian framework
to incorporate top-down information with bottom-up saliency for predicting
human fixations. GBMPM is a supervised deep learning SOD model based
on the Fully Convolutional Neural Network (FCN) [42]. GBMPM employs
a bi-directional structure to pass messages among different layers of deep
networks, so the output features can simultaneously encode semantic infor-
mation and spatial details. The multi-level features are further utilized to
produce the final saliency maps. In our experiments, we utilize the dataset
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used in the node initial saliency optimization stage to train GBMPM net-
work. The hyperparameters of GBMPM are consistent with the original
network shown in [40]. For example, learning rate is 0.001 and epoch is 10.
Pareto-CFAR is a new CFAR scheme proposed by Graham [41],which in-
troduces Pareto distribution into the radar community as a suitable model
for X-band clutter returns. In order to ensure the consistent experimental
conditions, a similar postprocessing is implemented for the results of above
six methods, including binarization, morphological opening operation and
removing background chips based on the geometric prior properties.

For scene1, the false alarms of our method can be controlled to 6 without
missing real targets. While the false alarms of SR, two-CFAR, RBD, SUN,
GBMPM and Pareto-CFAR, are 81, 31, 16, 36, 38 and 86 , respectively.
Our method also has the least missed targets in all seven methods. For
scene2, missed targets of seven methods are 3, 6, 5 ,9 19, 8 and 3. Our
method has 11 false alarms, which is far less than the SR (25 false alarms)
CFAR (38 false alarms), RBD (15 false alarms), SUN( 21 false alarms),
GBMPM (37 false alarms) and Pareto-CFAR (68 false alarms). The above
results demonstrate that our model can obviously improve the performance
of detection for detecting vehicles in the SAR images.

(a) Scene 2 (b) Proposed method (c) SR (d) Two-CFAR

(e) RBD (f) SUN (g) GBMPM (h) Pareto-CFAR

Figure 12: The detection results of six methods in scene 2. (a) Scene 2: 20 targets are
marked by red rectangles (SCR=2.6). (b)-(h) show the detection results of the proposed
method, SR, two-parameter CFAR, RBD, SUN, GBMPM and Pareto-CFAR, respectively.
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To further verify the detection performance of the proposed method under
various SCR, we employ F-measure to comprehensively evaluate the perfor-
mance of our method. F-measure is computed by the weighted harmonic of
precision and recall as follows:

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(17)

The constant β2 represents the importance of the precision value in the
F-measure, which is set to 0.3 inspired by [43].

Fig.13 compares the false alarms, detection rate and F-measure values of
our method with that of SR, two-parameter CFAR, RBD, SUN, GBMPM
and Pareto-CFAR. Fig.13(a) shows the false alarms of seven approaches when
the SCR increases from 1 to 3.6. It can be seen that our method has the least
false alarms for diverse SCRs. In Fig.13(c), our method has the largest F-
measure values for SCR > 1.6. When SCR is less than 1.6, its F-measure is
only worse than RBD and better than other five baseline methods. GBMPM
based on the deep convolutional networks requires a large amount of training
data [44]. As the training dataset contains only 20 vehicles chips, the per-
formance of GBMPM is unsatisfactory. Two-parameter CFAR and Pareto
CFAR are both pixelwise detection methods. They ignore the spatial rela-
tionship between the neighboring pixels during detection and both generate
a large number of false alarms. These quantitative comparisons demonstrate
that our method has better robustness.

4.4. Ship Detection Experiment

In order to verify the practicability of the proposed method, we utilize
the proposed method to detect the ships on a SAR dataset [45] in this sec-
tion. This dataset is proposed by Key Laboratory of Digital Earth Science,
Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences
in March 2019, which is constructed using 108 Sentinel-1 images and 102
Chinese Gaofen-3 images. For Gaofen-3, the images have resolutions of 3
m, 5 m, 8 m, and 10 m with Ultrafine Strip-Map (UFS), Fine Strip-Map
1 (FSI), Full Polarization 1 (QPSI), Full Polarization 2 (QPSII), and Fine
Strip-Map 2 (FSII) imaging modes, respectively. For Sentinel-1, the imaging
modes are S3 Strip-Map (SM), S6 SM, and IW-mode. These SAR images
are cropped to acquire ship chips 256 × 256 pixels in size, which are then
labeled by SAR experts with LabelImg. Each ship chip corresponds to an
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(a) False alarms (b) Detection rate

(c) F-measure

Figure 13: Quantitative comparisons of the proposed method and six baseline methods
under various SCRs for scene 1.

Extensible Markup Language (XML) file like that in the PASCAL VOC de-
tection dataset, indicating the ship location, the ship chip name, and the
image shape, respectively. This dataset totally includes 43,819 ship chips of
256 pixels in both range and azimuth.We randomly select 1000 images from
the dataset, and 100 of them are used to train the weight vector during node
initial saliency optimization stage.

We first utilize the edge cues to extract the potential chips on this dataset.
Then HSDS is employed to segment the precise regions of the ships in the
proposal chips. Next, binarization and open operation are performed on the
saliency maps from HSDS method to remove the small regions caused by
speckle noises. Finally, prior knowledge about targets’ sizes are introduced
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to further remove the background chips. These chips with too large or too
small target regions will be regarded as the background chips and removed
from the detection results. Fig.14 compares some detection results of our
method and several common saliency detection methods. It can be seen that
our method can accurately get the shapes of ships. Some targets close to
the boundaries of the images are also be detected. The results of RBD, DSR
and MC are more susceptible to the strong speckle noises in SAR images.
It is because they define the salient targets from the perspective of pixel
value contrast, while the proposed method employs a lot of texture feature
information. We also attempt to detect ships using Two-CFAR, SR, SUN,
GBMPM and Pareto-CFAR methods. However, the strong sea clutters and
speckle noises of SAR images make their detection results unsatisfactory, so
we do not show them in Fig.14.

We also summarize the number of false alarms and detection rate of the
proposed method on this ship dataset in Table 2. As a comparison, the
detection results of the other three methods are also given. As can be seen,
our method has the highest detection rate and least false alarms, which
is consistent with the results of Fig.14. These testing experiments on the
ship database prove that the proposed method can reduce the interference
of clutters and speckle noises on the detection results by comprehensively
utilizing various features of the targets.

Methods Ours RBD DSR MC
false alarms 102 235 461 258

detection rate 0.856 0.737 0.511 0.749

Table 2: Comparison of the performance of different detection methods on the ship dataset.

4.5. The Role of Initial Saliency Optimization

In order to clearly reflect the function of the node initial saliency op-
timization stage for the performance of the proposed method, we give the
detection results of our method for scene 1 without the learned weight vector.
In this case, all the elements of the weight vector will be set to 1 instead of
learning from the training set.

Table 3 shows the numbers of the missed targets, false alarms and F-
measure values of our method with and without the node initial saliency
optimization stage for scene1. As can be seen, all 20 targets are detected in
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(a) Input (b) Ours (c) RBD (d) DSR (e) MC

Figure 14: Comparison of the detection results on ship dataset of our method with three
state-of-the-art algorithms. (a) SAR images (b)-(e) Detection results of Ours, RBD, DSR
and MC.

two cases but the initial saliency optimization stage can decrease the false
alarms from 8 to 6.

Furthermore, we give the numbers of the detected targets and false alarms
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in two cases when the SCR increases from 1 to 3.6 in Fig.15. For the approach
without node initial saliency optimization stage, its number of detected tar-
gets is seen to be as well as the proposed method for diverse SCRs, but its
false alarms are always greater than that of ours. This proves that the prior
acknowledge learned from the training set contributes to reducing the false
alarms caused by the clutters and improving the detection performance.

Missed targets False alarms F-measure(%)
PM with V ∗ 0 8 81.3

PM without V ∗ 0 6 76.5

Table 3: Change in performance of the proposed method upon removal of the node initial
saliency optimization stage for scene 1 (SCR=2.2).

(a) Detected targets (b) False alarms

Figure 15: Change in detected targets and false alarms of the proposed method when
initial saliency optimization stage is removed from the proposed method for scene 1 under
various SCRs.

4.6. The Role of Hierarchical Saliency Fusion

This section aims to verify whether the fusion rule can enhance the detec-
tion results. First, Table 4 gives the precision, recall and F-measure values
of the proposed method for scene 1 (SCR=2.2) when each potential chip is
over-segmented in single scale space. The number of the superpixels is re-
spectively 100, 120, 140 and 160. We also give the detection results of our
method taking average operation as the fusion strategy in Table 4, which
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is termed PM-Average. We can see that the proposed method (PM) obvi-
ously has the highest precision, recall and F-measure than the other four
single-scale models and PM-Average.

Number of Superpixel Precision Recall F-measure
100 67.9 95 72.6
120 55.9 95 61.8
140 63.3 95 68.6
160 61.3 95 66.8

PM-Average 71.4 100 76.5
PM 76.9 100 81.3

Table 4: Change in performance when the proposed method only considers single-scale
saliency map for scene 1 (SCR=2.2) or takes the average operation as its fusion strategy.

Moreover, Fig.16 shows the variations of false alarms and F-measure val-
ues of five methods for scene 1 under different SCRs. Fig.16(a) demonstrates
that our fusion operation can significantly reduce the number of the false
alarms, outperforming average operation and single layer methods. In Fig.
16(b), the performance of the four single layer methods is seen to be espe-
cially vulnerable to SCR. For example, the approach with 100 superpixels
has better F-measure values than the other three single layer methods when
SCR is less than 2. However, when the SCR is in range of 2 to 3.6, the
best single layer method becomes the approach with 140 superpixels. On
the contrary, our approach can keep the best F-measure values compared
to the other five methods. These results further prove that the hierarchical
saliency fusion stage can improve detection performance by more effectively
integrating background and targets features from multiple scale spaces.

4.7. Running Time

To evaluate the efficiency of our method, we compare the average com-
putational time for per SAR image of our method with six state-of-the-art
methods, as shown in Table 5.The simulation software is MATLAB 2017a,
and the main configuration of the computer includes 8GB RAM and Intel
Core i5-8265U CPU. The computational time of our method is less than that
of Two-CFAR and SUN. CFAR takes each pixel as a processing unit, seriously
affecting its computational efficiency. Pareto-CFAR significantly reduces its
running time by employing the Pareto distribution to model the clutter re-
turns. Although SR saves much running time by calculating saliency in the
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(a) False alarms (b) F-measure

Figure 16: Change in false alarms and F-measure values of the proposed method when
the hierarchical saliency fusion stage is removed and only single-scale saliency map is
considered for scene 1 under various SCRs.

frequency domain space, its detection results are unsatisfactory. RBD and
the proposed method both take superpixel as the basic processing unit, and
hence have the similar running time.

Method Ours SR Two- RBD SUN GBMPM Pareto-
CFAR CFAR

Times(s) 30.91 2.58 633.37 12.62 214.61 4.79 13.87

Table 5: Comparison of average run time (seconds per image).

5. Conclusion

We have presented a novel hierarchical self-diffusion saliency (HSDS)
method for detecting vehicle targets in large-scale SAR images. During the
HSDS based detection, a weight vector learned from the training set is in-
troduced to calculate the optimal initial saliency of the nodes. We further
design a saliency fusion rule to integrate multiple saliency maps in order to
locate accurate regions of the targets. Simulation experiment results verify
that these improvements can effectively decrease false alarms and increase
the stability of detection performance. Benchmark comparisons with CFAR
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and other state-of-the-art saliency detection methods demonstrate the wider
applicability of our proposed model.

In terms of limitations, it should be noted that the node initial saliency
optimization stage proposed in our method requires a certain number of
vehicle chips to train. However, it is hard to obtain enough training chips
in many practical application, hence the detection results of our method for
these SAR images are not ideal. In future research, we will attempt to reduce
the algorithm’s reliance on training samples. We also plan to integrate task-
related information in saliency calculations in order to further improve the
accuracy of target detection.
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