
3rd Symposium on Space Educational Activities, September 16-18, 2019, Leicester, United Kingdom

1. http://www.enbio.eu/
2. https://www.aac-clyde.space/
3. https://www.brightascension.com/products/flight-software/

Flight Software Development for the EIRSAT-1
Mission

Maeve Doylea*, Andrew Glosterb, Conor O’Tooleb, Joseph Mangana, David Murphya, Rachel Dunwoodya, Masoud Emamc,
Jessica Erkala, Joe Flanaghanc, Gianluca Fontanesic, Favour Okosunc, Rakhi Rajagopalan Nairc, Jack Reillya, Lána Salmona, Daire

Sherwinc, Joseph Thompsonc, Sarah Walsha, Daithí de Faoitec, Umair Javaidc, Sheila McBreena, David McKeownc, Derek
O’Callaghana, William O’Connorc, Kenneth Stantonc, Alexei Ulyanova, Ronan Walla, Lorraine Hanlona

a School of Physics, University College Dublin, Belfield, Dublin 4, Ireland
b School of Mathematics and Statistics, University College Dublin, Belfield, Dublin 4, Ireland

c School of Mechanical and Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland
* Correspondence: maeve.doyle.1@ucdconnect.ie

Abstract—The Educational Irish Research Satellite, known
as EIRSAT-1, is a student-led project to design, build, test
and launch Ireland’s first satellite. The on-board software
for this mission is being developed using Bright Ascension’s
GenerationOne Flight Software Development Kit. This
paper provides an overview of this kit and of EIRSAT-1’s
on-board software design. Drawing on the team’s
contrasting experience with writing entirely custom
firmware for the mission’s science payloads, this work
discusses the impact of using a kit on the software
development process. The challenges associated with the
educational nature of this project are the focus of this
discussion. The objective of this paper is to provide useful
information for other CubeSat teams assessing software
development options.

Keywords—CubeSat; software

I. INTRODUCTION
EIRSAT-1 is a 2U CubeSat being developed at University

College Dublin (UCD) as part of the Fly Your Satellite!
programme run by the Education Office of the European Space
Agency (ESA). The EIRSAT-1 project is an interdisciplinary,
student-led effort to launch Ireland’s very first satellite. The
mission’s primary objectives are educational, with the aim to
develop the capabilities of the Irish higher education sector in
space science and engineering and inspire the next generation of
students towards the study of STEM subjects. To facilitate these
aims, EIRSAT-1 will fly three novel experiments that have been
developed at UCD [1]: the Gamma-ray Module or ‘GMOD’, a
bespoke gamma-ray detector [2]; the ENBIO1 Module or
‘EMOD’, a thermal materials experiment; and Wave-Based
Control or ‘WBC’, a software-based attitude control experiment
[3]. Custom hardware has been developed by the EIRSAT-1
team for both the GMOD and EMOD payloads. Excluding the
Antenna Deployment Module, which has also been developed at
UCD [4], the remainder of the CubeSat platform consists of
Commercial Off The Shelf (COTS) components supplied by
Clyde Space Ltd2 [5].

EIRSAT-1’s main flight software will run on a Clyde Space
On-Board Computer (OBC), with the FreeRTOS real-time
operating system. This OBC is a standard CubeSat kit PC-104
subsystem, that is built around a MicroSemi SmartFusion2
System on Chip (SoC), and includes an ARM Cortex M3
processor. The mission’s main software, which is being written
in the programming language C, is being developed using v18.3
of the Bright Ascension GenerationOne Flight Software
Development Kit3 (FSDK). In addition to the OBC-run software,
custom software is also being developed for the payload
microcontrollers, which are Texas Instruments MSP430
microcontrollers. The EIRSAT-1 software will undergo its first
full mission test during an ambient test campaign set to begin in
late 2019.

This paper provides an overview of the Bright Ascension
GenerationOne FSDK and of EIRSAT-1’s flight software, with
a focus on how the design and development of the latter has been
shaped by the FSDK. Using the team’s experience with
developing custom firmware for GMOD and EMOD without the
use of a kit, the impact of using the FSDK on the software
development process is discussed, particularly with regards to
the challenges associated with a student project. Alternative
software development options to the FSDK are also given and
the software options followed by other CubeSat teams are
considered. This work offers an insight into the EIRSAT-1
team’s experience with kit-driven development, helping others
to determine if an FSDK-like software solution is suited to them
and their mission.

II. FLIGHT SOFTWARE DEVELOPMENT APPROACHES
 The Bright Ascension GenerationOne FSDK was chosen by
the EIRSAT-1 team to address the challenges associated with
student-led development. In particular, the challenge and risks
associated with maintaining the project’s schedule (discussed
further in Section V). Furthermore, as the FSDK is provided
with software to interface Clyde Space COTS components,
which are used on EIRSAT-1 [5], the team considered that this
kit was very well suited to the project. However, due to differing
mission, hardware and/or software requirements, this may not be

https://doi.org/10.29311/2020.39

157

4. https://www.kubos.com/kubos/
5. https://opensatkit.github.io/menu/about.html
6. http://cubesatlab.org/CubedOS.jsp
7. https://upsat.gr/
8. Information on current missions launched with software developed using
 the FSDK is available at https://www.brightascension.com/news-events/

the case for every project. Therefore, this section mentions
alternative flight software development options that are
available to and used by CubeSat teams.

A. KubOS

KubOS4 is an open-source software development kit and
framework that builds on a customized Linux distribution. ISIS,
Pumpkin and Beaglebone OBCs, as well as a selection of
additional COTS devices, are all supported. Options are also
provided for the programming language used for development,
including for C, Python and Rust.

B. Core Flight System (Starter Kit)

The core Flight System (cFS) is an open-source flight
software platform created by NASA’s Goddard Space Flight
Centre. cFS has flight heritage originating from multiple larger
NASA missions, including the Lunar Reconnaissance Orbiter
mission. However, more recently, the platform has been
adapted to suit a wider variety of mission. The cFS Starter kit,
also known as OpenSatKit5, is a development kit that facilitates
reuse of cFS software for other (including CubeSat) missions.

C. CubedOS

The services provided by CubedOS6 are very similar to
those provided by NASA’s cFS, however this framework has
been written using the SPARK/Ada programming language,
and associated tools, as opposed to C. The SPARK toolset and
code aim to facilitate development of a more reliable software
image by removing complexity associated with other
programming languages to reduce the risk of development
errors.

A detailed comparison of the frameworks provided with A-
C is given by [6].

D. Open-Source CubeSat Software

The Libre Space Foundation, in collaboration with the
University of Patras, developed and constructed both software
and hardware for UPSat7, a 2U CubeSat launched in 2017. As
a primarily objective of the Libre Space Foundation is to
provide open-source access to space technologies, a Git
repository containing UPSat’s flight software is freely
accessible for CubeSat teams to use.

E. Custom

To satisfy mission requirements, many CubeSat teams
decide to develop custom flight software from the ground up
(e.g. [7], [8] and [9]), without the use of software solutions like
the Bright Ascension FSDK or those mentioned in this section.
While discussing the impact of using Bright Ascension’s FSDK
on the development of EIRSAT-1’s flight software in the
following sections, the decision of these teams to develop
software from the ground up is also considered.

III. GENERATIONONE FLIGHT SOFTWARE DEVELOPMENT KIT
 The Bright Ascension FSDK facilitates rapid development
of flight software for small/nano-satellite missions. This is

primarily achieved using a model-based software development
approach, known as Component-Based Development (CBD).

 In CBD, a “component” is defined as a reusable, standalone
software module that plays a specific role (e.g. logging data) and
provides a set of functions and parameters related to that role. A
software image with a range of functionality is then created by
linking multiple of these components together in a software
“deployment”. Within a given project, components share a
standard interface, commonly referred to as a “container”,
through which components interact, and which also allows for
easy interchange of the components that make up a deployment.
The primary aim of this approach is to separate complex
software systems into simple, independent components that can
be easily and individually designed, tested and maintained.
 CBD relies on demands reoccurring across a type (or range)
of software product(s), where reusability of components which
satisfy these demands is the key concept driving the success of
this approach. In the case of the FSDK, Bright Ascension have
built their product around general software functions that are
required for any space mission (e.g. hardware interfacing, data
handling and communication protocols). Therefore, the FSDK
is provided with a software framework, which provides some
supplier-specific (including Clyde Space), low-level hardware
interfacing and OS (including FreeRTOS) abstraction; as well as
libraries of pre-validated software components, many of which
have flight heritage. In addition to these components, useful
development tooling (plugins for the Eclipse development
platform) is also provided with the FSDK.
 CubeSat missions launched with flight software that has
been developed using the FSDK8 include UKube-1, Centauri-1
and Centauri-2, Audacy Zero, SeaHawk-1 and IOD-1 GEMS.

IV. EIRSAT-1 SOFTWARE DESIGN

A. Main Flight Software

 Grouping the main software components that are required
for the EIRSAT-1 mission, the components can be divided into
three distinct tiers, as shown in Fig. 1, which are:

• the Management Tier– manages when the system’s
functions are called;

• the Capabilities Tier– provides access to the system’s
functions; and

• the Hardware Tier– provides low-level interfaces to the
system hardware.

 These three tiers represent the different layers of abstraction
in the software, where the components in the lower tiers provide
abstraction for components in the upper tiers. This architecture
has been very much shaped by the FSDK, where the libraries of
kit-provided components have been specifically designed to
allow for hardware, OS and protocol independence [10]. Use of
the team’s resources is also well captured in this architecture, as

https://doi.org/10.29311/2020.39

158

the development time required for different aspects of the flight
software increases for components in upper tiers, compared to
that of the lower tiers (i.e. as mission-specific software becomes
increasingly required over standard kit-provided software).

B. Platform and Payload Software

 Flight-ready firmware is provided by Clyde Space for the
COTS platform hardware.
 For the GMOD and EMOD payloads, firmware is being
developed in-house without the use of development kits/tools.
This firmware will provide an interface to the hardware
components of the GMOD and EMOD experiments, and will
communicate with the OBC via I2C. As the payload
motherboards are slave devices to the OBC, the requirements on
each firmware are relatively simple and are based around the
need to collect and temporarily hold data in flash memory, while
waiting for instruction from the OBC. As a result, the team did
not adopt CBD for this development. Instead, given the limited
and well-understood requirements on the systems, the payloads’
firmware are being developed as a whole system in a more
traditional sequential process.
 Components in the main flight software then interface with
this firmware to provide access to platform and payload data and
functions (i.e. the interface components in Fig.1).
 The architecture resulting from this development process is
similar to that described for the main flight software, where

software interfacing hardware is used by the software that
provides functionality. However, as the payload firmware is not
developed within components, little distinction between or
abstraction across the tiers exists in this scenario. Furthermore,
as a result of not using any development kit or tooling (i.e.
developing the code from scratch), the resources of the team
have been much more dedicated to lower-level aspects of the
firmware as opposed to the software in the upper tiers,
completely in contrast to the development time given to the
different tiers of the main flight software.

V. IMPACT OF USING A KIT ON THE DEVELOPMENT PROCESS
 The EIRSAT-1 team have had the opportunity to develop
parts of the mission’s software both with and without the aid of
a development kit. Although, the latter was done for the
comparatively smaller software part (i.e. the payload firmware),
the different experiences had by the students working on each
part allowed the team to identify how the use of a kit has
impacted the flight software development process. These
considerations are discussed in this section for a mission team to
review when determining whether or not a development kit is
suited to their project. This content specifically draws on the
EIRSAT-1 team’s experience with the Bright Ascension FSDK,
however, many of the considerations are applicable to any
development kit and have been discussed in a general context,
as well as from the perspective of a student-led team.

Fig. 1. Overview of the EIRSAT-1 software architecture, where I/F refers to the software providing an interface to the Electrical Power Supply (EPS), Battery
(BAT), Attitude Determination and Control System (ADCS), Transciever (Comms), Antenna Deployment Module (ADM) and science experiements, GMOD,

EMOD and WBC (uses the ADCS hardware). FDIR refers to the Fault Dectection, Isolation and Recovery components and OBDH refers to all On-Board Data
Handling software.

https://doi.org/10.29311/2020.39

159

9. https://nanosatlab.upc.edu/en/missions-and-projects
10. http://www.polysat.org/launched and http://www.polysat.org/in-development

A. Schedule

 The FSDK was initially chosen by the EIRSAT-1 team to
allow for rapid software development. As mentioned in Section
III, this is primarily facilitated by providing libraries of ready-
made software components as well as development tooling.
However, development kits like the FSDK, are also provided
with additional aids to help achieve not only fast-paced
development, but also rapid learning, implementation and
testing. In particular to the FSDK, this includes: well-developed
learning materials, such as a detailed user manual, tutorials and
example code; tools for deploying, testing and documenting
software, including a unit testing framework, a mock ground
segment application and methods of generating documentation
directly from source code; and a long-term customer support
service.
 Drawing on the experiences of EIRSAT-1 team members
(both new and existing), the learning and development
time/effort required for the payload firmware compared to the
main flight software is substantially higher. This demonstrates
the effectiveness of the FSDK and its usefulness with regards to
maintaining a project schedule. This is a particularly important
consideration for a student-led project, where turnover of team
members can be high, as (new) students complete (begin) their
degrees, modules or projects through which they are involved.

B. Flexibility

To fully benefit from using a CBD kit with pre-existing, pre-
validated components, a software project should be shaped by
and built around the services that are provided with a kit (e.g.
the FSDK is provided with collections of data handling, fault
detection, automation and task management components [10]).

While this aspect of using a kit is very well suited to the
EIRSAT-1 project (mainly due to significant flexibility of
software design given the team’s inexperience with flight
software development) projects that are less flexible with
regards to the implementation of functionality in software may
not be so suited to development with a kit. In this case,
development from the ground up, or using an alternative
software solution (see Section II), may instead be needed to
meet a mission’s requirements. For example, the Galassia
CubeSat, built by a student-led team at the National University
of Singapore, identified that the objectives of the mission,
including the objective to develop a reusable software
framework for future missions, required software development
from scratch [7].

C. Risk

The failure rate of CubeSat projects is high, with 40-50% of
university-class CubeSat missions failing to achieve their
primary mission objectives [11]. Furthermore, at least 2% of
CubeSats are thought to fail due to software-related issues.

The FSDK is provided with libraries of robustly tested
software components, many of which have flight heritage.
Furthermore, this kit contains platform (for e.g. Clyde Space
and Nanomind) and OS (for e.g. FreeRTOS and Linux) specific

software. The EIRSAT-1 team have found these components to
be highly dependable. Therefore, a high-standard kit such as the
FSDK, which has been created by a team of developers with
space software expertise and has in-orbit validation, can be
invaluable for a project to mitigate the risk of mission failure,
which is particularly prevalent for student-led projects.

D. Cost of Resources

 Two costs should be considered: “Cost A”, which is the cost
of purchasing the product; and “Cost B”, which is the cost of
resources. Unlike Cost A, which is completely subject to
whether a development kit is purchased or not, Cost B is
inevitable for any software project. Cost B is the overhead cost
associated with getting the software product (in this case the
flight software) to a finished state. Managing Cost B, which is
influenced by the resources (i.e. manpower, expertise and skills)
available to a project, is essential to the success of any project.
Therefore, to determine if a development kit is suited to a
project, the team must first make a realistic assessment of their
available resources, and then estimate the added overhead cost
that would be required to develop software that fills the role of
the kit-provided software, “Cost B(A)”.
 If a shortage of resources is identified (i.e. Cost B(A) >>
Cost A) in the early stages of a project, as it was for EIRSAT-1
project (due to a lack of expertise but also due to the fact that the
team is composed of masters and PhD students, many of whom
have projects that are not related to the mission), and the project
budget allows for it, investing in Cost A, to effectively outsource
a substantial fraction of the groundwork development, is hugely
advisable.

E. Cost of Reusablilty

 A consequence of using a proprietary development kit is that
no in-house intellectual property is developed with regards to a
reusable software framework. In addition, the knowledge base
of the team with regards mission software design is only
developed within the confines of using a kit. Therefore, teams
that have chosen to use a kit for their current software project, as
is the case for the EIRSAT-1 team, must either: 1) re-invest in
another license for the same kit or 2) overcome the costs
associated with Cost B(A) for future missions. This is a major
consideration for a mission team where the short-term benefits
of and need for a development kit must be deliberated with the
long-term plan.
 In the case of EIRSAT-1, the benefits of rapid learning and
development, as well as having the support of the Bright
Ascension support team were considered as a necessity to the
EIRSAT-1 project, particularly as this is a first-time project
which must keep up with the schedule of the Fly Your Satellite!
Programme. As a result, for EIRSAT-1, the need for a
development kit outweighs the current need for freer future
reusability of software. However, for teams with more resources
(e.g. experience of developing a mission), that have a long-term
plan involving multiple missions (e.g. CubeCat9 and PolySat10),
in-house software development becomes a more profitable
consideration.

https://doi.org/10.29311/2020.39

160

VI. DISCUSSION AND CONCLUSIONS
The decision to use a development kit for a software

project is hugely influenced by both the project objectives and
the scenario in which the CubeSat project is being developed
(e.g. development in an industry vs. academic environment).
Therefore, Section V discusses the impact of using a
development kit, specifically Bright Ascension’s
GenerationOne FSDK, on the development of EIRSAT-1’s
main flight software with sufficient background information on
the EIRSAT-1 mission, team and software project to allow
other teams to review this work and make an informed
judgment on the FSDK in light of their own scenario. Although
the EIRSAT-1 team do not have a comparable experience of
developing a mission’s main flight software without the aid of
a development kit, development of payload firmware without
the use of a kit or tooling was used to consider the impact of
using the FSDK on the project.

This work shows that kit-driven development has been
extremely beneficial to the EIRSAT-1 project, helping the team
to overcome challenges faced with taking on a space software
project for the first time, in an academic environment. Given
this, it is interesting to note that the missions launched to-date
with FSDK-developed software have primarily been
commercial, as opposed to academic, student-led missions. A
review of existing literature to establish what then is being used
for other missions suggests that both industry and university
CubeSat teams are commonly opting for full in-house
development of flight software for the reasons stated within this
work (i.e. development of knowledge/skills, flexibility, freer
reusability, cost and available resources). Open-source
materials are used by these teams to help their development.
This includes using the options mentioned in Section II as
reference models, but also involves using widely-used code and
tools (e.g. using a Linux operating system [12, 13]), which
generally relates to the level of support available from the
community, as well as available documentation on coding,
software design and development standards (e.g. using the
IEEE Standard 1016 software design document [14]).
Nevertheless, expanding on the points made in Section V, it is
worth noting that CubeSat teams which opt for open-source
development also face some unpredictable risks (e.g. added
costs - while the general software product may be free, good
quality support, documentation, bug-fixing, etc. may not). For
these projects, the modular software architecture resulting from
CBD is very popular for developing maintainable and
extensible flight software. Other modular development
approaches used by CubeSat teams include agile software
development and service-oriented architecture engineering [12,
14].

ACKNOWLEDGMENTS
We acknowledge all students who have contributed to

EIRSAT-1. The EIRSAT-1 project is carried out with the
support of ESA’s Education Office under the Fly Your
Satellite! 2 programme. The EIRSAT-1 team would also like to

thank Brian White, who has greatly supported the team in
developing the mission’s software. The team acknowledges
support form ESA via PRODEX under contract number
4000124425. We would also like to acknowledge ESA support
under contract number 4000104771/11/NL/CBi. The EIRSAT-
1 team further acknowledge support from Parameter Space Ltd.
MD acknowledges support from the Irish Research Council
(IRC) under grant GOIP/2018/2564. CO’T, DM, LS and JT
acknowledge support from the IRC under grants
GOIPG/2017/1031, GOIPG/2014/453, GOIPG/2017/1525 and
GOIPG/2014/684, respectively. AG acknowledges a
scholarship from the UCD School of Mathematics and
Statistics. JE, JR and RD acknowledge scholarships from the
UCD School of Physics. SMB, JM and AU acknowledge
support from Science Foundation Ireland under grant number
17/CDA/4723.

REFERENCES
[1] D. Murphy et al., “EIRSAT-1 – The Educational Irish Research Satellite”,

2nd Symposium on Space Educational Activities (SSEA), Budapest,
Hungary, 11-13 April 2018, SSEA-2018-73

[2] A. Ulyanov et al., “Performance of a monolithic LaBr3:Ce crystal coupled
to an array of silicon photomultipliers”, Nuclear Instruments and Methods
in Physics Research, Section A, Accelerators, Spectrometer, Detectors
and Associated Equipment, 810, 107-119

[3] D. Sherwin et al., “Wave-based attitude control of EIRSAT-1, 2U
CubeSat”, 2nd Symposium on Space Educational Activities (SSEA),
Budapest, Hungary, 11-13 April 2018, SSEA-2018-93

[4] J. Thompson et al., “Double-dipole antenna deployment system for
EIRSAT-1, 2U CubeSat”, 2nd Symposium on Space Educational
Activities (SSEA), Budapest, Hungary, 11-13 April 2018, SSEA-2018-78

[5] Clyde Space Ltd. (CSL) and Cape Peninsula University of Technology
(CPUT), COTS hardware reference documents, (ADCS) CSL ICD-25-
01232 Rev. F, 2017; (Battery) CSL USM-1192 Issue C, 2016; (Comms)
CPUT ICD-01-00045 Rev. B, 2017; (EPS) CSL USM-1335 Rev. A, 2016;
(OBC) CSL ICD-25-025555 Rev. A, 2016; (Solar Array Side Panel) CSL
ICD-25-02871 Rev. A 2017; (Structure) CSL ICD-00-04499 Rev. E, 2018

[6] O. Quiros Jimenez at al., “Development of a flight software framework
for student CubeSat missions”, Open Source CubeSat Workshop, 24-25
September 2018

[7] H. Askari et al., “Software Development for Galassia CubeSat – Design,
Implementation and In-Orbit Validation”, Joint Conference of 31st
International Symposium on Space Technology and Science (ISTS), 26th
International Symposium on Space Flight Dynamics (ISSFD), and 8th
Nano-Satellite Symposium, (NSAT), Matsuyama, Japan, 2017

[8] S. Hishmeh, “Design of Flight Software for the KySat CubeSat Bus”,
IEEE Aerospace conference, 7-14 March 2009 Montana, USA, pp. 1-15

[9] J. Farkas, “CPX: Design of a Standard CubeSat Software Bus”, California
Polytechnic State University, 2005

[10] M. McCrum and P. Mendham, “Integrating Advanced Payload Data
Processing in a Demanding CubeSat Mission”, workshop at the 32nd
Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA,
4-9 August 2018

[11] M. Swartwout, “Reliving 24 Years in the Next 12 Minutes: A Statistical
and Personal History of University-Class Satellites”, proceedings of the
32nd Annual AIAA/USU Conference on Small Satellites, Logan, Utah,
USA, 4-9 August 2018, SSC18-WKVIII-03

[12] A. Lill et al., “Agile Software Development for Space Applications”,
Deutscher Luft- und Raumfahrkongress, 5-7 September 2017, 450309

[13] H. Leppinen, “Current Use of Linux in Spacecraft Flight Software”, IEEE
Aerospace and Electronic Systems Magazine, 32(10):4-13, October 2017

[14] M. Normann, “Software Design of an Onboard Computer for a
Nanosatellite”, masters thesis, Norwegian University of Science and
Technology, 2016

https://doi.org/10.29311/2020.39

161

