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ABSTRACT 
Recent advances in high-throughput techniques for DNA sequencing and phenotyping 
have greatly facilitated the identification of genetic variants underlying traits at a genome-
wide level. In this study, a large amount of yeast genetic resources and phenotypic data 
were collected for the study of natural genetic variation in yeast under different 
environment conditions. Quantitative trait locus (QTL) analysis and epistasis analysis 
have been applied to Saccharomyces cerevisiae on 6 groups of 1st generation bi-parental 
inter-cross segregants and 12th generation multi-parental high resolution segregants. 
Using yeast as model organism, growth under stress conditions of a variety of 
conventional genotoxic agents was measured. Different QTLs were mapped to causative 
genes that are related to DNA repair and protein transport. In addition, by comparing the 
genes identified under 19 different agents, 14 frequently occurring genes producing effect 
on the growth of yeast, were further analysed. QTL output was clustered through a 
changepoint model for improving the selection of candidate genes in large gene sets. 
 
Furthermore, Temporal QTL analysis was applied to study the dynamic development of 
yeast growth under X-ray irradiation that expands the phenotype in the time dimension. 
By comparing the QTL in different time spans, genes that only exhibit effects for a certain 
period of time rather than continuously through, or at the end of, the experiment were 
found.  
 
One of the major industrial applications of yeast is brewing. In this project, whole genome 
sequencing analysis were performed on a highly diverse 12th generation de novo hybrid 
population. Variant calling was applied for these pool sequencing and identification of 
genetic variants. Pool QTL analysis was applied to compare the allele frequency 
difference of extreme pools under the same condition. Multiple QTL intervals responding 
to the brewing environment were identified. This provides useful genetic insights for 
brewing yeast breeding and improvement.   
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Chapter 1 Introduction 

1.1 Preface 

Everyone on this planet holds their own codes for their life. In nature and in 

human life, we can observe that there are differences between individuals, 

sometimes more, sometimes less. For example, there are more than 200 types 

of breeding cats from the smallest to the largest sizes, from no hair to long hair 

and with diverse coat patterns as well as fur colours. For humans, there are the 

well-studied differences of height, Body Mass Index (BMI) and many other traits. 

(Mayhew & Meyre, 2017). Heredity, the similarity between parents and offspring, 

is due to the transmission of information, i.e. genes. To understand and have a 

better view of how the genome landscape shapes the diversity of differences has 

become a major research topic of genetics. The in-depth understanding of this 

issue can greatly help the understanding of the generation of species and identify 

variations within populations that can lead to improved animal and plant breeding 

through selection. In public health, there is a wealth of possibilities for improving 

the diagnosis of diseases and the development of personalised medicine (Ware, 

et al., 2012). Recent advances in high-throughput techniques for DNA 

sequencing and phenotyping have greatly facilitated the identification of genetic 

variants underlying the inheritance of complex traits at a genome-wide level 

(Ansorge, 2009). Despite these developments, our understanding of the genetic 

basis of complex traits is still limited. Several recent studies recognise that many 

polymorphisms are involved in complex traits, and detecting these variants and 

accurately predicting the contribution of genes to complex traits remains a 

challenging task (Sirugo, et al., 2019). Genomic data resources for model 

organisms, such as Arabidopsis thaliana, Drosophila melanogaster, 

Caenorhabditis elegans, and mice etc., have been expanding in recent decades. 

Quantitative Trait Locus (QTL) analysis utilises biomarker information to identify 

genomic regions associated with quantitative traits in a population. With the 

advancement of biotechnology, the data complexity of QTL mapping has been 

continuously developed. Thousands of markers associated with human disease 
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phenotypes have been observed through human genome wide association 

studies (Suh & Vijg, 2005). Yeast has some key advantages compared to 

humans, including fast generation time, controlled genetic background, 

reproducible genotypes, and a variety of experimental validation techniques. As 

a wealth of genomes in yeast have been fully sequenced, here I use 

Saccharomyces cerevisiae as a model organism for the discovery with QTL 

analysis for better understanding the genetic variation and the determinants of 

complex traits. QTLs have also been explored for the hybrids between 

Saccharomyces cerevisiae with Saccharomyces eubayanus, Saccharomyces 

kudriavzevii and Saccharomyces jurei to dissect the association in genetic 

variation that influences changes in complex traits through whole genome 

sequence data analysis. Besides looking at markers for observing genetic 

variation, structural variation, such as copy number variation (CNV), has also 

been discovered between sub-genomes of Saccharomyces yeast hybrids (Van 

den Broek, et al., 2015). Overall, this thesis shows the complexity of the genetics 

of quantitative traits and provides some insight into the analysis to understand 

the complex genetic basis of traits. 

 

As this thesis is an interdisciplinary project, at the beginning of this chapter I will 

give a brief introduction of necessary genetic elements in quantitative traits. I will 

then review the main genetic characteristics of yeast with the genetic diversity 

and the achievements for performing the analysis of complex traits through 

genome wide data. 
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1.2 General Introduction of Genetics 

1.2.1 A brief history of genetics 
As early as centuries ago, humans have already utilised and manipulated genetic 

problems, such as domestication of livestock and pets, to develop suitable 

vegetables, fruits, meat and fermented products. The actual establishment for 

studying mechanism of genetics in scientific theory are based on the 

experimental and theoretical results from Gregor Mendel in the mid-19th century, 

although the term 'Genetics' was named by William Bateson and was widely used 

after 1906 to describe genetics research (Falconer, 1996). In the Mendelian 

period, there was an informal accepted hypothesis that the genetic characteristics 

of an individual are derived from the mixed average of the characteristics of their 

parents (i.e. blending inheritance) (Falconer, 1996). Another popular hypothesis, 

‘use and disuse’ theory proposed by Lamarck, also known as inheritance of 

acquired characteristics. Lamarck believes that organs that are often used by 

organisms are gradually developed, organs that are not used are gradually 

degraded, and the acquired traits can be inherited by the offspring (Burkhardt, 

2013). However, Mendel’s experimental results negate these hypotheses. His 

famous pea experiments found that the parents passed specific factors to the 

offspring and proposed the Mendelian inheritance, law of segregation and law of 

independent assortment. His results show that genetic characteristics are the 

result of a comprehensive manifestation of discrete inheritance rather than 

blending or acquired inheritance, and the genetic laws of many traits can be 

demonstrated and explained by simple numeric rules and ratios. In the 1910s, 

based on the discovery of sex linkage caused white eye mutation found in the 

fruit fly Drosophila, Thomas Hunt Morgan and his students revealed that genes 

located on the same chromosome are linked together (Morgan, 1910). Alleles at 

a pair of genes can be exchanged between homologous chromosomes, that is, 

law of linkage and crossing-over. These observations identified chromosomes as 

the genetic material for explaining Mendelian inheritance. After this finding, many 

experiments then proved that the chromosome was composed by 

deoxyribonucleic acid (DNA). In 1953, James Watson and Francis Crick 
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successfully determined the double helix structure of DNA, which contains two 

DNA strands, and the chains are paired by nucleotides (Watson & Crick, 1953). 

The DNA structure expounded how genetics are carried out. Since this, many 

studies explored DNA functions and structures at the molecular level. The genetic 

molecular mechanism, central and peripheral dogmas was developed and 

completed, that is, DNA as a template to generate paired messenger RNA. The 

nucleotide information on the messenger RNA is used to produce the amino acid 

sequence on the protein (Lodish, 2016). This translation procedure from the 

nucleotide sequence to the amino acid sequence is based on the genetic code. 

In the 1980s, chain termination DNA sequencing (Sanger sequencing) and 

polymerase chain reaction (PCR) technology enabled scientists to begin reading 

and duplicate DNA sequences. With the advancement of sequencing technique 

development in 1990s, the next generation sequencing (NGS) allowed the entire 

genome to be sequenced at once (Metzker, 2010). The first human whole 

genome sequencing mapping through Human Genome Project (HGP) was 

declared complete in 2004 which included around 3.3 billion base pairs and have 

identified more than 20,000 genes. Up to now, a massive amount of genetic data 

has been collected and an increasing number of genomic databases have been 

established and are growing exponentially. In the post genome era, mining these 

genomic data and extracting useful information is revolutionising the study of 

genomics and molecular genetics. 
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1.2.2 Genomes and Genetic Variation 
The life process is in an extremely complex system comprised of many 

components requiring the support of matter and energy. The biological system is 

also an information system which forms specific life activities by storing, 

modifying, interpreting genetic information and performing genetic instructions to 

control the inheritance, metabolism, growth and development of the organism. As 

the basic element of an organism, cells coordinate and cooperate with the 

functional expression of organisms. The genome is the complete set of genetic 

information for a cell comprising the nucleic acid sequences on the 

chromosomes. Each genome consists of one or more chromosomes that store 

the DNA sequences for thousands of genes. The genomes of various organisms 

have basic structural features, however, the genomes of different species differ 

and the size of the genome varies. The smallest known genome is from the 

Porcine circovirus, which is a circular genome only 1759 base pairs long 

(Finsterbusch & Mankertz, 2009). Interestingly, the largest genome is not from 

the most advanced organism humans, but a lungfish Protopterus aethiopicus 

(Pellicer, et al., 2010). This lungfish has the largest known vertebrate genome at 

130 Gb in size (Pellicer, et al., 2010). The human genetic code consists of more 

than 3.2 Gb of nucleic acid, containing approximately 20,000 genes located on 

23 pairs of chromosomes (Speicher, et al., 2010). The human genome data is 

continuously refined by whole genome sequencing and most of the genes are 

assembled and given annotations. The ploidy of chromosomes and the amount 

of genes in different individuals of the same species could also be different. The 

location and structure of some parts may change on the chromosomes and even 

lead to functional changes.  

 

The nucleotide sequence of the DNA stores information on the amino acid 

sequence encoding of the protein, stores information on the regulation of gene 

expression, and stores genetic information. The genetic information of the 

organism is stored in DNA sequence that formed by four nucleotides: adenine 

(A), guanine (G), cytosine (C), and thymine (T). Genes have been passed down 

from generation to generation, and because of this inheritance, species can be 
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stabilized and optimized (Falconer, 1996). On the one hand, replication of DNA 

allows genetic information to be passed from parents to offspring. On the other 

hand, the genetic information of genes are expressed by transcription and 

translation process, so that the progeny exhibits similar traits to those of the 

parent. During gene expression, genetic information is first transmitted along the 

nucleotide sequence of the DNA strand to RNA sequence and then from RNA 

translated into various proteins to perform specific biological functions (Lodish, 

2016). Genes encode the synthesis of proteins. The relationship between the 

nucleotide sequence and the amino acid sequence of the protein is determined 

by simple cell translation rules, collectively referred to as the genetic code which 

is formed by a sequence of three nucleotides. Some DNA sequences also play a 

structural organization role in the chromosome. For example, telomeres usually 

contain few protein-coding genes, but are important for chromosome function and 

stability (Blackburn, 1991). With the development of sequencing technology, a 

large amount of DNA sequencing data and number of genetic databases have 

accumulated. DNA sequences are the most basic and intuitive genetic data, 

however, the translation of genetic information into phenotype is still not fully 

understood. For example, the function of most DNA non-coding regions is still not 

clear. To understand the association between genetic information and the key 

aspects is expressed in the organism are critical. Among those questions, the 

most primary one is how the characteristics or traits of organisms are affected by 

genes. 
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Figure 1-1 Illustration of genetic identification of DNA sequences. 

The whole DNA sequence for an individual is called genome. Sequences hold the 

information of position and base content. DNA sequences are stored in different 

contiguous groups identified as chromosomes. Each chromosome consists of a 

continuous sequence is in the same group. A gene is a region of sequence on a 

chromosome that makes up together a functional unit such as a translated protein. A 

locus is the position on the homologous chromosomes among different individuals and 

an allele is the base contents at that locus position. Alleles are different forms of a gene 

occupying the same position (locus) on a chromosome. 
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When looking at individual genomes within a species, it can be seen that their 

sequences exhibit high relatedness to each other. But there are very small 

differences that make each one unique. Among individuals, mutation is the major 

source of new genetic variation that results in differences in the nucleotide 

sequence of the genomes of different individuals. In many organisms, 

recombination can generate new combinations of variants at different locations, 

increasing the differences between individuals. Genetic variation is the difference 

between genomes among a large set of sequences. A locus or genetic marker 

provides the position of the gene located on the chromosome and at the given 

locus different alleles could be segregating within the population. Figure 1-1 

shows the identification of chromosomes with genes, alleles that located in the 

same locus. Different alleles are formed as a result of polymorphisms in the 

genes. 

 

Genetic variants can be classified in terms of their frequency within a population, 

with common variants defined as when the minor allele frequency of greater than 

5% in the population and rare being less than 5%. Single-nucleotide 

polymorphism (SNP) is the most frequent form of genetic variants among 

individuals. A SNP is a substitution of a single nucleotide at the locus in the 

genome that normally occurs greater than 1% frequency in a population. Each 

SNP represents the differences of two or more nucleotides in A,G,C or T at a 

given site and could occur not only within the protein-coding regions but more 

frequently in non-coding regions (Zuo, et al., 2015). SNPs among human 

genomes can be observed in most individuals.  For example, there are about 3.3 

million SNPs in a human genome when compared with others (Shen, et al., 

2013). However, this doesn’t mean all the SNPs are harmful and a large fraction 

of them do not correlate with disease or affect phenotype. For any particular 

condition, only a few of SNPs might lead to the causal factors that contribute to 

the phenotype differences. For example, SNP A1708E located on BRCA1 gene 

in human that highly linked to breast cancer risk. From SNPedia, a website for 

storing the human SNPs records that related to common diseases, 110824 SNPs 

have been recorded that could be the cause of human disease (Cariaso & 
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Lennon, 2012). Some SNPs among individuals may have different bases without 

changing the amino acid sequence of the protein as the genetic code could be 

different for the same protein. SNPs that don’t change the protein coding may still 

contribute to gene expression, gene regulation by transcription factor binding and 

etc. Figure 1-2 shows the SNP classification by different locations on the 

chromosome. Besides single substitution of bases, changes in genome structure 

are also a great resource that contributes to the genetic variation. Several recent 

studies have pointed to the association between the structural variance and 

diseases. Insertion/deletion (Indel) polymorphism, copy number variation and 

translocations are the major structural variation in the population as illustrated in 

Figure 1-3. Copy number variation (CNV) are large DNA sections that vary in 

repeats numbers among individuals. CNVs which cover genes can potentially 

alter gene transcription factors or affect gene expression levels.  For example, 

Schaschl’s study identified the association between CNV in genomic regions 

harbouring dosage-sensitive genes and Autoimmune diseases in humans 

(Schaschl, et al., 2009).   
  

Figure 1-2 SNP Classification 
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1.2.3 Genetic traits and phenotypes in a population 
The most amazing aspect of nature is the diversity among individuals. Behaviour, 

physiology or even gene expression can be called a phenotype or trait. Observing 

the composition of the organism's features that cause phenotypic differences 

between species or individual representatives of the same species that are 

encoded in their genomes has always been a major challenge in modern 

biological science. The sum of individuals of the same species that can interact 

within a certain time and space can be called a population. Phenotypic variation 

within the population, resulting from genetic variation and interaction with the 

environment, is a basic prerequisite for evolution through natural selection as the 

genetic contribution to the variation will be transmitted into the next generation. 

Since Darwin published his theory of evolution by natural selection in 1859 

(Darwin, 1859), and the contemporary Mendel elucidated the laws of genetics 

just a few years later (Mendel, 1865), it was not until the early twentieth century 

Figure 1-3 Illustration of structural variation. 
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that these ideas were integrated, culminating in the modern evolutionary 

synthesis (Fisher, 1930). 

 

Classical Mendelian traits, which have qualitative phenotypes that measured into 

classes, are often caused by the action of one major genetic variant or gene. 

Much progress has been made in identifying the molecular basis of Mendelian 

traits, such as the classical experiment of pea colour by Mendel (Mendel, 1865) 

and blood types of humans (Chong, et al., 2015). By contrast, many of the traits 

vary within a population exhibit continuous variation, usually shaped in a normal 

distribution, which means they cannot be classified into qualitative classes (Lynch 

& Walsh, 1998).  

 

Quantitative traits, also known as complex traits, are typically measured 

numerically or in ranges, such as body height, Body Mass Index and blood 

pressure in humans. The phenotype of a quantitative trait depends on the 

cumulative influence of many genes working interactively along with the effect of 

the environment (Falconer, 1996). It is a great challenge to find out the exact 

number of genes involved in quantitative trait and to explain the total contribution 

of heritability. Furthermore, in addition to the combined effect of genes, it is also 

possible to find interactions among genes, referred to as epistasis, and the 

interactions between genetic variations and the environment.  
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1.3 Mapping the relationship between genotype 
and phenotype 

1.3.1 Genetic Map and Physical Map 
Although genes are discretely located on the chromosomes, SNPs can be 

inherited together rather than independently when they are located closely in a 

nearby region on a chromosome which means they are linked. The process of 

using observed genotypes of these loci known for the genome to infer 

recombination frequencies during crossover is called genetic map. Unlike the 

physical map that indicates the base position (bp) on the chromosome, the unit 

of genetic linkage is the centimorgan (cM). A distance of 1 cM between two loci 

means that the markers are exchanged to with each other in 1% of meiotic 

products. Complete independence or lack of linkage results in 50% recombinant 

meiotic products. With linkage among DNA sequences, haplotype mapping 

clusters these markers so that a single SNP can identify many linked SNPs 

through linkage association.  

1.3.2 Genomics based approaches 
Quantitative trait loci (QTL) are specific segments on the chromosome that 

affects phenotypic variation of traits and can locate genes that control complex 

quantitative traits. A quantitative trait locus can include multiple SNP sites in a 

genomic region associated with a quantitative trait. With the advancement of 

whole-genome sequencing technology, many studies on the identification of 

QTLs for various quantitative traits in animals and plants have been reported. 

Although QTL positioning technology has made significant progress in genetic 

screening, due to the complexity of complex traits, there is still the challenge of 

identifying causal relationships. Complex traits are affected by genetic and 

environmental factors, and the uncontrollability and complexity of environmental 

factors in human studies make it difficult to study a large amount of complex 

diseases. In addition to humans, the growth environment of many organisms may 

also be unstable. Therefore, many QTLs can only be detected under very special 

environmental conditions. Identification of genes or quantitative trait loci that 
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exhibit significantly different phenotypic effects in different environments by 

linkage or association mapping. 
 
With the two types of information for individuals, i.e. phenotypic data and 

genotypic data, the question comes is to discover the action, interaction, number, 

and precise location of the genetic regions and the variants at these regions that 

are responsible for the phenotype. Recent advances in genomics and marker-

assisted selection have greatly facilitated and strengthened biological research 

processes such as genetic screening, breeding, etc. (Nadeem, et al., 2018).  

 

Linkage analysis is a method that tests the variable intervals on chromosomes 

among the population that contribute to the expression of traits. When a new 

mutation arises on a particular chromosome, initially there is a large shared 

segment of DNA with a particular combination of variants, a haplotype, and hence 

it is in linkage disequilibrium with these variants. With each subsequent 

generation, this region of linkage disequilibrium becomes smaller as a result of 

meiotic recombination. The basic approach in parametric linkage analysis is to 

determine if alleles at a genotyped marker segregate with the alleles at a putative 

trait locus together more often than one would expect by random assortment or 

chance. This can be assessed by comparing the frequency of recombinant 

chromosomes in which a crossing over event has rearranged the parental 

chromosomes to the frequency of non-recombinant chromosomes. 

 

Quantitative trait loci (QTL) analysis involves finding the association of a genetic 

variant with the variation in a quantitative trait through an experimental cross or 

by association within populations (Miles & Wayne, 2008). The linkage of complex 

trait and polymorphisms can give a genetic explanation in human disease 

mechanism, agriculture, and evolutionary theory (Brem & Kruglyak, 2005).  

Historically, the availability of adequately dense markers (genotypes) has been 

the limiting step for QTL analysis. Recent advances in high-throughput methods 

for DNA sequencing and molecular linkage mapping construction have a greatly 

facilitated the determination of quantitative trait genes (QTG) and quantitative trait 

nucleotides (QTN).  
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Genome-wide association studies (GWAS) are becoming increasingly popular in 

genetic research, and they are an excellent complement to QTL mapping. 

Whereas a QTL can contain many linked genes, which are then challenging to 

dissect, GWAS produces many unlinked individual genes or even nucleotides, 

but these studies are riddled with large expected numbers of false positives. 

Though GWAS remains limited to organisms with genomic resources, combining 

the two techniques can make the most of both approaches and help provide the 

ultimate deliverable: individual genes or even nucleotides that contribute to the 

phenotype of interest.  

1.3.3 Heritability 
Genetic recombination generates random reshuffling of genetic information on 

the homologous chromosomes from parents during meiosis, forming new DNA 

sequences that are passed on to offspring. With the recombinant chromosome 

sequences among various individuals, each locus may be made up with different 

genotypes, i.e. alleles. Primarily meiotic recombination results in different linear 

combinations, haplotypes, of alleles of various genes along the chromosomes. 

Sometimes new alleles are generated when recombination occurs between 

variants within a gene.  

 

In addition to the genetic factors that make up the phenotypic variation, the 

environment can have an effect on the trait, which could be simply adding to 

measurement error but could also interact with genetic variation. Heritability is a 

measurement to estimate the contribution of genetic variation among individuals 

towards phenotypic variation. There are two types of heritability that can be 

estimated, broad sense heritability and narrow sense heritability. The broad 

sense heritability estimates the ratio of total genetic variance to total phenotypic 

variance. When accounting the effect of gene-gene interactions, the narrow 

sense heritability estimates the ratio of additive genetic variance to the total 

phenotypic variance (Evans, et al., 2018). When genome-wide genotype data 

and phenotypes from large population samples are available, one can estimate 



30 

the relationships between individuals based on their genotypes and use a linear 

mixed model to estimate the variance explained by the genetic markers (Bloom, 

et al., 2013). This gives a genomic heritability estimate based on the variance 

captured by common genetic variants. 
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1.4 Background of yeast 

1.4.1 Cell cycle of yeast 
Saccharomyces yeast is a unicellular eukaryote that has a nucleus and an 

endomembrane system. Yeast cells can divide as fast as 90 minutes vegetatively 

(mitotically), and diploid cells can undergo meiosis in as little as a day with meiotic 

haploid products following the Mendelian Laws of Segregation. Haploid yeast 

cells could be mating type a or D, i.e. MATa and MATD. The yeast life cycle can 

be asexual and sexual as illustrated in Figure 1-4. In asexual growth, these cells 

can undergo mitotic cell division through budding, producing daughter cells with 

the same mating type. In laboratory strains, the mating type of haploid cells is 

stable due to the absence of a functional HO endonuclease. The two cell types 

release pheromones, initiating the formation of shmoos and subsequent mating, 

resulting ultimately in a stable diploid MATa / MATD (a / D cell). Diploid cells also 

divide mitotically by budding to produce genetically identical daughter cells. 

Under nitrogen starvation this diploid then produces four haploid spores called a 

tetrad through meiosis. Each tetrad consists of two copies genetic information of 

each of the two parents and the four haploid spore cells consist of two MATa cells 

and two MATD cells with recombination of chromosomes between the parents. 

The Meiotic and Mitotic processes are illustrated in Figure 1-4.  
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Figure 1-4 A simplified life cycle diagram of budding yeast. 

Mitosis process can occur in both haploids and diploids. During the asexual process, identical 

daughter cells are produced through budding, either haploid (1n) or diploid (2n). Haploid a 

and haploid α cells can shmoo in response to each other to mate (a/α dioloid). During the 

sexual process under starvation, diploid cells (2n) go through the meiotic process to generate 

a (4n) cell and then this cell will be separated into 4 haploid spores (1n) during sporulation 

resulting in two a cells and two α cells.  The figure was adapted from (Duina, et al., 2014).  

mitosis 

schmoo 

schmoo 

haploid 

haploid 

haploid 

diploid 
mitosis 

mating 

diploid 

meoisis/sporulation 

four 
haploid 
spores 

germination 

a 
cell 

a 
cell 

a 
cell 

a/α 
cell 

a/α 
cell 

α 
cell 

a 
cell 

a 
cell 

α 
cell 

α 
cell 

a/α 
cell 



33 

1.4.2 Genetic Diversity of Saccharomyces yeast 
The most widely used Saccharomyces yeast species is Saccharomyces 

cerevisiae, which is also the first eukaryotic genome that has been fully 

sequenced and well annotated (Goffeau, et al., 1996). Since then, an increasing 

number of full genome sequences have been completed, which provide great 

resources to understand genome diversity and evolution. The reference genome 

of the laboratory strain S288C consisted of about 12,000,000 base pairs and has 

over 6000 open reading frames (ORF) arranged among 16 chromosomes (based 

on R64-2-1, SGD). Almost all the genome features have been recorded in the 

SGD database and over 5000 genes have been verified. After S288C, more wild 

isolates and lab strains have been sequenced and aligned to the reference 

genome, for example, RM11-1a. Also, Saccharomyces cerevisiae has been the 

most widely domesticated yeast for centuries and S288C is the most important 

reference for assessing the genetic variation of other yeast strains. Besides 

S288C, 99 characterized Chinese isolates have been sequenced and well-

studied for finding the human-associated domestication (Wang, et al., 2012). 

Moreover, there are over 1000 diverse strains isolated all over the world have 

been fully sequenced (Peter, et al., 2018) which created the largest data 

resources to study the budding yeast evolutionary process. Figure 1-5 gives the 

phylogenetic tree of S. cerevisiae strains. 
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With more and more S. cerevisiae strains being discovered, a large number of 

yeast strains isolated in the Saccharomyces clade have been defined and 

sequenced as well. Figure 1-6 illustrates the clade of closely related 

Saccharomyces species as currently is known. It is composed of S. cerevisiae, 

S. paradoxus, S. mikatae, S. jurei, S. kudriavzevii, S. arboricola, S. eubayanus 

and S. uvarum, along with their interspecies hybrids. S. paradoxus is a wild yeast 

that is currently the most closely relative to S. cerevisiae. It is a good resource for 

tracing the human activities by comparing with S. cerevisiae (Yue, et al., 2017). 

From this, both S. cerevisiae and S. paradoxus show diversity in the subtelomeric 

regions and exhibit phenotypic diversity among different strains.  

 

  

Figure 1-5 Phylogenetic tree 

Phylogenetic tree of S. cerevisiae. S. cerevisiae strains in North American, Wine/European, Sake, 

West African and Malaysian showed clean lineages highlighted in grey. Different colours gave 

the information about the name and origins. (adapted from G. Liti et al. 2009) 
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Unlike S. cerevisiae and S. paradoxus, other species have only a few isolates. S. 

kudriavzevii was first isolated in Japan (Naumov, et al., 2000) and then the 

European strain was found in Portugal (Scannell, et al., 2011). There are two 

species identified recently. One of them is S. eubayanus - the missing parent of 

the hybrid S. pastorianus – which has been searched for over a long time 

(Nguyen, et al., 2011). It was first isolated in Argentina (Libkind, et al., 2011) and 

then discovered in North America, west of China and New Zealand (Peris, et al., 

2014). In addition to being a parent of S. pastorianus, the identification of S. 

eubayanus as a pure species also affected the species definition of S. bayanus, 

as it appears that many members of this species complex are actually hybrids of 

S. eubayanus and S. uvarum (Nguyen, et al., 2011). Another newly identified 

species is S. jurei (Naseeb, et al., 2018), which currently is represented by only 

two strains isolated from France.  

 

 

 

Figure 1-6 Phylogenetic tree of Saccharomyces yeast. 

The Saccharomyces sensu stricto group is composed of eight biologically distinct yeast 

species, namely S. cerevisiae, S. paradoxus, S. cariocanus, S. uvarum, S. mikatae, S. jurei, 

S. kudriavzevii, S. arboricola and S. eubayanus, and two natural hybrids, namely S. 

pastorianus and S. bayanus. Adapted  from (Dujon & Louis, 2017). 
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1.5 Yeast Application in biotechnology and 
human health 

1.5.1 Using yeast for alcohol production 
Yeast has many attractive features and it is widely used in industrial, commodity 

production, environmental protection and production of biofuel. Brewing alcohol 

and bread baking are the most common and oldest ways to use yeast. As 

Saccharomyces cerevisiae’s name is original from the meaning of beer, 

Saccharomyces cerevisiae plays a major role in beer fermentation. In addition, 

many yeasts can be used to produce a variety of feeds as well as industrial 

nutrients such as yeast extracts. Some yeasts are resistant to acids, high 

permeation, decomposition and absorption of toxic substances, and are widely 

used in the field of sewage treatment. 

 

Yeast is the main fermenter and is well applied in the production of alcoholic 

beverages, such as beer, fruit wine, and distilled spirits. Yeast consumes 

carbohydrates such as sugars from grains and fruits under anaerobic conditions 

or low oxygen concentration to provide energy while producing alcohol and 

carbon dioxide. The most common species used in beer and wine brewing is 

Saccharomyces cerevisiae. In the past years, yeast hybrids between S. 

cerevisiae and non-S. cerevisiae have been found to have advantages in brewing 

alcohol. For example, S. pastorianus, which is the hybrid between S. cerevisiae 

and S. eubayanus, exhibits hybrid vigour in larger brewing conditions. Moreover, 

hybrid strains combining the genomes of S. cerevisiae and S. kudriavzevii have 

been found in certain fermentation environments, mostly from wine and cider 

fermented at low temperatures.   
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1.5.2 Using yeast as a model organism to study human complex 
traits 

Many physiological and disease related traits in humans display complex genetic 

landscapes, such as DNA damage responses to genotoxic agents. Mapping the 

genetic contribution of such human traits has been well explored, however, the 

studies have been limited due to the complexities of human environmental and 

ethnic differences. Based on the theory of evolution, many of the basic properties 

of life are conserved among the various biological species on earth, and 

biologists can reveal some generalization by conducting scientific research on 

selected simple representative biological species, i.e. model organisms. Model 

organisms have been widely studied for most human complex trait research and 

thousands of gene variants and pathways were identified using model organisms, 

such as mice, fruit flies etc. Yeast, as the simplicity of its small genome size, rapid 

division time (90 minutes), and high recombination rate, has been greatly used 

to understand the genetic and cellular defects behind human complex diseases 

(Liti & Louis, 2012). Saccharomyces cerevisiae is a simple single cell eukaryote 

with only 16 chromosomes but 6000 genes included. The reference genome of 

Saccharomyces cerevisiae has a complete full genome sequence and well-

annotated genes for the lab strain S288C discovered in the 1950s, and it has 

become an ideal tool for studying pathways of life processes in higher 

eukaryotes. As a well-studied model organism, yeast and human have high 

similarity in amino acid sequence in many genes so its genetic studies provide a 

good comparison for research in human genetics. Many genes and cellular 

signaling pathways are 30% conserved from yeast to humans. Gene deletions, 

tagging and mutagenesis are easier and faster than in human cells, and thus 

deciphering gene function is more easily accomplished in yeast. When a novel 

human gene with unknown function is discovered, it can be quickly retrieved from 

any yeast genome database to obtain a yeast gene with a hopefully known 

function, and obtain information about its function, thereby accelerating the 

human functional study of genes. Furthermore, the similarity between yeast 

genes and genes associated with human polygenic hereditary diseases will 

provide important assistance in improving our diagnostic and therapeutic levels. 
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1.6 QTL analysis for studying yeast population 

A great number of large-scale sequencing studies have investigated the genetic 

diversity within a species, revealed a sight into the genetic characteristics. With 

more and more genomic data and phenotype data at the yeast population level 

being generated, QTL analysis has become a major tool for identifying the 

causative genes or gene variants. The phenotypic diversity observed by different 

strains of yeast lead to a large number of QTL analyses applied for various 

studies. Many yeast crosses between different strains were designed, and their 

progeny were cultured in the environment of interest to characterise their 

offspring segregation of phenotype differences. 

 

Advanced intercross QTL mapping uses individual genome sequences to call 

variances and identifying the variants that contributes to phenotype variance. The 

generation of advanced intercross lines (AIL) is a powerful approach for high-

resolution fine mapping of QTLs, as they accumulate many more recombination 

events compared with F1 intercross populations. Further generations of 

intercrossing breaks the linkage disequilibrium among closely linked variants,  

increasing the genotype/haplotype variation to a sufficient scale for fine-scale 

mapping of quantitative trait loci (QTLs). Advances in genotyping technology and 

techniques for the statistical analysis of AILs have permitted rapid advances in 

the application of AILs. Lab strains BY and RM11-1a were used as founders to 

generate a huge population of second generation offspring for characterizing 

expression difference in yeast. In the same cross design, QTL analysis was 

applied to study carbon source change, transcript levels, protein abundance, 

ethanol production, etc. (Ehrenreich, et al., 2009). However, the experimental 

strains have limited variation among these two founders and small effect QTLs 

cannot be detected due to lack of power in genotype information. In addition, 

industrial wine strain EC1118 crossed with S288C was used for several QTL 

mapping of fermentation features, such as wine aroma (Steyer, et al., 2012), multi 

stress condition (Brion, et al., 2013), etc. In order to expand the genetic and 

phenotypic diversity available to explore, four natural S. cerevisiae isolates with 
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clean lineages, that were sequenced in the Saccharomyces Genome 

Resequencing Project (SGRP), were selected to generate first generation 

progenies for each of the six pairwise crosses (Liti, et al., 2009), (Cubillos, et al., 

2011). These four founders are YPS128 [North American (“NA”)], DBVPG6044 

[West African (“WA”)], Y12 [Sake (“SA”)] and DBVPG6765 [Wine/European 

(“WE”)]. The crosses were used to map the QTLs related to heat sensitivity, 

paraquat, and arsenite (Cubillos, et al., 2011). Similar crosses were used to map 

fermentation related features including acetic acid, glycerol, residual sugar, and 

succinic acid production (Salinas, et al., 2012). The SGRP4-X population is a 12th 

generation advanced intercross line by a multi-parental cross of these four lines,  

designed to reshuffle their genomes through meiotic recombination so that a 

large number of progenies were highly recombinant, reducing linkage 

disequilibrium (Cubillos, et al., 2013). This large population has been used in 

numerous QTL mapping studies such as nitrogen consumption and it has proved 

the power for detecting phenotypic diversity and catching the small effect QTLs 

(Cubillos, et al., 2017).  

 

The extreme QTL (X-QTL) method, uses the traditional bi-parental cross, 

exhibiting high variation in the progeny to expand the phenotype diversity. It starts 

with generating a large pool of offspring segregants with genotype and phenotype 

diversity. Segregants were then selected by extreme phenotype conditions 

(Ehrenreich, et al., 2010). There are many ways to design the crosses and 

experimental selections to produce pools for comparison. The two main methods 

for pool conditions are a control pool with normal growth population compared 

with an extreme phenotype pool or individuals from the two opposite extreme 

thresholds, such as 5% lowest fitness versus 5% highest fitness are compared. 

The two pools then sequence to identify polymorphic loci by analyzing the allele 

frequency differences among the two groups. Under selection, the allele 

frequency of no effect loci for traits in the progeny should be equal as they do not 

contribute to survival. While the causal loci that affect the trait will show very 

different allele frequency distribution as it gives the main influence for survival 

during pool selection. Using this method, a cross between lab strain BY and 
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clinical isolate 3S was used to define the smooth and rough morphological 

phenotype in yeast (Taylor, et al., 2016). Although X-QTL does not locate the 

precise causal gene at a base level, pooling segregants with extreme phenotypes 

from a large population directly targets the intervals showing allele frequency 

differences and it increases the sensitivity of multiple loci while also being cost 

saving in sequencing.  

1.7 Aims and Objectives 

The objective of this project is to study the effects of yeast genotypic variation on 

the quantitative trait through QTL analysis. This thesis mainly focuses on the 

following issues: 

 

Firstly, QTL analysis was performed for S. cerevisiae’s bi-parental cross F1 

generated by the 6 populations derived from the four founders in SGRP4 and F12 

4-way cross offspring to determine significant sites that could explain changes in 

growth traits under different conditions.  

 

Moreover, Fine mapping and solutions were applied to find the causative genes 

and variation with the modelling of cluster analysis of genetic changes, the non-

inherited effects, and the changes in significant sites at different time points to 

measure the QTL. 

 

Furthermore, to understand interspecies hybrid causes of phenotypic variation 

under different external environments and extreme conditions, whole genome 

sequencing analysis was performed with 12th generation de novo hybrids 

including S. cerevisiae × S. kudriavzevii, S. cerevisiae × S. eubayanus and S. 

cerevisiae ×S. jurei. De novo assembly, Variant Calling, and Pool QTL analysis 

were applied.   
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1.8 Data Statement 

All the data analysis and bioinformatics analysis in this thesis were done by the 

author. This section introduces the sources of experimental data analysed in this 

thesis.  

 

• In Chapter 2, the experiment mentioned in Section 2.2.2 was performed 

by Yishen Li, the University of Leicester. 

• In Chapter 3, the experiments mentioned in Section 3.2.2 were performed 

by Yishen Li, Danae Georghiou, and Salwa Almayouf, the University of 

Leicester. 

• In Chapter 5: the experiment mentioned in Section 5.2 was performed by 

Danae Georghiou, the University of Leicester. 

• In Chapter 6: the experiments mentioned in Section 6.2 were performed 

by Alex Hinks Roberts,  Agnieszka Maslowska from the University of 

Leicester and Dr. Samina Neesab from the University of Manchester. 

• In addition, all phenotype data check, preprocessing and data analysis for 

these experiments in this thesis were performed by the author. 
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1.9 Structure of this thesis 

This thesis is structured into two major parts. The content of each part is roughly 

divided into three groups: Description of Data, Analysis, and Assessing the 

Results.  

 

The first part studies the genetic basis of S. cerevisiae's F1 two-way cross and 

F12 4-way cross to identify QTLs for growth traits under different conditions. The 

second chapter is the collecting and pre-processing of the genotype and 

phenotype data corresponding to 6 groups of F1 crosses of S. cerevisiae, the 

third chapter mapping QTLs under different treatment for studying the drug 

response of F12 4-parental segregants with epistasis identification. The fourth 

chapter is the evaluation of the QTL analysis with clustering method. And the fifth 

chapter is to expand phenotype data to time dimension to consider the detection 

of temporal QTL for growth traits under the dynamic development with time.  

 

The second part is mainly for mapping pool QTLs for different diploid de novo 

hybrids, considering the characteristics of interspecies to cope with species living 

under different conditions. The content of this part is written in Chapter 6. The 

final chapter is the discussion and future work. The appendix contains the code, 

chart and supplementary content of the analysis.  

 

  



43 

Chapter 2 Analysing genetic variation 

affecting growth in a recombinant intercross 

yeast population 

2.1 Introduction 

The risk of diseases affecting human health are mainly caused by multiple 

interacting factors with complex mechanisms underlying obesity, cancer, 

hypertension, etc. The phenotype of such complex disease-related traits doesn’t 

show obvious Mendelian inheritance but is characterised by continuous 

quantitative trait variation. However, many variants have small marginal effects 

and are coordinated by multiple genes and the environment. The genetic 

mechanism for these complex diseases is very complicated and making it difficult 

to make a clear diagnosis in medicine. The inherent complexities of human make 

the identification of disease-associated genes and the mapping of related genetic 

loci underlying the quantitative trait variation a challenging task. The use of model 

organisms provides ideal experimental conditions for the understanding of 

phenotypic variation because of the ability to control the environment, gene 

composition, etc. The budding yeast, S. cerevisiae, a simple genetic system with 

small genome size, rapid division time, and high recombination rate, is a great 

resource in high-throughput studies for modelling the genetic characteristics of 

complex traits.  

 

This chapter aims to study and explain the relationship between genetic variation 

and phenotypic responses to the chemical treatment Doxorubicin in different 

yeast populations, quantifying the effect of genetic factors among six large sets 

of recombinant populations of haploid yeast. Doxorubicin is a widely used 

chemotherapy agent to treat different types of human cancers, for example, 

breast cancer, stomach cancer, and others. F1 segregants genotyped using high 

resolution melting PCR are provided by the previous study (Cubillos, et al., 2011). 
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The founders of these six group F1 offspring are based on four strains in the 

yeast genome sequencing project SGRP-4 in (Liti, et al., 2009). Each of the 

offspring has been genotyped and has an accurate genetic map compared to the 

reference genome S288C. Using the data available from these individuals, QTL 

Analysis were performed to identify treatment-related loci associated with yeast 

growth under the Doxorubicin environment condition. By comparing the results of 

the offspring of different parental combinations, 44 common QTL intervals that 

overlap among crosses and 45 unique QTL intervals were found. 8 candidate 

genes were selected through functional annotation for the genes within the QTL 

peak. These genes or regions are screened to account for differences among 

phenotypes.  

2.2 Materials and methods 

2.2.1 Strains 
The yeast haploid strains used for the QTL mapping experiment were progeny of 

F1 hybrids. Four haploid strains in SGRP4: North American (NA): YPS128, West 

African (WA): DBVPG6044, Sake (SA): Y12, Wine ⁄ European (WE): 

DBVPG6765 were selected as founder strains (Liti, et al., 2009). They represent 

much of the diversity of natural populations of S. cerevisiae and represent clean 

lineages, that have not interbred with each other. Previously pairwise 

combinations of the strains with different mating types (MATa and MATα) were 

crossed to generate six different F1 diploid hybrids (Cubillos, et al., 2011). These 

diploid hybrids were sporulated and tetrads containing the four haploid meiotic 

products were dissected. From each cross 24 tetrads were dissected generating 

96 haploid segregants. The segregants were constructed as shown in Figure 2-1 

(b). 576 segregants used in total were obtained in (Cubillos, et al., 2011) . Figure 

2-1 (a) illustrated the clean lineage of these four founders and the cross 

procedures for F1 segregants. Table 2-1 summarised the marker characteristics 

in the 4 founder strains which existed before crossing.  
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Table 2-1 Founder strains marker characteristics 

ho, ura3/URA3, ly2, HygMX, KanMX were gene names where selected marker located. ‘x :: Y’ 

means x gene was replaced by the Y gene in the related strain. (derived from (Cubillos, et al., 

2011)) 

 

Strain Name Collection ID Marker Information 

NA (A) YPS128 ho::HygMX, ura3::KanMX  

WE (E) DBVPG6765 ho::HygMX, ura3::KanMX, lys2::URA3  

SA (S) Y12 ho::HygMX, ura3::KanMX, lys2::URA3 

WA (W) DBVPG6044 ho::HygMX, ura3::KanMX 

 
 
 

 
  

(a) (b) 

Figure 2-1 Genetic diversity and cross design of the founder strains. 

(a) Phylogenetic tree includes all the S. cerevisiae strains sequenced in the SGRP project (Liti, 

et al., 2009), the four founder strain were highlighted in separate clusters (Adapted from (Cubillos, 

et al., 2013)). (b) F1 cross design for SGRP-4X pairwise combination.  
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2.2.2 Experiment Preparation and Phenotyping 
The experiment of QTL mapping under Doxorubicin environment condition using 

F1 segregants - a total of 12 yeast arrays for phenotyping with control and 

treatment were performed by Yishen Li, the University of Leicester. Yeast strains 

were kept on solid YPD media under normal conditions for incubation. The 

temperature was set at 30 °C as the most suitable growing condition of yeast 

cells in the incubator overnight for solid media cultivation as required. After 

sufficient growth they can be stored temporarily at 4 °C in a refrigerator or 24hrs 

in a cold room. For precise phenotyping the growth of each segregant, 

rectangular media plates - Singer Plus Plate from Singer Instruments company - 

were used. Under normal growing condition, yeast strains were stocked 

separately by MATa and MATα in 96 spot density arrays on 20g/L yeast extract, 

peptone and dextrose (YPD) solid agar media. Transferring stock strains onto 

strains used for experiment were achieved by robotic micro-cultivation using 

ROTOR HDA rotor from Singer Instruments company. The robot made 96 or 384 

arrays though 96 or 384 Long-pin repads (Barton, et al., 2018). Agar media was 

prepared by pouring on the leveller to ensure a flat surface for the repad pinning 

with even pressure. Each strain was then replicate 3 times from stock plates and 

4 replicates of each were recorded on another YPD agar with 384 densities 

plates. Two identical strains arrangement arrays with the same mating type were 

generated for the comparison between control and treatment. The 384 array plate 

was replicated onto 6.5g/L YPD soft agar plates first which was then replicating 

onto 20g/L YPD hard agar control plates and YPD hard agar treatment plates 

with Doxorubicin added for later phenotyping purposes.  

 

For experiment treatment, identical arrays as the control were used with a total 

dose of 100uM Doxorubicin concentration applied.  All 12 plates of 384 colony 

arrays on YPD (control) or YPD with Doxorubicin (treatment) were assayed for 

cell growth using FLUOstar Omega multi-detection micro-plate reader. The plate 

reader recorded the growth of yeast segregants individually on the array by 

measuring the absorbance through optical density (OD) values at a wavelength 

of 600nm every 20 minutes for 65 hours. The temperature of the incubator in this 
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plate reader was set at 30 °C for keeping the identical standard growth 

environment. Before printing the array stored with yeast strains, the empty plate 

was recorded for measuring the absorbance of agar on the empty media and 

initial printed mass absorbance. The growth values are all filtered out the 

absorbance of agar and initial plate mass caused by the robot.  

 

PHENOS (PHENotyping On Solid media) is an optimised pipeline for recording 

the growth of Saccharomyces yeast developed under Python 2.7 by Dr. Dave 

Barton (Barton, et al., 2018). After growth measurements, a directory was 

generated for each plate by PHENOS which included a comma delimited file of 

strain identities and each time point reading for strain growth value. The 

animation for yeast growth and the growth curves for 65-hour yeast growth were 

also included in the output directories. As the same two strain layout arrays were 

control and treatment, they were then combined and compared at the end time 

points for optimising the growth treatment ratio (TR ratio = Average OD value with 

treatment / Average OD value without treatment) which is computed by PHENOS. 

In addition, there are some optimising growth features for assessing yeast growth 

curves could be analysed through PHENOS which are lag (Lag) and speed (Max 

Slope) under logarithmic phase.  

 

In this chapter, the default features TR ratio, treatment Lag and treatment Max 

Slope were collected as attributes for each strain. In addition, the control Lag, the 

control growth Max Slope were also collected and analysed as the growth 

features for assessing and comparing the growth status under YPD and YPD with 

Doxorubicin environment condition.  
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2.2.3 Genotyping 
The genotype data of F1 segregants from biparental intercrosses between pairs 

of the four representative founder strains (NA, WE, SA, WA) of S. cerevisiae were 

obtained in previously (Cubillos, et al., 2011). Different pairwise combinations of 

these four founders generated 6 crosses in total for next stage experiment. A total 

of 179 bi-allelic markers were SNP-genotyped for all 576 segregants among 

whole population without missing data. Marker ID was labelled with format that 

consists of the chromosome information (‘c’ + 01:16) and base position with 7 

digits which mapped the markers to reference genome of the budding yeast S. 

cerevisiae S288C (version R64-2-1) (downloaded from Saccharomyces Genome 

Database (SGD) (https://www.yeastgenome.org/)). It also contains the 

information of the standard gene name if the marker is located within a gene 

based on the genomic feature annotation gff3 file supplied with the reference 

genome. For example, marker c01:0038000 (CNE1) was assigned to 

chromosome 1, base position 38000 located in the region of gene CNE1. Genetic 

mapping (in centiMorgan units) was performed with the R/qtl package using its 

standard method in the R computing environment. Table 2-2 gives the marker 

label information table for chromosome I markers. The full table is attached in 

Appendix C. Table 2-3 describes the marker numbers and average density in 

each chromosome based on the statistics of the reference genome S288c. After 

requiring each segregant to have both genotype data and phenotype data in at 

least one environment, all 576 segregants were retained for subsequent analysis.  

https://www.yeastgenome.org/
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Table 2-2 Marker information of F1 population in chromosome I. 

Marker ID Chromosome Positon(bp) Genetic map(cM) 

c01:0038000 (CNE1) 1 38000 0.00 

c01:0064000 (CDC24) 1 64000 10.36 

c01:0078000 (FUN12) 1 78000 44.99 

c01:0095000 (SAW1) 1 95000 59.36 

c01:0114000 (ATS1) 1 114000 67.23 

c01:0158000 (RFA1) 1 158000 82.96 

c01:0170000 (ADE1) 1 170000 88.43 

c01:0191000 (YAT1) 1 191000 119.08 

Marker ID column includes the information of chromosome, base position and gene as the 

attribute names (column features) to combine with genotype data. Chromosome and Physical 

map column show the location assigned to reference genome S288C. Genetic map column stored 

the output for genetic map computing by R/qtl. 
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Table 2-3 Summary statistics of marker numbers and average marker density in 
each chromosome of F1 segregants genotype data. 

Chromosome Total length (bp) Marker numbers  
Marker density 

(bp / marker number) 

I 230218 8 28777 

II 813184 10 81318 

III 316620 10 31662 

IV 1531933 22 69633 

V 576874 8 72109 

VI 270161 8 33770 

VII 1090940 14 77924 

VIII 562643 9 62516 

IX 439888 7 62841 

X 745751 11 67796 

XI 666816 11 60620 

XII 1078177 15 71878 

XIII 924431 11 84039 

XIV 784333 9 87148 

XV 1091291 14 77949 

XVI 948066 12 79006 

 
Total length column was calculated through R environment with the reference genome fasta file 

of S288C in version R64-2-1 as input. Marker numbers column was counted through R 

environment with the genotype data of F1 segregants. Marker density column was calculated as 

the ratio between total length and marker numbers.  
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2.2.4 Dataset Preparation 
After collecting phenotyping data and genotyping data, the combined database 

eventually kept the genotype dataset includes 180 attributes (1 identifier of 

segregant and 179 markers) and 4 replicates each of the 96 haploid yeast strains 

(number of individuals) for each cross dataset. The first attribute is the identifier 

of strain names which stored the information of founder cross, generation and the 

strain number. For example, AE01fc101 is the identifier of the individual who is 

the progeny of A and E in first generation labelling number is 101. Other attributes 

are the 179 markers located in 16 chromosomes at different position and contains 

founder allele genotype which were encoded as ‘A’, ‘E’, ’S’ and ‘W’ which based 

on the raw genotype bases in founder sequence which were extracted using 

makegeno function in r/shmootl (see below). All the records are fully genotyped 

without any missing values. The phenotype data were matched by the identifier 

of strain names. The marker information data were matched by the maker 

identifier. Table 2-4 describes the example of the datasets for AE cross. Full input 

datasets for all crosses were available to access through Rdrive. 

Table 2-4 Sample input datasets of AE cross population. 

Treatment
Ratio ID c01:003800

0 (CNE1) 
c01:006400
0 (CDC24) 

c01:007800
0 (FUN12) 

c01:009500
0 (SAW1) 

c01:011400
0 (ATS1) 

c01:015800
0 (RFA1) 

  1 1 1 1 1 1 
  0.00 10.36 44.99 59.36 67.23 82.96 

0.955339 AE01fc101 E E A A A A 
0.965771 AE01fc102 A A A A A A 
0.955144 AE01fc103 A A E E E E 
1.01001 AE01fc104 E E E E E E 

0.997644 AE01fc105 E E E E E E 
0.953489 AE01fc106 A A E E E E 
0.984708 AE01fc107 E E A A A A 
0.998196 AE01fc108 A A A A A A 
1.04751 AE01fc109 A A A A A A 

0.993652 AE01fc110 E A A E E E 
… … … … … … … … 

 
ID columns stored the labels for each strain with the cross information, generation information, 

and strain number. ID were kept consistence in phenotype data for matching each individual 

phenotype data to genotype information in row.  Each marker column records the genotype value 

of founder allele. ‘A’ in this example datasets means kept same genotype base with North America 

(NA) sequence call and ‘E’ means kept the same genotype base with Wine/European (WE) 

sequence call. Row 2 and 3 are the chromosome number and genetic map by matching marker 

id column to marker information table.  
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2.2.5 Statistical Analysis 
Descriptive statistics of phenotype attributes were performed in R environment 

through IDE Rstudio. Violin plots were generated for comparing growth features 

in R with ggplot2 package (Wickham, 2016).  

 

QTL analysis were performed with shmootl package in R environment developed 

by Yue Hu and Dr. Thomas Walsh for yeast QTL analysis through run_scanone 

pipeline (package available through https://github.com/gact/shmootl). The 

run_scanone pipeline was performed for each cross to find the additive QTLs by 

using interval mapping. The linkage LOD scores were used to calculate the 

significance of each marker on all chromosomes, calculated as the log10 

likelihood ratio comparing the null hypothesis and alternative hypothesis that a 

QTL exists at that locus (Broman, et al., 2003).  A LOD score of 3 or higher is 

generally indicated as significance. Significance level alpha was set as 0.05 to 

estimate the LOD threshold. 1000 permutation tests were applied for shuffling the 

phenotypes and use the 95th percentile of the maximum LOD score in each 

permutation test as the LOD threshold for QTL scan. Step size for genotype 

probabilities was set as 1. The significant markers are identified as QTL by the 

LOD threshold for each experiment. LOD interval estimation are located by 1.5 

LOD drop for each QTL as support region to find candidate genes (Figure 2-2). 

The run_scantwo was then performed to find interactions among markers, i.e. 

epistasis. The QTL analysis process and output were stored in hdf5 file format 

for each run. Figure report was stored as a pdf file and a table report was stored 

as an xlsx file. All the QTL analyses were performed on ALICE, a High 

Performance Computing (HPC) cluster under CentOS Linux operating system. R 

Scripts and pipeline qsub were supplied in Appendix 1. All the QTL analysis 

records are accessible through the GACT research Rdrive on the University of 

Leicester. 

  

https://github.com/gact/shmootl
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Figure 2-2 Illustration of QTL Interval 

The red dash line marks the 5% significance threshold of LOD score based on the permutation. 

Peak QTL is the highest significant LOD score. QTL Interval was estimated the QTL range given 

by the chromosomal position corresponding to the highest significant LOD score with 1.5 drop to 

locate the start and end of the interval. 
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2.3 Results 

2.3.1 PHENOS output growth curves of F1 yeast arrays  
F1 haploid yeast segregants were arranged on 384 arrays on YPD media as the 

control and Doxorubicin YPD media as the treatment. 6 groups of progeny with 

bi-parental lines for the four founders combination which are AS, AE, AW, SW, 

ES, and EW. 12 plates of experimental array in total were incubated for 65 hours 

in a plate reader with measurements of growth data recorded by OD value for 

each segregant. The growth data were stored and normalised by PHENOS to 

illustrate growth curves for each plate. Figure 2-3 and Figure 2-4 illustrate the 

growth curves of the control with standard YPD conditions and treatment with 

YPD and Doxorubicin for the 6 groups of F1 segregants. The F1 yeast segregants 

under different parental crosses differ both in standard growth and in responses 

to Doxorubicin treatment. The growth curves under YPD condition as the control 

plates showed similar growth pattern within parental crosses. All 6 control arrays 

reached to the stationary phased around the same time period (20 hours). 

Variation is seen among progeny generated by different parental crosses. In 

contrast, a significant difference of growth pattern could be identified from 

treatment growth curves for each group. In order to get a better understanding of 

these segregants’ growth differences, descriptive statistics analysis was 

performed in the next section for evaluating growth and phenotype features.   
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Figure 2-3 F1 yeast control arrays: PHENOS growth curves. 

Each figure represented growth curves for individuals under the identical condition on YPD for 

each cross. Each growth curve illustrates the growth condition with measurement value changes 

from minimum (Y axis) over 65 hours of growth in the plate-reader.  The curves are printed without 

agar absorbance. The curve colour is based on the initial printed mass on the array with rainbow 

theme from red to purple indicating small to large printed mass. Three strains (sw01fc524, 

ew01fc411, ew01fc412) which were not recorded with value in SW and EW that might due to bad 

printing quality or edge effects were filtered out from the analysis. 
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Figure 2-4 F1 yeast treatment arrays: PHENOS growth curves. 

Each figure represented growth curves for individuals under the condition of YPD with 

Doxorubicin for each cross. Each growth curve illustrates the growth condition with measurement 

value changes from minimum (Y axis) over 65 hours growing in plate-reader. The curves were 

printed without agar absorbance. The curve colour were based on the initial printed mass on the 

array with rainbow theme from red to purple indicating small to large printed mass. 
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2.3.2 Comparative Analysis of growth features for F1 
segregants 

In order to view the segregants’ growth phases of each F1 cross with different 

parental lines in detail, several growth features under standard YPD as control 

and treatment condition with YPD and Doxorubicin were compared in this section. 

Under the standard YPD condition for yeast growth, the lag phase of all the 

segregants lasts approximately 4 hours on average. The lengths of each group's 

lag phase duration are all relatively short which is expected under the conditions 

for normal growth. However, there are different responses among groups. The 

average lag period on segregants growth in the AW group is 2.36 hours, which is 

about 3 hours shorter than segregants in the SW (average lag is 5.44 hours) 

(shown in Figure 2-5, labelling with AW and SW). There are three groups of F1 

yeast segregants having the North America strain as one of the parental lines, 

AE, AS, and AW. The average lag phase of these three were 3.48 hours which 

is shorter than the average duration of the other three groups. The range of lag 

is smaller as well in these three meaning the distribution was dense around 

average, that is the time to enter the exponential growth phase is overall short. 

Under the treatment with YPD and DOX, the average lag phase of all segregants 

is approximately equal 6.50 hours, 2.50 hours longer than the control condition. 

The lag phase of all the F1 segregants was on a longer duration than the lag 

phase under the control condition on average by group, and exhibited various 

responses within the group (Figure 2-5). Segregants in AW group still hold the 

shortest average lag (4.98 hours). Segregants in AS group have the longest 

average lag phase (8.29 hours). This is interesting given the NA containing 

crosses all having the shortest lag phase in their controls. The average lag phase 

of F1 segregants in AS, SW, and ES group is 7.50 hours, which is longer than 

the other three groups without Sake strains as the parental lines. These results 

showed the difference in the initial adaption responses to DOX among F1 

segregants of these 6 crosses.   
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In addition to the assessment of the Lag phase, the speed during exponential 

phase (Max Slope) is also an important factor that affects the growth of 

segregants. Variation in each cross group was seen for max slope features. 

Under standard YPD control conditions, the average max slope for all F1 

segregants is 0.27 OD change per hour, and the average difference of Max Slope 

for these six cross groups was very small (0.26 - 0.28). This satisfies the 

assumptions of the experimental design, because the growth rates should be 

stable and similar under the conditions suitable for growth. Under DOX treatment 

conditions, the average speed during exponential phase of all segregants is 0.16 

OD change per hour, which is 0.1 slower than the speed under control condition. 

A study confirmed that the toxic effect of DOX can inhibit the growth of yeast 

(Buschini, et al., 2003). The average Max Slope of the segregants in AW group 

is 0.20 OD change per hour, which is the fastest growth rate among this six 

groups. The average Max Slope of the segregants in EW group is approximately 

equal 0.15 which inhibited the most comparing to the speed of the segregants 

under control. These results indicate that the growth rate of segregants is affected 

by DOX. Treatment Ratio, as a consideration for the final growth of the 

phenotype, also shows differences between groups. The median of the treatment 

ratio for F1 segregants in AE, AS, and AW groups was slightly greater than 1.00, 

while the other three groups were approximately 0.97. This result suggests that 

50% of segregants with North America strain as one of the parental lines grow 

more under the treatment than control at the end point, that is, they were more 

resistant to DOX. The segregants in ES group had the ratio at 0.92 on overage 

and more than 75% of segregants grew less than under control, that is, they were 

more sensitive to DOX. Overall, these results demonstrate that the growth of 

these segregants was affected by DOX by different degrees. 
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Figure 2-5 Growth feature distributions of F1 segregants’ growth. 

Violin plots illustrate different distribution of Lag phase and Max slope (growth speed) among 6 

crosses for both Control and Treatment. X axis is AS, AE, AW, SW, ES, EW. Y axis in Lag plots 

is Lag phase time by hours. Y axis for speed plots is Max slope for the growth curve. Shape in 

red is AS, brown is AE, green is AW, mint is SW, blue is ES and purple is EW. Violin plots 

generated through ggplot2 package in R environment. 
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`  

Figure 2-6 Phenotype feature Treatment Ratio distribution of F1 segregants. 

Violin plot illustrate different distribution of Treatment Ratio among 6 crosses which compare the 

final growth of control and treatment. Same labelling and colouring as Figure 2.3.3. Y axis is 

Treatment Ratio.   



61 

2.3.3 Single QTL Analysis 
Additive QTL analysis was performed on each of the three growth phenotypes for 

each group of F1 segregants by interval mapping methods as the markers span 

large ranges. The LOD scores were computed for each marker and all the 

markers were mapped with LOD scores through whole genome. The results of 

the QTL mapping were plotted for all markers with LOD scores by genome-wide 

and the interval mapping of the chromosome with peak LOD. The significance 

level is set at 0.05. The LOD threshold obtained by 1000 permutation tests which 

is indicated by a red dashed line in each plot. Marker regions that exceed the 

threshold are marked with interval if the size is visible through Rplot. However, 

due to a bug in R, there are a few intervals that cannot be plotted. See Figure 2-7 

to Figure 2-9 for each F1 cross QTL mapping and for each phenotype by whole 

genome. 
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 (a) AS 

 (b) SW 
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 (c) AE 

 (d) ES 



64 

  

 (e) AW 

 (f) EW 

Figure 2-7 Illustration of QTL analysis of Lag phase for all 6 F1 crosses in DOX 

Genome-wide QTLs for Lag phase of each F1 cross among 16 chromosomes. The x-axis 

represents the chromosome number and the y-axis represents the LOD score. Single QTL LOD 

scores were illustrated for each chromosome with black coloured on odd number chromosomes 

and grey coloured on even number chromosomes. The red dashed line indicated the LOD 

threshold determined at the significance level at 0.05. The interval mapping of the peak QTL 

regions which over the threshold were plotted in range where the peak positions were highlighted 

with black dot if visible. (a) cross NA × SA (b) cross SA × WA (c) cross NA × WE (d) cross WE × 

SA (e) cross NA × WA (f) cross WE × WA 
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 (a) AS 

 (b) SW 
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 (c) AE 

 (d) ES 
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 (e) AW 

 (f) EW 

Figure 2-8 Illustration of QTL analysis of phenotype in max slope for all 6 F1 
crosses in DOX 

Genome-wide QTLs for max slope of each F1 cross among 16 chromosomes. The x-axis 

represents the chromosome number and the y-axis represents the LOD score. Single QTL LOD 

scores were illustrated for each chromosome with black coloured on odd number chromosomes 

and grey coloured on even number chromosomes. The red dashed line indicated the LOD 

threshold based on the significance level at 0.05. The interval mapping of the peak QTL regions 

which over the threshold were plotted in range where the peak positions were highlighted with 

black dot if visible. (a) cross NA × SA (b) cross SA × WA (c) cross NA × WE (d) cross WE × SA 

(e) cross NA × WA (f) cross WE × WA 
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 (a) AS 

 (b) SW 
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 (c)AE 

 (d) ES 
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 (e)AW 

 (f) EW 

Figure 2-9 Illustration of QTL analysis of growth rate for all 6 F1 crosses in DOX 

Genome-wide QTLs for Lag phase of each F1 cross among 16 chromosomes. The x-axis 

represents the chromosome number and the y-axis represents the LOD score. Single QTL LOD 

scores were illustrated for each chromosome with black coloured on odd number chromosomes 

and grey coloured on even number chromosomes. The red dashed line indicated the LOD 

threshold based on the significance level at 0.05. The interval mapping of the peak QTL regions 

which over the threshold were plotted in range where the peak positions were highlighted with 

black dot if visible. (a) cross NA × SA (b) cross SA × WA (c) cross NA × WE (d) cross WE × SA 

(e) cross NA × WA (f) cross WE × WA 
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2.3.4 Identification of QTL intervals shown strain dependent 
overlaps among crosses   

There are different subsets of markers showing evidence of a candidate QTL. A 

total of 89 significant QTL intervals for the growth phenotype features were 

identified for all 6 crosses. Table 2-5 lists the summary of QTLs present for each 

cross obtained from QTL analysis. Among them, 9 loci were identified through 

QTL mapping that controlling the time of leaving lag phase and started growing 

under DOX conditions. Hardly any QTL of significance were found for the groups 

with same founder strain NA. There are no QTLs mapped for NA cross with SA 

or WE. Only 1 QTL which locate at chromosome I was identified in cross between 

NA and WA. 7 QTLs were present in the cross combination involving founder 

strain West African (WA). 2 QTLs were present in the cross combination between 

SA and WE. Two crosses SW and ES which both containing the SA strain 

showed a major QTL overlap in a region of 14kb on chromosome XIII 802000-

815789 with highest LOD scores in each cross (SW:4.79; ES: 3.27). Figure 2-10 

shows the gene features included in this overlap region. This result suggested 

that a Sake variant (allele) has a strong effect on the leaving lag phase.   
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Cross Phenotyp
e 

Number  
of QTLs 

LOD 
threshold Peak LOD Chr Position Region 

Size 

AS Lag 0 2.99 - - - - 

AS Max Slope 7 3.68 8.09 IX 371394 53249 

AS TR Ratio 5 3.48 6.86 IV 1345823 124809 

AE Lag 0 2.89 - - - - 

AE Max Slope 6 3.94 5.38 V 88000 66528 

AE TR Ratio 3 3.26 6.76 VII 501606 120497 

AW Lag 1 2.46 2.53 I 38000 72111 

AW Max Slope 12 4.42 13.84 II 235927 164633 

AW TR Ratio 8 3.38 7.02 IX 380000 27995 

SW Lag 3 2.76 4.79 XIII 802000 104839 

SW Max Slope 9 4.46 15.98 VII 515000 57021 

SW TR Ratio 5 2.95 4.97 XI 173000 93544 

ES Lag 3 2.63 3.46 VII 834291 133811 

ES Max Slope 6 4.85 15.92 XII 637472 69113 

ES TR Ratio 9 2.95 6.82 II 308000 80863 

EW Lag 2 2.67 2.99 IV 902000 169372 

EW Max Slope 7 4.77 16.4 XIV 281000 43083 

EW TR Ratio 3 3.85 13.81 IX 115406 82773 

 
 

  

Table 2-5 Summary of QTLs present for each cross obtained from QTL analysis. 

None of the markers were over the threshold for Lag phenotype of AS and AE (displayed as ‘-’). 

Total QTL numbers for each phenotype feature and cross are summarised from QTL analysis 

output. The peak LOD score is displayed as the maximum score for each QTL run of the 

phenotype with the cross. The chromosome and position are the location of the Peak LOD for 

each run. 

 

Figure 2-10 Annotated sequence features in QTL overlap region. 

Screenshot of genes located on chromosome XIII 802000 to 815789 from JBbrowser based on 

the annotation of reference sequence S288C.  
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As the growth speed varies among populations under DOX conditions, there are 

47 QTL intervals identified for Max slope phenotype across genome.  Two thirds 

(60%) of the QTLs for max slope phenotype were identified in cross combinations 

containing WA.  There are 12 QTL intervals identified over the LOD threshold in 

cross AW, with the largest amount of marker hits. 9 markers were identified as 

significance in the SW cross and 7 QTLs were mapped in the EW cross. In 

addition, there are 7 QTLs mapped for AS cross, 6 QTLs for AE cross and 6 QTLs 

for ES cross.  

 

Nearly half (47%) of the QTL intervals with close QTL peaks overlapped across 

different crosses containing the same founder strain and all the six crosses have 

overlaps with other crosses’ QTL interval. The same markers were mapped with 

the peak LOD score between cross SW and ES located at chromosome II: 

308000. There are 4 crosses (AW, SW, ES, EW) with a QTL interval overlap of 

15kb region between 283757 and 299053 on chromosome II. Figure 2-11 shows 

the gene features included in this overlap region. 

 

 

In addition, another QTL interval overlapped among three crosses (AW, SW, EW) 

that involve strain WA are located at chromosome V between 379703 and 

424637. The QTL intervals of AW and SW located a second large overlap on 

chromosome V between 71511 and 164667. The three crosses (AS, AE, AW), 

which have founder strain NA, shared an overlap on chromosome IV between 

493958 and 592378. AS and AW located another overlap on chromosome XV 

between 574461 and 594775. Interestingly, an overlap QTL interval among AE, 

AW, EW, the three crosses without founder Sake strain, are narrowed at a 35kb 

Figure 2-11 Annotated sequence features in QTL overlap region. 

Screenshot of genes located on chromosome II from 283757 to 299053 highlighted with yellow 

colour from JBbrowser based on the annotation of reference sequence S288C.  
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region on chromosome IX between 60422 to 96127 (displayed on Figure 2-12). 

However, there is one overlap between SW and ES which have common founder 

Sake strain located at chromosome XII between 598839 and 656174.  

 

Although there is not a large variation among treatment ratio as much as max 

slope under DOX condition, 33 QTL intervals were identified across the genome. 

9 QTLs for treatment ratio phenotype were detected in cross combination ES and 

8 QTLs in AW which are the largest two significant marker sets. There are 5 QTL 

intervals each identified in cross combination of AS and SW. In addition, three 

markers were identified as significance in AE cross and three in EW. 22 QTL 

intervals overlapped in more than one combination. Three of the overlaps were 

shared among AS, AE and AW. AE and AW shared an overlap on chromosome 

VII at a 20kb region from 454669 to 475473. AS and AW have two overlaps on 

chromosome IV at a large region from 1296282 to 1421091 and on chromosome 

IX span from 354621 to 380000 where the peak LOD scores were shown on the 

same markers which located at end of both intervals 380000. There is another 

overlap located on chromosome IX which was shared by ES and EW at the region 

between 83365 to 101606. Interestingly, there is an overlap among AS, AE and 

ES which were the crosses without founder strain WE narrowed at chromosome 

IV from 596537 to 610102. Conversely, 2 overlaps were found between AW and 

SW who contain the founder strain WE locate on chromosome XIII from 853803 

to 870948 and chromosome XIV from 99605 to 192445. One overlap shared 

between SW and EW on chromosome II from 474622 to 621830. Another overlap 

located on chromosome II from 260402 to 325763 which were between AS and 

ES contain same founder strain Sake.  
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2.3.5 Unique QTL intervals detected for each cross 
Although a large proportion of QTL intervals were involved in overlaps, half (45 

of 89) of the QTL intervals were only identified on one cross. When looking at all 

the highest QTL scores for each analysis, 13 of 16 QTL intervals are detected 

with the large effect for the specific F1 cross combination. Table 2-6 (a)-(f) lists 

of genes present within the unique QTLs obtained from QTL mapping result for 

each phenotype and cross.  
  

strain QTL cross 

Figure 2-12 Overlap types among 6 crosses of 4 parental lines. 

Circles indicated the founder strain that different colour means different founder. lines indicated 

the cross combinations and the brown dots indicated the QTL intervals for the cross. Apart 

from overlaps located for same founder (2 or 3 dots with same founder), overlaps shared for 

the crosses who without specific founder (3 dots in triangle region) were also present in this 

QTL sets.  Adapted from (Cubillos, et al., 2011). 
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Table 2-6 QTL mapping results 

Phenotype CHR LOD score Interval 
Length (bp) 

Start (bp) Peak (bp ) End 
(bp) 

Peak Gene 
Feature 

MS I 3.71 43086 129995 158000 173081 RFA1 

MS IV 3.95 100798 125816 189000 226615 NOP14 

MS IV 5.91 72095 1294256 1333000 1366351 PPM1 

MS IX 8.09 53249 326751 371394 380000 EGH1 

MS X 3.95 76856 221508 267526 298364 SIP4 

TR XV 3.95 94743 377783 442000 472526 C000A2 

 (a) AS 

 

 

Phenotype CHR LOD score Interval 
Length (bp) 

Start (bp) Peak (bp ) End 
(bp) 

Peak Gene 
Feature 

Lag XIII 4.79 104840 717007 802000 821846 PPA2 

Lag XIV 3.60 93416 140464 208000 233881 SIN4 

MS III 6.80 42595 82785 99000 125380 BUD3 

MS VII 15.98 57021 496582 515000 553603 SNU71 

MS XII 5.77 83801 304532 360998 388334 MDN1 

MS XVI 7.10 106100 195142 250383 301241 - 

MS XVI 9.93 60010 632694 666300 692704 SMK1 

TR XI 4.98 93544 141692 173000 235236 AVT3 

TR XI 4.28 56960 259488 286730 316448 SMY1 

 (b) SW 

 
 

Phenotype CHR LOD score Interval 
Length (bp) 

Start (bp) Peak (bp ) End 
(bp) 

Peak Gene 
Feature 

MS VIII 4.53 60217 156599 177762 216816 PIH1 

MS IX 10.42 66529 59950 92674 126479 TMA108 

MS X 7.96 46182 528042 552000 574224 MNN14 

MS XIII 4.12 124459 222844 287554 347303 - 

TR I 3.71 20698 70324 78000 91022 FUN12 

 (c) AE 
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Phenotype CHR LOD score Interval 
Length (bp) 

Start (bp) Peak (bp ) End 
(bp) 

Peak Gene 
Feature 

Lag VII 3.46 133812 758332 834291 892143 YGR168C 

Lag VII 3.07 86164 943315 1009000 1029479 RAD2 

MS VII 5.14 95548 946768 991655 1042315 YGR250C 

MS IX 10.10 50427 150449 179902 200876 FMC1 

TR IV 3.56 165430 270677 340521 436107 - 

TR X 3.70 58349 357116 390000 415465 VPS53 

TR XII 5.26 134155 533797 577159 667953 CCC1 

TR XIV 4.12 123911 276120 366648 400031 - 

TR XVI 3.00 237605 303395 448484 541000 PDR12 

 (d) ES 

 

 

Phenotype CHR LOD score Interval 
Length (bp) 

Start (bp) Peak (bp ) End 
(bp) 

Peak Gene 
Feature 

Lag I 2.54 72111 38000 38000 110111 CNE1 

MS IV 4.72 167887 629607 748615 797494 SWI5 

MS IV 7.38 35180 1158247 1170000 1193427 MRP1 

MS VII 4.57 53482 655122 674000 708605 VAS1 

MS IX 6.40 42482 53645 72000 96127 SLN1 

MS XII 10.30 74764 87684 117527 162449 BPT1 

MS XIII 5.21 67605 770360 821785 837965 FCP1 

MS XV 5.50 51706 450483 477074 502189 TGL5 

TR XIV 5.16 102535 617465 689710 720000 ABZ1 

 (c) AW 

 

Phenotype CHR LOD score Interval 
Length (bp) 

Start (bp) Peak (bp ) End 
(bp) 

Peak Gene 
Feature 

Lag IV 2.99 169373 855950 902000 1025323 RAD9 

Lag VIII 2.85 101238 132987 180453 234224 BRL1 

MS IX 13.74 63722 60422 95016 124144 - 

MS X 4.89 55930 580835 612000 636765 TPC1 

MS XIV 12.70 59408 626149 657268 685557 ACC1 

TR V 6.16 46744 379703 395000 426448 SPR6 

 (e) EW 
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2.3.6 Functional annotation among peak QTL genes 
Functional clustering that annotate the genes associated with related biological 

process or molecular function was analysed through DAVID 6.8 with the peak 

genes. Interestingly, there are two major annotation clusters shown for these 

genes with P-value < 0.005 and False discovery rate (FDR) < 0.25. Gene 

Ontology (GO) terms for these two clusters are summarised in Table 2-7.  

 
Table 2-7 Lists of GO terms with involved peak genes. 

Nucleotide binding and ATP binding are from the first cluster and Metal ion biding are from the 

second cluster. Genes which shown on all columns are highlighted in bold. FDR value based on 

Benjamini adjustment.  

GO Term GO ID Gene 
Count P-value FDR Gene Features 

Nucleotide 
binding GO:0000166 20 0.002 0.14 

FUN12, GAL1, MAK5, SPF1, 
SLN1, SMY1, SNQ2, VAS1, 
RIE1, BPT1, REA1, YEF3, 
POL2, ACC1, PDR12, 
MCM4, MSF1, SMK1 

ATP binding GO:0005524 17 0.003 0.15 

GAL1, MAK5, SPF1, SLN1, 
SMY1, SNQ2, VAS1, BPT1, 
REA1, YEF3, ACC1, PDR12, 
MCM4, MSF1, SMK1 

Metal ion 
binding GO:0046872 19 0.002 0.25 

FUN12, RFA1, SPF1, TMA108 
SLN1, GAT4, GLT1, VMS1, 
SWI5, MRP1, MIG1, RAD2, 
SIP4, PPA2, POL2, ACC1, 
CAT5 

 
Gene network analyses were further generated for the peak Genes through 

GeneMANIA database. Gene networks among these genes showed a complex 

relationship with functionally associated and protein-protein interactions. Three 

of the genes (SPF1, SLN1, AAC1) were shortlisted through functional clusters. 

Gene PMR1, CCC1, HFA1, UPS1, CCP1 were chosen as candidate genes by 

the linkages with SPF1, SLN1 and AAC1 of shared protein domain obtained from 

network Figure 2-14. Description of these genes were summarised in Table 2-8 

through SGD database. Most of the candidate genes involved in metal from the 

SGD database. Most of the candidate genes are involved in metal transporter for 

Fe2+/Ca2+, Ca2+ homeostasis and mitochondria. A recent study suggested that 

DOX and DOX metabolites affect a major mechanism of cardiotoxicity with 
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mitocondria dysfunction and loss of iron homeostasis leading to congestive heart 

failure as illustrated in Figure 2-13 (Thorn, et al., 2011).  
 

  

Figure 2-13 Pathways involved in adverse effects of doxorubicin. 

The mechanisms of the effect of DOX implicated in loss of iron homeostasis, loss of calcium 

homeostasis and mitochondrial dysfunction which also targeted in this study. Derived from 

(Thorn, et al., 2011) . 
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Figure 2-14 Gene network figures for selected genes. 

Pink line connections if there are studies showing protein-protein interaction between genes. Purple 

line connections if the gene expression levels were similar and have been published. Green line 

connections if two genes were functionally associated. Yellow line connections if the gene products 

have the same protein domain. Figures were generated through GeneMANIA database (Warde-

Farley, et al., 2010). Dynamic figure could be viewed through link: 

https://genemania.org/search/saccharomyces-cerevisiae/ 

https://genemania.org/search/saccharomyces-cerevisiae/
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Table 2-8 Lists of candidate genes identified by gene function analysis collected 
from SGD database. 

Candidate 
Gene Standard Name Gene Name Description 

SPF1 YEL031W Sensitivity to Pichia 
Farinosa killer toxin 

P-type ATPase, ion transporter of the ER membrane; required to 
maintain normal lipid composition of intracellular compartments 
and proper targeting of mitochondrial outer membrane tail-
anchored proteins; involved in ER function and Ca2+ 
homeostasis; required for regulating Hmg2p degradation; confers 
sensitivity to a killer toxin (SMKT) produced by Pichia farinosa KK1 

PMR1 YGL167C Plasma Membrane 
ATPase Related 

High affinity Ca2+/Mn2+ P-type ATPase; required for Ca2+ and 
Mn2+ transport into Golgi; involved in Ca2+ dependent protein 
sorting, processing; D53A mutant (Mn2+ transporting) is 
rapamycin sensitive, Q783A mutant (Ca2+ transporting) is 
rapamycin resistant; Mn2+ transport into Golgi lumen required for 
rapamycin sensitivity; mutations in human homolog ATP2C1 cause 
acantholytic skin condition Hailey-Hailey disease; human ATP2C1 
can complement yeast null mutant 

SLN1 YIL147C Synthetic Lethal of 
N-end rule 

Transmembrane histidine phosphotransfer kinase and 
osmosensor; regulates MAP kinase cascade; transmembrane 
protein with an intracellular kinase domain that signals to Ypd1p 
and Ssk1p, thereby forming a phosphorelay system similar to 
bacterial two-component regulators 

CCP1 YKR066C Cytochrome c 
Peroxidase 

Mitochondrial cytochrome-c peroxidase; degrades reactive 
oxygen species in mitochondria, involved in the response to 
oxidative stress 

UPS1 YLR193C UnProceSsed 

Phosphatidic acid transfer protein; plays a role in phospholipid 
metabolism by transporting phosphatidic acid from the outer to 
the inner mitochondrial membrane; localizes to the 
mitochondrial intermembrane space; null mutant has altered 
cardiolipin and phosphatidic acid levels; ortholog of human PRELI 

CCC1 YLR220W 
Cross-Complements 
Ca(2+) phenotype of 
csg1 

Vacuolar Fe2+/Mn2+ transporter; suppresses respiratory deficit 
of yfh1 mutants, which lack the ortholog of mammalian frataxin, 
by preventing mitochondrial iron accumulation; relative 
distribution to the vacuole decreases upon DNA replication stress 

AAC1 YMR056C ADP/ATP Carrier 

Mitochondrial inner membrane ADP/ATP translocator; 
exchanges cytosolic ADP for mitochondrially synthesized ATP; 
phosphorylated; Aac1p is a minor isoform while Pet9p is the major 
ADP/ATP translocator; relocalizes from mitochondrion to 
cytoplasm upon DNA replication stress 

HFA1 YMR207C  

Mitochondrial acetyl-coenzyme A carboxylase; catalyzes 
production of malonyl-CoA in mitochondrial fatty acid 
biosynthesis; relocalizes from mitochondrion to cytoplasm upon 
DNA replication stress; genetic and comparative analysis suggests 
that translation begins at a non-canonical (Ile) start codon at -372 
relative to the annotated start codon 
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2.3.7  QTL Analysis indicated QTL regions with high LOD 
scores are located near centromeres 

In addition to the candidate genes mapped by the peak markers, 19 QTL intervals 

located around centromere region were found. Table 2-9 summarises the QTL 

intervals that located near centromeres on different chromosomes. Eight of the 

overlaps are located with the centromere regions included and 6 of QTL intervals 

are overlapped close to centromere region. However, the QTLs under F1 

segregants can only mapped in limited resolution. The span of each QTL interval 

is more than 25000 bp. Among these region, DDR related genes (MPH1, 

RTT109, RAD57) and metal ion binding related genes (LEU1, PRI1, VPS27) 

were also located around this region. Hence, further validation needed to verify 

the causative genes. A recent study in fission yeast revealed that several DOX 

resistance proteins can affect the centromeric localisation which result in the 

centromeric defects. However, the QTLs under F1 segregants can only be 

identified with typed markers which have limited sizes as only one round 

recombination through meiosis for F1 population (Nguyen, et al., 2015).  
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Table 2-9 Lists of QTL intervals that locating around centromere. 

Overlap records were highlighted in bold. 

Cross Phenotype chromosome LOD score CEN 

AE MS IV 4.27604725 CEN4 

AE MS XIII 4.11976257 CEN13 

AE TR VII 6.91803379 CEN7 

AS MS I 3.71192492 CEN1 

AS MS IV 7.90659665 CEN4 

AS MS IX 8.09019987 CEN9 

AS TR IX 5.99516246 CEN9 

AW MS II 13.8357888 CEN2 

AW MS V 11.1789263 CEN5 

AW MS XII 10.3002976 CEN12 

AW TR IX 7.01710027 CEN9 

AW TR XIII 4.69846583 CEN13 

AW TR XIV 5.16426512 CEN14 

AW TR XVI 3.53893531 CEN16 

EW MS II 8.46532305 CEN2 

EW MS XIV 12.7002804 CEN14 

SW MS III 6.79920416 CEN3 

SW MS V 9.87343058 CEN5 

SW MS VII 15.9760303 CEN7 
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2.3.8 Two-dimensional genome scan  
Two-dimensional genome scan under R/qtl and R/shmootl were performed for 

these 6 crosses and hundreds of QTL interactions event were detected with 1000 

times permutation test with significant level at 0.001 (Broman & Sen, 2009). The 

large amount of QTL pairs came out as significance is due to the reason that the 

genetic linkage is very high for the F1 population. In this situation, both of the 

markers were selected as significance only when they were not detected as QTLs 

in the single scan and were located as the largest LOD scores over threshold. 

Phenotype effect under the combination of alleles were illustrated in the Figure 

2-15. Both positive epistasis and negative epistasis effect presented. Gene 

SNU71 related to mRNA processing was present in AE and AW interacted. 

CDC39 involved in pathway of RNA degradation. In addition, gene SEC23 were 

negative interact with SNU71 that was related to metal ion binding. Gene GAT4 

for the regulation of transcription from RNA polymerase II was present in AS and 

AW interacted with PPM1 and SEC2. PPM1 also regulate transcription of RNA 

polymerase II. The interaction QTL for cross EW linked to gene MGR1 which 

forms subcomplex for mitochondrion (Dunn, et al., 2006) and POG1 forms 

Promoter-binding protein (Demae, et al., 2007). 

 
Table 2-10 List of Two-dimensional QTL scan output 

Cross Phenotype CHR 1 CHR 2 POS 1 Gene 1 POS 2 Gene 2 

AE TR III VII 283000 CDC39 515000 SNU71 

AS TR IV IX 1333000 PPM1 380000 GAT4 

AW TR IX XIV 380000 GAT4 128000 SEC2 

ES TR VII XVI 515000 SNU71 899000 SEC23 

EW TR III IX 48000 MGR1 131000 POG1 
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(a) AE 

(b) AS 
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(c) AW 

(d) ES 
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(e) EW 

Figure 2-15 Illustration of significant epistasis effect between two markers among 
F1 population for treatment ratio under DOX. 

Average phenotype value was calculated for each combination of allele between two markers. 

Each marker with two alleles indicated as 1 and 2. Red lines are for allele 1 in the other marker 

and blue lines are for allele 2. (a) Significant nonlinear effect between CDC39:283000 and 

SNU71:515000 in AE group. There is no difference in the effect of the two alleles at SNU71 in 

the genotype A of CDC39 but shown large difference with genotype E. (b) Significant nonlinear 

effect between PPM1:1333000 AND GAT4:380000. No difference showed of the two alleles at 

PPM1 under genotype A of GAT4 but shown difference when GAT4 with allele S. (c) Significant 

nonlinear effect between GAT4:380000 and SEC2:128000 in AW group. No difference shown in 

the effect of the two alleles at SEC2 under GAT4 marker with allele W. Large difference shown 

under GAT4 with allele A. (d) Significant nonlinear effect between SNU71: 515000 and 

SEC:899000 in ES group. Larger difference of the effect in SNU71 marker with allele E than with 

W. (e) Nonlinear effect between mgr1:48000 and POG1:131000 in EW group. Larger effect 

difference in MGR1 marker with allele W than with allele E.   
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2.3.9 Discussion 
In this section, QTL analysis were performed on 6 F1 crosses with SGRP4 as 

founders to identify gene variants with significant effect under exposure to DOX. 

As the point shown in (Cubillos, et al., 2011), different combinations of parental 

lines demonstrate the power to detect more QTLs than only generated 

experiment on two parental lines. From the one-dimensional QTL scan, the QTL 

intervals were overlapped among same founder strain which shown large effect 

and most of the candidate genes are located within overlaps. An additional 

overlap type detected in all the crosses without a specific founder strain were 

shown from the analysis. Eight candidate genes (SPF1, SLN1, AAC1, PMR1, 

CCC1, HFA1, UPS1, CCP1) were selected through functional annotation and 

gene network analysis, most of them have been involved with metal binding and 

mitochondrion processes. These results matched with the Doxorubicin pathways 

which were shown this drug have the side effect cardiomyopathy may cause the 

congestive heart failure on human (Chatterjee, et al., 2010). Besides of the 

overlap QTL intervals, there are also half of the QTL intervals were hold by the 

specified cross combination and interacted with the overlap QTLs. Moreover, 

enrichments of QTL intervals were identified around centromere region. These 

intervals were mapped as DDR related genes (MPH1, RTT109, RAD57) and 

metal ion binding related genes (LEU1, PRI1, VPS27), which potentially caused 

the centromere region to be included.  

 

In addition, two-dimensional genome scan was also applied for studying the 

epistasis effect. Several genes were missed in single QTL scan. Both positive 

epistasis effect and negative epistasis effect were observed under different 

crosses. SNU71 presented in AE, ES founders with CDC39 and SEC23. GAT4 

presented in AS and AW founders with PPM1 and SEC2. RNA degradation 

pathways were target among these genes. However, as it is only one round of 

mating of yeast, the segregants have limited number of genotypes due to the low 

recombination rate. The peak markers were located with the interval mapping 

estimation which might cause false positives. It is challenging that locate genes 

among intervals as the span could be large. A high resolution population with 
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dense markers could be the ideal population for summarising the candidate 

genes located not in the peak and able to detect small effect for the complex trait. 

In the next 3 chapters, F12 population with high resolution that generated with 

SGRP 4 parental crosses will be used for QTL analysis. 
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Chapter 3 High resolution mapping of genetic 

variation underlying growth differences 

under different treatment in a 4-parent 

intercross population  

3.1 Introduction 

The traditional QTL analysis is based on large population generated by 2-parental 

lines with bi-allelic marker data. In the Chapter 2, 6 groups of first-generation lines 

for pairwise crosses of SGRP4 strains were used to identify QTLs under DOX 

exposure. With the comparative analysis among the QTL intervals of the 6 

crosses, a few gene features were detected. However, there are still many genes 

that cannot be identified due to linkage associations in only one generation and 

the limited variation of only 2 parents. A multiple founder cross design with 

multiple generations expands genetic and phenotype diversity and breaks the 

linkage blocks to shuffle alleles. Recent advances in high-throughput techniques 

for DNA sequencing and phenotyping have greatly facilitated the identification of 

genetic variants underlying traits at a genome-wide level (Wilkening, et al., 2014). 

A high rate of recombination results in a high density physical and genetic maps, 

allowing greater resolution in mapping quantitative trait loci (Glazier, et al., 2002).   

 

A 12 generation 4-way cross population of S. cerevisiae with the same four 

natural yeast isolate founders (NA, SA, WA, WE) used in the F1 crosses, but 

designed with 4-parental lines, SGRP4-X, was generated and segregants were 

sequenced in (Cubillos, et al., 2013). Phenotyping and sequencing analysis of 

those strains revealed high degree of variation in phenotype under different 

environmental and chemical conditions and genomes with more than 245 

thousand polymorphisms (Liti, et al., 2009). A total of 15217 bi-allelic markers 
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were selected from the high-quality SNPs for 166 F12 haploid segregants with 

no missing genotype data that could place makers at the individual gene level.  

 

Responses to chemical drugs vary among individuals which might due to the 

complexities underlying genetic architecture. Using these powerful F12 yeast 

segregants as a test bed for genetic differences in response to drugs, 18 

treatment conditions under different chemicals or combinations of drugs were 

studied in this chapter to identify novel genetic variants and loci responsible for 

growth differences (both favourable alleles and disadvantageous alleles) with 

high-resolution mapping. Analysis of the candidate genes can then further 

localise potential molecular mechanisms for drug responses. For detecting the 

parental origin of alleles, a 4-parental genotype model was developed for tracing 

back the inheritance from the original parental founders. 
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3.2 Materials and Methods 

3.2.1 Strains 
In order to examine the effect of natural genetic variation on heritable traits of 

yeast, the yeast haploid strains used for QTL mapping experiment were 12th 

generation advanced intercross lines (SGRP4-x).  Four haploid strains in SGRP4: 

North American (NA): YPS128, West African (WA): DBVPG6044, Sake (SA): 

Y12, Wine ⁄ European (WE): DBVPG6765 were selected as founder strains which 

were the same four founder strains as Chapter 2. The procedure starts with four 

homozygous parental strains to create two heterozygous F1 diploid hybrids. Then 

these diploid hybrids were sporulated and went through meiosis to produce 

recombinant haploid offspring. The F1 haploid progenies are used to create F2s 

by mating and meiosis. For getting high resolution QTL mapping, 11 more rounds 

of random mating and meiosis are required to reduce the average linkage block 

size through homologous recombination. Figure 3-1 illustrates the process of this 

intercross. The segregants were constructed as described above. Each 

segregant is represented by four replicates in experiments. 

Figure 3-1 The process of generating F12 population 
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3.2.2 Agents and experiments  
The experiment of QTL mapping under 18 distinct environment conditions with 

different chemicals using F12 segregants for phenotyping with control and 

treatment were performed by Danae Georghiou, Salwa Almayouf and Yishen Li, 

University of Leicester. The chemicals used and their concentrations are given in 

Table 3-1. Yeast plates, preparation and Phenotyping methods are the same as 

described in Chapter 2. QTL mapping experiments of the F12 yeast generation 

were prepared for each agent with four yeast arrays for phenotyping. MATa and 

MATα strains were grown on separate plates under standard YPD as control and 

treatment with chemicals added. 

3.2.3 Genotyping 
The raw sequencing data of multi-parental F12 segregants among the cross of 

four representative founder strains (NA, WE, SA, WA) of S. cerevisiae were 

obtained in a previous study (Cubillos, et al., 2013). Genetic markers were further 

filtered through SNP calling output generated by Dr. Thomas Walsh without 

duplicate markers that kept the identical bases for each segregant. After filtering, 

I eventually have the genotype dataset which includes 15217 bi-allelic markers 

genotyped for all 166 F12 segregants with no missing data. This genotype 

dataset is 85 times denser than the F1 segregant markers. Marker IDs were 

labelled with same format as F1 genotype dataset described in Chapter 2. Table 

3-1 describes the marker numbers and average density in each chromosome 

based on the statistics of the reference genome S288C. Except for the smallest 

chromosome in S288C, CHR I, all other chromosomes have marker density 

under 900bp on average between markers. 
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Table 3-1 Summary statistics of marker numbers and average marker density in 
each chromosome of F12 segregants genotype data.  

Total length column was calculated through R environment with the reference genome fasta file 

of S288C in version R64-2-1 as input. Marker numbers column was counted through R 

environment with the genotype data of F12 segregants. Marker density column was calculated as 

the ratio between total length and marker numbers. 

Chromosome Total length (bp) Marker numbers Marker density 

I 230218 201 1145 

II 813184 1157 702 

III 316620 446 710 

IV 1531933 1730 886 

V 576874 731 789 

VI 270161 428 631 

VII 1090940 1356 805 

VIII 562643 824 683 

IX 439888 612 719 

X 745751 940 793 

XI 666816 899 742 

XII 1078177 1276 845 

XIII 924431 1121 825 

XIV 784333 1077 728 

XV 1091291 1347 810 

XVI 948066 1072 884 
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3.2.4 Dataset Preparation  
For each chemical agent, phenotype data and genotype data were combined into 

a QTL input dataset that includes 15218 attributes (1 identifier of each segregant 

and 15217 markers) and 166 records with 4 replicates of haploid yeast strains for 

the F12 dataset. Some experiments had reduced sets for the analysis due to 

contamination observed. The first attribute is the identifier of the 4-way cross 

(AESW), generation and the strain number. For example, AESW12fc201 is the 

identifier of the individual of 4-way cross in 12 generation with labelling number 

201. Other attributes are the 15217 markers located in 16 chromosomes at 

different position and contains enumerated allele genotype which were encoded 

as ‘1’ and ‘2’, an arbitrary raw genotype (any two of base in ‘A’, ‘C’, ‘G’ and ‘T’) 

were computed using makegeno function in r/shmootl. All the records are fully 

genotyped without any missing values.  The phenotype data were matched by 

the identifier of strain names. Marker information table were generated for storing 

Mating type, LYS2 +/-, URA3 +/- as covariate data for each strain and matched 

by the identifier. Table 3-2 an example of the datasets for F12 segregants’ QTL 

analysis.  

 

Table 3-2 Sample input datasets of F12 segregants 

Treatment
Ratio ID 

c01:00
38000 
(CNE1) 

c01:006400
0 (CDC24) 

c01:007800
0 (FUN12) 

c01:009500
0 (SAW1) 

c01:011400
0 (ATS1) 

c01:015800
0 (RFA1) 

  1 1 1 1 1 1 

  12.70 12.74 12.74 13.16 13.46 14.36 
0.943787 AESW12fc201 1 1 1 1 1 1 
0.934674 AESW12fc202 2 2 2 1 1 2 
0.879095 AESW12fc203 2 2 2 1 1 2 
0.875925 AESW12fc204 2 2 2 2 2 2 
0.855349 AESW12fc205 1 1 1 1 1 1 
0.892152 AESW12fc206 1 1 1 1 1 1 
1.19754 AESW12fc207 1 1 1 1 1 1 
1.06395 AESW12fc208 2 2 2 1 1 2 
1.11133 AESW12fc209 1 1 1 1 1 1 
1.14976 AESW12fc210 2 2 2 1 1 2 
… … … … … … … … 
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3.2.5 Statistical and Bioinformatics Analysis 
Descriptive statistics of phenotype attributes were performed in the R 

environment through Rstudio. Box plots were generated for comparing growth 

features with ggplot2 package.  The interquartile range was calculated for 

comparing the phenotype distribution of F1 segregants and F12 segregants 

through IQR function in R (IQR = Q3 − Q1) between upper (75%) and lower 

quartiles (25%). The comparison of 12th generation progeny genotypes to 

founder genotypes was analysed in R. The founder genotypes were obtained 

from SGRP known SNP dataset in from (Bergström, et al., 2014) based on the 

S288C reference genome and aligned by using internal pipeline ‘founder align’ in 

R for finding the genotypes derived from each parental background. Coloring for 

a match is based on wesanderson package in R with Darjeeling. QTL analyses 

were performed through run_scanone pipeline in r/shmootl with marker 

regression given the large number of markers covering the whole genome. The 

significance level alpha was set at 0.05 to determine the LOD threshold. 1000 

permutation tests were applied for each QTL scan. Covariate parameter is set 

with the covariate table, LOD interval estimation are located by 1.5 LOD support 

intervals (the regions have LOD scores within 1.5 to peak) for each QTL as 

support region to find candidate genes. Clustering of functional annotations of 

candidate genes within intervals was performed on DAVID 6.8. Genetic variant 

annotation was performed using SNPEff V4.0 with reference genome S288C 

R64-1-1. All the QTL analyses were performed on ALICE. R scripts for F12 QTL 

analysis and pipeline qsub files are supplied in Appendix A. All the QTL analysis 

records can be accessed through the GACT research R-drive at the University of 

Leicester. 
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3.3 Results 

3.3.1 Genetic diversity and phenotype variation around F12 
population 

 

Table 2-3 and Table 3-1, show the increasing genetic marker density across the 

whole genome with a multi-parental background and high recombination rate as 

seen in the mosaic genotypes in the F12 population. With such dense markers 

as attributes, a narrower region can be delimited between two markers. With the 

large genetic diversity in the 12th generation segregants (Figure 3-2), the 

phenotype distribution of growth exhibited larger variation and span compared to 

the F1 population. Under the DOX condition, experiments were performed in both 

F1 and F12 generation which enabled me to compare the phenotype distribution 

of F1 and F12. AE, AS, AW, ES, EW and SW were the F1 haploid population that 

having the same founder strain with the F12 population. The bee swarm plots for 

growth features show clearly the phenotype distribution difference between F1s 

and F12. The F12 population has a larger interquartile range (0.14 for treatment 

ratio and 0.07 for max slope compared to F1 value) showing the increase in 

spread. The F12 sergeants also exhibit a larger span of the distribution with more 

extreme growth features than the F1 sergeants in these six groups (Figure 3-3). 

This comparison in genotype and phenotype data underpin the advantages for 

detecting QTLs in the F12 population rather than the F1s. 
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Figure 3-2 Genetic diversity of 12 generation segregants on chromosome IX.  

Genome shuffling that breaks linkage disequilibrium of F12 compared to founder strain 

genotypes. Coloring is based on the match to founders, where red is WA, mint is WE, yellow is 

SA and orange is NA.  
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(a) 

(b) 

Figure 3-3 Bee swarm and boxplots of phenotype distribution under DOX for 
F1 segregants and F12 segregants showed difference in mean and spread. 

AE, AS, AW, ES, EW, SW were the six group F1 bi-parental segregants and F12 was the 

four-parental segregants annotated as F12_AESW. Y-axis is the phenotype value. Grey dots 

in each bee swarm plot represented the value for each individuals with group. a) Treatment 

Ratio b) Max Slope  
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3.3.2 Phenotype distribution varies among F12 yeast 
segregants under different agents. 

The quantitative changes in F12 yeast segregants grown under 19 different 

chemical compounds were collected for high-resolution phenotypic analysis. As 

these chemicals are mostly related to cancer therapy or genotoxic agents, most 

of segregants (82.4%) have growth rates under 1 (normalized to YPD control 

growth). With cultivation under different conditions, F12 yeast growth patterns 

varied with different growth levels (Treatment Ratio) and different growth speeds 

during exponential phase (Max slope). The growth phenotypes are shown with 

box plots in Figure 3-4.  

 

Among the treatments, HU exposure results in the lowest average growth level, 

0.5 of control, which means that most of the yeast segregants were inhibited 

under this condition. Other than HU, the same agents with different 

concentrations exhibited similar trends with the average growth attained for the 

higher concentration were less than the lower concentrations (5-FU 2.5mM 0.82 

VS 5mM 0.63, Aspirin 10mM 1.00 VS 35mM 0.69, CCM 200mM 0.89 VS 500mM 

0.69). Interestingly, the majority of segregants (80%) have better performance 

with growth level over 1 under Cisplatin exposure. High levels of phenotypic 

diversity were seen in the growth of F12 segregants under each condition. 

Extreme values could be observed in most of the agents. The growth levels 

attained under Paraquat were distributed with the interquartile range more than 

0.7 and under 5mM 5-FU with more than 0.4. 
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(a) Treatment Ratio 

(b) Max Slope 
Figure 3-4 Boxplots showing phenotype distribution of F12 segregants under 

different chemical treatments. 

X-axis is the agents name arranged in alphabet order. Y-axis is the phenotype value for 

(a) is treatment ratio and for (b) is Max slope. 
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Besides the growth ratio being different, growth speed under different agents also 

exhibited more diversity among segregants. Similar trends were seen where the 

average speeds for the higher concentrations were inhibited compared to the 

lower concentrations for each agent. The higher concentration would cause the 

segregants to take longer to catch up to the growth speed making growth slower. 

From Figure 3-4(b), it is clear that 10mM Aspirin, Matrine and Salicylic acid have 

the fastest growth rate of over 0.25 OD change per hour. Segregants exposed to 

Paraquat exhibit various performances in growth rate with a low speed of 0.08 on 

average. Interestingly, segregants which grew fast under DOX or Matrine singly, 

grew slowly with combination of both DOX and Matrine. Overall, different growth 

patterns were found with different treatments among each segregant, suggesting 

that different genetic landscapes might be discovered for explaining these 

complexities.   

  



103 

3.3.3 Different numbers of QTLs were detected under different 
chemical conditions 

Table 3-3 Summary of QTL mapping for each agent. 

Total QTL numbers in response to each agent treatment are obtained from QTL analysis output. 

The peak LOD score is displayed as the maximum score for each QTL run of the phenotype for 

the agents. The chromosome and peak name are the locations of the Peak LOD for each 

mapping. Peak gene is annotated based on S288C gff file where the marker located within. Gene 

name coloured in grey indicated that the marker is intergenic which not located in the coding 

region but is around 250bp upstream/downstream gene region. 

(a) Max Slope 

Agents 
Total 
QTL 

numbers 

LOD 
threshold 

Peak 
LOD CHR Peak Name Peak 

Gene 

5-FU_2.5mM 246 4.33 11.00 X c10:0173029 YJL130C 

5-FU_5mM 102 4.44 11.07 X c10:0626155 YJR106W 

ASP_10mM 61 4.48 8.65 IX c09:0143924 YIL116W 

ASP_35mM 135 4.41 10.35 VII c07:0896840 YGR198W 

CIS_1mM 31 4.48 5.83 X c10:0254068 YJL094C 

CCM_200uM 134 4.44 12.16 XIV c14:0507665 YNL063W 

CCM_500uM 64 4.38 10.57 VIII c08:0037489 YHL032C 

DSF_70uM 51 4.41 10.24 VII c07:0807938 YGR160W 

DOX 229 4.46 21.19 II c02:0470054 YBR114W 

EPA 18 4.24 6.77 XII c12:0405942 YLR131C 

HU 182 4.34 11.71 IV c04:1487442 YDR523C 

MT 114 4.35 9.96 XVI c16:0503459 YPL024W 

MT + DOX 117 4.36 12.39 IV c04:0125665 YDL186W 

MET 203 4.44 13.43 X c10:0554884 YJR062C 

MMS 38 4.57 7.91 IV c04:0639565 YDR096W 

PQ 181 4.38 13.44 XIII c13:0570462 YMR156C 

Phleo 65 4.42 8.67 XII c12:0706510 YLR284C 

RAP 165 4.42 18.00 X c10:0559883 YJR066W 

SLA 34 4.44 9.80 XII c12:0792277 YLR332W 
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(b) Treatment Ratio 

  

Agents Total QTL 
numbers 

LOD 
threshold 

Peak 
LOD CHR Peak Name Peak Gene 

5-FU_2.5mM 211 4.47 10.47 XIII c13:0155781 YML059C 

5-FU_5mM 183 4.42 12.03 IX c09:0181158 YIL097W 

ASP_10mM 25 4.48 7.44 III c03:0234004 YCR067C 

ASP_35mM 81 4.92 10.97 X c10:0559922 YJR066W 

CIS_1mM 7 4.72 6.86 XIV c14:0710649 YNR047W 

CCM_200uM 95 4.37 15.21 IX c09:0371543 YIR007W 

CCM_500uM 33 4.6 8.17 IX c09:0088045 YIL139C 

DSF_70uM 68 4.46 7.74 VII c07:0799904 YGR155W 

DOX 151 4.36 33.46 III c03:0204507 YCR042C 

EPA 20 4.44 10.83 XIV c14:0437003 YNL101W 

HU 194 4.39 12.68 XVI c16:0617214 YPR026W 

MT 18 4.77 11.42 XV c15:1009827 YOR357C 

MT + DOX 204 4.65 14.66 IV c04:0125665 YDL186W 

MET 164 4.99 14.1 VII c07:0278844 YGL122C 

MMS 160 4.4 14.52 XI c11:0031821 YKL213C 

PQ 170 4.37 10.6 XV c15:0108439 YOL111C 

Phleo 140 4.32 11.63 XI c11:0324419 YKL062W 

RAP 105 4.63 9.53 V c05:0325466 YER082C 

SLA 33 4.53 11.29 VI c06:0084187 YFL025C 
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3.3.4 QTL analysis reveals the complex factors affecting yeast 
growth under changes of environment 

Marker regression was performed to map QTLs in order to understand the 

genetic basis, for response to each of the agents. Two growth features were used 

as phenotypes: max slope and end point growth level (TR64). A large number of 

QTLs were identified as significantly associated with different agents with LOD 

above the threshold at 0.05 significance level. Table 3-3 summarises the 

numbers of QTL hits for each agent with the peak markers within genes listed. A 

total of 3153 out of 4198 unique QTLs across genomes were characterised for 

all 19 agents growth responses. Under 2.5mM 5-Fluorouracil, the largest subset 

of markers was mapped as QTLs in both growth phenotypes with 246 QTLs for 

max slope and 211 QTLs for treatment ratio at the end point. Fewer QTLs were 

obtained at the higher dose (Fluorouracil 5mM) compared to the lower dose. The 

same trend was also found for Curcumin in that the lower dose yielded more 

QTLs then the higher dose. In contrast, for Aspirin, a higher number of QTLs were 

identified under the higher dose in both growth phenotypes with 135 QTLs of max 

slope and 81 QTLs of treatment ratio compared to X and Y for the lower dose. 

Many QTLs were detected for DOX treatment in both phenotypes. 229 QTLs 

were detected for max slope and 151 QTLs for treatment ratio at the end point. 

Smaller numbers of QTLs were obtained for Matrine where 141 QTLs were 

detected for max slope and only 18 QTLs were identified for treatment ratio at the 

end point as there is limited differences in growth under Matrine exposure. 

Perhaps surprisingly more QTLs were detected for treatment ratio under the 

combined treatment of both DOX and Matrine (204 QTLs) than under each of the 

single agents. However, for max slope, the number of QTLs is lower than in both 

of the single agents. The smallest number of QTLs for the max slope phenotype 

was found for EPA which only has 18 associated QTLs. For treatment ratio at the 

end point of segregants under Cisplatin only 7 markers were detected as 

significance which is the smallest number of QTLs among all experiments. 

Markers were further annotated to determine the highest LOD score in each 

mapping. When comparing the QTL results of all agents, their largest QTLs were 

not located at the same marker, the LOD scores of the QTLs are also different.  
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The QTL intervals were further summarised into one dataset to examine overlaps 

among all the agents. Gene annotation and functional clustering analysis 

indicates the pathways involved and possible mechanisms of yeast growth under 

different agents. QTL analysis defines a large number of QTL intervals across 

the agents and overlaps were found between agents. Some of the overlapping 

genes were involved in responses to DNA damage, DNA repair, cell membranes, 

nucleotide and protein transport and others. 

 

5-Fluorouracil (5-FU) is a genotoxic agent used as an antimetabolite for cancer 

treatment. Two concentrations (2.5 mM and 5mM) were applied to F12 

segregants to explore the genetic association with growth (Figure 3-5). The 

expectation was that the identified markers should be seen in both sets. 

Interestingly, different genetic landscapes were found between these two 

concentrations. When tracing the overlap between the analyses, 25 genes were 

identified in both high and low concentrations. These genes are related to target 

functions for responses to environmental changes, such as regulation of 

transcription, DNA binding, membrane transport etc. (summarised in Table 3-4). 

Among these genes, HPC2 (YBR215W) overlapped in both concentrations and 

is located on chromosome II. It is involved in chromatin remodelling and the 

regulation of histone gene transcription (Zhang, et al., 2013), (Eriksson, et al., 

2012). The overlapping gene TOM1 (YDR457W), has a human homolog HUWE1 

which is involved in DNA repair and histone modification. Top ranked QTL 

intervals and peak markers were further annotated to explore the potential shared 

function. The peak marker at the lower dose is located on chromosome X linked 

to the gene URA2 (YJL130C) which has a human homolog, CAD, involved in 

drug metabolism. Three more peak markers which have LOD scores in the top 

rank are linked to genes (POL31, OST1, TDH2) clustered into relatedness with 

metabolic pathways. In addition, 10 significant markers linked to genes (PIF1, 

SRS2, TEL1, RDH54, RAD10, REV3, SPT10, SPT16, TOR1, RAD57) are 

involved in the DNA damage response pathway. At the higher dose, the peak 

marker is also located on chromosome X but at gene ECM27 (YJR106W) whose 

function involves Ca2+ exchange and carbohydrate storage (Klukovich & 
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Courchesne, 2016). In addition to the overlap genes, 22 peak genes were related 

to nucleotide binding. 10 genes (MET6, TRP2, PRO1, HIS3, HIS7, GPM1, PYC1, 

PYC2, LYS1, LYS9) are involved in the biosynthesis of amino acids. A further 9 

QTL intervals were further located (RRP8, BRE2, FUN30, FYV6, SDC1, SPT21, 

STN1, ADA2, DOT1) involved in chromatin silencing at telomere (Fahrenkrog, 

2016). 

  

Agent 1 Agent 2 Phenotype Function Gene Features 

5-FU_2.5mM 5-FU_5mM Max slope Regulation of 
transcription 

TOM1, HPC2, TRA1, 
SPT16, GCR1 

5-FU_2.5mM 5-FU_5mM Max slope DNA binding HPC2, PYC2, GCR1 

5-FU_2.5mM 5-FU_5mM Max slope Phosphorprotein 
CDC19, GCR1, COG1, 
YRA1, SDS24, TOM1, 

HPC2, SPT16 

5-FU_2.5mM 5-FU_5mM TR64 Transcription HPC2, MED1, SPT7, 
NDT80 

5-FU_2.5mM 5-FU_5mM TR64 Membrane 
ANES1, GEA1, IST2, 

RAV1, KRE2, EPT1, GNP1, 
YJL132W, YPR071W 

5-FU_2.5mM 5-FU_5mM TR64 Nucleotide 
binding 

UBC4, YHR127W, RPT3, 
PKH3, PYC2 

 

Table 3-4 Overlap gene features annotation between two concentration for 5-
Fluorouracil agents. 

Genes were clustered through DAVID functional clustering analysis that column function were 

obtained from the output with involved genes. Genes which involved in different clusters were 

highlighted in bold. Two phenotype features were clustered separately. 

 



108 

   
(a) 5-FU 2.5mM 
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(b) 5-FU 5mM 

Figure 3-5 QTL mapping for 5- Fluorouracil agents under different concentration. 

Manhattan plots for markers LOD score of 16 chromosomes on the left side. Interval mapping of 

the chromosome have the peak LOD score were illustrated on the right. The red dash line 

indicates the LOD threshold for each QTL run at significance level 0.05. Each point represents a 

marker with the LOD score. 
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In addition to 5-FU, cisplatin, HU, phleomycin, MMS, and rapamycin are also 

used in the treatment of cancer. Cisplatin yields the smallest set of QTLs among 

these five agents, with few genes overlapping those in the other treatments. 

Among the genes in the QTL intervals for Cisplatin, 8 genes (HOT13, GAP1, 

RER2, LRO1, YNR048W, FPK1, TCD2, COQ1) are relevant to the membrane 

and FPK1 was also significant under 5-FU. A number of QTLs were overlapping 

between HU, phleomycin, MMS and rapamycin treatments. Among the 

overlapping genes, five genes (CEP3, CHL4, SLK19, SPC105, STU2) were 

physically near the centromeres region and related to chromosome kinetochore. 

Three genes (SMC5, LIF1, RAD51) are involved in DNA repair which might 

indicate chromosomal instability related to these drugs (Zhang, et al., 2016). In 

addition, three genes are involved in metabolic pathways, ALD2, ALD3, HIS3 for 

Histidine metabolism and gene ALD2, ALD3 for Phenylalanine metabolism, 

already shown to be involved in mice for Histidine metabolism and cancer therapy 

(Frezza, 2018). HU yields the largest number of QTL intervals and these overlap 

with phleomycin QTLs that identified 46 genes. In addition to the overlapping 

genes around centromere regions, 9 genes (ATP14, GEP3, MPM1, MRM1, 

SPC105, DNF1, LSP1, YJL070C, PRE6) are involved in mitochondria. For HU, a 

further 9 genes (MPH1, ARP8, HNT3, EAF5, IES4, MLP1, TTI2, NTG2, MLH1) 

are involved in DNA repair. The rapamycin target gene TOR1 also overlaps with 

HU and rapamycin treatments, also occurred in 5-FU sets.  

 

The results of experiments using aspirin at 10mM, 35mM and salicylic acid are 

shown in Appendix B. Multiple genes were found associated in all of these three 

agents. The overlapped QTLs include a number of genes involved in DNA repair 

(APN1, ABF1, MET18, SPT16, MSH6, RAD27, TOR1, RAD52). The marker 

located in MSH6 (YDR097C) overlapped in all three conditions is involved in the 

DNA mismatch repair pathway (Antony, et al., 2006). In addition, MSH6 has a 

human homolog MSH6 which is a tumour suppressor gene with mutations of this 

gene resulting in increased risks of cancer (Leenders, et al., 2018). TOR1 also 

identified in the sets of overlap between high dose aspirin and salicylic acid which 

were also hit in overlap genes for DDR relatedness in 5-FU. APN1 (YKL114C) is 
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needed in DNA repair for damage by oxidising agents. In addition, three 

overlapping genes (GSC2, MID2, SSK2) are involved in the MAPK (mitogen-

activated protein kinase) signaling pathway were obtained. A previous study in 

mice have shown that these genes can the phosphorylation of MAPK (Zhang, et 

al., 2017). Moreover, several overlapped genes between aspirin in high dose and 

salicylic acid were involved in mitochondrial transport (MSP1, TOM5, ERV1, 

TIM21, TIM23). When looking QTLs for each condition, multiple cellular functions 

were found and all of them show relation to phosphoproteins. For the lower dose 

of Aspirin, the peak marker was located on chromosome IV at gene VHS1 

(YDR247W) which encodes a cytoplasmic protein kinase (Simpson-Lavy, et al., 

2017). 24 significant markers were linked to genes for phosphatase activity and 

9 genes were involved in hydrolase activity. The peak marker for the higher dose 

of aspirin is in gene YPP1(YGR198W) on chromosome VII. Three genes (CIT2, 

IDH1, IDP1) are involved in 2-Oxicarboxylic acid metabolism pathway. For 

salicylic acid, in addition to the majority of genes involved in phosphatase activity, 

four genes (COG1, ALG12, NUP2, ATO3) clustered as related to transport and 

membranes.     

 

Curcumin is a natural chemoprevention agent that can be extract from Curcuma 

species (Maulina, et al., 2019). Curcumin was applied at 2 concentrations to the 

F12 segregants at 200mM and 500mM. From the phenotype distribution shown 

in Section 3.3.1, the growth patterns are very different from each other. Although 

it is expected that the same agent would show a similar genetic pattern of 

association, the QTL result between these two conditions have few overlaps 

which reflects the different genetic architectures under different phenotype 

responses to the two doses.  RRP7 (YCL031C) was shared between high and 

low doses of curcumin and is an essential gene involved in rRNA processing and 

exhibits responses to DNA replication stress (Tkach, et al., 2012). At 200mM, 

multiple functional annotation terms are found in the identified QTLs. The majority 

of markers were linked to genes related to phosphoprotein and hydrolase activity. 

20 markers were in genes annotated to be involved in metal ion binding, such as 

SAL1(YNL083W) which binds Ca2+ ions (Laco, et al., 2010). In addition, 7 
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markers are in genes (PMS1, CSM2, RAD18, NEJ1, SLX8, SPT16, SLX1) that 

involved in responses to DNA damage and are involved in DNA repair. For the 

high dose at 500mM, 10 genes were involved in mitochondria (PFK1, BEM2, 

MMM1, EXO5, LMO1, SAM50, GUT1, OXA1, ATG32, ERG6) and 6 genes 

(PDE2, PFK1, EXO5, FAP1, HMX1, SDD4 ) also function in metal ion binding. 

Disulfiram, EPA and metformin are also used as chemoprevention agents. The 

only overlap between EPA and metformin are two consecutive QTL intervals 

linked to genes COS111(YBR203W) and TAF5(YBR198C). 6 genes overlapped 

between DSF and MET. Three of them are involved in nucleotide binding (NRP1, 

PTK2, IFM1).  

 

DOX and matrine are both genotoxic agents. Combination treatment was also 

tested with DOX and matrine. The result shows that overlaps between DOX and 

matrine are related to metal ion binding and membranes. The combination 

treatment (DOX and matrine) shared more overlaps with DOX than matrine. A 

number of overlapped genes were involved in mitochondria between DOX and 

the combination treatment. In addition, the centromere region (CEN13) in 

chromosome XIII was overlapped, this is also being identified in the F1 analysis. 

Apart from CEN13, two more centromere regions were significant QTL intervals 

under DOX (CEN2, CEN3) and 7 genes (DAD1, HIR1, SGO1, STU2, NDC80, 

MCD1, PSH1) were located in the centromere regions. When mapping the QTLs 

under DOX, a further 19 genes were involved in DNA repair that including SMC5, 

RAD16, MSH6 which were found associated with other treatments. QTLs were 

also shared between DOX and Paraquat and these are involved in the regulation 

of transcription (BUR2, MED8, MSA1, SOK2, SWC3) and ATP binding (PRP22, 

SMC5, ACC1, MSE1, YPK3). For Paraquat, gene OTU1 was also involved in the 

regulation of transcription that has been located in previous QTL study for the 

same drug (Cubillos, et al., 2013). In addition, a number of QTLs are linked to 

integral components of membranes.  
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The most frequently occurring genes (those including pleiotropic QTLs that found 

more than 5 times among all agents conditions) were further annotated with 

nucleotide changes and amino acid changes (Table 3-5). The variant type for the 

SNPs around F12 segregants were computed through SNPeff that include 

missense and synonymous SNPs in the codings region as well as intergenic 

SNPs in non-coding regions. 16 genes were selected for multiple agents 

including 54 markers that located on 5 chromosomes. Among these selected 

genes, four of them (SMC5, SPT16, MSH6 and TOR1) responded to DNA 

damage. In addition, 34 out of 54 markers were typed into synonymous variants. 

Although these variants’ nucleotide information was different, they hold the 

identical amino acid. A recent study reveals that synonymous mutation are not 

silent and can affect the stability of mRNA and the efficiency of the translation so 

that the individuals can have the different growth rate and fitness (Kristofich, et 

al., 2018). Moreover, 18 markers were typed into missense which means that 

different nucleotides codes for difference amino acid. Among these 18 missense 

variants, the alternative alleles which were different with reference for gene 

MSH6, PAM1, PXP1, SPT16, and BFA1 were only from the contribution of 

founder WA. For gene UTR1 and SMC5, the alternative alleles were only from 

founder Sake. In addition, two markers were typed as missense but contributed 

from different founders in gene NRP1, PDE1, CDC8 and MNN14.   
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Table 3-5 SNP markers in the overlapping genes 

Marker Gene Gene 
Name 

Nucleotide 
Position Nucleotide Founder 

Alleles 
ALT 

Alleles 
Substitution 

Type 

Amino 
acid 

Position 

Amino 
Acid 

c04:0163031 YDL167C NRP1 124 A>G A-E; G-A,W,S E missense 42 Thr>Ala 

c04:0162933 YDL167C NRP1 222 C>T T-S; C-A,E,W S synonymous 74 Asn>Asn 

c04:0162745 YDL167C NRP1 410 C>T T-W; C-A,E,S W missense 137 Ser>Phe 

c04:0162498 YDL167C NRP1 657 G>T T-E; G-A,W,S E synonymous 219 Ala>Ala 

c04:0640367 YDR097C MSH6 3471 T>A T-W; A-A,E,S W missense 1157 Asp>Glu 

c04:0642755 YDR097C MSH6 1083 C>T C-S; T-A,E,W S synonymous 361 Arg>Arg 

c04:0643772 YDR097C MSH6 66 A>G G-S; A-A,E,W S synonymous 22 Gln>Gln 

c04:0960374 YDR251W PAM1  G>A A-S; G-A,E,W S intergenic   

c04:0960570 YDR251W PAM1  C>T T-W; C-A,E,S W intergenic   

c04:0962232 YDR251W PAM1 1650 A>G G-A; A-E,S,W A synonymous 550 Arg>Arg 

c04:0962280 YDR251W PAM1 1667 A>G G-W; A-A,E,S W missense 556 Gln>Arg 

c05:0119201 YEL020C PXP1 1099 G>A G-E,S; A-W,A  missense 367 Ala>Thr 

c05:0119388 YEL020C PXP1 912 G>A G-E; A-A,S,W E synonymous 304 Gly>Gly 

c05:0120062 YEL020C PXP1 238 G>T T-W; G-A,E,S W missense 80 Ala>Ser 

c07:0099326 YGL207W SPT16 358 G>A A-W; G-A,E,S W missense 120 Val>Ile 

c07:0099361 YGL207W SPT16 393 G>A G-S; A-A,E,W S synonymous 131 Val>Val 

c07:0100684 YGL207W SPT16 1716 A>G G-E; A-A,S,W E synonymous 572 Pro>Pro 

c07:0101050 YGL207W SPT16 2082 A>G A-S; G-A,E,W S synonymous 694 Val>Val 

c07:0101815 YGL207W SPT16 2847 T>C T-S; C-A,E,W S synonymous 949 Gly>Gly 

c07:0079586 YGL223C COG1 780 G>T G-S; T-A,E,W S synonymous 260 Arg>Arg 

c07:0079943 YGL223C COG1 423 T>C C-A; T-E,S,W A synonymous 141 Asn>Asn 

c07:0080345 YGL223C COG1 21 G>A G-E,S; A-W,A  synonymous 7 Leu>Leu 

c07:0035709 YGL248W PDE1 57 A>G G-W; A-A,E,S W synonymous 19 Gly>Gly 

c07:0035993 YGL248W PDE1 341 C>G G-A; A-E,S,W A missense 114 Thr>Ser 

c07:0036448 YGL248W PDE1 796 G>A A-E; G-A,W,S E missense 266 Glu>Lys 

c09:0089987 YIL137C TMA108 2802 C>T T-S; C-A,E,W S synonymous 934 Ser>Ser 

c09:0091352 YIL137C TMA108 1437 T>C T-A; C-E,S,W A synonymous 479 Ile>Ile 

c09:0091400 YIL137C TMA108 1389 A>G G-S; A-A,E,W S synonymous 463 Pro>Pro 

c09:0092065 YIL137C TMA108 724 A>G A-A; G-E,S,W A missense 242 Ile>Ile 

c10:0527002 YJR049C UTR1 1475 C>T T-E; C-A,W,S E missense 492 Thr>Ile 

c10:0527586 YJR049C UTR1 891 A>G G-A; A-E,S,W A synonymous 297 Thr>Thr 

c10:0528102 YJR049C UTR1 375 G>A G-E,W; A-A,S  synonymous 125 Leu>Leu 

c10:0528153 YJR049C UTR1 324 G>A A-W; G-A,E,S W synonymous 108 Ala>Ala 

c10:0534212 YJR053W BFA1 186 G>A A-E; G-A,W,S E synonymous 62 Thr>Thr 

c10:0534224 YJR053W BFA1 198 T>C A-E; G-A,W,S E synonymous 66 Asn>Asn 

c10:0534536 YJR053W BFA1 510 G>A A-A; G-E,S,W A synonymous 170 Arg>Arg 

c10:0534618 YJR053W BFA1 592 G>A A-W; G-A,E,S W missense 198 Glu>Lys 
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c10:0535622 YJR053W BFA1 1596 T>C C-S; T-A,E,W S synonymous 532 Phe>Phe 

c10:0535642 YJR053W BFA1 1616 T>C C-W; A-A,E,S W missense 539 Ile>Thr 

c10:0535682 YJR053W BFA1 1656 G>A A-E; G-A,W,S E synonymous 552 Thr>Thr 

c10:0544361 YJR057W CDC8 300 G>A A-W; G-A,E,S W synonymous 100 Val>Val 

c10:0544624 YJR057W CDC8 563 G>A A-E; G-A,W,S E missense 188 Gly>Asp 

c10:0544677 YJR057W CDC8 616 A>G G-S; A-A,E,W S missense 206 Thr>Ala 

c10:0545026 YJR057W CDC8 150 G>A T-W; C-A,E,S W synonymous 50 Gln>Gln 

c10:0550553 YJR061W MNN14 43 T>A A-A; G-E,S,W A missense 15 Ser>Thr 

c10:0551614 YJR061W MNN14 1104 A>G A-E; G-A,W,S E synonymous 368 Glu>Glu 

c10:0552137 YJR061W MNN14 1627 G>A A-S; G-A,E,W S missense 543 Val>Ile 

c10:0554464 YJR062C NTA1 1068 G>A G-E; A-A,S,W E synonymous 356 Glu>Glu 

c10:0559883 YJR066W TOR1 468 T>C T-E; C-A,W,S E synonymous 156 Pro>Pro 

c10:0559922 YJR066W TOR1 507 A>G A-E; G-A,W,S E synonymous 169 Leu>Leu 

c10:0560828 YJR066W TOR1 1413 A>G G-W; A-A,E,S W synonymous 471 Leu>Leu 

c10:0562764 YJR066W TOR1 3349 T>C C-S; T-A,E,W S missense 1117 Ser>Pro 

c10:0562775 YJR066W TOR1 3360 G>A G-E,W; A-A,S  synonymous 1120 Arg>Arg 

c10:0563075 YJR066W TOR1 3660 T>C C-S; T-A,E,W S synonymous 1220 Ser>Ser 

c10:0565712 YJR066W TOR1 6297 G>A A-S; G-A,E,W S synonymous 2099 Val>Val 

c10:0565724 YJR066W TOR1 6309 G>A A-S,A; G-W,E  synonymous 2103 Lys>Lys 

c15:0260399 YOL034W SMC5 477 G>A G-E; A-A,S,W E synonymous 159 Glu>Glu 

c15:0260841 YOL034W SMC5 919 G>T T-E; G-A,W,S E missense  307 Ala>Ser 

c15:0261959 YOL034W SMC5 2037 A>C C-W; A-A,E,S W synonymous 679 Ala>Ala 
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3.4 Two-dimensional genome scan  

Epistasis QTL scan were performed for F12 segregants under DOX treatment. 

The scantwo pipeline was used to identify the significant QTL pairs with 

interaction effect under shmootl and R/qtl (Broman, et al., 2003). 1000 times 

permutation test and significant level 0.001 were used for the analysis. Due to 

the large sets of QTL pairs, only the pairs with highest LOD in each chromosome 

and not shown in the single scan were summarised. Apart from the QTLs involved 

the present genes in additive effect, almost all the largest interaction effect were 

targeted the locus at 204507 base pair on chromosome III associated with 

multiple markers. These markers were missed in the single QTL scan. This locus 

is linked to gene TAF2 which is housekeeping factor and involved in RNA 

polymerase II transcription (Tora, 2002), (Weiss, et al., 2018). Phenotype effect 

were further compared under two markers’ allele combination (Figure 3-6). 

Although it is not known for multiple parental lines whether the epistasis effect is 

positive or negative, Figure 3-6 shows the clear non-additive effect between 

TAF2 and other genes allele.  Table 3-7 summarised the QTLs interaction that 

contain TAF2. Among the markers interacting with TAF2, 5 genes (LDS2, CAK1, 

CIN8, DCR2, ALK1) were shown relatedness with ATP binding and cytoplasm 

that might indicates coordination between them involved in response to stress 

(Shalem, et al., 2011). The founders’ alleles were further traced back to check if 

there is any founder predominance. SA an WA present in most alternative alleles 

compared to reference and NA, WE also contributed some markers alternative 

allele. For marker c03:0204507, the allele T among segregants are inherited from 

NA, WE and allele A inherited from WA and SA. For marker c16:0026869, the 

allele A among segregants are inherited from WA, NA and allele G inherited from 

WE, SA (Table 3-7). 
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Table 3-6 Lists of two genome scan results with YCR042C 

Epistasis CHR1 and CHR2 are the location of chromosome for each marker. Peak 1 and Peak 2 

are the peak marker ID. Peak 1 gene and Peak 2 gene are the genes that peak marker located 

in. Full LOD is the LOD scores for two genome scan. 

 

 

Table 3-7 list of alleles of markers with founder information 

Marker Gene feature Allele Frequency REF ALT 
c04:0624565 YDR089W 0.22 T SA-A 
c05:0037041 YEL061C 0.89 C WA-T 
c06:0079038 YFL029C 0.36 G WA-A 
c07:0455007 YGL021W 0.31 G SA-A 
c09:0197949 YIL088C 0.65 A SA-G 
c10:0162714 YJL132W 0.26 G NA-A 
c12:0848842 YLR361C 0.75 A WE-G 
c14:0043498 YNL315C 0.71 C NA-T 
c15:0242488 YOL047C 0.25 T WA-C 
c16:0026869 YPL272C 0.45 G WA, NA-A 
c01:0169629 YAR015W 0.28 T SA-C 
c03:0204507 YCR042C 0.57 T WA, SA -A 

 

  

CHR1 CHR2 Full LOD Peak 1 Peak 1 gene Peak 2 Peak 2 gene 
3 4 50.80712 c03:0204507 YCR042C c04:0624565 YDR089W 
3 5 41.53163 c03:0204507 YCR042C c05:0037041 YEL061C 
3 6 40.67485 c03:0204507 YCR042C c06:0079038 YFL029C 
3 7 48.10782 c03:0204507 YCR042C c07:0455007 YGL021W 
3 9 45.92585 c03:0204507 YCR042C c09:0197949 YIL088C 
3 10 49.89025 c03:0204507 YCR042C c10:0162714 YJL132W 
3 12 48.68101 c03:0204507 YCR042C c12:0848842 YLR361C 
3 14 43.61631 c03:0204507 YCR042C c14:0043498 YNL315C 
3 15 48.90262 c03:0204507 YCR042C c15:0242488 YOL047C 
3 16 51.60865 c03:0204507 YCR042C c16:0026869 YPL272C 
1 3 42.07359 c01:0169629 YAR015W c03:0204507 YCR042C 
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c03:0204507 × c04:0624565 

c03:0204507 × c05:0037041 
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c03:0204507 × c06:0079038 

c03:0204507 × c07:0455007 
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c03:0204507 × c09:0197949 

c03:0204507 × c10:0162714 
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c03:0204507 × c12:0848842 

c03:0204507 × c14:0043498 
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c03:0204507 × c15:0242488 

c03:0204507 × c16:0026869 
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c03:0204507 × c01:0169629  

Figure 3-6 Effect plots of marker alleles 

Average phenotype value was calculated for each combination of allele between two markers. X 

axis is the allele for c03:0204507, y axis is treatment ratio. Red lines are for allele 1 in the other 

marker and blue lines are for allele 2 
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3.5 Discussion  

In this chapter, the data for 19 different treatments on 15217 bi-allelic markers of 

the 12th generation population were analysed. Growth phenotypes were taken at 

max slope and the growth ratio in the end point of each experiment compared 

between control and treatment. In F1 population of the 6 groups used in Chapter 

2, the genomes for each group have two parental backgrounds. In F12 

population, four parental backgrounds were all included. Moreover, multiple 

rounds of intercross were applied to produce F12 population which gave higher 

recombination chances than F1s (Cubillos, et al., 2013). This provides the 

genome of F12 population more diverse because of the genomes are in high 

resolution with more genotype features than F1. The genotype data for each 

group in F1 has 96 strains for QTL analysis with 179 markers where F12 has 166 

strains with 15217 markers. The large number of markers makes F12 population 

with the high sensitivities for QTL mapping and can map the QTLs finer to locate 

genes. 

 

This emphasis of this chapter is on potential QTL overlaps among different 

agents in F12 segregants. QTL mapping in F12 multi-parental lines demonstrates 

the ability to explore the larger range of phenotype distribution and genetic 

diversity. Under DOX treatment, the total QTL number detected in the F12 

population is greater than the F1 population. A limited number of overlaps 

presented between the F1 and F12 analyses. Epistasis analysis were performed 

for DOX with F12 segregants. Housekeeping gene TAF2 presented in the two-

dimensional QTL scan but missed in the single QTL output. TAF2 also targeted 

pathways of degration as F1 targeted. The functions of QTLs are overlapping 

with F1, such as DNA damage pathway related genes. This suggests that the 

phenotype is likely affected by the coordination for the regulation of multiple 

genes. Also, the change of environment might affect the strain growth with 

complex mechanisms, even the similar agents with different concentration the 

response could achieved differently. The high recombination rate of F12 
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population not only increases the genetic diversity, but also improves the 

detection of QTLs.  

 

Under all the different agents, there is no single gene that appears as overlapping 

QTL. The complexity underlying QTLs affecting phenotypes makes the possibility 

of having one gene accounting for a certain phenotype very low. Nevertheless, 

overlapping gene functions exist across agents that have the similar effects. For 

all genotoxin agents, DNA damage repairing related genes were identified. This 

suggests that genetic background for F12 segregants have distinct response to 

the change of environment, which are important for implicating QTL results. The 

result also means that the overlapping genes might have a seeming unrelated 

function to the response, but the function could affect the organism response 

indirectly. The most nested overlapping gene NRP1 among all agents is an RNA 

binding protein which might be involved in ribosome biogenesis. Ribosome 

biogenesis plays an essential role in growth control and the coordination in the 

cell-cycle in yeast and all life (Lempiäinen & Shore, 2009). A recent study 

confirmed that ribosome biogenesis has an essential association to cancer with 

multiple interactions with other factors (Penzo, et al., 2019). This suggests that 

ribosome biogenesis could be a causal factor underlying molecular mechanisms 

of cancer. It is interesting to notice that for the same agent, different 

concentrations can lead to very different QTL detection sets. In a previous study, 

the drug haloperidol is highly dose-dependent which caused the genetic loci 

identified in only low doses or high doses (Wang & Kruglyak, 2014). This 

suggests that different doses of treatment could play an important role in cell 

cycle and growth control. This would affect processes like personalised medicine, 

in a way that a certain phenotype could be triggered by accurately controlling the 

dosage of a medicine.   

 

The analysis presented here only considered the max speed and the end point 

growth at 64 hours. The growth of a few strains under high concentrations of 

agents were extremely suppressed without growth and some of the strains 

reached the same level in the end time but exhibited different patterns during 
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growth. The change in dynamic time cannot be considered only by the max speed 

and the end point growth rate. It is worthwhile to take consideration of multiple 

time points so that if the QTL detection during each stage is different from the 

end point, the underlying genetic information could be further gained. The 

relationship between genes that are involved in different stages might be 

identified through the comparison over many time points. In Chapter 5, temporal 

QTL analysis is performed on cancer therapy X-ray radiation. 
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Chapter 4 Identifying potential causal variants 

within QTL regions 

4.1 Introduction 

Through the analysis performed in Chapter 3, a large number of QTL intervals in 

the F12 generation under different agents was identified at the gene level with 

narrow QTL intervals on average of 2400 bp wide. The large number of QTL 

mappings allows the identification of shared genomic features or regions 

associated with yeast growth diversity under different agents. However, when 

there is a large number of QTL intervals identified for an agent, it is challenging 

to distinguish the causative markers from genes. By setting the level of 

significance strictly, only top rank markers with large LOD values will be identified. 

In addition, it is possible that the SNP markers were strongly correlated with high 

effect markers located in the adjacent region, resulting in indirect but significant 

associations between these adjacent locus and phenotype changes. The causal 

variation has a risk of not being the top-ranking significant markers with large 

LOD values having small effects in reality. Validation of all candidate genes in the 

intervals is unrealistic. Although the 12th generation multi-parental segregants 

have greatly reduced the linkage disequilibrium between adjacent genes among 

the population, there are still haplotype blocks spanning one or more genes. 

When these markers were screened as genotype attributes to find associations 

with phenotypes, QTL analysis is not able to distinguish similar distributed data 

with different actual effects. 

 

For better understanding the correlation between the genotype marker in the F12 

population, three types of correlation tests (absolute Pearson, Centralised 

Normalised Hamming Correlation Coefficient, and Relative Information Gain) 

were applied on the bi-allelic genotype attributes. From these correlation tests, 

moderate linkage clusters among adjacent regions were identified along 

chromosomes. A few of strong correlation were also shown between markers 
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located on different chromosomes. To solve this complexity and to locate the 

causative genes for validation, a segmentation based detection method was 

proposed to determine the causal association of a genomic region and pick the 

peak that most associated with the trait in the cluster for yeast growth based on 

the QTL output. Causal QTL mapping was performed on the four genotoxin 

agents HU, MMS, Phleomycin and Paraquat for the end growth rate where large 

numbers of QTLs were identified in the previous chapter.  

 

4.2 Materials and Methods 

4.2.1 Phenotyping and Genotyping 
Phenotype data and genotype data were the identical sets that explained in 

Chapter 3 for 12th generation segregants. 

4.2.2 Marker correlation analysis among F12 segregants 
For evaluating the correlation between markers in F12 segregants, three distance 

methods: Pearsonss correlation coefficient, centralised normalised Hamming 

correlation coefficient and Relative Information Gain were computed. These are 

described for the analysis of marker interaction in (Mirkes, et al., 2015).  

 

For the marker genotype data in F12 segregants, two random values X and Y 

with values 1 and 2 for representing bi-allelic markers. Number of observations 

in this data in n. The ith observation is (xi, yi) and following notation: 

• nx is the number of ones in all observations of random variable X.  

• ny is the number of ones in all observations of random variable Y.  

• n1 is the number of observations with xi = yi = 1. 

• n2 is the number of observations with xi = yi = 2.  

• pxy is the fraction of observations with xi = yi = 1. 

• px is the fraction of observations with xi = 1. 
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• py is the fraction of observations with yi = 1.  

 

(a) The absolute Pearson’s correlation coefficient  

 

For two random variables, the PCC is 

𝜌 =  
𝑐𝑜𝑣(𝑋, 𝑌)

𝑆𝐷(𝑋)𝑆𝐷(𝑌)
 

Then the absolute PCC is  

𝑟 =  ቮ
𝑛1
𝑛  −  𝑝𝑥𝑝𝑦

ඥ𝑝𝑥(1 −  𝑝𝑥)𝑝𝑦(1 −  𝑝𝑦)
ቮ 

(b) Centralised Normalised Hamming Correlation Coefficient (CNHCC) 

 

CNHCC can be wrote as  

𝐶𝑁𝐻𝐶𝐶(𝑥, 𝑦) = 4(𝑝𝑥𝑦 −  𝑝𝑥𝑝𝑦) 

The absolute CNHCC is 

ℎ =  ȁ𝐶𝑁𝐻𝐶𝐶(𝑥, 𝑦)ȁ 

(c) Relative Information Gain (RIG) 

 

RIG is based on the entropy function which can be defined as  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) =  −𝑝𝑥 log 𝑝𝑥 − (1 −  𝑝𝑥) log(1 − 𝑝𝑥) 

𝑅𝐼𝐺 =  
𝐼𝐺(𝑋ȁ𝑌)

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋)
=  

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋) + 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑌) − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋𝑌)
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑋)

 

4.2.3 QTL analysis and causal QTLs detection pipeline 
QTL analysis results were the single scan outputs for end point growth rate 

obtained from the chapter 3 for HU, Phleomycin, MMS and Paraquat. LOD score 

for each marker were used as input for identifying clustering. Changepoint 

analysis is used for detecting single or multiple changes within a given sequence 

which is matching the aim of this study. The analysis was performed by 

changepoint package in R with function cpt.var with method PELT algorithm 

(Killick & Eckley, 2014). The peak markers in the each detect clusters were 

selected for effect estimation.  
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4.3 Results 

4.3.1 Correlation shown within chromosome  
For the correlation test between different markers, three types of distance 

information Pearson distance, Hamming distance and Relative Information Gain 

(RIG) were applied. The clusters with obvious relationship are displayed for each 

distance method and they exhibited similar cluster patterns (Figure 4-2). As the 

same information could be shown for the correlation of markers, only the Person 

correlation was used in the summary for this section. The average correlation for 

each chromosome level (e.g. chromosome I vs chromosome II) was calculated 

and shows that markers along the same chromosome are more correlated than 

markers between chromosomes. Among all the comparisons, chromosome I and 

chromosome III showed strong correlation among markers within with an average 

of 0.14 (Figure 4-1). On chromosome I, markers clustered into 4 major correlation 

groups where the adjacent regions exhibited higher association of the markers 

than those located in non-adjacent regions. This shows that the major clusters 

could be potentially consisted of nested subgroups. The nesting could be 

obviously detected in chromosome III and chromosome VI (Figure 4-3). Notably, 

the largest chromosomes in S. cerevisiae are chromosome IV, XV and VII. The 

average correlation for these chromosomes is not obviously high, but the 

adjacent region also shown relationships into clusters (Figure 4-4). In addition, 

the markers from different chromosomes were also shown high correlation where 

two regions were detected between the subtelomere region in the right arm of 

chromosome X (c10:0737966-0737980) and the subtelomere region in the left 

arm of chromosome IV (c04:0018180-0027090). The genes involved in these two 

regions were MPH3 and AAD4. 
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PCC CNHCC RIG 

Figure 4-1 Heatmap of correlation between each marker in Chromosome I 

Three distance methods were calculated and interpreted through R. Color from red to black 

indicated high correlation between the pair of markers. 

Figure 4-2 Average correlation score across chromosomes 

For the same chromosome pair, same markers correlation was not counted into. The score 

from 0 - 0.15 coloured in white to dark blue. The grid with darker colour indicated a higher 

degree of correlation. 
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(a) chromosome III 

(b) chromosome VI 

Figure 4-3 Heatmap of PCC correlation between each marker in  

Chromosome III and VI. 
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(a) chromosome IV 

(b) chromosome XV 
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4.3.2 Assessing QTL features clusters  
Through the checkpoint model, the QTL outputs were split into different groups. 

For HU, 194 QTLs were identified originally. With checkpoint segmentation, the 

QTL detection was reduced to 67 while maintaining the major genes of interest. 

For MMS, 52 QTLs were chosen from the original 160. 46 QTLs of 140 QTLs 

were selected for Phleomycin. Among the clusters, some peak loci were solitary 

in significance. In these segments, the gene annotated by the solitary peak 

remained in the result sets. For example, In the analysis of the QTLs for MMS 

treatment, MFG1(YDL233W) was shown clustered in the narrow region with only 

one marker having significance. 

  

(c) chromosome VII 

Figure 4-4 Heatmap of PCC correlation between each marker  

in large length chromosomes 
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In addition, there are clusters including multiple LOD peaks that emerged in the 

adjacent region. In this case, the redundant markers which carry similar gene 

information were filtered. Only the peak among the clustering region was 

selected. For example, in the analysis of HU, chromosome VII has 8 QTLs with 

significance in the region from 308830 to 344395 detected as a result of these 

QTLs being located closely to the centromere region (Figure 4-6). The selected 

markers in this cluster region have the minor allele frequency from 0.31 to 0.33. 

High linkages were shown between the peak marker at 337618 and other 

markers in this region (0.81 – 0.94). After applying the methods, the detection 

was reduced to the peak marker which contains the gene of interest 

SPC105(YGL093W). 

  

MFG1 

Figure 4-5 LOD plots of chromosome IV with feature clusters for analysis of MMS 

The black sharp lines plotted the LOD score for each marker under chromosome IV. The red 

dashed horizontal line is the LOD threshold under significant level at 0.05. The red vertical lines 

are the segmentation borders for the cluster. The loci of MFG1 is pointed with arrow. 
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Figure 4-6 LOD plots of chromosome VII with feature clusters for analysis of HU 

Genomic positions are shown on the x-axis and LOD value for each marker on the y-axis. The 

cyan box highlighted the clustering region. Clusters were segmented by the red vertical lines. 
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4.4 Discussion  

From the above analysis, multiple clusters are present in adjacent regions for 

correlation across the genome. In many cases for QTL analysis, multiple LOD 

peaks emerged in the same vicinity. Hence, it is necessary to consider QTL 

identification within clusters. Using the assessment of QTLs with the changepoint 

model, the QTL numbers have been greatly reduced so that the experimenter 

can further validate genes of interest with a narrowed but still potentially causative 

sets of genes. This method offered a modelling-based selection for large sets of 

QTL output, which keeps more information than just increasing the strictness of 

the significance level. This method eliminated redundant peak information while 

keeping the significance level, which allows markers having lower LOD scores to 

be retained. From current validate results, RAD57 and BMH2 detected from the 

reduced set of genes have been validated through reciprocal hemizygosity 

analysis (Almayouf, 2018). However, the efficiency of this method needs to be 

verified by further validation such as through gene deletion experiments.  
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Chapter 5 Temporal quantitative trait locus 

analysis for yeast response to cancer 

therapies 

5.1 Introduction 

Recent advances in high-throughput techniques for DNA sequencing and 

phenotyping have greatly facilitated the identification of genetic variants 

underlying traits at a genome-wide level (Wilkening, et al., 2014). A great deal of 

research has been focused on DNA damage responses to work out possible 

therapies for human complex diseases (Rainey, et al., 2008), (Massey & Jones, 

2018), (Pilzecker, et al., 2019). Because of the complexity of quantitative traits, 

analysis in humans and animal models is extremely challenging. Using yeast to 

study the response to therapies gives the opportunity to control both time and 

space from an experimental perspective more efficiently. Growth in yeast is an 

important complex trait for measuring performance in different environments. 

Dissecting the genetic basis of growth in yeast is a major challenge as multiple 

factors are involved in growth. Usually, growth in yeast is studied through 

measurements of the final growth density or growth rate at maximum doubling 

time. However, growth is a time dependent feature that is dynamic in the life of 

yeast and genetic variants could drive phenotypes at different time stages rather 

than the just the end of the growth profile. For example, a recent study shows 

that the variants could regulate gene expression differences over time (Strober, 

et al., 2019).  

 

In the last two chapters, the analysis revealed that a few of the QTLs were 

identified for the differences of growth speed (rate) but were not associated the 

final growth level as all samples reached a similar level of growth at the end. Only 

focusing on final growth could therefore potentially lose genetic information about 

different responses to the environment over time. This chapter aims to explore 
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time dependent QTL mapping for the growth development of the F12 yeast 

strains over 65 hours under X-ray irradiation. With the large number of markers 

in F12 multi-parental lines (15,217) and the fine time scaling for growth phenotype 

(every 20 minutes), the QTL temporal structure for yeast growth with X-ray 

radiation was mapped. Surprisingly, some genetic variants only exhibited 

significant associations at certain periods of time rather than continuously through 

the experiment. Among the QTLs detected for X-rays, most of the genes that 

respond to radiation show their effects in the earliest time points after radiation 

with the significant association disappearing later during growth, becoming 

undetectable at the end point. Overall, the results suggest that detecting QTL 

mapping under different time points might be an effective way for assessing the 

genetic variants that contribute to yeast growth in response to various 

treatments/environments. 

5.2 Methods and Materials 

5.2.1 Experiment Preparation and Phenotyping 
The experimental data for temporal QTL analysis were generated by Danae 

Georghiou. Control experiments are arrayed at 384 densities on YPD agar media 

with normal growth. Treatment experiments are grown on the same media with a 

treatment added. Growth of the 4 founders was also recorded under control and 

treatment conditions for comparative analysis. For the X-ray experiment, an X-

Strahl instrument was used for delivering the X-ray treatment. One day after 

printing onto soft agar arrays the cells were incubated for 24hrs in 4°C to 

suppress growth. Straight after printing onto the experimental plate, the array was 

placed within an ice bucket to slow enzymatic DNA repair during the course of 

irradiation. The ice-treated plate was placed on the irradiation stage central in the 

30cm diameter and at 30cm perpendicular to the X-ray source. A 1mm Cu filter 

was applied to divert the low energy produced photons while keeping the high 

energy photons to irradiate the samples. The treatment regime was: 300kV 

10mm for 60mins to reach a total dose of 200Gy. Two concomitant regimes were 

applied to reach the total dose of 400Gy. 
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The growth of yeast colonies was measured by absorbance (OD value) and 

recorded every 20 minutes. Control and treatment experiments were run for 

approximately 65 hours in a micro-plate reader. The treatment measurement 

used for time-dependent QTL analysis is the treatment ratio which is the 

calibrated treatment phenotype value in each hour compared to the calibrated 

control OD value in each hour. Standard QTL analysis uses the treatment ratio 

of the final OD values.  

5.2.2 Genotyping 
The genotype data were the identical marker sets explained in Chapter 3 for the 

F12 yeast population. Strain AESW12fc232 was excluded from the strains list for 

the analysis due to a technical problem where the apparent measurements were 

outside the limits of the reader. The irregular growth was likely a contamination 

of this strain with a fast growing bacteria during the experiment (Figure 5-1). 

  

Figure 5-1 Growth curves of F12 segregants with raw readings 

The yellow growth curve is the strain AESW12fc232 which illustrates the irregular growth 

compared to others and over the plate reader recording limits. 
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5.2.3 QTL analysis and bioinformatics analysis 
The raw growth curves were plotted in R by illustrating the growth under each 

time point (20 minutes). Smoothing was applied with mean filter and cubic spline 

for the average growth value in each hour to reduce the fluctuation. Single QTL 

analysis was performed for phenotype data in each hour. The parameters for QTL 

analysis were kept the same as in Chapter 3. Comparative analysis was 

performed in each hour. QTLs appearing in overlapping times and throughout the 

whole growth process were selected as candidates for downstream analysis. 

Growth curve calibration analysis was performed with R scripts on a local 

computer which is supplied in Appendix A. QTL analyses were performed on 

ALICE with 16 threads with R scripts. The QTL analysis output was recorded in 

the GACT research Rdrive. For finding the function and possible pathways, 

YeastMine and DAVID 6.8 were used for analysing the candidate lists with 

homologue identification and functional annotation clustering (Dennis, et al., 

2003). GeneMANIA was used to find connections among genes (Warde-Farley, 

et al., 2010). 
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5.3 Results 

5.3.1 Growth behaviour varies in the F12 population and 
founders under X-ray and cold temperature conditions 

Growth measurement is a key component for yeast analysis as yeast is 

unicellular organism. PHENOS records the differential growth curve of the F12 

segregants every 20 minutes over 65 hours generating 195 growth OD values for 

each segregant. The readings of growth recorded by PHENOS shows that both 

F12 offspring and founders exposed to X-ray radiation exhibit more variability 

than the standard growth during growing phase but reached nearly the same level 

in stationary phase. Figure 5-2 illustrates the growth curves for founders under 

cold temperature and 400Gy X-rays with raw readings obtained from PHENOS. 

From the comparison among all four founder’s growth, Wine European strains 

have a better performance on average both under control and treatment 

conditions. Different responses among the four founders were also seen from the 

comparison between the growth under control and X-ray radiation as the speed 

and duration of growth are very distinct among them. When looking at the growth 

curves of the F12 segregants, a similar trend with clearer variance were seen in 

the comparison between control and treatment (shown in Figure 5-4). After 

removed the strain AESW12fc232 (coloured in yellow in Figure 5-1), the growth 

phase looks cleaner with growth varying after radiation and reaching stationary 

phase slower than the control. However, the readings from the plate reader 

exhibits oscillation at stationary phase for all the populations. This could be 

caused by microscopic bubbles. To clean the growth data for analysis and 

comparison over time, calibration and correction was applied to raw PHENOS 

records. For further comparison of temporal QTLs at hourly intervals, the average 

value in each hour was calculated and smoothing by cubic spline was applied to 

reduce the fluctuation in stationary phase. Each strain has 65 hourly interval 

records for growth with the initial growth time point subtracted for calibration. 

Calibration figures for segregants under control and treatment conditions are 

illustrated in Figure 5-3. Furthermore, in order to perform temporal QTL analysis 
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for detecting the dynamic responses to X-rays, the treatment ratio measures were 

computed as a phenotype for each hourly interval. The treatment ratio obtained 

as the average treatment OD value in each hour compared to the average control 

OD value allows the growth dynamics to be assessed as well as reduce the effect 

of cold temperature by the records of control growth. Figure 5-6 shows the 

illustration of treatment ratio over the growth developing time. From the figure for 

illustrating the growth ratio patterns, major variance is seen in the early stages 

up to 30 hours and with the remaining time the ratio is around 1.0 without much 

variance. 
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(a) Four founders’ growth curves under control 

(b) Four founders’ growth curves under X-ray Treatment  
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(c.1) NA 
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(c.2) WE 
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(c.3) SA 
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(c.4) WA 

(c) Growth curves of each founder under control (top) and treatment (bottom) 
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Figure 5-2 Growth curves of founder strains. 

(a) - (b) stand for the plots of all founder strains in replicates growing on control and 

treatment with X-ray radiation. (c) stand for the plots of each founder strains with replicates 

((c.1) NA, (c.2) WE, (c.3) SA, (c.4) WA). For each sub section in (c), growth under control 

are shown on the top and growth under treatment are shown in the bottom for each founder 

strain. In subgraph (d), the average growth of each founder under control and treatment. 

The growth curves of control are coloured in black. The treatment curves are in red. 

(d) Average growth of each founder 
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(a) Control 

(b) Xray treatment 

Figure 5-3 Growth curves of F12 segregants 

(a) stand for the plot of F12 strains growing with control condition and (b) stand for the plot of 

F12 strains growing with treatment condition that with X-ray radiation.   
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(a)  

(b)  
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(c)  

(d)  

Figure 5-4 Calibrated growth curves of F12 segregants 

(a) stands for the plots of F12 strains OD values with control condition in each hour. (b) stand 

for the smoothed curves of F12 strains OD values under control. (c) stands for the plots of F12 

strains OD values with treatment condition in each hour. (d) stand for the smoothed curves of 

F12 strains OD values under treatment. 

 



153 

Figure 5-5 Dynamic developments of growth rate for each F12 segregants 

Growth rate was calculated under each hour. 
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Figure 5-6 LOD plots for end point growth rate phenotype 

QTL analysis mapped only a few markers as significant for the treatment ratio at the end 

of growth. The red line was the LOD threshold at 0.05 significance level. (a) is the 

Manhattan plot of the LOD scores on the y-axis with the distribution at genome level in 

16 chromosomes with black and grey points. (b) plots the LOD score and Map position 

for each marker of the chromosome with peak LOD. 
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5.3.2 Standard QTL analysis detecting a few markers for 
phenotypic variation in response to X-ray treatment 

As PHENOS provides the treatment ratio at the end point, QTL analysis was 

generated using end point treatment ratio as a phenotype to study the response 

of the F12 population under 400 Gy X-rays through shmootl/R. Figure 5.6 

illustrates the QTL results over the whole genome and interval mapping of the 

chromosome with peak LOD. 31 markers included in 27 QTL intervals were 

identified across the genome with LOD threshold 4.35 based on 1000 times 

permutation at 0.05 significant level. Table 5-1 summarises the significant 

markers with the region of 1.5 LOD drop on each side of the peak that were used 

to define the QTL intervals. The range of each interval was determined and 20 

genes with significant markers in them are listed. The peak marker across the 

genome that has the largest QTL score was located on chromosome XVI within 

gene MSY1 (YPL097W) which encodes a mitochondrial tyrosyl-tRNA synthetase 

(Arnez & Moras, 1997). Besides the peak gene, GCV1 (YDR019C) also has a 

role in the mitochondrial. In addition, three genes that located on chromosome IV 

have been confirmed that are related to responses to DNA damage and 

responses to stress. RAD61 (YDR014W) has been studied confirming the 

sensitivity to X-ray radiation (Jordan, et al., 2007) and is involved in the regulation 

of chromosome condensation. VPS54 (YDR027C) is needed for mitosis after 

checkpoint arrest caused by DNA damage (Dotiwala, et al., 2013). Hence further 

gene deletion for verification will be performed to test the responses among these 

selected genes among founders. 
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Marker Name Chromosome Peak LOD Start (bp) End (bp) Peak QTL Features 
c04:0288588 IV 4.41 285051 290077 YDL095W 
c04:0475724 IV 4.50 475233 480846 YDR014W 
c04:0480895 IV 4.50 480887 484026 YDR017C 
c04:0484955 IV 5.13 484050 488180 YDR019C 
c04:0495303 IV 4.45 492782 496589 YDR027C 
c04:0522237 IV 4.36 521639 523401 YDR035W 
c06:0067330 VI 4.94 66607 67487 YFL034W 
c06:0070033 VI 4.94 69321 70372 YFL033C 
c08:0050240 VIII 4.90 49600 50710 YHL028W 
c08:0051470 VIII 4.69 50752 53336 YHL027W 
c10:0064516 X 5.36 63189 64596 YJL197W 
c10:0465678 X 4.38 465531 465795 YJR016C 
c12:0226485 XII 4.36 226353 226566 YLR039C 
c12:0229211 XII 6.84 229136 229597 YLR040C 
c12:0236872 XII 4.53 236638 237673 YLR045C 
c13:0314523 XIII 5.07 312892 315485 YMR019W 
c13:0316612 XIII 5.07 316589 317880 YMR020W 
c15:0440013 XV 4.69 438841 442178 YOR059C 
c16:0124331 XVI 4.39 118878 125111 YPL226W 
c16:0365403 XVI 9.23 363218 367091 YPL097W 

 

Table 5-1 List of genes present within the QTL intervals for treatment ratio 

Peak markers were highlighted in the marker name column. Gene features were annotated based 

on the reference genome S288C and the genes that have been studied related to DNA damage 

were highlighted in bold. 
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5.3.3 Temporal QTL analysis reveals time-dependent markers 
occur in different stages of growth after X-ray treatment 

As for the growth curves shown in section 5.3.1, the growth of treatment under 

X-ray has more variance than the control over time. To investigate the dynamic 

association between growth difference and markers, QTL analysis was 

generated for growth dynamics in each 64 hour interval to define the significant 

QTL intervals over time. Different numbers of QTLs were detected in different 

hourly intervals (shown in Figure 5-7). An interesting trend was observed on the 

QTL numbers with 2 peak stages of time intervals accumulating large numbers 

of QTLs. The first peak starts from 10 hours and ends at 20 hours. The second 

peak is between 42 hours and 48 hours. 283 markers were identified as 

significantly detected QTLs across all 64 hours (Figure 5-8). Different QTLs were 

detected during the maximum growth rate stage and stationary phase of growth 

for F12 segregants. For QTL mapping over the whole period of growth, the 

maximum number of QTLs was detected at 13 hours. In total, 87 markers were 

significant for contribution to this hour’s growth pattern. 

Figure 5-7 Number of QTLs for yeast growth at different times 

y-axis is the QTL numbers on and the time point in each hour on x-axis. Each point displays the 

QTL number located among whole genome in 16 chromosomes which indicate different QTLs 

were detected in different hours in the F12 population. The bar with largest QTL number was 

highlighted with red colour. 
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Figure 5-8 Heatmap of LOD value for all the QTLs identified over 64 hours. 

Colour intensities represent LOD scores scaled by the maximum LOD value. The loci under 

threshold are colored in white and significantly detected QTLs loci in red. Chromosomal borders 

are indicated by horizontal lines. 
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For these 87 QTLs, the genes that included the peak markers which shown 

significance were annotated. 1.5 LOD interval was further delimited for defining 

the QTL interval boundary. A few of genes that are already known to be involved 

in responses to DNA damage and DNA repair processes are highlighted in the 

Table 5-2.  

 

Other than RAD61 which was detected in the standard QTL analysis for the end 

point growth, 10 genes where the peak markers sit and 5 genes included in the 

interval range (summarised in Table 5-2) having a role in DNA replication were 

detected at 13 hours growth but did not exhibit a significant association at the end 

point of growth. Among the QTL intervals, the peak QTL interval was mapped to 

the chromosome XIII from 257090 to 274871 which linked to the gene MIX17 

close to the centromere region. This might indicate the influence of X-ray 

radiation affecting chromatin structure. In addition, another QTL with a large LOD 

score was also located on chromosome XIII from 228514 to 233147 where three 

genes NSE5 (YML023C), APT1 (YML022W), UNG1 (YML021C) were included 

in this range. The peak marker was involved and located in the coding region of 

UNG1. UNG1 is the essential gene for repairing of uracil base damage in DNA 

(Chan, et al., 2012). Moreover, NSE5 is a component of the SMC5/6 complex 

involved in the DNA repair pathway and DNA damage responses (Xu, et al., 

2013). There is significant evidence shown that SMC3 (YJL074C) found in the 

interval is needed for repair of double-strand breaks by sister-chromatid 

exchange (SCE) (Cortés-Ledesma & Aguilera, 2006). Four genes PSY4 

(YBL046W), EDE1 (YBL047C), RRT1 (YBL048W) and MOH1 (YBL049W) were 

located in the QTL interval on chromosome II where the peak is at 129943 bp. 

The peak marker is in the coding region of EDE1 which related to regular non-

apoptotic cell death (Kuilman, et al., 2015). Gene PSY4 in yeast involves in the 

regulation of DNA damage checkpoint (Fedorov, et al., 2013). This gene has a 

human homolog, PPP4R2, which is an essential gene involved in DNA double-

strand break repair in human cell lines (Lee, et al., 2010).  SIZ1 (YDR409W) 

shows evidence in assisting the survival of DNA damage (Horigome, et al., 2016)  
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RTT109 (YLL002W) is involved in the cellular response to DNA damage and is 

essential for maintenance after repairing double strand DNA break (Tsabar, et 

al., 2016). From the study in Han J, et al. 2007, this gene also has genetic 

association with genes that are involved in DNA replication. Interestingly, among 

the genes selected by the peak marker, 7 genes NOC3 (YLR002C), ECM29 

(YHL030W), RIX1 (YHR197W), ECM5 (YML176W), DOM34 (YNL001W), IQG1 

Marker Name Chr Peak LOD Start (bp) End (bp) QTL Features 

c02:0010136 II 4.79 10038 10463 YBL107C 

c02:0129943 II 4.84 126921 133779 YBL049W YBL048W 
YBL047C YBL046W 

c04:1290886 IV 5.80 1288071 1292138 YDR408C YDR409W 

c04:0476181 IV 4.64 475724 477394 YDR014W 

c05:0184684 V 5.21 181621 186649 YER013W YER014W 
YER014C-A YER015W 

c08:0042255 VIII 5.16 37876 42291 YHL032C YHL031C 
YHL030W-A YHL030W 

c10:0303490 X 5.23 300176 303556 YJL074C YJL073W 

c12:0147547 XII 5.14 146262 149617 YLL002W YLL001W 

c13:0230682 XIII 5.91 228514 230823 YML023C YML022W 
YML021C 

c13:0593285 XIII 4.63 591204 598520 YMR165C YMR166C 
YMR167W YMR168C 

c13:0612492 XIII 5.81 608255 612702 YMR173W YMR173W-A 
YMR174C YMR175W  

YMR175W-A YMR176W 
c14:0628490 XIV 5.13 627710 628503 YNL001W 

c16:0090910 XVI 5.00 88567 92875 YPL243W YPL242C 

c16:0106300 XVI 7.01 104203 106953 YPL235W YPL234C 
YPL233W 

c16:0797530 XVI 6.02 797112 802249 YPR133C YPR133W-A 
YPR134W YPR135W 

c16:0889543 XVI 5.44 889063 890560 YPR175W 

 

Table 5-2 List of QTL intervals with contributed genes under 13 hours. 

Table consists QTL intervals information with the chromosome, LOD score, start position, end 

position and localised genes. Gene features are annotated based on gff file for reference genome 

S288C. The candidate genes that related to DNA damage are highlighted in the QTL features 

column. 
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(YPL242C) and DPB2 (YPR175W) are all involved in responses to DNA 

replication stress. Some markers are located in intergenic regions and adjacent 

genes are shown as having possible relevance. CTF4 (YPR135W) encodes a 

chromatin binding protein which is involved in DNA replication (Lengronne, et al., 

2006). Gene RVB2 (YPL235W) which participates in chromatin remodelling has 

association with genes that respond to DNA damage and DNA repair (Radovic, 

et al., 2007). MLH1 (YMR167C) plays an important role in DNA mismatch repair 

which is located on chromosome XIII. Furthermore, DDR48 (YMR173W) encodes 

a DNA damage-responsive protein and is found in the same QTL interval as gene 

ECM5 where the peak marker is located. The aforementioned effect might due to 

a bimodal QTL that merging the peak effect in between but it could also indicate 

that the gene DDR48 shown contribution. Hence further validation with gene 

deletion are needed to assess the role of this gene. 

 

In addition to the detection of candidate genes at 13 hours, overlap QTLs for the 

whole growth tracking for the treatment OD value were also examined. Figure 

5-9 illustrates the dynamics for the temporal changes of the LOD score in each 

marker measured at three hourly intervals (10 hours, 20 hours and 30 hours) for 

representing three growth development stages. 51 QTL intervals were identified 

at 10 hours growth rate, 49 QTL intervals for 20 hours growth rate and 40 QTL 

intervals for 40 hours growth rate. The peak markers for 10 hours and 20 hours 

were both located on chromosome XIII with the largest LOD score but sit in 

different genes. Markers on chromosome XIII at 25114 bp are in PHO84 

(YML123C) showed temporal changes with the improvement of growth that have 

the high QTL scores in the 10 hours and decrease the significance on 20 hours 

and faded out at 30 hours. The reverse trend in seen on chromosome XVI at 

365403 with no significance at 10hour and 20hour but reached peak significance 

at 30 hours. Moreover, overlaps were compared among these three time points 

as illustrated in Figure 5-10. 29 genes were shared solely between 10 hour and 

20 hour which involved 6 QTL intervals. 18 genes were shared solely between 

20 hour and 30 hour which involved in 9 QTL intervals. None of the genes were 

shared solely between 10 and 30 hours, however, there are 9 genes identified in 
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all three intervals which involved in 5 QTL intervals. The difference of overlapping 

genes in different times shows that QTLs might not only be significant 

continuously in the development of the phenotype over time but could also 

contribute in temporal stages. This indicates that the relevant genetic information 

may be missed or under represented by only looking at one time point of growth. 

Table 5-3 summarises the genes that overlapped in these three time periods. The 

functional annotation in DAVID of these 9 genes were clustered into protein 

transport and ATP binding. RVB2, GUT1 and BUD32 were related to protein 

kinase and involved in ATP binding. APL6 (YGR261C), ATG19 (YOL082W) and 

ATG21 (YPL1002) are needed for protein transport and with cytoplasmic 

functions. Besides this major QTL that was significant in most time points, there 

are some QTLs that show associations only for specific stages. As a high dose 

of X-ray radiation was applied before the growth recording, there are a few 

markers identified as QTLs involved in the recovery mode after radiation which 

have immediate response to the growth in the early time points (1-10 hours). 

Surprisingly, almost none of these markers were as QTLs in the later time points. 

The QTLs involved in the early time growth for recovering from X-ray radiation 

are summarised in Table 5-3. From the first 10 hours, two markers overlapped 

over time and the genes involved are in responses to DNA replication stress. The 

first marker is located on chromosome IV at 1328769 bp which is in the intergenic 

region between YDR431W and NPL3 (YDR432W) which encodes an RNA-

binding protein. Another marker is located on chromosome VIII at 43299 bp in 

the coding region of ECM29 (YHL030W) which is the gene shown DNA damage 

responses realising during DNA replication stress (Tkach, et al., 2012). Besides 

the QTL shown in all 10 hours, a further marker also shown overlap from 4 hours 

to 9 hours. The time overlapped marker c05:051338 as the peak localised the 

gene RAD4 (YER162C) is the radiation sensitive gene that response to DNA 

damage repair. 
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Time Period Chromosome Gene Features 
4 - 9 hour V YER162C 
1 - 8 hour IV YRD432W YDR433W YDR434W YDR435C 
1 - 10 hour VIII YHL030W 
4 - 8 hour X YJL079C YJL078C 

 

Table 5-3 List of QTLs with overlap during the early time growth. 

Gene Features were annotated. Candidate features which were shown responses in DNA 

damage were highlighted in bold. 

 

Figure 5-9 Summary of QTL intervals under 3 different time 

The UpSet graph illustrates the number of overlapping genes in 10 hours, 20 hours and 30 hours 

for X-ray treatment phenotype. Left bottom is the histogram for the number of genes that located 

by QTL intervals for 10 hours, 20 hours and 30 hours. The main histogram shows the number of 

overlaps (intersections) between each set. The first three in the main histogram with single dots 

indicated the total number of overlaps for each time. 66 genes overlapped between 10 hours and 

others. 45 genes overlapped between 20 hours and others. 33 genes overlapped between 30 

hours and others. Multiple dots with lines connection illustrate the overlap comparison in different 

sets. The histogram illustrates the number of the overlapping genes. 29 overlaps between the 

sets of 10 hours and 20 hours. 18 overlaps between 20 hours and 30 hours. 9 overlapping genes 

among 10 hours, 20 hours and 30 hours. 
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Figure 5-10 QTL mapping for growth difference between treatment and control 

Manhattan plots for 10 hour, 20 hour and 30 hour QTL output of 16 chromosomes are displayed 

in this figure. The red dash line indicates the LOD threshold for each QTL run at significance level 

0.05. Each point represents a marker with the LOD score. To trace the QTL changes among 

these three periods, the markers on chromosome XIII were highlighted with orange box. y-axis of 

the three figures are in different scale for arranging markers shown in the window. 
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5.4 Discussion 

Many analysis aspects of the temporal QTL detection of this study have been 

highlighted in the section above. Quantitative research is a fundamental 

approach for better understanding cellular processes, to determine the cellular 

role of genes through screening the quantitative changes of growth phenotypes 

in a wide variety of growth conditions for yeast. Only focusing on the end point 

growth might result in the loss of a lot of information. In this chapter, yeast growth 

was tracked in every hour to investigate the temporal association of genetic 

variants. Temporal QTL analysis provides an extra dimension to complex traits 

to gain information and potentially unravel the dynamics of growth response. As 

the study involves growth changes over time, the growth curves were calibrated 

with respect to the initial print OD value and a mean filter and cubic spline were 

applied to smooth the curves without fluctuation. The more precise phenotype 

values enabled detection of QTLs in each hour and comparison over time. With 

two dynamic features, treatment value and treatment difference, compared to 

controls, many markers were identified as QTLs where the genetic variants 

exhibited a significant contribution. Several candidate genes were identified in a 

specific time period instead of being functional over the whole growth period. In 

comparison with the standard QTL analysis for the end point growth rate, we find 

many QTLs that would be missed by only considering the end point. Another 

important objective of this study was to find related cellular process and pathways 

in response to radiation. Besides the tracking of markers, QTL intervals were 

further located and compared at different timepoints. Several candidate genes in 

the overlap regions in different times appear to be involved in DNA damage 

pathway and contribute to DNA repair. Further study can be improved to use 

Bayesian methods to learn adapted interval drop. These could also be studied in 

patients and human cell lines. Moreover, several genes involved in transcriptional 

response which might indicate the dynamic control of complex traits. There are 

also some function unknown genes identified throughout the analysis which will 

be potential genes for validation. 
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To summarise, this chapter analysed huge amount of data in genotype scale that 

involved in thousands of markers among F12 multi-parental population and 

phenotype scale that tracking growth trait in each hour. The large-scale analysis 

generated a significant amount of data regarding the responses to X-ray 

radiation. By looking at DNA damage related genes over the time series, different 

QTLs were detected during different phases of the experiment. This indicates that 

the mapping of involved trait is possibly to be changing over time. Apart from DNA 

damage response related process, a lot of other biological process could be 

affected by time and environment. Hence, the analysis shows the importance of 

tracking growth traits with temporal development. However, validation by 

experiment are needed for the candidate genes.  
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Chapter 6 Mapping QTLs for Saccharomyces 

hybrid yeasts to improve brewing solutions 

6.1 Introduction 

In the previous chapters (chapter 2, 3, 4, 5), Saccharomyces cerevisiae were 

used as model organism to study human complex traits. By using natural 

variation in 6 F1 bi-parental cross and 12th generation multi-parental segregants 

generated with four founders from SGRP, the mosaic genetic background gives 

the opportunity to understand the genetic regulation for phenotypes in yeast 

growth under environment stress. Experiments were carried out on F1 

segregants and F12 segregants using different drugs or cancer related therapies. 

A large number of significant locus were obtained through QTL analysis to show 

the complex association with yeast growth. Apart from applying yeast as model 

organism for scientific research, the earliest and most widely used application of 

yeast is the traditional production of fermenting foods and alcoholic beverages. 

Humans have been domesticating yeast for alcoholic drinks from thousands of 

years ago. Different sources with sugar can be fermented by yeast to produce 

alcohol and CO2. In recent decades, the use of yeast in industrial production for 

new biotechnology applications has grown exponentially, such as biofuels in 

energy production, and using yeast for bioremediation of the contaminated 

environments (Buijs, et al., 2013), (Ojuederie & Babalola, 2017). However, using 

yeast in the production of alcoholic drinks, such as beer and wine, remains a 

major interest.  This has prompted a lot of research in breeding and strain 

improvement for getting robust yeast for application. Stable and excellent 

performance traits are essential for the brewing industry for large scale 

fermentation, such as ethanol tolerance, cryotolerance, sugar tolerance, high 

flocculation and etc (Bokulich & Bamforth, 2013). Improving the growth and 

fermentation of yeast can improve yeast utilisation and reduce production costs.  
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In addition, interspecific hybrid between S. cerevisiae and other species in 

Saccharomyces yeast strain are commonly used in brewery industries and exhibit 

better performance in responses of stress (Borneman & Pretorius, 2015). For 

example, Saccharomyces pastorianus is a natural alloploidy yeast for brewing 

lager beer that has the genetic information of S. cerevisiae × S. eubayanus. This 

hybrid inherited advantageous features from each parent with cryotolerance and 

even outperformed its parents (Hebly, et al., 2015), (Gibson & Liti, 2015). Apart 

from hybrid strains for brewing lager beer, the natural hybrid between S. 

cerevisiae and S. kudriavzevii showed hybrid vigour that has better commercial 

performance to improve flavour and aroma in wine making (Borneman, et al., 

2012).  

 

Besides the existing natural interspecific Saccharomyces hybrids, recent studies 

have been focused on de novo interspecific Saccharomyces hybrids to improve 

brewing solutions compared to their founders (Snoek, et al., 2015), (Krogerus, et 

al., 2018). However, Because of the sterility of interspecific hybrids, it is 

challenging to perform mating to generate segregants with recombination. Dr. 

Agnieszka Maslowska, Dr. Alex Hinks Roberts from the GACT group and Dr. 

Samina Neesab from the Manchester group overcame these difficulties in 

breeding and successfully cultivated de novo interspecific yeast diploid hybrids 

between S. cerevisiae strains and other Saccharomyces species including S. 

cerevisiae × S. eubayanus, S. cerevisiae × S. kudriavzevii, S. cerevisiae × S. jurei 

under different experiment methods. The high-resolution hybrid strains in 12 

rounds of random mating with mosaic genomes were further generated and 

constructed for carrying genetic information of four parental strains where each 

species contributed 2 founder strains. For S. cerevisiae, 2 of the 4 strains in 

SGRP (NA, WE, SA, WA) were chosen as parental strains based on the largest 

growth difference under the tested condition. Each type of hybrid that carried the 

same species founders was also further constructed with mitochondria 

inheritance. For example, there are two types of yeast hybrid between S. 

cerevisiae × S. eubayanus in this study: one with S. cerevisiae mitochondria, the 

other carried S. eubayanus mitochondria. These hybrids were further screened 
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under different environment condition which are essential factors in brewing and 

fermentation. Under the different conditions, contrast population pool for 12th 

generation hybrid progeny was selected with extreme phenotypes which have 

the high fitness and poor fitness for each type of cross. With the rapid 

development of high-throughput genome sequencing, whole genome sequencing 

was applied in mapping genetic variation with complex traits under selection. To 

understand the genetic mechanisms that influence the hybrid growth 

performance and the difference response under environment stress, 36 pools in 

total were sequenced.  

 

In this chapter, the aim is to identify the genetic characterisation for the different 

performance pool under environment stress selection. The whole genome 

sequencing data for each pool pools of the extremes in arrayed progeny were 

collected. For each pool, sequence mapping with the concatenated reference and 

SNP variant calling were performed.  The reference genome of S. kudriavzevii in 

the public database was under scaffold level (6671 contigs) which was too 

fragment to guide the mapping and alignment of these de novo hybrids.  The 

genome of one founder strain S. kudriavzevii IFO 1802 was re-sequenced and 

assembled to high quality contigs to use as reference in this study. For comparing 

the allele frequency difference for each marker in contrasting fitness population 

pools (high performance pool and low performance pool) under the same 

environmental condition, pool QTL mapping analysis was applied for each type 

of hybrid through Multipool (Edwards & Gifford, 2012). 36 groups were analysed 

and various numbers of markers had significant differences between high and 

low fitness for the same selection. In this study, a large number of genetic regions 

and causal genes were revealed in close association with different responses to 

temperature, maltose, ethanol and acetic acid. The analysis reveals the complex 

factors involved in growth of interspecific hybrids under environment stress. 

These findings would provide information and validation ideas for developing 

better performance strains for brewing and industrial application. 



170 

6.2 Methods and Materials 

6.2.1 Hybrid Generation 
The fertile hybrids were generated in two strategies by Dr. Alex Hinks Roberts 

and Dr. Samina Neesab. Each cross involved two strains for S. cerevisiae and 

two strains for another Saccharomyces species. One way for generating this 

hybrid cross is firstly crossed two strains of the same species to create two 

intraspecific diploid strains, one for species A and one for species B. Then 

deleting MATα locus in the species A to create species A with mating type MATa. 

MATa was then deleted in species B to create species B with mating type MATα. 

Two interspecific diploids carried different mating time were crossed to create 

interspecific tetraploid with 4 founder strain genomes. Then diploid gametes were 

sporulated with each founder species genome. The other way for generating 

fertile hybrid is to cross two strains under different species to create two 

intraspecific diploid strain that each diploid carrying species A with MAT locus 

deletion and species B mating type either MATa / MATα. These two diploid 

strains were then crossed to generate interspecific tetraploid and sporulated into 

diploid gamers with each founder species genome (Hinks Roberts, 2019). Figure 

6-1 illustrates the strategy for fertile hybrid generation. With the fertile hybrids, 

12th generation multi-parental lines were further created through mating and 

crossing for generating wide variety of diploid hybrid segregants. In addition, each 

diploid hybrid inherited mitochondrial DNA bi-parentally inherited, but colonies 

rapidly lose one type of mitochondria, becoming homoplasmic. Hence, each type 

of cross was then designed with two group of hybrids, one group carries 

mitochondria of species A and another group carries mitochondria of species B. 

The experimental detail of the de novo yeast hybrids generation included founder 

selection and phenotyping arrays can be found in (Hinks Roberts, 2019). 
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12 rounds of 
random 
mating and 
meiosis 

Figure 6-1 High resolution diploid hybrids 

Intraspecific diploids are crossed generating a tetraploid hybrid. Sporulation produces diploid 

gametes, with crossovers occurring between sister chromosomes of the same parental species. 

F1 gametes can mate within the population creating a new tetraploid population. This is repeated 

eleven times to create a genetically diverse F12 population, with each individual genome unique, 

after extensive rearrangements between sister parental genomes. 
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6.2.2 Yeast strains and Pool selection 
Table 6-1 Lists of Founder strains information 

Species Strain 

S. cerevisiae YPS128 

S. cerevisiae Y12 

S. cerevisiae DBVPG6765 

S. kudriavzevii IFO 1802 

S. kudriavzevii China 

S. jurei D5088 

S. jurei D5095 

S. eubayanus CBS12357  

S. eubayanus OS626 West China 

 

Nine founder strains were involved for generating hybrids which included 3 

strains of S. cerevisiae, 2 strains of S. kudriavzevii, 2 strains of S. eubayanus and 

2 novel strains S. jurei. The founder strains for each hybrid group used in this 

study were listed in the Table 6-1. Three types of diploid hybrids between S. 

cerevisiae strains and other Saccharomyces species were generated including:  

S. cerevisiae × S. eubayanus, S. cerevisiae × S. kudriavzevii, S. cerevisiae × S. 

jurei under different cross methods. Each type of the diploid hybrid contains two 

hybrid groups carrying different mitochondria, which were generated from the 

same founder cross. 6 groups of hybrids were totally involved in this study which 

were named as HY1- HY6. HY1 and HY2 are the hybrids between S. cerevisiae 

× S. jurei. HY1 carried S. cerevisiae mitotype and HY2 carried S. jurei mitotype. 

HY3 and HY4 are the hybrids in S. cerevisiae × S. kudriavzevii. HY3 carried S. 

cerevisiae mitotype and HY4 carried S. kudriavzevii mitotype. These four groups 

of F12 diploid hybrids were pooled and selected under three conditions which 

were low temperature (12°C), maltose, and acetic acid.  HY5 and HY6 are the 

hybrids in S. cerevisiae × S. eubayanus. HY5 carried S. cerevisiae mitotype and 

HY6 carried S. eubayanus mitotype. Table 6-2 summarised the founder strain 

and selection condition under each pool. 
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Table 6-2 Summary of pool samples information 

Hybrid 
Group 

Parental Lines  
S. cerevisiae 

Parental Lines 
Saccharomyces 

Mitotype Treatment Fitness Pool 

HY1 Sc[YPS128+DBVP
G6765] 

Sj Sc 12°C High 

HY1 Sc[YPS128+DBVP
G6765] 

Sj Sc 12°C Low 

HY1 Sc[YPS128+DBVP
G6765] 

Sj Sc Maltose High 

HY1 Sc[YPS128+DBVP
G6765] 

Sj Sc Maltose Low 

HY1 Sc[YPS128+DBVP
G6765] 

Sj Sc Acectic acid High 

HY1 Sc[YPS128+DBVP
G6765] 

Sj Sc Acectic acid Low 

HY2 Sc[YPS128+DBVP
G6765] 

Sj Sj 12°C High 

HY2 Sc[YPS128+DBVP
G6765] 

Sj Sj 12°C Low 

HY2 Sc[YPS128+DBVP
G6765] 

Sj Sj Maltose High 

HY2 Sc[YPS128+DBVP
G6765] 

Sj Sj Maltose Low 

HY2 Sc[YPS128+DBVP
G6765] 

Sj Sj Acectic acid High 

HY2 Sc[YPS128+DBVP
G6765] 

Sj Sj Acectic acid Low 

HY3 Sc[YPS128+Y12] Sk Sc 12°C High 

HY3 Sc[YPS128+Y12] Sk Sc 12°C Low 

HY3 Sc[YPS128+Y12] Sk Sc Maltose High 

HY3 Sc[YPS128+Y12] Sk Sc Maltose Low 

HY3 Sc[YPS128+Y12] Sk Sc Acectic acid High 

HY3 Sc[YPS128+Y12] Sk Sc Acectic acid Low 

HY4 Sc[YPS128+Y12] Sk Sk 12°C Low 

HY4 Sc[YPS128+Y12] Sk Sk Maltose High 

HY4 Sc[YPS128+Y12] Sk Sk Maltose Low 

HY4 Sc[YPS128+Y12] Sk Sk Acectic acid High 

HY4 Sc[YPS128+Y12] Sk Sk Acectic acid Low 

HY5 Sc[YPS128+Y12] Seub Sc 40°C High 
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HY5 Sc[YPS128+Y12] Seub Sc 40°C Low 

HY5 Sc[YPS128+Y12] Seub Sc 4°C High 

HY5 Sc[YPS128+Y12] Seub Sc 4°C Low 

HY5 Sc[YPS128+Y12] Seub Sc Ethanol High 

HY5 Sc[YPS128+Y12] Seub Sc Ethanol Low 

HY6 Sc[YPS128+Y12] Seub Seub 40°C High 

HY6 Sc[YPS128+Y12] Seub Seub 40°C Low 

HY6 Sc[YPS128+Y12] Seub Seub 4°C High 

HY6 Sc[YPS128+Y12] Seub Seub 4°C Low 

HY6 Sc[YPS128+Y12] Seub Seub Ethanol High 

HY6 Sc[YPS128+Y12] Seub Seub Ethanol Low 
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6.2.3 Sequencing, Mapping and Variant Calling 
The hybrids were sequenced by Earlham Institute and GTCF in the University of 

Manchester. Paired-end raw Illumina sequence reads in fastq format were quality 

checked through FastQC 0.11.5 (Andrews, 2010) and trimmed through 

Trimmomatic (Bolger, et al., 2014). Filtered reads (Figure 6-2) were aligned to a 

combined reference genome with parental species (S. cerevisiae YP128 (Yue, et 

al., 2017) concatenated with S. eubayanus CBS12357 (Libkind, et al., 2011)) / S. 

jurei D5088 (Naseeb, et al., 2018) / S. kudriavzevii (assembled genome)) using 

bwa/0.7.16a (Li & Durbin, 2009). Local realignment was then performed to 

minimise the number of mismatching bases through RealignerTargetCreator and 

IndelRealigner through GATK 3.8. MarkDuplicates tool was then performed with 

picard/2.6.0 for removing the optical duplicates to control the alignments quality 

for variant analysis. Samtools were applied on step with raw bam files for sorting 

and indexing (Li, et al., 2009). Variant calling was then applied on the aligned 

reads using freebayes/1.0.2 (Garrison & Marth, 2012) with ploidy setting at 1 with 

the combined reference, --min-mapping-quality 30 --min-base-quality 20 --no-

mnps. Variant calling outputs in vcd files were then filtered with only SNP results 

and transferred to csv files that included information of CHROM, POS, REF, ALT, 

AO, RO where CHROM is the chromosome where SNP located, POS is physical 

position in reference genome, REF is the base of reference genome ALT is the 

base of variants, AO is the allele depth of alternatives and RO is the allele depth 

that have same base with reference. Pool SNPs were further compared to the 

SNPs shown between founders through R script. Reads depths below 10 were 

excluded. For each pool, Matching allele files were stored separately by 

chromosome in txt for next stage allele frequency tests between high fitness and 

low fitness. Variant calling pipeline was illustrated in the Figure 6-2. The analysis 

for mapping and variant calling were performed on HPC service with qsub files. 

SNP filtering to genotype were analysed in r with scripts. R scripts, qsub files, 

raw vcf files were stored in GACT Rdrive. 
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6.2.4 De novo assembly 
SPAdes assembler 3.9.0 was applied on the filtered reads of S. kudriavzevii IFO 

1802 after quality check and trimming for assembly. Assembling quality was 

assessed through QUAST/4.3.  

6.2.5 Allele frequency analysis 
Every two pools that shown high fitness and low fitness with same cross founder 

and carried same mitochondria were further analysed through Multipool/0.10.2 

programme for pool QTL analysis (Edwards & Gifford, 2012).  Multipool analysis 

has shown the effectiveness in yeast QTL analysis. This method can identify the 

causal locus between 2 extreme pools which contains contrasting allele 

frequency enrichment intervals (Lee, et al., 2016). The pools with high resolution 

Figure 6-2 Variant Calling Workflow 

Variant Calling [vcf]
freebayes

Realignment & MarkDuplicates
GATK Picard

Map to reference [BAM]
BWA

Quality Control
FASTQC trimmomatic

Raw reads [FASTQ]
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segregants carried polymorphic loci. Rather than computing LOD score for each 

marker, Multipool compared the allele frequency difference under pool 

sequencing in bins in the chromosome through dynamic Bayesian network (DBN) 

model to estimate the locus location under the assumption for recombination rate 

in uniform distribution. Allele frequency for high fitness and low fitness with LOD 

score were displayed in the output figures generated through python 2.7 for each 

chromosome. Multipool were performed with setting: contrast mode, 3300 bp cM 

and 100 bp bins. The LOD score is calculated for the contrast degree in bins 

between high and low fitness pool. The QTL intervals from multipool results were 

located with span at least 20kb. Genetic features were annotated by 1-LOD drop 

interval from the peak marker bins. 

6.3 Results 

6.3.1 Assembly of S. kudriavzevii genome 
Assembly of the available public genome data of S. kudriavzevii IFO1802 are in 

contig level with large amount fragmented genome which GCA_000167075.2 

(Hittinger, et al., 2010) included 2054 scaffolds with total length 11,189,057 and 

UColDMed_2011_SRX055455 included 6671 scaffolds. In order to get high 

quality hybrid mapping, it is essential to improve the assembly of S. kudriavzevii 

genome sequence. In this study, an improved reference genome for S. 

kudriavzevii IFO1802 were supplied. Table 6-3 summarised the assessment of 

the assembly through quast. It clearly shows that from the number of contigs and 

the total length the assembly performed better. In the next stage, the analysis for 

S. kudriavzevii will use this assembly as reference genome. 5806 CDS genes 

were annotated by MAKER software using S. cerevisiae S288C genome coding 

sequences. 
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Table 6-3 Genome assembly report for scaffolding of S. kudriavzevii IFO1802 

Assessment Scaffold 

Number of contigs (>= 0bp) 337 

Number of contigs (>= 1000bp) 108 

Number of contigs (>= 5000bp) 67 

Number of contigs (>= 10000bp) 59 

Number of contigs (>= 25000bp) 49 

Number of contigs (>= 50000bp) 44 

Total length (>= 0bp) 11713061 

Total length (>= 1000bp) 11639197 

Total length (>= 5000bp) 11545229 

Total length (>= 10000bp) 11486219 

Total length (>= 25000bp) 11315714 

Total length (>= 50000bp) 11137286 

Largest contig 653594 

GC (%) 39.61 

N50 319497 

N75 201332 

L50 13 

L75 24 

Coverage 378 

 

Table 6-4 Lists of QTL numbers for S. cerevisiae × S. jurei hybrids 

Hybrid Group Selection S. cerevisiae QTLs S. jurei QTLs 

HY1 12°C 4 13 

HY1 Maltose 8 7 

HY1 Acetic acid 7 8 

HY2 12°C 17 20 

HY2 Maltose 12 9 

HY2 Acetic acid 8 6 
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6.3.2 Identification of QTLs in hybrid S. cerevisiae × S. jurei 
When examining the difference in allele frequency among hybrids pools, a large 

number of intervals with contrasting allele frequency structure were identified 

under high fitness pool and poor fitness pool. Different QTL intervals with large 

allele frequency difference were identified through Multipool analysis ( 

Table 6-4). 17 prominent QTL intervals were identified in HY1 group under the 

cold temperature 12°C. Four QTL intervals were identified in S. cerevisiae. 

Noticeably, 2 of the QTL intervals in chromosome V (99300 - 138200) and 

chromosome XIV (326500 - 344500) linked to three genes (GIM4, ALF1, GIM3) 

are involved in microtubule biogenesis (Figure 6-3). GIM3 was validated in the 

previous study as cold-sensitive genes (Geissler, et al., 1998). In addition, 5 

genes (VPS73, YEA6, GGC1, MRPL11, RMD9) were clustered with relatedness 

in mitochondrial protein or transporter. Different QTL intervals were identified 

corresponding S. cerevisiae alleles and S. jurei alleles for HY1 (Figure 6-4). In 

chromosome IV, one QTL interval range from 95900 to 107100 was located from 

S. cerevisiae alleles where no effect was shown as S. jurei alleles. In contrast, 

four QTL intervals contained in range from 382600 to 1453300 were located from 

S. jurei alleles but not identified in S. cerevisiae QTLs. Moreover, 5 genes (GAL7, 

GAL10, GAL1, SIM1, GAL3) identified in S. jurei allele that involved in 

carbohydrate metabolism pathway. Different genes were identified from HY2 

group under the same condition. However, function clusters were shown 

similarity with HY1. Among the genes localised though the QTL intervals, 7 genes 

(ASK1, BIK1, TIM19, KAR9, SPC34, DYN2, TUB4) are also involved in 

microtubule. Furthermore, 5 genes (FUS1, FUS3, KSS1, PKC1, MSG5) were 

involved in MAPK signaling pathway.  
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Figure 6-3 Multipool output for HY1 chromosome V and XIV 

Allele frequencies were displayed with causative locus region. Red lines and dots represent the 

allele frequency of variants in the high fitness pool and green for poor fitness. Black lines 

represent LOD scores. Peaks were shown distinct separation of allele frequencies. 
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Figure 6-4 Different QTLs were identified for HY1 on chromosome IV 

The figure on the top illustrated the allele frequency and LOD scores of the comparison in 

S. cerevisiae. The figure on the bottom illustrated the allele frequency and LOD scores of 

the comparison in S. jurei.  Red lines and dots represent the allele frequency of variants in 

the high fitness pool and green for poor fitness. 
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Apart from selection under temperature, maltose tolerance is another major 

feature in brewing strain assessment. Several peaks were shown extreme 

difference of allele frequency in both of HY1 and HY2 under high maltose. 

Interestingly, both of the analysis for HY1 and HY2 shown the largest difference 

on the tail of chromosome II located the peak at 790700 included in the gene 

SUL1 which control the sulfate uptake (Figure 6-5). In addition, these peak 

intervals were close to the subtelomere region of MAL gene families where 

MAL31 which was the high-affinity maltose transporter, MAL33 and MAL32 

involved in maltose catabolism (Louis, et al., 2014). In the analysis for HY1, 

several genes were shown relatedness with glycoprotein were also shown 

significance under maltose selection (GAS1, YOR1, DDR2, GTB1, INA1, IRC18, 

PUN1, VBA2, PRC1, BGL2, FKS3, SUL1). Two genes (ADH2, ADH3) located on 

chromosome XIII which are ADH members that involved in the pathway of 

degradation of aromatic compounds. 

 

In addition, acetic acid is also an important feature in industrial brewing. However 

less QTLs shown than the other two selection. 7 QTL intervals were linked to 

genes (LEU2, MXR2, LPD1, GRX1, HBN1, HIS4, FRM2) that involved in 

oxidation-reduction process which is expecting under acetic acid as well as 

ADH3. 
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Figure 6-5 Multipool output for HY1 and HY2 chromosome II under maltose 

Allele frequencies were displayed with causative locus region. Red lines and dots represent the 

allele frequency of variants in the high fitness pool and green for poor fitness. Black lines represent 

LOD scores. Peaks were shown distinct separation of allele frequencies. 
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6.3.3 Identification of QTLs in hybrid S. cerevisiae × S. 
kudriavzevii  

For the hybrids group HY3 and HY4 with S. cerevisiae × S. kudriavzevii, a large 

amount of QTL intervals were identified with distinct allele distribution between 

high and low fitness (Table 6-5). Under Low temperature, 7 QTL intervals were 

identified in HY3 as significance under the S. kudriavzevii allele comparison 

where linking to genes (ERP5, VAC7, MNT2, PMT6, PLB3, MNT4, YCR061W) 

related to Glycoprotein. Among these genes, MNT2 and MNT4 are the obvious 

genes that are known as mannosyltransferase involved in O-linked glucosylation 

(Romero, et al., 1999). In addition, many genes identified in S. cerevisiae 

comparison of HY3 were related to mitochondrion and transmembrane.  

 

Table 6-5 Lists of QTL numbers for S. cerevisiae × S. kudriavzevii hybrids 

Hybrid Group Selection S. cerevisiae QTLs S. kudriavzevii QTLs 

HY3 12°C 32 13 

HY3 Maltose 38 32 

HY3 Acetic acid 24 28 

HY4 12°C 20 25 

HY4 Maltose 24 24 

HY4 Acetic acid 20 10 

 

Under the selection of maltose, QTL intervals were located close to the 

subtelomere region of chromosome II where shown the obvious difference under 

high fitness pool and low fitness pool both in HY3 and HY4 (Figure 6-6). Apart 

from overlaps on chromosome II, three more QTL intervals were overlapped 

across the genome between HY3 and HY4 under maltose. These overlapping 

regions were included 15 genes that are located on chromosome XIII, XIV, XV. 6 

genes (ENV9, ERG24, DGA1, YTA12, PRM1) involves in transmembrane.  

Several QTL intervals were identified for the difference of high and poor fitness 

under acetic acid. Among them, two QTL intervals in HY3 group, located on 

chromosome VIII, were linked to three genes (STB5, SKN7, SCH9) that 

responses to oxidative stress. Gene STB5 is an essential for regulating pentose 
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phosphate pathway (Larochelle, et al., 2006) and acetaldehyde tolerance  

(Matsufuji, et al., 2010)  

Figure 6-6 Multipool output for HY3 and HY4 chromosome II under maltose 
selection 
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6.3.4 Assessment of QTL in hybrid S. cerevisiae × S. 
eubayanus 

Different selection conditions were performed on the hybrid S. cerevisiae × S. 

eubayanus that are high temperature in 40 °C, cold temperature in 4 °C and 

ethanol. The hybrids carrying different mitochondria identified different QTLs 

sets, especially under high temperature and ethanol conditions. HY5 carries 

mitochondria of S. cerevisiae, and HY6 carries mitochondria of S. eubayanus 

(Table 6-6). For selection of high temperature, two QTL intervals were overlapped 

between HY5 and HY6 that linked to 11 genes. The first overlapping region were 

located at chromosome II linked to four adjacent genes (APL3, YBL036C, POL12, 

STU1). The other overlapping region were located at chromosome XV linked to 

7 genes (SFG1, DGK1, SLY41, SNU66, SPS4M NOP58). SLY41 involved in ER 

to Golgi transport and DGK1 involved in diacylglycerol kinase activity and 

suppress of SLY1 which has temperature sensitive mutation (Kosodo, et al., 

2001).  Interestingly, SLY1 were not shown in the peak or drop in the QTL 

intervals but both HY5 and HY6 identified causal regions close to SLY1 which 

were on chromosome IV 792100 - 820600 in HY5 and 827200 - 849000 in HY6 

(Figure 6-7). These two QTL intervals are both adjacent to SLY1 but not covered 

within this gene. This might be caused by that the high effect locus were located 

on the highest peak causing a narrow 1-LOD drop range, excluding locus which 

shown lower effect but still over threshold. Hence, a further verification on the 

hybrids is required to localise the causal locus. 

  

Hybrid Group Selection S. cerevisiae QTLs S. eubayanus QTLs 
HY5 40°C 18 10 
HY5 4°C 13 8 
HY5 Eth 15 8 
HY6 40°C 26 13 
HY6 4°C 13 11 
HY6 Eth 26 14 

Table 6-6 Lists of QTL numbers for S. cerevisiae × S. eubayanus hybrids 



187 

 

Freezing temperature condition was applied on these hybrids at 4 Celsius, which 

is a very stressful condition for yeast growth. One QTL interval was located at 

subtelomere region in chromosome I under for S. cerevisiae in HY5. In this 

region, the well-known gene FLO1 was occurred in both QTL intervals. Several 

studies have already shown the evidence of FLO1 in contribution of stress 

tolerance during fermentation under cold temperature (Deed, et al., 2017). 

Several QTL intervals for HY5 linked to genes for DNA/RNA helicase that 

affected bring cold stress including DBP9, HAS2, SUB2, MSS116, MOT1, MCM5, 

RVB1. In HY6, a number of QTL intervals linked to genes for telomere 

maintenance (PIF1, RRM3, STM1, SWD3, GBP2) and DNA repair (PCD1, 

OGG1, PMS1, HRQ1, PIF1, HUG1, MKT1, REV3, RRM3, NSE3, MLH3). Ethanol 

tolerance is one of the most desired features for industrial application of yeasts. 

 

Several QTL intervals were overlapped in S. cerevisiae comparison and S. 

eubayanus comparison. Among the overlaps, Gene MPD1 were occurred in HY5 

and HY6 under comparison of S. eubayanus. MPD1 involved in protein folding 

and recent studies have showed the correlation between ethanol stress response 

with unfolded protein response (Navarro-Tapia, et al., 2018). In addition, GAL1, 

GAL7 and GAL10 involved in carbohydrate metabolism pathway were included 

in QTL intervals of HY5 under S. cerevisiae. In HY6, 4 genes (REV3, ACO2, LIP5, 

TYW1) were included in QTL intervals for HY6 S. cerevisiae comparison that 

shown relatedness on iron-sulfur cluster binding. Ethanol is known to be 

associated with loss of iron homeostasis. One previous study showed that the 

consequence of increasing free Fe2+ could be affecting iron-sulfur clusters and 

potentially affect mitochondrial function (Gomez, et al., 2014). 
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Figure 6-7 Multipool output for HY5 and HY6 chromosome IV under high 
temperature selection.  

The peak QTLs that adjacent to SLY1 were highlighted in yellow box. 
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6.4 Discussion 

In this chapter, the genetic features of de novo interspecies hybrids S. cerevisiae 

× S. eubayanus, S. cerevisiae × S. kudriavzevii, S. cerevisiae × S. jurei under 

different environment stress conditions were assessed using pool QTL mapping 

approach. The fertile yeast hybrids opened the door for generating high resolution 

hybrid segregants. After 12 rounds of mating and recombination, the phenotype 

of the 12th generation hybrid segregants achieved a high diversity that allowed 

pool selection for extreme performance in high fitness and low fitness. Many 

genetic variants with polymorphic markers were identified through whole genome 

sequencing and variant calling. Under the QTL analysis through Multipool, a large 

number of QTL intervals were identified under the comparison between high 

fitness and low fitness pools for 6 hybrid groups with 3 different conditions. A lot 

of candidate genes and regions were identified in different hybrid groups. Among 

these genes, multiple factors contribute to the fitness performance of yeast 

hybrids. The number of S. cerevisiae variants of all six hybrid groups are much 

larger than the number of the variants in other Saccharomyces species. However, 

the number of QTLs identified through Multipool varies among different hybrid 

groups. For the hybrids in crosses S. cerevisiae × S. jurei and S. cerevisiae × S. 

eubayanus, more QTLs of S. cerevisiae alleles were identified in the hybrids who 

inherited non S. cerevisiae mitochondria comparing to the hybrids who inherited 

S. cerevisiae mitochondria. Moreover, the number of QTLs detected in S. 

cerevisiae alleles is much larger than the QTLs identified in S. jurei and S. 

eubayanus alleles. In the other hand, the largest number of QTLs were identified 

from hybrid group of S. cerevisiae × S. kudriavzevii among all conditions. The 

largest set of markers were identified as QTLs in both S. cerevisiae alleles and 

S. kudriavzevii alleles under maltose condition. Subtelomeric regions were 

identified in almost every experiment for the contribution of maintenance under 

stress condition associated with the brewing environment. MAL gene families at 

the end of chromosome II exhibited distinct allele frequency differences between 

high fitness and low fitness with the selection of maltose stress. In addition, 

adhesion gene FLO1 were identified under freezing temperature in hybrid of S. 
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cerevisiae and S. eubayanus. Furthermore, under the selection of acetic acid, 

genes involved in oxidation-reduction process were identified. An improved 

genome sequence of S. kudriavzevii IFO1802 were assembled and annotated. 

This genome presents a longer assembly at chromosome level and smaller gap 

size than then the public reference genome. 5806 coding genes were annotated. 

With the advent of long read DNA sequencing technic such as Nanopore 

sequencing and Pacbio, repetitive elements and subtelomere region could be 

further assembled.  
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Chapter 7 Concluding Remarks and Future 

Work 

7.1 Conclusion 

Quantitative traits of yeast cell growth were studied for different purposes under 

different agents and different perspectives. A large volume of genotype data and 

experimental datasets for yeast were collected and analysed for understanding 

the role of the genetic diversity and its relationship to the responses of growth. 

Different yeast strains exhibit a high diversity of phenotypes.  

 

The first part of this project is using yeast as model organism to identify candidate 

genes that are related to growth under chemical agents for human study. 

Different causative markers were identified with different treatments. Some of 

these markers are well known for the corresponding agents, which validates the 

approach. In Chapter 2, the genotype data of six bi-parental cross F1 segregants, 

generated with four founders NA, WE, SA, WA in SGRP4, that have clean 

lineages and their growth phenotypes under DOX treatment were examined. 

Phenotypic diversity was observed for F1 segregants under DOX treatment. QTL 

analysis captured the association between the genotypes and the changes of 

phenotype which can be used for genetic feature selection. By comparing 

overlaps of QTL intervals with different F1 crosses, 9 candidate genes (SPF1, 

SLN1, AAC1, PMR1, CCC1, HFA1, UPS1, CCP1) were localised. In addition, 

two-dimensional QTL analysis identified epistasis effects involved in degradation 

pathway. These QTLs were linked to genes involved in metal ion binding and 

mitochondrial processes. The analysis result suggests that these F1 yeast 

segregants are useful in identifying candidate genes for various treatments. 

However, the F1 genotype data contains limited markers leading to only a few 

QTLs identified within a large genomic span. 
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In Chapter 3, various agents were applied to the high resolution 12th generation 

4-way cross segregants, SGRP4-X, that displayed larger phenotypic variation 

than the F1 segregants. The distinct response to agents and the dense markers 

leads to a large number of loci identified by QTL analysis. Narrower QTL intervals 

were identified which targets a finer range down to a single gene in some cases. 

Different complex trait landscapes come out for yeast growth under different 

agents. No master QTL or genes occurred in every QTL analysis. However, in 

most of genotoxic agents, shared QTL underlying responses to DNA damage 

were observed. The frequently occurring genes among these agents were further 

analysed and QTL interactions were computed.  

 

In Chapter 3, a massive QTL report for the analysis of the F12 generation data 

provides a lot of interesting sites for downstream analysis, including gene 

candidate nucleotide polymorphism and functional clustering for further 

experimental validation. From the QTL plot, it is apparent that a number of 

significant markers are located in the vicinity of adjacent regions. This might 

potentially cause the risk that adjacent neutral variants are identified as QTLs 

linked to genes emerging in one cluster as the causal QTLs were shown large 

effect so that adjacent regions were included from the statistical analysis. To 

solve this complexity and locate candidate genes in a cluster, genetic linkages 

between F12 populations were assessed and genetic linkages were assessed 

among F12 population and fine mapping were applied to find the causative genes 

with the modelling in effect changing detection. By identifying QTL clusters rather 

than focusing on the top-ranking significance, the selected gene candidates were 

able to be included with large and small effect.  

 

In Chapter 5, as time is an important factor correlated with the dynamic changes 

of yeast growth, temporal QTL analysis was performed to analyse F12 genetic 

variants under an expanded phenotype dimension assessing growth rate in each 

hour. Large-scale analysis has produced a large number of genetic findings 

indicating the importance of tracking growth traits that develop over time. In the 

temporal QTL analysis of X-rays, many genes were identified in stages rather 
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than showing an effect throughout the growth period. The growth of the 

segregants were disturbed by short-term responses and long-term responses 

QTLs that showed accumulation effect. This provides a high throughput way for 

tracking dynamic responses of natural genetic variation to stress conditions, in 

addition to the advantages for studying complex traits using the SGRP4X 

population.  

 

Apart from the analysis for F12 multi-parental lines of S. cerevisiae, a de novo 

hybrid yeast QTL analysis was performed in Chapter 6. Whole genome 

sequences of interspecies hybrids S. cerevisiae × S. eubayanus, S. cerevisiae × 

S. kudriavzevii, S. cerevisiae × S. jurei were used for identifying genetic variants 

with responses to different fermenting tolerance conditions. Each of these hybrids 

were used to generate high resolution hybrid segregants in 12th generation 

populations as with the SGRP-4 F12 population. These hybrids have a large 

number of genetic variants inherited from their founders which were identified by 

variant calling after mapping to a reference for each parental species. The diverse 

phenotypic range in each hybrid gave the chance for selecting samples into two 

extreme pools based on the fitness performance. The multipool QTL analysis 

revealed multiple alleles were associated with the performance under 

biotechnological and fermentation related traits. Different QTLs emerged from the 

segregants generated in same founders with different mitochondria. These 

results indicate that mitochondria might interact with the nuclear genome and 

control the responses to the stress conditions. Also, subtelomeric regions were 

found to contribute to responses to stress conditions, especially significant in the 

tolerance of high concentrations of maltose.  

 

Overall, these results suggested that the formation of complex traits may involve 

complex mechanisms with interactions of multiple factors under dynamics of 

environment and time. From the QTL analysis under other chemotherapy agents, 

known involved genes are identified from the analysis such as genes for 

responses of DNA damage, TOR1 gene detected as expected in the gene sets 

for Rapamycin. Several novel genes with indirect role were also identified. For 
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DOX treatment, genes related to metal ion binding and mitochondrion were 

observed. Functional mostly unknown gene MNN14 was identified through the 

analysis under multiple agents and validation on PQ has shown positive 

(Georghiou, 2017). For fermentation targets, identified genes showed direct and 

indirect mechanisms of the maintenance and metabolism. Moreover, Epistasis 

are further looked for DOX treatment, interactions were observed related to 

degradation pathways that were missed in the single QTL scan. The approaches 

for looking QTL analysis in temporal dynamic under X-ray radiation observed 

gene RAD4. Through the modelling and analysing of yeast complex trait 

landscapes, many candidate genes and regions were identified that can be 

applied for further validation and screening of industrial strains. 

7.2 Future Work 

De novo hybrid analysis was performed for pooling samples with robust multipool 

QTL analysis. In the future, a high throughput arrays with individual sequencing 

segregants could be used in QTL analysis. This can help to further identify 

causative makers within a finer range and locate involved causative genes with 

better statistical power. The limitation of multipool analysis is that although non 

additive markers can be mapped, it is not possible to identify the interaction 

patterns. With the development of analysis method and further data supplied, 

epistasis effect (i.e gene-gene interaction) could be detected for yeast de novo 

hybrids. In addition, the current analysis considered allele effect separately under 

comparison with each founder due to the fact that multipool only provides 

analysis for haplotype. Hence, a dedicated QTL method for hybrid yeast can be 

further developed.  
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Apart from the QTL analysis for polymorphism markers, it is possible that the 

structural variation of hybrid can give the additional perspective for yeast variation 

and evolution. Further experiments and corresponding data are required for that 

analysis. In addition, in this study, only diploid hybrid analysis was summarised. 

Additionally, ploidy is an important feature of yeast hybrid genome that affects 

the hybrid’s functional attributes. Besides of diploid hybrid yeast, triploid and 

allotriploid yeast are widely found in the nature and used in industry. Fertile 

tetraploidy has been successfully generated through a haploid yeast and a triploid 

yeast to produce high diversity hybrid progeny. Further analysis will focus on this 

interesting point as well.  

 

During this PhD project, I was involved in the development of r package shmootl 

for yeast QTL analysis. In order to help researchers easily access the data 

analysis pipeline, an interactive web application was implemented by the author 

using the R Shiny package. The application integrated functions from the 

Shmootl/R package and provided an easy to use graphical user interface which 

can either run on a server or a personal PC with R installation of version higher 

Figure 7-1 Overview of the application 
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than 3.5.3. The graphical interface is user friendly, providing a navigation panel 

which allows the user to quickly go to different stages (Figure 7-1).  

 

This application could be used simultaneously by multiple users, improving the 

analyse speed for different projects. This application takes several input files 

required by different process stages, then output a HDF5 file containing detailed 

computation of LOD scores for each data point and the threshold of permutation. 

This application contains four sections. The first section introduces the purpose 

of the application. This section also explained the data analysis workflow from 

data input to generating results. The second section is the data input section. A 

user can upload five different files which will be used in the process. These files 

include:  

1. QTL input file including phenotype data and genotype data.  

2. Genetic map file 

3. Physical map file 

4. Covariate file including mating type information 

5. Annotation file 

 

The input files will be uploaded to the server so that the user's original data file 

wouldn't be changed. After uploading the files, the user can easily follow all the 

steps by selecting the desired settings with the easy to use user interface. All 

steps can be completed within a few clicks on the buttons of the application. A 

default setting is provided for the user as a guideline on how to setup each stage. 

There are three stages of data analysis implemented in this application. The first 

stage is data preparation. During this stage input data will be normalised 

according to the user's choice, then a genetic map will be generated based on 

the normalised data. The genetic map will then be stored to the output report. 

The second stage is single QTL analysis. This stage will take the output genetic 

map from the previous stage as input as perform scan one QTL analysis based 

on user setting. The user can assign a LOD threshold, a significance level, and a 

number of permutations times to the application (Figure 7-2).  
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The output of this stage will then be annotated during the final stage with the gene 

annotation file based on the reference genome. After the data analysis pipeline, 

the user can choose to download the report in excel, pdf, or hdf5 format. The hdf5 

format contained details about the user settings, which is useful for adjusting 

parameters in a finer grade. The application offered basic functionalities at this 

stage. More integration of the Shmootl/R library functions could be done in the 

future, such as scan two functions. Further improvement on the application could 

be to allow the usage of high-performance computing cluster, so that the analysis 

could be speed up. Another improvement could be implementing real-time data 

visualisation as a part of output with graphics and tables. This would give the 

researchers a direct view and assessment of the experimental data. Further 

integrations like Intermine could also be done, so that the user can convert the 

analysis result directly into ready to use data such as getting the gene function 

and build complex queries to find homologues. 

  

Figure 7-2 Single QTL Analysis page 
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Appendix A. Scripts and Pipelines  
A.1 QTL Analysis in F1 and F12  

############################################################ 

#PBS -N QTL_PREP 

#PBS -l walltime=02:00:00 

#PBS -l vmem=10gb 

#PBS -l nodes=1:ppn=1 

#PBS -t 1-3 

############################################################ 

cd "${PBS_O_WORKDIR}" 

############################################################ 

# Load dependencies. 

module load java/1.8 

module load R/3.5.1 

# Get name of cross input file. 

CROSSFILE=$(awk "NR == ${PBS_ARRAYID}" crossfiles.txt) 

# Prep cross file for QTL analysis. 

Rscript -e 'library(shmootl)' -e 'run()' prep  --datafile 

"${CROSSFILE}"  

--normseq 

# Push genetic map into cross file. 

Rscript -e 'library(shmootl)' -e 'run()' pushmap \ 

    --mapfile AESW12fc.gmap.csv  --datafile "${CROSSFILE}" 

############################################################ 
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############################################################ 

#PBS -N QTL_SCAN 

#PBS -l walltime=2:00:00 

#PBS -l vmem=8gb 

#PBS -l nodes=1:ppn=8 

#PBS -t 1-3 

############################################################ 

cd "${PBS_O_WORKDIR}" 

############################################################ 

# Load dependencies. 

module load java/1.8 

module load R/3.5.1 

# Get name of cross input file and set prefix. 

CROSSFILE=$(awk "NR == ${PBS_ARRAYID}" crossfiles.txt) 

if [[ "${CROSSFILE}" =~ (^|\/)(.+)[.]csv$ ]] 

then PREFIX="${BASH_REMATCH[2]}" 

else die "unknown cross filename pattern '${CROSSFILE}'" 

fi 

# Run scanone pipeline 

Rscript -e 'library(shmootl)' -e 'run()' scanone \ 

  --n.perm 1000 --alpha 0.05 --n.cluster 8 --method mr \ 

  --infile "${CROSSFILE}" --h5file "${PREFIX}.hdf5" 

# Create scanone report 

Rscript -e 'library(shmootl)' -e 'run()' report \ 

  --h5file "${PREFIX}.hdf5" --report "${PREFIX}.pdf" 

# Create scanone report 

Rscript -e 'library(shmootl)' -e 'run()' report \ 

  --h5file "${PREFIX}.hdf5" --report "${PREFIX}.xlsx" 

############################################################ 
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############################################################ 

#PBS -N QTL_ANNO 

#PBS -l walltime=02:00:00 

#PBS -l vmem=10gb 

#PBS -l nodes=1:ppn=1 

#PBS -t 1-3 

############################################################ 

cd "${PBS_O_WORKDIR}" 

############################################################ 

# Load dependencies. 

module load java/1.8 

module load R/3.5.1 

# Get name of scanfiles and get annofile. 

SCANFILE=$(awk "NR == ${PBS_ARRAYID}" scanfiles.txt) 

ANNOFILE="/scratch/gact/shared/data/genomes/SGD_S288C_R64-2-

1/SGD_S288C_R64-2-1.gff" 

# Push physical map into scan file. 

Rscript -e 'library(shmootl)' -e 'run()' pushmap --mapfile 

AESW12fc.pmap.csv --datafile "${SCANFILE}" 

# Run annotation pipeline 

Rscript -e 'library(shmootl)' -e 'run()' annoqtl --infile 

"${SCANFILE}" \ 

  --annofile "${ANNOFILE}" --outfile "${SCANFILE}" 

############################################################ 
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A.2 Overlap analysis for F12 QTL analysis under multiple agents 

############################################################ 

overlap.r 

############################################################ 

overlap<- function(Features,filenumber){ 

    gene <- Reduce(union, Features) 

    test.list <- Features 

    gene_count <- matrix(0, nrow = length(gene), ncol = 1) 

    for (i in 1:length(gene)){ 

        for(j in 1:length(test.list)){ 

            if (gene[i] %in% test.list[[j]]){ 

                gene_count[i] <- gene_count[i] +1 

            } }} 

    result <- gene[gene_count >= filenumber] 

    result <- result[which(result != "NA")] 

    return(result)} 

############################################################ 

 

A.3 QTL Analysis app on shiny 

# 

# This is the server logic of a Shiny web application. You 

can run the  

# application by clicking 'Run App' above. 

# 

# Find out more about building applications with Shiny here: 

#  

#    http://shiny.rstudio.com/ 

 

library(shiny) 
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library(shmootl) 

options(shiny.maxRequestSize=30*1024^2)  

# Define server logic required to draw a histogram 

shinyServer(function(input, output, session) { 

  annoAnalysis <- reactive({ 

    #run pushmap 

    withProgress(message = "Scanone in process", detail = 

"This might take a while", { 

      pmap = input$pmapfile 

      anno = input$annofile 

      scanfile <- session$userData$scanonefilepath 

      print(scanfile) 

      setProgress(value = 0.1, detail = "Running pushmap...") 

      run_pushmap(mapfile = pmap$datapath, datafile = 

scanfile) 

      setProgress(value = 0.3, detail = "Running QTL 

annotation...") 

      run_annoqtl(infile = scanfile, annofile = 

anno$datapath, outfile = scanfile) 

       

      output$annoresult <- renderText("QTL Annotation 

finished.") 

      }) 

  })  

   

  scanAnalysis <- reactive({ 

    withProgress(message = "Scanone in process", detail = 

"This might take a while", { 

      crossFile <- input$crossfile 

      prefix <- as.character(strsplit(crossFile$name, 

'.csv')) 
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      #TODO: remove hard coding 

      session$userData$fileprefix <- strsplit(prefix, ' 

')[[1]][2]  

      scanfile <- paste0(session$userData$fileprefix, 

'.hdf5') 

      session$userData$scanonefilepath <- scanfile 

      incProgress(0.1, detail = "Scanone running...") 

      #set threshold and significant level 

       

      if(input$usethreshold){ 

        run_scanone(threshold = input$thresvalue, alpha = 

0.05, method = 'mr', n.cluster = 4, 

                  infile = crossFile$datapath, h5file = 

scanfile) 

      } 

       

      else{ 

        run_scanone(n.perm = input$permutation, alpha = 

input$significance, method = 'mr', n.cluster = 4, 

                    infile = crossFile$datapath, h5file = 

scanfile) 

      } 

       

      setProgress(1) 

      output$scanoneanalysis <- renderText("Single QTL scan 

finished.") 

    }) 

  }) 

   

  prepareData <- reactive({ 

    withProgress(message = "Data preparation in process", { 
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      crossinFile <- input$crossfile 

      gmapinFile <- input$gmapfile 

      print(gmapinFile$datapath) 

      incProgress(0.1, detail = "Files loaded") 

      run_prep(crossinFile$datapath, normseq = TRUE) 

      setProgress(0.5, detail = "Preprocessing...") 

      run_pushmap(mapfile = gmapinFile$datapath, datafile = 

crossinFile$datapath) 

      output$dataprep <-renderText("Data preparation 

finished.") 

      setProgress(1) 

    }) 

  }) 

   

  output$crossfileres <- renderText({ 

    inFile <- input$crossfile 

    if (is.null(inFile)) { 

      print("Please upload cross file.") 

    } else { 

      print(paste0("Cross file '", inFile$name ,"' 

uploaded!"))  

      #print(paste0("Path: ", inFile$datapath)) 

    } 

  }) 

   

  output$gmapfileres <- renderText({ 

    inFile <- input$gmapfile 

    if (is.null(inFile)) { 

      print("Please upload gmap file.") 

    } else { 
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      print(paste0("GMAP file '", inFile$name ,"' 

uploaded!"))   

      #print(paste0("Path: ", inFile$datapath)) 

    } 

  }) 

   

  output$pmapfileres <- renderText({ 

    inFile <- input$pmapfile 

    if (is.null(inFile)) { 

      print("Please upload pmap file.") 

    } else { 

      print(paste0("PMAP file '", inFile$name ,"' 

uploaded!"))   

      #print(paste0("Path: ", inFile$datapath)) 

    } 

  }) 

   

  output$covfileres <- renderText({ 

    inFile <- input$covfile 

    if (is.null(inFile)) { 

      print("Please upload covariate file.") 

    } else { 

      print(paste0("Covariate file '", inFile$name ,"' 

uploaded!"))   

      #print(paste0("Path: ", inFile$datapath)) 

    } 

  }) 

   

  output$annofileres <- renderText({ 

    inFile <- input$annofile 

    if (is.null(inFile)) { 
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      print("Please upload .gff file.") 

    } else { 

      print(paste0("GFF file '", inFile$name ,"' uploaded!"))   

      #print(paste0("Path: ", inFile$datapath)) 

    } 

  }) 

   

  observeEvent(input$btnprep, { 

    isolate(prepareData()) 

  }) 

   

  observeEvent(input$btnscan, { 

    isolate(scanAnalysis()) 

  }) 

   

  observeEvent(input$btnanno, { 

    isolate(annoAnalysis()) 

  }) 

   

  output$downloadPdf <- downloadHandler( 

    filename = function() { 

      paste0(session$userData$fileprefix, ".pdf") 

    }, 

    content = function(file) { 

      run_report(h5file = session$userData$scanonefilepath,  

                 report = file) 

    } 

  ) 

   

  output$downloadXlx <- downloadHandler( 

    filename = function() { 
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      paste0(session$userData$fileprefix, ".xlsx") 

    }, 

    content = function(file) { 

      run_report(h5file = session$userData$scanonefilepath,  

                 report = file) 

    } 

  ) 

}) 

  



221 

Appendix B. Additional Figures 
B.1 QTL analysis output for Chapter 3 

  

ASP 35mM ASP 35mM peak marker 

FU 2.5mM FU 2.5mM peak marker 

FU 5mM FU 5mM peak marker 

ASP 10mM ASP 10mM peak marker 
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CIS 1mM CIS 1mM peak marker 

DSF 70uM DSF 70uM peak marker 

CCM 200uM CCM 200uM peak marker 

CCM 500uM CMM 500uM peak marker 
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DOX DOX peak marker 

EPA EPA peak marker 

HU HU peak marker 

MT MT peak marker 
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MT + DOX MT + DOX peak marker 

MET MET peak marker 

MMS MMS peak marker 

PQ PQ peak marker 
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Phleo Phleo peak marker 

RAP RAP peak marker 

SLA SLA peak marker 
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FU 2.5mM (TR) FU 2.5mM peak marker (TR) 

FU 5mM (TR) FU 5mM peak marker (TR) 

ASP 10mM (TR) ASP 10mM peak marker (TR) 

ASP 35mM (TR) ASP 35mM peak marker (TR) 
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CIS 1mM (TR) CIS 1mM peak marker (TR) 

DSF 70uM (TR) DSF 70uM peak marker (TR) 

CMM 200uM (TR) CMM 200uM peak marker (TR) 

CMM 500uM (TR) CMM 500uM peak marker (TR) 
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DOX (TR) DOX peak marker (TR) 

EPA (TR) EPA peak marker (TR) 

HU (TR) HU peak marker (TR) 

MT (TR) MT peak marker (TR) 
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MT + DOX (TR) MT + DOX peak marker (TR) 

MET (TR) MET peak marker (TR) 

MMS (TR) MMS peak marker (TR) 

PQ (TR) PQ peak marker (TR) 
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Phleo (TR) Phleo peak marker (TR) 

RAP (TR) RAP peak marker (TR) 

SLA (TR) SLA peak marker (TR) 
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B.2 Multipool analysis output 

B.2.1 H179 Low Temperature S.eubayanus QTL output 

 

B.2.2 H179 High Temperature S.eubayanus QTL output 

 

 

 

 

 

 

 

 

Chromosome I Chromosome VIII 

Chromosome IX Chromosome VIII 



232 

B.2.3 H179 High Ethanol S.eubayanus QTL output 

 

B.2.4 H188 Low Temperature S.eubayanus QTL output 

 

 

 

 

 

 

 

 

 

 

Chromosome VIII Chromosome VI 

Chromosome X Chromosome XVI 
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B.2.5 H188 High Temperature S.eubayanus QTL output 

 

B.2.6 H188 High Ethanol S.eubayanus QTL output 

  

Chromosome III 

Chromosome VII Chromosome XVI 
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Appendix C. Additional Tables 
C1. F1 Map Information: 

Marker ID Chromosome Position (bp) Genetic Map (cM) 
c01:0038000 (CNE1) 1 38000 0.00 

c01:0064000 (CDC24) 1 64000 10.36 
c01:0078000 (FUN12) 1 78000 44.99 
c01:0095000 (SAW1) 1 95000 59.36 
c01:0114000 (ATS1) 1 114000 67.23 
c01:0158000 (RFA1) 1 158000 82.96 
c01:0170000 (ADE1) 1 170000 88.43 
c01:0191000 (YAT1) 1 191000 119.08 
c02:0045000 (ROX3) 2 45000 0.00 

c02:0116000 (YBL055C) 2 116000 38.99 
c02:0205000 (SCT1) 2 205000 69.63 
c02:0308000 (TLC1) 2 308000 91.47 

c02:0383000 (YBR072C-A) 2 383000 118.41 
c02:0472000 (LYS2) 2 472000 147.17 

c02:0547000 (SPP381) 2 547000 190.92 
c02:0639000 (YBR208C) 2 639000 214.39 
c02:0696000 (YBR238C) 2 696000 255.70 

c02:0770000 (SSH1) 2 770000 292.46 
c03:0048000 (MGR1) 3 48000 0.00 
c03:0099000 (BUD3) 3 99000 36.78 
c03:0135000 (ADP1) 3 135000 52.54 
c03:0188000 (SNT1) 3 188000 65.53 
c03:0200000 (MAT) 3 200000 66.58 

c03:0209000 (YCR045C) 3 209000 68.67 
c03:0219000 (CTR86) 3 219000 85.86 
c03:0232000 (RAD18) 3 232000 90.19 
c03:0251000 (PAT1) 3 251000 108.92 

c03:0283000 (CDC39) 3 283000 143.57 
c04:0024000 (LRG1) 4 24000 0.00 
c04:0052000 (GCS1) 4 52000 28.75 

c04:0102000 (YDL199C) 4 102000 61.35 
c04:0152000 (GLT1) 4 152000 116.26 

c04:0189000 (NOP14) 4 189000 145.01 
c04:0279000 (POL3) 4 279000 168.49 
c04:0375000 (MTF2) 4 375000 217.52 
c04:0464000 (GAL3) 4 464000 244.40 
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c04:0496000 (VPS54) 4 496000 248.66 
c04:0547000 (HEM13) 4 547000 260.27 

c04:0628000 (RLI1) 4 628000 290.89 
c04:0707000 (ARO1) 4 707000 312.73 

c04:0814000 (RSM24) 4 814000 337.92 
c04:0902000 (RAD9) 4 902000 374.70 
c04:0999000 (PEX10) 4 999000 393.41 
c04:1080000 (GIC2) 4 1080000 407.77 

c04:1146000 (YDR336W) 4 1146000 432.92 
c04:1170000 (MRP1) 4 1170000 438.40 
c04:1254000 (SAC7) 4 1254000 457.12 
c04:1333000 (PPM1) 4 1333000 485.87 

c04:1422000 (000RE2) 4 1422000 514.61 
c04:1507000 (YDR535C) 4 1507000 566.49 
c05:0026000 (YEL068C) 5 26000 0.00 
c05:0088000 (MCM3) 5 88000 61.59 
c05:0161000 (YND1) 5 161000 75.96 
c05:0236000 (SAH1) 5 236000 96.22 
c05:0329000 (ILV1) 5 329000 137.54 
c05:0395000 (SPR6) 5 395000 154.77 
c05:0464000 (SCC4) 5 464000 179.96 

c05:0546000 (BMH1) 5 546000 201.80 
c06:0038000 (SWP82) 6 38000 0.00 

c06:0067000 (YFL034W) 6 67000 7.87 
c06:0077000 (AGX1) 6 77000 18.22 
c06:0086000 (BST1) 6 86000 26.05 
c06:0094000 (FRS2) 6 94000 32.69 

c06:0154000 (RPN11) 6 154000 67.32 
c06:0198000 (ROG3) 6 198000 87.58 
c06:0241000 (DUG1) 6 241000 111.07 
c07:0055000 (MTO1) 7 55000 0.00 
c07:0143000 (IME4) 7 143000 43.76 
c07:0199000 (SUT1) 7 199000 72.51 

c07:0268000 (RSM23) 7 268000 101.25 
c07:0333000 (PAN2) 7 333000 130.00 
c07:0432000 (MIG1) 7 432000 153.47 

c07:0515000 (SNU71) 7 515000 173.72 
c07:0614000 (ADE6) 7 614000 197.22 
c07:0674000 (VAS1) 7 674000 211.59 
c07:0757000 (PEX4) 7 757000 246.24 
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c07:0848000 (ERG1) 7 848000 257.90 
c07:0916000 (ZPR1) 7 916000 292.53 
c07:1009000 (RAD2) 7 1009000 329.31 
c07:1061000 (ERV29) 7 1061000 354.50 
c08:0037000 (GUT1) 8 37000 0.00 
c08:0119000 (STP2) 8 119000 43.75 
c08:0198000 (INM1) 8 198000 147.68 
c08:0222000 (GIC1) 8 222000 155.55 
c08:0244000 (OSH3) 8 244000 168.55 

c08:0273000 (SAM35) 8 273000 181.54 
c08:0337000 (YHR113W) 8 337000 203.40 

c08:0433000 (PRP8) 8 433000 207.75 
c08:0498000 (AIM46) 8 498000 242.40 
c09:0038000 (SUC2) 9 38000 0.00 
c09:0072000 (SLN1) 9 72000 39.00 
c09:0131000 (POG1) 9 131000 57.71 

c09:0192000 (YIL091C) 9 192000 84.63 
c09:0276000 (P000P1) 9 276000 149.92 

c09:0347000 (EPS1) 9 347000 182.51 
c09:0380000 (GAT4) 9 380000 192.87 

c10:0049000 (YJL206C) 10 49000 0.00 
c10:0106000 (ERG20) 10 106000 23.48 
c10:0179000 (PBS2) 10 179000 54.13 

c10:0249000 (BC0001) 10 249000 69.91 
c10:0312000 (UTP18) 10 312000 91.76 
c10:0390000 (VPS53) 10 390000 126.40 
c10:0465000 (ILV3) 10 465000 161.03 

c10:0552000 (YJR061W) 10 552000 193.63 
c10:0612000 (YJR096W) 10 612000 215.49 

c10:0671000 (NMD5) 10 671000 227.16 
c10:0726000 (YJR154W) 10 726000 266.16 

c11:0037000 (TRP3) 11 37000 0.00 
c11:0104000 (FAS1) 11 104000 54.88 

c11:0134000 (MRP49) 11 134000 60.36 
c11:0173000 (AVT3) 11 173000 70.74 

c11:0256000 (UTP11) 11 256000 94.24 
c11:0324000 (MSN4) 11 324000 124.88 
c11:0419000 (PRP40) 11 419000 221.15 
c11:0504000 (SPO14) 11 504000 239.88 
c11:0567000 (CCP1) 11 567000 274.53 
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c11:0578000 (Y000R073C) 11 578000 283.64 
c11:0598000 (HBS1) 11 598000 290.31 

c12:0028000 (YLL056C) 12 28000 0.00 
c12:0126000 (YEH1) 12 126000 69.30 
c12:0197000 (AAT2) 12 197000 101.89 
c12:0291000 (GAL2) 12 291000 143.20 
c12:0372000 (HOG1) 12 372000 166.68 

c12:0391000 (YLR122C) 12 391000 186.95 
c12:0439000 (YLR149C) 12 439000 207.21 
c12:0533000 (ATG26) 12 533000 250.96 
c12:0606000 (BNA5) 12 606000 285.60 

c12:0702000 (YLR278C) 12 702000 309.09 
c12:0780000 (PEX30) 12 780000 336.03 
c12:0873000 (PSY3) 12 873000 414.46 

c12:0917000 (S000I2) 12 917000 423.57 
c12:0969000 (YLR422W) 12 969000 440.80 

c12:1037000 (LEU3) 12 1037000 484.57 
c13:0053000 (ZDS2) 13 53000 0.00 
c13:0144000 (ORC1) 13 144000 25.17 
c13:0215000 (NDC1) 13 215000 59.80 
c13:0308000 (SPO20) 13 308000 84.96 
c13:0382000 (STB2) 13 382000 143.09 

c13:0467000 (MUB1) 13 467000 186.84 
c13:0526000 (ECM16) 13 526000 204.06 
c13:0588000 (MSS11) 13 588000 231.00 

c13:0659000 (VTI1) 13 659000 254.49 
c13:0756000 (ZRC1) 13 756000 287.08 
c13:0849000 (ABZ2) 13 849000 308.91 

c14:0047000 (YNL313C) 14 47000 0.00 
c14:0128000 (SEC2) 14 128000 41.32 
c14:0208000 (SIN4) 14 208000 71.95 

c14:0281000 (DUG3) 14 281000 90.66 
c14:0374000 (FYV6) 14 374000 136.97 

c14:0446000 (YNL095C) 14 446000 202.27 
c14:0539000 (ALG11) 14 539000 234.87 
c14:0622000 (MRP7) 14 622000 255.12 
c14:0720000 (POP2) 14 720000 324.41 
c15:0059000 (ARG8) 15 59000 0.00 

c15:0143000 (TRM10) 15 143000 26.93 
c15:0205000 (INP54) 15 205000 50.41 
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c15:0276000 (LAG2) 15 276000 89.40 
c15:0369000 (YOR019W) 15 369000 114.59 

c15:0442000 (C000A2) 15 442000 130.37 
c15:0504000 (R000I1) 15 504000 162.95 
c15:0604000 (ELG1) 15 604000 175.94 
c15:0687000 (MSB1) 15 687000 199.43 
c15:0759000 (ODC2) 15 759000 216.67 
c15:0834000 (YTM1) 15 834000 247.32 
c15:0920000 (LDB19) 15 920000 296.34 
c15:0991000 (CIN1) 15 991000 351.25 
c15:1047000 (ATF1) 15 1047000 378.18 
c16:0037000 (PLC1) 16 37000 0.00 
c16:0104000 (RVB2) 16 104000 34.64 
c16:0201000 (RTT10) 16 201000 78.40 
c16:0302000 (COX11) 16 302000 127.43 
c16:0390000 (SEC16) 16 390000 162.07 

c16:0480000 (YPL039W) 16 480000 192.71 
c16:0541000 (CHL1) 16 541000 216.19 
c16:0630000 (CSR2) 16 630000 236.44 
c16:0658000 (MSF1) 16 658000 249.43 

c16:0727000 (YPR097W) 16 727000 286.20 
c16:0793000 (SCD6) 16 793000 320.84 
c16:0899000 (SEC23) 16 899000 346.01 
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C2. Sample sequences information for Chapter 6 
Sample Name  #Reads  Mean Q30 R1 Mean Q30 R2 Lane Coverage 

H179_Eth_max 29780159 150 144 4 184 

H179_4c_max 23684265 150 144 4 146 

H179_40c_max 28604033 150 144 4 176 

H179_Eth_min 27049359 150 144 4 167 

H179_4cmin 31927533 150 144 4 197 

H179_40cmin 22364617 150 144 4 138 

H188Eth_max 17510300 150 144 4 108 

H1884c_max 20155855 150 144 4 124 

H188_40c_max 12571291 150 144 4 78 

H188Eth_min 24335455 150 144 4 150 

H1884cmin 17913417 150 149 4 111 

H18840cmin 26800614 150 144 4 165 

H179_fermentation 31370218 150 144 4 194 

H188_fermentation 23572349 150 139 4 145 

JRY9185 18465108 249 219 2 378 

 


