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Abstract

We introduce an approach to performing reversible executions of programs writ-

ten in an imperative concurrent programming language. Our language contains

assignments, conditional and loop statements, blocks, local variables, potentially

recursive procedures and an interleaving concurrent composition operator par. The

traditional execution of programs is defined using Structured Operational Seman-

tics. Given an original, irreversible program we automatically generate two modified

versions. The first, named the annotated version, performs forward execution and

saves any lost information necessary for reversal. We address challenges of reversing

a concurrent execution by using identifiers to capture a specific execution order.

All information required for reversal is saved via the operational semantics. We

define two further semantics. The first defines annotated execution, performing the

expected forward execution and saving all reversal information. The second set de-

fines the behaviour of the inverted version of a program. This forward-executing

program simulates reversal, using identifiers to determine the (inverted) execution

order, and other reversal information to undo each respective forward step.

We produce several results. We show that saving information during a forward

execution does not change the behaviour of the underlying program, and that ex-

ecuting an inverted version correctly restores the state to as it was prior to the

corresponding forward execution. All reversal information is used during an inverse

execution meaning our approach is garbage-free.

A simulator, named Ripple, implementing our approach is introduced, based on

our three semantics. This shows our approach works, and allows both testing and

evaluation of the performance, specifically execution time and memory overheads.

Our experimental results show that time and memory overheads increase linearly

with respect to the size of the data or program. We explore the use of Ripple within

reverse debugging, and identify future work, including optimizations and relaxing

the inverted order of independent concurrent statements.
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Chapter 1

Introduction

Traditional program execution is fundamentally irreversible. A reversible execution

is one that can execute in either the forward or reverse direction, with a step of the

reverse execution inverting the effects on the program state of the corresponding

forward step. As programs written in traditional programming languages execute

on traditional computers, information critical to restoration of the original program

state is lost. Imagine a simple assignment statement that overwrites the current

value of a given variable, resulting in the loss of this value that cannot be restored.

Landauer’s principle claimed this lost information is dissipated as heat, and theorised

that truly reversible execution must require no information is lost and may therefore

produce more energy-efficient computation [44].

Previous work on reverse execution of programs fits into one of two categories.

Firstly, several reversible programming languages have been developed [55, 97, 26,

96, 79, 29]. Such languages only allow fully reversible programs to be written and

therefore have no loss of information. Conditionals and loops are reversible due to

their post-conditions, evaluated during the reverse execution to determine control

flow [97]. Though this is an effective and elegant implementation of reversible exe-

cution, there remains the difficultly of automatically converting from a widely used

irreversible language to a reversible equivalent. Specifically the automatic generation

of post-conditions is problematic, and therefore impacts the usability of reversible

languages on traditional programming code.

This difficultly is avoided via work in the second category, namely adding re-

versibility to irreversible programs [63]. Such works [11, 93, 75, 76] begin with a

traditional and commonly used programming language (or some equivalent) and de-

scribe the process of adding reversibility to it. Such approaches support reversibility

of existing programs written in traditional programming languages, with no need for

conversion between languages as reversibility is added (potentially automatically)

on top. Each irreversible step of an execution is made reversible by saving any in-

formation it loses, with approaches including checkpointing and incremental state

1
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saving [63]. Doing so introduces a trade-off between an increase in either execution

time or memory usage [92].

This category of work contains reversibility of message passing languages, includ-

ing algebraic process calculi [15, 67, 64], where concurrency is supported. Concur-

rency, also referred to throughout as parallel composition, leads to non-deterministic

execution orders, distinct final program states, and challenges associated with cor-

rectly reversing this execution. Current work in the literature using a shared memory

setting typically does not involve concurrency, and therefore avoids these challenges.

Approaches (in message passing systems) focus on either backtracking reversibil-

ity [9], where the steps of an execution are reversed in exactly the inverted order in

which they were performed, or causal-consistent reversibility [15, 45, 67, 64], where

independent steps can be reversed provided all of their consequences have been

previously reversed.

At the beginning of this research, we set out to achieve the following:

• To propose a method of reversing executions of a concurrent imperative pro-

gramming language;

• To support common programming constructs from typical, widely used pro-

gramming languages;

• To allow concurrent composition of programs, and to reverse in backtracking

order (reversing statements in exactly the inverted order in which they were

performed forwards);

• To ensure that our proposed method performs correct reversibility and does

not produce garbage;

• To implement our method in the form of a simulator, that can be used to

show that our approach works, to perform tests that would be difficult to do

so by hand, and to evaluate the performance in terms of execution time and

memory usage overheads;

• To demonstrate the use of our method to the field of reverse debugging.

In this thesis we introduce an approach to reversing executions of an impera-

tive, concurrent programming language using shared memory. We begin with an

imperative while language that supports a form of concurrent composition known

as interleaving. We describe our approach to first saving any required information,

named reversal information, during the execution of a modified forward program.

This includes information lost by each individual statement, and a sequence of iden-

tifiers that we introduce to capture a specific interleaving order. We detail how all
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reversal information saved is used within an execution of a modified inverted version

of a program, with statements inverted in backtracking order. Our approach restores

the final program state (from after the forward execution) back to as it was prior

to the corresponding forward execution. Crucially each intermediate program state

is restored, as statements are reversed in a step-by-step manner. This is important

when applying this approach to reverse debugging [16], as start-to-finish reverse ex-

ecution is not typically helpful for finding errors. With all reversal information used

during an inverse execution, our proposed method of reversibility is garbage free.

We extend our imperative concurrent language to include blocks, local variables

and procedures. Our method of reversing the while language is extended, with

support added for each of the additional constructs listed. We address challenges

introduced by scope (local variables sharing names), by recursive procedure calls and

by two (or more) concurrent calls to the same procedure (the same code executing

in two or more places at once).

We address the correctness of our approach using a number of results, including

showing that our method correctly restores the initial program state, using infor-

mation saved during a forward execution in such a manner that does not affect the

behaviour of the underlying program. Another result demonstrates that all reversal

information is used during an inverse execution, meaning the reversibility method

defined here is garbage free.

Our method of reversibility is implemented in the form of a simulator. This

demonstrates that our approach can indeed reverse program executions, and allows

testing to be performed using examples that would be difficult to execute by hand.

The third reason for this implementation is to evaluate the performance, considering

execution time and memory usage overheads incurred.

Finally we explore the link between our approach to reversibility and the field

of reverse debugging [16]. Reverse debugging uses the ability to invert an execution

step-by-step as a method to find the underlying cause of a bug, a feature supported

within our simulator. Additional features are also discussed, including a record

mode that focuses entirely on debugging.

1.1 Reversible Computation

Reversible computation is an interesting area of research due to the numerous ben-

efits it can provide in a range of applications. From 1961, the Landauer principle

states that the erasure of 1 bit of information costs at least “kT ln 2” in energy,

where k is the Boltzmann constant and T is the temperature of the heat sink [44].

This suggests that as reversible computation requires no information is lost (and

therefore not dissipated as heat), it could lead to computation with increased en-
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ergy efficiency. Several commonly occurring misconceptions of this principle were

addressed in 2018 by Frank [18]. Bennett suggested that any execution can be re-

versed by recording a history of all information lost throughout, and then using this

information to undo, or reverse, the forward execution [8]. There are two forms

of reversibility, namely physical reversibility and logical reversibility. Physical re-

versibility focuses on producing executions that can be performed without a loss of

energy and that are therefore energy efficient. This includes producing reversible

hardware. Early work in this area has shown reversible Turing machines [8] and

reversible logic gates to exist, including Toffoli [84] and Fredkin gates [20]. Such

gates are important to quantum computing, as any quantum operation is reversible.

Other work includes reversible cellular automata [83, 39].

The second type of reversibility, namely logical reversibility, is the ability to

reproduce a previous program state from that of later (or at the end of) a specific

computation. The work presented in this thesis focuses on logical reversibility, with

the background of appropriate lines of research described below. Abramov and Glück

provide important background information into inverse computation, including key

terminology in their paper [1]. We remark here that throughout this thesis, we use

‘inversion’ and ‘reversal’ to refer to both the process of producing an inverted version

of an irreversible program (program inverter [1]), and to the process of executing

such an inverted version.

The European Cooperation in Science and Technology (COST) project, named

IC1405 Reversible Computation - Extending Horizons of Computing, has been active

for the previous four years (2015–2019) and brought together many of the leading

researchers in this area [36].

Reversible Algebraic Process Calculi, Event Structures and Petri Nets

Danos and Krivine introduced an extended version of the Calculus of Communicat-

ing Systems (CCS), named RCCS, where processes are extended to contain memories

[15]. These memories identify processes used within actions, allowing actions to be

reversed in any order that respects all causal dependencies (the first definition of

causal-consistent reversibility). This differs to backtracking reversibility, where ac-

tions (or steps) are reversed in exactly the inverted order in which they executed

forwards [9]. Phillips and Ulidowski introduced an alternative approach to extend-

ing CCS with reversibility, named CCS with Communication Keys (CCSK) [67, 64].

Actions are annotated with an identifier (communication key), such that the two

parties of a communication use this same identifier. This ensures both are undone

together (causal-consistency). This was later extended with controllers that support

modification of the direction and pattern of an execution [68], where out of causal

order reversibility was first presented. Kuhn and Ulidowski introduced the Calculus



CHAPTER 1. INTRODUCTION 5

of Covalent Bonding (CCB), based on CCSK, which contains an operator allowing

the modelling of local reversibility of covalent bonding in chemical reactions [40, 41].

Ulidowski et al. modelled reversibility within concurrent computation defined

using event structures [66, 65, 85], and Graversen et al. produced event structure

semantics of reversible CCS [28]. Reversible Petri nets have been studied [7, 56], as

has causally-consistent reverse broadcast in CCS [57].

Reversible Languages

Reversible programming languages, in which only reversible programs can be writ-

ten, have been defined. The language Janus, originally defined by Lutz and Derby

[55] and expanded upon by Yokoyama et al. [97, 94, 95], is an example of an impera-

tive reversible language. Each valid program written using Janus can be executed in

both the forward and reverse directions, where no information is required for correct

reversal being lost. This is achieved using only constructive assignments, the name

given to increments or decrements, each of which are fully reversible. For example,

X += 1 is reversed via X -= 1. Conditional statements and while loops receive post-

conditions that are used to determine the inverse control flow and reflect the result of

forward evaluation (ensuring the same branch is reversed). Consider the Fibonacci

example shown in [94], containing the following forward conditional statement (left

side) and the inverted version (right side), with arguments and branches omitted.

procedure fib(...) procedure fib(...)

if n=0 then if x1=x2 then

. . . . . .

else else

. . . . . .

fi x1=x2 fi n=0

The pre-condition n=0 is used during forward execution (left conditional above),

determining which branch to execute. The post condition x1=x2 is an assertion

that must evaluate to true if reached via the true branch, and false if reached via

the false branch. The reverse execution of this program (right conditional above)

switches the pre and post conditions, meaning the inverse conditional evaluates the

expression x1=x2 to determine the branch to invert. This expression (which was

the post condition of the forward version) is evaluated during the reverse execution,

potentially increasing execution time when compared to retrieving a saved boolean

value (in state-saving approaches).
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Glück and Yokoyama introduced the reversible imperative while language with

tree-like structure, named R-WHILE, in [26], and reduced this into the core language

R-CORE in [27]. This core of a reversible language contains one reversible assign-

ment, one control flow operator, namely a loop from X loop C until Y where X is

an assertion and Y is a test (capable of simulating a conditional statement) and the

number of variables is limited.

Reversible functional programming languages include that defined by Yokoyama

et al. [96], and Rfun as defined by Thomsen et al. [81]. More recently, the typed

functional language CoreFun was introduced by Jacobsen et al. [37], containing a

description of how this could be used as a core language for the development of a

more modern reversible functional language.

Another frequently used programming paradigm is object-oriention. The re-

versible object oriented language named Joule was introduced by Schultz [79], and

extended in [78] to remove the limitations associated with stack allocation of ob-

jects and to instead use region based memory management. Another reversible

object oriented language named ROOPL was introduced by Haulund in [29], and

further extended within [30, 14].

Other notable work includes the definition of reversible semantics for the con-

current functional language Erlang [62, 48], the reversible procedural language R

developed by Frank [19], the reversible computer architectures Pisa [89] and Bob

[82] (including the instruction set BobISA).

Reversible Debugging

An introduction to software bugs and the process of debugging is provided by Zeller

[98]. A software bug, or defect, is the name given to an error within a program

that causes misbehaviour, while debugging is the process of relating a failure (mis-

behaviour) to the underlying defect and the fixing this [98]. Each problem caused

by a bug can be classified based on severity, with categories including critical (crash

and loss of data) and minor (small loss of functionality with a workaround) [98].

Vipindeep et al. produced a list of common software bugs and how each can be

avoided [90]. Many studies have been performed on bugs, including that of Zhen-

min Li et al. [52] and Shan Lu et al. [54]. The latter produced results showing

the majority of non-deadlock bugs were either atomicity or order violations, and

that the majority of concurrency bugs depend on the ordering of only two threads.

Special consideration must be given to concurrent programs, as these contain the

possibility of ‘Heisenbugs’, a software bug that only occurs under certain execution

orders. Musuvathi et al. implemented the tool Chess for finding such bugs in [60].

The traditional approach to debugging, named cyclic debugging as the misbe-

having program is executed many times, is ideal for sequential programs. Each
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execution is guaranteed to have the same behaviour and therefore the bug occurs

each time. Cyclic debugging is not appropriate for use with parallel (or concurrent)

programs, where there exists the potential for two consecutive executions of the

same program to have a different execution order. This makes reproducing the bug,

and in turn finding the underlying cause of it, difficult. An example is of testing a

possible fix of such a bug, where the user must determine if the bug does not occur

as a result of the fix or because the specific execution order was not followed.

Reversible computation and its link to debugging has been the focus of some

previous works. In most cases each line of research fits into two broad groups, the

first being record-replay debuggers and the second being reverse debuggers. Record-

replay debuggers aim to allow the application of cyclic debugging to parallel pro-

grams, where a specific execution of a program (experiencing a bug) is recorded with

the recorded information used to force all future forward executions to behave the

same. Examples include Instant Replay [50], RECPlay [72], Jockey [74], Liblog [22]

BugNet [61]. Many record-replay debuggers use approaches described in Section 1.2.

Reverse debugging typically does not require re-execution of the program in the

forward direction, and instead backtracks over an execution. Engblom provides a

detailed review of reverse debugging in [16]. The unix based debugger GDB has

reverse capabilities for sequential programs as shown in [13], while an example of

a commercially available reversible debugger is UndoDB [86, 87]. Biswas and Mall

[10] discussed the use of reverse execution in debugging and proposed an approach

to execute C programs bidirectionally. Agrawal et al. proposed an execution back-

tracking approach to debugging, where a history file is populated during a forward

execution and used to backtrack over an execution, restoring the program state at

each step [4]. Another example of a debugger that uses program instrumentation to

record certain information is [12]. Another example of a reverse debugger is [17].

Up to this point, all reversible debuggers discussed have followed backtracking

order [9], where statements are reversed in exactly the inverted order in which they

were executed forwards. Consider the program (a) par (b;c) containing a state-

ment a in parallel with the sequentially composed statements b and c. If the order

of forward execution is b followed by a and then c, backtracking order requires the

reverse execution order to be c, then a followed by b. Recent work has focussed

on causal-consistent reversibility, where actions can be reversed in any order that

maintains all causal dependencies [15, 45, 67, 64]. Assuming that a is independent

to b and c, and that b causes c, a valid reverse execution of the forward sequence

b, a, c is the causally consistent sequence of a, c, b (which is not backtracking).

Giachino et al. explored using this with debugging of the language µOz in [24],

introducing the first implementation of a causal-consistent debugger CaReDeb [23],

and causal-consistent rollback [25]. Lanese et al. proposed a causal-consistent re-
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versible debugger for Erlang [47], named Cauder [46], and later introduced controlled

causal-consistent replay [49].

Memory Models

An important consideration for both interleaving parallel composition and for defin-

ing operational semantics is the use of memory models. A memory model is a set

of rules governing how a compiler can reorder low level read and write instructions.

Adve et al. produced a description of common memory models and shown examples

of each in [2], including sequential consistency as defined by Lamport [43] and weak

ordering introduced in [3]. Lamport also introduced the happened-before relation

[42] between events within a distributed system. Jaffe et al. described the link

between the choice of memory model and software reliability in [38], claiming that

the frequency of concurrency bugs does increase in relaxed memory models and that

this increase diminishes as the number of parallel threads increase. The tool ‘diy’

allows the definition of memory models and subsequent testing of them [6].

1.2 Making Irreversible Programs Reversible

A number of paradigms of reversible computation are summarised by Perumalla [63].

These include Compute-Copy-Uncompute (where a modified forward version of a

program is executed, the final outcome is copied and finally the inverse version

is executed), Forward-Reverse-Commit (a program is executed with the ability to

be reversed, until the point at which reversal is definitely no longer required and

the execution is committed) which is used by Backstroke [93] due to its suitability

for optimistic Parallel Discrete Event Simulation (Section 1.2.2). Others include

Undo-Redo-Do and Begin-Rollback-Commit.

The forward execution of a program can be reversed by saving enough infor-

mation throughout to correctly restore the program state. One approach is named

checkpointing and records snapshots of the program state. Recording the program

state after each step of an execution is named full checkpointing, which requires a

large amount of memory and potentially stores redundant information (a part of the

state that has not changed since the previous snapshot), but that allows immediate

restoration to a desired position. Periodic checkpointing reduces the frequency of

snapshots stored (and thus memory usage), and reverses to a point between check-

points by restoring to the closest previous snapshot and then re-executing forwards.

Incremental checkpointing removes the saving of any redundant information, by

recording only the parts of the program state that change. These records can then be

composed to reverse an execution to a desired position in a step-by-step manner, not
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supporting an intermediate restoration as is the case for full checkpointing. Differ-

ential checkpointing is like incremental, but stores all changes at each snapshot with

respect to the original program state. Examples of approaches using checkpointing

to support either record-replay or reverse debugging include [91, 17, 51, 71, 73].

Alternative approaches involve generating an inverted version of a given program

that performs the desired reverse execution. Such inverted versions are considered

‘normal’ programs, in that they are compiled and executed in the same way as

original programs. Examples are compiler-based, where a compiler parses the original

program and transforms it into a reversible version, or interpreter based, where the

interpreter uses instrumented code to generate log files used for reversal [63].

Akgul and Mooney proposed an approach in [5] that reduces the amount of

information saved during a forward execution. This approach, named Reverse Code

Generation (RCG) algorithm, aims to produce a reverse version of a program capable

of regenerating the intermediate program states instead of restoring them. Static

analysis of the assembly code is used to provide instruction level reverse execution

without forward re-execution. This is limited to single threaded programs [5].

Two examples of state-saving approaches are discussed in more detail below,

each of which relate to the work we present here.

1.2.1 Reverse C Compiler (RCC)

The work we present here is related to the Reverse C Compiler (RCC), defined

by Perumalla et al. [63, 11]. This is an example of a source-to-source approach to

adding reversibility to the programming language C. This compiler is capable of pro-

ducing two versions of a given code fragment, one that saves necessary information

called transformed, and one that computes in reverse using it, called reversed. All

information is recorded via ‘SAVE’ commands instrumented into the forward pro-

gram, used by ‘RESTORE’ commands inserted into the reverse version, and saved

onto runtime tapes, each of which operating as a stack (LIFO manner) [63].

RCC takes an original C program and first normalises it. Many constructs are

reduced into equivalent versions using only constructs from a smaller subset. As a

result, the number of constructs that must be considered is reduced. Any assignment

statement that contains side effects, that is contains an expression that also modifies

the value of a variable, are reduced into a sequence of assignments with no side

conditions. From [63], the C code int x=10, y=x++; initialises x to 10, and sets y

to 10 + 1 (while also incrementing the value of x to 11). The normalised version of

this code is int x=10, y=x; x++;.

Another example is of a for loop occurring within an original program, which is

changed into an equivalent version of the more general while loop. Consider the for
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loop statement for (int i = 0; i < 4; i++) { P }, performing four iterations

of the loop body P. The equivalent while loop version of this is int i = 0; while

(i < 4) { P; i++ }.
As each forward statement executes, inserted SAVE commands record any lost

information that is required to reversal. This includes the old value of any variable

prior to its assignment, the result of conditional statement evaluation (a boolean

value indicating the branch that was executed) and a loop iteration count. Consider

the while loop while (condition) {P} based on code from [63]. Below is the

transformed (left) and the reversed (right) versions of this loop produced by RCC,

where IP is the reversed version of P. The transformed version of the loop initialises

a loop counter variable c. For each iteration of the loop, this counter is incremented

(c++;) meaning it holds the total number of iterations at the end. This value is

then saved to the runtime tapes. The reversed version of this loop, re-initialises the

loop counter variable c to the value saved during the forward execution, and then

iterates until the count reaches 0 (via the condition (c > 0) with c decremented

(c--;) for each iteration).

int c = 0; int c;

while (condition) { RESTORE(c);

c++; while (c > 0) {

P; IP;

} c--;

SAVE(c) }

Switch statements are handled similarly to conditionals, but with an integer

saved to indicate which case has executed. Variables that go out of scope first have

their final value saved, while jump statements (in the form of goto) are updated to

be preceded by save commands recording the final value of any variables that will

be out of scope as a result. The reversed version of each statement then uses this

information saved to undo all effects of the forward execution, including undoing all

the overwriting of all values and control flow. A crucial point to note is that some

of the methods used here, including maintaining the loop counter variable, mean

the original and transformed executions are different with respect to the program

state. For example the program state after the transformed execution will contain

an extra variable, namely c, that is present after the matching original execution.

Further, parallel composition is not supported meaning all programs are sequential,

and there is no proof of correctness to the best of our knowledge.
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Perumalla et al. describe various optimisations that would be possible [63], in-

cluding detecting invariant conditions (those that evaluate identically before and

after the execution of the branch) and removing the need to save control flow in-

formation for it. We note that a single bit is sufficient to record the outcome of

the condition evaluation, whereas the process of determining an invariant condition

may take time. Further analysis is required to determine whether this trade-off is

beneficial. A summary of the bit requirements for each type of supported statement

is shown in [63].

1.2.2 Backstroke Framework

Our approach is also related to Backstroke introduced by Vulov et al. [93]. This is a

framework developed to support automatic generation of reverse code for functions

written in C++, built on the ROSE compiler [70]. A crucial distinction is that this

focuses on its application to Parallel Discrete Event Simulation (PDES), a simulation

methodology referring to the execution of a single discrete event simulation on a

parallel computer [21]. Specifically this concerns optimistic PDES, where events are

performed optimistically and rollback may need to be performed if causality errors

are later detected [21].

Backstroke uses the Execute-Reverse-Commit paradigm as described above, and

produces three versions of a given original function. From [93], the three versions

of an original event E are named E forward (equivalent to original execution but

saves information needed for inversion), E reverse (uses the saved information to

undo all effects) and finally E commit (that performs actions that are irreversible

or should not be reversed). The first two of these versions behave similarly to the

transformed and reverse versions generated by RCC. No code is generated for each

of the reverse and commit versions, since they share the same implementation for

all transformed events [75]. Each transformed version is linked with the Backstroke

Runtime Library, where the forward execution records all information necessary to

restore any previous state of the forward computation [75], and from which the

reversed version of an event can be called.

As described in [93], Backstroke supports both snapshot inversion, where the

initial values of all variables used within E forward are saved prior to any execu-

tion, and a RCC-style incremental inversion, where previous values of variables and

control flow information is saved. Finally, Backstroke also contains an alternative

approach named path-oriented incremental inversion, where program analysis tools

are used to evaluate the control flow of a program and generate a reverse version,

with an example shown in [93] that does not require any information to be saved.
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Backstroke has been used in more recent works by Schordan et al. [75, 76, 77].

In [75], Schordan et al. highlights it is sufficient to consider only memory modifying

operations, namely assignment, memory allocation and memory deallocation, re-

sulting in no control flow information being saved. Specifically, address-value pairs

of modified memory locations are recorded, alongside details of dynamic memory

management. All information is stored into the Run Time State Storage (RTSS)

of Backstroke, which is essentially a double ended queue where forward and reverse

code pushs and pops information from one end, while the commit code accesses in-

formation from the other. Schordan et al. summarised in [75] that “The drawback is

the overhead in the forward code and a higher memory consumption (in most cases)

than with approaches that take control flow into account”. Further work by Schor-

dan et al. extended this approach with support for further C++ constructs such

as templates, and the generation of reversible C++ assignment operators. This ap-

proach is demonstrated on the scalable kinetic Monte-Carlo C++ application. The

performance evaluation shown there demonstrates increases in efficiency. To the

best of our knowledge, no proof of correctness exists for the Backstroke framework.

1.3 Main Contributions

We define an approach to adding reversibility to an irreversible, imperative con-

current programming language. We begin by defining a concurrent programming

language, supporting interleaving concurrent composition. Inspired by the use of

Communication Keys in CCSK [67, 64], which are used to associate two processes

involved in a communication together and where the necessary history is annotated

into the calculus itself, we assign identifiers to statements in ascending order as they

execute. We introduce annotation that modifies an original program such that each

statement contains an identifier stack, and inversion that produces the inverted ver-

sion. This is much like the annotated version but with an inverted statement order,

using the identifiers in descending order to backtrack over the forward execution.

Three Structured Operational Semantics (SOS) are defined, describing traditional

(forward-only), annotated forward and reverse execution respectively. All informa-

tion that must be saved (reversal information for a specific statement, e.g. the old

value of a variable prior to an assignment statement), including identifiers to capture

the interleaving order, is deferred to the annotated forward semantics. The reverse

semantics use this extra information to reverse the effects of the respective forward

statement (e.g. reversing an assignment statement by restoring it to the old value

saved during the forward execution). Crucially each execution is defined using small

step semantics, meaning each can be performed in a step-by-step manner. Each

intermediate program state is restored, highlighting that we do not simply record a
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snapshot of the program state prior to an execution and then restore to that, but

that we incrementally build up our reversal information [63].

Block statements within our language introduce scope, where local variables can

be declared and may share their name with at most one global variable and any

number of other local versions. We implement blocks in such a way that they “clean

up after themselves”. Any local variables or procedures declared within a block

statement are deleted prior to the block completing its execution. This is performed

via removal statements (like inverting a declaration statement). This introduces

further information loss that could break reversibility if not considered.

The results regarding correctness show that both annotation and inversion be-

have as expected. This means that executing the annotated version of a program

produces the same final program state as is produced by the original program, while

also recording any information critical for reversal. Therefore annotation does not

alter the behaviour of the original program (annotation result). Secondly, our results

show that executing an inverted version of a program correctly restores the program

state to as it was prior to the respective forward execution (inversion result). This

also demonstrates that the environment used to record reversal information is re-

stored to its initial state, meaning any information saved for reversal is used, and

therefore shows no garbage data is produced. Such correctness results are often

missing from the other approaches described within the literature.

We present a simulation tool, named Ripple, that automates the process of

reversibly executing programs written in our concurrent language. This implements

each of our three operational semantics, simulating traditional (forwards only with

no information saving), annotated forward and reverse execution in either a step-by-

step, or start-to-finish manner. Ripple allows our approach to be tested using large

examples that would be difficult to perform by hand. Such tests have subsequently

lead to adjustments to our method. Ripple is also used to evaluate the performance

in terms of execution time and memory usage overheads. Additional features of

Ripple aim to minimise the burden on the user, with one example being its ability

to accept programs written in a simpler version of the syntax.

Ripple can also be used as a debugger. The step-by-step executions it offers are

ideal for reverse debugging [16], as completely reversing an execution experiencing

a bug is typically not useful (as the bug may occur at any point within an exe-

cution). We show several examples of commonly experienced software bugs, and

detail the process of using Ripple (and therefore our approach) to perform reverse

debugging. Additional features of Ripple focus solely on debugging, including record

mode that saves enough information to ensure an execution is reproducible. This

mode maintains two execution traces, namely detailing all interleaving decisions

(which statements were possible and which was executed) and the semantics history
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(an ordered list of transition rules applied). When used with manual interleaving

mode, a user can correctly reproduce a recorded execution (traditional debugging

approach). In each intermediate state of the simulation, the entire program state

including any information saved for reversal can be viewed. This allows the user to

investigate an execution to find the cause of a bug (defect).

1.4 Outline of the Thesis

Chapter 2 describes an imperative while language that contains an interleaving

form of parallel composition. The traditional semantics of this language are shown,

detailing the behaviour of programs written in this language and the effects on the

program state.

Chapter 3 summarises the challenges of reversing a concurrent programming

language. These challenges are overcome via the two further semantics introduced

that perform annotated forward execution and inverted execution respectively. This

follows an approach outlined in [33, 34] and is shown in full later.

This language is extended with blocks, local variables and potentially recursive

procedures in Chapter 4. The modification required to the program state and addi-

tional semantics are defined, supporting traditional, forward and reverse execution.

Prior to proving our proposed method of reversibility to be correct, Chapter 5

addresses three main challenges this presented. We introduce partial executions,

describe how to generate the inverted version of a partially executed program, and

finally how to stop such an execution at the desired position via atomic statements.

Chapter 6 contains the proof of correctness of our approach, where two key

properties are proven to hold showing the approach to implement correct reversal.

This proof is outlined in [32] and shown in full later.

The simulation tool Ripple is introduced in Chapter 7, with details of the soft-

ware architecture, user interface and performance evaluation displayed. Ripple was

originally introduced in [32] and is described later.

The link between our approach to reversibility and debugging is explored in

Chapter 8. Two examples of common software bugs are used here to explain how

Ripple can aid the process of finding the underlying cause, building on work pre-

sented in [32, 31].

Finally Chapter 9 contains a summary of the contributions of this work, along

with a description of possible future work.

The following is a list of our four publications that contain work also presented

here in this thesis.
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Chapter 2

Concurrent While Language

In this chapter we describe the imperative programming language that will be used

throughout the following chapters. This is much like any while language, with an

example being that described by Hüttel [35]. This language contains assignments,

conditional statements and while loops. Additionally, this also supports a form of

parallel composition, namely interleaving.

We describe the environments used to represent the program state, and the

semantics defining traditional (irreversible) execution of programs written in this

language. Finally several examples of program execution are given.

2.1 Imperative While Language

We begin with the introduction of our concurrent while language. This programming

language supports global integer variables that can be used within or manipulated

by arithmetic expressions, as well as boolean conditions containing logic operators.

Much like any imperative while language, the programming language introduced

here supports assignments, conditional statements (guarding or branching) and while

loop statements (iteration). In contrast to other while languages, we also support

a form of parallel composition where program executions can be interleaved. The

challenges introduced by interleaving are discussed in Section 3.1 of Chapter 3.

2.1.1 Syntax

The syntax of our language is now shown. Let P be the set of programs P where each

program P is generated by the Backus-Naur Form (BNF) in Figure 2.1. Let S be

the set of statements S where each statement S is defined by the BNF in Figure 2.1.

Further let X denote a variable, E an arithmetic expression and B a boolean condition.

Finally, let Z be the set of integers, where a number n is such that n ∈ Z, and both

In and Wn be construct identifiers for conditionals and loops respectively. The need

16
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P ::= ε | S | P;P | P par P

S ::= skip | X = E | if In B then P else P end |
while Wn B do P end

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

Figure 2.1: Syntax of the imperative concurrent while language

for and use of construct identifiers will be explained in Section 2.2. The BNF of the

entire syntax of this language is shown in Figure 2.1. Parallel composition of the

programs P and Q is written as either P par Q in the following syntax, or as Par

{P} {Q} in several examples. For use throughout our work, we introduce the notion

of a complete program, the name given to a program written in the language defined

above that has not yet been executed in any way (meaning no conditions/expressions

are evaluated yet).

2.2 Program State

Program state is represented using three environments. We first consider the variable

state, where variables are bound to memory locations and each location holds an

integer value. We note that only global variables are supported, all of which are

uniquely named. All global variables are assumed to exist prior to and throughout

an execution, with no declaration statement within the syntax from Figure 2.1.

The variable environment γ is used to map each variable name to a unique

memory location. Let Var be the set of variable names and Loc be the set of

memory locations. The variable environment γ is such that γ : Var → Loc. A

variable environment is manipulated using the following notation, where entries are

not inserted or removed as all variables exist before and after an execution.

• γ(X) - queries the variable environment γ and returns the memory location

currently associated with the variable X.

The variable state is completed using the data store σ, where each required

memory location is mapped to an integer value. Let Loc be as above and Z be

the set of integers. The data store σ is such that σ : Loc → Z. The following

notation allows the use of a data store (again there are no commands to add or

remove entries).

• σ(l) - returns the current integer value at memory location l.

• σ[l 7→ v] - updates the data store σ such that the memory location l is updated

to hold the value v.
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Given a variable environment γ and the corresponding data store σ, all variables

of a given program can be evaluated. Consider the following example below.

Example 1. (Data store and variable environment) Let γ and σ exist as follows.

Variable environment γ

Var name Mem location

X l1

Y l2

Z l3

Data store σ
Mem location Value

l1 3

l2 7

l3 1

There exists three variables X, Y and Z, where each is mapped to a distinct memory

location in γ, namely l1, l2 and l3 respectively. The initial values in σ are such

that X = 3, Y = 7 and Z = 1. We now consider the evaluation of the variable Y. The

variable environment γ is queried using Y to find the memory location l2 (written

as γ(Y) = l2). This location is then used to query the data store σ to retrieve the

value 7 (written as σ(l2) = 7). �

The final environment used to represent the program state is the while environ-

ment β. Included for consistency with Chapter 4, a copy of a while loop statement

is produced prior to its execution, storing a copy of the original condition and loop

body. Each copy of a loop is maintained within the while environment β. To avoid

ambiguity, each while loop (and each subsequent copy) is given a unique name

termed a construct identifier :

Definition 2.2.1. (Construct identifier) A construct identifier is a unique name

given to each conditional and loop statement, written as In and Wn in Figure 2.1.

Each is a string with an integer version number (explained below), e.g. i2.0.

Returning to the while environment, let Wn be the set of while loop construct

identifiers Wn and P be the set of programs P. The while environment β is such that

β : Wn→ P. The following notation exists to access the while environment.

• β[Wn ⇒ P] - inserts a mapping into β for the loop uniquely named Wn, to the

copy P of the loop body.

• β[Wn] - removes the mapping for the while loop unique name Wn from β.

Prior to giving an example of a while environment, we consider code reuse. While

loops allow iteration of a sub-program (the loop body) where the same code is

executed multiple times and termed code reuse. Re-execution of the same code

violates the uniqueness of construct identifiers, where nested constructs are executed

several times using the same name. This problem can be avoided using a process

called renaming. Construct identifiers are now extended to each have a version
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1 while w1.0 (Y <= 10) do

2 if i3.0 (Z > 2) then

3 Z = 20;

4 else

5 Z = 40;

6 if i6.3 (Y == 1) then

7 Y = Z + 20;

8 else

9 Y = Z + 40;

10 end;

11 end;

12 end;

(a) Original while loop

1 while w1.0 (Y <= 10) do

2 if i3.4 (Z > 2) then

3 Z = 20;

4 else

5 Z = 40;

6 if i6.7 (Y == 1) then

7 Y = Z + 20;

8 else

9 Y = Z + 40;

10 end;

11 end;

12 end;

(b) Renamed version for 4th iteration

Figure 2.2: An example loop and its renaming

number, initially set to 0. For example a conditional statement named i1 becomes

i1.0. Before a copy of a loop is executed, all construct identifiers used within the

body are renamed by incrementing the version number (i1.0 becomes i1.1). This

is implemented using the function reL: P→ P that takes the original loop body. All

construct identifiers are now unique and not have yet been used. Consider Example 2

that demonstrates the renaming applied to an example while loop body.

Example 2. (Renaming a while loop) A while loop is shown in Figure 2.2(a). For

each iteration, all nested construct identifiers are updated to their next version

number (with the other left unchanged). The renamed version of this loop for the

fourth iteration is shown in Figure 2.2(b). �

We are now ready to state an example of a while environment, namely Example 3.

Example 3. (While environment) Consider the program shown in Figure 2.3(a)

which contains a while loop statement. The very first step of the execution of

this loop is to create the corresponding mapping within the while environment β.

This while environment entry is shown in Figure 2.3(b), indexed using the unique

construct identifier given to this while loop. �

The three environments introduced above are necessary to represent program

state. The full program state, containing all three environments, is represented

using �, such that � = (σ, γ, β).
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2.3 Traditional Operational Semantics

This section contains the operational semantics of the traditional execution of pro-

grams written in the previously defined programming language. This is termed

traditional as the resulting execution loses information and is therefore irreversible.

As explained by Hüttelin [35], we use Structural Operational Semantics (SOS) [69] to

define a transition system that describes the behaviour of each of our programming

language constructs (Figure 2.1).

A transition system is a directed graph, with each vertex a configuration and

each edge a transition. A configuration represents a snapshot of an execution and

is composed of a program P and program state �, written as (P | �). Two config-

urations can be linked together as a transition, where the second configuration can

be reached from the first via a single step of an execution. Each such transition is a

member of the transition relation ↪→ (traditional execution), which is defined as the

least relation generated by the set of transition rules contained within this section.

Each transition rule defines a possible transition from the relation ↪→, and consists of

a conclusion (the transition this rule represents), potentially many premises (other

transitions or claims that must hold for the conclusion to be valid) and an optional

side condition (constraints placed on components of the rule). We write transition

rules in the following way.

premises

conclusion
side condition

All of our transition rules are compositional, where all premises of a rule use only

entities contained within the conclusion. This allows a sequence of instances of tran-

sition rules to prove a transition, forming the so-called inference tree. An inference

tree contains a leaf, the name given to a rule that does not contain any further

transitions as a premise. This encapsulates all axioms (transition rules that have

no premises) such as [S2], and those that contain premises that are not transitions

such as [W6]. Examples of inference trees are given in Section 2.4.

We are now ready to give a syntax-directed, small step semantics that defines

traditional execution. Each transition rule represents a single step of a larger exe-

cution, meaning the resulting configuration need not be terminal (no further tran-

sitions from this configuration are possible), and instead can be intermediate. We

use ↪→a and ↪→b to represent a step of arithmetic and boolean expression evaluation

respectively, and ↪→∗ be the reflective and transitive closure by an arbitrary number

of steps. In the following rules, we use � to represent all elements of the tuple

(σ,γ,β) that are not explicitly stated with the rule. For example, � in the following

rule [A1] represents (β) as both σ and γ are explicitly stated.
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1 while w1 (X > 4) do

2 X = X - 1;

3 Y = X + Y;

4 end

(a) While loop

Loop name Code

w1 while w1 (X > 4) do

X = X - 1;

Y = X + Y;

end;

(b) Corresponding while environment

Figure 2.3: Example loop code and matching while environment entry

Arithmetic Expressions

Arithmetic expressions are evaluated in potentially many steps. Let ai be an arith-

metic expression, X be a variable, and v, m and n ∈ Z. Finally let the set of arithmetic

expression operators Op = {+, -, *, /}, such that op ∈ Op.

[A1]
(X | σ, γ,�) ↪→a (σ(γ(X)) | σ, γ,�)

[A2]
v = n op m

(n op m | �) ↪→a (v | �)

[A3]
((v) | �) ↪→a (v | �)

[A4]
(a0 | �) ↪→a (a′0 | �)

((a0) | �) ↪→a ((a′0) | �)

[A5]
(a0 | �) ↪→a (a′0 | �)

(a0 op a1 | �) ↪→a (a′0 op a1 | �)
[A6]

(a1 | �) ↪→a (a′1 | �)

(a0 op a1 | �) ↪→a (a0 op a′1 | �)

Boolean Expressions

Let b be a boolean expression and bai be either a boolean or arithmetic expression.

Let the set of boolean expression operators Bop = {>, >=, <, <=, ==} if used between

two arithmetic expressions and Bop = {&, ||, ==} if used between two boolean

expressions. Finally bop ∈ Bop.

[B1]
(¬T | �) ↪→b (F | �)

[B2]
(¬F | �) ↪→b (T,�)

[B3]
(b | �) ↪→b (b′ | �)

(¬b | �) ↪→b (¬b′ | �)
[B4]

ba2 = ba0 bop ba1

(ba0 bop ba1 | �) ↪→b (ba2 | �)

[B5]
(ba0 | �) ↪→b (ba′0 | �)

(ba0 bop ba1 | �) ↪→b (ba′0 bop ba1 | �)
[B6]

(ba1 | �) ↪→b (ba′1 | �)

(ba0 bop ba1 | �) ↪→b (ba0 bop ba′1 | �)

Sequential Composition

A statement S sequentially composed with a program P must execute until it reaches

skip ([S1]). The skip is then removed and the execution continues with P ([S2]).

[S1]
(S | �) ↪→ (S′ | �′)

(S; P | �) ↪→ (S′; P | �′)
[S2]

(skip; P | �) ↪→ (P | �)
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Parallel Composition

A step of the parallel composition of two programs P and Q can originate from either

of the programs ([P1]/[P2]) (provided each is valid). Only once both sides have

completed (reached skip) can the parallel statement itself finish ([P3]).

[P1]
(P | �) ↪→ (P′ | �′)

(P par Q | �) ↪→ (P′ par Q | �′)
[P2]

(Q | �) ↪→ (Q′ | �′)
(P par Q | �) ↪→ (P par Q′ | �′)

[P3]
(skip par skip | �) ↪→ (skip | �)

Assignment

Assignments complete in a single step ([D1]). The arithmetic expression e is (atom-

ically) evaluated to a value v (via (e | σ, γ,�) ↪→∗a (v | σ, γ,�)). The variable itself

is evaluated to its memory location l (γ(X) = l). The location l is updated to hold

the new value v (overwriting its previous value via σ[l 7→ v]).

[D1]
(e | σ, γ,�) ↪→∗a (v | σ, γ,�) γ(X) = l

(X = e | σ, γ,�) ↪→ (skip | σ[l 7→ v], γ,�)

Conditional Statements

The boolean condition is first (atomically) evaluated to true ([I1T]) or false ([I1F]).

Depending on this evaluation, either the true ([I2]) or false ([I3]) branch is executed.

Note that the conditional is static following the general approach used in [67, 64],

where the overall structure and the non-executed branch remain in place necessary

for reversal. This is different to traditional semantics of conditionals including those

of Hüttel[35], and is necessary for reversal purposes explained later in Chapter 3.

Further, the rules [I1T] and [I1F] could be combined into a single rule, though we

choose not to for simplicity later on. Once the true ([I4]) or false ([I5]) branch has

executed completely, the conditional statement itself can then complete.

[I1T]
(b | �) ↪→∗b (T | �)

(if In b then P else Q end | �) ↪→ (if In T then P else Q end | �)

[I1F]
(b | �) ↪→∗b (F | �)

(if In b then P else Q end | �) ↪→ (if In F then P else Q end | �)

[I2]
(P | �) ↪→ (P′ | �′)

(if In T then P else Q end | �) ↪→ (if In T then P′ else Q end | �′)

[I3]
(Q | �) ↪→ (Q′ | �′)

(if In F then P else Q end | �) ↪→ (if In F then P else Q′ end | �′)

[I4]
(if In T then skip else Q end | �) ↪→ (skip | �)

[I5]
(if In F then P else skip end | �) ↪→ (skip | �)
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While Loops

A loop with zero iterations ([W1]) is undefined within the while environment (β(Wn)

= und) and has a condition that evaluates to false (via (b | β,�) ↪→∗b (F | β,�)).

Such a loop terminates in a single step.

[W1]
β(Wn) = und (b | β,�) ↪→∗b (F | β,�)

(while Wn b do P end | β,�) ↪→ (skip | β,�)

The last step of a loop with at least one iteration ([W2]) must be defined within

the while environment (β(Wn) = def ) and have a condition that evaluates to false

(via (b | β,�) ↪→∗b (F | β,�)). Such a loop terminates, removing the entry from the

while environment (β[Wn]).

[W2]
β(Wn) = def (b | β,�) ↪→∗b (F | β,�)

(while Wn b do P end | β,�) ↪→ (skip | β[Wn],�)

The first step of a loop with at least one iteration ([W3]) must initially be undefined

within the while environment (β(Wn) = und) and have a condition that evaluates to

true (via (b | β,�) ↪→∗b (T | β,�)). Then a renamed version of the loop, named R

with body reL(P), is inserted into the while environment (β[Wn ⇒ R]).

[W3]
β(Wn) = und (b | β,�) ↪→∗b (T | β,�)

(while Wn b do P end | β,�) ↪→ (while Wn T do reL(P) end | β[Wn ⇒ R],�)

where R = while Wn b do reL(P) end

Any condition evaluation that is not the first or the last ([W4]) requires the loop to

be defined within the while environment (β(Wn) = def ) and to have a condition that

evaluates to true (via (b | β,�) ↪→∗b (T | β,�)). The loop body is again renamed

(reL(P)) and reflected into the procedure environment (β[Wn ⇒ R]).

[W4]
β(Wn) = def (b | β,�) ↪→∗b (T | β,�)

(while Wn b do P end | β,�) ↪→ (while Wn T do reL(P) end | β[Wn ⇒ R],�)

where R = while Wn b do reL(P) end

The loop body executes ([W5]) provided there is a valid execution step, until the

body completes and reaches skip.

[W5]
β(Wn) = def (P | �) ↪→ (P′ | �′)

(while Wn T do P end | �) ↪→ (while Wn T do P′ end | �′)
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After the completion of a loop body, the loop is reset to allow further execution

([W6]). If the loop body is skip, and the loop is defined within the while environment

(β(Wn) = while Wn b do P end), the loop is reset to as in β.

[W6]
β(Wn) = while Wn b do P end

(while Wn T do skip end | �) ↪→ (while Wn b do P end | �)

2.4 Examples of Traditional Execution

We now show three small programs, and use inference trees (using transition rules

defined above) to prove the existence of their first execution step. We begin with

a conditional statement (with the true branch already executed) and a sequentially

composed assignment. Let P = if i1 T then skip else Q end; X = 12. The

inference tree of the next execution step of P using the initial state � follows.

[I4]
(if i1 T then skip else Q end | �) ↪→ (skip | �)

[S1]
(if i1 T then skip else Q end; X = 12 | �) ↪→ (skip; X = 12 | �)

The composition of the transition rules [S1] and [I4] prove the conclusion to exist.

Since the conditional statement is not skip (meaning [S2] does not apply), the only

applicable transition rule is [S1]. With the condition evaluated to true and the true

branch being skip, the only valid transition is via the axiom [I4], which closes the

conditional statement with no change to the program state.

Consider the parallel composition of sequentially composed, racing assignments,

namely where P = par { X = X + 3; Y = 5; } { X = 10; Y = 2; }. Let X ini-

tially be 2 (σ(γ(X)) = 2). Our semantics of parallel composition allows the first step

of this execution to originate either from the left side of the parallel ([P1]), or from

the right ([P2]). The inference trees of each are now given, beginning with a step

of the left side. We note that the transition rule [D1] uses atomic evaluation of the

expression X + 3 (like big step semantics of arithmetic expression evaluation), using

the sequence of transition rules [A5];[A1];[A2].

[A1]
(X | σ, γ,�) ↪→a (2 | σ, γ,�)

[A5];[A2]
(X + 3 | σ, γ,�) ↪→∗a (5 | σ, γ,�) γ(X) = l

[D1]
(X = X + 3 | σ, γ,�) ↪→ (skip | σ[l 7→ 5], γ,�)

[S1]
(X = X + 3; Y = 5; | σ, γ,�) ↪→ (skip; Y = 5; | σ[l 7→ 5], γ,�)

[P1]
(P | σ, γ,�) ↪→ (par { skip; Y = 5; } { X = 10; Y = 2; } | σ[l 7→ 5], γ,�)

The final data store is σ[l 7→ 5], where the memory location l is evaluated via

the premise γ(X) = l of [D1] (and the old value 2 of X has been lost).
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The inference tree for executions starting with a step of the right side follows.

Let Y initially be 6. The assignment Y = 10 is performed via [D1] which in this case

is a leaf, due to the expression already being a value and requiring no evaluation.

The final data store is σ[l 7→ 10] (losing 6), where l is from the premise of [D1].

γ(X) = l
[D1]

(X = 10 | σ, γ,�) ↪→ (skip | σ[l 7→ 10], γ,�)
[S1]

(X = 10; Y = 2; | σ, γ,�) ↪→ (skip; Y = 2; | σ[l 7→ 10], γ,�)
[P2]

(P | σ, γ,�) ↪→ (par { X = X + 3; Y = 5; } { skip; Y = 2; } | σ[l 7→ 10], γ,�)

Our final example is of a while loop body, containing a conditional statement

already evaluated to false. The first execution step performs an assignment from

within the false branch of this nested conditional. Let the original program P =

while w1 T do if i1 F then Q else X = 4; R end end, and the intermediate

program P′ = if i1 F then Q else X = 4; R end. Let X initially be 0. The

inference tree proving there exists a transition from P that first performs the assign-

ment X = 4 follows.

γ(X) = l
[D1]

(X = 4 | σ, γ,�) ↪→ (skip | σ[l 7→ 4], γ,�)
[S1]

(X = 4;R | σ, γ,�) ↪→ (skip; R | σ[l 7→ 4], γ,�)
[I3]

(P′ | σ, γ,�) ↪→ (if i1 F then Q else skip;R end | σ[l 7→ 4], γ,�)
[W5]

(P | σ, γ,�) ↪→ (while w1 T do if i1 F then Q else skip;R end end | σ[l 7→ 4], γ,�)

As in the previous example, the assignment contains a value and therefore re-

quires no evaluation (hence [D1] is a leaf). The location l is retrieved from the

premise (γ(X) = l) of [D1]. The data store produced is σ[l 7→ 4] (losing 0).

2.5 Conclusion

In this chapter we have described an imperative while language that contains a

form of parallel composition, known as interleaving. We have described how the

program state is represented using a series of environments, and have defined the

operational semantics that interact with these environments and perform traditional

(irreversible) execution of this programming language.



Chapter 3

Reversing an Imperative

Concurrent While Language

This chapter presents an approach to adding reversibility to the concurrent impera-

tive programming language described in Chapter 2. Some key challenges introduced

by our parallel composition operator are addressed, before the process of creating

two versions of an original program is discussed. One of these versions performs

forward execution alongside saving any information needed for reversal, while the

second uses this saved information to simulate reverse execution. Two operational

semantics are given defining the execution of each of these two versions of an original

(irreversible) program.

3.1 Parallel Composition Challenges

The programming language in Chapter 2 contains a form of parallel composition,

where the execution of two (or more) programs can be interleaved. The parallel

composition of the programs P and Q is written as either P par Q, or as par {P}
{Q} in some examples. Each component program of the parallel composition, namely

P and Q, is referred to as a side or a thread from this point on. An example parallel

program is shown later in Figure 3.2.

Interleaving introduces the following two key challenges that must be considered

and addressed prior to the discussion of reversibility, namely

1. Multiple distinct execution order (also referred to as interleaving order),

2. Atomicity of statements.

The order in which executions interleave is arbitrary, meaning multiple distinct

interleaving orders exist. All statements within the same side of a parallel execute

in program order (order of statements from within the source code with interleaved

26
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nested parallels). The execution order between statements from different sides of a

parallel is not fixed, and is determined arbitrarily at runtime. This is a challenge

as each distinct interleaving order is not guaranteed to have the same behaviour

as all others, and can therefore produce different program states. This order is

important when considering races, where two or more parallel steps of an execution

each modify (or one accesses) the same memory location. In such cases the outcome

of the program is directly affected by the ordering of those statements (result of the

race). Example 4 shows how execution changes depending on the interleaving order.

Example 4. (Different interleaving orders) Consider a conditional statement in

parallel with an assignment, with a race on X. Let X = 0 and Y = 0 initially.

if i1 (X < 10) then X = 12;

Y = X + 3; par

else

Y = X - 1;

end;

An execution (or interleaving) order that first performs the assignment X = 12 be-

fore the conditional results in a state such that X = 12 and Y = 11. In contrast,

an execution order where the conditional statement executes first results in a state

such that X = 12 and Y = 3. The value of Y is directly affected by the outcome of

the race on the reading of and writing to X. �

Ambiguous interleaving order impacts reversibility. Statements should be in-

verted in the reverse order in which they were performed forwards in order for the

initial program state to be restored correctly. The single execution order of se-

quential programs means this is easy, a property not shared by parallel programs.

An inverse interleaving order cannot be arbitrary as in the forward execution, and

instead must be determined correctly. The reverse execution of the program from

Example 4, must determine the correct branch to reverse. Section 3.2.2 contains

examples of misbehaviour due to incorrect inverse interleaving orders.

Now consider the atomicity of statements. In high level programming languages,

each statement execution is typically composed of several smaller steps. An assign-

ment actually contains the evaluation of the arithmetic expression, the retrieval of

the memory location bound to this variable and finally the assignment. Parallel

programs allow interleaving at any point within the execution of a statement. Re-

turning to the racing program in Example 4, let the evaluation of the conditional

statement begin by reading the value of X. Consider an execution that first reads

the value of X, namely 0, as part of the conditional statement evaluation, before
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interleaving and performing the assignment X = 12. Then the execution returns to

the conditional statement and completes by executing the true branch. At a high

level it appears as though X = 12 was executed first, while the true branch of the

conditional was then executed (which implies that X = 12 was not executed first).

Therefore interleaving can lead to old values being used (result of a race).

3.2 Annotation

We now add reversibility to our concurrent while language introduced above. As

described in Chapter 1, one possible approach to this is to simply save the entire

program state at each intermediate point (after each step). This approach, named

full checkpointing, can reverse a given program by restoring to the snapshot of

the desired position. This typically requires a large amount of information to be

saved, for example the contents of each memory location. Some such data may be

redundant, as the previous step of an execution is unlikely to have modified every

memory location. A possible relaxation is periodic checkpointing, where snapshots

are saved less frequently and forward re-execution used to reach positions in between

checkpoints. Incremental checkpointing reduces the amount of information that

must be saved by recording only the changes made by each step, which are then

accumulated to restore a desired program state (usually starting from the initial

program state).

We choose not to use a checkpointing approach due to our desire to execute

programs in reverse, and the fact that simulating step-by-step reversal of a program

using checkpointing would require many restorations of snapshots and forward re-

executions. Secondly, in a concurrent language any forward re-execution is not

guaranteed to behave identically and would therefore need to be addressed.

A second potential approach is to use a reversible programming language such

as Janus [97]. In order to provide a basis that can be used to add reversibility to

frequently used irreversible languages such as C++, we begin with the irreversible

language defined in the previous sections. Due to difficulties in automatically con-

verting an irreversible program into an equivalent reversible program (written in a

reversible language), we do not choose this approach.

As outlined by Perumalla in [63], and used within the Reverse C Compiler (RCC)

[63, 11], we choose to use a source to source translator approach. The basis of this

is to take an original (irreversible) program and automatically produce two mod-

ified versions of it. The first, named the annotated version and generated via a

process called annotation, performs the expected forward execution and saves only

information that would otherwise have been lost. Any lost data vital for reversal,

named reversal information, is saved as each statement executes. The second ver-
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sion, named the inverted version and produced using a process called inversion, uses

the saved reversal information to undo the effects of each statement and to restore

the original program state.

Both modified versions are forward executing programs, performed on traditional

irreversible computers. The inverted version simulates reverse execution by begin-

ning in the final program state and performing an inverted version of each statement

(in reverse order). The reversal information saved during the annotated execution

allows the effects of each statement to be reversed. Work including RCC [63], Back-

stroke [75] and others [12], use program instrumentation to insert commands into an

original program that save or use the reversal information. As a result of difficulties

associated with parallel composition and the interleaving of such statements, and

the complications added to the proof of correctness, we do not instrument a program

with such commands and instead defer the saving and using of all information to

the operational semantics.

We aim to save as small amount of information as is needed, as reasonable

memory usage is crucial for scalability. We note here that we could reduce this

information further by allowing only constructive assignments as in Janus [97]. This

would remove the need to save any old values of variables, but would require all

expressions to be re-evaluated during the reverse execution (with a possible further

time penalty incurred when converting an original program using destructive assign-

ments into only increments or decrements). Some information lost is already not

saved as it can be recovered from the program code. For example, we do not save

the copy of a while loop prior to its removal from the while environment, as the

entry can be recreated easily from the inverted version of the program.

We now describe the type of reversal information required, consisting of the

following two parts.

1. Information lost via each type of statement as it executes, including crucial

values that are overwritten etc. (see Section 3.2.1).

2. The interleaving order of the execution needed to correctly reverse the state-

ments in the corresponding order (see Section 3.2.2).

3.2.1 Saving Lost Information

Each type of statement from the syntax in Figure 2.1 of Chapter 2 loses information

as it executes. Prior to detailing the information lost by each, we first introduce the

auxiliary store δ as the environment used to store it. As a result, we now update

� to be the tuple (σ, γ, β, δ) by abuse of notation. One design choice made here

is to use an environment separate to the program state, as this aides the proof of
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correctness by ensuring the act of saving reversal information does not change the

behaviour of the program w.r.t the program state. The second design choice made

is to store all information into stacks, a data structure ideal for reversibility due to

their Last-In, First-Out (LIFO) nature. The reversal information saved for the final

statement should be accessible immediately as this is the first to be inverted (top

of the stack). A side effect of this is we must consider the order in which reversal

information is saved for nested constructs, as is highlighted below. An example of

an auxiliary store and the population of it is shown later in Example 8. We now

consider each type of statement in turn.

Assignment

Assignments are destructive in nature, as the current value of the variable is lost

when it is overwritten. Consider the statement X = 2 + 8 and a program state

where X is initially 4. After this assignment, the final program state will be such

that X is equal to 10. For correct reversal, the value of X must be restored from

10 to 4. However the value 4 has been lost and cannot be re-calculated from the

statement itself. This can be avoided by saving the current value of the variable

prior to an assignment, meaning the old value can now be retrieved during reversal.

This old value is pushed onto a stack named X (named after the specific variable)

within δ. All old values of the same variable are saved onto a single stack, ensuring

all races can be replayed correctly.

Conditional Statement

Conditional statements allow branching, where evaluation of a condition determines

which branch is executed. Correct reversal requires only the branch that was exe-

cuted to be reversed, introducing the challenge of determining this.

Boolean expressions are not guaranteed to be invariant, where the execution of

the branch is capable of altering the value of the boolean condition. This means eval-

uation of the same condition after the execution of the branch (in the final program

state) may differ to the original evaluation. Consider the conditional statement

if i1 (X > 4) then

X = 2;

else

X = 13;

end;
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1 while (b1) do

2 while (b2) do

3 P

4 end;

5 while (b3) do

6 Q

7 end;

8 end;

(a) Loop program

1 T

2 T P T P T P F

3 T Q T Q F

4 T

5 T P F

6 F

7 F

(b) Expected order

1 F

2 F P T P T P T

3 F Q T Q T

4 T

5 F P T

6 F

7 T

(c) Modified order

Figure 3.1: An example loop and both the expected and actual boolean sequence
saved for reversal

and an initial program state where X is 6. During forward execution, the condition

evaluates to true (since 6 > 4), meaning the true branch is executed producing a

final program state with X updated to 2. Now consider the inverse execution of this

conditional statement. The condition X > 4 now evaluates to false (since 2 > 4),

leading to incorrect reversal as the false branch is now executed.

Therefore our approach is to save a boolean value indicating the branch that

was executed. All boolean values for all conditional statements are pushed to the

single stack named B on δ. The use of a stack here requires the boolean value for

a conditional statement to be saved after any boolean values required for nested

conditionals, ensuring these values are accessed from the stack in the correct order.

While Loop

While loops allow a varying number of iterations over a loop body. As for conditional

statements, all conditions are not guaranteed to be invariant meaning the challenge

of determining the number of iterations to reverse exists.

We choose not to implement a loop counter variable that increments for each

iteration as this complicates the proof of correctness. Such an approach leads to

an annotated execution having different behaviour w.r.t the program state when

compared to the original. We therefore save a boolean value indicating the result of

evaluating the condition each time. This builds a boolean sequence for each loop,

capturing the number of iterations. Each element of this sequence is pushed to the

stack W on δ. Consider the while loop

while w1 (X < 4) do

X = X + 1;

end;



CHAPTER 3. REVERSING A CONCURRENT WHILE LANGUAGE 32

and an initial program state where X = 0. This loop performs four iterations, and

evaluates the condition five times (the four successful checks and the final unsuc-

cessful one). The boolean sequence T; T; T; T; F is then used during reversal to

determine whether to iterate again.

We must again consider the order in which we save this sequence onto the stack

named W. Figure 3.1(a) shows a loop containing two sequentially composed nested

loops. Assume the outer loop performs two iterations, with the first containing three

and two iterations of each nested loop respectively, and the second containing one

and zero iterations of each nested loop respectively. First let the boolean sequence

be generated in the intuitive manner of pushing a T for each successful iteration

and finally an F. The sequence of booleans this generates is shown in the trace in

Figure 3.1(b), where the outer vertical sequence represents the outer while loop, and

each horizontal sequence represents each of the inner loops respectively. Assume

these values have been pushed in this order to a stack, where the bottom of the

trace is the top of the stack. When accessing this in reverse, the first boolean

value retrieved is F. This causes confusion, as we know the outer loop performs two

iterations, and ambiguity, as we would need to determine whether an F indicates

the beginning of a loop with further iterations or a loop with zero iterations (as on

line 6 of Figure 3.1(b)). In addition to this, the final element received is T which

again leads to confusion as the loop must finish here.

This can be avoided by modifying the order in which the boolean values are

saved. Specifically the opening T and the closing F are switched, meaning the first

iteration of a loop therefore saves an F, while the final unsuccessful iteration saves a

T. These two elements are then accessed in the expected order T. . . F during reversal.

Figure 3.1(c) shows the trace using the modified order, with all elements that have

changed underlined. Finally, each element of the boolean sequence (except the

beginning F) is saved after the execution of the loop body to ensure correct ordering

between nested loops.

3.2.2 Interleaving Order and Identifiers

The specific execution path of a forward concurrent program is crucial for correct

reversal, as the reverse execution must follow the corresponding inverted version.

Interleaving during a reverse execution means a decision must be made about which

statement to execute (invert) next. Problems may arise when the reverse execution

follows a different path, as shown in Examples 5 and 6.

Example 5. (Incorrect statement order) Consider the program in Figure 3.2(a)

that contains a race between two assignments to the same variable X (initially =

15. Assume an initial program state where X = 15. The forward execution of
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1 . . . . . .

2 X = 10; par X = 5;

3 . . . . . .

(a) Racing assignments

1 if i1 (X > 3) then if i2 (Y > 3) then

2 X = 10; Y = 12;

3 else par else

4 Y = 20; X = 3;

5 end end

(b) Conditional statements

Figure 3.2: Programs that reverse incorrectly under specific interleavings

this program follows the interleaving order where the left hand side assignment

executes first, followed by the assignment on the right hand side. The left assignment

overwrites the value 15, before the right assignment overwrites the value 10.

Now assume an inverse execution that does not follow the inverted order of the

forward execution, and instead inverts the left followed by the right. Using stacks on

the auxiliary store is sufficient to handle races, as the overwritten values can only ever

be accessed in the correct order restoring X to 15. However the intermediate program

structure, namely where X = 10 has not been performed (as its been reversed) and

X = 5 has (waiting to be reversed), is incorrect since it did not occur during the

forward execution (regardless of the value of X being correct). �

Example 6. (Incorrect control flow) Another potential problem relates to control

flow. Consider the program shown in Figure 3.2(b), and an execution where the left

conditional executes the true branch (overwriting the value of X) and the right con-

ditional executes the false branch (also overwriting the value of X). Let the forward

execution first close the left conditional (pushing T to the stack B) and then close

the right conditional (pushing F to the stack B).

Now consider the inverse execution that opens (inverse of closing) the left con-

ditional first. Note that this is not in the order we expect. This means the top

element of the stack B is used for the left conditional instead of the right, indicating

the false branch of the left conditional must be inverted. This also means that T is

used for the right conditional, indicating the true branch must be inverted. Each

conditional is now trying to invert the incorrect branch. Note that both incorrect

branches are assignments to Y that did not occur during the forward execution. This

means there is no reversal information saved for these statements and the execution

will halt (problems still arise even if reversal information does exist on the stack Y

as it was not saved for these statements). �

Each of these issues can be overcome by recording the order in which statements

executed during the forward execution. This is achieved using identifiers, much like

in the work [64, 68]. Identifiers, which are natural numbers, are used to capture the

order in which statements execute. At each point that a decision is made during
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1 while w1 (X > 3) do Y = 20 [3];

2 X = X - 1 [1,4,7]; par Z = Z + Y [6];

3 end [0,2,5,8]; Y = 12 [9];

Figure 3.3: Example use of identifiers to capture interleaving order

the forward execution, the next available identifier is associated with the statement

that is executed. An annotated version of a program must therefore be capable of

storing potentially many identifiers associated to each statement.

Identifiers are used in ascending order, typically beginning from 0. The next

available identifier m is determined using the globally accessible and atomic function

next(). Each subsequent call of this function returns the next available, namely

m+1 and so on. This is essentially a counter and can be implemented as such. This

single counter is shared by all concurrent sub-programs, ensuring we can capture the

global interleaving order. Example 7 shows a concurrent program and the identifiers

that capture the interleaving order.

Example 7. (Forward identifier use) Consider the annotated program shown in

Figure 3.3, which contains a while loop in parallel with three assignment statements.

We note here that [ ] represents a stack used to store identifiers for each statement

(see Section 3.2). To aid this example, we represent all identifier stacks as part of

the syntax. The actual implementation of these stacks is discussed in more detail

in Section 3.2.3. Let this execution follow an interleaving order such that the first

iteration and second condition evaluation of the loop happens first using identifiers

0, 1 and 2, before the first assignment of the right hand side is interleaved using

identifier 3. Then the second iteration and third condition evaluation of the loop

happens using identifiers 4 and 5, followed by the interleaved second assignment

using identifier 6. Finally the while loop completes using identifiers 7 and 8, before

the third and final assignment statement is interleaved using identifier 9. The order

of these ten identifiers captures the interleaving order. �

Each type of statement requires the use of identifiers. An assignment completes

in a single step and requires the use of a single identifier each time. Conditional

statements require two identifiers directly per execution, with one capturing the

point at which the conditional was evaluated (referred to as opening) and one cap-

turing when the conditional is closed. Any number of identifiers may be required

during the execution of the appropriate branch. While loops require multiple identi-

fiers per execution, with one to capture each time the condition is evaluated. Recall

the while environment β and the fact that each loop is executed via a copy from

Section 2.2 of Chapter 2. All identifiers are assigned to the specific copy within β,

which we highlight in the following semantics using the function refW (Wn,P). While
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1 while w1 (X > 0) do

2 X = X - 1 [1,3,5];

3 end [0,2,4,6];

4 if i1 (Y > 4) then

5 Y = 10 [8];

6 else

7 Y = 20 [];

8 end [7,9];

(a) Executed annotated program

X Y B W WI

(6,T)

(5,1) (4,T)

(3,2) (2,T)

(1,3) (8,6) (9,T) (0,F) (6,seq)

(b) Auxiliary store where seq = (1,3,5 | 0,2,4,6)

Figure 3.4: Example program execution and its populated auxiliary store

loops ‘clean’ up after themselves by removing the specific copy from β, losing all

identifiers associated with it. In order for reversal to be correct, all of these identifiers

must be saved. Let C be the set of sequences seq of identifiers. The function getAI :

P → C takes a program P and returns all identifiers associated with statements

within it. Note that this program must actually be an annotated program, written

as AP and introduced in the coming sections. Written seq, a sequence contains

groups of identifiers, where each group (a stack) contains identifiers associated to

a specific statement and are separated using the symbol ‘|’. To save this sequence,

we extend the auxiliary store to contain the stack WI, where such identifiers are

recorded. Example 8 illustrates this.

The issue highlighted in Example 6 is addressed by using the identifiers to create

a link between the reversal information and the statement to which it applies. This

means that each step of an execution that saves any information must also use

an identifier. The necessary reversal information for that statement is then indexed

with this identifier, before being saved onto δ. This means all stacks on the auxiliary

store δ are updated to contain pairs of the form (m,v), where m is the identifier given

to the statement and v is some information lost during that execution.

We now give an example of an auxiliary store. Let X be the set of all variable

names, K be the set of identifiers, B be the set {T,F} of boolean values, Z be the set of

integers and C be the set of identifier sequences retrieved from a loop copy prior to its

removal. Then δ ∈ (X→ (K×Z))∪(B→ (K×B))∪(W→ (K×B))∪(WI→ (K×C)).

We use the notation δ[el ⇀ St] to represent pushing the element el to the stack

St, and δ[St/St′] to represent popping the head of stack St, leaving the tail St′.

Example 8. (Auxiliary store) Consider the program shown in Figure 3.4(a). As-

sume an initial program state such that X = 3 and Y = 6. This sequential program

consists of a while loop that performs three iterations (since X is initially 3 and is

decremented until it is less than or equal to 0). Following this, there is a conditional
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AP ::= ε | AS | AP; AP | AP par AP

AS ::= skip I | X = E A | if In B then AP else AP end A |
while Wn B do AP end A

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

Figure 3.5: Syntax of annotated versions of original programs

statement that will execute the true branch (as Y = 6). The identifiers 0 to 9 are

assigned to the statements in the order in which they execute (sequential only here).

The auxiliary store containing all necessary reversal information for this execu-

tion is shown in Figure 3.4(b). The five necessary stacks are X and Y (a stack for each

variable name), B (for conditionals), W (for loops) and WI (for loop identifiers). Each

stack is now briefly explained, where elements are always pushed to and popped

from the top. The variable X is assigned a new value three times (once for each

iteration of the loop), meaning three corresponding pairs have been pushed to stack

X. For example, the pair (3,2) means the statement with identifier 3 overwrote the

value 2 (while setting it to 1). The variable Y is assigned a new value once, namely

during the true branch via the statement with identifier 8. Therefore the stack Y

contains the pair (8,6) capturing the overwritten value 6.

There is a single conditional statement that performs the true branch. This

conditional is closed via the statement with identifier 9 (recall no information is

saved for the opening of a conditional - identifier 7), meaning the stack B contains

the pair (9,T). There is a single while loop statement that performs three iterations.

Therefore the sequence T, T, T, F is saved (alongside identifiers). For example the

pair (2,T) indicates the statement with identifier 2 evaluated the condition to T. The

identifiers associated to the while loop are saved prior to its removal, represented

using the sequence seq (in the form as explained above). �

3.2.3 Annotation Function

In this section we introduce the process named annotation, which takes an original

program and returns the annotated version. An annotated version must be capable

of storing identifiers used to capture the interleaving order, meaning modifications

to the syntax are required. These modifications concern only the interleaving order

as all reversal information saving is deferred to the semantics (Section 3.3).

We take this opportunity to discuss the identifier stacks in more detail, and

specifically focus on how these stacks can be implemented.

The majority of statements, excluding only block statements, require an identifier

stack. Each initially empty identifier stack must be linked uniquely with a distinct
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ann(ε) = ε

ann(S;P) = a(S); ann(P)

ann(P par Q) = ann(P) par ann(Q)

a(skip) = skip A

a(X = e) = X = e A

a(if In b then P else Q end) =

if In b then ann(P) else ann(Q) end A

a(while Wn b do P end) = while Wn b do ann(P) end A

Figure 3.6: Annotation function

statement, requiring a unique name. Let a stack name be of the form Ai, where i

is an integer. Each statement can then be assigned an identifier stack, using the

stack names in ascending order, such as A1, A2, A3 etc. The syntax of all statements

requiring an identifier stack is extended to now include a stack name. For example,

the assignment statement X = e is extended to include the stack name Ai such that

X = e Ai.

In order for the identifier stacks to be persistent, and to outlive the execution of

the forward program (as the semantics reach skip), the stacks must actually be stored

separate to the program syntax. This can be achieved via a separate environment,

where each uniquely named stack is globally accessible. This environment, named

the identifier stack environment and represented as ψ, can be queried using a stack

name. Given an identifier and the stack name to which it should be pushed, the

stacks within this environment can be populated. We can use the notation ψ(Ai)

to access the stack Ai from ψ, and ψ[k ⇀ Ai] to represent pushing the identifier k

to the stack Ai on ψ.

From this point, we aim to keep examples concise by having all stacks within the

syntax of programs. This means that we no longer write just the stack name within

the syntax, and instead write the entire stack. Example 7 displayed previously

shows a program with identifier stacks within the syntax. We assume that all stacks

are actually stored separately to the program code, and therefore all such stacks are

persistent (by persistent, we mean that as a program is executed and each statement

reaches skip, the stacks are not lost), which is crucial for reversal as we will explain

in Section 3.5.1. However we omit the use of the stack identifier environment ψ, as

this complicates the process of using identifiers that can be explained easier within

the syntax. We will also return to this discussion when describing the operational

semantics in Section 3.3, where we give two versions of the assignment rule, one that

uses the identifier environment and one that does not.
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1 par {
2 while w1 (X < 3) do

3 X = X + 1;

4 Y = Y + X;

5 end;

6 }
7 {
8 if 11 (Y <= 1) then

9 Z = X + Y;

10 Y = Y - 1;

11 else

12 Z = Y - X;

13 Y = Y + 1;

14 end;

15 }

(a) Original program

1 par {
2 while w1 (X < 3) do

3 X = X + 1 [];

4 Y = Y + X [];

5 end [];

6 }
7 {
8 if 11 (Y <= 1) then

9 Z = X + Y [];

10 Y = Y - 1 [];

11 else

12 Z = Y - X [];

13 Y = Y + 1 [];

14 end [];

15 }

(b) Annotated version

Figure 3.7: An original program and its corresponding annotated version

We use [] to represent an empty stack, and [2,1] to be a stack with the identifier

2 as its head. A = m:A′ represents a stack A that has m as its head and A′ as its

tail. Sequential and parallel composition do not require a stack, and instead use the

stacks of their component statements. An annotated version of a program is of the

syntax given in Figure 3.5, where AP and AS are the sets of annotated programs

AP and statements AS respectively, and I indicates an optional identifier stack (e.g.

hard-coded skip statements will not have one).

The function performing annotation, namely ann: P→ AP (recalling P is the set

of original programs), is defined in Figure 3.6. This also contains the definition of

the function a: S→ AS (recalling S is the set of original statements) that annotates

each statement in turn.

Example 9 shows an original program and the corresponding annotated version.

We return to this program when discussing inversion in a later section.

Example 9. (Annotated program) Consider the original program in Figure 3.7(a).

The annotated version of this program contains all necessary identifier stacks asso-

ciated with each appropriate statement which are initially empty. No saving com-

mands are inserted as this is performed completely within the operational semantics.

The annotated version of this original program is shown in Figure 3.7(b). �
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3.3 Forward Semantics of Annotated Programs

We now introduce the small step operational semantics of annotated forward ex-

ecution, where both the forward execution and all reversal information saving is

performed. As in Section 2.3 of Chapter 2, the least relation defined by the fol-

lowing set of transition rules is the transition relation →. Each configuration used

here is updated to consist of an annotated program AP or statement AS and state �

(now containing the auxiliary store δ). The reflective and transitive closure →∗ of

→ indicates one configuration is reached from another via an arbitrary number of

steps.

In order to capture the interleaving order via the use of identifiers, some transi-

tion rules require the use of an identifier while others do not. Those using identifiers

are named identifier steps, while those that do not are called skip steps.

Definition 3.3.1. (Identifier step) An identifier step (rule) is a transition rule that

uses an identifier. Each identifier step (rule) of the forward execution using an

identifier m is represented using
m→.

An example of such an identifier step is the rule for assignments, named [DA1]

and shown in full below. This requires the use of an identifier as such a statement

could be a component of a data race, where the order in which statements execute

can affect the outcome of the program.

Definition 3.3.2. (Skip step) A skip step (rule) is a transition rule that does not

use an identifier. Each skip step (rule) of the forward execution is represented as→s.

An example of a skip step is the rule for sequential composition, named [S2a] and

shown below. This does not need an identifier as such a rule does not alter the pro-

gram state and is therefore not dependent on the outcome of data races. Therefore

we do not need to ensure a specific order is followed in the reverse execution.

Given that each transition rule is of one of the two possible kinds, we use
◦→ to

represent either an identifier or skip step. Each transition rule [R] from Section 2.3

of Chapter 2 has a matching rule [Ra] here. The difference is that the following

transition rules additionally use the auxiliary store δ, as described below. The

semantics of arithmetic and boolean evaluation are unchanged from Chapter 2 and

so are omitted.

Sequential Composition

Unchanged to that of Chapter 2, but with an optional identifier stack I.

[S1a]
(AS | �)

◦→ (AS′ | �′)
(AS; AP | �)

◦→ (AS′; AP | �′)
[S2a]

(skip I; AP | �)→s (AP | �)
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Parallel Composition

Unchanged to that of Chapter 2, but with an optional identifier stack I.

[P1a]
(AP | �)

◦→ (AP′ | �′)
(AP par AQ | �)

◦→ (AP′ par AQ | �′)
[P2a]

(AQ | �)
◦→ (AQ′ | �′)

(AP par AQ | �)
◦→ (AP par AQ′ | �′)

[P3a]
(skip I1 par skip I2 | �)→s (skip | �)

Assignment

Prior to defining the semantics of an assignment statement, we return to our discus-

sion of identifier stacks from Section 3.2.3. As this is the first rule that will use an

identifier and store this in an identifier stack, we first explain how identifier stacks

are stored separately to the program code and how this is implemented. We then

show a modified version of the rule that displays the stack within the code. Our

subsequent rules will all follow this presentation style. Recall the introduction of the

identifier stack environment ψ and the necessary notation to interact with it (Sec-

tion 3.2.3). When using this environment, the syntax of an assignment statement

contains a unique stack name. Consider the assignment statement X = e Ai, where

we assume the stack Ai exists within the identifier stack environment ψ. The rule

[D1aFull] below defines the semantics of an assignment.

[D1aFull]
m = next() (e | δ, σ, γ, ψ,�) ↪→∗a (v | δ, σ, ψ, γ,�) γ(X) = l

(X = e Ai | δ, σ, γ, ψ,�)
m→ (skip | δ[(m,σ(l)) ⇀ X], σ[l 7→ v], γ, ψ[m⇀ Ai],�)

This rule has demonstrated how the next identifier m is stored into the identifier

stack environment ψ (written ψ[m⇀ Ai]), and how m is also stored alongside the old

value of the variable (that will be lost) onto δ (written δ[(m,σ(l)) ⇀ X]). As in the

corresponding rule in Chapter 2, the variable in question is evaluated to its memory

location l which is updated to hold the new value v within σ. We now display a

second version of this rule, named [D1a], that uses our aforementioned simplification

of representing stacks within the syntax (and ignores the identifier environment ψ).

Note that the syntax of this statement now contains the stack Ai (instead of just a

stack name), which is treated as persistent by remaining after execution (alongside

the skip statement). We therefore use A to represent a stack from this point.

[D1a]
m = next() (e | δ, σ, γ,�) ↪→∗a (v | δ, σ, γ,�) γ(X) = l

(X = e A | δ, σ, γ,�)
m→ (skip m:A | δ[(m,σ(l)) ⇀ X], σ[l 7→ v], γ,�)

From this point on, all rules we define will follow this simplified format. We will

write all stacks within the syntax of statements, and will omit all use of the identifier

environment ψ.
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Conditional Statements

Opening a conditional statement ([I1aT]/[Ia1F]) inserts the identifier m (returned

by next()) into the identifier stack (m:A) and saves no reversal information.

[I1aT]
m = next() (b | �) ↪→∗b (T | �)

(if In b then AP else AQ end A | �)
m→ (if In T then AP else AQ end m:A | �)

[I1aF]
m = next() (b | �) ↪→∗b (F | �)

(if In b then AP else AQ end A | �)
m→ (if In F then AP else AQ end m:A | �)

The true ([I2a]) or false branch ([I3a]) executes unchanged from Chapter 2. Recall

from Section 3.2.1 that the result of condition evaluation is saved after the execution

of the branch, meaning conditionals are static. Therefore the non-chosen branch and

overall statement structure is retained throughout the execution.

[I2a]
(AP | �)

◦→ (AP′ | �′)
(if In T then AP else AQ end A | �)

◦→ (if In T then AP′ else AQ end A | �′)

[I3a]
(AQ | �)

◦→ (AQ′ | �′)
(if In F then AP else AQ end A | �)

◦→ (if In F then AP else AQ′ end A | �′)

Closing a conditional statement ([I4a]/[I5a]) behaves like in Chapter 2, but with the

next identifier m (from next()) pushed into the identifier stack (m:A) and saved along-

side a boolean value B that indicates which branch was executed (δ[(m,B) ⇀ B]).

[I4a]
m = next()

(if In T then skip I else AQ end A | δ,�)
m→ (skip m:A | δ[(m,T) ⇀ B],�)

[I5a]
m = next()

(if In F then AP else skip I end A | δ,�)
m→ (skip m:A | δ[(m,F) ⇀ B],�)

While Loops

A loop with zero iterations ([W1a]) uses the next identifier m, pushing this into

the identifier stack (m:A) and saving it alongside the only element F of the boolean

sequence of this loop (δ[(m,F) ⇀ W]).

[W1a]
m = next() β(Wn) = und (b | β,�) ↪→∗b (F | β,�)

(while Wn b do AP end A | δ, β,�)
m→ (skip m:A | δ[(m,F) ⇀ W], β,�)

The last step of a loop ([W2a]) pushes the next identifier m to the identifier stack

(m:A), and saves it alongside the final T of the boolean sequence (δ[(m,T) ⇀ W]).

This identifier is also saved alongside the sequence of identifiers retrieved from this

loop copy within β prior to its removal (δ[(m,C) ⇀ WI] where C = getAI (β(Wn))).
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[W2a]
m = next() β(Wn) = def (b | β,�) ↪→∗b (F | β,�)

(while Wn b do AP end A | δ, β,�)
m→ (skip m:A | δ[(m,T) ⇀ W, (m,C) ⇀ WI], β[Wn],�)

where C = getAI(β(Wn)))

The first step of a loop ([W3a]) inserts the next identifier m into the identifier stack

(m:A) and saves it with the first F of the boolean sequence (δ[(m,F) ⇀ W]).

[W3a]
m = next() β(Wn) = und (b | β,�) ↪→∗b (T | β,�)

(S | δ, β,�)
m→ (while Wn T do reL(AP) end m:A | δ[(m,F) ⇀ W], β[Wn ⇒ AR],�)

where S = while Wn b do AP end A and AR = while Wn b do reL(AP) end m:A

The beginning of any middle iteration ([W4a]) uses the next identifier m and both

inserts this into the identifier stack (m:A) and saves it alongside the next element

(must be a T) into the boolean sequence for this loop (δ[(m,T) ⇀ W]).

[W4a]
m = next() β(Wn) = S (b | β,�) ↪→∗b (T | β,�)

(S | δ, β,�)
m→ (while Wn T do reL(AP) end m:A | δ[(m,T) ⇀ W], β[Wn ⇒ AR],�)

where S = while Wn b do AP end A and AR = while Wn b do reL(AP) end m:A

Loop body execution ([W5a]) and loop resetting ([W6a]) match those from Chap-

ter 2, since neither directly uses an identifier or saves reversal information. β′′ is used

to represent β′[refW(Wn, AP′)], which simply highlights that any identifiers assigned

are reflected into the while environment.

[W5a]
β(Wn) = def (AP | δ, β,�)

◦→ (AP′ | δ′, β′,�′)
(while Wn T do AP end A | δ, β,�)

◦→ (while Wn T do AP′ end A | δ′, β′′,�′)

[W6a]
β(Wn) = while Wn b do AP end A

(while Wn T do skip I end A | δ, β,�)→s (while Wn b do AP end A | δ, β,�)

3.4 Examples of Annotated Execution

We now return to the examples of traditional execution from Section 2.4 of Chap-

ter 2 and highlight the differences of the matching annotated execution (noting the

correspondence between each rule used). We begin with the sequential composition

of a conditional statement ready to close and an assignment. The annotated version

of this program is produced, such that AP = if i1 T then skip I else Q end A;

X = 12 A′. Let AR = if i1 T then skip I else Q end A;. Note the presence of

the identifier stacks I (optional), A and A′, and recall the additional environment δ.

The corresponding annotated execution is shown in the following inference tree.
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m = next()
[I4a]

(AR | δ,�)
m→ (skip m:A | δ[(m, T) ⇀ B],�)

[S1a]
(AP | δ,�)

m→ (skip m:A; X = 12 A′ | δ[(m, T) ⇀ B],�)

As can be seen above, this execution still does not alter the program state (�),

but does populate the auxiliary store δ, saving m and the boolean value T (the true

branch was executed) onto the stack B. The final auxiliary store is δ[(m,T) ⇀ B].

We return to our example of parallel composition, specifically the execution

originating from the left side (the right follows accordingly). Recalling X = 2, let

the annotated version AP = par { X = X + 3 A1; Y = 5 A2; } { X = 10 A3; Y

= 2 A4; }, where each statement now contains an identifier stack. Further let AP′

= par { skip m:A1; Y = 5 A2; } { Y = 10 A3; X = 2 A4; }. The annotated

execution of a step from the left side is shown in the inference tree below.

[A1a]
(X | δ, σ, γ,�) ↪→a (2 | δ, σ, γ,�)

[A5a];[A2a]
(X + 3 | δ, σ, γ,�) ↪→∗a (5 | δ, σ, γ,�) m = next()

[D1a]
(X = X + 3 A1; | δ, σ, γ,�)

m→ (skip m:A1; | δ′, σ′, γ,�)
[S1a]

(X = X + 3 A1; Y = 5 A2; | δ, σ, γ,�)
m→ (skip m:A1; Y = 5 A2; | δ′, σ′, γ,�)

[P1a]
(AP | δ, σ, γ,�)

m→ (AP′ | δ′, σ′, γ,�)

The effect on the program state is unchanged to that of Section 2.4 of Chapter 2,

namely σ′ = σ[l 7→ 5]. One exception is the auxiliary store δ. The next identifier

m is used by [D1a], and saved by [D1a] alongside the old value 2 of the variable X.

Notice all evaluation still occurs, including of the variable X to the memory location

l (via the premise γ(X) = l of [D1a] that is omitted). As such, δ′ = δ[(m,2) 7→ X].

Next we return to the example of an assignment statement nested within both a

conditional statement and while loop, where X is initially 0. The annotated version

of the original program is AP = while w1 T do if i1 F then Q else X = 4 A3;

R end A2 end A1. The inference tree showing the corresponding annotated is now

shown below, where we use AT = if i1 F then Q else X = 4 A3; R end A2 and

we use AT′ = if i1 F then Q else skip m:A3; R end A2.

m = next() γ(X) = l
[D1a]

(X = 4 A3 | δ, σ, γ, β)
m→ (skip m:A3 | δ′, σ′, γ, β′)

[S1a]
(X = 4 A3; R | δ, σ, γ, β)

m→ (skip m:A3; R | δ′, σ′, γ, β′)
[I3a]

(AT | δ, σ, γ, β)
m→ (if i1 F then Q else skip m:A3; R end A2 | δ′, σ′, γ, β′)

[W5a]
(AP | δ, σ, γ, β)

m→ (while w T do AT′ end A1 | δ′, σ′, γ, β′)
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[D1a] is an axiom here as the expression requires no evaluation. The effect on the

program state is equal to before, namely σ′ = σ[l 7→ 4] (with γ(X) = l evaluating X to

memory location l). The difference is that δ (and the identifier stack) is populated

such that δ′ = δ[(m,0) 7→ X]. The identifier m is assigned to a statement of a copy

within β such that β′ = β[refW (Wn,AT′)].

Example 10 briefly describes the forward execution of an example program using

the semantics from Section 3.3. The executed version of this and the populated

auxiliary store is also given, before the inverse version is generated.

Example 10. (Full annotated execution) Recall the original program and its anno-

tated version from Figure 3.7 (page 38). We now consider an execution of this an-

notated program captured using the identifiers as assigned in Figure 3.10 (page 48).

Assuming the initial program state where X = 0, Y = 0 and Z = 0, and an ini-

tial auxiliary store δ where all stacks are empty, we now briefly describe the forward

annotated execution. Recall that stacks contains pairs of the form (identifier, value).

We begin with several steps of the left side of the parallel composition (the while

loop) via [P1a]. We first evaluate the loop condition via [W3a], storing the identifier

0 and first element of the boolean sequence F (0,F) to the stack W. We note the

renamed copy of the loop body is generated here and inserted into β. Identifiers 1

and 2 are used to capture the execution of both assignments (X and Y updated to

1 via [D1a], both overwriting 0) within the loop body, each saving (1,0) and (2,0)

to the stacks X and Y respectively. The while loop is then reset using [W6a], before

re-evaluating the condition again to true via [W4a] using identifier 3. This inserts

the pair (3,T) into the stack W. Next the entire loop body is executed again, saving

identifiers 4 and 5 with the overwritten values 1 onto stacks X and Y respectively.

The loop is again reset via [W6a], and the condition re-evaluated to true via [W4a]

(saving the pair (6,T) to the stack W).

Interleaving occurs and we now perform a step of the right side via [P2a]. The

condition is evaluated to true using identifier 7, with the reversal information saving

deferred to after the execution of the branch. The first assignment of the true

branch is then executed using identifier 8, updating Z to 5 and storing the pair (8,0)

to the stack Z. We interleave again here and now perform the first assignment of the

loop body on the left side, updating X to 3 and saving the pair (9,2) to the stack

X. Interleaving occurs again as we now perform the final assignment from the true

branch of the conditional, using identifier 10. This updates Y to 2 and saves the pair

(10,3) to stack Y. The following step is of the while loop (left side) and performs

the final assignment of the body using identifier 11. This sets Y to 5 and saves the

pair (11,2) to the stack Y. The while loop is then reset via [W6a] and re-evaluated to

false (as X = 3). This concludes the loop and saves the final element of the boolean

sequence, namely T to the stack W (12,T). Further to this, all identifiers assigned to
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the loop body (including its nested statements) are saved prior to its removal from

β. This is a copy of each identifier stack used by the loop, represented in this work

as a string. Therefore the stack WI contains the sequence seq = ‘1,4,9 | 2,5,11 |
0,3,6,12’ (where | separates the contents of different identifier stacks). At this point,

the left side of the parallel is complete meaning execution can only continue via the

right. The next step is to close the conditional statement via [I4a], which uses the

identifier 13 and saves the pair (13,T) to indicate the true branch was executed.

Finally, both sides are now complete (at skip), meaning [P3a] concludes the parallel

and therefore the execution.

This execution produces a final state such that X = 3, Y = 5 and Z = 5. The

final auxiliary store produced by this execution is now given, where seq is as above.

X Y Z B W WI

(11,2) (12,T)

(9,2) (10,3) (6,T)

(4,1) (5,1) (3,T)

(1,0) (2,0) (8,0) (13,T) (0,F) (12,seq)

Figure 3.10(a) (page 48) displays the executed annotated program, where all iden-

tifier stacks are populated as explained above. We return to this inverted version

in Section 3.7 where, after the introduction of the reverse semantics to follow, the

reverse execution of this program is explained.

This example has been executed in our simulator (introduced in Chapter 7),

demonstrating that the execution and auxiliary store described above is correct. �

3.5 Inversion

With the annotated version and both the reversal information and identifiers re-

quired for reversal introduced, the next step is to define the process named inversion

that is used to generate the second of our modified versions, namely the inverted

version. This inverted version must support the use of identifiers to determine the

inverse interleaving order, and reversal information to revert each statement. The

use of each is deferred to the operational semantics of reverse execution (Section 3.6).

3.5.1 Inverse Interleaving Order

All interleaving decisions within a reverse execution are made using the identifiers

assigned to statements during the matching forward execution. Recall the discussion

from Section 3.2.3, where all identifier stacks can be stored separately, and are

therefore available after the execution of the forward execution (where statements
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reach skip). Under our simplification of including stacks within the syntax, we

assume that these stacks are persistent in the same way as when using the identifier

environment. This is crucial for correct reversal as the identifiers saved during the

forward execution must be accessible during the reverse execution. Starting with the

final identifier used during the forward execution, these are now used in descending

order via the globally accessible and atomic function previous(). Whenever there is

choice of next statement to execute (invert), only the statement with the appropriate

identifier within its stack can be executed. Returning to the program in Example 7,

we describe the process of using the identifiers in descending order in Example 11.

Example 11. (Inverse identifier use) Recall Example 7 of identifier use. The re-

verse execution begins with previous() = 9 (the final identifier used during forward

execution). The first step is to decide which of the available steps to perform first,

the inverted while loop (identifier 8) or the assignment Y = 12 (identifier 9). As

our approach uses identifiers to determine the correct order in which to reverse the

program, the only statement that should be executed next is that with identifier 9.

At the corresponding position within the forward execution (namely at the end), the

previously used identifier was 9. This must therefore be the first identifier consumed

during the reversal. This process repeats until all statements have been inverted. �

Using identifiers in this way follows backtracking order, where statements are

reversed in exactly the inverted order of the forward execution [9]. An example of a

possible relaxation of backtracking is causal-consistent reversibility, where indepen-

dent steps of an execution can be reversed in any order [46, 67, 64]. Our approach

currently only supports this relaxation for skip steps that have no effect on the pro-

gram state. In the reverse semantics to follow, the three examples of such rules are

[S2r], [P3r] and [W6r]. The matching rule of each from Section 3.3 does not use an

identifier, meaning the reverse does not either. Such inverse steps may happen as

soon as possible, or after the execution of other appropriate (identifier or skip) rules.

This is acceptable as all skip steps do not modify the program state (Lemma 1 from

Section 3.8). An inverse interleaving decision is now between the statement with

the previous identifier (if possible) and any number of skip steps.

3.5.2 Using Reversal Information

With the decision of which statement to invert next having been made via identifiers,

the next stage of reversal is to revert this statement. As shown in Section 3.2.1, each

statement requires specific reversal information.

An assignment no longer evaluates the given arithmetic expression, and instead

restores the given variable to the old value retrieved from the stack for this variable

on δ. An inverse of a conditional statement does not evaluate the condition, and
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IP ::= ε | IS | IP; IP | IP par IP

IS ::= skip I | X = E A | if In B then IP else IP end A |
while Wn B do IP end A

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

Figure 3.8: Syntax of inverted versions of original programs

inv(ε) = ε

inv(AS;AP) = inv(AP); i(AS)

inv(AP par AQ) = inv(AP) par inv(AQ)

i(skip I) = skip I

i(X = e A) = X = e A

i(if In b then AP else AQ end A) =

if In b then inv(AP) else inv(AQ) end A

i(while Wn b do AP end A) = while Wn b do inv(AP) end A

Figure 3.9: Inversion function

instead retrieves the next boolean value from the stack B on δ, typically saving time

and space. This determines which branch to reverse. An inverse while loop begins by

recreating the copy of it within the while environment β, where all identifier stacks

of the copy of the body are re-populated using the sequence from stack WI on δ.

This re-population is performed by the function setAI : (IP×C)→ IP, which takes

the loop copy IP and sequence C, and inserts all identifiers of C into the statement

stacks. As in the forward execution of a loop, all construct identifiers used within an

inverted loop body are renamed. This is achieved using the matching function IreL:

IP→ IP that takes a program IP. This behaves correspondingly to reL(), but uses

the version numbers in descending order, beginning with the values last used during

the forward execution. The control flow of a loop is determined via the boolean

values from W on δ, with the condition no longer evaluated and loops iterating until

an F is retrieved.

3.5.3 Inversion Function

The inverted version of a given annotated program has the syntax shown in Fig-

ure 3.8, much like that of annotated programs but with IP and IS being the sets of

inverted programs IP and statements IS respectively.

The inverted version is generated using the function inv : AP → IP (recalling

that AP is the set of annotated programs AP), shown in Figure 3.9. This also

contains the definition of the function i : AS → IS (recalling that AS is the set
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1 par {
2 while w1 (X < 3) do

3 X = X + 1 [1,4,9];

4 Y = Y + X [2,5,11];

5 end [0,3,6,12];

6 }
7 {
8 if 11 (Y <= 1) then

9 Z = X + Y [8];

10 Y = Y - 1 [10];

11 else

12 Z = Y - X [];

13 Y = Y + 1 [];

14 end [7,13];

15 }

(a) Executed annotated program

1 par {
2 while w1 (X > 3) do

3 Y = Y + X [2,5,11];

4 X = X - 1 [1,4,9];

5 end [0,3,6,12];

6 }
7 {
8 if 11 (Y <= 1) then

9 Y = Y - 1 [10];

10 Z = X + Y [8];

11 else

12 Y = Y + 1 [];

13 Z = Y - X [];

14 end [7,13];

15 }

(b) Inverted version

Figure 3.10: An executed annotated program and its corresponding inverse version

of annotated statements AS), that inverts each statement in turn. This function

is called on the statements of an executed annotated program in reverse order,

with the results composed to invert the statement order. Note that the annotated

execution is assumed to have been performed completely prior to inversion, meaning

the auxiliary δ and all identifier stacks are populated accordingly.

3.6 Reverse Semantics of Inverted Programs

We now give our third small step operational semantics. As in Chapter 2, the least

relation defined by the following set of transition rules is the transition relation

 , representing reverse execution. Each configuration now consists of an inverted

program IP and a state �. The reflective and transitive closure  ∗ states one

configuration can be reached from another in an arbitrary number of steps. The

transition rules below that use an identifier are named identifier steps (represented

as
m
 ), and those that do not are named skip steps (represented as s). A transition

rule that may be either is written using
◦
 .

Each forward transition rule [Ra] from Section 3.3 has a corresponding reverse

transition rule [Rr] defined below. We remark on the correlation between the rules

of a forward and reverse execution in Section 3.8. No expressions or conditions are

evaluated during a reverse execution and the transition rules of each are omitted.

Each identifier step defined below can only be applied if it is the next statement to

reverse. This is enforced by retrieving the previously used identifier (m = previous())
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and ensuring this is at the top of the appropriate identifier stack (A = m:A′). Each

rule removes the identifier from this stack by continuing with A′.

Sequential Composition

Unchanged to that of Section 3.3.

[S1r]
(IS | �)

◦
 (IS′ | �′)

(IS; IP | �)
◦
 (IS′; IP | �′)

[S2r]
(skip I; IP | �) s (IP | �)

Parallel Composition

Unchanged to that of Section 3.3.

[P1r]
(IP | �)

◦
 (IP′ | �′)

(IP par IQ | �)
◦
 (IP′ par IQ | �′)

[P2r]
(IQ | �)

◦
 (IQ′ | �′)

(IP par IQ | �)
◦
 (IP par IQ′ | �′)

[P3r]
(skip I1 par skip I2 | �) s (skip | �)

Assignment

As in Section 3.3, we use this opportunity to discuss where the identifier stacks

are actually stored. Recall our previous discussion of the identifier environment ψ,

such that identifiers associated with statements are recorded into stacks within this

environment. As before, we continue with our simplifying assumption of including

all stacks within the syntax.

We start with the rule [D1rFull], corresponding to [D1aFull] shown in Section 3.3.

Consider an assignment statement X = e Ai, where Ai is a unique stack name. This

assignment is reversed by restoring the variable to its previous value. Provided the

previously used identifier m is in this statement’s identifier stack (ψ(Ai) = m:Ai′),

the assignment can be reversed by restoring the variable to the previous value v

(σ[l 7→ v]) retrieved from stack X (δ(X) = (m,v):X′). This reversal information is

removed (δ[X/X′]), as is the identifier from Ai (ψ[Ai/Ai′]).

[D1rFull]
A = m:A′ m = previous() δ(X) = (m,v):X′ γ(X) = l ψ(Ai) = m:Ai′

(X = e Ai | δ, σ, γ, ψ,�)
m
 (skip | δ[X/X′], σ[l 7→ v], γ, ψ[Ai/Ai′],�)

We now show the simplified version of this rule named [D1r], which uses our

assumption of stacks being within the syntax and omits the identifier environment ψ.

[D1r]
A = m:A′ m = previous() δ(X) = (m,v):X′ γ(X) = l

(X = e A | δ, σ, γ,�)
m
 (skip A′ | δ[X/X′], σ[l 7→ v], γ,�)
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As was the case in our forward semantics, all further rules defined from this point

will follow the simplified format, where all identifier stacks are contained within the

syntax and the identifier stack environment is omitted.

Conditional Statements

Opening an inverted conditional statement (via [I1rT]/[I1rF]) reverses the closure,

where the condition is not evaluated and instead the boolean result V retrieved from

the stack B (δ(B) = (m,V):B′). This reversal information is removed (δ[B/B′]).

[I1rT]
A = m:A′ m = previous() δ(B) = (m,T):B′

(S | δ,�)
m
 (if In T then IP else IQ end A′ | δ[B/B′],�)

where S = if In b then IP else IQ end A

[I1rF]
A = m:A′ m = previous() δ(B) = (m,F):B′

(S | δ,�)
m
 (if In F then IP else IQ end A′ | δ[B/B′],�)

where S = if In b then IP else IQ end A

The execution of the corresponding branch ([I2r]/[I3r]) behaves identically to those

of Section 3.3 as neither directly use identifiers or reversal information.

[I2r]
(IP | �)

◦
 (IP′ | �′)

(if In T then IP else IQ end A | �)
◦
 (if In T then IP′ else IQ end A | �′)

[I3r]
(IQ | �)

◦
 (IQ′ | �′)

(if In F then IP else IQ end A,�)
◦
 (if In F then IP else IQ′ end A | �′)

The closure of an inverse conditional statement ([I4r]/[I5r]) reverses the opening.

The identifier m is used, but without any reversal information.

[I4r]
A = m:A′ m = previous()

(if In T then skip I else IQ end A | �)
m
 (skip A′ | �)

[I5r]
A = m:A′ m = previous()

(if In F then IP else skip I end A | �)
m
 (skip A′ | �)

While Loops

A loop with zero iterations ([W1r]) is reversed in a single step. The stack W must

contain a pair of the identifier m and an F (δ(W) = (m,F):W′) and the loop must

be undefined within the while environment (β(Wn) = und). The loop terminates,

removing the reversal information from stack W (via δ[W/W′]).

[W1r]
A = m:A′ m = previous() β(Wn) = und δ(W) = (m,F):W′

(while Wn b do IP end A | δ, β,�)
m
 (skip A′ | δ[W/W′], β,�)
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The final step of an inverted loop ([W2r]) is the reversal of its opening. If the loop

is defined within the while environment (β(Wn) = def ) and the next element in the

boolean sequence is an F (δ(W) = (m,F):W′), the loop statement terminates. The

reversal information is removed (δ[W/W′]), as is the while environment entry (β[Wn]).

[W2r]
A = m:A′ m = previous() β(Wn) = def δ(W) = (m,F):W′

(while Wn b do IP end A | δ, β,�)
m
 (skip A′ | δ[W/W′], β[Wn],�)

The first step of an inverted loop ([W3r]) reverses its closing. This loop must be

undefined within the while environment (β(Wn) = und), stack W must contain T as its

head (δ(W) = (m,T):W′) and the stack WI must have the identifier sequence C as its

head (δ(WI) = (m,C):WI′). These identifiers populate a renamed copy AR of the loop

(IreL(setAI (IP,C))), which is inserted into the while environment (β[Wn ⇒ AR]).

This reversal information is removed (δ[W/W′, WI/WI′]).

[W3r]
A = m:A′ m = previous() β(Wn) = und δ(W) = (m,T):W′ δ(WI) = (m,C):WI′

(S | δ, β,�)
m
 (while Wn T do IP′ end A′ | δ[W/W′, WI/WI′], β[Wn ⇒ AR],�)

where S = while Wn b do IP end A and IP′ = IreL(setAI(IP, C))

and AR = while Wn T do IP′ end A′

The beginning of any other iteration ([W4r]) requires the loop to be defined within

the while environment (β(Wn) = def) and the stack W to contain T as its head (δ(W) =

(m,T):W′). The body is renamed (IreL(IP)) and reflected into the while environment

(β[Wn ⇒ AR]), before all reversal information is removed (δ[W/W′] and A′).

[W4r]
A = m:A′ m = previous() β(Wn) = def δ(W) = (m,T):W′

(S | δ, β,�)
m
 (while Wn T do IreL(IP) end A′ | δ[W/W′], β[Wn ⇒ AR],�)

where S = while Wn b do IP end A and AR = while Wn b do IreL(IP) end A′

The execution of a loop body ([W5r]) and the resetting of a loop ([W6r]) corre-

sponds to those for forward execution in Section 3.3. Again, β′′ shows that identifiers

are removed from the copy of the loop within β′, namely β′′ = β′[refW(Wn, IP′)]

[W5r]
β(Wn) = def (IP | δ, β,�)

◦
 (IP′ | δ′, β′,�′)

(while Wn T do IP end A | δ, β,�)
◦
 (while Wn T do IP′ end A | δ′, β′′,�′)

[W6r]
β(Wn) = while Wn b do IP end A

(while Wn T do skip I end A | δ,�) s (while Wn b do IP end A | δ,�)



CHAPTER 3. REVERSING A CONCURRENT WHILE LANGUAGE 52

3.7 Examples of Reverse Execution

We return to our example executions from Section 2.4 (Chapter 2) and Section 3.4,

and now briefly describe the reverse execution of each.

We begin with the sequentially composed conditional statement ready to close

and an assignment statement. The inverted version contains only the conditional

statement that must first be opened (condition evaluated). The assignment must

have been previously reversed and therefore does not appear here. Let the inverted

program IP = if i1 b then R else Q end m:A, where b and R are the original

condition and true branch respectively (as the true branch is only reversed after the

opening of the condition). The corresponding inverted execution is now shown.

A = m:A′ m = previous() δ(B) = (m,T):B′

[I1rT]
(IP | δ,�)

m
 (if il T then R else Q end A | δ[B/B′],�)

The rule [I1rT] is a leaf here as there are no further transitions within its premises.

The final auxiliary store is δ[B/B′] (reversal information removed), while the state �

is unchanged. Note no evaluation of the condition, and no matching use of the rule

[S1r] as in Section 3.4 as the conditional is no longer sequentially composed.

The parallel composition example is now considered, with only the example of a

inference tree originating from the left side shown. With all subsequent statements

(including all of those on the right side) reversed prior to the one that was executed

first, let the inverted program IP = par { X = X + 3 m:A1; } { skip I; }, re-

calling that (after the forward execution) X = 5 and stack X on the auxiliary delta

δ has (m,2) as its head. The inference tree of this execution is shown below, again

noting no matching use of [S1r] or any arithmetic expression evaluation rules.

A = m:A′ m = previous() δ(X) = (m,2):X′ γ(X) = l
[D1r]

(X = X + 3 m:A1; | δ, σ, γ,�)
m
 (skip A1; | δ[X/X′], σ[l 7→ 2], γ,�)

[P1r]
(IP | δ, σ, γ,�)

m
 (par { skip A1; } { skip I; } | δ[X/X′], σ[l 7→ 2], γ,�)

The transition rule [D1r] is always a leaf, as no evaluation of the expression is

required. The variable X is still evaluated to the location l, and the old value 2 is

retrieved from stack X on δ. The final auxiliary store is δ[X/X′] (reversal information

removed) and the final data store is σ[l 7→ 2] (as before the forward execution).

Recall the assignment nested within a conditional statement and while loop

example from Section 3.4. Since the program R occurs after this forward step, it must

be reversed first and so does not appear here. Let the respective inverted program

IP = while w1 T do if i1 F then IQ else X = 4 m:A3 end A2 end A1. The

inference tree follows, where IP′ = while w T do if i1 F then IQ else skip A3
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end A2 end A1 and with IT = if i1 F then IQ else X = 4 m:A3 end A2. The

environments (after the forward execution) are such that σ′ = σ[l 7→ 4] and that

stack X on δ has (m,0) as its head.

A = m:A′ m = previous() δ(X) = (m,v):X′ γ(X) = l
[D1r]

(X = 4 m:A3 | δ, σ, γ,�)
m
 (skip A3 | δ[X/X′], σ[l 7→ 0], γ,�)

[I3r]
(IT | δ, σ, γ,�)

m
 (if i1 F then IQ else skip A3 end A2 | δ[X/X′], σ[l 7→ 0], γ,�)

[W5r]
(IP | δ, σ, γ,�)

m
 (IP′ | δ[X/X′], σ[l 7→ 0], γ,�)

As above, [D1r] is a leaf as no evaluation of the expression is required. With

reasoning like that of the previous example, the variable is restored to its previous

value 0 and all reversal information (including the identifier) removed (hence the

program state is correctly restored).

Finally, we return to Example 10 and the annotated execution and accompanying

auxiliary store. Example 12 below briefly describes the respective reverse execution.

Example 12. (Full inverted execution) Recall the annotated execution explained

in Example 10 and the inverted version given in Figure 3.10(b) (page 48). We now

briefly describe the reverse execution. All interleaving decisions are determined using

identifiers, where the initial value of previous() = 13. All reversal information is

removed as it is used. The inverted version of our program is shown in Figure 3.10(b),

where the overall statement order is inverted, and all identifier stacks are populated

as in the executed version. Recall X = 3, Y = 5 and Z = 5.

The first step of the reverse execution must be of the conditional statement on

the right side, as this contains the previously used identifier. This is via [I1rT], as

the stack B contains the pair (13,T) indicating the true branch must be reversed.

Next we must interleave to find the identifier 12, which means we now open the

while loop via [W3r] (as (12,T) is at the top of the stack W). This re-creates the

renamed version of the loop within β, using the sequence seq from the stack WI to

populate the renamed copy with the appropriate identifiers (included in the loop

within Figure 3.10(b) to help readability). The identifier 11 means we now perform

the first assignment within the loop body, restoring Y to 2 (as (11,2) is at the top

of the stack Y) via [D1r]. The next steps use identifiers 10, 9 and 8 to restore the

variables Y, X and Z to old values retrieved from the appropriate stacks. Identifier 7

means we must close the conditional statement (which does not require any reversal

information), resulting in the right side of the parallel reaching skip. From here, the

reverse execution is essentially sequential, beginning with the reset of the loop via

[W6r] (which could have occurred at any point after the statement using identifier

9), and then [W4r] to determine whether to iterate again (which we do as the stack
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W has (6,T) as its head). This process is then repeated to execute the loop body

(identifiers 5 and 4), reset and begin another iteration (identifier 3) and finally the

last loop body execution (identifiers 2 and 1). The final step here, using identifier

0, is to conclude the loop (and remove the entry from β) via [W2r] as the stack W

contains the pair (0,F) as its head. Therefore the parallel then completes via [P3r]

(not using an identifier) and finishes the inverse execution.

Following the above execution closely shows that the final program state pro-

duced is such that X = 0, Y = 0 and Z = 0. Since no mappings exist in the while

environment, we can conclude the program state has been correctly restored to as it

was prior to the forward execution (Example 10). All reversal information has been

used and removed from δ, meaning δ is also correctly restored to as it was prior to

the forward execution, showing no garbage is produced.

As in Example 10, the inverted program has been executed in our simulator

demonstrating the execution described above to be correct. �

3.8 Correctness of Reversal

In this section we prove the approach described here to be correct. We name this

correct reversal and formalise this in Definition 3.8.1, where a reverse execution is

correct if the program state is correctly restored to as it was initially. We assume

that from this point onwards, we consider only terminating programs.

Definition 3.8.1. (Correctness of reversal) Let AP be an annotated program, IP be

the inverted version of AP and � be the initial program state. Let AP execute on �,

namely (AP | �)
◦→
∗

(skip I | �′), producing some I and program state �′. The

reversal of AP is correct, with respect to �′ and �, if there exists a reverse execution

of IP such that (IP | �′) ◦
 
∗

(skip I′ | �), for some I′.

In order to prove this property for our simple concurrent while language pro-

grams, several lemmas are required. We first remark that requiring program states

to be equal (in Definition 3.8.1) imposes unnecessary constraints. For example, un-

derlying memory locations used within the variable state may differ provided all

values of variables match, and a while environment from a reverse execution must

contain all mappings of the corresponding forward environment but with one pro-

gram the inverted version of the other. We therefore introduce equivalence between

program states later in Chapter 6.

Our first smaller result relates to relaxing backtracking order of skip steps. This

is dependent on no skip step altering the program state, as stated in Lemma 1.

Lemma 1. (Skip steps do not change program state) Let AP be an annotated pro-

gram, IP be its inverted version and � be the tuple (σ,γ,β,δ) of initial program
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state environments. For all forward executions (AP | �)→s (AP′′ | �′′) for some AP′′

and �′′ via a skip step [Ra], the program state is unchanged, namely �′′ = �. For

all reverse executions (IP | �)  s (IP′ | �′′), for some IP′′ and �′′, via a skip step

[Rr], the program state is unchanged, namely �′′ = �.

Proof. This proof is by induction on the height of an inference tree of a skip transi-

tion. We begin by considering all bases cases, namely any inference trees of height

1. The three examples of skip steps present within our transition rules from Sec-

tion 3.3 are [S2a], [P3a] and [W6a]. Each of these rules is a leaf (is either an axiom

or contains no further transitions as premises), meaning they complete in a single

step (height 1). As shown in Section 3.3, each of these three rules does not change

the program state in any way, as required. With the three base cases shown to be

valid, we now consider the six possible inductive cases. We assume Lemma 1 holds

for an inference tree of height n such that n ≥ 1, and next we prove it to be valid

for an inference tree of height n + 1.

A skip transition (step) with the inference tree of height n + 1 must use at

its root an instance of one of the six skip rules, namely [S1a], [P1a], [P2a], [I2a],

[I3a] or [W5a]. As we have explained in Section 3.3, none of these rules change a

program state. If we remove the root from this inference tree, we obtain a smaller

inference tree of height n, proving valid a skip transition (step). By induction this

transition does not change a program state, hence overall the original transition does

not change program state.

Since skip transition rules are in one to one correspondence with reverse skip

transition rules, the proof of the second half of Lemma 1 follows correspondingly to

the proof of the first part.

To follow backtracking order in all other cases, identifiers must be used in ascend-

ing order throughout a forward execution, shown in Lemma 2, and in descending

order within the reverse execution, shown in Lemma 3.

Lemma 2. (Forward order of identifiers) Let AP and AQ be annotated programs,

� be the set of environments and δ be an auxiliary store. If (AP | �, δ)
◦→
∗

(AP′ | �′, δ′) n→ (AQ | �′′, δ′′) →∗ (AQ′ | �′′′, δ′′′) m→ (AQ′′ | �′′′′, δ′′′′), and the com-

putation (AQ | �′′, δ′′)→∗ (AQ′ | �′′′, δ′′′) has no identifier steps, then m = n + 1.

Proof. The order of identifiers used during execution is maintained using the globally

accessible and atomic function next(). The program AP begins with any number of

steps, before an identifier step occurs using the next available identifier n, while

simultaneously incrementing next() by one to n + 1. At some point (after any

number of skip steps that do not use next()) the next identifier step occurs using

the current value of next() which is n + 1. Hence, m = n + 1.
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Table 3.1: Each forward and matching inverse identifier rule

Fwd Inv
[S1a] [S1r]
[P1a] [P1r]
[P2a] [P2r]
[D1a] [D1r]
[I1aT] [I4r]
[I1aF] [I5r]
[I2a] [I2r]
[I3a] [I3r]

Fwd Inv
[I4a] [I1rT]
[I5a] [I1rF]

[W1a] [W1r]
[W2a] [W3r]
[W3a] [W2r]
[W4a] [W4r]
[W5a] [W5r]

Lemma 3. (Reverse order of identifiers) Let AP and AQ be the annotated versions

producing the executed versions AP′ and AQ′ respectively, and IP and IQ be the

inverted versions inv(AP′) and inv(AQ′) respectively. Further let � be the set of

all environments and δ be the auxiliary store. If (IP | �, δ)
◦
 
∗

(IP′ | �′, δ′) n
 

(IQ | �′′, δ′′)  ∗ (IQ′ | �′′′, δ′′′) m
 (IQ′′ | �′′′′, δ′′′′), and provided the computation

(IQ | �′′, δ′′) ∗ (IQ′ | �′′′, δ′′′) has no identifier steps, then m = n - 1.

Proof. Correspondingly to that of Lemma 2, using the function previous() and the

transition relation  in place of →.

In order to match a forward and reverse execution at each stage, we state that

each forward identifier rule (step) has a corresponding inverse rule (step) in Defini-

tion 3.8.2. We remark on the possible mismatch of skip steps in Chapter 5.

Definition 3.8.2. (Corresponding inverse identifier step) Each forward identifier

rule (Section 3.3) has a matching inverse identifier rule (Section 3.6). Each forward

rule [Ra] has the corresponding inverse rule [Rr], written as [Ra]−1 = [Rr], where

the effects of [Ra] on the program state is inverted by [Rr]. For example, rule [D1r]

is the corresponding inverse rule of [D1a]. Each matching pair is shown in Table 3.1.

With the appropriate smaller results shown above, we now return to the discus-

sion of proving correct reversal. This focuses on the following two properties:

1. The process of saving reversal information does not change the behaviour of

the program (w.r.t the program state), while saving all required information.

2. The inverted version restores the program state to exactly as it was prior to the

forward execution. The auxiliary store is also restored to as it was originally,

meaning no garbage is produced.

The proof of these properties is omitted here as it is given in Chapter 6 for a

programming language that contains this concurrent while language.
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3.9 Conclusion

We have introduced a method of reversing programs written in the imperative con-

current language shown in Chapter 2. We have described the reversal information

required and the auxiliary store used to record it, and the use of identifiers to cap-

ture an interleaving order. Annotation has been introduced as the process that

generates the annotated version, a modified forwards version that is capable of stor-

ing identifiers. An annotated version executes as defined by the first operational

semantics, where both the forward execution and all necessary reversal information

saving occurs. We have introduced inversion as the function used to generate the

inverted version of a program, that uses both the identifiers and reversal information

to perform reverse execution. The second semantics define this behaviour, before

the proof of both annotation and inversion is outlined. A more general version of

these proofs are shown in Chapter 6.



Chapter 4

Reversing an Imperative

Concurrent Language with Blocks,

Local Variables and Procedures

In Chapter 2 we have introduced our imperative concurrent while language. The

syntax of this language and the operational semantics of traditional (forward-only)

execution have been stated. Reversibility has then been added to this while language

in Chapter 3, using one modified version of a program to save all lost information and

to use identifiers to capture the interleaving order, while another modified version

uses this saved information to reverse the original execution.

In this chapter, we increase the complexity of the language through a series of

additions to the programming language syntax. Block statements are introduced,

along with variable and procedure declaration statements and recursion-enabled

procedure call statements. Each addition results in necessary extensions to the

notion of program state, as well as to the reversal information saved and the use

of identifiers to capture the interleaving order. The three operational semantics

defined in Chapters 2 and 3 (traditional, forwards with reversal information saving

and reverse) are now extended to include all of the additional program constructs.

4.1 Motivating Example

The language introduced in Chapter 2 restricts the complexity of programs that can

be written in it. There is no easy way to reuse code (outside of a while loop) which

results in any program requiring code reuse to contain multiple copies of it. This

increases the length of such programs and decreases the readability. There is no

capability for different parts of the program to have different scopes, meaning all

variables are global and must be freshly named (cannot reuse names).

58
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1 start = 23;

2 output = -1;

3 begin b1.0

4 var initial = -1;

5 var result = -1;

6 proc p1.0 odd is

7 if i1.0 (initial == 0) then

8 result = 0;

9 else

10 initial = initial - 1;

11 call c1.0 even;

12 end;

13 end;

14 proc p2.0 even is

15 if i2.0 (initial == 0) then

16 result = 1;

17 else

18 initial = initial - 1;

19 call c2.0 odd;

20 end;

21 end;

22 initial = start;

23 call c3.0 even;

24 output = result;

25 end;

Figure 4.1: Program determining whether a number is odd or even using mutually
recursive procedure calls. Note that variable and procedure removal statements are
introduced later and so are omitted here.

Consider the program shown in Figure 4.1 that makes use of code reuse via

procedures. Note the extended syntax of this is explained in the coming sections,

where procedures are declared (lines 6–13 and 14–21) and then called (for example

line 23). This example uses the mutually recursive (each recursively calls the other)

procedures even and odd to determine whether a given number (start from line 1) is

odd or even. Reproducing the same example (using the same underlying approach of

conditional statements only) in our original language would require multiple copies

of the same pieces of code, namely the conditional statements. In order to support

such programs, we now introduce an extended version of our programming language.

4.2 Concurrent Language and Program State

Beginning with the imperative concurrent while language from Chapter 2, this sec-

tion describes the constructs introduced to this basis language in order to produce

our extended imperative concurrent language. We move away from the while lan-

guage and towards a more complex, real-world programming language. This is

achieved by adding support for block statements, each of which can contain the

declaration of local variables and procedures, potentially recursive procedure call

statements and finally removal statements.

4.2.1 Syntax of Programs

The syntax of our extended language is shown in Figure 4.2. Let P be the set of

programs P, and S be the set of statements S. Further let X denote a variable, E be

an arithmetic expression and B be a boolean condition. Finally, let Z be the set
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P ::= ε | S | P; P | P par P

S ::= skip | X = E pa | if In B then P else Q end pa |
while Wn B do P end pa | begin Bn BB end |
call Cn n pa | runc Cn P end

BB ::= DV; DP; P; RP; RV

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

DV ::= ε | var X = E pa; DV DP ::= ε | proc Pn n is P end pa; DP

RV ::= ε | remove X = E pa; RV RP ::= ε | remove Pn n is P end pa; RP

Figure 4.2: Syntax of our extended imperative concurrent language

of integers, where a number n is such that n ∈ Z, pa be a statement path (that is

introduced in Section 4.2.2), and In, Wn, Bn, Pn and Cn are construct identifiers.

In order for programs written in this syntax to be defined as valid, we make key

assumptions regarding the syntax.

1. For each declaration statement within a block body, there is a corresponding

removal statement at the end of the same block body (each block is ‘cleaned’

prior to its completion). Variables and procedures are removed in the inverse

of the order in which they are declared.

2. Procedure call statements must only appear within block bodies.

3. A procedure must have been declared prior to it being called.

4. The runc construct cannot appear in original programs (and is only introduced

via execution of a call statement).

5. All variables and procedures declared directly within the same block must be

named uniquely with respect to each other.

6. All memory locations required for variable declarations exist and are initialised

to 0. All global variables exist and are initialised to 0.

4.2.2 Program State Environments

The extended programming language requires an updated representation of program

state. Modifications are needed to the variable environment in order to handle local

variables, while the procedure environment is introduced to support procedures.
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Variable State

Recall the variable environment γ and the data store σ introduced in Chapter 2,

and how each is used to represent all variables and their values. A limitation of

the implementation shown in the previous chapter is that only global variables are

supported, meaning all variables are uniquely named. Returning to our extended

language, γ and σ as currently defined are insufficient to support local variables.

Each version of a given variable name must be mapped unambiguously to a unique

memory location within the variable environment γ. The addition of versions of

variables breaks the uniqueness of variable names and therefore introduces ambiguity

into the current definition of γ.

We observe from the syntax of our language that local variables can only be

defined within block statements, and recall the assumption that all local variables

within a specific block statement are uniquely named. This allows all local variables

with the same name to be distinguished provided we are aware of the block in

which it was declared. In order to use this approach each block must be uniquely

identifiable, a feature supported by giving each block statement a construct identifier

(written as Bn). The variable environment is therefore extended to support local

variables by mapping a pair of a variable name and the block name in which it

was declared to a memory location. This approach provides a one-to-one mapping

between versions of variables to memory locations, as required. Let Loc be as

above, Var be the set of variable names, Cn be the set of construct identifiers and

Bn be the set of those assigned to blocks. Then the variable environment is such

that γ : (Var ×Bn) → Loc. The final consideration is global variables, which are

assumed to exist prior to an execution and are not declared. All global variables

will use the empty block name λ. The variable environment γ is manipulated using

the following commands.

• γ[(X,Bn)⇒ l] - creates an entry into the variable environment γ, mapping a

variable X that declared within a block Bn to the memory location l.

• γ[(X,Bn)] - removes the mapping from γ between a variable X that was declared

in a block Bn and some memory location.

• evalV (X,pa,γ) - the function evalV : (Var × Pa × γ) → Bn takes a variable

name X, path pa and a variable environment γ, and returns the memory loca-

tion associated with this version of the variable within γ.

The function evalV () requires the correct block name to be provided in order to

behave correctly. In order for a variable to be evaluated, we must first be able to

determine the appropriate block name. This is achieved using statement paths.
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1 X = 10 (λ,[]);

2 begin b1.0

3 var X = 13 (b1.0,[]);

4 begin b2.0

5 var Y = 6 (b2.0:b1.0,[]);

6 Y = X + 2 (b2.0:b1.0,[]);

7 begin b3.0

8 var X = 100 (b3.0:b2.0:b1.0,[]);

9 X = Y + Z (b3.0:b2.0:b1.0,[]);

10 end;

11 end;

12 end;

(a) Sample program

Block name Local names

b1 {X}
b2 {Y}
b3 {X}

(b) Scope information

Figure 4.3: A sample of a program and the scope information required for variable
evaluation, where Z is a global variable.

Definition 4.2.1. (Statement path) A statement path is a representation of a state-

ment’s position within a program. A path is an ordered sequence of block names

(unique construct identifiers) in which the statement resides.

Given a statement path, all of the possible block names that could have been used

to index this version within γ are accessible. The correct name can be determined

using scope information. The scope information contains all local names used within

a given block. Starting with the name of the block in which a statement appears,

the scope information is used to find the first block name within the statement path

that uses the given variable name locally. If a match is not found and the end of

the path is reached, this variable is global and so will be indexed using λ within the

variable environment. In examples throughout this thesis, paths are often omitted

as they are easily read from the code. Consider Example 13 below.

Example 13. (Variable evaluation) Consider the program in Figure 4.3(a) and the

representation of the scope information for this execution in Figure 4.3(b). Line 1

contains an assignment of variable X with a path λ. This empty path indicates the

variable is global, meaning this version of the variable is accessed from the variable

environment using (X,λ). Line 9 shows an assignment using three different variables

using the path b3.0:b2.0:b1.0. This statement starts by evaluating the expression

Y + Z. For each variable, the block names within the path are considered in order

until the first is found that contains the variable name within its set of local names

from the scope information (Figure 4.3(b)). For Y, b3.0 does not contain a local

version of Y meaning we move onto b2.0, which does contain Y. Therefore this is

accessed from the variable environment using (Y,b2.0). Each block name is checked

for variable Z, where no match is found meaning this variable is global (accessed as
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X above). Finally, the variable X is evaluated. Each block name is checked, with a

match found for b3.0. Note that a match would have also been found for b1.0, but

crucially was not the first. Therefore this X is accessed using (X,b3.0). �

The final component of the variable state is the data store σ. This environment

linking each memory location to the value it holds is unchanged from Section 2.2 in

Chapter 2, with identical notation used throughout.

While and Procedure Environments

Section 2.2 of Chapter 2 introduced the while environment as a solution to issues

introduced by code reuse. In order to maintain the uniqueness of construct identi-

fiers, all of those used within a loop body are renamed prior to each iteration. In

order to maintain the copies of all while loops, the while environment β is used to

assign a unique loop name (construct identifier) to a copy of that loop. The while

environment and all necessary notation is now used unchanged from Chapter 3.

Support for procedures introduces another cause of code reuse. Consider the

parallel composition of two calls to the same procedure. Let this procedure contain

a block statement that declares a local variable. The correct behaviour of such a

situation is that each call statement declares a separate local variable, where the

execution of one of the calls does not affect the variable from the other. Currently

this requirement is violated, as the block name in which the variable is declared will

be the same on each side. This means both declare a variable indexed with the same

block name (onto γ), and therefore both use the same version of the variable name.

We therefore extend the process of renaming to now include a procedure body

prior to its execution. Each call statement uses a renamed version of the procedure

body, with all copies maintained with the newly introduced procedure environment

µ. From this point on, we refer to the entry made into the procedure environment

via a procedure declaration statement as the basis mapping, from which all copies

are produced. Each copy can be unambiguously indexed with this procedure envi-

ronment using the construct identifier of the call statement (which are guaranteed

to be unique). With N being the set of procedure names n used within the code,

Pn the set of construct identifiers associated with procedures and Pa being the set

of paths pa, we introduce the function evalP : (N×Pa)→ Pn, which given a pro-

cedure name and a path, returns the unique construct identifier Pn of the procedure

to use (using the scope information like for variables that share names). The final

consideration is how to make each copy unique, and specifically the block name

unique in each separate procedure body copy. Recalling that each call statement is

named uniquely, we therefore rename all nested construct identifiers to begin with

the unique call name. For example, a block statement named b1.0 within a call
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1 proc p1.0 sellN is

2 begin b1.0

3 var num = 4;

4 if i1.0 (count >= num) then

5 seats = seats - num;

6 else

7 errorNum = errorNum - 1;

8 end;

9 while w1.0 (num > 0) then

10 call c1.0 issueTicket;

11 num = num - 1;

12 end;

13 end

14 end

(a) Original sell procedure

1 begin c2.0:b1.0

2 var num = 4;

3 if c2.0:i1.0 (count >= num) then

4 seats = seats - num;

5 else

6 errorNum = errorNum - 1;

7 end;

8 while c2.0:w1.0 (num > 0) then

9 call c2.0:c1.0 issueTicket;

10 num = num - 1;

11 end;

12 end

(b) Renamed version for call c2.0

Figure 4.4: An original procedure and a renamed version

statement c2.0 is renamed to c2.0:b1.0 (including recursive calls). Therefore our

two calls in parallel will now have uniquely named block statements and will now

declare two separate local variables, as required. For consistency, all construct iden-

tifiers used within a procedure body are renamed accordingly, including nested call

statements crucial to maintain the validity of this renaming. Consider Example 14

of a procedure and a renamed copy of it.

Example 14. (Renaming a procedure body) Consider the basis mapping of the pro-

cedure sellN from Figure 4.4(a), which sells and then issues four tickets (provided

four are available). The call statement call c2.0 sellN pa produces the renamed

copy shown in Figure 4.4(b), where all construct identifiers are unique (including

between parallel calls to this procedure). �

The function reP : (P×Cn)→ P takes a program (copy of the procedure body)

and its unique construct identifier, and returns the renamed version.

4.3 Traditional Operational Semantics

As in Chapter 2, we now use syntax-directed, small step operational semantics to

define the traditional execution of this extended language (where information is lost

and executions are irreversible). Each configuration now consists of a program P

(over the extended syntax) and a program state � that now includes the procedure

environment µ. We represent the execution of programs on program states as a rela-

tion between configurations. This relation is called a transition relation and here is
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defined as the least relation generated by the transition rules in this section. Recall

that ↪→a and ↪→b represent a step of arithmetic or boolean evaluation respectively,

and the reflective and transitive closure ↪→∗ indicates an arbitrary number of exe-

cution steps. All rules are restated here, with all differences (including the use of

the newly introduced procedure environment) discussed.

Arithmetic Expressions

Arithmetic expressions are evaluated as in Chapter 2, with the evaluation of a vari-

able (rule [A1]) containing a path pa, and using evalV ().

[A1]
evalV(γ, pa, X) = l

(X pa | σ, γ,�) ↪→a (σ(l) | σ, γ,�)
[A2]

v = n op m

(n op m | �) ↪→a (v | �)

[A3]
((v) | �) ↪→a (v | �)

[A4]
(a0 | �) ↪→a (a′0 | �)

((a0) | �) ↪→a ((a′0) | �)

[A5]
(a0 | �) ↪→a (a′0 | �)

(a0 op a1 | �) ↪→a (a′0 op a1 | �)
[A6]

(a1 | �) ↪→a (a′1 | �)

(a0 op a1 | �) ↪→a (a0 op a′1 | �)

Boolean Expressions

Unchanged to that of Chapter 2.

[B1]
(¬T | �) ↪→b (F | �)

[B2]
(¬F | �) ↪→b (T,�)

[B3]
(b | �) ↪→b (b′ | �)

(¬b | �) ↪→b (¬b′ | �)
[B4]

ba2 = ba0 bop ba1

(ba0 bop ba1 | �) ↪→b (ba2 | �)

[B5]
(ba0 | �) ↪→b (ba′0 | �)

(ba0 bop ba1 | �) ↪→b (ba′0 bop ba1 | �)
[B6]

(ba1 | �) ↪→b (ba′1 | �)

(ba0 bop ba1 | �) ↪→b (ba0 bop ba′1 | �)

Sequential Composition

Unchanged to that of Chapter 2.

[S1]
(S | �) ↪→ (S′ | �′)

(S; P | �) ↪→ (S′; P | �′)
[S2]

(skip; P | �) ↪→ (P | �)

Parallel Composition

Unchanged to that of Chapter 2.

[P1]
(P | �) ↪→ (P′ | �′)

(P par Q | �) ↪→ (P′ par Q | �′)
[P2]

(Q | �) ↪→ (Q′ | �′)
(P par Q | �) ↪→ (P par Q′ | �′)

[P3]
(skip par skip | �) ↪→ (skip | �)



CHAPTER 4. REVERSAL OF BLOCKS AND PROCEDURES 66

Assignment

Assignment statements behave much like those in Chapter 2, but with a path pa

and use of the function evalV () that supports local variables.

[D1]
(e pa | σ, γ,�) ↪→∗a (v | σ, γ,�) evalV (X,pa,γ) = l

(X = e pa | σ, γ,�) ↪→ (skip | σ[l 7→ v], γ,�)

Conditional Statements

With the addition of a path pa, the semantics is unchanged from Chapter 2.

[I1T]
(b pa | �) ↪→∗b (T | �)

(if In b then P else Q end pa | �) ↪→ (if In T then P else Q end pa | �)

[I1F]
(b pa | �) ↪→∗b (F | �)

(if In b then P else Q end pa | �) ↪→ (if In F then P else Q end pa | �)

[I2]
(P | �) ↪→ (P′ | �′)

(if In T then P else Q end pa | �) ↪→ (if In T then P′ else Q end pa | �′)

[I3]
(Q | �) ↪→ (Q′ | �′)

(if In F then P else Q end pa | �) ↪→ (if In F then P else Q′ end pa | �′)

[I4]
(if In T then skip else Q end pa | �) ↪→ (skip | �)

[I5]
(if In F then P else skip end pa | �) ↪→ (skip | �)

While Loops

With the addition of a path pa, the semantics is unchanged from Chapter 2.

[W1]
β(Wn) = und (b pa | β,�) ↪→∗b (F | β,�)

(while Wn b do P end pa | β,�) ↪→ (skip | β,�)

[W2]
β(Wn) = def (b pa | β,�) ↪→∗b (F | β,�)

(while Wn b do P end pa | β,�) ↪→ (skip | β[Wn],�)

[W3]
β(Wn) = und (b pa | β,�) ↪→∗b (T | β,�)

(S | β,�) ↪→ (while Wn T do reL(P) end pa | β[Wn ⇒ AR],�)

where S = while Wn b do P end pa and AR = while Wn b do reL(P) end pa

[W4]
β(Wn) = def (b pa | β,�) ↪→∗b (T | β,�)

(S | β,�) ↪→ (while Wn T do reL(P) end pa | β[Wn ⇒ AR],�)

where S = while Wn b do P end pa and AR = while Wn b do reL(P) end pa

[W5]
β(Wn) = def (P | �) ↪→ (P′ | �′)

(while Wn T do P end pa | �) ↪→ (while Wn T do P′ end pa | �′)

[W6]
β(Wn) = while Wn b do P end pa

(while Wn T do skip end pa | β,�) ↪→ (while Wn b do P end pa | β,�)
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Block

The block body executes via [B1]. The repeated use of this transition rule executes

the entire block body (provided the statement eventually terminates), at which point

the block can close via [B2].

[B1]
(P | �) ↪→ (P′ | �′)

(begin b1 P end | �) ↪→ (begin b1 P′ end | �′)

[B2]
(begin b1 skip end | �) ↪→ (skip | �)

Variable and Procedure Declaration

A local variable declaration ([L1]) gets a fresh memory location l (nextLoc(σ) = l)

and takes the block name Bn from the path pa (pa = Bn:pa′). The entry is made

into the variable environment between the pair containing the variable and block

name, and the fresh memory location (γ[(X, Bn) ⇒ l]). The memory location is

initialised to the value v produced by evaluating e (σ[l 7→ v]).

[L1]
(e pa | σ, γ,�) ↪→∗a (v | σ, γ,�) nextLoc(σ) = l pa = Bn:pa′

(var X = e pa | σ, γ,�) ↪→ (skip | σ[l 7→ v], γ[(X, Bn)⇒ l],�)

A procedure is declared via [L2]. The basis mapping is inserted into the procedure

environment µ, linking the unique procedure name Pn to a pair containing the

procedure name n used in the code and the procedure body P (µ[Pn⇒ (n,P)]).

[L2]
(proc Pn n is P pa | µ,�) ↪→ (skip | µ[Pn⇒ (n,P)],�)

Variable and Procedure Removals

Local variables are removed via [H1]. Using the block name Bn from the statements

path pa (pa = Bn;pa′), this version of the variable is evaluated to the memory

location l (γ(X,Bn) = l). This memory location is then restored to 0 since it is

guaranteed to have been fresh (σ[l 7→ 0]) and then the entry within the variable

environment is removed (γ[(X, Bn)]).

A procedure is removed via [H2]. Provided the entry is defined within the pro-

cedure environment (µ(Pn) = def), this mapping is removed from µ (µ[Pn]).

[H1]
pa = Bn:pa′ γ(X,Bn) = l

(remove X = e pa | σ, γ,�) ↪→ (skip | σ[l 7→ 0], γ[(X, Bn)],�)

[H2]
µ(Pn) = def

(remove Pn n is P pa | µ,�) ↪→ (skip | µ[Pn],�)
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Procedure Call

A procedure call opens via [G1]. The given procedure name n and the statement

path pa is used to evaluate the construct identifier of the procedure declaration

statement (evalP(n,pa) = Pn). The procedure name Pn is used to retrieve the basis

mapping (µ(Pn) = (n,P)), which is renamed (reP(P,Cn) = P′) producing a copy of

the procedure that is inserted into the procedure environment (µ[Cn⇒ (n,P′)]). A

runc instance is produced to allow the renamed copy to be executed.

[G1]
evalP(n,pa) = Pn µ(Pn) = (n,P) reP(P, Cn) = P′

(call Cn n pa | µ,�) ↪→ (runc Cn P′ end | µ[Cn⇒ (n,P′)],�)

The entire procedure body then executes via the rule [G2].

[G2]
(P | �) ↪→ (P′ | �′)

(runc Cn P end | �) ↪→ (runc Cn P′ end | �′)

Once the body of the runc construct has reached skip, and provided the mapping is

defined within the procedure environment (µ(Cn) = def), the call statement closes

via [G3] by removing the copy made for this call (µ[Cn]).

[G3]
µ(Cn) = def

(runc Cn skip end | µ,�) ↪→ (skip | µ[Cn],�)

4.4 Examples of Traditional Execution

This section contains examples of program execution and the corresponding inference

trees. Examples of assignments, conditionals and loops are available in Chapter 3,

whereas we focus here on the additional programming language constructs.

First consider a procedure call statement that is currently executing the body

(via runc). This body currently contains a block statement that requires the removal

of a local variable. Let P be the program

runc c1

begin b1

remove X = 20 pa; Q

end

end

and let T = begin b1 remove X = 20 pa; Q end. Note that Q is the sequential

composition of any number of removal statements. Let the local version of X initially
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be 3. The inference tree showing the transition exists to perform this local variable

declaration is now displayed.

pa = b1:pa′ γ(X, b1) = l
[H1]

(remove X = 20 pa | σ, γ, µ,�) ↪→ (skip | σ[l 7→ 0], γ[(X, b1)], µ,�)
[S1]

(remove X = 20 pa; Q | σ, γ, µ,�) ↪→ (skip; Q | σ[l 7→ 0], γ[(X, b1)], µ,�)
[B1]

(T | σ, γ, µ,�) ↪→ (begin b1 skip; Q end | σ[l 7→ 0], γ[(X, b1)], µ,�)
[G2]

(P | σ, γ, µ,�) ↪→ (runc c1 begin b1 skip; Q end end | σ[l 7→ 0], γ[(X, b1)], µ,�)

[H1] is a leaf here as no further transitions appear within its premises. Instead

they retrieve the name of the block in which this statement resides from the path,

and evaluate the variable to its memory location l. This location is reset to 0 (σ′ =

σ[l 7→ 0]) and the local variable removed (γ′ = γ[(X,b1)]). Therefore the old value

X, namely 3, is overwritten and lost.

Our second example is of a program containing a block nested within a block,

with the next step of its execution to close a call statement. Let P be the program

begin b1

begin b2

runc c1 skip end; Q

end; R

end

The following inference tree shows that the desired transition exists, namely to close

the call statement with name c1.

µ(Cn) = def
[G3]

(runc c1 skip end | µ,�) ↪→ (skip | µ[c1],�)
[S1]

(runc c1 skip end; Q | µ,�) ↪→ (skip; Q | µ[c1],�)
[B1]

(begin b2 runc c1 skip end; Q end | µ,�) ↪→ (begin b2 skip;Q end | µ[c1],�)
[S1]

(begin b2 runc c1 skip end;Q end; R | µ,�) ↪→ (begin b2 skip;Q end; R | µ[c1],�)
[B1]

(P | µ,�) ↪→ (begin b1 begin b2 skip; Q end; R end | µ[c1],�)

The repeated use of [B1] and [S1] reduces the program to the procedure call

statement (runc construct). [G3] here is a leaf, as its only premise requires only for

a mapping to exist within µ. As a result, the procedure is closed by removing the

entry for this call statement from the procedure environment (hence µ′ = µ[c1]).
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4.5 Annotation

This section begins the process of adding reversibility to the extended version of our

programming language. As in Chapter 3, our approach is to save all information

lost during the traditional execution, similarly to the Reverse C Compiler (RCC)

by Perumalla et al [63, 11], Backstroke [93] and work by Schordan et al [75, 76, 77].

Given an original program, we again produce a forward annotated version and an

inverted version. In this section we produce the annotated version and define its

execution. This includes all reversal information and identifier use required for the

additional program constructs introduced in this language. Inversion and reverse

execution is introduced in Section 4.8.

4.5.1 Extended Reversal Information

For all constructs that appear unchanged here from Chapter 3, the reversal informa-

tion required for each is as described there. We now consider each type of additional

statement and describe the type of information required for the correct reversal of

each. This subsection concludes with a description of the updates required to the

auxiliary store δ in order to save this extra reversal information.

Block Statement

A block statement does not require any reversal information directly, as a step of

a block body does not lose information (other than the information lost via the

statement within the body) as it executes, and neither does a block closure.

Variable Declaration and Removal

The declaration of a local variable does not lose any information that cannot be

recovered, and instead creates a mapping within the variable environment (to a

fresh memory location retrieved via nextLoc(σ)) and initialises this local variable to

the given value (evaluated expression). Since all memory locations are initialised to

0 (Section 4.2.1) and the specific location used must be fresh, the value 0 is always

lost. The inversion of a declaration statement can therefore also use 0 and so is not

required to be saved.

A local variable removal statement does however lose information that cannot

be recalculated during inversion. Removing a variable requires the deletion of the

corresponding mapping within the variable environment (which can be recalculated

during inversion as this maps the variable and block name to a potentially different

memory location), and the overwriting of the value held at that memory location
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(back to 0). Crucially this old value cannot be restored during the inverse execution

and is therefore required to be saved.

Procedure Declaration and Removal

A procedure declaration statement does not overwrite any information and instead

only creates an entry within the procedure environment. Since all local names within

a specific block are unique, no mapping can currently exist and therefore cannot be

overwritten. Therefore no reversal information is required.

The removal of a procedure deletes this mapping from the procedure environ-

ment. Each of the procedure name and procedure body can be recovered from the

inverted version of the program, and therefore can be restored without the use of

any reversal information. Since this is the basis mapping of a procedure, this will

not be directly executed and therefore no identifiers are associated to statements

here. This means no information needs to be saved.

Procedure Call

A call begins with the evaluation of the given name to access the basis mapping

of this procedure. A copy of this procedure body is inserted into the procedure

environment, indexed with the call statement construct identifier. Since call names

are unique, there cannot be an existing mapping and so no information is lost.

The execution of a procedure body does not lose information directly, and instead

only that of the individual statements. The final step of a procedure call is to remove

the copy of the procedure body made for this call statement. This mapping can be

recovered from the inverse program (the procedure name and inverted procedure

body) and therefore does not require any reversal information. The exception is the

loss of any identifiers assigned to statements within this copy (Section 4.5.2).

Extended Auxiliary Store

Recall the auxiliary store δ from Chapter 3, where this is introduced as the envi-

ronment to store all reversal information separately to the program state. This is

currently a collection of stacks with one for each variable name (storing old values),

one for all conditional statements (named B), one for all while loops (named W) and

one for identifiers associated to copies of while loops (named WI).

Two key extensions are required to the auxiliary store in order to store the

reversal information needed for the additional programming language constructs.

The first concerns each stack that is for a specific variable. Each such stack will

now also be used to save the final value held by each local version of that variable

name (again to handle races). The second extension is the introduction of the stack
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Pr, used to store the sequence of identifiers associated with a copy of a procedure

body prior to its removal. This can be viewed as the equivalent of the stack WI but

for procedures. From here, a reference to δ represents our extended auxiliary store.

Recall that X is the set of all variable names, K is the set of identifiers, B is the set

{T,F} of boolean values, Z is the set of integers and C is the set of identifier sequences

retrieved from a loop or procedure copy prior to its removal. Then δ is defined as

δ : (X→ (K×Z))∪(B→ (K×B))∪(W→ (K×B))∪(WI→ (K×C))∪(Pr→ (K×C)).

4.5.2 Extended Identifier Use

Our approach to reversibility uses the notion of identifiers to capture the interleaving

order of a program as it executes. As explained in Chapter 3, identifiers are used

in ascending order and associated to statements as they execute. This is extended

here to support the additional program constructs, namely blocks, declarations and

removals, and procedure call statements. Each is now considered in turn.

Block Statement

A block statement is used to encapsulate a sub-program, with no rule to explicitly

open it (Section 4.3). Execution of the block body begins immediately, with iden-

tifiers used depending on the type of statements. The single step to close a block

does not alter the program state in any way and simply allows the block statement

to reach skip. Therefore the closure of a block becomes another example of a state-

ment that is not required to follow backtracking order. We note that the inverse of

a block closure is the opening of the inverted block statement (which does not have

an explicit rule and would lead to difficultly in using any identifier assigned).

Variable/Procedure Declaration and Removal

Both the declaration and removal of either a local variable or a procedure have a

direct impact on the program state. Each could be part of a race between the decla-

ration or removal of two variables/procedures that share the same name. These two

factors mean the interleaving order of such statements is crucial for correct reversal,

meaning all such statements (that complete in a single step) use an identifier.

Procedure Call

The first step of a call is to evaluate the given name and to create a unique version

of this procedure body. This direct impact on the program state is reversed via the

closure of the inverted call statement. The changes this makes require an identifier

to ensure backtracking order is followed. The execution of the procedure body may
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AP ::= ε | AS | AP; AP | AP par AP

AS ::= skip I | X = E (pa,A) | if In B then AP else AQ end (pa,A) |
while Wn B do AP end (pa,A) | begin Bn ABB end |
call Cn n (pa,A) | runc Cn AP end A

ABB ::= ADV; ADP; AP; ARP; ARV

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

ADV ::= ε | var X = E (pa,A); ADV

ADP ::= ε | proc Pn n is AP end (pa,A); ADP

ARV ::= ε | remove X = E (pa,A); ARV

ARP ::= ε | remove Pn n is AP end (pa,A); ARP

Figure 4.5: Syntax of our annotated concurrent language

use identifiers throughout, depending on the type of statements. The final step of

a call is to close it, where the copy of the procedure body for this call is removed.

This step therefore requires the use of an identifier. Further to this, all identifiers

associated with statements within the block body will be lost. As is the case for

while loops, the sequence of all of these lost identifiers (retrieved via getAI ()) is

saved alongside the identifier used to close the call onto the stack Pr on δ.

4.5.3 Annotation Function

We now update the definition of annotated programs to reflect the extended pro-

gramming language. The annotated version must be capable of storing identifiers

that are assigned to specific statements. As in Chapter 3, the syntax of annotated

programs differs to that of original programs, and is given here in Figure 4.5, where

AP and AS represent annotated programs and statements respectively.

By abuse of notation, we extend the previously defined functions used to produce

the annotated version. This is the function ann: P → AP (recalling P and AP are

the sets of original and annotated programs respectively), that uses the function a:

S → AS (recalling S and AS are the sets of original and annotated statements re-

spectively) to annotate each statement. Figure 4.6 contains the definition of both of

these functions. Recall our discussion from Chapter 3 regarding the identifier stacks.

Note that throughout this chapter, we write identifier stacks within the syntax. As

previously explained, these stacks can actually be implemented via a separate envi-

ronment, allowing all such stacks to be persistent. Similarly to Chapter 3, we omit

the explicit use of this environment and give all stacks within statements.
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ann(ε) = ε

ann(S;P) = a(S); ann(P)

ann(P par Q) = ann(P) par ann(Q)

a(skip) = skip I

a(X = e pa) = X = e (pa,A)

a(if In b then P else Q end pa) =

if In b then ann(P) else ann(Q) end (pa,A)

a(while Wn b do P end pa) = while Wn b do ann(P) end (pa,A)

a(begin Bn P end) = begin Bn ann(P) end

a(var X = E pa) = var X = E (pa,A)

a(proc Pn n is P end pa) = proc Pn n is ann(P) end (pa,A)

a(call Cn n pa) = call Cn n (pa,A)

a(runc Cn P end) = runc Cn AP end A

a(remove X = E pa) = remove X = E (pa,A)

a(remove Pn n is P end pa) = remove Pn n is ann(P) end (pa,A)

Figure 4.6: Annotation function

4.6 Forward Semantics of Annotated Programs

This section contains small step operational semantics defining the forward execu-

tion of annotated programs. By abuse of notation, the transition relation → is the

smallest relation generated by the transition rules given here. The reflective and

transitive closure →∗ now represents an annotated execution. We re-use the defini-

tion of identifier and skip steps from Chapter 3 to represent transition rules that do

and do not use identifiers respectively. All programs used within configurations from

this point on are written using the annotated syntax in Figure 4.5. Each transition

rule defined within the forward-only semantics in Section 4.3 has a corresponding

rule here, where the effect on all program state environments is identical, except for

the auxiliary store δ which is now populated.

Sequential Composition

Unchanged to that of Chapter 3.

[S1a]
(AS | �)

◦→ (AS′ | �′)
(AS; AP | �)

◦→ (AS′; AP | �′)
[S2a]

(skip I; AP | �)→s (AP | �)

Parallel Composition

Unchanged to that of Chapter 3.
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[P1a]
(AP | �)

◦→ (AP′ | �′)
(AP par AQ | �)

◦→ (AP′ par AQ | �′)
[P2a]

(AQ | �)
◦→ (AQ′ | �′)

(AP par AQ | �)
◦→ (AP par AQ′ | �′)

[P3a]
(skip I1 par skip I2 | �)→s (skip | �)

Assignment

As in Chapter 3 but using a path pa and the function evalV ().

[D1a]
m = next() (e pa | σ, γ,�) ↪→∗a (v | σ, γ,�) evalV (X,pa,γ) = l

(X = e (pa,A) | δ, σ, γ,�)
m→ (skip m:A | δ[(m,σ(l)) ⇀ X], σ[l 7→ v], γ,�)

Conditional Statements

As in Chapter 3 but using a path pa.

[I1aT]

m = next() (b pa | �) ↪→∗b (T | �)

(if In b then AP else AQ end (pa,A) | �)
m→ (if In T then AP else AQ end (pa,m:A) | �)

[I1aF]

m = next() (b pa | �) ↪→∗b (F | �)

(if In b then AP else AQ end (pa,A) | �)
m→ (if In F then AP else AQ end (pa,m:A) | �)

[I2a]

(AP | �)
◦→ (AP′ | �′)

(if In T then AP else AQ end (pa,A) | �)
◦→ (if In T then AP′ else AQ end (pa,A) | �′)

[I3a]

(AQ | �)
◦→ (AQ′ | �′)

(if In F then AP else AQ end (pa,A) | �)
◦→ (if In F then AP else AQ′ end (pa,A) | �′)

[I4a]

m = next()

(if In T then skip I else AQ end (pa,A) | δ,�)
m→ (skip m:A | δ[(m,T) ⇀ B],�)

[I5a]

m = next()

(if In F then AP else skip I end (pa,A) | δ,�)
m→ (skip m:A | δ[(m,F) ⇀ B],�)

While Loops

As in Chapter 3 but using a path pa. The interaction with the while environment

is exactly as described previously.

[W1a]
m = next() β(Wn) = und (b pa | β,�) ↪→∗b (F | β,�)

(while Wn b do AP end (pa,A) | δ, β,�)
m→ (skip m:A | δ[(m,F) ⇀ W], β,�)
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[W2a]
m = next() β(Wn) = def (b pa | β,�) ↪→∗b (F | β,�)

(while Wn b do AP end (pa,A) | δ, β,�)
m→ (skip m:A | δ′, β[Wn],�)

where δ′ = δ[(m,T) ⇀ W, (m,C) ⇀ WI] and C = getAI(β(Wn)))

[W3a]
m = next() β(Wn) = und (b pa | β,�) ↪→∗b (T | β,�)

(S | δ, β,�)
m→ (while Wn T do AP′ end (pa,m:A) | δ[(m,F) ⇀ W], β[Wn ⇒ AR],�)

where S = while Wn b do AP end (pa,A), and AP′ = reL(AP)

and AR = while Wn b do AP′ end (pa,m:A)

[W4a]
m = next() β(Wn) = def (b pa | β,�) ↪→∗b (T | β,�)

(S | δ, β,�)
m→ (while Wn T do AP′ end (pa,m:A) | δ[(m,T) ⇀ W], β[Wn ⇒ AR],�)

where S = while Wn b do AP end (pa,A), and AP′ = reL(AP)

and AR = while Wn b do AP′ end (pa,m:A)

[W5a]
β(Wn) = def (AP | δ, β,�)

◦→ (AP′ | δ′, β′,�′)
(while Wn T do AP end (pa,A) | δ, β,�)

◦→ (while Wn T do AP′ end (pa,A) | δ′, β′′,�′)

where β′′ = β′[refW(Wn, AP′)]

[W6a]
β(Wn) = while Wn b do AP end (pa,A)

(while Wn T do skip I end (pa,A) | δ, β,�)→s (while Wn b do AP end (pa,A) | δ, β,�)

Block

No reversal information or identifiers are used directly by a block statement, meaning

the semantics is unchanged from the traditional execution within Section 4.3.

[B1a]
(AP | �)

◦→ (AP′ | �′)
(begin b1 AP end | �)

◦→ (begin b1 AP′ end | �′)

[B2a]
(begin b1 skip I end | �)→s (skip | �)

Variable and Procedure Declaration

A variable declaration matches that in Section 4.3, except that [L1a] uses the next

available identifier (m = next()) and pushes this into the identifier stack for this state-

ment m:A. With the same reasoning, procedure declarations via [L2a] are unchanged

except for an identifier use. Note that neither require reversal information.

[L1a]
m = next() (e pa | σ, γ,�) ↪→∗a (v | σ, γ,�) nextLoc(σ) = l pa = Bn:pa′

(var X = e (pa,A) | σ, γ,�)
m→ (skip m:A | σ[l 7→ v], γ[(X, Bn)⇒ l],�)

[L2a]
m = next()

(proc Pn n is AP (pa,A) | µ,�)
m→ (skip m:A | µ[Pn⇒ (n,AP)],�)
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Variable and Procedure Removals

A variable removal [H1a] matches that of Section 4.3, but that the next identifier (m

= next()) is pushed to the identifier stack (m:A) and stored alongside the final value

held by the variable into stack X on δ (δ[(m,σ(l)) ⇀ X]).

A procedure removal via [H2a] also uses the next available identifier (m = next())

and inserts this into the statements identifier stack (m:A). All other effects are equal

to that in Section 4.3, with the basis mapping of this procedure removed from the

procedure environment (µ[Pn]).

[H1a]

m = next() pa = Bn:pa′ γ(X,Bn) = l

(remove X = e (pa,A) | δ, σ, γ,�)
m→ (skip m:A | δ[(m,σ(l)) ⇀ X], σ[l 7→ 0], γ[(X, Bn)],�)

[H2a]

m = next() µ(Pn) = def

(remove Pn n is AP (pa,A) | µ,�)
m→ (skip m:A | µ[Pn],�)

Procedure Call

A procedure call opens via [G1a]. This matches [G1] from Section 4.3, but that the

next available identifier (m = next()) is inserted into the identifier stack (m:A). The

renamed copy of the procedure body AP′ is inserted into the procedure environment

(that will not already exist due to the uniqueness of the construct identifier Cn.

[G1a]
m = next() evalP(n,pa) = Pn µ(Pn) = (n,AP) reP(AP, Cn) = AP′

(call Cn n (pa,A) | µ,�)
m→ (runc Cn AP′ end m:A | µ[Cn⇒ (n,AP′)],�)

The execution of the procedure body via [G2a] is unchanged from [G2] in Section 4.3.

The one exception is that any identifiers associated to the statements of the copy of

the procedure are reflected into the procedure environment mapping, meaning β is

updated (µ′[refC(Cn, AP′)]).

[G2a]
(AP | µ,�)

◦→ (AP′ | µ′,�′)
(runc Cn AP end A | µ,�)

◦→ (runc Cn AP′ end A | µ′[refC(Cn, AP′)],�′)

The closure of a procedure call [G3a] uses the next identifier (m = next()) and

pushes it to the identifier stack (m:A). The final difference from Section 4.3 is

that all of the identifiers associated to statements within the copy of the proce-

dure body specifically for this call statement must be saved prior to its removal

(δ[(m,getAI(µ(Cn),F)) ⇀ Pr]).



CHAPTER 4. REVERSAL OF BLOCKS AND PROCEDURES 78

[G3a]
m = next() µ(Cn) = def

(runc Cn skip I end A | δ, µ,�)
m→ (skip m:A | δ[(m,getAI(µ(Cn))) ⇀ Pr], µ[Cn],�)

4.7 Examples of Annotated Execution

We now return to the examples shown in Section 4.4, and show the inference trees of

the corresponding annotated execution. We begin with the example of a procedure

call statement executing a local variable declaration within a nested block. Let the

annotated version AP be the program

runc c1

begin b1

remove X = 20 (pa,A); AQ

end

end A1

and AT = begin b1 remove X = 20 (pa,A); AQ end. The inference tree of the

annotated execution is shown below. Recall that the local version of X is initially 3.

[H1a] is an axiom here. The premises match those in Section 4.4, meaning σ′ = σ[l

7→ 0] and γ′ = γ[(X,b1)]. The auxiliary store δ′ = δ[(m,3) ⇀ X] now contains the final

value this variable held, namely 3. We highlight that the identifier m is assigned to

the copy of the procedure by updating µ, namely µ′ = µ[refC (Cn,AP′)], where AP′ =

begin b1 skip m:A; AQ.

m = next() pa = b1:pa′ γ(X, b1) = l
[H1a]

(remove X = 20 (pa,A) | δ, σ, γ, µ,�)
m→ (skip m:A | δ′, σ′, γ′, µ′,�)

[S1a]
(remove X = 20 (pa,A); AQ | δ, σ, γ, µ,�)

m→ (skip m:A; AQ | δ′, σ′, γ′, µ′,�)
[B1a]

(AT | δ, σ, γ, µ,�)
m→ (begin b1 skip m:A; AQ end | δ′, σ′, γ′, µ′,�)

[G2a]
(AP | δ, σ, γ, µ,�)

m→ (runc c1 begin b1 skip m:A; AQ end end A1 | δ′, σ′, γ′, µ′,�)

Recall the closing call statement within two nested blocks. Let AP be the program

begin b1

begin b2

runc c1 skip I end A; AQ

end; AR

end
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and AT = begin b2 runc c1 skip I end A; AQ end; AR and let the program AT′

= begin b2 runc c1 skip I end A; AQ end. The inference tree follows.

m = next() µ(Cn) = def
[G3a]

(runc c1 skip I end A | δ, µ,�)
m→ (skip m:A | δ′, µ′,�)

[S1a]
(runc c1 skip I end A; AQ | δ, µ,�)

m→ (skip m:A; AQ | δ′, µ′,�)
[B1a]

(AT′ | δ, µ,�)
m→ (begin b2 skip m:A; AQ end | δ′, µ′,�)

[S1a]
(AT | δ, µ,�)

m→ (begin b2 skip m:A; AQ end; AR | δ′, µ′,�)
[B1a]

(AP | δ, µ,�)
m→ (begin b1 begin b2 skip m:A; AQ end; AR end | δ′, µ′,�)

This follows identically to Section 4.4, with the corresponding annotated transi-

tion rule used. The final procedure environment is µ′ = µ[Cn], as this copy of the

procedure body is removed. The difference here is [H1a], which is still a leaf but now

also saves all identifiers used by the procedure to the stack Pr before this procedure

is removed. Therefore δ′ = δ[(m,getAI(µ(Cn))) ⇀ Pr].

Example 15 considers the execution of the complete program shown in Fig-

ure 4.9(a) (on page 84).

Example 15. (Full annotated execution) Consider Figure 4.9(a) on page 84, noting

the program is sequential (meaning identifiers only link reversal information as there

is no interleaving) and contains only a block statement. All variables are initially

0, and the next identifier is 4. The transition rule [B1a] allows the block body to

execute, beginning with two variable declarations via [L1a] using identifiers 4 and

5. Next, a procedure is declared via [L2a] using the identifier 6 (that inserts the

basis mapping for this procedure). The assignment X = X + Y is executed via [D1a]

using identifier 7, saving the pair (7,2) (the overwritten value 2) onto stack X on δ.

The call statement executes next, opening via [G1a] using identifier 8. A renamed

copy of the procedure add is produced (in this case this is identical) and inserted into

µ. This body is then executed (via [G2r] and the runc construct), using identifier 9

to overwrite the current value 0 of res (saving the pair (9,0)). The procedure call

statement then completes using identifier 10. The copy of the procedure is removed

from µ, after all identifiers associated with its statements are stored onto stack Pr

on δ (in this case, the sequence is simply 9). The assignment Y = 5 via [D1a] uses

the identifier 11 and saves the pair (11,2). The execution concludes by removing the

basis mapping of the procedure via [L2a] (which requires no reversal information to

invert as the program lost can be restored from the source code), and finally the

removal of the two local variables using identifiers 13 and 14. The pairs (13,5) and

(14,4) are saved onto the stacks X and Y respectively. The block statement concludes

via the skip step [B2a].
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The final state produced is such that res = 6 (as X and Y are both local and

have been removed). The final procedure environment is empty as all mappings

are removed, however just before the closure of the call statement, it contained the

single mapping c1.0 7→ res = X + Y [9]. The final auxiliary store produced by

this execution is now given.

X Y res B W WI Pr

(14,4) (13,5)

(7,2) (11,2) (9,0) (10,9)

All identifier stacks are populated as shown in Figure 4.9(a). We return to this

inverted version in Section 4.10 where, after the introduction of the reverse semantics

to follow, the reverse execution of this program is explained.

This execution has been performed using our simulator (Chapter 7), demonstrat-

ing the final auxiliary store and program state to be correct. �

4.8 Inversion

After the definition of the forward execution of an annotated program with reversal

information saving, the next consideration is of the reverse execution. Prior to

defining the extended functions required to produce the inverse execution, we first

describe the use of identifiers to determine the inverse interleaving order and the

use of reversal information to invert each statement.

4.8.1 Inverse Interleaving Order

Backtracking order is followed for the majority of a reverse execution, with the only

relaxations being skip steps, the closing of a loop iteration (not the loop itself)

and the closing of a block statement. Each of these steps does not use identifiers

during the forward or reverse execution. Recall the function previous() that returns

the previously used identifier (the next to invert). Any statement that must be

inverted in backtracking order must contain the identifier m such that m = previous().

Note that all identifier stacks are persistent, with Chapter 3 detailing a possible

implementation.

The declaration or removal of either a variable or a procedure each used a single

identifier during the forward execution (for each time it was executed), meaning

the inverted version of each also requires the use of the corresponding identifier. A

procedure call statement uses two identifiers directly (excluding those used within

the block body). The first is to open the call statement and the second to close it.
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During the inverse execution the second identifier is now used to open the inverted

call statement, while the first is used to close it.

4.8.2 Statement Reversal

The execution of an inverted version of a statement must undo all effects of the

corresponding forward statement. To do so, a number of statements need to use the

reversal information saved during the matching forward execution. Assignments,

conditionals and loops are reversed as described in Section 3.6 of Chapter 3.

Block statements do not require reversal information and therefore no interaction

with δ is required. An inverted block statement simply allows the body to execute

before closing. A variable declaration statement (reversing a forward removal state-

ment) recreates a local variable initialised to the final value it held during the forward

execution, which is retrieved from the stack for this variable on δ. A variable re-

moval statement (reversing a forward declaration statement) does not use δ (and

instead restores the memory location to 0).

A procedure declaration statement during an inverse execution reverses a proce-

dure removal statement. Since this is the basis mapping, no identifiers are assigned

to it and therefore are not lost. This means a procedure declaration statement

recreates the mapping based on the inverted program contained within it, meaning

no reversal is used. A inverse procedure removal statement (reversing a procedure

declaration) simply removes a mapping from the procedure environment, requiring

no reversal information to do so.

The opening of a inverse procedure call (reversing the closure of the forward

call) uses the sequence of identifiers saved prior to its removal from stack Pr. This is

used to recreate the copy of the procedure body into µ, using the inverse renaming

function IreP : (IP × Cn) → IP (recalling that IP is the set of inverted programs

and Cn is the set of construct identifiers) and the function setAI () to re-populate

all identifier stacks. All steps of the inverted procedure body are then executed

using reversal information dependent on the type of statement. Finally, the inverse

procedure call closes (reversal of the opening during the forward execution) simply

be removing the copy from µ, without the use of any reversal information.

4.8.3 Inversion Function

An inverted version of an original program must be capable of using the reversal

information saved by the annotated execution to reverse it. This concerns only the

identifiers as all information saved to δ is accessed within the operational semantics

to follow. We now introduce the syntax of inverted programs in Figure 4.7, where

IP and IS are used to represent inverted programs and statements respectively.
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IP ::= ε | IS | IP; IP | IP par IP

IS ::= skip I | X = E (pa,A) | if In B then IP else IQ end (pa,A) |
while Wn B do IP end (pa,A) | begin Bn IBB end |
call Cn n (pa,A) | runc Cn IP end A

IBB ::= IDV; IDP; IP; IRP; IRV

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

IDV ::= ε | var X = E (pa,A); IDV

IDP ::= ε | proc Pn n is IP end (pa,A); IDP

IRV ::= ε | remove X = E (pa,A); IRV

IRP ::= ε | remove Pn n is IP end (pa,A); IRP

Figure 4.7: Syntax of inverted versions of original programs

By abuse of notation, we now provide updated definitions of the functions used

to generate an inverted version from Chapter 3. These are inv : AP→ IP (recalling

that AP and IP are the sets of annotated programs AP and inverted programs IP

respectively), and i : AS → IS (recalling that AS and IS are the sets of annotated

statements AS and inverted statements IS respectively). Both of these functions

are given in Figure 4.8. As before, i() is called on each statement in reverse order,

allowing inv() to invert the statement order.

One major difference here is the inversion of a block statement (not contained

within Chapter 3). Inverting the statement order of a block body produces a block

that begins with removal statements (since these are executed last). To help read-

ability and the semantics, the function inv() (and i()) change each removal statement

into a declaration (and vice versa). Example 16 discusses a program containing a

block statement and its inverted version.

Example 16. (Inverted program) A program containing an executed block state-

ment (with an arbitrary block body) is shown in Figure 4.9(a), with the inverted

version of it shown in Figure 4.9(b). The statement order has been inverted, and all

declaration statements are now removal statements (and vice versa). �

4.9 Reverse Semantics of Inverted Programs

The small step operational semantics performing reverse execution of programs is

now shown. By abuse of notation, the transition relation  is the least relation

generated by the rules given here. The reflective and transitive closure  ∗ also

represents an inverse execution of this extended language. All configurations from

this point on contain an inverted program, written in the syntax in Figure 4.7. As
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inv(ε) = ε

inv(AS;AP) = inv(AP); i(AS)

inv(AP par AQ) = inv(AP) par inv(AQ)

i(skip I) = skip I

i(X = e (pa,A)) = X = e (pa,A)

i(if In b then AP else AQ end (pa,A)) =

if In b then inv(AP) else inv(AQ) end (pa,A)

i(while Wn b do AP end (pa,A)) = while Wn b do inv(AP) end (pa,A)

i(begin Bn AP end) = begin Bn inv(AP) end

i(var X = e (pa,A)) = remove X = e (pa,A)

i(proc Pn n is AP end (pa,A)) = remove Pn n is inv(AP) end (pa,A)

i(call Cn n (pa,A)) = call Cn n (pa,A)

i(runc Cn AP end A) = runc Cn inv(AP) A

i(remove Pn n is AP end (pa,A)) = proc Pn n is inv(AP) end (pa,A)

i(remove X = e (pa,A)) = var X = e (pa,A)

Figure 4.8: Inversion function

in Section 4.6, transition rules using an identifier are named identifier steps, while

those that do not are named skip steps. Each identifier step defined below contains

the premises m = previous() and A = m:A′ to ensure this is the next statement to

invert. Each identifier step removes the identifier m from A (leaving A′).

An important observation is that an inverted execution does not perform any

evaluation, meaning rules for arithmetic or boolean evaluation are omitted. This

lack of evaluation during an inverse execution potentially saves time when compared

to a reversible language (e.g. Janus [55]), which has to evaluate a post-condition.

Sequential Composition

Unchanged to that of Chapter 3.

[S1r]
(IS | �)

◦
 (IS′ | �′)

(IS; IP | �)
◦
 (IS′; IP | �′)

[S2r]
(skip I; IP | �) s (IP | �)

Parallel Composition

Unchanged to that of Chapter 3.

[P1r]
(IP | �)

◦
 (IP′ | �′)

(IP par IQ | �)
◦
 (IP′ par IQ | �′)

[P2r]
(IQ | �)

◦
 (IQ′ | �′)

(IP par IQ | �)
◦
 (IP par IQ′ | �′)

[P3r]
(skip I1 par skip I2 | �) s (skip | �)
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1 begin b1.0

2 var X = 2 [4];

3 var Y = 2 [5];

4 proc p1.0 add is

5 res = X + Y [9];

6 end [6];

7 X = X + Y [7];

8 call c1.0 add [8,10];

9 Y = 5 [11];

10 remove p1.0 add is

11 res = X + Y [9];

12 end [12];

13 remove Y = 2 [13];

14 remove X = 2 [14];

15 end;

(a) Executed program

1 begin b1.0

2 var X = 2 [14];

3 var Y = 2 [13];

4 proc p1.0 add is

5 res = X + Y [9];

6 end [12];

7 Y = 5 [11];

8 call c1.0 add [8,10];

9 X = X + Y [7];

10 remove p1.0 add is

11 res = X + Y [9];

12 end [6];

13 remove Y = 2 [5];

14 remove X = 2 [4];

15 end;

(b) Inverted version

Figure 4.9: An executed block statement and the corresponding inverted version

Assignment

As in Chapter 3 but using a path pa.

[D1r]
A = m:A′ m = previous() δ(X) = (m,v):X′ evalV (X,pa,γ) = l

(X = e (pa,A) | δ, σ,�)
m
 (skip A′ | δ[X/X′], σ[l 7→ v],�)

Conditional Statements

As in Chapter 3 but using a path pa.

[I1rT]

A = m:A′ m = previous() δ(B) = (m,T):B′

(S | δ,�)
m
 (if In T then IP else IQ end (pa,A′) | δ[B/B′],�)

where S = if In b then IP else IQ end (pa,A)

[I1rF]

A = m:A′ m = previous() δ(B) = (m,F):B′

(S | δ,�)
m
 (if In F then IP else IQ end (pa,A′) | δ[B/B′],�)

where S = if In b then IP else IQ end (pa,A)

[I2r]

(IP | �)
◦
 (IP′ | �′)

(if In T then IP else IQ end (pa,A) | �)
◦
 (if In T then IP′ else IQ end (pa,A) | �′)
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[I3r]

(IQ | �)
◦
 (IQ′ | �′)

(if In F then IP else IQ end (pa,A),�)
◦
 (if In F then IP else IQ′ end (pa,A) | �′)

[I4r]

A = m:A′ m = previous()

(if In T then skip I else IQ end (pa,A) | �)
m
 (skip A′ | �)

[I5r]

A = m:A′ m = previous()

(if In F then IP else skip I end (pa,A) | �)
m
 (skip A′ | �)

While Loop

As in Chapter 3 but using a path pa.

[W1r]
m = previous() A = m:A′ β(Wn) = und δ(W) = (m,F):W′

(while Wn b do IP end (pa,A) | δ, β,�)
m
 (skip A′ | δ[W/W′], β,�)

[W2r]
m = previous() A = m:A′ β(Wn) = def δ(W) = (m,F):W′

(while Wn b do IP end (pa,A) | δ, β,�)
m
 (skip A′ | δ[W/W′], β[Wn],�)

[W3r]
m = previous() A = m:A′ β(Wn) = und δ(W) = (m,T):W′ δ(WI) = (m,C):WI′

(S | δ, β,�)
m
 (while Wn T do IP′ end (pa,A′) | δ[W/W′, WI/WI′], β[Wn ⇒ IR],�)

where S = while Wn b do IP end (pa,A) and IP′ = IreL(setAI(IP, C))

and IR = while Wn T do IP′ end (pa,A′)

[W4r]
m = previous() A = m:A′ β(Wn) = def δ(W) = (m,T):W′ δ(WI) = (m,C):WI′

(S | δ, β,�)
m
 (while Wn T do IreL(IP) end (pa,A′) | δ[W/W′], β[Wn ⇒ IR],�)

where S = while Wn b do IP end (pa,A)

and IR = while Wn b do IreL(IP) end (pa,A′)

[W5r]
β(Wn) = def (IP | δ, β,�)

◦
 (IP′ | δ′, β′,�′)

(while Wn T do IP end (pa,A) | δ, β,�)
◦
 (while Wn T do IP′ end (pa,A) | δ′, β′′,�′)

where β′′ = β′[refW(Wn, IP′)]

[W6r]
β(Wn) = while Wn b do IP end (pa,A)

(while Wn T do skip I end (pa,A) | δ, β,�) s (while Wn b do IP end (pa,A) | δ, β,�)

Block

Execution of an inverted block body via [B1r] and the closure of a block via [B2r]

is identical to that of the forward execution from Section 4.6.

[B1r]
(IP | �)

◦
 (IP′ | �′)

(begin b1 IP end | �)
◦
 (begin b1 IP′ end | �′)
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[B2r]
(begin b1 skip I end | �) s (skip | �)

Variable and Procedure Declaration

An inverse declaration statement [L1r] (reversal of a forward removal statement)

retrieves the final value v′ that was held by this variable during the forward execution

from the stack (δ(X) = (m,v′):X′), while a fresh memory location l is retrieved

(nextLoc(σ) = l). Using the most direct block name Bn (pa = Bn:pa′), the matching

entry is created within the variable environment (γ[(X, Bn)⇒ l]) and the matching

memory location is initialised to the value v′ (σ[l 7→ v′]). Finally, the reversal

information is removed from δ (δ[X/X′]).

[L1r]
A = m:A′ m = previous() δ(X) = (m,v′):X′ nextLoc(σ) = l pa = Bn:pa′

(var X = e (pa,A) | δ, σ, γ,�)
m
 (skip A′ | δ[X/X′], σ[l 7→ v′], γ[(X, Bn)⇒ l],�)

An inverse procedure declaration [L2r] modifies the program state by re-creating

the basis mapping for this procedure within the procedure environment. No reversal

information is required as this is based on the inverted program code.

[L2r]
A = m:A′ m = previous()

(proc Pn n is IP (pa,A) | µ,�)
m
 (skip A′ | µ[Pn⇒ (n,IP)],�)

Variable and Procedure Removals

An inverse removal statement (reversing a declaration) via [H1r] restores the memory

location to 0 (σ[l 7→ 0]) and removes the entry from γ (γ[(X, Bn)]). Procedure

removal statements (reversing a declaration) via [H2r] remove the mapping from the

procedure environment (µ[Pn]).

[H1r]
A = m:A′ m = previous() γ(X,Bn) = l pa = Bn:pa′

(remove X = e (pa,A) | δ, σ, γ,�)
m
 (skip A′ | δ, σ[l 7→ 0], γ[(X, Bn)],�)

[H2r]
A = m:A′ m = previous() µ(Pn) = def

(remove Pn n is IP (pa,A) | µ,�)
m
 (skip A′ | µ[Pn],�)

Procedure Call

An inverted call statement opens via [G1r]. The behaviour is like that of Section 4.6,

but with the identifier stacks of the renamed copy of the procedure body populated

using the sequence C retrieved from the stack Pr on δ (δ(Pr) = (m,C):Pr′).

[G1r]
A = m:A′ m = previous() evalP(n,pa) = Pn µ(Pn) = (n,IP) δ(Pr) = (m,C):Pr′

(call Cn n (pa,A) | δ, µ,�)
m
 (runc Cn IP′ end A′ | δ[Pr/Pr′], µ[Cn⇒ (n,IP′)],�)

where IP′ = IreP(setAI(IP, C), Cn)
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The execution of a procedure body via [G2r] is unchanged to Section 4.3.

[G2r]
(IP | µ,�)

◦
 (IP′ | µ′,�′)

(runc Cn IP end A | µ,�)
◦
 (runc Cn IP′ end A | µ′[refC(Cn, IP′)],�′)

The closure of an inverted block statement (reversing the opening of the forward

version) executes and removes the mapping from the procedure environment (µ[Cn]).

[G3r]
A = m:A′ m = previous() µ(Cn) = def

(runc Cn skip I end A | µ,�)
m
 (skip m:A | µ[Cn],�)

4.10 Examples of Reverse Execution

We return for the final time to our examples from Section 4.4 and Section 4.7. We

begin with the procedure call statement executing its body, containing a variable

removal statement within a nested block. Note that for all examples in this sec-

tion, we ignore any previous execution that occurred up to our starting point (and

therefore do not show it in the inverted version).

The inverted version of this program is a runc construct (as the call is open),

a block statement with a single declaration statement (inverse of the removal, and

allowed to appear on its own as we omit all other statements of the block body).

Recall that the final value held by the location during the forward execution was 0,

and that stack X on δ had the pair (m,3) as its head. Let the inverted version IP be

the program

runc c1

begin b1

var X = 20 (pa,m:A)

end

end A1

and IT = begin b1 var X = 20 (pa,m:A) end. The inference tree follows.

m = previous() δ(X) = (m, v′) : X′ nextLoc(σ) = l pa = b1:pa′

[L1r]
(var X = 20 (pa,m:A) | δ, σ, γ, µ,�)

m
 (skip A | δ′, σ′, γ′, µ′,�)

[B1r]
(IT | δ, σ, γ, µ,�)

m
 (begin b1 skip m:A end | δ′, σ′, γ′, µ′,�)

[G2r]
(IP | δ, σ, γ, µ,�)

m
 (runc c1 begin b1 skip m:A end end A1 | δ′, σ′, γ′, µ′,�)
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The premise A = m:A′ is omitted from the leaf [L1r] above as we write this directly

into the statement. The declaration of this variable recreates the variable within

γ, namely γ′ = γ[(X,b1) 7→ l], and re-initialises this location to the final value 3

held by the variable during forward execution, namely σ′ = σ[l 7→ 3]. Finally, this

old value is used and therefore removed from the stack X on δ, namely δ′ = δ[X/X′].

Therefore the state is restored to as it was prior to the matching forward transition.

Now consider our program containing a call statement ready to close nested

within two blocks. We note that AQ and AR from Section 4.7 must be inverted prior

to this step and so are omitted. The inverse of closing a call statement is to open

it, meaning we use IT to represent the procedure body that would be inverted after

this step. Let IP be the program

begin b1

begin b2

call c1 n (pa,m:A)

end

end

and IT1 = begin b2 call c1 n (pa,m:A) end. The following inference tree shows

the desired transition exists.

m = previous() evalP(n, pa) = Pn µ(Pn) = (n, IT) δ(Pr) = (m, C) : Pr′

[G1r]
(call c1 n (pa,m:A) | δ, µ,�)

m
 (runc c1 IT′ end A | δ′, µ′,�)

[B1r]
(IT1 | δ, µ,�)

m
 (begin b2 runc c1 IT′ end A end | δ′, µ′,�)

[B1r]
(IP | δ, µ,�)

m
 (begin b1 begin b2 runc c1 IT′ end A end end | δ′, µ′,�)

The premise A = m:A′ is omitted from the leaf [G1r] as above. The copy of

the procedure body unique for this call statement is recreated, namely µ′ = µ[Cn

⇒ (n,T′)], where T′ is the renamed version of the procedure body with all identifier

stacks populated using the sequence C from the stack WI (T′ = IreP(setAI (IP,C),Cn)).

This reversal information is then removed from the stack Pr, meaning δ′ = δ[Pr/Pr′].

We also note this highlights the mismatch of rules during a forward and reverse

execution, namely [S1r].

Example 17 returns to the complete annotated execution shown in Example 15

and describes the corresponding reverse execution.

Example 17. (Complete inverse execution) The inverted version of the program

used in Example 15 is given in Figure 4.9(b) (page 84). Note the inverted statement

order and that all declaration statements are now removals (and vice versa). The
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block statement executes via [B1r], beginning with the re-declaration of two local

variables. This is via [L1r], which ignores the value contained within the statement

(namely 2), and instead initialises this to old values retrieved from the stacks X and

Y respectively. Therefore X is initialised to 4, and Y to 5 (with both pieces of reversal

information removed). The procedure is re-declared via [L2r] (recreating the basis

mapping using identifier 12), before the assignment Y = 5 is reversed (not evaluating

the expression and instead restoring it to the value 2 from the stack Y). The call

statement then is then opened via [G1r], which recreates the copy of this procedure

and populates all stacks with the identifiers from Pr. The procedure environment µ

contains two mappings, namely the basis mapping p1.0 7→ res = X + Y [ ] and

the call-specific copy c1.0 7→ res = X + Y [9]. Identifier 9 is then used to reverse

the assignment to res, before the call closes via [G3r] that removes the mapping

for c1.0 from µ. The assignment X = X + Y is then reversed (restoring X to 2

from the stack Y). Finally, the procedure and both local variables are removed via

[H2r] and [H1r] respectively, before the block itself closes via [B2r]. The execution

is complete, producing the desired state such that res = 0 and that µ is empty.

We have correctly restored both the program state, and the auxiliary store as all

reversal information has been used, to as they were prior to the forward execution.

The inverted execution described here has been executed using our simulator,

which shows the behaviour outlined above to be correct. �

4.11 Correctness of Reversal

Maintaining the definition of correctness from the previous chapter, namely Defini-

tion 3.8.1, we again focus on two properties of our approach. The first being that

annotation does not change the behaviour of the original program, and the second

that the inverse execution correctly restores the program state and uses all reversal

information (garbage free). We note that all lemmas from Section 3.8 of Chapter 3

are extended to hold for the updated programming language, with all references

from this point on being to the extended versions. Chapter 6 details necessary

prerequisites, before stating formally each of these properties and its proof.

4.12 Conclusion

We have introduced an extended version of our programming language, adding sup-

port for blocks statements containing local variables and procedures. The program

state has been updated to reflect this, extending the renaming process to handle

potentially recursive procedure calls. All reversal information required for these

additional constructs has been described and the necessary stacks added to the
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auxiliary store. Annotation has been extended, alongside the forward operational

semantics. Inversion has also been updated, allowing the extension of the reverse

operational semantics to be defined. All smaller results given in Chapter 3 are

extended accordingly, with the proof of correctness deferred to Chapter 6.



Chapter 5

Challenges of Proving Correctness

Chapter 4 has introduced an approach to reversing executions of an imperative

concurrent programming language. Two key processes have been used, namely an-

notation and inversion. It is important to prove that both of these processes, and

therefore our method of reversibility, is correct. Before stating the properties that

we will use to determine correctness, we first address multiple challenges. In this

chapter, each of the three challenges is discussed in turn, with appropriate solutions

described.

Each of these challenges concerns the reverse execution of programs, and specifi-

cally our Inversion Result (introduced later in Chapter 6). The three key challenges

we will focus on are:

1. Parallel composition may allow different interleaving orders;

2. Partially executed programs may not reach skip when inverted;

3. Stopping the inverse execution at the point corresponding to the beginning of

the forward execution.

Each of these issues is now discussed, alongside the proposed solutions.

5.1 Multiple Interleaving Orders

The semantics of parallel composition (see Chapter 4) means multiple distinct exe-

cution orders exist. Many of these executions can be described as equivalent, where

the order of identifier steps is identical while the order of skip steps is different.

Since no skip steps alter the program state (Lemma 1 of Chapter 3), each of these

executions produces the same final program state (hence equivalent). Inverse skip

steps can also be applied in several different orders while preserving an equivalent

execution. This results in the potential for constructs to remain open during an

91
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1 begin b1.0

2 . . .

3 Z = 20;

4 end;

(a) Forward program

1 begin b1.0

2 Z = 20;

3 . . .

4 end;

(b) Reverse program

Figure 5.1: A program and its inverse with non-matching skip steps

inverse execution for longer than during the forward execution, adding difficultly to

the task of matching the rules applications between a forward and reverse execution.

Skip steps used within a forward execution may not have the one-to-one corre-

spondence with those of the matching reverse execution, as highlighted in Exam-

ple 18.

Example 18. (Non-matching skip steps) Consider the forward program in Fig-

ure 5.1(a), whose execution concludes with the final assignment. The transition

sequence of this is [D1a] (to perform the assignment that reaches skip), and then

[B1a] to close the block. Now consider the inverted program from Figure 5.1(b). The

transition sequence of this execution begins with [D1r] (to reverse the assignment)

and then [S2r] (to continue on into the block body). Therefore there is a mismatch

between [B1a] and [S2r]. Note that if the assignment is the only statement within

the block, skip steps will match as required ([B2r]). �

We avoid these difficulties by considering executions as a composition of seg-

ments. Firstly let any arbitrary execution be named a standard execution. We now

introduce a uniform execution, where each identifier step is followed by all of the

possible closing skip steps (named a segment). All skip steps within a segment are

said to have been ‘caused’ by the preceding identifier step.

Definition 5.1.1. (Uniform execution) A uniform execution is a standard pro-

gram execution where all skip steps (transitions that do not use identifiers) are per-

formed as soon as they are available. A step of a uniform execution is represented

using U
◦→ and U

◦
 for forward and reverse execution respectively.

We remark that skip steps within a uniform execution are not interleaved across

a parallel composition. This is due to identifier steps executed on one side not

being able to make skip steps available on the other. Therefore any two equivalent

standard executions (that is two transition sequences where the order of identifier

steps is identical, with skip steps potentially different) will have the same uniform

version. All skip steps from each sequence will be performed as soon as they are

available, which will be identical in both cases. Consider Example 19 that shows a

uniform version of a standard execution.
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1 par {
2 begin b1.0

3 X = 20 [1];

4 end;

5 } {
6 Y = 2 [0];

7 Z = 4 [2];

8 }

(a) Concurrent program

Standard Uniform

[D1a] (0) [D1a] (0)

[D1a] (1) [S2a] (of 0)

[S2a] (of 0) [D1a] (1)

[D1a] (2) [B2a] (of 1)

[B1a] (of 1) [D1a] (2)

[P3a] [P3a]

(b) Standard and uniform execution

Figure 5.2: A program, a standard execution and its uniform version

Example 19. (Standard and uniform executions) Consider the concurrent program

in Figure 5.2(a), where identifiers 0–2 capture one available standard execution.

Figure 5.2(b) shows first the order of rule applications under this standard execution,

with each rule shown alongside the identifier it used (or that caused it). The rules

[S2a] and [B2a] are not executed as soon as available and instead deferred to later in

this execution. The corresponding uniform execution is also shown in Figure 5.2(b),

where the order of identifier rules is unchanged (meaning the final program states

match) and the skip steps are now performed as soon as available. �

One further consideration is of programs that begin with skip steps. This is a

special case of a uniform execution, where all skip steps performed at the beginning

have not been ‘caused’ by any identifier step. Consider Example 20 that shows a

program beginning with several skip steps.

Example 20. (Program beginning with skip steps) The program in Figure 5.3

contains the parallel composition of two sub-programs, each beginning with skip

steps. The left side starts with an empty block statement that can be closed via

the skip step [B2a] (leaving the remaining program AP). The right side starts with

a block that is not empty, with a block body beginning with a skip statement. The

skip step [S2a] can remove this skip statement leaving the block with the remaining

body AQ. �

Such an execution performs all initial skip steps in a fixed order, namely all from

the left side of a parallel before those of the right in a depth first manner. This

ensures all equivalent executions have a single uniform version. Lemma 4 states

that for any standard forward execution, there exists a uniform forward execution

that has the same behaviour (with respect to the program state).

Lemma 4. (Equivalent uniform execution) Given an arbitrary standard forward

or reverse program execution, there exists an equivalent uniform execution that
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1 begin b1.0 begin b2.0

2 skip; par skip;

3 end; AQ

4 AP end;

Figure 5.3: A complete program beginning with several skip steps

modifies the program state equivalently. Let P be an arbitrary program and � be

the tuple (σ, γ, µ, β, δ) of initial program state environments.

1. If (P | �)
◦→
∗

(skip I | �′) for some I and final program state �′, then there

exists an equivalent uniform execution (P | �) U
◦→
∗

(skip I′ | �′′) for I′ and

program state �′′ such that I′ = I and �′′ = �′.

2. If (P | �)
◦
 
∗

(skip I | �′) for some I and final program state �′, then there

exists an equivalent uniform execution (P | �) U
◦
 
∗

(skip I′ | �′′) for I′ and

program state �′′ such that I′ = I and �′′ = �′.

Proof. The proof of Lemma 4 is by induction on the length of the execution using

Lemma 5 below. All executions are assumed to be of complete programs. We

consider each of the two possible cases of execution, beginning with the special

case of those that start with any number of skip steps. Such a complete execution,

written (P | �) →∗s (P′ | �)
◦→
∗

(skip I | �′), exists such that (P | �) →∗s (P′ | �)

contains all possible skip steps and that (P′ | �)
◦→
∗

(skip I | �′) therefore begins

with an identifier step. Since this execution is complete, all of the initial skip steps

do not have a preceding identifier step that caused them. Therefore the beginning

skip steps can be reordered as shown in Part 1 of Lemma 5, such that all skip steps

from the left side of a parallel occur before those from the right. With the execution

(P | �)→∗s (P′ | �) reordered into a uniform equivalent, application of the induction

hypothesis to the remaining shorter execution (P′ | �)
◦→
∗

(skip I | �′) (guaranteed

to begin with an identifier step) shows the existence of a uniform equivalent.

We now consider executions of the form (P | �)
m→ (P′ | �′) →∗s (P′′ | �′) m+1→

(P′′′ | �′′) ◦→
∗

(skip I | �′) that begin with an identifier step. To support use

of the induction hypothesis, we do not require this execution to be complete. The

execution (P′ | �′) →∗s (P′′ | �′) may contain skip steps that were caused by a

previous identifier step (using an identifier k such that k < m provided it exists).

Using Part 2 of Lemma 5, all such skip steps can be reordered to appear prior to

the identifier step using m. All other skip steps within the execution (P′ | �′) →∗s
(P′′ | �′) are guaranteed to have been caused by the transition

m→. These cannot

have been caused by an identifier rule that has not yet happened, meaning their

current position already respects uniformity. The final consideration is of skip steps

within (P′′′ | �′′) ◦→
∗

(skip I | �′). It is possible for some of these steps to have
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been caused by any of the preceding identifier steps and are therefore required to be

reordered. As before, this can be achieved using Part 2 of Lemma 5. From here, the

remaining shorter execution beginning with the identifier step using m + 1 can be

shown to be uniform via the induction hypothesis. Therefore Lemma 4 holds.

Lemma 5. Given a sequence of two transitions where one is from the opposite side

of a parallel to the other, these two transitions may be reordered in two specific

circumstances (depending on the type of each transition). Let P be an annotated

program and � be the tuple (σ, γ, µ, β, δ) of initial program state environments.

1. If (P | �)→S1 (P′ | �)→S2 (P′′′ | �) exists, for some programs P′ and P′′′, such

that the transition →S1 is from the opposite side of a parallel composition to

the transition→S2 , then there exists the reordered execution (P | �)→S2 (P′′ |
�)→S1 (P′′′ | �) for some program P′′.

2. If (P | �)
m→ (P′ | �′) →S (P′′′ | �′) exists, for some programs P′, P′′′ and

program state �′, such that the transition
m→ is from the opposite side of

a parallel composition to the transition →S, then there exists the reordered

execution (P | �)→S (P′′ | �)
m→ (P′′′ | �′) for some program P′′.

Proof. Recall Lemma 1 from Chapter 3 that states skip steps do not change the

program state in any way, and the observation that any step from one side of a

parallel composition cannot ‘cause’ skip steps on the other side of the same parallel.

Consider Part 1 of Lemma 5. The execution of two skip steps with one on each side

of a parallel means that neither skip step is the cause of the other. With one of the

steps requiring [P1a] and the other needing [P2a] to occur within its inference tree,

the definition of these rules (Chapter 4) shows the execution of one cannot affect

the execution of the other. This means the order of these skip steps cannot change

the final program state or structure, meaning the reordering of these is permitted.

The intermediate program P′′ is produced and is like P′′′, but with the side of the

parallel that contains →S1 still in its initial form.

Consider Part 2 of Lemma 5. With each step being on opposite sides of a parallel,

the skip step →s cannot have been caused by the identifier step
m→. This means

that the skip step must have been caused by an identifier step
k→ such that k < m.

As in Part 1, it is therefore guaranteed that both steps were available prior to the

execution of either. The rules [P1a] and [P2a] show that the program structure of

one side of a parallel cannot be changed via the other side. With the skip step

having no effect on the program state, the identifier step
m→ and the skip step →s

can therefore be reordered. The intermediate program P′′ is like P′′′ but with the

side containing the identifier step
m→ still in its original form. Since both parts have

been shown to be valid, we can conclude that Lemma 5 holds, as required.
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PP ::= ε | PS | PP; AP | PP par PP

PS ::= skip I | X = E (pa,A) | if In B B then AP AP else AP AP end (pa,A) |
if In T B then PP AP else AP AP end (pa,A) |
if In F B then AP AP else PP AP end (pa,A) |
while Wn B do AP end (pa,A) | while Wn T do PP end (pa,A) |
begin Bn ABB ABB end | begin Bn PBB ABB end |
call Cn n (pa,A) | runc Cn AP AP end A | runc Cn PP AP end A

PBB ::= ADV; ADP; AP; ARP; ARV; | ADP; AP; ARP; ARV; | AP; ARP; ARV; | ARP; ARV; | ARV;

Figure 5.4: Syntax of partially executed programs

Lemma 6 corresponds to Lemma 4, showing that any uniform reverse execution

can be relaxed into an equivalent standard version. Each uniform execution is

standard by definition, meaning this trivial result is included here for completeness.

Lemma 6. (Equivalent standard execution) Given an arbitrary uniform forwards

or reverse program execution, there exists an equivalent standard execution that

modifies the program state equivalently. Let P be an arbitrary program and � be

the tuple (σ, γ, µ, β, δ) of initial program state environments.

1. If (P | �) U
◦→
∗

(skip I | �′) for some I and program state �′, then there

exists an equivalent standard execution (P | �)
◦→
∗

(skip I′ | �′′) for I and

program state �′′ such that I′ = I and �′′ = �′.

2. If (P | �) U
◦
 
∗

(skip I | �′) for some I and program state �′, then there

exists an equivalent standard execution (P | �)
◦
 
∗

(skip I′ | �′′) for I and

program state �′′ such that I′ = I and �′′ = �′.

Proof. Correspondingly to the proof of Lemma 4, this is via induction on the length

of an execution using Lemma 5.

5.2 Partial Executions

Later in Chapter 6, we introduce Theorem 8 that states that given an annotated

execution that completes and reaches skip, the corresponding inverted program also

completes and reaches skip. This is valid for all executions of complete programs.

Consider the process of proving this by induction on the length of an execution.

This typically requires a small number of initial execution steps to be explicitly

stated, before using the induction hypothesis on the remaining execution. After the

initial steps, the remaining program may no longer be complete, and instead be a

partially executed program (see Definition 5.2.1 and Example 21).
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1 begin b1.0

2 var X = 20 [];

3 var Y = 40 [];

4 Z = Z + X [];

5 Z = Z + Y [];

6 remove X = 20 [];

7 remove Y = 40 [];

8 end;

(a) Complete program

1 begin b1.0

2 Z = Z + Y [];

3 remove X = 20 [];

4 remove Y = 40 [];

5 end;

(b) Partially executed version

Figure 5.5: An original program and a possible partially executed version

Definition 5.2.1. (Partially executed program) A partially executed program is a

program produced as a result of partial execution of a complete program, respecting

uniformity. Figure 5.4 gives the syntax of partially executed programs.

A partially executed program, often referred to as a partial program, can con-

tain conditions and expressions in evaluated form and does not require a one-to-one

match between declaration and removal statements. The syntax in Figure 5.4 shows

conditional and runc statements contain a second copy of their sub-programs, used

within functions defined later to determine whether the execution of a statement

has already started. For example, the function inv+() introduced later must invert

a conditional statement differently if its execution has already started, compared

to when its execution has not. Partial programs respect uniformity meaning that

the initial execution that produces it contains all of the available closing skip steps.

Therefore executions only stop between segments, where each segment is an iden-

tifier step and all skip steps caused by it. Each partial program begins with an

identifier step as a result, and is executed using the (same) operational semantics

from Chapter 4.

Example 21. (Partial program) The complete program (containing only a block

statement) in Figure 5.5(a) has a matching removal statement for each declaration.

Now consider the partial execution of this, performing all declaration statements

and the first assignment of the block body. The remaining program, shown in

Figure 5.5(b), now violates the assumption of complete programs as there is not a

matching declaration statement for each removal. �

The reversal of a partial program may not reach skip. For example, the forward

execution of a conditional statement beginning from the middle of the true branch is

reversed by inverting only the execution that happens from this beginning position.

Therefore the inverse conditional statement remains open (cannot invert the opening

of the forward condition) and therefore cannot reach skip. This prevents the use of

the induction hypothesis on a partial program as its reversal cannot reach skip.
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SE(skip) = skip (5.1)

SE(abort) = abort (5.2)

SE(AS;AP) = se(AS);AP (5.3)

SE(AP par AP) = SE(AP) par SE(AP) (5.4)

se(X = e (pa,A)) = skip (pa,A) (5.5)

se(if In b b then AP AP else AQ AQ end (pa,A)) = skip (pa,A) (5.6)

se(if In T b then AP′ AP else AQ AQ end (pa,A)) (5.7)

= if In T b then SE(AP′) AP else AQ AQ end (pa,A)

se(if In F b then AP AP else AQ′ AQ end (pa,A)) (5.8)

= if In F b then AP AP else SE(AQ′) AQ end (pa,A)

se(while Wn b do AP end (pa,A)) = skip if not started (5.9)

se(while Wn b do AP end (pa,A)) = while Wn b do AP end (pa,A) if started (5.10)

se(while Wn T do AP end (pa,A)) = while Wn T do SE(AP) end (pa,A) if started AP (5.11)

se(begin Bn AP AP end (pa,A)) = skip (pa,A) (5.12)

se(begin Bn AP AOP end (pa,A)) = begin Bn SE(AP) AOP end (pa,A) if AP 6= AOP (5.13)

se(var X = E (pa,A)) = skip (pa,A) (5.14)

se(proc Pn n is AP (pa,A)) = skip (pa,A) (5.15)

se(remove X = E (pa,A)) = skip (pa,A) (5.16)

se(remove Pn n is AP (pa,A)) = skip (pa,A) (5.17)

se(call Cn n (pa,A)) = skip (pa,A) (5.18)

se(runc Cn AP AP (pa,A)) = runc Cn SE(AP) AP (pa,A) (5.19)

Figure 5.6: Definition of the function SE ()

Definition 5.2.2 introduces skip equivalent as the name given to the correspond-

ing program code of the inverted execution of a partial program (note the abort

statement that is introduced later). Example 22 shows a skip equivalent.

Definition 5.2.2. (Skip equivalent) A skip equivalent of a statement is either a sin-

gle skip statement, a single abort statement or an identical version of the statement

where one or more sub-programs are either skip, abort or suitable skip equivalents

(abort statements are introduced in the following section). The notation SE(T)

represents a skip equivalent of a statement T, where SE(T) is defined in Figure 5.7.

Example 22. (Skip equivalent) Consider an annotated program AP = if i1 T

then AQ else AR end (pa,A), where AQ is a partially executed version of the true

branch. The inverse version IP = inv(AP) should only invert AQ and none of the

previous true branch, leaving the conditional open. Therefore the skip equivalent

that corresponds to this starting position is if i1 T then skip I else inv(AR)

end (pa,A) (omitting second copies). �



CHAPTER 5. CHALLENGES OF PROVING CORRECTNESS 99

5.3 Stopping an Inverted Execution

With inverted partial programs not guaranteed to reach skip and instead a skip

equivalent, we must ensure a reverse execution stops at the required point within

the proofs to follow in Chapter 6. For the partial forward execution to perform

correctly, all previous steps of execution are assumed to have happened. With all

reversal information of this previous execution available, the reverse execution may

(unintentionally) continue past the desired skip equivalent, as in Example 23.

Example 23. (Inverse execution that does not stop appropriately) Recall the par-

tial program from Figure 5.5(b) of Example 21. The inverse execution of this should

invert only the execution that occurs from this point, namely the final assignment of

the block body and both removal statements. The inverse version can be generated

based on this partial program, where the inverse block body contains only those

statements to invert. When each statement has executed, the block will be able to

incorrectly close via the skip step [B2r], which leads to an incorrect program struc-

ture (the starting position had the block open). Problems also arise if the inverse

version is based on the full program, since skip or identifier steps may apply (which

are applicable due to the assumption that all previous execution has occurred). �

Therefore the reverse execution of a program is stopped using an abort statement

which is added into the syntax and written as abort. This has undefined behaviour

and forcibly stops an execution that has only abort statement(s) as the next available

step. Such abort statements cannot appear in original programs and are only used

within the proof to follow. Any syntax now referenced contains abort statements.

We now define an extended inversion function inv+() in Figure 5.7, that takes

an executed annotated program (either complete or partial) and returns the corre-

sponding inverted version that contains the necessary abort statement to forcibly

stop the execution of it at the desired skip equivalent. The function inv+() calls

the original inversion function inv() on all of the given program except the first

statement. This statement may be partial meaning its execution may need to be

stopped via an abort. Should the statement be complete (not yet started), the abort

statement is sequentially composed to it. If the statement has started, the abort

statement is inserted at the corresponding position of the appropriate sub-program.

Manually inserting the abort statement via the inversion function inv+() is suffi-

cient in all cases except those of while loops or procedure calls. Recall the semantics

of each from Chapter 4, where a copy is maintained within the while or procedure

environment respectively. Adding an abort statement into the inverse version will

mean that all copies of either the loop or the procedure contain it. In the case

of a loop, there are potentially many iterations that should be inverted fully prior

the one that only requires partial execution. Only the iteration of interest should
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inv+(S;P,�) = inv(P); i+(S,�) (5.20)

inv+(P par Q,�) = inv+(P,�) par inv+(Q,�) (5.21)

i+(skip I,�) = skip I; abort (5.22)

i+(X = e (pa,A),�) = X = e (pa,A); abort (5.23)

i+(if In ob ob then AP AP else AQ AQ end (pa,A),�)

= if In ob ob then inv(AP) inv(AP) else inv(AQ) inv(AQ) end (pa,A); abort (5.24)

i+(if In T ob then AP AP′ else AQ AQ end (pa,A),�)

= if In ob ob then inv+(AP) inv(AP′) else inv(AQ) inv(AQ) end (pa,A) (5.25)

where AP 6= skip I and AP 6= AP′

i+(if In F ob then AP AP else AQ AQ′ end (pa,A),�)

= if In ob ob then inv(AP) inv(AP) else inv+(AQ) inv(AQ′) end (pa,A) (5.26)

where AQ 6= skip I and AQ 6= AQ′

i+(if In T ob then skip I AP else AQ AQ end (pa,A),�)

= if In ob ob then abort inv(AP) else inv(AQ) inv(AQ) end (pa,A) (5.27)

i+(if In F ob then AP AP else skip I AQ end (pa,A),�)

= if In ob ob then inv(AP) inv(AP) else abort inv(AQ) end (pa,A) (5.28)

i+(while Wn b do AP end (pa,A),�) = while Wn b do inv(AP) end (pa,A); abort (5.29)

where β(Wn) = und

i+(while Wn b do AP′ end (pa,A),�) = while Wn ob do inv(AP) end (pa,A) (5.30)

where AP is such that β(Wn) = while Wn ob do AP end (pa,A)

i+(begin Bn AP AP end,�) = begin Bn inv(AP) inv(AP) end; abort (5.31)

i+(begin Bn AP AP′ end,�) = begin Bn inv+(AP) inv(AP) end (5.32)

where AP 6= AP′

i+(var X = E (pa,A),�) = remove X = E (pa,A); abort (5.33)

i+(proc Pn n is AP (pa,A),�) = remove Pn n is inv(AP) (pa,A); abort (5.34)

i+(remove X = E (pa,A),�) = var X = E (pa,A); abort (5.35)

i+(remove Pn n is AP (pa,A),�) = proc Pn n is inv(AP) (pa,A); abort (5.36)

i+(call Cn n (pa,A),�) = call Cn n (pa,A); abort (5.37)

i+(runc Cn AP AP′ (pa,A),�) = call Cn n (pa,A) (5.38)

Figure 5.7: Definition of the function inv+()

contain the abort. Similarly for call statements, only the specific copy should be

forcibly stopped while all others execute completely.

In each of these cases, we require modified versions of selected transition rules

from the semantics in Chapter 4. For each appropriate rule [r], the modified versions

are named [rP] and [rPI] (given below). Each modified rule is unambiguous with

respect to each other and the original versions through the use of distinct premises

and abort statements (that cannot appear within normal execution).
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While Loop

Consider a partial execution beginning with the next evaluation of the condition

(not the first). This can be the last check (rule [W2a]) or any other except the first

(rule [W4a]). The modified version of each, namely [W2aP] and [W4aP], saves a

true abort flag (to indicate reverse execution should stop here) within the element

of the boolean sequence needed for inversion (the extended stack W that now stores

triples such that δ[(m,T,T) ⇀ W). Note all following iterations use the original rule

and save a false abort flag (or nothing) (each modified rule requires the loop body

to be abort, which is disallowed in normal execution and only within the proof).

[W2aP]

m = next() β(Wn) = def (b pa | β,�) ↪→∗b (F | β,�) AP = abort

(S | δ, β,�)
m→ (skip m:A | δ[(m,T,T) ⇀ W, (m,C) ⇀ WI], β[Wn],�)

where S = while Wn b do AP end (pa,A) and C = getAI(β(Wn)))

[W4aP]

m = next() β(Wn) = while Wn b do AP′ end (pa,A)

(b pa | β,�) ↪→∗b (T | β,�) AP = abort

(S | δ, β,�)
m→ (while Wn T do reL(AP′) end (pa,m:A) | δ[(m,T,T) ⇀ W], β[Wn ⇒ AR],�)

where S = while Wn b do AP end (pa,A) and AR = while Wn b do reL(AP′) end (pa,m:A)

The matching inverse rules, namely [W3rP] and [W4rP], can only be used in

cases where a true abort flag is present (meaning one of the rules above must have

been executed) and return a loop containing abort as its body. Therefore no further

execution is possible and we have successfully stopped the execution.

[W3rP]

m = previous() A = m:A′ β(Wn) = und δ(W) = (m,T,T):W′ δ(WI) = (m,C):WI′

(S | δ, β,�)
m
 (while Wn T do abort end (pa,A′) | δ[W/W′, WI/WI′], β[Wn ⇒ AR],�)

where S = while Wn b do IP end (pa,A)

and AR = while Wn b do IreL(setAI(IP, C)) end (pa,A′)

[W4rP]

m = previous() A = m:A′ β(Wn) = def δ(W) = (m,T,T):W′

(S | δ, β,�)
m
 (while Wn T do abort end (pa,A′) | δ[W/W′], β[Wn ⇒ AR],�)

where S = while Wn b do IP end (pa,A) and AR = while Wn b do reL(IP) end (pa,A′)

Now consider a partial program that begins part way through a loop iteration

(execution of the loop body). Likewise to above, the use of an abort flag can indicate
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the inverse iteration that requires partial inversion. The difference here is that the

partial loop body performed forwards must also be reversed. In order to determine

when to stop within the loop body, this partial version of the loop body PP is

saved alongside the abort flag (note the further extension to stack W on δ such that

δ[(m,T,T,PP) ⇀ W). This must be saved during the next condition check (as we

save one element behind) and therefore is required to be available after its execution.

Therefore the while loop is extended to contain a copy of the partial program PP

that remains unchanged during execution. Such statements do not appear during

normal execution (due to abort) and only within the proofs to follow in Chapter 6.

[W2aPI]

m = next() β(Wn) = def (b pa | β,�) ↪→∗b (F | β,�) AP = abort PP 6= skip

(S | δ, β,�)
m→ (skip m:A | δ[(m,T,T,PP) ⇀ W, (m,C) ⇀ WI], β[Wn],�)

where S = while Wn b do AP PP end (pa,A) and C = getAI(β(Wn)))

[W4aPI]

m = next() β(Wn) = while Wn b do AP′ AP′′ end (pa,A)

(b pa | β,�) ↪→∗b (T | β,�) AP = abort PP 6= skip

(S | δ, β,�)
m→ (while Wn T do AP1 skip end (pa,m:A) | δ[(m,T,T,PP) ⇀ W], β[Wn ⇒ AR],�)

where S = while Wn b do AP PP end (pa,A) and AP1 = reL(AP′)

and AR = while Wn b do AP1 skip end (pa,m:A)

The matching inverse rules, namely [W3rPI] and [W4rPI], are only available

provided a true abort flag and a partial program have been saved. The loop body of

the remaining execution is replaced with this saved partial program, with an abort

statement added (via the function inv+()) to stop the execution as required.

[W3rPI]

m = previous() A = m:A′ β(Wn) = und δ(W) = (m,T,T,PP):W′

δ(WI) = (m,C):WI′ PP 6= skip

(S | δ, β,�)
m
 (while Wn T do IreL(PP1) skip end (pa,A′) | δ[W/W′, WI/WI′], β[Wn ⇒ AR],�)

where S = while Wn b do IP PP′ end (pa,A) and PP1 = inv+(PP)

and AR = while Wn b do IreL(setAI(IP, C)) skip end (pa,A′)

[W4rPI]

m = previous() A = m:A′ β(Wn) = def δ(W) = (m,T,T,PP):W′ PP 6= skip

(S | δ, β,�)
m
 (while Wn T do IreL(PP1) skip end (pa,A′) | δ[W/W′], β[Wn ⇒ AR],�)

where S = while Wn b do IP PP′ end (pa,A) and PP1 = inv+(PP)

and AR = while Wn b do IreL(IP) skip end (pa,A′)
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Procedure Call

Consider a procedure call beginning at the end of the execution of the procedure

body. The inverse execution should open the inverted call and then stop. Using rule

[G3aP], the second program within the runc construct is manually set to abort (a

situation that can never arise during normal execution and only within the proof).

Alongside the saving of all identifiers prior to removal, a true abort flag is recorded.

As for loops, consider a partial program beginning within the procedure body. The

rule [G3aPI] handles this situation, where the second program of the runc construct

is the partial program. This partial program is saved alongside the abort flag.

[G3aP]

m = next() µ(Cn) = OP AOP = abort

(runc Cn skip I AOP end A | δ, µ,�)
m→ (skip m:A | δ[(m,getAI(µ(Cn),T)) ⇀ Pr], µ[Cn],�)

[G3aPI]

m = next() µ(Cn) = def AOP 6= abort PP 6= skip

(S | δ, µ,�)
m→ (skip m:A | δ[(m,getAI(µ(Cn),T,PP)) ⇀ Pr], µ[Cn],�)

where S = runc Cn skip I AOP PP end A

The inverse versions, namely [G1rP] and [G1rPI], are only available provided a

true abort flag exists. The first replaces the procedure body with an abort statement

stopping the execution as desired. The later replaces the body with a version of the

partial program containing the necessary abort statement.

[G1rP]

m = previous() A = m:A′ µ(evalP (n,pa)) = (n,IP) δ(Pr) = (m,C,T):Pr′

(call Cn n (pa,A) | δ, µ,�)
m
 (runc Cn abort IP′ end A′ | δ[Pr/Pr′], µ[Cn⇒ (n,IP′)],�)

where IP′ = IreP(setAI(IP, C), Cn)

[G1rPI]

m = previous() A = m:A′ µ(evalP (n,pa)) = (n,IP) δ(Pr) = (m,C,T,PP):Pr′

(call Cn n (pa,A) | δ, µ,�)
m
 (runc Cn PP1 IP′ skip end A′ | δ[Pr/Pr′], µ[Cn⇒ (n,IP′)],�)

where IP′ = IreP(setAI(IP, C), Cn) and PP1 = IreP(setAI(inv+(PP), C), Cn)

5.4 Conclusion

We have identified three key challenges with proving the correctness of our method

of reversibility. Each of these challenges have been overcome, with a solution to each

described in detail. In Chapter 6, we state and prove each of the properties that we

use to determine correctness.



Chapter 6

Correctness of Annotation and

Inversion

Chapter 5 addressed several challenges related to proving our method of reversibility

to be correct. Such a proof of correctness is often missing from other research

in this field. Our proof concerns two properties. Firstly, the process of saving

any reversal information must not alter the behaviour of the original program with

respect to the program state, while also populating the auxiliary store (named the

annotation result). Secondly, execution of the inverted version on the final program

state produced via the annotated execution must restore the program state to exactly

as it was initially (named the inversion result). We begin with some important

notation.

6.1 Equivalent Program States: Forward

We define equivalence between the program state of an original execution and that

of an annotated execution. Two such program states are equivalent provided the

meaning of each is the same, regardless of equality. Specifically memory locations

used for variables may be different but the values of each may still match.

We first require equivalence between variable states, shown in (Definition 6.1.1).

Two variable states, each being a pair (γ,σ), are equivalent if all variables exist

and hold the same value in both, regardless of memory locations used. Example 24

shows two equivalent, but not equal, variable states.

Definition 6.1.1. (Equivalent variable states) Let σ and σ1 be data stores, γ and

γ1 be variable environments and dom(γ) be the domain of γ. We have (σ, γ) is

equivalent to (σ1, γ1), written as (σ, γ) ≈S (σ1, γ1), if and only if dom(γ) = dom(γ1)

and σ(γ(X, Bn)) = σ1(γ1(X, Bn)) for all X ∈ dom(γ) and block names Bn.

104
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Variable environment γ

Var name Mem location

X l1

Y l2

Z l3

Data Store σ
Mem location Value

l1 5

l2 2

l3 4

(a) First variable state, (γ,σ)

Variable environment γ1
Var name Mem location

X l4

Y l8

Z l2

Data Store σ1
Mem location Value

l2 4

l4 5

l8 2

(b) Second variable state, (γ1,σ1)

Figure 6.1: Two equivalent, but not equal, variable states

Example 24. (Equivalent variable states) Consider the pair of environments (σ, γ)

shown in Figure 6.1(a). Variables X, Y and Z exist bound to memory locations l1,

l2 and l3 respectively, such that X = 5, Y = 2 and Z = 4. Now consider the pair

of environments (σ1, γ1) shown in Figure 6.1(b). As before, each variable X, Y and

Z exists, this time bound to different memory locations l4, l8 and l2 respectively.

Since each location holds the values 4, 5 and 2 respectively, the variable states (σ, γ)

and (σ′, γ′) are equivalent but not equal. �

Next we consider both the procedure and while environments. Each such envi-

ronment from the annotated execution must contain the same mappings as that of

the original execution, where each program (loop or procedure body) is the anno-

tated version of the original. Therefore procedure environments (Definition 6.1.2)

and while environments (Definition 6.1.3) can be equivalent but not equal. Note

that Pn could be Cn in Definition 6.1.2.

Definition 6.1.2. (Equivalent procedure environments) Let µ be a procedure en-

vironment, and µ1 be an annotated procedure environment. We have that µ is

equivalent to µ1, written as µ ≈P µ1, if and only if dom(µ) = dom(µ1), µ(Pn) =

(n,P), µ1(Pn) = (n,AP) and AP = ann(P) for all Pn ∈ dom(µ).

Definition 6.1.3. (Equivalent while environments) Let β be a while environment,

and β1 be an annotated while environment. We have that β is equivalent to β1,

written as β ≈W β1, if and only if dom(β) = dom(β1), β(Wn) = P, β1(Wn) = AP and

AP = ann(P) for all Wn ∈ dom(β).
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Finally we are ready to state the definition of equivalence between program states

(Definition 6.1.4). Note that the auxiliary store δ is ignored, as this may or may not

be different within an original and an annotated execution.

Definition 6.1.4. (Equivalent program states) Let � be the tuple of environments

(σ,γ,µ,β,δ) and �1 represent the tuple of annotated environments (σ1,γ1,µ1,β1,δ1).

We have that� is equivalent to�1, written� ≈ �1, if and only if (σ, γ) ≈S (σ1, γ1),

µ ≈P µ1 and β ≈W β1.

In Section 6.4, we introduce a definition of equivalence between the states of an

annotated and inverted execution, where the auxiliary stores must to be equal.

6.2 Annotation Result

Our first result compares the execution of an original and the corresponding anno-

tated program. The only difference should be that the annotated execution may

also populate the auxiliary store. Theorem 7 states the annotation result.

Theorem 7. (Annotation result) Let P be an original program and AP be the cor-

responding annotated version ann(P). Further let � be the tuple (σ,γ,µ,β) of initial

program state environments, and δ be the initial auxiliary store.

If an execution (P | δ, �) ↪→∗ (skip | δ, �′) exists, for some program state �′,

then there exists an annotated execution (AP | δ, �1)
◦→
∗

(skip I | δ′, �′1) for some

I, �1, �′1 such that �1 ≈ � and �′1 ≈ �′, and some auxiliary store δ′.

Proof. This is via induction on the length of the execution of an original program P,

namely (P | �) ↪→∗ (skip | �′), and the corresponding execution of the annotated

version AP, namely (AP | �)
◦→
∗

(skip | �′). Recall that each rule [R] within the

traditional semantics has a corresponding rule [Ra] within the forward semantics

(Chapter 4). We first consider all base cases (executions with transition length 1),

namely original executions via the rules [P3], [D1] and [W1]. Each of the correspond-

ing annotated rules, namely [P3a], [D1a] and [W1a], is shown to behave identically

with respect to the program state while potentially modifying the auxiliary store.

Therefore each base case holds.

We now briefly describe the use of induction. We first assume that Theorem 7

holds for all program executions of length k such that k ≥ 1, namely (Q | �1) ↪→∗

(skip | �′1). Then we assume our original program has execution length k + 1,

namely (T | �2) ↪→∗ (skip | �′2). This assumed execution can then be rewritten to

state the first step via transition rule [R] as (T | �2) ↪→ (T′ | �′′2) ↪→∗ (skip | �′2).
Considering each possible rule [R] from Chapter 4, we can then see that there

exists a corresponding transition rule of the annotated execution that behaves iden-

tically. In some cases, for example [S1a], [P1a] and [I2a], there is no difference other
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than the presence of the auxiliary store (which is not used). All other rules, includ-

ing [D1a], [I4a] and [H1a], behave identically w.r.t the program state while differing

on the use of the auxiliary store (as required). Finally the induction hypothesis can

be applied to the remaining, shorter execution (namely (T′ | �′′2) ↪→∗ (skip | �′2))
to complete our proof. Therefore Theorem 7 is valid.

6.3 Equivalent Program States: Reversal

Prior to stating and proving our inversion result, we first require modifications to the

definition of equivalence from Section 6.1 to allow comparison of program states from

a forward and a reverse execution. Specifically, a pair of procedure or while environ-

ments are equivalent as before, but with all programs from the inverse environment

being the inverted version of the corresponding program from the forward environ-

ment. Definition 6.3.1 and Definition 6.3.2 state this updated notion of equivalence.

The equivalence of variable states is unchanged from Definition 6.1.1.

Definition 6.3.1. (Equivalent while environments) Let β be a while environment,

and β1 be an annotated while environment. We have that β is equivalent to β1,

written as β ≈W β1, if and only if dom(β) = dom(β1), β(Wn) = AP, β1(Wn) = IP and

IP = inv(AP) for all Wn ∈ dom(β).

Definition 6.3.2. (Equivalent procedure environments) Let µ be a procedure en-

vironment, and µ1 be an annotated procedure environment. We have that µ is

equivalent to µ1, written as µ ≈P µ1, if and only if dom(µ) = dom(µ1), µ(Pn) =

(n,AP), µ1(Pn) = (n,IP) and IP = inv(AP) for all Pn ∈ dom(µ).

Equivalence between program states is now updated to include the auxiliary

store δ, as the reversal of each statement should use all reversal information saved

for it, hence garbage-free reversibility. Definition 6.1.4 states this formally.

Definition 6.3.3. (Equivalence of program states) Let � be the tuple of environ-

ments (σ,γ,µ,β,δ) and�1 represent the tuple of annotated environments (σ1,γ1,µ1,β1,δ1).

We have that� is equivalent to�1, written� ≈ �1, if and only if (σ, γ) ≈S (σ1, γ1),

µ ≈P µ1, β ≈W β1 and δ = δ1.

By abuse of notation, any following use of ≈ refers to this updated definition.

6.4 Inversion Result

We are now ready to state our inversion result. This claims that given the final

program state produced by the matching annotated execution, the reverse execution
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restores this to a state equivalent to that of prior to the forward execution. This

includes the restoration of the auxiliary store, meaning our approach to reversibility

is garbage-free. This is Theorem 8 below.

Theorem 8. Let P be an original program, AP be the corresponding annotated

version ann(P), and AP′ be the executed version of AP. Further let � be the tuple

(σ,γ,µ,β,δ) of all initial state environments.

If (P | �) ↪→∗ (skip | �′) for some program state �′, and therefore by Theorem 7

the annotated execution (AP | �1)
◦→
∗

(skip I | �′1) exists for some I and program

state �′1 such that �′1 ≈ �′, then there exists a corresponding inverse execution

(inv(AP′) | �′2)
◦
 
∗

(skip I′ | �2), for some program states �′2, �2, such that

�′2 ≈ �′1 and �2 ≈ �1. Provided this holds, Definition 6.3.3 states that δ2 = δ1,

showing the reversal to be garbage free.

With the three challenges associated with our inversion result addressed in Chap-

ter 5, and with our notion of equivalence updated for reverse executions in Sec-

tion 6.3, we are now ready to prove Theorem 8. We achieve this using the approach

illustrated in Figure 6.2, where proving each of the three arrows (labelled ⇒i) valid

gives us Theorem 8. We first note that ⇒1 represents the restriction of a standard

execution into an equivalent uniform execution, and recall the validation of this via

Lemma 4 in Chapter 5.

We focus on the arrow ⇒2 from Figure 6.2. This represents a stronger version

of Theorem 8, where all executions are uniform and the annotated program may be

either complete or partially executed. The inverted version is now generated using

the function inv+() and its execution may reach either skip or a skip equivalent.

Proposition 9 states this stronger result.

Proposition 9. Let P be an original program, AP be the annotated program ann(P),

and AP′ be the executed version of AP. Further let � be the tuple (σ,γ,µ,β,δ) of all

initial program state environments.

If (P | �) ↪→∗ (skip | �′) exists for some program state �′, and therefore by

Theorem 7 the annotated execution (AP | �1) U
◦→
∗

(skip I | �′1) for some I and

program state �′1 such that �′1 ≈ �′, then there exists a corresponding inverse

execution (inv+(AP′) | �′2) U
◦
 
∗

(AQ | �2), for the program AQ that is skip I′ if AP

was complete and a skip equivalent otherwise, and program states �′2, �2, such that

�′2 ≈ �′1 and �2 ≈ �1.

The proof of this proposition uses two smaller results. The first, named the

Statement Property and shown in Lemma 10, considers all statement executions

that begin with an identifier step. The second, named the Program Property and

shown in Lemma 11, is more general and considers all program executions that begin

with either an identifier or a skip step.
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(P | �)
◦→
∗

(skip I | �′) ⇒1 (P | �) U
◦→
∗

(skip I | �′)

? ↓ ⇓2

(inv+(P) | �′1)
◦
 
∗

(Q | �1) 3⇐ (inv+(P) | �′1) U
◦
 
∗

(Q | �1)

Figure 6.2: Diagram representation of proof outline

P ::= S | skip; AP | P par P

S ::= skip | begin Bn P AP end

Figure 6.3: Restricted syntax of complete programs beginning with skip steps

Lemma 10 (Statement Property). Let AS be a complete or partially executed an-

notated statement and � be the tuple (σ,γ,µ,β,δ) of initial program state environ-

ments.

If a uniform execution (AS | �) U
m→ (AS′ | �′′) U→

∗
s (AS′′ | �′′) U

◦→
∗

(skip I |
�′) exists for some statements AS′, AS′′ and program states �′′, �′, then there also

exists a uniform inverse execution (inv+(AS) | �′1) U
◦
 
∗

(AT′′ | �′′1) U
m
 (AT′ |

�1) U 
∗
s (AT | �1) for some statements AT′′, AT′, AT such that AT = skip I for

some I if AS is a complete statement and AT is a skip equivalent if AS is partially

executed, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′ and �1 ≈ �.

Proof. The proof of Lemma 10 (Statement Property) is deferred to Section 6.5.

We remark that it is sufficient in Lemma 10 to consider only statement executions

that begin with identifier steps. The Program Property must however consider

executions that begin with skip steps (Part 1) and those that begin with an identifier

step (Part 2). Respecting uniformity allows us to only consider complete programs

that begin with skip steps, namely those of the restricted syntax shown in Figure 6.3.

P and S are used within this syntax to represent programs and statements beginning

with skip steps respectively, while by abuse of notation, AP represents an annotated

program as introduced in Chapter 4.

Lemma 11 (Program Property). Let AP be a complete program (syntax from Fig-

ure 6.3) in Part 1, and either a complete or partially executed annotated program

in Part 2. Further let � be the tuple (σ,γ,µ,β,δ) of initial program environments.

Part 1. If a uniform forward execution (AP | �) U→
∗
s (AP′ | �′′) U

◦→
∗

(skip I | �′)
exists for some program AP′ and program states �′′, �′ such that �′′ = �

(by Lemma 1 of Chapter 3)), then there exists a uniform inverse execution

(inv+(AP) | �′1) U
◦
 
∗

(AQ′ | �′′1) U 
∗
s (AQ | �1) for some programs AQ′,
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AQ such that AQ is skip if AP is a complete program and a skip equivalent

otherwise, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′

and �1 ≈ �.

Part 2. If a uniform forward execution (AP | �) U
m→ (AP′ | �′′) U→

∗
s (AP′′ |

�′′) U
◦→
∗

(skip I | �′) exists for some program AP′ and program states

�′′ and �′, then there exists a uniform inverse execution (inv+(AP) |
�′1) U

◦
 
∗

(AQ′′ | �′′1) U
m
 (AQ′ | �1) U 

∗
s (AQ | �1) for some programs

AQ′′, AQ′, AQ is skip if AP is a complete program and a skip equivalent oth-

erwise, and states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′ and �1 ≈ �.

Proof. The proof of Lemma 11 (Program Property) is deferred to Section 6.6.

With our two smaller results introduced and proved to be valid, we are ready to

state the proof of Proposition 9.

Proof. This proof is by induction on the length of a uniform execution, namely

(AP | �) U
◦→
∗

(skip I | �′), for some program AP and states � and �′. It can be

split into two parts. The first part considers executions that begin with skip steps,

while the second considers executions that begin with identifier steps. Each part is

now considered in turn.

Executions beginning with skip steps This is done as in the proof of Part 1

of Lemma 11. We consider only skip steps that can begin a complete program

execution (programs of the syntax in Figure 6.3). The base cases (already shown in

the proof of Part 1 of Lemma 11) are Case 10.1 (sequential skips), Case 10.2 (empty

parallel) and Case 10.3 (empty block). The inductive cases are those that correspond

to Case 10.5 (sequential composition) and Case 10.6 (parallel composition) of the

proof of Part 1 of Lemma 11. With all shown to be valid in Section 6.6, this part

holds.

Executions beginning with identifier steps This is done as in the proof of

Part 2 of Lemma 11, where only those identifier steps that can be the beginning of

a complete execution are considered. The base cases (already used in the proof of

Part 2 of Lemma 11 and shown in the proof of Lemma 10) are Case 9.1 (assignment)

and Case 9.2 (loop with zero iterations). The inductive cases are those corresponding

to Case 10.8 (sequential composition) and Case 10.9 (parallel composition) from the

proof of Part 2 of Lemma 11. Since the Program Property is proved via mutual

induction with the Statement Property, we also consider several cases (of first steps)

from the proof of Lemma 10. This does not need any further base cases (since

the two such cases are already used above), but does require the inductive cases

corresponding to Case 9.3 and Case 9.4 (conditional statement), Case 9.10 (while
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loop) and Case 9.13 (block) from the proof of Lemma 10. With all holding, this

part is therefore valid.

With all possible executions having been considered and shown to hold, we can

now conclude Proposition 9 is also valid.

With Proposition 9 shown above to be correct, the arrow ⇒2 from Figure 6.2

is therefore also correct. We finally consider the arrow ⇒3 from Figure 6.2. As

previously noted, all uniform executions are also standard executions by definition.

This means ⇒3 exists in all cases as required. For completeness, the trivial result

shown in Lemma 6 of Chapter 5 proves the existence of this arrow. We have therefore

completed the proof outline shown in Figure 6.2 meaning Theorem 8 is valid, as

required.

6.5 Proof of Statement Property

We now give the proof of Lemma 10 (Statement Property). By abuse of notation,

we use AS to represent either a complete or partially executed statement. In cases

considering full statement execution (e.g. Case 9.1), we ignore the abort statement

introduced by inv+() as the program stops as desired.

Lemma 10 (Statement Property). Let AS be a complete or partially executed an-

notated statement and � be the tuple (σ,γ,µ,β,δ) of initial program state environ-

ments.

If a uniform execution (AS | �) U
m→ (AS′ | �′′) U→

∗
s (AS′′ | �′′) U

◦→
∗

(skip I |
�′) exists for some statements AS′, AS′′ and program states �′′, �′, then there also

exists a uniform inverse execution (inv+(AS) | �′1) U
◦
 
∗

(AT′′ | �′′1) U
m
 (AT′ |

�1) U 
∗
s (AT | �1) for some statements AT′′, AT′, AT such that AT = skip I for

some I if AS is a complete statement and AT is a skip equivalent if AS is partially

executed, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′ and �1 ≈ �.

All executions from here are uniform and so we omit the specific notation. E.g.

a uniform execution (P | �) U
m→ (P′ | �′) is now written as (P | �)

m→ (P′ | �′).

Proof. This proof is by mutual induction of the Statement Property (this lemma)

and the Program Property (Lemma 11), on the length of the executions (AS | �)
◦→
∗

(skip I | �′) and (AP | �)
◦→
∗

(skip I | �′) respectively.

With no executions of length 0, our base cases are any executions of length 1.

The two base cases are a single assignment statement (Case 9.1) and a single while

loop statement that performs zero iterations (Case 9.2).

Case 9.1. (Assignment [D1a]) Consider a single assignment of the value of the

expression e to the variable X. Let AS = X = e (pa,A) and � be the tuple of initial
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program state environments (σ, γ, µ, β, δ). Assume an execution exists with the first

transition via [D1a] such that

(AS | �) = (X = v (pa,A) | �)
m→ (skip (pa,m:A) | �′)

for identifier m and program state �′ such that �′ = �[σ[l 7→ v], δ[(m,v1) → X]],

where l is the memory location for the variable X, v is the result of evaluating the

expression e (the new value) and v1 is the current value of X (the old value). Ap-

plication of the rule [D1a] means the premises were valid at that point, namely

that m = next(), (e pa | �) ↪→∗a (v | �) (the expression evaluates to v) and

evalV (X,pa,γ) = l (the variable is bound to memory location l).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈

�′ and �1 ≈ �. Firstly, we have that inv+(AS) = X = e (pa,m:A). Beginning

in the program state �′1, such that �′1 ≈ �′, we note that no further execution

was performed forwards and so does not require inversion. Therefore AT′′ = X = e

(pa,m:A), and �′1 = �′′1, giving the execution (inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1) with

length 0.

From the program state �′1, we have that m = previous() and that the identifier

stack for this assignment is equal to m:A (m as its head). Also, δ′1(X) = (m,v1):X′

(the stack X contains the pair (m,v1) as its head) and evalV (X,pa,γ) = l (the

variable is bound to the memory location l or equivalent). With all premises of the

rule [D1r] valid, and that no other rule is applicable, we have the execution

(inv+(AS) | �′1) = (X = e (pa,m:A) | �′1)
m
 (skip (pa,A) | �1)

for state �1 such that �1 = �′1[σ
′
1[l 7→ v1] and δ′1[X/X

′]], meaning �1 ≈ � (as

required). This execution has reached skip and so no further execution is available.

Therefore we take AT′ = skip (pa,A) and AT = AT′. With program states matching,

and AT being skip, we have shown our desired inverse execution and therefore this

case to hold.

Case 9.2. (Loop [W1a]) Consider a while loop with zero iterations (loop condition

immediately evaluates to false). Let AS = while Wn b do AP end (pa,A) and � be

the tuple of initial program state environments (σ, γ, µ, β, δ). Assume an execution

exists with the first transition via [W1a]

(AS | �) = (while Wn b do AP end (pa,A) | �)
m→ (skip (pa,m:A) | �′)
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for program state �′ such that �′ = �[δ[(m,F,F) → W]] (noting the false abort flag

that is of no consequence here). Application of the rule [W1a] means all premises

were valid at this point, namely that m = next(), β(Wn) = und (there is no mapping

for this loop within β since it has not started) and (b pa | �) ↪→∗b (F | �) (the

condition evaluates to F).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′

and �1 ≈ �. We have that inv+(AS) = while Wn b do inv(AP) end (pa,m:A)

(note can ignore the abort in this case). Starting in the program state �′1 such that

�′1 ≈ �′, the forward execution above does not contain any further execution and so

no use of the induction hypothesis is required. We therefore take AT′′ = while Wn b

do inv(AP) end (pa,m:A), and �′1 = �′′1, giving the execution (inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1) with length 0.

From the program state �′1, we have that m = previous() (since no further iden-

tifiers have been used) and that the identifier stack for this loop is equal to m:A (m

as its head). We also have that β′1(Wn) = und (since the while loop has not started)

and δ′1(W) = (m,F,F):W′ (the stack W has the triple (m,F,F) as its head). This shows

that all premises of [W1r] are valid, and that no other rule is applicable. This gives

the execution

(while Wn b do inv(AP) end (pa,m:A) | �′′1)
m
 (skip (pa,A) | �1)

for program state �1 such that �1 = �′′1[δ′′1 [W/W′]] (with δ′′1(W) = (m,F,F):W′), re-

sulting in �1 = � as required. This execution has reached skip and so no further

execution is available. Therefore we take AT′ = skip (pa,A) and AT = AT′. With

AT having reached skip and program states that match at each required position, we

have our desired inverse execution meaning this case holds.

With Lemma 10 valid for all base cases, it is valid for all executions of length

1. We now consider inductive cases. Assume Lemma 10 holds for all statements AR

and program states �∗ such that the execution is of length k (where k ≥ 1), namely

(AR | �)
m→ (AR′ | �′′)→∗s (AR′′ | �′′) ◦→

∗
(skip I | �′) (induction hypothesis). Now

assume that the execution (AS | �)
m→ (AS′ | �′′) →∗s (AS′′ | �′′) ◦→

∗
(skip I | �′)

has length l such that l > k.

Inductive cases considered are for conditional statements (Case 9.3–9.8), loops

(Cases 9.9–9.12), blocks (Case 9.13–9.17) and call statements (Cases 9.18–9.20).

Conditional Statements
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Case 9.3. (Conditional [I1aT]) Consider the opening of a conditional statement.

Let AS = if In b b then AP AP else AQ AQ end (pa,A) and the initial program

state � = (σ, γ, µ, β, δ). Assume the following execution exists where the first tran-

sition is via [I1aT]

(AS | �) = (if In b b then AP AP else AQ AQ end (pa,A) | �)
m→ (if In T b then AP AP else AQ AQ end (pa,m:A) | �′′)

→∗s (if In T b then AP′ AP else AQ AQ end (pa,m:A) | �′′)
◦→
∗

(skip (pa,A′) | �′)

for some program AP′ and program states �′′, �′ such that �′′ = � (as [I1aT] does

not change the program state), and an identifier stack A′ that ends with the sub-stack

(m:A). Application of [I1aT] means that all premises were valid at the time, namely

m = next() and (b pa | �) ↪→∗b (T | �). Since this transition opens a conditional, AS

must be a complete statement and therefore AP must also be a complete program.

As such, it is possible for AP to begin with skip steps meaning the execution

(if In T b then AP AP else AQ AQ end (pa,m:A) | �′′)

→∗s (if In T b then AP′ AP else AQ AQ end (pa,m:A) | �′′)

exists for some AP′. This group of skip steps are said to have been caused by the

identifier rule using m. The inverted version of this group will be contained within the

uniform inverse execution of the remaining forward program (corresponding inverse

skip steps will be caused by the previous inverse identifier rule). From here, we use

AS′ to represent if In T b then AP′ AP else AQ AQ end (pa,m:A).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.24 of Figure 5.7 in Chapter 5, we have that inv+(AS)

= if In b b then inv(AP) inv(AP) else inv(AQ) inv(AQ) end (pa,A′) (where the

sequentially composed abort statement can be ignored here as there is no further

execution and will stop at the required position).

From our assumed execution above, we note that the execution

(AS′ | �′′) = (if In T b then AP′ AP else AQ AQ end (pa,m:A) | �′′)
◦→
∗

(skip (pa,A′) | �′)
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is a uniform execution and must begin with an identifier step. Since AS′ must

be a partially executed program, from 5.25 in Figure 5.7 of Chapter 5, we have

that inv+(AS′) = if In b b then inv+(AP′) inv(AP) else inv(AQ) inv(AQ) end

(pa,m:A), where an abort is added to the end of the inverted true branch in order

to stop the execution at the required position (after entire execution of the true

branch but before the closure of the conditional). The induction hypothesis of the

Statement Property (Lemma 10) applied to this shorter execution gives us

(inv+(AS′) | �′1) = (if In b b then inv+(AP) inv(AP)

else inv(AQ) inv(AQ) end (pa,m:A) | �′1)
◦
 
∗

(AR′ | �′′1)

by a sequence of rule applications SR, for a skip equivalent AR′ and states�′1, �
′′
1 such

that �′1 ≈ �′ and �′′1 ≈ �′′. Since AP must be a full program, inv+(AP) sequentially

composes an abort statement to the end. As a result, the induction hypothesis use

above performs the entire inverted true branch until the abort is reached. Therefore

AR′ = if In T b then abort inv(AP) else inv(AQ) inv(AQ) end (pa,m:A).

Now compare the statements inv+(AS) and inv+(AS′). They are the same with

the exception that inv+(AS′) contains an abort statement at the end of the true

branch. Since both will begin with the same execution (inversion of the rest of the

forward program after the identifier plus skip steps), then by the same sequence of

rules SR we obtain

(inv+(AS) | �′1) = (if In b b then inv+(AP) inv(AP)

else inv(AQ) inv(AQ) end (pa,A′) | �′1)
◦
 
∗

(AR | �′′1)

for program AR. The same sequence of rules mean that this transition sequence will

perform the execution of the entire true branch, reaching the point at which the

execution of inv+(AS′) hit the abort statement (minus the trivial [S1a] rule that has

no effect on the program state). Therefore AR = if In T b then skip I′ inv(AP)

else inv(AQ) inv(AQ) end (pa,m:A) for some I′. With the program states matching

to our desired execution, we can take AT′′ = AR.

From program state �′′1 (recall �′′1 ≈ �′′), we have that m = previous() (since

no further identifiers have been used) and the identifier stack for this statement is

equal to m:A. This shows all premises of the rule [I4r] to be valid, and that no other

rule is applicable. Using [I4r], we have

(AT′′ | �′′1) = (if In T b then skip I′ inv(AP) else inv(AQ) inv(AQ)

end (pa,m:A) | �′′1)
m
 (skip (pa,A) | �1)
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for program state �1 such that �1 = �′′1 (since this rule does not change the program

state), meaning �1 ≈ � as required. With the program states matching, we can

take AT′ = skip (pa,A). With no skip steps to apply (already reached skip), we

can take AT = AT′. Since AT is skip, we can conclude this case holds.

Case 9.4. (Conditional [I1aF]) Consider the opening of a conditional statement

where the condition evaluates to false. This follows Case 9.3 using rules [I1aF] and

[I5a] in place of [I1aT] and [I4a] respectively.

Case 9.5. (Conditional [I2a]) Consider an identifier step from within the true

branch of a conditional statement. Let AS = if In T b then AP AOP else AQ AQ

end (pa,A) and the initial program state � = (σ, γ, µ, β, δ). Assume the following

execution exists with the first transition via the rule [I2a]

(AS | �) = (if In T b then AP AOP else AQ AQ end (pa,A) | �)
m→ (if In T b then AP′′ AOP else AQ AQ end (pa,A) | �′′)

→∗s (if In T b then AP′ AOP else AQ AQ end (pa,A) | �′′)
◦→
∗

(skip (pa,A′) | �′)

for programs AP′′, AP′, and program states �′′ and �′. We note that this assumed

execution can be rewritten to highlight the point at which the true branch finishes,

specifically

(AS | �) = (if In T b then AP AOP else AQ AQ end (pa,A) | �)
m→ (if In T b then AP′′ AOP else AQ AQ end (pa,A) | �′′)

→∗s (if In T b then AP′ AOP else AQ AQ end (pa,A) | �′′)
◦→
∗

(if In T b then skip I1 AOP else AQ AQ end (pa,A) | �′′′)
n→ (skip (pa,n:A) | �′)

for some program state �′′′. From here, let AS′ = if In T b then skip I1 AOP

else AQ AQ end (pa,A).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.25 in Figure 5.7 of Chapter 5, we have that inv+(AS)

= if In b b then inv+(AP) inv(AOP) else inv(AQ) inv(AQ) end (pa,n:A), with

abort inserted to stop the inverse execution at the end of the inverted true branch.
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From our rewritten assumed execution,

(AS′ | �′′′) = (if In T b then skip I1 AOP else AQ AQ end (pa,A) | �′′′)
n→ (skip (pa,n:A) | �′)

must be the closing of the conditional, via the rule [I4a]. There can only be one

matching inverted execution step, namely the opening of the inverted conditional

statement via the rule [I1rT] (the very first step of the inverse execution). Therefore

we have the execution

(inv+(AS) | �′1) = (if In b b then inv+(AP) inv(AOP)

else inv(AQ) inv(AQ) end (pa,n:A) | �′1)
n
 (if In T b then inv+(AP) inv(AOP)

else inv(AQ) inv(AQ) end (pa,A) | �′′′1 )

 ∗s (if In T b then IP′ inv(AOP) else inv(AQ) inv(AQ)

end (pa,A) | �′′′1 )

(6.1)

for some program IP′ and program states �′1, �
′′′
1 such that �′1 ≈ �′ and �′′′1 ≈ �′′′.

Returning to our assumed execution, repeated use of [I2a] (from conclusion to

premises) allows us to obtain the shorter execution (as the conditional must close)

(AP | �)
m→ (AP′′ | �′′)→∗s (AP′ | �′′) ◦→

∗
(skip I1 | �′′′)

With this guaranteed to be a uniform execution and to begin with an identifier

step, application of the induction hypothesis of Part 2 of the Program Property

(Lemma 11) gives

(inv+(AP) | �′′′1 )
◦
 
∗

(AR′′ | �′′1)
m
 (AR′ | �1) 

∗
s (AR | �1)

for some programs AR′′, AR′, AR such that AR is a skip equivalent, and program states

�′′′1 , �′′1, �1 such that �′′′1 ≈ �′′′, �′′1 ≈ �′′ and �1 ≈ �. Through repeated use of

the corresponding inverse rule [I2r] (premises to conclusion), we have the execution

(if In T b then inv+(AP) inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �′′′1 )
◦
 
∗

(if In T b then AR′′ inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �′′1)
m
 (if In T b then AR′ inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �1)

 ∗s (if In T b then AR inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �1)

(6.2)
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Since AR is either skip or a skip equivalent produced via the induction hypothesis, by

the definition of skip equivalents, we can conclude that if In T b then AR inv(AOP)

else inv(AQ) inv(AQ) end (pa,A) is also a skip equivalent (see 5.7 in Figure 5.6) of

Chapter 5. Note that if there are skip steps to apply within 6.1, then those same

steps in the same order will be present within the first transition of 6.2. Through

the composition of the executions 6.1 and 6.2 in that order, we get

(if In b b then inv+(AP) inv(AOP) else inv(AQ) inv(AQ)

end (pa,n:A) | �′1)
n
 (if In T b then inv+(AP) inv(AOP) else inv(AQ) inv(AQ)

end (pa,A) | �′′′1 )
◦
 
∗

(if In T b then AR′′ inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �′′1)
m
 (if In T b then AR′ inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �1)

 ∗s (if In T b then AR inv(AOP) else inv(AQ) inv(AQ) end (pa,A) | �1)

which matches our desired execution at each point. Therefore we take AT′ = if

In T b then AR′ inv(AOP) else inv(AQ) inv(AQ) end (pa,A) and AT = if In T b

then AR inv(AOP) else inv(AQ) inv(AQ) end (pa,A), meaning this case holds.

Case 9.6. (Conditional [I3a]) Consider an identifier step that comes from the

false branch of a conditional statement. This case matches Case 9.5 but uses [I3a]

in place of [I2a].

Case 9.7. (Conditional [I4a]) Consider the closing of a conditional statement

(the final step). Let AS = if In T b then skip I AP else AQ AQ end (pa,A)

and the initial program state � = (σ, γ, µ, β, δ). Assume the following execution

exists with the first transition via [I4a]

(AS | �) = (if In T b then skip I AP else AQ AQ end (pa,A) | �)
m→ (skip (pa,m:A) | �′)

for program state�′ such that�′ =�[δ[(m,T) ⇀ B]]. Using [I4a] means all premises

were valid at the time, namely m = next(). Note that no skip steps or further

execution is possible.

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.27 in Figure 5.7 of Chapter 5, we have that inv+(AS)

= if In b b then abort inv(AP) else inv(AQ) inv(AQ) end (pa,m:A), with abort
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inserted to stop the inverse execution at the beginning of the execution of the inverse

true branch.

From inv+(AS), it is clear that we are immediately in a state such that the

corresponding inverse rule [I1rT] can be applied. We therefore take AT′′ = inv+(AS)

and �′′1 = �′1, giving the first part of our desired execution with length 0.

From the program state �′′1 (recall �′′1 = �′1), we have that m = previous() (since

no other identifiers were used), the identifier stack for this statement is equal to m:A

and �′′1(δ′′1(B)) = (m,T):B′ where B′ is the remaining stack. With all premises of the

rule [I1rT] shown to be valid, and that no other rule can be applied due to these

premises, application of the rule [I1rT] (the corresponding inverse identifier rule as

expected) gives us

(AT′′ | �′′1) = (if In b b then abort inv(AP) else inv(AQ) inv(AQ)

end (pa,m:A) | �′′1)
m
 (if In T b then abort inv(AP) else inv(AQ) inv(AQ)

end (pa,A) | �1)

 ∗s (if In T b then AP′ inv(AP) else inv(AQ) inv(AQ)

end (pa,A) | �1)

for some program AP′ and program state �1 such that �1 = �′′1[δ′′1 [B/B′]], meaning

�1 ≈ � as required. The abort statement forcibly stops the execution at that

point, meaning no skip steps are available in the final transition. Therefore AP′ =

abort. We can take AT′ = if In T b then abort inv(AP) else inv(AQ)inv(AQ)

end (pa,A), and AT = AT′. As such, this shows our desired execution and therefore

this case to hold.

Case 9.8. (Conditional [I5a]) Consider the closing of a conditional statement

that previously executed the false branch. This follows Case 9.7 and uses the rules

[I5a] and [I1rF] instead of [I4a] and [I1rT] respectively.

While Loops

Case 9.9. (Loop [W2aP]) Consider the closing of a while loop. This final step

of the forward execution will be the first step of the reverse execution. To stop the

execution after the matching inverse step, an abort statement is manually inserted

to ensure the rule [W2aP] is used. In normal execution outside of the proof, this

abort will not appear and the rule [W2a] is used. Therefore let AS = while Wn b
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do abort end (pa,A) and the initial program state � = (σ, γ, µ, β, δ). Assume the

following execution exists with the first transition via [W2aP]

(AS | �) = (while Wn b do abort end (pa,A) | �)
m→ (skip (pa,m:A) | �′)

for program state�′ such that�′ =�[δ[(m,T,T) → W, (m,C) → WI], β[Wn]]. Note

that no skip steps are available, and that a true abort flag is also pushed to stack

W. All premises of [W2aP] must have been valid, namely m = next(), β(Wn) = while

Wn b do AP end (pa,A) (a mapping exists as the loop must have started), (b pa |
�) ↪→∗b (F | �) (the condition evaluates to false) and the body of the loop is abort.

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.30 in Figure 5.7 of Chapter 5, we have that inv+(AS)

= while Wn b do inv(AP) end (pa,A).

The assumed forward execution is the closing of a while loop (the final step),

meaning the corresponding inverse step will be the opening of the inverse loop (the

first step). Therefore we can take AT′′ = inv+(AS) and �′′1 = �′1, giving the first part

of our desired execution with length 0.

From program state �′′1, we have that m = previous() (since no other identifiers

were saved), the identifier stack for this statement is equal to m:A, �′′1(δ′′1(W) =

(m,T,T):W′, δ′′1(WI) = (m,C):WI′)), β′′1 (Wn) = und)). This means that all premises of

the corresponding inverse rule [W3rP] are valid, and that no other rule is applicable.

Using the rule [W3rP] (the corresponding inverse identifier rule as expected) we get

(AT′′ | �′′1) = (while Wn b do inv(AP) end (pa,m:A) | �′′1)
m
 (while Wn T do abort end (pa,A) | �1)

for program state �1 such that �1 = �′′1[δ′′1 [W/W′,WI/WI′],β′′1 [Wn 7→ while Wn b do

inv(AP) end (pa,A)]], meaning �1 ≈ � as required. The abort is added by this rule

(and crucially not by the normal rule [W3r]) in order to stop the execution at this

point. With the program state matching with our desired execution, we can take AT′

to be while Wn T do abort end (pa,A), which is a valid skip equivalent. Since

no skip steps are available (due to abort), we can also take AT = AT′ and complete

the desired execution showing the case to hold.

Case 9.10. (Loop [W3a]) Consider the opening of a while loop that performs at

least one iteration (the condition must evaluate to true as Case 9.2 considers loops

with zero iterations). Let AS = while Wn b do AP end (pa,A) and the initial
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program state � = (σ, γ, µ, β, δ). Assume the following execution exists with the

first transition via [W3a]

(AS | �) = (while Wn b do AP end (pa,A) | �)
m→ (while Wn T do AP′ end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ end (pa,m:A) | �′′) ◦→
∗

(skip (pa,A′) | �′)

for some program AP′ such that AP′ = reL(AP), and program states �′′, �′ such

that �′′ = �[δ[(m,F,F) ⇒ W], β[Wn → while Wn b do AP′ end (pa,m:A)]]. For

[W3a] to be applied as above, all premises must have been valid prior to it. This

means that m = next(), β(Wn) = und (the while loop has not yet started), (b pa |
�) ↪→∗b (T | �) (the condition evaluates to true) and the body of the loop is not

equal to abort. Note A′ is a version of the persistent identifier stack for this loop

statement ending with the sub-stack (m:A). From this point on, we use AS′ to denote

while Wn T do AP′′ end (pa,m:A).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.29 in Figure 5.7 of Chapter 5, we have that inv+(AS)

= while Wn b do inv(AP) end (pa,A) (note the use of inv() as AP is guaranteed

to be a full program).

Firstly, the part of the assumed execution

(while Wn T do AP′ end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ end (pa,m:A) | �′′)

only exists if the loop body AP′ begins with skip steps. If this is the case, the inverted

version of this group of skip steps will be performed in the inverse execution after

the previous inverse identifier rule. Therefore this will be provided via the induction

hypothesis use shown later.

Next, the execution

(AS′ | �′′) = (while Wn T do AP′′ end (pa,m:A) | �′′) ◦→
∗

(skip (pa,A′) | �′)

must be shorter than our original (since the while loop is first started). From 5.30

in Figure 5.7 of Chapter 5, we have that inv+(AS′) = while Wn b do inv(AP) end

(pa,A). Then application of the induction hypothesis of the Statement Property
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(Lemma 10) on this shorter execution (which is guaranteed to be uniform and to

begin with an identifier step) gives

(inv+(AS′) | �′1) = (while Wn b do inv(AP) end (pa,m:A) | �′1)
◦
 
∗

(AR | �′′1)

by a sequence of rule applications SR, for program AR such that AR is a skip equivalent

of some program. As this shorter execution begins with an identifier step from within

the while loop body, this shorter execution is guaranteed to stop via the modified

rules [W2aPI] or [W4aPI] as shown in Case 9.12. This means that AR = while Wn

T do abort end (pa,m:A) (with abort coming from the use of the modified rules).

Now compare the programs inv+(AS) and inv+(AS′). Since both begin with the

same prefix of execution, then by the same sequence of rules SR, we obtain

(inv+(AS) | �′1) = (while Wn b do inv(AP) end (pa,A) | �′1)
◦
 
∗

(AT′′ | �′′1)

for some programs AT′′. With the program AR containing an abort statement to

stop the execution at the corresponding point, AT′′ will be identical but without this

abort. However, since this will be replaced with skip, a single application of the

skip rule [W6a] occurs to reset the while loop. Therefore AT′′ = while Wn b do

inv(AP) end (pa,m:A).

Consider the current state �′′1. We have m = previous() (with all subsequently

used identifiers reversed via the induction hypothesis), the identifier stack for this

loop is equal to m:A (m as its head), β′′1 (Wn) = def (there is a mapping for this loop

since it will have already started) and that δ′′1(W) = (m,F,F) (the stack W has the

triple (m,F,F) as its head). All premises of the rule [W2r] are valid (and as such

mean no other rule is applicable), giving us

(while Wn b do inv+(AP) end (pa,m:A) | �′′1)
m
 (skip (pa,A) | �1)

for some program state �1 = �′′1[δ′′1 [W/W′], β′′1 [Wn]], such that �1 ≈ � as required. The

program state matches at each required point with our desired execution, meaning

we can take AT′ to be skip (pa,A) and AT to be AT′. Since AT has reached skip,

this case is shown to be valid.

Case 9.11. (Loop [W4aP]) Consider the loop condition evaluation for any itera-

tion that is not the first or the last (each have separate rules [W1a]/[W3a]/[W2a].

To trigger the modified rule [W4aP], an abort is inserted manually into the initial

program. This cannot occur during normal execution and the rule [W4a] will be

applied instead. Let AS = while Wn b do abort end (pa,A) and the initial pro-
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gram state � = (σ, γ, µ, β, δ). Assume the following execution exists with the first

transition via [W4aP]

(AS | �) = (while Wn b do abort end (pa,A) | �)
m→ (while Wn T do AP′ end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ end (pa,m:A) | �′′) ◦→
∗

(skip (pa,A′) | �′)

for some programs AP′′, AP′ such that AP′ is a renamed version of AP and states

�′′ = �[δ[(m,T,T) → W], β[Wn → while Wn b do AP′ end (pa,m:A)]], and �′.

Application of the rule [W2aP] means the premises were valid at that point, namely

that m = next(), β(Wn) = while Wn b do AP end (pa,m:A) (there is no mapping

for this while loop as it has not yet started), (b pa | �) ↪→∗b (T | �) (the condition

evaluates to true) and the body of the loop is equal to abort. Note A′ is a version of

the persistent identifier stack for this loop statement that ends with the sub-stack

(m:A). From this point on, we use AS′ to denote while Wn T do AP′′ end (pa,m:A).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.30 in Figure 5.7 of Chapter 5, we have that inv+(AS)

= while Wn b do inv(AP) end (pa,A′).

We first note that the execution

(while Wn T do AP′ end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ end (pa,m:A) | �′′)

will have length in all cases except where the loop body AP′ begins with at least one

skip step. In this situation, the inverted version of this group of skip steps will be

applied immediately following the previous inverse identifier step. This means due

to uniformity that these will be given within the induction hypothesis use on the

rest of the forward execution.

Returning to our assumed transition sequence above, the execution

(AS′ | �′′) = (while Wn T do AP′′ end (pa,m:A) | �′′) ◦→
∗

(skip (pa,A′) | �′)

must be shorter than our original (since the iteration of the loop must have first

been started). From 5.30 in Figure 5.7of Chapter 5, we have that inv+(AS′) = while

Wn b do inv(AP) end (pa,A′). Then application of the induction hypothesis of the
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Statement Property (Lemma 10) on this shorter execution (which is guaranteed to

be uniform and to begin with an identifier step) gives

(inv+(AS′) | �′1) = (while Wn b do inv(AP) end (pa,A′) | �′1)
◦
 
∗

(AR | �′′1)

by a sequence of rule applications SR, for program AR such that AR is a skip equivalent

of some program. As in Case 9.10, this shorter execution (that must start with an

identifier rule) is guaranteed to stop via the modified rules [W2aPI] or [W4aPI] as

shown in Case 9.12. This means that AR = while Wn T do abort end (pa,m:A)

(with abort coming from the use of the modified rules).

Now compare the programs inv+(AS) and inv+(AS′). As in Case 9.10, both start

with identical transition sequences meaning the sequence of rules SR gives

(inv+(AS) | �′1) = (while Wn b do inv(AP) end (pa,A′) | �′1)
◦
 
∗

(AT′′ | �′′1)

for some programs AT′′. With the program AR containing an abort statement to

stop the execution at the corresponding point, AT′′ will be identical but without this

abort. However, since this will be replaced with skip, a single application of the

skip rule [W6a] occurs to reset the while loop. Therefore AT′′ = while Wn b do

inv+(AP) end (pa,m:A).

We are now in the program state �′′1. We have that m = previous() (with all

subsequently used identifiers reversed via the induction hypothesis), the identifier

stack for this loop will have m as its head, β′′1 (Wn) = def (there is a mapping for this

loop since it will have already started), that δ′′1(W) = (m,T,T) (the stack W has the

triple (m,T,T) as its head) and δ′′1(WI) = m,C (the stack WI has the pair (m,C) as

its head). This means all premises of the rule [W4rP] to be valid (and that no other

rule is applicable). Therefore we have

(while Wn b then inv(AP) end (pa,m:A) | �′′1)
m
 (while Wn b then abort end (pa,A) | �1)

for some program state �1 = �′′1[δ′′1 [W/W′], β′′1 [Wn]], such that �1 ≈ � as required.

With no skip steps available and all stores matching at the required positions, we

can take AT′ to be while Wn b then abort end (pa,A) (a valid skip equivalent)

and AT to be AT′, showing our desired execution to be valid. Therefore this holds.
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Case 9.12. (Loop [W5a]) Consider an identifier rule from within a loop body.

Let AS = while Wn T do AP end (pa,A) and the initial state � = (σ, γ, µ, β, δ).

Assume the following execution exists with the first step via [W5a]

(AS | �) = (while Wn b do AP end (pa,A) | �)
m→ (while Wn T do AP′ end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ end (pa,m:A) | �′′)
◦→
∗

(skip (pa,A′) | �′)

for some programs AP′ and AP′′, and program states �′′ and �′. Note A′ is a modified

version of the identifier stack that ends with the sub-stack m:A. From here, let AS′

= while Wn T do AP′′ end (pa,m:A). The while loop must have started, meaning

β(Wn) = while Wn b do AQ end (pa,A).

We need to show that there exists an execution

(inv+(AS) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for statements AT′′, AT′, AT, and states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′ and

�1 ≈ �. From 5.30 in Figure 5.7of Chapter 5, we have that inv+(AS) = while Wn

b do inv(AP) end (pa,A).

In order to correctly stop the inverse execution, we must consider two possible

cases. The first case is where the first transition from our assumed execution is from

within the final iteration of the loop, and the second case is where it is not. Since the

function inv+() cannot insert the abort as further iterations may need to be inverted

first, each of our cases uses one of our modified semantic rules, namely [W2aPI] or

[W4aPI] respectively. We rewrite our execution to show the next identifier step

made by the loop itself (to next evaluate the condition), where the partial program

will be saved. This will then ensure that the inverse partial rules are used, namely

[W3rPI] and [W4rPI] to insert the abort at the correct position. Recall the syntax

of while loops for these rules to apply require a copy of the partial body AP to be

added.

Final iteration Assuming the transition is from within the final iteration, our

assumed execution can be rewritten as

(AS | �) = (while Wn b do AP AP end (pa,A) | �)
m→ (while Wn T do AP′ AP end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ AP end (pa,m:A) | �′′)
◦→
∗

(while Wn T do skip I AP end (pa,m:A) | �′′′)

→s (while Wn T do AQ AP end (pa,m:A) | �′′′) n→ (skip (pa,A′) | �′)
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for some program state �′′′ and program AQ such that AQ is the full loop body

(retrieved from the while environment), where the penultimate transition is via

[W6a] and the final step (using n) is via [W2aPI].

Repeated use of [W5a] (from conclusion to premises) gives us

(AP | �)
m→ (AP′ | �′′)→∗s (AP′′ | �′′) ◦→

∗
(skip I | �′′′)

which must be shorter than our original execution (as the while loop itself has to

finish). Applying the induction hypothesis of Part 2 of Lemma 11 means we obtain

(inv+(AP) | �′′′1 )
◦
 
∗

(AR′′ | �′′1)
m
 (AR′ | �1) 

∗
s (AR | �1)

for some programs AR′′, AR′, AR such that AR is a valid skip equivalent of some

program. Repeated use of the rule [W5r] gives

(while Wn T do inv+(AP) end (pa,m:A) | �′′′1 )
◦
 
∗

(while Wn T do AR′′ end (pa,m:A) | �′′1)
m
 (while Wn T do AR′ end (pa,A) | �′′1)

 ∗s (while Wn T do AR end (pa,A) | �1)

(6.3)

from which a single application of [W6r] will then reset the while loop (recall a while

loop is a special case of skip equivalent). This gives us the majority of our desired

execution, with only the last step of the inverse execution left to consider. From our

assumed execution (with the copy of the loop body omitted),

(while Wn T do AQ end (pa,m:A) | �′′′) n→ (skip (pa,A′) | �′)

takes a single step, with no skip steps available after. The corresponding inverse

rule [W3aPI] gives the execution (starting from the inverted complete program as

this must be very first step)

(inv+(AS) | �′1)
n
 (while Wn b do inv+(AP) end (pa,m:A) | �′′′1 ) (6.4)

as expected. From here, composition of the executions 6.4 and 6.3 (in that order)

gives our desired execution and therefore shows that this part of the case holds.
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nth iteration We now consider executions where the first step is from the loop body

of any iteration of a loop other than the last. Such executions can be rewritten as

(AS | �) = (while Wn b do AP AP end (pa,A) | �)
m→ (while Wn T do AP′ AP end (pa,m:A) | �′′)

→∗s (while Wn T do AP′′ AP end (pa,m:A) | �′′)
◦→
∗

(while Wn T do skip I AP end (pa,m:A) | �′′′)

→s (while Wn T do AQ AP end (pa,m:A) | �′′′)
n→ (while Wn T do AQ′ skip end (pa,n:m:A) | �′′′′)

→∗s (while Wn T do AQ′′ skip end (pa,n:m:A) | �′′′′)
◦→
∗

(skip (pa,A′) | �′)

where the identifier step using n is via [W4aPI], for some program state �′′′ and

programs AQ, AQ′, AQ′′ such that AQ is the full loop body (retrieved from the while

environment).

The proof of such an execution follows closely to that for the first iteration above.

The major difference is there is an extra use of the induction hypothesis, specifically

on the execution

(while Wn T do AQ′′ end (pa,n:m:A) | �′′′′) ◦→
∗

(skip (pa,A′) | �′)

that does not appear in the first part of this case. All other parts of the proof follow

as above. We therefore conclude that this part of the case holds, meaning we have

shown this case to hold.

Block statements

Case 9.13. Block [B1a] This concerns identifier step from within a block. This

follows Case 9.5, but uses [B2a] in place of [I2a], and [B2a] in place of [I4a].

Since we assume that local variables and procedures can only be declared within

block statements, we consider each case of declaration and removal statements here.

Case 9.14. Variable declaration [L1a] Declaring a local variable completes in a

single step. This follows Case 9.1 and so it omitted.

Case 9.15. Procedure declaration [L2a] A single application of [L2a] declares

a procedure. The proof of this case is omitted as it follows Case 9.1.

Case 9.16. Variable removal [H1a] As with the declaration of a local variable,

removal takes a single step. This proof is not shown as it follows closely to Case 9.1.
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Case 9.17. Procedure removal [H2a] The rule [H2a] takes a single step to remove

a procedure. The proof is not listed as it follows Case 9.1.

Procedure call statements

Case 9.18. Call [G1a] Consider the opening of a procedure call, which declares a

local copy of the procedure body and produces the corresponding runc construct.

This follows with the opening of a conditional statement in Case 9.3 (though with

changes made to the procedure environment µ) using rules [G1a] and [G3r] in place

of [I1aT] and [I4r], and so is omitted.

Case 9.19. Call [G2a] Consider an execution beginning with an identifier step

from within a procedure body. This follows the case of such steps from within a

conditional statement, namely Case 9.5. A partial execution beginning within a call

statement uses the modified rule [G3aPI], and follows as in Case 9.12.

Case 9.20. Call [G3a] The closing of a procedure call will remove the local copy

of the procedure body for this specific call statement, after saving any identifiers

assigned to it. This case follows with the closing of a conditional statement, namely

Case 9.7 with rules [G3a] and [G1r] in place of [I4a] and [I1rT]. A partial execution

beginning at the closure of a block uses the modified rule [G3aP] and follows Case 9.9.

All inductive cases are therefore valid. Since all base cases also hold, we can

conclude that Lemma 10 (Statement Property) is valid.

6.6 Proof of Program Property

In this section we give the proof of Lemma 11 (Program Property). By abuse of

notation, we use AP to represent either a complete or partially executed program.

In cases considering full program execution (e.g. Case 10.1), we ignore the abort

statement introduced by inv+() as the program stops as desired.

Lemma 11 (Program Property). Let AP be a complete program (syntax from Fig-

ure 6.3) in Part 1, and either a complete or partially executed annotated program

in Part 2. Further let � be the tuple (σ,γ,µ,β,δ) of initial program environments.

Part 1. If a uniform forward execution (AP | �) U→
∗
s (AP′ | �′′) U

◦→
∗

(skip I | �′)
exists for some program AP′ and program states �′′, �′ such that �′′ = �

(by Lemma 1 of Chapter 3)), then there exists a uniform inverse execution

(inv+(AP) | �′1) U
◦
 
∗

(AQ′ | �′′1) U 
∗
s (AQ | �1) for some programs AQ′,

AQ such that AQ is skip if AP is a complete program and a skip equivalent

otherwise, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′

and �1 ≈ �.
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Part 2. If a uniform forward execution (AP | �) U
m→ (AP′ | �′′) U→

∗
s (AP′′ |

�′′) U
◦→
∗

(skip I | �′) exists for some program AP′ and program states

�′′ and �′, then there exists a uniform inverse execution (inv+(AP) |
�′1) U

◦
 
∗

(AQ′′ | �′′1) U
m
 (AQ′ | �1) U 

∗
s (AQ | �1) for some programs

AQ′′, AQ′, AQ is skip if AP is a complete program and a skip equivalent oth-

erwise, and states �′1, �
′′
1, �1 such that �′1 ≈ �′, �′′1 ≈ �′′ and �1 ≈ �.

All executions from here are uniform and so we omit the specific notation. For

example, a uniform execution (P | �) U
m→ (P′ | �′) is written as (P | �)

m→ (P′ | �′).

Proof. This proof is by mutual induction of the Program Property (this lemma) and

the Statement Property (Lemma 10), on the length of the executions (AP | �)
◦→
∗

(skip I | �′) and (AS | �)
◦→
∗

(skip I | �′) respectively. We now consider the

two types of possible executions, namely those that start with at least one skip step

(Part 1) and those that start with an identifier step (Part 2).

6.6.1 Proof of Part 1

Consider all executions that begin with at least one skip step, of the form (AP |
�)→∗s (AP′ | �)

◦→
∗

(skip I | �′), where AP is a complete program of the following

syntax (recalled from Figure 6.3) as no partial programs can begin with a skip step.

P ::= S | skip; AP | P par P

S ::= skip | begin Bn P AP end

Since no executions of length 0 exist, we consider our base cases to be any

execution of length 1. There are three examples of such cases: two sequentially

composed skip statements (Case 10.1), a parallel statement where both component

programs are skip (Case 10.2) and a block statement whose body is skip (Case 10.3).

Case 10.1. Skips [S2a] Consider two sequentially composed skip statements. Let

AP be the program skip I; skip I′, and � be the tuple of initial program state en-

vironments (σ, γ, µ, β, δ). Assume the following uniform execution via the rule [S2a]

(skip I; skip I′ | �)→s (skip I′; | �)

that completes in a single step and does not alter the program state.

We need to show that there exists an execution

(inv+(AP) | �′1)
◦
 
∗

(AT′ | �1) 
∗
s (AT | �1)
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for some statements AT′, AT, and program states �′1, �1 such that �′1 ≈ �′ and

�1 ≈ �. By 5.20 and 5.22 in Figure 5.7 of Chapter 5, we have that inv+(AP) =

skip I′; skip I (ignoring the abort).

With no further execution, we can take AT′ = inv+(AP) and �1 = �′1. A single

use of [S2r] can be applied to remove the first skip statement while not changing the

program state, giving the execution

(AT′ | �1) s (skip I | �1)

Taking AT = skip I, we have shown our desired execution and this case to hold.

Case 10.2. Empty Parallel [P3a] Consider a program containing only a parallel

statement where both component programs are single skip statements. Let AP be

the program skip I par skip I′, and let � be the tuple of initial program state

environments (σ, γ, µ, β, δ). Assume the uniform execution via the rule [P3a]

(skip I par skip I′ | �)→s (skip | �)

with length 0 and no effect on the program state.

We need to show that there exists an execution

(inv+(AP) | �′1)
◦
 
∗

(AT′ | �1) 
∗
s (AT | �1)

for some statements AT′, AT, and program states �′1, �1 such that �′1 ≈ �′ and

�1 ≈ �. By 5.21 and 5.22 in Figure 5.7 of Chapter 5, we have inv+(AP) = skip I

par skip I′ (ignoring the abort).

With no further execution, we can take AT′ = inv+(AP) and �1 = �′1. A single

application of [P3r] can close the inverted parallel statement while not changing the

program state, giving the execution

(AT′ | �1) s (skip | �1)

Taking AT = skip, this case has been shown to hold.

Case 10.3. Empty Block [B2a] Consider a program containing a single block

statement, whose body is a single skip statement. Let AP be the program begin

Bn skip I skip I end (pa,A) (with the original block body also being skip as

expected), and � be the tuple of initial program state environments (σ, γ, µ, β, δ).

Assume the uniform execution via [B2a]

(begin Bn skip I skip I end (pa,A) | �)→s (skip I′ | �)
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with length 1 and no effect on the program state.

We need to show that there exists an execution

(inv+(AP) | �′1)
◦
 
∗

(AT′ | �1) 
∗
s (AT | �1)

for some statements AT′, AT, and states �′1, �1 such that �′1 ≈ �′ and �1 ≈ �.

By 5.31 in Figure 5.7 of Chapter 5, we have inv+(AP) = begin Bn skip I skip I

end (pa,A) (ignoring the abort).

With no further execution, we can take AT′ = inv+(AP) and �1 = �′1. Application

of [B2r] closes the inverted block statement via

(AT′ | �1) s (skip | �1)

Since AT = skip, this case holds.

Each base case has been shown to valid, meaning Part 1 of Lemma 11 (Program

Property) holds for all executions of length 1. We now consider all inductive cases.

Assume the Program Property holds for all programs AR and program states �∗ such

that the execution (AR | �∗) →s (AR′ | �∗) ◦→
∗

(skip I | �∗′) has length k (where

k ≥ 1). Now assume that the execution (AP | �)→s (AP′ | �)
◦→
∗

(skip I | �′) has

length l such that l > k.

Each inductive case is now shown. This consists of executions of complete pro-

grams beginning with skip steps. These are skip steps from within a block statement

(Case 10.4), and as a result of sequential composition (Case 10.5) and parallel com-

position (Cases 10.6–10.7). We note that there are no cases for steps via a conditional

branch or loop body as these cannot be the first step of a complete program. Each

require at least one previous step to open the conditional or the loop. There is also

no case for the skip step [W6a] with the same reasoning.

Case 10.4. (Block [B1a]) Consider a block statement containing a body that

begins with at least one skip step. Let AP be begin Bn AQ AQ end and � be the

initial program state. If AQ contains only skip statements and execution of those

mean the block itself will close, then this is a version of the (base) Case 10.3.

Therefore assume AQ contains more than just skip steps. Assume the following

uniform execution

(begin Bn AQ AQ end | �)→∗s (begin Bn AQ′ AQ end | �)
◦→
∗

(skip | �′)

exists for some program AQ′ and state �′. Crucially all available skip steps are

performed, meaning the first step of the remaining execution must be via an identifier
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rule. We note that this execution can be rewritten to highlight the point at which

the body finishes, namely as

(begin Bn AQ AQ end | �)→∗s (begin Bn AQ′ AQ end | �)
◦→
∗

(begin Bn skip I AQ end | �′)→s (skip | �′)

where the final transition is via [B2a].

We need to show that there exists an execution

(inv+(AP) | �′1)
◦
 
∗

(AT′ | �1) 
∗
s (AT | �1)

for some statements AT′, AT, and program states �′1, �1 such that �′1 ≈ �′ and

�1 ≈ �. By 5.31 in Figure 5.7 of Chapter 5, we have inv+(AP) = begin Bn inv(AQ)

inv(AQ) end.

From our rewritten assumed execution, repeated use of the rule [B1a] (from

conclusion to premises), we have the uniform execution

(AQ | �)→∗s (AQ′ | �)
◦→
∗

(skip I | �′)

which is guaranteed to be shorter (as the block must close). By the induction

hypothesis of Part 1 of Lemma 11 (Program Property), we get

(inv+(AQ) | �′′1)
◦
 
∗

(AR′ | �1) 
∗
s (skip I | �1)

for some program AR′ and states �′′1 and �1, which will reach skip as it must be

a full program. We note that since AQ must be a complete program, inv+(AQ) =

inv(AQ). Then using this substitution and repeated use of the corresponding inverse

rule [B1r], we get

(begin Bn inv(AQ) inv(AQ) end | �′1)
◦
 
∗

(begin Bn AR′ inv(AQ) end | �1)

 ∗s (begin Bn skip I inv(AQ) end | �1)

Finally, since AP must be a complete program, the inverse execution is required

to reach skip. A single application of the skip step [B2a] will close this block and

allow the whole execution to reach skip. Therefore we have the execution

(begin Bn inv(AQ) inv(AQ) end | �′1)
◦
 
∗

(begin Bn AR′ inv(AQ) end | �1)

 ∗s (begin Bn skip I inv(AQ) end | �1) s (skip | �1)

that matches our desired execution and so shows this case to be valid.
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Case 10.5. (Sequential Composition [S1a]) Consider sequential composition.

Let AS be a statement, AP be a program, and � be the initial program state envi-

ronments (σ, γ, µ, β, δ). Assume a program of the form AS;AP, and the execution via

the initial skip rule [S1a]

(AS;AP | �)→∗s (AS′;AP | �)
◦→
∗

(skip I | �′)

for some statement AS′, a pair I and program state�′. As in previous cases, note that

all available skip steps are performed and the first step of the remaining execution

must be via a identifier rule.

We need to show that there exists an execution

(inv+(AS;AP) | �′1)
◦
 
∗

(AT′ | �1) 
∗
s (AT | �1)

for some programs AT′, AT such that AT is skip or a skip equivalent, and program

states �′1, �1 such that �′1 ≈ �′ and �1 ≈ �. By 5.20 in Figure 5.7 of Chapter 5,

we have that inv+(AS;AP) = inv(AP);inv+(AS).

Our assumed execution can be rewritten to highlight the point at which AS

concludes, namely as

(AS;AP | �)→∗s (AS′;AP | �)
◦→
∗

(skip I′;AP | �′′)

→s (AP | �′′) ◦→
∗

(skip I | �′)

for program state �′′. From this rewritten version of the execution, the application

of the rule [S1a] repeatedly (from conclusion to premises), we can get the execution

(AS | �)→∗s (AS′ | �)
◦→
∗

(skip I′ | �′′)

which concerns only the statement AS. Therefore this is guaranteed to be shorter

than our original (as AP must require at least one step). With a single statement

equivalent to a program containing only that statement, the induction hypothesis

of Part 1 of the Program Property (Lemma 11) on this shorter execution gives

(inv+(AS) | �′′1)
◦
 
∗

(AR′ | �1) 
∗
s (AR | �1) (6.5)

for programs AR′, AR such that AR is a valid skip equivalent of some program, and

program states �′′1, �1 such that �′′1 ≈ �′′ and �1 ≈ �.

Returning to our rewritten assumed execution above, the uniform execution (AP |
�′′)

◦→
∗

(skip I | �′) is guaranteed to be both shorter than our original and to be a

complete program (since it was sequentially composed with AS). In most cases this

will begin with an identifier step, however it could also begin with at least one skip
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step. Application of the induction hypothesis of Lemma 11 (Part 1 if the execution

begins with a skip step, or Part 2 if the execution begins with an identifier step) on

this gives

(inv+(AP) | �′1)
◦
 
∗

(skip I1 | �′′1)

for program state �′′1 such that �′′1 ≈ �′′. Since AP must be a complete statement, we

note that inv+(AP) = inv(AP). With this substitution, use of the rule [S1r] repeatedly

(from premises to conclusion) gives us

(inv(AP); inv+(AS) | �′1)
◦
 
∗

(skip I1; inv+(AS) | �′′1) (6.6)

A single application of the rule [S2r] will remove the skip, giving the execution

(skip I1; inv+(AS) | �′′1) s (inv+(AS) | �′′1) (6.7)

At this point, we have three equations that can easily be composed. We therefore

combine 6.6, 6.7 and 6.5 in that order, giving the execution

(inv(AP); inv+(AS) | �′1)
◦
 
∗

(skip I1; inv+(AS) | �′′1) s (inv+(AS) | �′′1)
◦
 
∗

(AR′ | �1) 
∗
s (AR | �1)

Taking AT′′ = AR′′, AT′ = AR′ and AT = AR (AR is either skip or a skip equivalent by

the induction hypothesis), we have our desired execution, meaning the case holds.

Case 10.6. (Parallel Composition [P1a]) Consider parallel composition. Let AS

be a statement (of the syntax shown in Figure 6.3), AP and AQ be programs, and �

be the initial program state. Assume a program of the form (AS;AP) par AQ, where

AQ begins with an identifier step (this could be extended to allow skip steps from

AQ which would have to be ordered in the fixed manner of after all skip steps from

AS). The matching case of a program of the form AQ par (AS;AP) is considered

in Case 10.7. Further, any number of nested parallel statements could have been

used, all of which can be reduced to a program of the form above via the use of

[P1a]/[P2a]. Now assume an execution with all of the initial skip steps via [P1a]

(((AS;AP) par AQ) | �)→∗s (((AS′;AP) par AQ) | �)
◦→
∗

(skip I | �′)

for some statement AS′ and program state �′. Consider the initial sequence of skip

steps, where all available skip steps are performed. This means that the first step

of the renaming execution must be via an identifier step. Each skip step transition

has an inference tree associated with it that proves the transition to be valid. Each

of these inference trees has a leaf, which in each case is an instance of one of the

following three rules.



CHAPTER 6. CORRECTNESS OF ANNOTATION AND INVERSION 135

1. Rule [B2a]: the closing of a block meaning the block body is empty. AS

contains begin Bn skip I1 end (potentially nested within constructs), and

AS′ contains skip (with same nesting).

2. Rule [S2a]: the removal of a skip statement. AS contains skip I1;AR (with

nesting), and AS′ contains AR (with same nesting).

3. Rule [P3a]: an empty parallel statement. AS contains skip I1 par skip

I2; AR (potentially nested), and AS′ = skip; AR (with the same nesting).

We need to show that there exists an execution

(inv+((AS;AP) par AQ) | �′1)
◦
 
∗

(AT′ | �1) 
∗
s (AT | �1)

for some programs AT′, AT such that AT is skip or a skip equivalent, and program

states �′1, �1 such that �′1 ≈ �′ and �1 ≈ �. By 5.21 and 5.20 in Figure 5.7 of

Chapter 5, we have that inv+((AS;AP) par AQ) = (inv(AP);inv+(AS) par inv(AQ).

From our assumed transition sequence, the execution (((AS′;AP) par AQ) |
�)

◦→
∗

(skip I | �′) is guaranteed to both be shorter than our original and to

begin with an identifier step (since the overall execution is uniform meaning all

skip steps are performed in the previous transition). Application of the induction

hypothesis of Part 2 of Lemma 11 on this shorter uniform execution gives us

(inv(AP); inv+(AS′) par inv(AQ) | �′1)
◦
 
∗

(AT′′ | �1)

by a sequence of rule applications SR, for some program AT′′ and program states

�′1, �1 such that �′1 ≈ �′ and �1 ≈ �.

With AP guaranteed to be a complete program, inversion will reach skip I4 for

some I4. AQ also must be a complete program meaning inversion will reach skip I5.

AS′ will be a partial program (since the beginning skip steps have been performed),

meaning the inversion of this will reach AS1 (either skip or a skip equivalent). There-

fore AT′′ = AS1 par skip I5.

Now compare the programs inv(AP);inv+(AS) par inv(AQ) and inv(AP);inv+(AS′)

par inv(AQ). Since both executions begin with the same prefix, by the same sequence

of rule applications SR we obtain

(inv(AP); inv+(AS) par inv(AQ) | �′1)
◦
 
∗

(AT′ | �1)

for a program AT′. With the same reasoning as above, we have that AT′ = AS2 par

skip I5. The format of AS2 is identical to AS1 but with further execution of skip

steps only available. All of the constructs that were closed (or removed) during the
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initial skip steps of the forward execution will appear in inverted form within the

inverse program. In order to complete the inverse execution, all of these constructs

must also be closed (or removed) here. The skip steps that will be required will

depend on the types of construct that began the forward execution. We therefore

return to our three cases of skip step and consider each in turn.

1. Rule [B2r]: The initially empty block will be here in inverted form. Therefore

the skip rule [B2r] will close this block to skip.

2. Rule [S2r]: A hard-coded skip statement will appear in the inverted program,

with the rule [S2r] used to remove it.

3. Rule [P3r]: A hard-coded empty parallel statement appears identically in

the inverted program. The inverse skip step [P3r] is used to close it.

In all cases, we have that there exists the execution

(AT′ | �1) 
∗
s (AT | �1)

such that AT = skip.

At this point, recall Example 18 from Chapter 5 showing non-matching skip

steps from a forward and reverse execution. Since all skip steps cannot alter the

program state, any mismatch here is not a problem. Therefore we have shown the

desired execution and this case to hold.

Case 10.7. (Parallel Composition [P2a]) This case follows closely to Case 10.6,

using the rule [P2a] in place of [P1a] to represent the situation where the execution

begins with skip rules from the right hand side.

With all inductive cases shown to be valid, we have therefore completed the proof

of Part 1 of Lemma 11.

6.6.2 Proof of Part 2

We now consider all executions beginning with an identifier step, of the form (AP |
�)

m→ (AP′ | �)→∗s (AP′′ | �)
◦→
∗

(skip I | �′). With no executions of length 0, we

consider our base cases to be any execution of length 1. The two base cases include a

program containing a single assignment and a program containing a single loop that

performs zero iterations. The proof of each is omitted as they follow correspondingly

to Case 9.1 and Case 9.2 of Lemma 10 from page 111 (with AS replaced by AP).

All base cases are therefore valid, meaning we now consider all inductive cases.

Assume the Program Property holds for all programs AR and program states �∗

such that the execution (AR | �∗) m→ (AR′ | �∗)→∗s (AR′′ | �∗) ◦→
∗

(skip I | �∗′) has
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length k (where k ≥ 1). Now assume that the execution (AR | �)
m→ (AR′ | �) →∗s

(AR′′ | �)
◦→
∗

(skip I | �′) has length l such that l > k.

Each inductive case is now considered. We note that the execution of a program

containing a single statement is equivalent to an execution of that single statement.

This means all such executions have been considered within the proof of Lemma 10

and so are omitted here. We therefore consider the remaining cases for sequential

composition (Case 10.8) and for parallel composition (Case 10.9–10.10).

Case 10.8. (Sequential Composition [S1a]) Consider sequential composition.

Let AS be a statement, AP be a program, and � be the tuple of initial program

state environments (σ, γ, µ, β, δ). Assume a program of the form AS;AP (sequential

composition), and the uniform execution with the first transition via the rule [S1a]

(AS;AP | �)
m→ (AS′;AP | �′′)→∗s (AS′′;AP | �′′) ◦→

∗
(skip I | �′)

for some statements AS′ and AS′′, and program states �′′ and �′.

We need to show that there exists an execution

(inv+(AS;AP) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. By 5.20 in Figure 5.7 of Chapter 5, we have that inv+(AS;AP)

= inv(AP);inv+(AS).

Our assumed execution can be rewritten to show the point at which AS has

executed completely, namely as

(AS;AP | �)
m→ (AS′;AP | �′′)→∗s (AS′′;AP | �′′) ◦→

∗
(skip I′;AP | �′′′)

→s (AP | �′′′) ◦→
∗

(skip I | �′)

for some program state �′′′. From this rewritten version of the execution, the ap-

plication of the rule [S1a] repeatedly (from conclusion to premises), we can get the

execution

(AS | �)
m→ (AS′ | �′′)→∗s (AS′′ | �′′) ◦→

∗
(skip I′ | �′′′)

Since this concerns only AS, it is guaranteed to be shorter than the original execution

as AP takes at least one step of execution. This allows application of the induction

hypothesis of the Statement Property (Lemma 10) on this shorter execution, giv-

ing us

(inv+(AS) | �′′′1 )
◦
 
∗

(AR′′ | �′′1)
m
 (AR′ | �1) 

∗
s (AR | �1) (6.8)
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for some programs AR′′, AR′ and AR such that AR is either skip or a skip equivalent

of some program, and some program states �′′1 such that �′′1 ≈ �′′, and �1 such

that �1 ≈ �.

Returning to our rewritten assumed execution above, the uniform execution (AP |
�′′′)

◦→
∗

(skip I | �′) is shorter than our original. This program will begin with an

identifier step in the majority of cases, with a chance for it to begin with skip steps

(hard coded skips, empty blocks etc.). This means that application of the induction

hypothesis of Lemma 11 (Part 1 if the execution begins with a skip step, or Part 2

if the execution begins with an identifier step) on this shorter execution gives us

(inv+(AP) | �′1)
◦
 
∗

(skip I1 | �′′′1 )

for some program state �′′′1 such that �′′′1 ≈ �′′′. Since AP must be a complete

program (as it is sequentially composed with AS), we note that inv+(AP) = inv(AP).

Using this substitution, application of the rule [S1r] repeatedly (from premises to

conclusion) gives

(inv(AP); inv+(AS) | �′1)
◦
 
∗

(skip I1; inv+(AS) | �′′′1 ) (6.9)

A single applicable rule is available at this point, namely [S2r] to remove the skip.

Since this is a skip rule and so does not affect the program state in any way (see

Lemma 1 of Chapter 3), we have the execution

(skip I1; inv+(AS) | �′′′1 ) s (inv+(AS) | �′′′1 ) (6.10)

At this point, the three equations 6.9, 6.10 and 6.8 can be composed in that order.

This gives

(inv(AP); inv+(AS) | �′1)
◦
 
∗

(skip I1; inv+(AS) | �′′′1 ) s (inv+(AS) | �′′′1 )
◦
 
∗

(AR′′ | �′′1)
m
 (AR′ | �1) 

∗
s (AR | �1)

Taking AT′′ = AR′′, AT′ = AR′ and AT = AR (such that AR is either skip or a skip

equivalent by induction hypothesis), we have shown this case to hold.

Case 10.9. (Parallel Composition [P1a]) Consider parallel composition. Let

AS be a statement, AP and AQ be programs, and � be the tuple of initial pro-

gram state environments (σ, γ, µ, β, δ). Assume a program of the form (AS;AP)

par AQ. We note that the corresponding form AQ par (AS;AP) follows accordingly

(see Case 10.10) and that any number of nested parallel statements could be used,
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with matching uses of [P1a]/[P2a] reducing this into a program of the above form.

Assume the following uniform execution with the first transition via [P1a]

(((AS;AP) par AQ) | �)
m→ (((AS′′;AP) par AQ) | �′′)

→∗s (((AS′;AP) par AQ) | �′′) ◦→
∗

(skip I | �′)

for statements AS′′ and AS′, and program states �′′ and �′.

We need to show that there exists an execution

(inv+(AS;AP par AQ) | �′1)
◦
 
∗

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

for some statements AT′′, AT′, AT, and program states �′1, �
′′
1, �1 such that �′1 ≈ �′,

�′′1 ≈ �′′ and �1 ≈ �. From 5.20 and 5.21 in Figure 5.7 of Chapter 5, we have that

inv+(AS;AP par AQ) = inv(AP);inv+(AS) par inv+(AQ).

From our assumed transition sequence, the execution (((AS′;AP) par AQ) |
�′′)

◦→
∗

(skip I | �′) must be shorter than our original and must begin with

an identifier step (since the overall execution is uniform meaning all available skip

steps must be performed in the previous transition). This means application of the

induction hypothesis of Part 2 of Lemma 11 on this shorter execution gives us

(inv(AP); inv+(AS′) par inv+(AQ) | �′1)
◦
 
∗

(AT′′′ | �′′1)

by a sequence of rules SR, for some program AT′′′ and program states �′1, �1 such

that �′1 ≈ �′ and �1 ≈ �. From the definition of [P1a], the first transition is via

an underlying identifier rule [R]. Each case of [R] is considered with the proof of

the Statement Property (Lemma 10), with the format of AS, AS′ and AS′′ (which we

must consider to be within the necessary context) shown along with �′′.

Since AT′′′ is returned via the induction hypothesis, we know its format. With AP

guaranteed to be a complete program, inversion will reach skip I4 for some I4. AQ

is either a complete or a partial program meaning inversion will either reach skip

I5 or a skip equivalent program AQ1. Therefore AT′′′ = inv+(AS′) par skip I5 or

AT′′′ = inv+(AS′) par AQ1 where AQ1 is a skip equivalent.

Now compare the programs inv(AP);inv+(AS) par inv(AQ) and inv(AP);inv+(AS′)

par inv(AQ). Since both executions begin with the same prefix, by the same sequence

of rule applications SR we obtain

(inv(AP); inv+(AS′) par inv(AQ) | �′1)
◦
 
∗

(AT′′ | �1)

for a program AT′′. Drawing conclusions as above, we have that AT′′ = AS2 par skip

I5 or AT′′ = AS2 par AQ1 for a statement AS2, such that AS2 is equal to AS1 but
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with further execution allowed. The format of AS2 depends on the underlying rule

[R], with each case having been considered in the proof of the Statement Property

(Lemma 10). From this, each case shows the format of AS2 (from which we know the

execution must continue), and details that the only available next step of execution

will be via the corresponding inverse identifier rule. From each case, we can see that

the execution

(AT′′ | �′′1)
m
 (AT′ | �1) 

∗
s (AT | �1)

exists for some programs AT′ and AT (without the context of the parallel statement),

and program state �1 such that �1 ≈ �, as required. Therefore this case holds.

Case 10.10. (Parallel Composition [P2a]) Consider an identifier step from the

right hand side of a parallel statement. This follows correspondingly to Case 10.9

and so is omitted.

We have now shown all inductive cases to be valid for Part 2 of Lemma 11.

Together with the proof of Part 1, we have therefore proved Lemma 11 to be valid,

as required.

6.7 Conclusion

In this section, we have proved two key properties relating to our approach. The first

demonstrates that annotation does not change the behaviour of the original program

with respect to the program state, and that it can populate the auxiliary store. The

second shows that given the correct final program state and final auxiliary store,

reverse execution correctly restores the state to as it prior to the forward execution,

and that all reversal information is used hence our approach is garbage free.



Chapter 7

Ripple: Simulation Tool and

Performance Evaluation

In this chapter we introduce our simulation tool named Ripple (standing for Re-

versing an Imperative Parallel Programming Language). Developed to aid testing

and validating of our approach, Ripple takes a program written in our language

and automatically produces the annotated and inverted versions. Execution in each

direction (including traditional forward with no saving) can be simulated, with the

program state and reversal information viewable throughout. Ripple is available on

request to the author at https://github.com/jameshoey/ripple-sim.

7.1 Software Architecture of Ripple

Ripple is written in the commonly used and widely supported C++, using some of its

many libraries. The object oriented nature means the architecture of Ripple consists

of six key types of object, namely FileIO, LinkedList, Statement, ExpTree, Parser

and Simulator. Each type of object is described in detail below, and contained within

the simplified class diagram in Figure 7.1 (where some fields, functions and sub-

classes are omitted). The LinkedList, Statement and ExpTree structures are then

outlined, followed by a discussion of how key design choices presented in Chapter 3

are reflected into the implementation of Ripple. Finally we mention each of the

main directories used by Ripple.

Objects

Ripple consists of instances of six key types of object. Each object, shown in the

simplified class diagram in Figure 7.1, are outlined in turn.

• FileIO - used to access the file system, allowing a user of the simulator to

load a pre-existing text file that contains a program into the parser object.

141

https://github.com/jameshoey/ripple-sim


CHAPTER 7. SIMULATOR AND PERFORMANCE EVALUATION 142

Figure 7.1: The class diagram representing each type of object and how it is linked
to others, with only two sub-statement classes shown (namely DA and IFS).

All information written to files during the simulation is processed via a fileIO

object, including the execution traces and histories.

• ExpTree - a tree structure used to represent an arithmetic or boolean ex-

pressions. Each node (another type of object) is either a leaf (integer value or

variable name) or a binary (arithmetic or boolean) operator with two children.

• Statement - used to represent a single statement. This is a super-class, with

eleven sub-classes that each inherit from it. Each sub-class represents a specific

statement, e.g. destructive assignment (DA) and conditional statement (IFS).

The super-class allows generic use of a statement without specifying the type.

• LinkedList - an instance of the linked list object represents a program in the

form expected by the simulator object. This is a redefined version (not the

usual C++ linked list), in that each element is a Statement object. Each

Statement object contains a pointer to the next (sequential composition), with

the Statement sub-class named PAR containing a pointer to both the left and

right side of a parallel (parallel composition).
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1 X = 10;

2 while w1 (Y < 20) do

3 Y = Y + 10;

4 Z = Z + 2;

5 end;

6 Z = Z + 12;

7 X = Z + 3;

(a) Original source code

(b) Linked list representation

Figure 7.2: A program and its linked list representation

• Parser - an instance of this parses an original program into a linked list rep-

resentation. This parser is implemented by ourselves, and may result in inef-

ficiencies. In the future we plan to use a pre-defined parser.

• Simulator - a simulator object represents an instance of the tool. This instance

is created by the user and automatically completes the setup. This includes

creating instances of each of the previous objects, and providing the user

interface allowing direct interaction (see below). This object controls execution

in both directions, and is the only one instantiated by the user.

ExpTree, Statement and Linked List Structures

ExpTree structures represent a condition or expression. A node is considered a leaf

if it contains only an integer value or variable name, and has no children. Any other

node contains an operator (either arithmetic or logical) and two children. ExpTrees

are evaluated in a depth first manner, and can be performed either atomically or

non-atomically in Ripple. To aid testing, Ripple is also capable of evaluating an

expression atomically, but independently to the rest of the statement. For exam-

ple, an assignment would complete in two steps, the first atomically evaluating the

expression and the second performing the assignment.

Each statement is represented as an instance of Statement. This generic super-

class (parent) encapsulates all possible types, containing a variable type indicating

the underlying type of statement and a pointer to the next statement (sequential

composition). The value of this allows casting of a statement into the appropri-

ate sub-class. Each sub-class represents a specific type of statement and contains

the required variables. For example a conditional statement contains an ExpTree

representation of its condition, and a pointer to each branch.

Each program is parsed into a LinkedList structure. Each element (an instance

of Statement) captures the high level order of statements, as each contains a pointer

to the next. Each complex statement that contains sub-programs also contains a
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1 par {
2 X = 5

3 } {
4 par {
5 Y = 12

6 } {;
7 Z = 6

8 }
9 }

(a) Nested parallel program (b) Linked list representation

Figure 7.3: A parallel program and its linked list representation

pointer to the linked list representation of those (lower-level order of statements).

An important part of parsing is named linking, where the end of nested LinkedList

structures are linked back to the parent. The four cases in which this happens are:

• The end of a while loop body is linked back to the while loop statement

(allowing for iteration). The example program in Figure 7.2(a) is parsed into

the LinkedList structure in Figure 7.2(b), where the end of the loop body is

linked back to the loop.

• The end of both the true and the false branch are linked back to the conditional

statement (allowing the saving of any reversal information for the conditional

to happen only after the execution of the branch).

• The end of a block body is linked back to the block statement (to allow a

block to close explicitly).

• The end of each side of a parallel statement is linked back to the parallel state-

ment (ensuring both sides have to be finished before further progress can be

made as in the semantics). Figure 7.3(a) shows an example of nested paral-

lelism, with Figure 7.3(b) showing the corresponding LinkedList structure.

Design Choices

Chapter 3 highlighted two key design choices of our approach. Firstly, all reversal

information is saved into stacks. Ripple implements this, using a collection of stacks

as the auxiliary store. All reversal information is pushed onto the top of the stack

during the annotated execution, and removed from the top during inverse execution.

The second design choice is to keep the auxiliary store separate to the program

state. This aids our proof of correctness (see Chapter 6) as an original and its an-

notated execution produce equivalent final program states. Therefore Ripple keeps
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P ::= ε | S | P; P | P par P

S ::= skip | X = E | if B then P else Q end |
while B do P end | begin BB end | call n

BB ::= DV; DP; P

DV ::= ε | var X = v pa; DV

DP ::= ε | proc Pn n is P end pa; DP

E ::= X | n | (E) | E Op E

B ::= T | F | ¬B | (B) | E == E | E > E | B ∧ B

Figure 7.4: Simplified syntax of programs supplied to the simulator

the auxiliary store separate, providing different commands to display separate envi-

ronments.

Directories

The simulation tool requires a number of different directories that are used by an

instance of the FileIO object. These include

• /examples - the default directory where all programs will be read from (pro-

vided a valid filename is provided and that the corresponding file exists). This

can be changed by the user at runtime (see below).

• /execution-traces - the default directory where all execution traces will be

saved. The forward and inverse trace file will be overwritten for each execution

• /execution-traces/perm - the default directory where any execution trace file

can be permanently saved to. This allows a specific trace file to be saved prior

to it being overwritten via the simulator.

7.2 Key Functionality of Ripple

The following is a list of the major features of our simulator.

• Automatic generation of precise syntax - the burden on the user of the sim-

ulator is reduced as much as possible as the simulator can automatically add

parts of the syntax. Paths are easily produced based on the source code and

so can be automatically inserted. Additionally, all removal statements can be

added automatically and so are not required in the code provided by the user

(avoiding the risk of human error). Finally all construct identifiers can be

inserted automatically. We therefore show a simplified version of the program
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syntax that the simulator is capable of parsing correctly, shown in Figure 7.4

(with runc omitted as this only appears as a result of execution).

• Automatic program state initialisation - the initial program state is generated

automatically. Since all global variables are assumed to exist prior to the

execution, the source code is analysed to find all global variables used, each

of which are then initialised to a fresh memory location and the value 0.

This reduces the amount of memory needed to begin an execution as only

the variables that are used exist. All other environments are instantiated,

including the initially empty auxiliary store.

• Random or user-defined interleaving - the simulator is capable of two forms of

parallel interleaving. Firstly, all decisions of which branch of a parallel to take

can be made randomly at runtime via the simulator. This is achieved using

random number generation and is used to simulate an arbitrary execution.

Secondly, any interleaving decision can be taken by the user at runtime. In

this mode each time an interleaving decision must be made, the execution

is paused while the simulator waits for the user to decide from the available

options. This feature is ideal for testing interleavings that occur rarely under

random executions, or for recreating a specific interleaving that contained a

software bug. User defined interleaving can also be switched on and off at

runtime, allowing the user to only determine a part of an execution.

• Full/Partial execution - execution in both directions can either be performed

completely or in a step-by-step manner. Full execution can be used to simulate

an arbitrary execution, while step-by-step allows a more in depth execution.

Crucially, the execution type is not fixed, allowing step-by-step execution of

part of the program, before completing fully. Each execution is defined in terms

of the the possible types of statements. The behaviour of each statement is

exactly as described in the operational semantics of Chapter 4.

• Viewable program state - the program state, including all intermediate pro-

gram states during a step-by-step execution, can be viewed at runtime via the

interface. The current program can also be displayed, where an arrow indi-

cates the current position (multiple arrows will be present if currently within

parallel composition). The value of all variables can be displayed with a refer-

ence to the corresponding memory location. The entire while and procedure

environments can also be displayed, where each mapping currently stored is

shown along with the construct identifier to which it applies

• Viewable reversal information - any information saved for the purposes of in-

version can be viewed at runtime during executions in both directions. This
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Figure 7.5: The welcome screen of the command line interface

information can also be used to see all values a variable has held during the

execution, the number of iterations performed by a loop or the result of eval-

uating any conditional statement.

• Execution tracing - the simulator can maintain a trace throughout an execution

in either direction. This is not used for reversal, but instead designed for

testing and debugging purposes. A trace file captures an execution, including

all interleaving decisions, allowing an execution that contains a bug to be

repeated. The contents of example history files are shown in Chapter 8.

7.3 User Interface of Ripple

Our simulation tool comes with a command line interface, allowing the user to easily

interact with the simulator. This command line interface opens immediately with

the beginning of the simulator, with the welcome screen shown in Figure 7.5. For a

full list of supported commands, open the simulator and open the help section via

the command ‘help’. The interface begins in setup mode, where the tool is waiting

for a file to read. We note here that there is a focus on user-friendliness, with a help

function accessed via the command ‘help’ and the simulator hinting the typically
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Figure 7.6: Successful reading of a file

used next statement at the end of the previous. In Figure 7.5, the simulator states

that the next command should be to read a file.

After reading a file (shown in Figure 7.6 using a file named cond), the simulator

confirms the file has been read, all missing parts of the syntax have been auto-

matically inserted and that parsing was successful. The start command begins the

forward execution, while the command ‘statesaving off’ can be used to switch to an

original (irreversible) execution, where no reversal information is saved and therefore

the inverse execution will not be valid). The forward execution of a program (in this

case the entire program using the command ‘go all’) is shown in Figure 7.7, while

the process of inversion and subsequent execution of it is shown in Figure 7.8. The

related command ‘go n’ performs the next n steps of the current execution provided

n steps are available, or as many of the n steps until the execution completes. There

are a series of display commands used to view different parts of the program, the

Figure 7.7: Forward execution of a program
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Figure 7.8: Reverse execution of a program

Figure 7.9: Manual interleaving decision presented to the user

program state and the reversal information, including ‘display program’, ‘display

vars’ and ‘display aux’.

Many other commands allow the user to interact with the simulator. The pro-

gram state and any reversal information currently saved can be viewed, with all

environments displayed within the command line. Execution traces and history files

can be viewed within the simulator, and can be permanently saved to avoid them

being overwritten. The manual or random interleaving mode can be switched on

and off at runtime, where any interleaving decision occurring under manual inter-

leaving pauses the current execution and waits for input from the user. Each option

is numbered, allowing the user to enter the number corresponding to the statement

that should be executed next. Figure 7.9 contains an example of Ripple being put

into manual interleaving (via the command ‘force user’), where two nested parallels

mean there are four possible next steps. By default, the simulator randomly inter-

leaves threads using random number generation. Other commands allow the default
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directories to be changed, saving of reversal information to be switched on and off

(to simulate an original execution) and record mode to be turned on or off.

7.4 Performance Evaluation

Implementing our approach allows the evaluation of its performance. This focuses

on the execution time and memory usage of both annotated and inverted execution

via Ripple. The usability of our approach depends on both of these factors being

reasonable, as too large an execution time or memory usage would restrict the use

of Ripple to smaller programs. For example an original program that executes over

a long period of time using a large amount of memory would not be able to be

simulated if the increase of either time or space is too large. We have not yet

compared the original execution of programs compiled and ran in the normal way

(C++ compiler) with those in Ripple. This is due to difficulties in performing this

comparison, and therefore this is a target of future work.

Table 7.1: Performance evaluation of our approach

Program Original Annotated Ann Overhead Inverse Inv Overhead to Inv Overhead to
(ann/orig) Ann (inv/ann) Orig (inv/orig)

Loop 1 0.37014943 0.3977392 1.074536843 0.24140381 0.6069399496 0.6521793374
Loop 2 1.8362783 1.9805249 1.078553779 1.1934618 0.6025987353 0.6499351433
Loop 3 3.657365 3.9569446 1.081911321 2.390812 0.6042065891 0.6536979492

Airline 1 0.01374155 0.01417653 1.031654362 0.01359069 0.9586753599 0.9890216169
Airline 2 0.02621123 0.02744856 1.047206102 0.0263826 0.9611651759 1.006538037
Airline 3 0.05101487 0.05421426 1.062714852 0.05228272 0.9643721043 1.024852558

General 1 0.11839651 0.13549897 1.144450711 0.15150618 1.118135289 1.279650726
General 2 0.20901442 0.24076207 1.151892152 0.26914268 1.117878244 1.287675176
General 3 0.30034935 0.34899057 1.161948811 0.39145901 1.121689363 1.303345621

Bsort 1 0.00102031 0.00110894 1.086865756 0.00097308 0.8774866088 0.9537101469
Bsort 2 0.00465217 0.00519253 1.116152247 0.00503436 0.9695389338 1.08215306
Bsort 3 0.02696733 0.03092997 1.146942245 0.02922749 0.9449569463 1.083811041

7.4.1 Forward Execution Time

We first compare the execution time of an original execution with that of the match-

ing annotated execution, with all results shown in Table 7.1 (in seconds) and rep-

resented as a graph in Figure 7.10. This determines the overhead as a result of

saving information, and uses the following four programs, each executed 100 times

(to calculate an average) on an Intel Core i5 quad core 3.2GHz computer with 7.7Gb

memory, running Linux Ubuntu 16.04.

1. Loop an outer loop performs 100 iterations, with a nested loop performing

1000 (Loop 1 - see Figure 7.11), 5000 (Loop 2) and 10,000 (Loop 3) iterations,

each with an assignment. The average overheads are 7.45%, 7.86% and 8.19%

respectively.
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Figure 7.10: Graph representation of the overhead of annotated execution for each
of our programs, showing the percentage increase of execution time of each of the
three versions.

2. Airline an airline model where tickets are sold by four parallel agents. There

are initially 100 (Airline 1 - see Figure 7.12), 200 (Airline 2) and 400 (Airline

3) free seats. The average overheads are 3.17%, 4.72% and 6.27% respectively.

3. General a program using a mixture of all constructs of our language. Two

loops in parallel each (with 100 iterations) using a procedure call with 5 (Gen-

eral 1 - see Figure 7.13), 10 (General 2) and 15 (General 3) recursive calls.

The average overheads are 14.45%, 15.19% and 16.19% respectively.

4. Bubble sort a bubble sort of 5 (Bsort 1 - see Figure 7.14), 10 (Bsort 2) and

20 (Bsort) elements. The average overheads are 8.69%, 11.62% and 14.69%

respectively.

As shown by the data in Table 7.1 and the graph in Figure 7.10, the overhead

associated with the four programs above ranges from 3.17% (Airline 2) up to 16.19%

(General 3), a range that we deem to be reasonable. The results show a trend of

linearly increased overhead as the length of the program execution increases (as

expected since the amount of reversal information increases).

We note that the three versions of the Bsort are essentially different programs.

Due to not supporting arrays, as the number of elements increases, the length of the

program does also. In this case, this does not adversely affect our results.

We briefly compare the results shown here to those using the Backstroke frame-

work in [75]. Though not perfect for comparison as Backstroke focuses on applying

reverse computation to Parallel Discrete Event Simulation (PDES), evaluation in

[75] shows an increase factor of between 2 and 3 for an execution of 100,000 events

(in a mode that allows memory reuse and reduces re-initialisation of structures),
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1 X = 100;

2 while w1.0 (X > 0) do

3 Y = 1000;

4 while w2.0 (Y > 0) do

5 Y = Y - 1;

6 end;

7 X = X - 1;

8 end;

Figure 7.11: The program Loop 1

1 numOfSeats = 100;

2 begin b1.0

3 var agent1Open = 1;

4 var agent2Open = 1;

5 var agent3Open = 1;

6 var agent4Open = 1;

7 proc p1.0 sellTicket is

8 numOfSeats = numOfSeats - 1;

9 end

10
11 par {
12 par {
13 while w1.0 (agent1Open == 1) do

14 if i1.0 (numOfSeats > 0) then

15 call c1.0 sellTicket;

16 else

17 agent1Open = 0;

18 end;

19 end;

20 } {
21 while w3.0 (agent3Open == 1) do

22 if i3.0 (numOfSeats > 0) then

23 call c3.0 sellTicket;

24 else

25 agent3Open = 0;

26 end;

27 end;

28 }
29 } {
30 par {
31 while w2.0 (agent2Open == 1) do

32 if i2.0 (numOfSeats > 0) then

33 call c2.0 sellTicket;

34 else

35 agent2Open = 0;

36 end;

37 end;

38 } {
39 while w4.0 (agent4Open == 1) do

40 if i4.0 (numOfSeats > 0) then

41 call c4.0 sellTicket;

42 else

43 agent4Open = 0;

44 end;

45 end;

46 }
47 }
48 end

Figure 7.12: The program Airline 1

which can rise for executions with a small number of operations. As the number of

operations increases, the factor increase becomes less and less significant.

7.4.2 Reverse Execution Time

We now compare the time of an inverted execution with that of both the correspond-

ing original and annotated executions. Table 7.1 contains the results, detailing the

overhead incurred as a result of reversal. Figure 7.15 compares the inverse execution

times with the matching annotated execution times, while Figure 7.16 compares the

inverse and original execution times. We return to the four programs used above

and consider each in turn.
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1 begin b1.0

2 var left = 100;

3 var right = 100;

4 var loop1Count = 5;

5 var loop2Count = 5;

6 proc p1.0 fun1 is

7 begin b2.0

8 var other = 0;

9 if i3.0 (loop1Count > 0) then

10 loop1Count = loop1Count - 1;

11 call c1.0 fun1;

12 else

13 loop1Count = loop1Count - 1;

14 other = other + 1;

15 end;

16 end;

17 end

18 proc p2.0 fun2 is

19 begin b3.0

20 var other = 0;

21 if i4.0 (loop3Count > 0) then

22 loop2Count = loop2Count - 1;

23 call c2.0 fun2;

24 else

25 loop2Count = loop2Count - 1;

26 other = other + 1;

27 end;

28 end;

29 end

30 par {
31 while w1.0 (left > 0) do

32 left = left - 1;

33 call c3.0 fun1;

34 loop1Count = 5;

35 end;

36 } {
37 while w2.0 (right > 0) do

38 right = right - 1;

39 call c4.0 fun2;

40 loop2Count = 5;

41 end;

42 }
43 end

Figure 7.13: The program General 1

1 l1 = 19;

2 l2 = 14;

3 l3 = 5;

4 l4 = 4;

5 l5 = 1;

6 countu1 = 5;

7 countu2 = 5;

8 tempu = 0;

9
10 while w1.0 (countu1 > 1) do

11 while w2.0 (countu2 > 1) do

12 if i1.0 (countu2 == 5) then

13 if i2.0 (l1 > l2) then

14 tempu = l2;

15 l2 = l1;

16 l1 = tempu;

17 else

18 skip;

19 end;

20 else

21 if i2.0 (countu2 == 4) then

22 if i2.0 (l2 > l3) then

23 tempu = l3;

24 l3 = l2;

25 l2 = tempu;

26 else

27 skip;

28 end;

29 else

30 if i3.0 (countu2 == 3) then

31 if i4.0 (l3 > l4) then

32 tempu = l4;

33 l4 = l3;

34 l3 = tempu;

35 else

36 skip;

37 end;

38 else

39 if i5.0 (countu2 == 2) then

40 if i6.0 (l4 > l5) then

41 tempu = l5;

42 l5 = l4;

43 l4 = tempu;

44 else

45 skip;

46 end;

47 else

48 skip;

49 end;

50 end;

51 end;

52 end;

53 countu2 = countu2 - 1;

54 end;

55 countu2 = 5;

56 countu1 = countu1 - 1;

57 end;

Figure 7.14: The program Bsort 1
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Figure 7.15: The overhead of inverted executions compared to the corresponding
annotated execution. The percentage change in execution time of the three versions
of each program.

1. Loop each version shows an inverse execution time reduction of 39.31%,

39.74% and 39.58% respectively when compared to the annotated execution,

and 34.78%, 35.01% and 34.63% respectively compared to the original.

2. Airline each version shows an inverse execution time reduction of 4.13%,

3.88% and 3.56% compared to the annotated execution, and a reduction of

1.10%, and increase of 0.65% and 2.49% when compared to the original exe-

cution.

3. General each version shows an inverse execution time overhead of 11.81%,

11.79% and 12.17% compared to the annotated execution, and 27.97%. 28.77%

and 30.33% when compared to the original execution.

4. Bubble sort each version has an inverse execution time reduction of 12.25%,

3.05% and 5.50% compared to the original execution, and a reduction of 4.63%

and overhead of 8.22% and 8.38% when compared to the original.

We see that the inverse execution time ranges from 39.74% (Loop 2) faster to

12.17% (General 3) slower than the respective annotated execution, and from 35.01%

(Loop 2) faster to 30.33% (General 3) slower than the original execution. Programs

high in evaluation such as the loop programs are shown to have a much faster in-

verse execution time as none of this evaluation is performed during reversal, with

all values retrieved from a stack. We also see that the inverse execution is typically

faster than the annotated execution of such programs, as operations to write reversal

information (forward) tend to be slower than those to read it (reverse).
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Figure 7.16: The overhead of inverted executions compared to the corresponding
original execution. The percentage change in execution time of the three versions
of each program.

We also highlight the results of the program General, where the inverse exe-

cution is slower than both the original and annotated executions. This execution

contains large sections of parallel composition, where a forward execution can arbi-

trarily determine the interleaving order. The reverse execution of a parallel program

cannot interleave statements arbitrarily and must use identifiers to determine the

next step. In the worst case scenario, each interleaving decision within a reverse

execution would require all possible statements to be checked (retrieving the most

recent identifier it used) before finding the one with the correct identifier (namely

the current value of previous()). This process may lead to an increased execution

time, and is one example of an inefficiency within the current implementation of

Ripple. In general no optimisations have been applied to Ripple, though several

features could be optimised in the future, as discussed in Chapter 9.

7.4.3 Forward Memory Usage

We move now to evaluate the memory usage (heap), beginning with the difference

between an original program and the matching annotated version, with our results

shown in Table 7.2 (where all memory values are in Kibibytes). All results were

obtained using the memory profiler Valgrind [88]. We begin with a discussion of

the trade-off between execution time and memory usage in reversible computation

[92], relating to the current implementation of saving all identifiers from a loop or

procedure copy prior to its removal from the appropriate environment.

The majority of statements within such a copy contain identifier stacks, popu-

lated throughout its execution. These are lost as the copy is deleted. The imple-
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Table 7.2: Forward memory use evaluation of our approach

Program Original Annotated Ann Overhead 2nd Implem. Ann Overhead
(ann/orig) (2nd Implem./orig)

Airline 1 286,512 488,792 1.7060 295,967 1.0330
Airline 2 422,576 806,176 1.9078 439,272 1.0395
Airline 3 691,072 1,441,112 2.0853 759,552 1.0991

Bsort 1 297,488 452,968 1.5226 306,132 1.0290
Bsort 2 869,088 1,581,312 1.8195 893,032 1.0276
Bsort 3 3,225,080 6,270,056 1.9442 3,353,992 1.0340

mentation of saving these will typically favour either execution time, or memory

usage. All results shown in this chapter use an implementation that produces the

best execution times, namely where a copy of each stack is recorded. In the previous

subsection we concluded that the execution time of an annotated execution incurs a

reasonable linear overhead. We now consider the memory usage of the bubble sort

and airline programs.

1. Airline - the annotated execution of each version of the airline incurs a mem-

ory usage overhead of 70.60%. 90.78% and 108.53% respectively.

2. Bubble sort - the annotated execution of each version of the bubble sort

incurs a memory usage overhead of 52.26%, 81.95% and 94.42% respectively.

This shows both programs incur a manageable increase in memory usage. In light

of these results, we have performed other experiments using a different implemen-

tation of saving any identifiers lost when a copy is removed from either the while or

procedure environment. This version involved traversing all of the stacks that need

to be saved, and producing a string representation of all identifiers. This is time

consuming, leading to an increased execution time, however due to the trade-off

between time and memory, this increase in execution time allows this more memory

efficient approach to be applied. As can be seen from Table 7.2, this second imple-

mentation incurs a much lower memory overhead, namely 3.30% to 9.91% for the

airline programs, and 2.76% to 3.40% for the bubble sort programs.

The results shown here indicate the current implementation of this process, where

copies of multiple identifier stacks are stored, can be improved in the future. We

return to this in Chapter 9 where we detail our future work of finding an implemen-

tation that balances the increase of execution time and memory usage.

7.4.4 Reverse Memory Usage

Our final consideration is the memory usage of a reverse execution, compared only

to that of the annotated execution (with the implementation favouring execution

time as described in the previous subsection). We again evaluate the airline and
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bubble sort programs used above, with the results detailed in Table 7.3 where all

values are in Kibibytes.

Table 7.3: Reverse memory use evaluation of our approach

Program Annotated Inverted Inv Overhead
(Inv/ann)

Airline 1 355,528 114,421 0.3218340046
Airline 2 665,968 167,336 0.2512673282
Airline 3 1,304,584 192,992 0.1479337475
Bsort 1 248,168 246,592 0.9936494633
Bsort 2 1,013,688 656,464 0.6475996559
Bsort 3 4,276,224 2,541,776 0.5943973

1. Airline each version shows an inverted memory use reduction of 67.82%,

74.87% and 85.21% respectively, compared to the annotated execution.

2. Bubble sort each version shows an inverted memory use reduction of 0.64%,

35.24% and 40.56% respectively, compared to the annotated forward execution.

All of the programs tested above show that the inverse execution uses less memory

than the corresponding annotated execution, ranging from 0.64% to 85.21%. This

is as expected since the annotated execution saves reversal information, while the

inverted version uses this information (and does not save anything else). The result

for Bsort 1 is different to the rest, showing only a very small reduction. Though

further analysis is required, we believe this to be a result of the inefficient bub-

ble sort program (as we do not support arrays) and potential inefficiencies in the

implementation of Ripple. Obviously there remains the use of memory during the

inverted execution, including to maintain the program state.

7.5 Conclusion

We have introduced the simulation tool Ripple, and outlined both the software

architecture and the user interface. This chapter details the performance evaluation

produced via Ripple, showing that the execution time overhead associated with

annotation (between 4.72% and 16.19% slower for the programs tested) is linear.

Inverted executions are shown to typically be faster than the forward execution, with

the notable exception to this likely produced as a result of inefficient optimisation.

The evaluation of memory usage shows that the current implementation can result

in a large increase (between 52.26% and 108.53%). We have highlighted the process

within Ripple that is responsible for this increase, and performed experiments using

a modified implementation which performed better (between 2.90% and 9.91%).
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We have discussed that the trade-off for decreasing the memory usage increases the

execution time, and how in future work we would like to find another implementation

that balances these two factors.



Chapter 8

Application to Debugging

A correct approach to reversibility of a concurrent programming language has sev-

eral potential applications, including to Parallel Discrete Event Simulation (PDES)

[21], as shown by the Backstroke framework [93] and by the work of Schordan et

al [75, 76, 77]. Another possibility is to the field of reversible debugging, which

is explored further in this chapter. Recall the background of debugging and the

discussion regarding the link between reverse execution and debugging from Chap-

ter 1. Previous examples of reverse debuggers include [12, 91], and causal-consistent

reverse debuggers include [46, 24].

8.1 Suitability of the Approach

The simulation tool Ripple, introduced in Chapter 7, was initially developed to

implement the operational semantics of our programming language as defined in

Chapter 4. This tool can be used to simulate the execution of an original, annotated

and inverted program. As Ripple was developed, we began to add features that could

be useful for debugging. In addition, other features required for execution simulation

can also help with finding software errors. Such features included:

1. Small-step semantics allow the execution to be paused at any point. Interme-

diate program states can be viewed, and compared with the expected state.

This includes current position and current values of variables.

2. All reversal information saved up to a specific point can also be viewed. This

can display the current number of loop iterations, all previous values of a

variable and all results of evaluating conditional statements.

3. Program state is accessible in intermediate states, and can be changed to test,

for example, bug fixes.

159
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1 if i1.0 (X < 5) then X = 20 [0];

2 X = X + 10 []; par Y = 4 [3];

3 else

4 X = X - 7 [2];

5 Y = 30 [4];

6 end; [1,5];

Figure 8.1: Example concurrent program under a specific interleaving

4. Ripple contains a record mode which produces two files containing sufficient in-

formation to reproduce a specific execution. These are the interleaving history

and the semantics history, both described in Section 8.2 below.

8.2 Record Mode and Execution Histories

The record mode of our simulation tool is not related to reversal. No information

saved by this mode is used to implement reverse execution and is instead used

for the purposes of debugging. Aside from reversible execution, it is useful to be

able to reproduce a specific execution. Consider an arbitrary forward execution

that unexpectedly experiences a bug. Reverse execution can be used to find the

underlying cause (as shown in Section 8.3 and Section 8.4 below) while any fix that

is then implemented can be tested via executing the program forwards again.

In order to correctly test a fix, the specific interleaving order of the original in-

correct program must be repeated. Due to interleaving parallel composition, there is

no guarantee that two consecutive executions will have the same behaviour. Using

the inverted version of the program, the populated identifier stacks contain suffi-

cient information to reproduce an execution. To aid this process, Ripple produces

an interleaving and semantics history. Since the process is identical regardless of

whether a bug occurs, the description and example of each uses the small concurrent

program (that does not contain a bug) shown in Figure 8.1.

Interleaving history

The difficultly of reproducing a bug within a concurrent program is the potential

for different interleaving orders. Any bug can successfully be reproduced in our ap-

proach provided the result of each interleaving decision is known and can be used

during the following forward execution. Therefore Ripple can record the outcome

of each interleaving decision, indicating all of the possible statements and show-

ing which was executed. Recalling the program in Figure 8.1, the corresponding

interleaving history file is shown in Figure 8.2(a). Each line corresponds to an in-

terleaving decision, with all possible next steps shown in the first set of brackets
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1 [if i1.0 (open), X = 20] ---> [X = 20]

2 [if i1.0 (open), skip (X = 20)] ---> [if i1.0 (open)]

3 [X = X - 7, skip (X = 20)] ---> [X = X - 7]

4 [skip (X = X - 7), skip (X = 20)] ---> [skip (X = 20)]

5 [skip (X = X - 7), Y = 4] ---> [skip (X = X - 7)]

6 [Y = 30, Y = 4] ---> [Y = 4]

7 [Y = 30] ---> [Y = 30]

8 [if i1.0 (close)] ---> [if i1.0 (close)]

9 [par (close)] ---> [par (close)]

10 END OF FILE

(a) Interleaving history file

1 [D1a]

2 [I1aT]

3 [D1a]

4 [S2a]

5 [S2a]

6 [D1a]

7 [D1a]

8 [I5a]

9 [P3a]

10 END OF FILE

(b) Semantics history file

Figure 8.2: Example history files of an execution via Ripple

and the decision shown in the second. Consider line 1 of Figure 8.2(a), which states

the first interleaving decision made was between the opening of the conditional

statement if i1.0 (open) (where open simply indicates the conditional is about

to open and is not part of the language syntax) and the assignment X = 20. The

arrow ---> indicates the choice at this point was the assignment X = 20. Line 4

shows the decision at this point was between two applications of [S2a] that remove a

skip statement. Each entry contains the statement from which this skip originated

appended in brackets (avoiding ambiguity of which was executed). This file can

then be used (reading from top to bottom) during a following forward, manually in-

terleaved execution of the same program, to determine the exact interleaving order.

Any ambiguity between identical statements can be broken by looking further into

the history file (to determine which statement it makes available) or by using the

identifiers from the inverted version.

Semantics history

Recall the semantics from Chapter 4 and the discussion of inference trees. In addition

to all interleaving decisions, Ripple also records a sequence of transition rule names.

Specifically this contains only the leaf rules (those that appear at the top of the

corresponding inference tree). Returning to the program in Figure 8.1, the semantics

history file of this execution is shown in Figure 8.2(b). Each line contains a single

rule name (the leaf rule from the top of the inference tree) and corresponds to

the matching line in Figure 8.2(a). Consider again line 1 of both history files in

Figure 8.2. The decision to perform the assignment is reflected by inserting [D1a]

into the semantics history. Line 4 of both files again reflect the decision to perform

the skip step by inserting [S2a]. The two history files shown here can be used

together to reproduce any given execution. They can also be used to test equality
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1 seats = 3 [0];

2 begin b1.0

3 var agent1 = 1 [1];

4 var agent2 = 1 [2];

5 proc p1.0 sell is

6 seats = seats - 1 [7,13,22,23];

7 end [3];

8 par {
9 while w1.0 (agent1 == 1) do

10 if i1.0 (seats > 0) then

11 call c1.0 sell [6,8,20,24];

12 else

13 agent1 = 0 [31];

14 end [5,9,18,26,30,32];

15 end [4,17,29,33];

16 } {
17 while w2.0 (agent2 == 1) do

18 if i2.0 (seats > 0) then

19 call c2.0 sell [12,14,21,25];

20 else

21 agent2 = 0 [35];

22 end [11,15,19,27,34,36];

23 end [10,16,28,37];

24 }
25 remove proc p1.0 sell end [38];

26 remove var agent2 = 1 [39];

27 remove var agent1 = 1 [40];

28 end

(a) Executed Annotated Program

1 begin b1.0

2 var agent1 = 1 [40];

3 var agent2 = 1 [39];

4 proc p1.0 sell is

5 seats = seats - 1 [7,13,22,23];

6 end [38];

7 par {
8 while w1.0 (agent1 == 1) do

9 if i1.0 (seats > 0) then

10 call c1.0 sell [6,8,20,24];

11 else

12 agent1 = 0 [31];

13 end [5,9,18,26,30,32];

14 end [4,17,29,33];

15 } {
16 while w2.0 (agent2 == 1) do

17 if i2.0 (seats > 0) then

18 call c2.0 sell [12,14,21,25];

19 else

20 agent2 = 0 [35];

21 end [11,15,19,27,34,36];

22 end [10,16,28,37];

23 }
24 remove p1.0 sell end [3];

25 remove agent2 = 1 [2];

26 remove agent1 = 1 [1];

27 end

28 seats = 3 [0];

(b) Inverted Program

Figure 8.3: Airline Example

between two different executions. If both files of two distinct executions match, we

can conclude that both executions are identical since both are guaranteed to have

the same effect on the program state.

8.3 Airline Example

Consider a program that models an airline selling tickets via two agents. Each agent

is represented using a while loop that iterates until the agent is closed. Each iteration

uses a conditional statement to determine whether at least one free seat remains. If

it does, the agent calls the procedure to sell a ticket, while if it does not, the agent

must close. Each of the two agents operates in parallel, using a shared procedure
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sell and current number of seats. This program is shown in Figure 8.3(a), where

the number of initially free seats is 3, and the number of agents is 2, in order to

keep the execution and accompanying environments concise enough for discussion

here. Note that this example can easily be extended to have multiple agents, as is

done in Chapter 7 when evaluating performance. The specific execution captured

in Figure 8.3(a) incorrectly results in 4 tickets being sold when only 3 are initially

available. This is observable from the final program state, where seats = -1.

We now investigate this bug using reverse execution. The inverted version of this

program is shown in Figure 8.3(b). The inverse execution begins in the incorrect

final state and opens the block and re-declares the local variables and the procedure

(using identifiers 40–38). Next, the parallel statement is started, with each while

loop executing an entire iteration (to simulate the inversion of the final iteration

of each that closed each agent) using identifiers 37–30. From here, we now begin

the inversion of the penultimate iterations of each while loop (the last time each

allocated a seat). The identifiers 29–20 are used to govern the interleaving across

the two threads. At this point, the choice of next step is between the closing of the

two inverse conditional statements. Recall from the semantics of Chapter 4 that

the closing of an inverse conditional statement reverses the opening of the forward

version of it. The inverse execution can now perform the next two steps using

identifiers 19 and 18, where each conditional is closed. This implies that both

conditional statements were opened consecutively during the forward execution,

with the condition of each evaluated before execution of the branches. Viewing

the program state via Ripple shows that the current number of seats is 1, meaning

both of the conditional statements evaluate to true.

The simulator has shown that both agents commit to selling another ticket in the

situation where only one remains. Therefore the cause of the bug is a race between

the reading of and updating of the variable seats. Specifically there is an atomicity

violation between checking for a free seat and the allocation of it.

This bug can be fixed by ensuring the critical sections of each agent (namely

the conditional statement of each) are mutually exclusive. The interleaving order

followed in the example above can be avoided by restricting the interleaving once an

agent enters the critical section. This would mean that once an agent checks for at

last one free seat, no interleaving is allowed until the agent has sold one ticket. This

can be implemented using atomic sections to encapsulate a critical section, where

the operational semantics of parallel composition are updated to restrict interleaving

if one potential step is within an atomic section.
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1 begin b1.0

2 var X1 = -1 [0];

3 var X2 = -1 [1];

4 var X3 = -1 [2];

5 var toPush = 0 [3];

6 var current = 1 [4];

7 proc p1.0 push is

8 if i1.0 (current == 1) then

9 X1 = toPush [10,61];

10 else

11 if i2.0 (current == 2) then

12 X2 = toPush [18];

13 else

14 if i3.0 (current == 3) then

15 X3 = toPush [];

16 else

17 Y = 100 [52];

18 end [51,53];

19 end [17,19,50,54];

20 end [9,11,16,20,49,55,60,62];

21 current = current + 1 [12,21,56,63];

22 end [5];

23 proc p2.0 pop is

24 if i4.0 (current == 1) then

25 Y = 200 [44];

26 else

27 if i5.0 (current == 2) then

28 X1 = -1 [36];

29 else

30 if i6.0 (current == 3) then

31 X2 = -1 [27];

32 else

33 if i7.0 (current == 4) then

34 X3 = -1 [];

35 else

36 Y = 400 [];

37 end [];

38 end [26,28];

39 end [25,29,35,37];

40 end [24,30,34,38,43,45];

41 current = current - 1 [31,39,46];

42 end [6];

43
44 toPush = 4 [7];

45 call c1.0 push [8,13];

46 toPush = 7 [14];

47 call c2.0 push [15,22];

48 call c3.0 pop [23,32];

49 call c4.0 pop [33,40];

50 toPush = 100 [41];

51 call c5.0 pop [42,47];

52 call c6.0 push [48,57];

53 toPush = 55 [58];

54 call c7.0 push [59,64];

55
56 remove p2.0 pop end [65];

57 remove p1.0 push end [66];

58 remove current = 1 [67];

59 remove toPush = 0 [68];

60 remove X3 = -1 [69];

61 remove X2 = -1 [70];

62 remove X1 = -1 [71];

63 end

Figure 8.4: Executed annotated stack program

8.4 Stack Example

Figure 8.4 contains a program written using our programming language that im-

plements a stack. Since stacks and arrays are not currently supported, the imple-

mentation relies on the use of variables and conditional statements. This program

implements a stack of three elements, each represented using local variables X1, X2

and X3 (used in ascending order). As procedures do not support arguments, the

value pushed next to the stack is always that of toPush, with current indicating

the head of the stack.

The block statement contains two procedures, namely push and pop. Through

the use of nested conditional statements, each of the functions modifies the top of

the stack. Consider the execution of the program in Figure 8.4. Lines 44–54 describe

the interaction with the stack, beginning with the pushing of both 4 and 7 to the

stack. Lines 48, 49 and 51 show three calls of the pop procedure, removing both

elements of the stack. Though this is deemed incorrect, this should not lead to an



CHAPTER 8. APPLICATION TO DEBUGGING 165

1 begin b1.0

2 remove X1 = -1 [71];

3 remove X2 = -1 [70];

4 remove X3 = -1 [69];

5 remove toPush = 0 [68];

6 remove current = 1 [67];

7 proc p1.0 push is

8 current = current + 1 [12,21,56,63];

9 if i1.0 (current == 1) then

10 X1 = toPush [10,61];

11 else

12 if i2.0 (current == 2) then

13 X2 = toPush [18];

14 else

15 if i3.0 (current == 3) then

16 X3 = toPush [];

17 else

18 Y = 100 [52];

19 end [51,53];

20 end [17,19,50,54];

21 end [9,11,16,20,49,55,60,62];

22 end [66];

23 proc p2.0 pop is

24 current = current - 1 [31,39,46];

25 if i4.0 (current == 1) then

26 Y = 200 [44];

27 else

28 if i5.0 (current == 2) then

29 X1 = -1 [36];

30 else

31 if i6.0 (current == 3) then

32 X2 = -1 [27];

33 else

34 if i7.0 (current == 4) then

35 X3 = -1 [];

36 else

37 Y = 400 [];

38 end [];

39 end [26,28];

40 end [25,29,35,37];

41 end [24,30,34,38,43,45];

42 end [65];

43
44 call c7.0 push [59,64];

45 toPush = 55 [58];

46 call c6.0 push [48,57];

47 call c5.0 pop [42,47];

48 toPush = 100 [41];

49 call c4.0 pop [33,40];

50 call c3.0 pop [23,32];

51 call c2.0 push [15,22];

52 toPush = 7 [14];

53 call c1.0 push [8,13];

54 toPush = 4 [7];

55
56 remove p2.0 pop end [6];

57 remove p1.0 push end [5];

58 remove current = 1 [4];

59 remove toPush = 0 [3];

60 remove X3 = -1 [2];

61 remove X2 = -1 [1];

62 remove X1 = -1 [0];

63 end

Figure 8.5: Inverted version of the stack program

error as popping an empty stack should simply do nothing. Finally, we push the

values 100 and 55 to the stack. The expected final stack after this execution (and

prior to the removal statements) is X1 = 100, X2 = 55 and X3 = -1 (where the top

of the stack is currently X2 as X3 is not used). Note we assume that the value -1 is

restricted and cannot be pushed to our stack.

Now consider the execution of the program from Figure 8.4, where the final

version of the stack (prior to the removal statements) incorrectly contains the values

X1=55, X2=-1 and X3=-1 (where the top of the stack is X1). The observable bug

here is that the value 100 pushed via lines 50–51 is not within the stack.

We now investigate this bug using reverse execution. The inverted version is gen-

erated and shown in Figure 8.5. With this program being sequential, the identifiers

are not used to determine the inverse interleaving order (as this is fixed in a sequen-

tial program) and instead only used to link reversal information to the statement

that requires it. The inverse execution begins by opening the block and re-declaring

all local variables and the two procedures. The call c7.0 is then reversed, removing
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the value 55 from the stack. The final step of this inverted call restores the value

of current to 1. This raises concerns as it indicates an empty stack (when we

know that it should contain 100). The first element X1 has also been restored to -1,

meaning no value was incorrectly overwritten here (namely the missing 100).

We therefore continue further back, executing line 45 which restores toPush to

the value 100. Next the call c6.0 is now inverted, with the only change being to the

variable current which is restored to 0. This is very alarming for the same reasons

as above, where an empty stack (as here) should have current = 1. It is clear that

this value is incorrectly changed at some point in the remaining execution.

The next step is to invert the call c5.0 to the pop procedure. We see that the

assignment from line 24 is used to restore current to the value 1. No other change

is made here as each of the conditionals retrieve an F from the stack (auxiliary

store). This call to pop corresponds to the previously mentioned third instance,

called during the forward execution on an empty stack. Such a call should not

lead to a fatal error, and instead should do nothing. Examining the code of this

procedure (lines 23–42 of Figure 8.4), we note that current is decremented regardless

of whether an element is popped. This is the cause of the error, as this pop action

results in the following push (of 100) not correctly inserting the value.

This bug can be fixed by re-working the procedure pop, ensuring the value of

current is not changed unless an element is removed. This involves removing line 41

of Figure 8.4 and instead performing this decrement in each of the true branches of

the conditionals with construct identifiers i4.0, i5.0, i6.0 and i7.0. The updated

version of the procedure pop is shown below.

1 proc p2.0 pop is

2 if i4.0 (current == 1) then

3 Y = 200 [];

4 else

5 if i5.0 (current == 2) then

6 X1 = -1 [];

7 current = current - 1 [];

8 else

9 if i6.0 (current == 3) then

10 X2 = -1 [];

11 current = current - 1 [];

12 else

13 if i7.0 (current == 4) then

14 X3 = -1 [];

15 current = current - 1 [];

16 else

17 Y = 400 [];

18 end [];

19 end [];

20 end [];

21 end [];

22 end [6];
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8.5 Conclusion

We have demonstrated that our simulation tool Ripple is suitable for use within

debugging. We have used examples of common types of software bugs and described

the process of using Ripple to help find the cause. The ability to step-by-step reverse

execute a program with the program state viewable at each point is useful, as is

the debugging-specific feature of record mode. The history files produced by record

mode allow a user to perform traditional, cyclic debugging as any arbitrary execution

can be (manually) reproduced. Ripple is not a complete debugger, and cannot be

used to fix software errors at runtime. It is however a helpful aid in determining the

underlying cause of misbehaviour.



Chapter 9

Conclusion

We now summarise and evaluate the research presented here. We also outline topics

of potential future work.

9.1 Summary

We have proposed an approach to reversibly executing programs written in an imper-

ative, concurrent programming language. Reversal information is recorded during

the forward execution, via a modified operational semantics defining the annotated

execution. We have presented a method of recording the number of iterations of

each loop without modifying the behaviour of the program, which means we do not

require a fresh variable for each loop. We have introduced the use of identifiers as a

method of capturing an arbitrary interleaving order resulting from interleaving par-

allel composition. Each time a statement is executed, the next available identifier

(used in ascending order) is assigned to that statement. This records the result of

each interleaving decision, ensuring the ability to reproduce any execution.

We have generated an inverted version of a given program which has the inverted

statement order, and executes via a third modified operational semantics that re-

verse the effects of the respective forward step. All interleaving decisions made

within a reverse execution are determined via the identifiers, with only the state-

ment containing the current highest identifier allowed to execute (with the exception

of skip steps that can freely interleave).

The reversibility implemented here is shown to be correct. We have shown that

saving all reversal information, including the identifiers, does not interfere with the

underlying program behaviour. Two executions of the same program, one with

saving enabled and one without, will produce equivalent final program states (one

records reversal information). Secondly, execution of an inverted program beginning

in the appropriate final program state restores this state to as it was prior to the

168
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corresponding forward execution, including using all reversal information such that

it is garbage free.

We have implemented the three operational semantics in our simulator Ripple.

It allowed us to demonstrate our proposed method of reversibility did indeed work,

and to test the reversibility of larger programs that would be difficult to perform

by hand. This experimentation with larger programs aided the development, high-

lighting issues and the necessary adjustments to overcome these. Ripple has also

been used to produce performance evaluation. Our results show that our current

implementation incurs linearly increasing overheads with respect to both execution

time and memory usage. This has also indicated that Ripple can be optimised with

respect to the space-time trade-off [92]. We have demonstrated the use of Ripple as

an aid to debugging with two examples of commonly occurring bugs. The ability to

execute step-by-step in both directions, to view the program state at any interme-

diate position and to determine interleaving manually means Ripple can be useful

within reverse debugging.

9.2 Evaluation

The following is a list of objectives we set out to achieve in Chapter 1. Now we

discuss whether or not each of them was met.

• To propose a method of reversing executions of a concurrent imperative pro-

gramming language.

We have achieved this, considering first a concurrent while language (Chapter 3),

before extending this with additional constructs (Chapter 4). This is achieved by

saving information during a forward execution that is used during an (step-by-step)

inverted execution to revert all effects on the program state.

• To support common programming constructs from typical, widely used pro-

gramming languages.

Our initial while language was then extended with block statements, local variable

declarations and potentially recursive procedures (Chapter 4). This also includes

removal statements that clean any locally declared variables or procedures at the

end of the corresponding block statement. Some other programming constructs

frequently used in traditional programming languages are not currently supported,

including procedure arguments and return statements within procedure calls (func-

tions), pointers and data structures such as arrays or lists. This addition is an

example of possible future work (see Section 9.3).
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• To allow concurrent composition of programs, and to reverse in backtracking

order (reversing statements in exactly the inverted order in which they were

performed forwards).

Our programming language supports an interleaving form of parallel composition.

Executions containing interleaving have the specific execution order captured by

annotating a series of identifiers to each statement as they execute. Backtracking

reversibility is performed in the majority of cases, using the identifiers in descending

order to determine which is due to be reversed next. We show our approach performs

one possible relaxation to this, namely skip steps during an inverse execution can

happen at any point after they become available (respecting the program order of

statements). Another possible relaxation (that has not been implemented here) is to

support causal-consistent reversibility [15, 64, 67], which we believe can be achieved

using the approach outlined in Section 9.3.

• To ensure that our proposed method performs correct reversibility and does

not produce garbage.

We have proved the correctness of our method in Chapter 6. This shows that the

process of saving information during a forward execution and annotating a program

with identifiers does not change the behaviour of the underlying program. Secondly,

the inverse execution correctly restores the initial program state, as well as using all

reversal information saved and therefore being garbage free.

• To implement our method in the form of a simulator, that can be used to

show that our approach works, to perform tests that would be difficult to do

so by hand, and to evaluate the performance in terms of execution time and

memory usage overheads.

We have introduced Ripple, a simulator implementing the operational semantics

defined in this work. This has been used to evaluate the performance. We have

focused on the overhead on a forward execution time, and the increased memory

usage. The approach to reversibility proposed here results in a linear increase in both

execution time and memory usage (see Chapter 7). Our experiments highlighted

the space-time trade-off, and that possible future work could be to optimise the

implementation of how information is saved, and therefore balance the execution

time increase with that of the memory usage. Other optimisations could reduce the

amount of information saved, as described in Section 9.3.

• To demonstrate the use of our method to the field of reverse debugging.

Chapter 8 explores the link between Ripple and reverse debugging. Extra features

have been implemented within Ripple that do not directly relate to reversibility,
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but that aid the use of Ripple as a debugger. This includes a ‘record mode’ that

maintains two history files throughout a execution, namely an interleaving decision

history (all possible statements and the one that was actually executed at each

point) and a semantics history (an ordered list of leaf transition rules performed).

Both of these histories are not required for reverse execution, but to allow cyclic

debugging when used in conjunction with ‘manual interleaving mode’ (a user can

reproduce a specific execution using these histories). Ripple is an aid to debugging,

and could have key debugging functionality added, as described in Section 9.3.

9.3 Future Work

We now describe a number of topics of potential future work.

1. Extension of our programming language and Ripple

The obvious next step is to maintain the current approach and extend our program-

ming language. This extension could be towards frequently used languages such as

C++, with constructs including procedure arguments and return statements within

procedures, data structures such as arrays, heaps, lists or stacks, pointers and dif-

ferent types of variables such as boolean.

2. Relaxation of backtracking reversibility to causal-consistent reversibility.

We could relax the order in which statements are allowed to invert, which currently

follows backtracking reversibility. A typical execution of a concurrent program may

involve performing a number of independent steps at any time. It is clear that such

statements can be performed in any order as well as undone in any order (as they

are independent). As in [15, 64, 67], our reversibility could be relaxed to allow

causal-consistent reversibility, where the reverse execution of parallel composition

can follow any order that respects causal dependencies. This would require all

dependencies between statements to be known, and to be able to determine whether

two statements (or steps of their execution) are independent.

This would also require modification to the use of stacks within the auxiliary

store and identifiers. The LIFO nature of stacks make them ideal for backtracking

reversibility as the final information saved is used first. This would no longer to be

case as all variables, conditionals and loops share their respective stacks. A solution

is to use a data structure that still has order but allows random access, e.g. an array

or heap, or to use separate stacks for each variable, conditional and loop respectively.

Identifiers are used in descending order during an reverse execution, meaning

statements can be reversed provided it holds the appropriate identifier. Causal-

consistent reversibility breaks this, potentially allowing statements with lower iden-

tifiers to execute first. Our method could be updated to allow any statement with
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an identifier less than or equal to the current value of previous() execute, provided

it is independent of any other possible identifier steps with a higher identifier.

3. Optimisation of space-time trade-off.

In Chapter 7, we gave the performance evaluation of our simulation tool. We noted

one particular process, namely the saving of all identifiers that are assigned to the

copy of a loop or procedure body, is implemented in a such a way that favours ex-

ecution time, but that requires larger memory usage. Given more time, we could

optimise the implementation of this process. This could lead to an entirely different

approach to recording all of the identifiers that are lost when a program copy is

removed, for example assigning the appropriate identifiers directly into the auxil-

iary store during forward execution, which would remove the need to extract and

insert (during inversion) each identifier. An alternative is to develop an implementa-

tion that extracts and inserts identifiers in such a way that balances the space-time

trade-off. A possibility is to choose between our two current implementations (see

Chapter 7) at runtime, choosing either the time-efficient or memory-efficient ap-

proach depending on the current program and state. We could potentially reduce

the amount of identifiers that need to be stored, by spotting patterns within an

execution such as sequential use of identifiers. Any sequential identifiers can be

recorded simply by saving the beginning and end values. Further work is required

to compare the overhead of analysing the identifiers with that of saving them all.

4. General optimisation of Ripple.

Our results in Chapter 7 show Ripple can be optimised. Guided by a memory

profiler, we could determine any slow or inefficient segments of the simulator and

improve the implementation. Inspired by the reversible language Janus [55, 97], we

could pre-process an original program and convert all assignments (destructive) into

equivalent versions (constructive increments or decrements), removing the need to

save old values of variables. A technique suggested by Perumalla [63] is to spot

invariant conditional statements and no longer save reversal information for it (as

the condition can be re-evaluated). A challenge here is how to determine during

an inverse execution whether to evaluate the condition (in the case of an invariant

expression - which would increase the execution time of the inverted version) or to

retrieve the value from the auxiliary store.

Our programming language could be extended with constructs commonly sup-

ported in traditional programming languages. This includes arguments and return

statements within procedures, data structures such as arrays, lists or stacks, pointers

and different types of variables such as boolean.
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5. Develop Ripple towards a debugger.

Ripple is currently an aid to debugging, performing reverse execution of programs.

We could move Ripple towards being a debugger, adding functionality including

modifying the program state at runtime (to allow testing) and loading an execution

(performed previously) into the simulator without having to execute it first. Another

desired capability would be to perform bi-directional executions, where reversal can

begin at any point within a forward execution (without requiring it to complete

first) and programs can be executed forward again after any number of reverse steps.

Other extensions could help with the ability of Ripple to perform cyclic debugging,

for example to automate the process of using history files and manual interleaving

to reproduce a forward execution. Finally, debugging features such as break points

could also be added.
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