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This study aimed to determine for continuous outcomes dependent on baseline

risk, whether funnel plot asymmetry may be due to statistical artefact rather

than publication bias and evaluate a novel test to resolve this. Firstly, we con-

ducted assessment for publication bias in nine meta-analyses of postoperative

analgesics (344 trials with 25 348 participants). Secondly, we attempted to

resolve the observed asymmetry by considering meta-regression residuals as

outcome (rather than mean difference) and (inverse) sample size as the explor-

atory variable (rather than SE). Since the approach resolved the asymmetry,

we evaluated it, and related approaches, using a simulation study considering

four scenarios comprised of every combination of baseline interactions and

absolute selective publication bias being present or not (10 000 simulated

meta-analyses per scenario with no residual between-study heterogeneity).

The test based on meta-regression residuals and inverse sample size performed

as well as conventional tests (Egger's test) when no baseline risk was present

and reduced type I errors when baseline risk was present. It also had modest

power to detect publication bias in the presence of baseline risk. We demon-

strated that correlation between effect estimates and SEs produces funnel plot

asymmetry in the presence of no publication bias for continuous outcomes

dependent on baseline risk. Our novel approach of assessing funnel plot asym-

metry using a modified funnel plot and test based on residuals and inverse

sample size may have improved performance when carrying out publication

bias assessments for unstandardized mean differences where treatment effects

are dependent on baseline risk.
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1 | INTRODUCTION

Publication bias can affect the validity of results and
reduce the quality of evidence derived from meta-ana-
lyses.1 Studies with positive findings are both more likely
to be published and are published more quickly than
studies with negative findings.2 Many methods exist to
help identify possible publication bias (small study
effects). In fact, when referring to publication bias from
this point, we are actually referring to small study effects
as, strictly speaking, it is larger effects in the smaller
studies—a possible symptom of publication bias—that is
being considered including funnel plots and quantitative
tests such as Egger's linear regression test.3,4 Indeed,
selective publication of these smaller studies with larger
treatment effects and larger standard errors
(as SE= SD=

ffiffiffiffi
N

p
) is what contributes to the funnel plot

asymmetry observed. Of note, other factors can contrib-
ute to small study effects such as selective outcome
reporting, clinical heterogeneity or statistical artefact.

Despite a number of research studies evaluating these
methods in meta-analyses with binary outcomes, little
research has been conducted in other types of outcomes.
In particular, little work has been conducted assessing
funnel plot asymmetry for unstandardized mean differ-
ences5 and current recommendations advise the use of
traditional tests.6 Concerns have recently been raised
when funnel plots are used to help identify publication
bias in meta-analyses with proportion outcomes7

although it is as yet unknown whether similar concerns
exist when using continuous outcomes.

In meta-analyses of postoperative pain where mor-
phine consumption is used as the outcome measure,
we have recently demonstrated that reductions in con-
sumption are dependent on baseline risk, that is, the
degree of pain experienced (and thus morphine con-
sumed) over the first 24 hours of the trial.8,9 However,
these findings have implications for the use of funnel
plots and regression tests when assessing funnel plots
for asymmetry.10 The underlying issue relates to the
fact that, on average, studies with higher baseline risk
will have larger SDs, and, if effect estimates are also
dependent on baseline risk (ie, on average, if trials in
patients with higher pain levels offer more potential
for larger absolute reductions in pain) then this may
cause correlation between mean differences (x-axis)
and SEs (y-axis). Such correlation could result in fun-
nel plot asymmetry even in the absence of publication
bias, which has important implications for the inter-
pretation of the results derived from these analyses.
Further, as postoperative pain studies in general have
a tendency to recruit a small number of participants
this further exacerbates this issue.

Consequently, our study aimed to establish whether
this correlation can influence funnel plot asymmetry in
practice using data from postoperative pain trials, and
then proposes and evaluates methods intended to over-
come this issue. In Section 2, we present the motivating
funnel plots from nine postoperative pain meta-analyses
and examine whether baseline risk interactions with
treatment effects could be the cause of funnel plot asym-
metry. In Section 3, we outline our proposed method for
assessing publication bias in mean difference outcomes
when baseline risk interactions with treatment are a pos-
sibility. In Section 4, we evaluate the statistical perfor-
mance of this approach and several related alternatives
via a simulation study. Section 5, the discussion, con-
cludes the paper.

2 | MOTIVATING DATASETS

2.1 | Meta-analyses of postoperative pain
trials

We identified randomised controlled trials from a search
strategy we have described previously.10 We performed
meta-analyses for 10 different postoperative analgesics:
paracetamol, non-steroidal anti-inflammatory drugs
(NSAIDS) and cyclooxygenase 2 (COX-2) inhibitors,
tramadol, intravenous ketamine, alpha-2 agonists (cloni-
dine and dexmedetomidine), gabapentin, pregabalin,
lidocaine, magnesium and dexamethasone (Table 1). We
extracted study data onto an electronic database includ-
ing: study name, type of analgesic used and data used to
calculate effect estimates. In order to minimise selective
outcome reporting, where standard SDs were not
reported, we estimated these from similar studies in the
analysis. This is due to statistically non-significant results
being less likely to be fully reported than significant
results. If multiple sub-groups were reported within a
study (such as different doses), we used data from the
most statistically significant subgroup, as we assumed
one statistically significant sub-group would increase the
chances of that study being published.

2.2 | Publication bias assessment

The outcome of interest was 24-hour morphine consump-
tion (in milligrams), a common outcome in postoperative
pain trials. If alternative opioids to morphine were used,
we converted these to morphine-equivalents as described
previously.10 We constructed funnel plots for each meta-
analysis and allocated each trial to a sub-group
depending on the different levels of baseline risk
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TABLE 1 Information on included meta-analyses partly reproduced from reference 10. Nefopam data not shown due to the low

number of studies (5 with 394 participants)

Analgesic meta-analysis Studies (participants) I2 R2 (control mean vs SE) Mean difference (95% CI)

Paracetamol 25 (1812) 99% R2 = 52%; P < .001 −8.18 mg (−10.57 to −6.73 mg)

NSAIDS and COX-2 inhibitors 86 (6937) 92% R2 = 45%; P < .001 −11.09 mg (−12.73 to −9.45 mg)

Tramadol 11 (889) 86% R2 = 23%; P = .14 −8.48 mg (−11.88 to −4.89 mg)

Ketamine 62 (4309) 95% R2 = 63%; P < .001 −8.13 mg (−10.23 to −6.03 mg)

Alpha-2 agonists 33 (1930) 96% R2 = 55%;
P < .001

−10.7 mg (−12.38 to −9.01 mg)

Gabapentin 67 (5082) 97% R2 = 60%; P < .001 −8.6 mg (−9.73 to −7.46 mg)

Pregabalin 34 (3201) 94% R2 = 48%; P < .001 −8.18 mg (−9.6 to −6.76 mg)

Lidocaine 22 (1319) 80% R2 = 31%; P = .007 −5.04 mg (−7.42 to −2.66 mg)

Magnesium 22 (1194) 91% R2 = 5%; P = .34 −6.77 mg (−8.39 to −5.15 mg)

Dexamethasone 16 (2163) 88% R2 = 18%; P = .1 −4.23 mg (−5.79 to −2.67 mg)

Abbreviations: CI, confidence interval; I2, measure of variability in results due to between-study differences compared to sampling variance;
R2, proportion of between-study variance explained by model.

FIGURE 1 Funnel plots of postoperative analgesics. Analgesics are as follows from top left: alpha-2 agonists, dexamethasone,

gabapentin, ketamine, lidocaine, magnesium, NSAIDS and COX-2 inhibitors, paracetamol and pregabalin. Tramadol not included due to the

low number of studies. X-axis is the mean difference in morphine consumption and the y-axis is the SE on a reverse scale. Studies are

labelled as blue dots (low baseline risk; <20 mg), red triangles (medium baseline risk; 20-50 mg) and green squares (high baseline risk;

>50 mg). It can be observed that there is a relation between baseline risk with both mean differences and SEs (larger baseline risk nearer the

bottom left of the plot) [Colour figure can be viewed at wileyonlinelibrary.com]
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(milligrams of mean control group consumption). Groups
included consumptions of <20 mg (low), 20 to 50 mg
(medium) and >50 mg (high) (Figure 1). These categories
were based on clinical experience rather than any empiri-
cal data and are used to visually highlight the impact of
baseline risk (N.B. Baseline risk is treated as a continuous
variable in all subsequent statistical analyses to ensure no
loss of information or power compared to treating it as a
categorical variable). We used Egger's linear regression
test to assess funnel plots for asymmetry with a P < .05
as evidence of possible publication bias. To quantify the
relation between baseline risk and SEs of the effect sizes,
we also performed (unweighted) linear regression analy-
sis using SEs as the outcome variable and baseline risk as
the predictor variable. All analyses were conducted using
Stata Version 14.2.11

2.3 | Results of publication bias
assessment on postoperative analgesic
trials meta-analyses

We included 344 randomised controlled trials with
25 348 participants (Table 1) although only 339 trials
were included in the final analysis due to the low number
of studies in one meta-analysis of nefopam.10 Observation
of funnel plots and quantitative analysis using Egger's
linear regression test demonstrated asymmetric study
effects for 6 out of 10 analyses (60%). These included:
alpha-2 agonists (P = .02), gabapentin (P < .001), lido-
caine (P = .02), NSAIDS and COX-2 inhibitors (P < .001),
paracetamol (P = .02) and pregabalin (P < .001). There
was less evidence of asymmetric study effects with keta-
mine (P = .17), magnesium (P = .21), dexamethasone
(P = .09) and tramadol (P = .23).

When studies were assigned a subgroup on the basis
of baseline risk (mean control group morphine con-
sumption), this appeared to explain some or all of the
asymmetry (Figure 1). That is, those studies that
included patients with higher pain (and therefore
higher morphine consumption) had larger reductions in
morphine consumption with the intervention and also
larger SEs. On linear regression analysis, baseline risk
predicted SEs for alpha-2 agonists (R2 = 55%; P < .001),
gabapentin (R2 = 60%; P < .001), ketamine (R2 = 63%;
P < .001), lidocaine (R2 = 31%; P = .007), NSAIDS and
COX-2 inhibitors (R2 = 45%; P < .001), paracetamol
(R2 = 52%; P < .001) and pregabalin (R2 = 48%;
P < .001). There was no significant relation for dexa-
methasone (R2 = 18%; P = .1), magnesium (R2 = 5%;
P = .34) and tramadol (R2 = 23%; P = .14) (of note, we
have previously excluded the issue of regression to the
mean with frequentist meta-regression when our

postoperative pain data were re-analysed using Bayesian
meta-regression10).

The above findings support the notion that while
there would appear to be concern regarding publication
bias in the literature due to asymmetry of funnel plots,
the asymmetry could be induced by treatment effects
interacting with baseline risk and not publication bias, as
explained in detail above. In the next section, we outline
our novel approach to assessment of publication bias for
continuous outcome meta-analysis and apply it to the
motivating datasets presented in this section.

3 | MODIFIED ASSESSMENT OF
FUNNEL ASYMMETRY ADJUSTING
FOR BASELINE RISK USING
REGRESSION RESIDUALS

3.1 | Outline of approach

Instead of plotting the observed treatment effects on the
funnel plot, residuals from a meta-regression model10

including baseline risk as a study-level covariate are
instead plotted on the x-axis (xi = residuali). The residuals
are generated from fitting a meta-regression model of
the form:

M̂Di = α+ β ^μ:ci + ui + σ̂iεi, εi ~N 0,1ð Þ;ui ~N 0τ2
� � ð1Þ

where i = 1,…., I indexes studies, ^MDi is the observed
mean difference treatment effect in the ith study, α and β
are the intercept and slope of the regression, respectively,
^μ:ci is the observed mean baseline rate, ui is a random

effect term (assumed normally distributed with mean
0 and variance τ2) which accounts for any remaining
between study heterogeneity not explained by the regres-
sion, and σ̂iεi is the random error term where σ̂2i is the
sample estimate of Var ^MDi

� �
.12

In this way, the effect of baseline risk interactions
with treatment effects is adjusted for prior to publication
bias assessment in the belief that it will remove any
artefactual asymmetry. SE of the residuals was consid-
ered for plotting on the y-axis (on a reverse scale) (yi = s.
e. (residuali)). The SE of the ith study residual is esti-
mated by the square root of the ith diagonal element of
the matrix defined by (I-H) × M × transpose(I-H), where
M is a matrix with diagonal equal to the variance esti-
mates of each study and 0 otherwise, H is the hat matrix
from the regression model and I is the identity matrix.
However, due to the concerns regarding problems associ-
ated with the correlation between baseline risk and the
SE of the residuals, study sample size and inverse of the
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study sample size were also considered as the y-axis scale
(yi = sample. sizei and yi = 1/sample. sizei, respectively).
As well as producing this modified funnel plot, a formal
regression test based on Egger's test but using the new
axes scales (ie, residuals and their SE or study sample
size/inverse sample size) can be conducted for each of
the three competing y-axis options:

residuali = α+ β s:e: residualið Þð Þ+ εi,

where εi ~N 0,s:e: residualið Þ2φ� �
, ð2aÞ

residuali = α+ β sample:sizeið Þ+ εi,

where εi ~N 0,s:e: residualið Þ2φ� �
, ð2bÞ

residuali = α+ β 1=sample:sizeið Þ+ εi,
where εi ~N 0,s:e: residualið Þ2φ� �

, ð2cÞ

where φ is a multiplicative dispersion parameter esti-
mated from the data which allows for heterogeneity infla-
tion. Stata code used to perform these analyses is
available in Data S1.

3.2 | Results of applying modified
assessment to postoperative analgesic trials
meta-analyses

Figure 2 presents pairs of funnel plots for the six of the
nine meta-analyses described in Section 2 that demon-
strated funnel plot asymmetry. The first of each pair,
using blue plotting symbols, presents the residuals of the
meta-regression model adjusting for baseline risk mor-
phine consumption (x-axis) vs inverse sample size of the
individual studies (y-axis) (as proposed in Section 3.1).
The second funnel of each pair, using red plotting

FIGURE 2 Funnel plots of postoperative pain meta-analyses with residuals (x-axis) vs inverse sample size (on a reverse scale, blue

plots, y-axis) and traditional plots with mean difference (x-axis) vs SE (on a reverse scale, red plots, y-axis). Plots from top left with p values

for new publication bias test in parentheses: alpha-2 agonists (P = .17), gabapentin (P = .55), lidocaine (P = .60), NSAIDs (P = .002),

paracetamol (P = .20) and pregabalin (P = .01). It can be observed that the new method results in more plots demonstrating funnel plot

symmetry. Coloured lines are from regression asymmetry test [Colour figure can be viewed at wileyonlinelibrary.com]
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symbols, is a “standard” funnel plot of the observed
data, that is, the mean difference vs SE (these are
essentially the same plots as in Figure 1 without the
symbol coding for baseline risk). Visual examination
suggests that asymmetry has been greatly reduced by
adjusting for baseline risk × treatment interactions and
plotting inverse sample size on the y-axis as described
above. The associated regression test (Equation 2c) P-
values are also given in the Figure 2 legend and sup-
port the visual inspection in that four of the six
funnels have P-values that would be considered non-
significant at either 5% or 10% levels.

Given the promising results of the assessment
described above, we decided to formally evaluate the
modified regression test to establish its performance, both
compared to the standard approach and also in absolute
terms. In addition, since three measures of study “size”
had been considered (SE, sample size, inverse sample
size) we wished to explore how these performed com-
pared to one another.

4 | SIMULATION STUDY TO
EVALUATE RESIDUAL BASED
REGRESSION TEST

4.1 | Simulation of meta-analysis data

Data from the postoperative pain trials (Section 2) were
examined in order to simulate data with similar charac-
teristics. The approach to data simulation for each trial in
each meta-analysis dataset is provided below. In order to
simulate data from an individual two-arm trial with a
continuous outcome, individual patient responses in the
control arm were assumed to be normally distributed.
That is,

ci ~N mu:csigma2
� �

, ð3aÞ

where ci is the outcome response for the ith patient in the
control arm of the trial, mu.c is the underlying average
response in the control group of the trial (baseline risk),
and sigma is the SD of responses in a trial. In scenarios
where the SD was assumed to depend on the mean of the
response in the arm (ie, baseline risk) this expression was
extended to:

ci ~Nðmu:c, sigma+ 0:5×mu:cð ÞÞ2� �
, ð3bÞ

Individual patient responses in the treatment arm are
also assumed to be normally distributed, with the same

variance as for the control arm, but with a treatment
effect added:

ti ~N mu:c+ trt:diff sigma2
� �

, ð4aÞ

where ti is the outcome response for the ith patient in
the treatment arm of the trial, trt.diff is the intervention
effect and all other variables are as defined in Equa-
tion (3a). In scenarios where both the SD and treatment
effect were assumed to depend on the mean of the
response in the arm (ie, baseline risk) this expression was
extended to:

ti ~Nðmu:c+ trt:diff − b:interaction×mu:cð Þ,
sigma+ 0:5×mu:cð ÞÞ2� �

,
ð4bÞ

with all terms being defined previously except b.inter-
action which represents the strength of the baseline risk
× treatment effect interaction. Thus the equations indi-
cate that the variance in the treatment arm was specified
to be the same as in the control arm (and thus was
assumed to be influenced by baseline risk in the same
way). Note that trt.diff was always held constant across
trials within any meta-analysis which implies that, other
than the effect of baseline risk on treatment effect, homo-
geneity of treatment effects over all studies in each meta-
analysis was assumed. The Normal distributions in
Equations (3) and (4) were truncated at 0 to ensure
response could not go negative (which makes no sense in
the context of the motivating morphine consumption
outcome).

For scenarios in which publication bias was simu-
lated, this was achieved by excluding any trials that gen-
erated a P-value >.05 for the effect size and generating
further trials until the meta-analysis consisted of the pre-
specified number of trials, all with P-values ≤.05.

The summary statistics from each study, required for
meta-analysis, were the observed mean responses in both
arms, the SDs of observed responses in both arms and
the sample sizes in both arms. From these the estimated
mean difference and associated variance could be calcu-
lated for use in the meta-analysis. These could be derived
in a straightforward manner once trial data had been
simulated using the approach described above.

Eight scenarios were considered, consisting of all per-
mutations of whether baseline risk interactions with
treatment and publication bias were present or not and
whether a small (15) or large (30) number of trials were
available. For all scenarios, within a simulated meta-
analysis dataset for each trial, “baseline” (mu. c) took one
of the values 20, 25, 30, 35, 40, 45 or 50 and trial arm size
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took one of the values 15, 25 or 50 (patients); both evenly
distributed across trials. The differences across the eight
scenarios are explicitly outlined below (N.B. in inter-
preting test results we consider asymmetry in the funnel
plot [P < .05] to be an indication of publication bias):

1 30 trials per meta-analysis, no baseline risk interaction
and no publication bias (treat.diff = −5, sigma =10)

2 30 trials per meta-analysis, baseline risk interaction (b.
interaction = 0.7) and no publication bias (treat.
diff = −5, sigma =10)

3 30 trials per meta-analysis, no baseline risk interaction
and publication bias (treat.diff = −3, sigma =6)

4 30 trials per meta-analysis, baseline risk interaction (b.
interaction = 0.5) and publication bias (treat.diff = −5,
sigma =10)

5 15 trials per meta-analysis, no baseline risk interaction,
no publication bias (treat.diff = −5, sigma =10)

6 15 trials per meta-analysis, baseline risk interaction (b.
interaction = 0.7) and no publication bias (treat.
diff = −5, sigma =10)

7 15 trials per meta-analysis, no baseline risk interaction
and publication bias (treat.diff = −3, sigma =6)

8 15 trials per meta-analysis, baseline risk interaction (b.
interaction = 0.5) and publication bias (treat.diff = −5,
sigma =10)

Note, that the strength of treatment effect, magnitude
of participant-level variance and magnitude of interaction
with baseline risk change between the eight scenarios
above. This was done to ensure that the underlying effects
of publication bias were neither too large (ie, most studies
suppressed) or too small (ie, no or virtually no studies
suppressed) while also keeping the simulations broadly
representative of the motivating datasets (eg, preventing
any negative outcomes for individuals). For all scenarios
we simulated 10 000 meta-analyses. Each simulated meta-
analysis dataset was analysed in six ways. Where adjust-
ment for baseline risk is conducted, this was achieved
using the mixed-effect model given by Equation (1).

1. Egger's original regression test (with s.e.[mean dif-
ference] as the predictor) for funnel plot asymmetry on
observed data (conventional test).

2. Regression test (with s.e.[residuals] as the predic-
tor) for funnel plot asymmetry on residuals following
adjustment for baseline risk (Equation (2a)).

3. Regression test with sample size as the predictor
for funnel plot asymmetry on observed data.

4. Regression test with sample size as the predictor
for funnel plot asymmetry on residuals following adjust-
ment for baseline risk (Equation (2b)).

5. Regression test with inverse sample size as the pre-
dictor for funnel plot asymmetry on observed data.

6. Regression test with inverse sample size as the pre-
dictor for funnel plot asymmetry on residuals following
adjustment for baseline risk (Equation (2c)).

The estimand of interest is the proportion of times the
P-value for the funnel plot asymmetry test is less than or
equal to .05. We calculated its SE using the following
formula:

SE=

ffiffiffiffiffi
pq
n

r
,

where p is the probability of an event, q = 1 - p and n is
the sample size (ie, number of simulations which always
equalled 10 000).

Data were simulated and analysed using R (version
3.6.0) in RStudio (version 1.0.143.0). Meta-regression and
all regression tests3 were implemented using the met-
afor package in R.13 The code used to generate and ana-
lyse the simulated data can be found in Data S2.

4.2 | Results of simulation study

A summary of the performance of each of the six testing
procedures across all eight scenarios is shown in Table 2.
When there is no baseline risk interaction or publication
bias present (scenarios 1 and 5), all six approaches to test-
ing for funnel asymmetry produced a significant result
approximately 5% of the time (ie, the nominal rate
expected by chance alone).

When a baseline risk × treatment interaction (but not
publication bias) is present (scenarios 2 and 6), the funnel
plot asymmetry test using SE as the predictor (conven-
tional Egger's test) incorrectly identifies evidence of sta-
tistically significant funnel plot asymmetry 60% of the
time based on the observed data when considering meta-
analyses including 30 studies (scenario 2). If the number
of trials in a meta-analysis is reduced to 15, statistically
significant funnel asymmetry is identified 39% of the time
(scenario 6). When sample size or inverse sample size are
used to test for asymmetry, using the observed effect
sizes, significant results are obtained in approximately 1%
to 2% of simulations. Once a regression adjustment for
baseline risk is conducted prior to testing the test based
on SE identifies significant asymmetry 8% of the time,
while the test based on sample size or its inverse iden-
tifies asymmetry approximately 5% to 6% of the time that
is, close to the nominal 5%.

When publication bias is present but there is no effect
of baseline risk on treatment, all approaches to testing
correctly identify evidence of statistically significant pub-
lication bias approximately the same number of times
(approximately 60% of the time when meta-analyses
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contain 30 trials [scenario 3] and approximately 30% of
the time when meta-analyses contain 15 trials [sce-
nario 7]).

When baseline risk × treatment interactions and pub-
lication bias are both present the funnel plot asymmetry
test on the observed data identifies publication bias 99%
of the time if meta-analyses consist of 30 trials (scenario
4) and 70% of the time if meta-analyses consist of 15 trials
(scenario 8). Note, however, that these results need to be
viewed within the context that, when only baseline risk
was present, the test for publication bias was “already”
significant 60% (30 trials) and 39% (15 trials) of the time
(scenarios 2 and 6, respectively). This reduces to around
34% and 10% of the time when sample size or its inverse
are used in the test (vs observed) for 30 and 15 study
meta-analyses, respectively. After adjustment for a base-
line risk interaction, the funnel plot asymmetry test on
the residuals using SE as predictor correctly identifies
publication bias <1% of the time (both 30 and 15 studies).
However, when sample size or its inverse is used as pre-
dictor and residuals as outcome, significant asymmetry is
identified approximately 36% to 40% (30 studies) and 15%
to 16% (15 studies) of the time.

Figure 3 presents funnel plots for the first 4 simulated
datasets for each of scenarios 1 to 4, firstly (in blue) plot-
ted using the residuals, having adjusted for baseline risk,
vs inverse sample size (analysis approach 6/column 6 of
Table 2), and secondly (in red) using the observed effects

vs SE (analysis approach 1/column 1 of Table 2). In each
case the regression line for the associated test is also plot-
ted. These plots broadly reflect the overall results of the
simulation, in which performance is vastly superior when
adjusting for baseline risk and using inverse sample size
as the test regressor for the situation where a baseline
risk × treatment interaction but no publication bias exists
(scenario 2) as the regressions are visibly much closer to
vertical lines, correctly implying little or no asymmetry.
The two approaches are broadly comparable (ie, regres-
sion slopes are similar between pairs of plots) when no
publication bias or interaction exist (scenario 1) or only
publication bias exists (scenario 3). The lack of strong
trend among the residual-based plots for scenario 4 (both
baseline risk interaction and publication bias present)
reflects the diminished power of the residual-based test
when both publication bias and baseline risk interaction
effects are present.

5 | DISCUSSION

The prevalence of publication bias within meta-analyses
is estimated to be around 25% to 40%.14 Within the anaes-
thesia literature, using a sample of systematic reviews
from leading anaesthetic journals, the prevalence of pub-
lication bias may be as high as 50% to 80%.15 This has
important implications for the validity of systematic

FIGURE 3 Example funnel plots of simulated meta-analyses with residuals (x-axis) vs inverse sample size (on a reverse scale, blue

plots, y-axis) and traditional plots with mean difference (x-axis) vs SE (on a reverse scale, red plots, y-axis). Each row represents example

datasets from top to bottom: scenario 1, scenario 2, scenario 3 and scenario 4 (see Table 2) [Colour figure can be viewed at

wileyonlinelibrary.com]
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review findings, as publication bias may be the cause
when meta-analyses and subsequent large randomised
controlled trials disagree.16 Meta-analyses are frequently
used to inform clinical decision-making and guidelines;
therefore, using invalid data may lead to the use of inef-
fective or even harmful interventions in clinical practice.
Indeed, possible publication bias is one factor that can
cause downgrading of evidence as per Grading of Recom-
mendations, Assessment, Development and Evaluations
(GRADE).1

Although there is a wealth of research into the use of
funnel plots and quantitative tests for the detection of
possible publication bias, little work has been conducted
on research using continuous outcomes such as mor-
phine consumption.17 Moreover, less work has been
undertaken examining continuous outcomes with consid-
erable heterogeneity and variation in effect estimates
dependent on baseline risk. For the motivating context,
we have previously demonstrated that the results from
any one study are dependent on control group morphine
consumption (with higher baseline risk having larger
reductions in morphine consumption).10 In addition,
randomised controlled trials of postoperative analgesics
are often small (50-100 participants) and therefore SE cal-
culations will be more dependent on SDs than for larger
studies (as SE=SD=

ffiffiffiffi
N

p
). As there is a tendency for stud-

ies with higher control group morphine consumption to
have larger SDs there is a dependency between the mean
difference (larger with higher baseline risk) and the SEs
(larger with higher baseline risk). This could create an
asymmetric funnel plot even in the presence of no publi-
cation bias. Indeed, when we simulated meta-analyses
where no publication bias was present but outcomes
were dependent on baseline risk, funnel plot asymmetry
was evident in approximately 60% of analyses when 30 tri-
als were present.

This study has identified evidence of asymmetric
study effects, using conventional methods, in meta-
analyses of postoperative analgesics. However, when
examining the relation between control group morphine
consumption (baseline risk) and precision, for most anal-
gesics there was a statistically significant relationship
between baseline risk and effect size SEs, implying that
standard funnel plots may be an inaccurate method to
assess publication bias where values are dependent on
baseline risk. On simulated data, when baseline risk is
present without publication bias, the conventional funnel
plot asymmetry test based on the observed data fre-
quently incorrectly suggested the presence of publication
bias. Adjusting for baseline risk via meta-regression and
conducting the funnel plot asymmetry test on the resid-
uals results in fewer meta-analyses being incorrectly
identified as having publication bias. However, when

publication bias is present without baseline risk the fun-
nel plot asymmetry tests on both the observed data and
the residuals, following adjustment for baseline risk, cor-
rectly identify publication bias approximately the same
number of times. In our simulation, since baseline risk
interactions with treatment and simulated publication
bias both induce funnel plot asymmetry, when SE is used
in the regression test/on the funnel plot y-axis, the
approach struggles to disentangle these causes of the
asymmetry when both are present. However, much
improved performance was gained by the use of (inverse)
sample size for the regression test/y-axis scale since this
avoids the issue (as explained above) that studies with
higher baseline risks/effect sizes also tend to have larger
SEs, although power was still lower than the case where
baseline risk interactions were not present. Improved
performance using (a function of) sample size instead of
SE in such tests is consistent with previous findings for
meta-analysis of odds ratios since a similar dependency
exists in that context18 as well as diagnostic odds ratios19

and we recommend its adoption for continuous, mean
difference type outcomes. Since using inverse sample size
had fractionally superior performance to sample size in
the simulation study we recommend this analysis
approach (analysis variant 6).

We conclude that traditional funnel plots are not a
reliable method to detect asymmetric study effects for
morphine consumption and that this finding may also
extend to other, similar continuous outcomes whose
results are dependent on baseline risk (such as pain
scores8 or depression scores20). Indeed, improved stability
of effects is an argument routinely given for using relative
over absolute effect measures for binary outcomes due to
varying baseline rates.21 Since such variability may often
go unacknowledged for continuous outcomes, we recom-
mend further empirical work looking at the stability of
such outcomes in meta-analysis and recommend meta-
analysists explore the relationship between outcome and
baseline risk routinely, using meta-regression, when con-
ducting meta-analysis of continuous outcomes.

This dependency can also present issues beyond pub-
lication bias assessments for meta-analyses of continuous
outcomes. If the results from a meta-analysis vary with
baseline risk, this will affect the weighting of individual
studies when calculating pooled effect estimates. As stud-
ies with lower baseline risk (lower control group mor-
phine consumption) will have smaller SEs, they will
receive a higher percentage weight than studies with
higher baseline risk (using the inverse-variance method).
This will mean effect estimates will be lower than the
true average effect, leading to a possible underestimation
of efficacy in high baseline risk scenarios. This further
supports the argument to report effect estimates from a
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fixed value of baseline risk or provide meta-regression
parameter estimates to allow review consumers to calcu-
late specific effect estimates for the baseline risk of their
clinical population.10

Clearly, the issues highlighted above have implica-
tions for the interpretation of results derived from meta-
analyses. Incorrect conclusions regarding the presence of
publication bias could lead to unnecessary downgrading
of evidence as per GRADE.22 In addition, the conduct of
trim and fill analysis, or one of several other methods
proposed to adjust for publication bias, could reduce
effect estimates and significantly alter a reviews conclu-
sions, which may be inappropriate.23 These factors need
to be considered when performing meta-analyses using
postoperative morphine consumption (a common out-
come in postoperative pain trials) and similar continuous
outcomes dependent on baseline risk (such as pain
scores).

In terms of the conduct of future meta-analyses, if
review authors are using mean differences as the effect
estimate method, then the test based on meta-regression
residuals may have advantageous properties over conven-
tional tests (see Data S1 to perform test in Stata). Our
simulations demonstrated it performs similarly to con-
ventional tests when baseline risk is not present and may
reduce type 1 errors in the presence of baseline risk.
However, this test has lower power to detect publication
bias in the presence of baseline risk if studies are 30 or
less. Although conventional tests detected around 99%
and 70% of cases of publication bias in the presence of
baseline risk, the utility of this approach is questionable
due to the higher number of false positives when no pub-
lication bias and baseline risk co-exist (60% and 39%).

Our work could be extended in a number of direc-
tions. Firstly, we have assumed that the relationship
between baseline risk and outcome is linear throughout,
and the impact of relaxing this could be investigated. A
further continuous outcome routinely used in meta-anal-
ysis, but not considered here is the standardized mean
difference (SMD). Like the (unstandardized) mean differ-
ence, this has received less attention when considering
publication bias assessments; however, previous research
has shown that use of SMDs and SEs can cause funnel
plot distortion.5,24 There is clearly further work needed to
inform how best to assess SMD outcomes for publication
bias, including how well the methods presented here
translate.

A further option for meta-analysis of continuous out-
comes is the use of a relative scale such as the ratio of
means as the outcome measure. However, this method
does not resolve the issue of statistical heterogeneity as
shown in previous studies25 and using the analgesic
meta-analysis data considered here.26 We can only

speculate what the causes of this statistical heterogeneity
are, although it essentially does not solve the problem
that is solved by our baseline risk meta-regression models
published previously.10 In addition, relative measures
may have less clinical significance than absolute mea-
sures. For example, with regards to morphine consump-
tion, a 0.5 relative measure could correspond to a
reduction of 50 mg (if 100 mg consumption) or 5 mg
(10 mg consumption) which has particular relevance for
reducing the dose-dependent adverse effects of opioids.27

Despite this, ratio of means may offer an alternative
method of publication bias assessment and could be the
focus of future simulation studies similar to ours.

The first limitation of this study is the use of previ-
ously published reviews with variable search strategies in
identifying the motivating analgesic data.10 The fact that
only a small number of included reviews searched for
unpublished studies means our sample would be more
likely susceptible to publication bias. Secondly, some of
our analyses contained a low number of primary studies,
which may render quantitative tests for publication bias
underpowered. Of note, power may be improved (at the
expense of increased type I errors) with our tests if
P value thresholds were changed to recommended levels
of P < .1 for example. Thirdly, regarding the methodol-
ogy we used and developed, it has been well documented
that there is structural dependency in a meta-regression
of baseline risk on outcome28 and specific methods are
required to ensure regression to the mean does not bias
results. Since we applied such methods to the motivating
analgesic datasets in a previous paper and found they
had minimal impact10 we chose not to apply them here
so as not to overcomplicate the analysis. However, regres-
sion to the mean may have a larger impact in other con-
texts and therefore the use of such methods is generally
recommended. Fourthly, we simulated a limited set of
conditions and it is therefore unknown how the novel
test performs under the conditions of less-than-absolute
selective publication bias simulated in our study. In addi-
tion, we did not consider extra unexplainable heterogene-
ity on top of that induced by the dependency of outcome
on baseline risk (ie, explainable systematic heterogene-
ity). And we acknowledge this is a potential limitation of
our simulation study, however from previous related
work we strongly suspect such extra variability would
reduce the power of the regression testing.29 This could
be the focus of future studies.

Our approach to assessing the likely presence of pub-
lication bias could be viewed as “2-stage”, that is, the data
is initially adjusted for the effects of baseline risk via a
regression prior to a second regression to test for funnel
asymmetry. It would be possible to achieve similar results
using a single “1-stage” regression analysis
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simultaneously including terms for both baseline risk
and (inverse) sample size. This may even be more effi-
cient than the “2-stage” approach taken, however we did
not pursue this for two reasons: (a) Standard random
effect meta-regression models have additive heterogene-
ity variance parameters, while, funnel asymmetry tests
have a history of incorporating multiplicative error
terms instead (initially due to how the Egger's test was
first conceived, and later because they were shown to
have better statistical properties than models with addi-
tive errors30). If a single regression were used it is
unclear whether the regression should have additive, or
multiplicative heterogeneity parameters, or even both;
to keep things manageable we stuck with convention.
(b) We feel it is important to consider the visual impact
of the adjusted funnel plot as well as the test P-value,
and this is constructed using the residuals from the first
regression of the “2-stage” approach. Finally, we note
that we did not attempt to use selection modelling31 to
address the problem and since this has been used suc-
cessfully in other publication bias contexts, it may pro-
vide a fruitful alternative approach.

In conclusion, using conventional methods, we found
evidence of asymmetric study effects for most analgesics
used to prevent postoperative pain. However, due to an
association between baseline risk and SEs, this finding is
a result of statistical artefact as demonstrated in our sim-
ulations of meta-analyses where no publication bias was
present. In response to this we proposed a novel alterna-
tive approach to assessing whether publication bias is
likely to be present, by first adjusting for baseline risk
treatment interactions and regressing on inverse sample
size (rather than SE). When evaluated using a simulation
study, although power was low for meta-analyses with
15 studies, the approach performed considerably better
than alternatives and thus may be advantageous for rou-
tine use with unstandardized mean difference outcome
meta-analyses where treatment effects are dependent on
baseline risk. Additionally, given accumulating evidence
on the dependency of continuous outcomes on baseline
rates, the possibility of such relationships should be
explored in meta-analyses of continuous outcomes as a
possible explanation for any between-study heterogeneity
and to aid interpretation of results.
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