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Abstract4

The unloading behaviour of adhesion-free elastic-perfectly plastic spheres following contact presents complex5

non-linear features. Analytical models capable of accurately predicting this response have not yet been6

developed for an extensive range of material properties and initial deformation states, and consequently the7

use of semi-empirical models requiring calibration is widespread in the practical application of contact laws.8

In this work, we provide insight into contact behaviour during unloading by conducting a finite element9

study to characterise this response for a comprehensive range of material properties (1 ≤ E/σy ≤ 1000,10

0.0 ≤ ν ≤ 0.45) and for particles that have undergone large deformation prior to unloading (0.01 ≤ d/R ≤11

0.5), leading to the following findings. Firstly, an empirical relation capable of accurately determining secant12

unloading stiffness from material properties and degree of initial deformation was formulated, which was13

expressed in non-dimensional form for maximum generality. An analytical model was also developed to14

help explain some of the contributing mechanisms identified from the finite element analysis. Secondly, the15

nonlinearity of the force-displacement curve in unloading was quantified and charted, and physical arguments16

were advanced to explain the trends revealed. Considering both stiffness and nonlinearity results, it was17

concluded that a single synthetic measure of initial particle deformation relative to deformation at first yield,18

which is currently used, is insufficient to characterise unloading response at large displacements.19

The unloading relations developed can be employed with static and dynamic multi-particle simulation

approaches such as the Discrete Element Method (DEM) for more accurate simulation of compaction and

flow of dense powder beds and problems reliant on accurate determination of contact areas after unloading

between particles following large deformation.
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1. Introduction21

In the absence of adhesive forces, the unloading of a plastically deformed sphere in contact with a22

rigid surface is predominantly elastic, yet typically shows nonlinear load-displacement behaviour. In many23

practical cases, separation occurs at relatively small withdrawal displacements and is associated with little24

elastic relaxation. With increasing use of multiparticle simulation techniques such as the Discrete Element25

Method (DEM) [1] and extensions incorporating larger particle deformations, nonlocal contact [2] and26

interparticle bonds (for example, Potyondy and Cundall [3]), the development of accurate models for particle27

unloading is desirable. A survey of models proposed for the adhesionless, rate-independent unloading of28

spherical particles is provided below.29

Analytical models describing the response of spherical particles were first provided by Hertz [4] for elastic30

spheres subject to small deformations. Tatara [5] provided analytical relations for large displacements of31

elastic spheres, with emphasis on describing the radial displacement field. An analytical treatment of32

plastic deformation in the contact problem was developed by Hill [6] using slip line theory. The concept33

of self-similarity was developed by Stor̊akers [7] et al. to obtain solutions for a range of inelastic contact34

problems. Mesarovic and Johnson [8] developed a detailed analytical model for loading of elastic-plastic-35

adhesive particles, which was used to develop regime maps of the particle response. An analytical model that36

blends elastic and plastic response was developed by Brake [9] in which plastic deformation is understood37

as modifying the effective radius of curvature that is used in the Hertzian load-displacement relation used38

to describe unloading. The model was shown to describe loading/unloading response accurately at small39

displacements. A synthetic model for contact force as a function of contact area incorporating bond strength40

was presented by Gonzelez et al. [10], incorporating relations from Mesarovic and Johnson’s [8] model.41

Semi-empirical particle contact models described by piecewise load-unload curves have been developed42

by a number of authors (for example, Pasha et al. [11]) for multiparticle simulations, often starting from the43

concept of linearised response with distinct values stiffness for loading and unloading. A detailed survey of44

such models, including a variety of physical phenomena (such as elasticity, plasticity, viscosity, adhesion and45

others), including relations for unloading, was provided by Tomas [12]. The increase in unloading stiffness46

with increasing particle deformation was recognised by Luding [13], whose model allows for a linear increase47

with deformation for deformations exceeding a critical value in a comprehensive contact model developed48

for DEM simulations. Walton and Braun [14] proposed that unloading stiffness (defined as maximum load49

divided by recovered displacement) has a linear relationship to unloading maximum force before unloading.50

Thakur et al. [15] assume a constant value for unloading stiffness but propose a power-law force-displacement51
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relation in unloading.52

The unloading response of particles has also been described dynamically in terms of the coefficient of53

restitution. An analytical model for the dependence of the coefficient of restitution of elastoplastic spheres on54

the ratio of impact velocity and velocity required to cause yielding was developed by Thornton [16], Thornton55

and Ning [17] and Stronge [18]. Corresponding numerical studies involving large particle deformations were56

conducted by Li et al. [19] using the Material Point Method.57

Numerical studies have been used to investigate the static unloading response of spheres. Systematic,58

parametric finite element studies exploring the indentation of elastoplastic spheres with power-law hard-59

ening were conducted by Alcala [20]. Load-displacement relations for loading and unloading of spheres60

following plastic deformation have been proposed by Etsion et al. [21] based on finite element studies using61

a variety of values for elastic stiffness and yield strength. Olsson and Larsson [22] conducted finite element62

studies of loading and unloading of elastic-plastic spheres with adhesion and power-law hardening for dis-63

placements up to 10% of the particle initial radius. Rathbone et al. used finite element studies to establish64

the magnitude of an effective curvature for a Hertzian unloading response as a function of Poisson’s ratio65

and displacement before unloading, for spheres subject to small deformations. Finite element studies were66

conducted by Rojek et al. [23] to determine the unloading response of metal spheres, described by a power-67

law hardening plasticity model, for a wide range of displacements, concluding that the linear Walton-Braun68

relationship between dimensionless load and dimensionless displacement is sufficiently accurate, and that69

unloading stiffness (defined as maximum load before unloading divided by recovered displacement) has a70

linear dependence on dimensionless displacement. Recognising the importance of contact area development71

for particle load-displacement response, Vu-Quoc et al. [24] developed an incremental algorithm for elasto-72

plastic contact based on tracking the development of total and plastic contact area, which was calibrated73

using finite element simulations and shown to be accurate for small displacements. However, the literature74

to date does not include a method for determining unloading stiffness for an extensive space of material75

properties and large deformations prior to unloading.76

The structure of this article is as follows: in Section 2, a power-law law model is identified for the77

evaluation of force-displacement behaviour in unloading, introducing two parameters, ρ and α, representing78

secant unloading stiffness and nonlinearity, respectively. In Section 3, the finite element simulations used79

to generate loading/unloading data are described. In Section 4, results, including both particle forces and80

contact area, are analysed. Section 5 introduces a simplified analytical model of unloading that captures the81

prominent features in the full finite element results. Discussion and conclusions are presented in Sections 682
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and 7, respectively.83

2. Framework84

2.1. Definitions85

In this article, relationships between particle load and displacement are developed in dimensionless form86

for maximum generality, particle load being normalised with respect to yield stress and initial projected area87

(F̄ = F/πR2
0σy) and geometrical/kinematic quantities (displacement and contact radius) being normalised88

with respect to the initial radius (δ̄ = δ/R0, ā = a/R0). Dimensionless material stiffness (Ē) is obtained89

by dividing Young’s modulus by yield strength (σy). Ē is thus the inverse of the strain at first yield in a90

constant-section, linear elastic bar. Consequently, particles with high Ē will yield at low values of δ̄, their91

response will be mostly plastic and little displacement will be recovered on unloading, whereas for the lowest92

values of Ē, no yielding will occur and the full displacement incurred will be recovered.93

For a given particle load prior to unloading, it is convenient to express the unloading stiffness in terms of94

the displacement of the particle centre before unloading and the displacement at which the particle separates95

from the surface. Using δ̄max as the dimensionless particle displacement at the start of unloading and δ̄0 as96

the corresponding value at separation, the stiffness measure ρ is defined using Eq. 1. These quantities are97

illustrated in Fig. .1.98

ρ =
1

δ̄max − δ̄0
(1)

Considering that the Hertz analytical solution for contact of elastic spheres is a power law, and that the99

results from the current study are expected to approach the Hertz solution as Ē and δ̄0 tend to zero, it is100

reasonable to consider that unloading response of deformed spheres where the assumptions of the Hertz law101

are progressively relaxed will be of a similar form. It is thus assumed that the force-displacement response102

of a particle during unloading can be described by a simple two-parameter power-law model (Eq. 2).103

F̄ (δ̄) =


0, δ̄ ≤ δ̄0

F̄max

(
δ̄−δ̄0

δ̄max−δ̄0

)α
, δ̄ > δ̄0

(2)
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This two-parameter form allows the intuitive concepts of stiffness and nonlinearity in unloading response104

to have simple mathematical expression, simplifying their independent investigation. The exponent α is a105

measure of the nonlinearity of the unloading, which is 1.5 in the case of unloading following the classical106

Hertz law. It is noted that Eq. 2 is identical to the unloading relation proposed by Etsion et al. [21]. If107

F̄max and δ̄max are available from an incremental procedure (such as DEM) and ρ and α can be estimated108

by an appropriate model, such as that developed in the current work, the separation displacement δ̄0 is109

obtained by rearranging Eq. 1 and the load-displacement response (Eq. 2) can be computed. Characteristic110

unloading responses calculated using the power law are illustrated in Fig. .1. In the following, appropriate111

functional forms for α = α(Ē, ν, δ̄max) and ρ = ρ(Ē, ν, δ̄max) will be developed.112

[Figure 1 about here.]113

3. Numerical simulations114

Systematic finite element studies were carried out using the commercial finite element analysis software115

Abaqus 6.14-1 to establish particle unloading response under a wide range of conditions. An axisymmetric116

finite element model of a sphere contacting a rigid surface was created implementing an elastic-von Mises117

perfectly plastic material model, with 6670 quadrilateral axisymmetric elements in a mapped mesh (Fig.118

.2). The mesh was progressively refined towards the contact surface such that each element edge along the119

sphere surface in the refined sector occupies 11.25 minutes of arc. Values of 1, 2, 5, 10, 20, 50, 100, 200, 500120

and 1000 were used for the stiffness ratio Ē, values of 0.0, 0.15, 0.30 and 0.45 were used for the Poisson’s121

ratio ν, and values of 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5 were used for the122

dimensionless displacement at the start of unloading. Testing all combinations of parameters resulted in a123

total of 560 simulations. A frictionless contact interaction was prescribed. Nodes on the particle midsurface124

were constrained to have the same axial displacement throughout the simulation. Displacement control was125

used during the loading step. During the unloading step, the displacement constraint was released and126

reaction forces were ramped linearly to zero, generating results at 100 equally-spaced load steps, each with127

nonzero total particle load, for all simulations conducted.128

[Figure 2 about here.]129
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4. Numerical results130

4.1. Load-unload behaviour131

Selected load-unload curves obtained from the simulations (those with ν = 0.3) are shown in Fig. .3.132

[Figure 3 about here.]133

As Ē increases, the plastic zone development changes. For the lowest value of Ē (1), no yielding occurs in134

the range of deformations investigated. The points of first yield for the loading step of each simulation are135

indicated by circles in Fig. .3. For Ē < 5, yielding first occurs at the particle centre. For 5 ≤ Ē ≤ 20,136

yielding first occurs from the point on the axis of loading somewhat below the surface, as predicted by linear137

elastic theory (see, for example, Timoshenko and Goodier [25]). For 50 ≤ Ē ≤ 200, the developing plastic138

zone interacts with the contact surface and for the stiffest particles (Ē > 500), yielding first occurs at the139

contact surface, almost immediately after contact is established. When plastic flow becomes the dominant140

deformation mechanism in the particle, increase in particle load with deformation is retarded, as further141

increase in load-bearing capacity is dependent on increase in contact area alone. Consequently, a relation142

can be observed between displacements corresponding to the minima of the gradients of the curves in Fig.143

.3 and the values of displacement at which strain energy maxima are attained (Fig. .4). Similar results are144

obtained for other values of ν.145

Unloading is primarily elastic, though some plastic flow was observed during unloading in simulations146

with high Ē.147

[Figure 4 about here.]148

4.2. Determination of parameters of unloading relation149

As the displacement at particle separation (δ̄0) was considered prescribed by the terminal state of the150

simulations, a one-parameter Newton-Raphson procedure was used to determine the value of α that min-151

imised the error between FE results and the proposed unloading relation (Eq. 2). The median value of152

the coefficient of determination (R2) across 560 simulations was 0.999847, which supports the choice of the153

unloading relation in power-law form.154

4.3. Results for unloading stiffness (ρ)155

Inspection of variation of unloading stiffness (ρ) results with material stiffness (Ē) and displacement156

before unloading (δ̄max) for ν = 0.3 (Figs. .5 and .6, respectively) suggests how unloading stiffness can be157

related to these variables.158
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[Figure 5 about here.]159

[Figure 6 about here.]160

Inspection of Fig. .5 suggests that a two-part, constant-linear relation between ρ and Ē can provide a good161

approximation to the simulation results, providing a simple link between the material stiffness and unload-162

ing stiffness. After introducing a function (φ) that blends between responses from elastic and plastically163

deformed particles and a term accounting for variation due to Poisson’s ratio, a general model function (Eq.164

3) was developed,165

ρ(Ē, ν, δ̄max) ≈
1

δ̄max
+ φĒ

(
γ1δ̄max + γ2δ̄

−γ3
max + γ4ν

)
(3)

with the supplementary functions φ and δ̄c defined by Eqs. 4 and 5,

φ = H(δ̄max − δ̄c)
(

1− δ̄c
γ5δ̄max + (1− γ5)δ̄c

)
(4)

δ̄c(Ē, ν) =

(
2.8π(0.454ν + 0.41)(1− ν2)

2Ē

)2

(5)

where H(·) is the Heaviside step function and δ̄c is the dimensionless displacement at first yield, a well-166

established approximation (see Etsion et al. [21], Chang et al. [26]) which shows good agreement with167

values obtained from the current simulations, as shown in Fig. .7. The second term in brackets in Eq.168

4 represents a one-parameter family of blending functions ψ : R+ → [0, 1], with the properties ψ(0) = 0,169

ψ′(0) 6= 0, lim
x→∞

ψ(x) = 1 and lim
x→∞

ψ′(x) = 0.170

[Figure 7 about here.]171

This model allows two types of behaviour to be distinguished: at small displacements, and for models172

with low Ē, unloading is fully elastic; the recovered strain proportion is unity (independent of Ē), so that173

Eq. 1 reduces to ρ = 1/δ̄max. Conversely, once plastic deformation has occurred, the unloading stiffness174

increases with increasing material stiffness. The decay term γ2δ̄
−γ3
max represents the phenomenon visible in175

Fig. .6 that unloading stiffness is increased at small values of δ̄max. The presence of this term indicates176

an asymmetry in the influence of increasing material stiffness and increasing initial displacement on the177
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unloading response; a phenomenon that is not captured by models in which the unloading response depends178

on δ̄/δ̄c, such as those described by Etsion et al. [21].179

A optimization algorithm was used to find parameters values that minimized the total absolute error180

between the calculated values of secant stiffness and those obtained from the FE simulations. The parameters181

of best fit are shown in Table .1. The median, 75th, 90th and 100th percentile relative errors between the182

results of the calibrated model and the FE data were 1.84%, 5.29%, 11.78% and 36.33%, respectively. Full183

comparisons between the model and FE results are shown in Fig. .19.184

[Table 1 about here.]185

It is noted the influence of ν on results, represented by the parameter γ4, is relatively minor, as can be186

appreciated by inspecting Figs. .21 and .22 in the Appendix.187

4.4. Results for unloading nonlinearity (α)188

Results for α obtained from the simulations are shown in Figs. .8a and .8b, for large and small dis-189

placements, respectively, for ν = 0.30, while full results for all simulations are shown in the Appendix (Fig.190

.20).191

[Figure 8 about here.]192

An increase in nonlinearity with deformation is noted for elastic and near-elastic particles (Ē = 1, 2), to193

values much greater than that predicted by the Hertz law. Conversely, a reduction in nonlinearity is observed194

for plastic particles, which reduces further with increasing initial displacement, until the unloading response195

is nearly linear. The trends in unloading nonlinearity can be explained with reference to contact area196

reduction during unloading and three-dimensional stress states within the solid body.197

Firstly, the unloading response of a yielded, linear elastic, prismatic bar without lateral constraints at198

small displacements is linear (α = 1); the contact area remains constant during unloading and the stress199

state of the bar is uniform and reduces linearly with reducing axial strain to zero.200

Secondly, the response of a fully elastic sphere (Ē = 1), the unloading nonlinearity exponent is 1.5 as201

displacement before unload (δ̄max) tends to zero, in accordance with Hertz theory. As δ̄max increases, α202

increases as the assumptions of the Hertz model become increasingly inaccurate. In particular, the kinematic203

assumption in the Hertz law is (dimensionless contact area)2 = δ̄ whereas the current results show that this204

increases to about (dimensionless contact area)2 = 1.4δ̄ at δ̄ = 0.5. Upon unloading, the contact area reduces205

more rapidly than in the Hertz model and nonlinearity of the unloading curve is greater.206
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Thirdly, when considering the response at high Ē (Ē = 1000), when using a von Mises – perfectly plastic207

material model, admissible yielded stress states may exhibit any value of hydrostatic stress. In cases where208

a particle is loaded far beyond its point of first yield, increasing load in the contact normal direction drives209

the stress states out along the yield surface in the direction of increasingly compressive hydrostatic stress210

to maintain equilibrium. In addition, the stress state in the body becomes more uniform. Unloading from211

stress states with a large hydrostatic component generally requires volumetric expansion and the cumulative212

effect of disparate expansions is to limit the amount of kinematic relaxation (and hence reduction in contact213

area) that can occur during unloading. Consequently, as δ̄max and Ē increase, the unloading approaches214

the conditions present in unloading of a constant-section bar and α tends towards 1.0, although increasing215

Ebar has a progressively smaller effect.216

Finally, it is noted Ē is the primary parameter governing the transition between the behaviours exhibited217

by the elastic sphere and the constant section bar, the effect of increasing δ̄max is to magnify the differences218

in the behaviour, as can be seen in Fig. .8a. The asymmetry in the influence of Ē and δ̄max supports the219

conclusion from Section 4.2 that unloading response cannot be characterised by a single measure such as220

δ̄max/δ̄c.221

The effects of Possion’s ratio on the nonlinearity, as shown in Fig. .22b , are consistent with this222

explanation: increasing Poisson ratio increases the contact area for the elastic cases, leading to an increase223

in α, while an increase at high values of Ē decreases α somewhat as internal constraints on volumetric224

expansion increase as the material tends towards elastic incompressibility.225

4.5. Comparisons with other models226

Considering firstly, relations for unloading nonlinearity, Etsion et al. [21] proposed the following relation227

for α (Eq. 6),228

α(δ̄max, Ē, ν) = 1.5

(
δ̄max

δ̄c(Ē, ν)

)−0.0331

(6)

based on finite element studies at small displacements, where δ̄c is the displacement at first yield, calculated229

using Eq. 5. Eq. 6 predicts that nonlinearity of the unloading response (α) should decrease monotonically230

for all values of Ē as the initial displacement increases. However, results from the current study suggest231

divergent behaviour for low and high values of Ē, as described in the previous subsection. This discrepancy232

is attributed to the fact that Eq. 6 was obtained from fitting of FE results with 297 ≤ Ē ≤ 2464 and thatthe233
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response of particles with lower values of Ē was not captured. This suggestion is supported by the fact that234

comparisons of results at larger values of Ē do show a decreasing trend (Fig. .9), although the magnitude235

of the rate of decrease is different as the values of δ̄max/δ̄c in the current work are much greater than those236

used by Etsion et al. In summary, the current findings show that the accuracy of Eq. 6 is reduced outwith237

its calibration zone.238

[Figure 9 about here.]239

Considering next the empirical relations for unloading stiffness, Luding [13] and Walton and Braun [14]240

proposed linear relations for the increase of unloading stiffness with displacement and peak load, respectively.241

The linear relationship developed by Luding relating secant loading stiffness (k1), secant unloading stiffness242

(k2) and displacement is243

k2 = k1 + (k2,max − k1)
δmax
δ̄∗c

(7)

where δ̄∗c it the transition displacement, which can be interpreted in physically meaningful terms as the244

displacement at first yield, δ̄c (Eq. 5). In terms of the quantities defined in the current the ratio of245

unloading to loading stiffness can be expressed as246

k2

k1
=

Fmax
δmax − δ0

· δmax
Fmax

=
δ̄max

δ̄max − δ̄0
= ρδ̄max (8)

Fig. .10 shows how the stiffness ratio obtained from FE simulations in the current work increases with247

relative displacement, for which the model of Luding [13] assumes linear relationships. Similarly, Fig. .11248

shows the increase with maximum (dimensionless) load before unloading, for which the model of Walton249

and Braun [14] assumes linear relationships. Both figures show the limitations of using a linear model for250

unloading stiffness, even when the gradients are independently calibrated for each material. The results251

shown in Fig. .10 may be compared with the analytical and numerical findings of Rojek et al. [23], which,252

conversely, show that the linear relation of Luding is appropriate. However, it should be noted that a253

hardening plasticity model was used in this study with only a single set of parameters.254

[Figure 10 about here.]255

[Figure 11 about here.]256
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Results shown in Fig. .6 may also be compared with the relation proposed by Etsion et al. for displace-

ment recovery, which was obtained by fitting FE results (Eq. 9),

1

ρ
=
[
1−

(
1− δ̂−0.28

)(
1− δ̂−0.69

)]
δ̄max, (9)

δ̂ =
δ̄max
δ̄c(Ē)

[Figure 12 about here.]257

where δ̄c is defined in Eq. 5. Eq. 9 predicts that the displacement recovered increases monotonically258

with δ̄max and Ē, whereas the results shown in Fig. .6 show that at very high displacements, the proportion259

recovered after unloading starts to decrease. Simulations carried out in the current work found better260

agreement at the smallest displacements and smallest values of Ē, but found significantly less elastic recovery261

following unloading (Fig. .12) for larger values, indicating the limited range of validity of Eq. 9. This262

discrepancy in results is not surprising: the range of values of δ̂ used in the six FE simulations described by263

Etsion et al. for calibration was δ̂ ≤ 170, whereas the smallest value represented in Fig. .12 is 366 (Ē =264

200, δ̄ = 0.01) and the largest (Ē = 1000, δ̄ = 0.5) is 4.75 × 105.265

Mesarovic & Johnson [8] proposed Eq. 10 to describe the relationship between load and area on266

unloading.267

F̄unl
F̄max

=

(
2

π

)[
asin (â)− a∗

√
1− â2

]
, (10)

â =
āunl
āmax

[Figure 13 about here.]268

Simulation results (Fig. .13) obtained at δ̄max = 0.5 show that, for large displacements, the Mesarovic-269

Johnson relation remains a realistic model only for relatively low stiffness particles.270

5. A concentric cylinder model for large-displacement contact271

In this Section, an expression for sphere unloading stiffness is derived for a simplified analytical model in272

order to provide some insight into the results obtained from the finite element contact simulations presented273

previously. The problem is simplified by considering a half-sphere in contact with a rigid plane approximated274
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with a number of elastic-perfectly plastic cylinders, concentric around the contact normal, which are free275

to slide axially with respect to neighbouring cylinders, without friction. In conjunction with use of linear276

strain, this results in axial strain being uniform along each cylinder. Radial expansion of the cylinders is277

ignored.278

[Figure 14 about here.]279

Assuming the particle shape at the start and end of the unloading process is a truncated sphere, as280

illustrated in Fig. .14, the axial position of a point on the sphere is given by Eq. 11.281

z =
√
R2 − r2 (11)

The axial position of points in contact with the impacting surface is R− δ̄R0. The volume lying under the282

contact area can be divided into a central cylindrical core, in which all material has yielded, surrounded283

by an elastic annulus. On the contact surface, plastic contact and total contact regions are delimited by284

the plastic radius rp and the contact radius rm, respectively. This description of contact behaviour with285

reference to concentric elastic and plastic contact zones is conceptually similar to that proposed by Vu-Quoc286

et al. [24]. From considering the deformed geometry (Fig. .14), elastic axial strain in the elastic region287

during both loading and unloading is given by Eq. 12.288

εe,e(r̄) =
1− δ̄√
1− r̄2

− 1, r̄p ≤ r̄ ≤ r̄m (12)

In the subsequent development, symbols with a overbar represent quantities that have been nondimension-289

alised as described in Section 2.1.290

The contact radius during both particle loading and particle unloading can be determined by setting291

elastic strain to zero (Eq. 13),292

r̄m =
√

2δ̄ − δ̄2 (13)

Variation of the plastic radius during particle loading is found by equating elastic strain to yield strain293

(Eq. 14),294
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r̄p =

√
1−

(
Ē(1− δ̄)
Ē − 1

)2

(14)

noting that yielding is never attained when Ē = 1. During unloading, the plastic radius stays at the value

calculated by evaluating Eq. 14 at δ̄ = δ̄max. The contact force can be determined by integrating the axial

stress (Eq. 15).

F =

∫ rp

0

2πrσy dr +

∫ rm

rp

2πrEεe dr (15)

In dimensionless form, Eq. 15 becomes Eq. 16.295

F̄ = 2

∫ r̄p

0

r̄ dr̄ + 2Ē

∫ r̄m

r̄p

r̄εe,e dr̄ (16)

Using Eq. 12 with Eq. 16 results in

F̄ (δ̄) = r̄2
p + Ē(r̄2

m − r̄2
p)+

2Ē(δ̄ − 1)
[√

1− r̄2
p −

√
1− r̄2

m

]
(17)

Elastic axial strain in the plastic region on unloading is obtained by adding to the yield strain (Eq. 18).296

εe,p(r̄) = − 1

Ē
+
δ̄max − δ̄√

1− r̄2
, 0 ≤ r̄ ≤ r̄p (18)

while elastic strain in the unloading elastic region is the same as during loading (Eq. 12). The contact297

radius during unloading is the same as for loading, following the geometrical assumptions (Eq. 13), while298

the plastic radius stays at the maximum value. Force in unloading is then obtained by substituting Eqs. 12299

and 18 into Eq. 16.300
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F̄ (δ̄) = r̄2
p + 2Ē(δ̄max − δ̄)

(√
1− r̄2

p − 1
)

+

Ē(r̄2
m − r̄2

p) + 2Ē(δ̄ − 1)
(√

1− r̄2
p −

√
1− r̄2

m

)
(19)

Expanding and separating the terms that are constant in δ̄ simplifies to Eq. 20.301

F̄ = Ēδ̄2 +
{

constants
}

(20)

Eq. 20 can be expressed in terms of the dimensionelss load before unloading (Eq. 21),

F̄unl = F̄max − Ē(δ̄ − δ̄max)2 (21)

the exponent indicating that the unloading nonlinearity resulting from the analytical model is uniformly 2.

By substituting F̄unl(δ̄0) = 0 and definition of ρ, Eq. 1 into Eq. 21 and rearranging, an expression for the

unloading stiffness is obained (Eq. 22).

ρ =

√
Ē

F̄max
(22)

Using Eq. 22 and Eqs. 17 and 13 evaluated at δ̄ = δ̄max allows ρ to be computed as an explicit function of302

Ē and δ̄ (Eqn. 23).303

ρ =

√
Ē(Ē − 1)

Ēδ̄max(2− δ̄max)− 1
(23)

Full results for ρ are presented in Figs. .16 and .17. By comparing these figures with Figs. .5 and304

.6, it can be seen that similar general trends are shown in results from both analytical FE models. While305

the increase of secant stiffness with material stiffness is captured by the analytical model (though it is less306

pronounced), the decrease of secant stiffness at moderate values of displacement is captured by the analytical307

model, but increase in secant stiffness with δ̄max at high displacements is not captured. By plotting values308

of the dimensionless contact area ā obtained from both analytical and FE models (Fig. .15), it can be seen309
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that Eq. 13 becomes increasingly inaccurate at displacement of δ̄max greater that about 0.3. However, the310

magnitude of the ratio between in contact area prior to unloading obtained from FE simulations and that311

obtained from by the analytical model (≤ 1.24) is insufficient to explain the magnitude of the increases312

in secant stiffness observed in Fig. .6 (peak-to-trough ratios of 2.0 - 2.4 for Ē ≥ 20). Consequently, it is313

concluded that the tendency described in Section 4.4 of increasing contact load to drive stress states into314

hydrostatic compression is primarily responsible for restrictions in kinematic relaxation during unloading at315

high values of δ̄max, leading to large increases in the secant unloading stiffness.316

[Figure 15 about here.]317

[Figure 16 about here.]318

[Figure 17 about here.]319

6. Discussion320

In the current study, the von Mises metal plasticity model is used to describe the yielding behaviour of321

the particle material, which allows the material to be characterised with only three parameters. Nonmetallic322

particles typically demonstrate a degree of compaction (volumetric strain) due to contact, which are more323

accurately described by compressible plasticity models, such as the Drucker-Prager Cap model. Such mate-324

rials may also show variation in Young’s modulus due to compaction. Some unloading results for spherical325

particles were presented by Edmans and Sinka [27] but explicit relations for unloading stiffness for such326

particles, and a comparison with the findings of the current work, were not shown.327

In large-scale DEM simulations, it might be desirable to implement only the stiffness property of the328

unloading response and use a linear unloading law. In this case, the values of k2/k1 charted in Fig. .10329

may be considered for use in piecewise-linear normal contact laws as an alternative to Eq. 3.330

The findings of this work may also be used to improve interparticle bond models including effects that331

are directly or indirectly dependent on elastic energy release rates, such as those including adhesion, rate-332

dependent effects and bond breakage.333

7. Conclusions334

In the current work, the load-displacement response of non-adhesive elastic-perfectly plastic spheres in335

unloading from contact was investigated using a systematic finite element study covering a more extensive336
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space of material properties and deformation states than hitherto considered. The unloading curves were337

characterised by defining the (dimensionless) secant unloading stiffness of a particle as the reciprocal of di-338

mensionless displacement recovered during unloading (Eq. 1), from which traditional forms of the unloading339

stiffness be calculated. Results obtained from the finite element study were used to formulate an empirical340

relation (Eq. 3) capable of accurately determining unloading stiffness (see Fig. .19) across the parameter341

space with only five parameters. Eq. 3 allows the unloading stiffness of a particle to be calculated directly,342

rather than requiring calibration, as for semi-empirical approaches [13, 14, 26]. This relation implies that343

unloading stiffness following plastic loading generally increases with dimensionless material stiffness (Ē)344

and decreases with dimensionless displacement before unloading (δ̄max), although a significant increase in345

unloading stiffness at large displacements is also observed. An analytical model based on simplified kine-346

matics and aggregation of one-dimensional stress elements was used to support the claim that this increase347

in unloading stiffness is primarily a three-dimensional stress effect associated with reduction of kinematic348

relaxation from particle material with high hydrostatic stress, although the increased contact area at large349

displacements (see Fig. .15) also plays a role. The influence of Poisson’s ratio on unloading stiffness was350

shown to be small, but not negligible. By using the current finite element results, the limitations of some351

empirical relations developed for unloading stiffness were demonstrated and charted (Figs. .10 and .11).352

A characteristic feature of the unloading force-displacement curves determined in this study is their353

nonlinearity. Explanations for the source of this nonlinearity and were advanced in Section 4.4, with reference354

to contact area and three-dimensional stress effects. It was found that increasing material stiffness tended355

to drive unloading response from an elastic-type (with nonlinearity increasing with initial displacement) to356

a plastic-bar-type (with nonlinearity reducing to 1.0 with increasing displacement) response.357

Several authors (for example, Etsion [21], Luding [13] and Mesarovic & Johnson [8]) have proposed358

using the ratio of displacement to critical displacement, δ̄/δ̄c, as a measure of the effective magnitude of359

particle deformation and the degree to which the particle’s deformation is “plastic” rather than elastic, and360

incorporate this measure into empirical relations. The current work shows that, at large initial displacements,361

trends in results with increasing dimensionless stiffness are qualitatively and quantitatively different to362

those with increasing initial displacement, and this is true for both secant unloading stiffness and unloading363

nonlinearity. This effect is shown most clearly in Fig. .10, where results distinguished by different stiffness364

(Ē) are not collapse to a single curve defined by δ̄/δ̄c. Consequently, this measure was found to be insufficient365

to characterise unloading response at large deformations across the parameter space investigated in this work,366

and therefore three independent arguments were necessary in the model equation (Eq. 3) developed.367
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In summary, the unloading of particles, with simplifying assumptions, presents systematic trends in368

behaviour that can be accurately approximated by analytical relations and explained with reference to369

physical mechanisms. The findings of this work are presented as a contribution to the development of370

simulation methods for particle mechanics.371
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Appendix A. Full simulation results430

[Figure 18 about here.]431
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constant Ē. (a) ν=0.0 (b) ν=0.15 (c) ν=0.30 (d) ν=0.45. Circles show values of ρ calculated476

with Eq. 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42477

.20 (Colour online) FE results for unloading nonlinearity (a) ν=0.0 (b) ν=0.15 (c) ν=0.30 (d)478

ν=0.45. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43479

.21 Effects of ν on unloading stiffness (a) δ̄max = 0.01 (b) δ̄max = 0.5. . . . . . . . . . . . . . . . 44480

.22 Effects ν on nonlinearity (a) δ̄max = 0.01 (b) δ̄max = 0.5. . . . . . . . . . . . . . . . . . . . . 45481

23



δ̄0 δ̄max
0

F̄max

Loading

α=1
α=1.5

α=2

Dimensionless displacement, δ̄

D
im

en
si

on
le

ss
lo

ad
,
F̄
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Figure .4: (Colour online) Strain energy in loading and unloading. All simulations loaded to δ̄=0.5. Strain energy is normalised
with respect to maximum linear strain energy ((2/3)πR3 ·(1/2)(σ2

y/E)). Values are greater that unity due to use of logarithmic
strain in their calculation. Residual elastic strain at the end of the unloading step is primarily circumferential.

27



100 101 102 103
100

101

102

103

Elastic response

Material stiffness, Ē
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Figure .11: (Colour online) Relationship between F̄max and stiffness ratio k2/k1, lines for constant Ē, for ν = 0.30, for
comparison with the unloading model of Walton and Braun [14].
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Figure .12: Ratio between unloading stiffness calculated from Eq. 9 (ρeq) and finite element results (ρFE) for ν = 0.3.
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Figure .13: (Colour online) Relationship between particle load and contact area for ν = 0.3. Anomalous behaviour was observed
for Ē=10 as secondary separation developed at the contact centre before unloading was completed.
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ā

2
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Hertz Truncated sphere (Eq. 13)

Figure .15: (Colour online) Contact area dependencies, ā = ā(Ē, δ̄max).
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Figure .17: (Colour online) Relationship between δ̄max and ρ, lines for constant Ē, for analytical model.
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(a) ρ(Ē, δ̄max), ν=0.0

100 101 102 103
100

101

102

103

Material stiffness, Ē
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(b) ρ(Ē, δ̄max), ν=0.15

100 101 102 103
100

101

102

103

Elastic response

Material stiffness, Ē
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Figure .18: (Colour online) FE results showing relationship between Ē and secant stiffness ρ, lines for constant δ̄max. (a)
ν=0.0 (b) ν=0.15 (c) ν=0.30 (d) ν=0.45. Dotted continuation lines show values of ρ corresponding a fully elastic response for
each value of δ̄max.

41



0.01 0.1 1.0
100

101

102

103

Maximum displacement, δ̄max

S
ec

an
t

st
iff

n
es

s,
ρ
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Figure .19: (Colour online) FE results showing relationship between δ̄max and secant stiffness ρ, lines for constant Ē. (a)
ν=0.0 (b) ν=0.15 (c) ν=0.30 (d) ν=0.45. Circles show values of ρ calculated with Eq. 3.
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Figure .20: (Colour online) FE results for unloading nonlinearity (a) ν=0.0 (b) ν=0.15 (c) ν=0.30 (d) ν=0.45.
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Figure .21: Effects of ν on unloading stiffness (a) δ̄max = 0.01 (b) δ̄max = 0.5.
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Figure .22: Effects ν on nonlinearity (a) δ̄max = 0.01 (b) δ̄max = 0.5.
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Parameter Value

γ1 2.9932
γ2 0.1206
γ3 0.4865
γ4 0.2563
γ5 0.3429

Table .1: Best-fit parameters for Eq. 3
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