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Extended Data 

Fig. 1 

Flow chart 

outlining 

systematic 

review process. 

ED_Fig_1.eps The systematic search strategy and 

eligibility criteria are shown in 

Supplementary Tables 8 and 9. 

Extended Data 

Fig. 2 

Flow chart 

showing 

inclusion of 

participants in 

the population-

ED_Fig_2.eps The systematic search strategy and 

eligibility criteria are shown in 

Supplementary Tables 8 and 9. 
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level and 

prediction 

modelling 

analyses. 

Extended Data 

Fig. 3 

Cumulative risk 

of prevalent and 

incident 

tuberculosis 

during follow-up. 

ED_Fig_3.eps Risk is stratified by binary latent TB test 

result, provision of preventative treatment, 

and indication for screening among 

participants with untreated latent infection 

(total n=80,468 participants). Cumulative 

risk is estimated using flexible parametric 

survival models with random effects for the 

intercept by source study, separately fitted 

to each risk group. Prevalent TB cases 

(diagnosed within 42 days of recruitment) 

are included in this sensitivity analysis. 

Each plot is presented as point estimates 

(solid line) and 95% confidence intervals 

(shaded area). PT = preventative 

treatment.   

Extended Data 

Fig. 4 

Pooled TB 

incidence rates 

among adults, 

stratified by risk 

group 

ED_Fig_4.eps Pooled incidence rates are shown on log10 

scale among participants with: latent TB 

infection (LTBI) with no preventative 

therapy (PT); LTBI commencing PT; and 

without evidence of LTBI. Rates are further 

stratified by follow-up interval (0-2 years vs. 

2-5 years) and indication for screening 

(total n=52,576 participants). Pooled 

incidence rate estimates were derived from 

random intercept Poisson regression 
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models, without continuity correction for 

studies with zero events. Numeric results 

are shown for the subgroups with untreated 

latent TB infection in the forest plots in 

Extended Data Figure 5.  Plots show point 

estimates (filled circles) and 95% 

confidence intervals (vertical error bars). No 

pooled estimate could be calculated for 

child contacts without evidence of LTBI for 

the 2-5 year interval since there were no 

incident events. 

Extended Data 

Fig. 5 

Forest plots 

showing 

incidence rates 

by source study 

among 

participants with 

untreated LTBI. 

ED_Fig_5.eps Forest plots are stratified by follow-up 

interval (0-2 years vs. 2-5 years) and 

indication for screening (total n=52,576 

participants). Pooled incidence rate 

estimates (shown as diamonds) were 

derived from random intercept Poisson 

regression models, without continuity 

correction for studies with zero events. 

Incidence rates per study are shown with a 

continuity correction of 0.5 for studies with 

zero events. Plots show study-level point 

estimates (grey squares) and 95% 

confidence intervals (CIs; horizontal error 

bars). 

Extended Data 

Fig. 6 

Calibration plots 

from internal-

external 

validation of 

ED_Fig_6.eps Data from nine primary validation studies 

are shown, from internal-external cross-

validation of the model (developed among 

n=31,090 participants; validated among 
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prediction model, 

stratified by 

validation study. 

25,504 in this analysis). X-axis shows 

predicted risk, in quintiles, with 

corresponding Kaplan Meier 2-year risk of 

incident TB on the Y-axis (95% confidence 

intervals are shown by vertical error bars). 

Extended Data 

Fig. 7 

Model validation 

sensitivity 

analyses. 

ED_Fig_7.eps Forest plots showing recalculation of the C-

statistics from internal-external cross 

validation, limiting validation sets to (a) 

participants who did not receive 

preventative therapy (n=23,060 

participants); (b) participants with a positive 

LTBI test (n=9,063 participants); and (c) 

binary LTBI test results (using an average 

quantitative positive or negative LTBI test 

result as appropriate, based on the 

medians among the study population; 

n=25,504 participants). ‘TB’ column 

indicates number of incident TB cases 

within 2 years of study entry and ‘N’ 

indicates total participants per study 

included in analysis. Each forest plot shows 

point estimates (squares) and 95% 

confidence intervals (error bars). Pooled 

estimates are shown as diamonds. Panel 

(d) shows decision curve analyses 

(n=6,418 participants) when using the 

prediction model using a binary LTBI test 

result, compared to the full prediction 

model, ‘treat all’ and ‘treat none’ strategies 
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across a range of threshold probabilities (x-

axis). Net benefit appeared higher for the 

binary model than either the strategies of 

treating all patients with evidence of LTBI, 

or no patients, throughout the range of 

threshold probabilities. The full model had 

highest net benefit across most threshold 

probabilities. 

Extended Data 

Fig. 8 

Data supporting 

assumptions 

underlying 

PERISKOPE-TB 

model. 

ED_Fig_8.eps (a) Quantitative results for the tuberculin 

skin test (TST), QuantiFERON Gold-in-tube 

(QFT-GIT) and T-SPOT.TB are normalised 

to a percentile scale using a head-to-head 

population among whom all three tests 

were performed from 3 studies including 

recent TB contacts, migrants and 

immunocompromised participants 

(n=8,335; 158 TB cases). We examined the 

association between normalised test result 

and risk of incident TB using Cox 

proportional hazards models with restricted 

cubic splines. Normalised results for each 

test appeared to be associated with similar 

risk of incident TB. 

(b) Kaplan Meier plots from pooled dataset 

showing cumulative risk of incident TB, 

stratified by proximity and infectiousness of 

index cases among contacts (n=22,231 

participants). There was no evidence of 

separation of risk of additional subgroups of 
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the ‘other’ (non-smear positive household) 

contacts stratum. PTB = pulmonary TB; 

EPTB = extra-pulmonary TB.  

(c) Kaplan Meier plots from pooled dataset 

showing cumulative risk of incident TB 

among people with positive latent TB tests, 

stratified by TB incidence in country of birth 

among migrants from high TB burden 

countries (n=1,031 participants). P value 

represents Log-rank test. 

(d) Kaplan Meier plots from pooled dataset 

showing cumulative risk of incident TB 

among people with positive latent TB tests, 

stratified by country of birth among recent 

contacts (n=5,917 participants). P value 

represents Log-rank test. 
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2. Supplementary Information:  9 

 10 

A. Flat Files  11 

 12 

Complete the Inventory below for all additional textual information 13 

and any additional Supplementary Figures, which should be supplied 14 

in one combined PDF file.  15 

 16 

 17 

Item Present? Filename 

This should be the 

A brief, numerical description of file 

contents.  



7 
 

 18 

Title page 19 

Title 20 

Discovery and validation of a personalized risk predictor for incident tuberculosis in low transmission 21 

settings 22 

Authors 23 

Rishi K. Gupta1, Claire J. Calderwood1, Alexei Yavlinsky2, Maria Krutikov1, Matteo Quartagno3, 24 

Maximilian C. Aichelburg4, Neus Altet5,6, Roland Diel7,8, Claudia C. Dobler9,10, Jose Dominguez11,12,13, 25 

Joseph S. Doyle14,15, Connie Erkens16, Steffen Geis17, Pranabashis Haldar18, Anja M. Hauri19, Thomas 26 

Hermansen20, James C. Johnston21, Christoph Lange22,23,24,25, Berit Lange26, Frank van Leth24,27,28, 27 

Laura Muñoz29, Christine Roder14,15, Kamila Romanowski21, David Roth21, Martina Sester24,30, Rosa 28 

Sloot31, Giovanni Sotgiu24,32, Gerrit Woltmann18, Takashi Yoshiyama33, Jean-Pierre Zellweger24,34, 29 

name the file is 

saved as when it is 

uploaded to our 

system, and should 

include the file 

extension. The 

extension must be 

.pdf 

i.e.: Supplementary Figures 1-4, 

Supplementary Discussion, and 

Supplementary Tables 1-4. 

Supplementary 

Information 

Yes  PERISKOPE-

TB_supplementa

ry_information_R

3_submitted_202

0-08-26.pdf 

Supplementary Tables 1-11.  

Reporting Summary Yes reportingsummar

y_1598387149_4

1.pdf 



8 
 

Dominik Zenner1, Robert W. Aldridge2, Andrew Copas1,3, Molebogeng X. Rangaka1,3,35,36, Marc 30 

Lipman*37,38, Mahdad Noursadeghi*39, Ibrahim Abubakar*1 31 

*These authors contributed equally 32 

Affiliations 33 

1. Institute for Global Health, University College London, London, UK 34 

2. Institute of Health Informatics, University College London, London, UK 35 

3. MRC Clinical Trials Unit, Institute of Clinical Trials and Methodology, University College London, 36 

London, UK 37 

4. Department of Dermatology, Sozialmedizinisches Zentrum Ost-Donauspital, Vienna, Austria 38 

5. Unitat de Tuberculosis, Hospital Universitari Vall d'Hebron-Drassanes, Barcelona, Spain 39 

6. Unitat de TDO de la Tuberculosis "Servicios Clínicos", Barcelona, Spain 40 

7. Institute for Epidemiology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany 41 

8. Lung Clinic Grosshansdorf, Airway Research Center North (ARCN), Großhansdorf, Germany 42 

9. Institute for Evidence-Based Healthcare, Faculty of Health Sciences and Medicine, Bond 43 

University, Gold Coast, Queensland, Australia 44 

10. Department of Respiratory Medicine, Liverpool Hospital, Sydney, Australia 45 

11. Institut d'Investigació Germans Trias i Pujol, Badalona, Barcelona, Spain 46 

12. CIBER Enfermedades Respiratorias, Badalona, Barcelona, Spain 47 

13. Universitat Autònoma de Barcelona, Badalona, Barcelona, Spain 48 

14. Department of Infectious Diseases, The Alfred and Monash University, Melbourne, Australia 49 

15. Disease Elimination Program, Burnet Institute, Melbourne, Australia 50 

16. KNCV Tuberculosis Foundation, The Hague, The Netherlands 51 

17. Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Marburg, 52 

Germany 53 

18. Respiratory Biomedical Research Centre, Institute for Lung Health, Department of Respiratory 54 

Sciences, University of Leicester, Leicester, UK 55 

19. Hesse State Health Office, Dillenburg, Germany 56 

20. International Reference Laboratory of Mycobacteriology, Statens Serum Institut, Copenhagen, 57 

Denmark 58 

21. British Columbia Centre for Disease Control, Vancouver, BC, Canada 59 

22. Division of Clinical Infectious Diseases, Research Center Borstel, Germany 60 

23. German Center for Infection Research (DZIF), Clinical Tuberculosis Center, Borstel, Germany 61 

24. Tuberculosis Network European Trials Group (TBnet) 62 

25. Department of Medicine, Karolinska Institute, Stockholm, Sweden 63 

26. Helmholtz Centre for Infection Research, Department of Epidemiology, Germany 64 

27. Amsterdam Institute for Global Health and Development, Amsterdam, The Netherlands 65 

28. Amsterdam University Medical Centres, location AMC, Department of Global health, Amsterdam, 66 

The Netherlands 67 



9 
 

29. Department of Clinical Sciences, University of Barcelona, Spain 68 

30. Department of Transplant and Infection Immunology, Saarland University, Homburg, Germany 69 

31. Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and 70 

Health Sciences, Stellenbosch University, Cape Town, South Africa 71 

32. Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and 72 

Experimental Sciences, University of Sassari, Italy 73 

33. Research Institute of Tuberculosis, Japan 74 

34. Swiss Lung Association, Berne, Switzerland 75 

35. Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and 76 

Molecular Medicine, University of Cape Town, Cape Town, South Africa 77 

36. Division of Epidemiology and Biostatistics, School of Public Health, University of Cape Town, 78 

Cape Town, South Africa 79 

37. UCL-TB and UCL Respiratory, University College London, London, UK  80 

38. Royal Free London NHS Foundation Trust, London, UK 81 

39. Division of Infection & Immunity, University College London, UK 82 

Equal contributions 83 

M.L., M.N. and I.A. contributed equally to this work.  84 

Correspondence 85 

Professor Ibrahim Abubakar, Institute for Global Health, University College London, 3rd Floor, 30 86 

Guilford St, London, WC1N 1EH, i.abubakar@ucl.ac.uk. ORCID: 0000-0002-0370-1430.  87 



10 
 

Abstract 88 

The risk of tuberculosis (TB) is variable among individuals with latent Mycobacterium tuberculosis 89 

infection (LTBI), but validated estimates of personalized risk are lacking. In pooled data from 18 90 

systematically-identified cohort studies from 20 countries, including 80,468 individuals tested for LTBI, 91 

5-year cumulative incident TB risk among people with untreated LTBI was 15.6% (95% CI 8.0-29.2) 92 

among child contacts, 4.8% (3.0-7.7) among adult contacts, 5.0% (1.6-14.5) among migrants, and 93 

4.8% (1.5-14.3) among immunocompromised groups. We confirmed highly variable estimates within 94 

risk groups, necessitating an individualized approach to risk-stratification. We thus developed a 95 

personalised risk predictor for incident TB (PERISKOPE-TB) that combines a quantitative measure of 96 

T-cell sensitization and clinical covariates. Internal-external cross-validation of the model 97 

demonstrated a random-effects meta-analysis C-statistic of 0.88 (0.82-0.93) for incident TB. In 98 

decision curve analysis, the model demonstrated clinical utility for targeting preventative treatment, 99 

compared to treating all, or no, people with LTBI. We challenge the crude current approach to TB risk 100 

estimation among people with LTBI, in favour of our evidence-based and patient-centered method, in 101 

settings aiming towards pre-elimination worldwide.  102 
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Introduction 103 

Tuberculosis (TB) accounts for the greatest number of deaths from a single pathogen globally, with an 104 

estimated 1.5 million deaths and 10 million incident cases in 20181. The World Health Organization 105 

(WHO) End TB strategy ambitiously aims for a 95% reduction in TB mortality and 90% reduction in TB 106 

incidence by 20352. As part of this strategy, the priority for low transmission settings is to achieve 107 

pre-elimination (annual incidence of <1/100,000) by 20352. Preventative antimicrobial treatment for 108 

latent tuberculosis infection (LTBI) is considered critical for achieving this objective2,3. In the absence 109 

of an assay to detect viable Mycobacterium tuberculosis (M.tuberculosis) bacteria, LTBI is currently 110 

clinically defined as evidence of T cell memory to M.tuberculosis, in the absence of concurrent 111 

disease and any prior treatment4,5. Individuals with LTBI are generally considered to have a lifetime 112 

TB risk ranging from 5-10%4, which is reduced by 65-80% with preventative treatment6.  113 

The positive predictive value (PPV) for TB using the current definition of LTBI is <5% over a two year 114 

period among risk groups such as adult TB contacts7–9. This may lead to a large burden of 115 

unnecessary preventative treatment, with associated risks of drug toxicity to patients, and excess 116 

economic costs to health services. The low PPV may also undermine the cascade of care, including 117 

uptake of preventative treatment among target groups, who perceive their individual risk of developing 118 

TB to be low10,11. In fact, the risk of TB among individuals with LTBI is highly variable between study 119 

populations, with incidence rates ranging from 0.3-84.5 per 1,000 person-years of follow-up7,12. Thus, 120 

quoting the 5-10% lifetime estimate is likely to be inaccurate for many people. Improved risk 121 

stratification is therefore essential to enable precise delivery of preventative treatment to those most 122 

likely to benefit5,13. Multiple studies have shown that the magnitude of the T cell response to 123 

M.tuberculosis is associated with incident TB risk, raising hope that quantitative tuberculin skin test 124 

(TST) or interferon gamma release assay (IGRA) results may improve predictive ability14,15. However, 125 

implementing higher diagnostic thresholds alone does not improve prediction on a population level 126 

due to a marked loss of sensitivity with this approach16.  127 

In this study, we first sought to characterise the population risk of TB among people tested for LTBI 128 

using an individual participant data meta-analysis (IPD-MA). In order to study progression from LTBI 129 

to TB disease more accurately, we focused on settings with low transmission (defined as annual 130 

incidence ≤20/100,000 persons), where there is a minimal risk of reinfection during follow-up. We 131 



12 
 

confirmed highly variable estimates of risk, necessitating an individual level approach to risk 132 

estimation. Here we develop and validate a directly data-driven personalized risk predictor for incident 133 

TB (PERISKOPE-TB) that combines a quantitative T cell response measure with key clinical 134 

covariates.   135 
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Results 136 

Systematic review 137 

Our systematic review identified 26 studies that aimed to assess the risk of progression to TB disease 138 

among individuals tested for LTBI in low TB transmission settings; corresponding authors of these 139 

studies were invited to contribute individual level data (Extended Data Figure 1). Of these, we 140 

received 18 individual level datasets, including participants recruited in 20 countries. The pooled 141 

dataset included a total of 82,360 individual records, of whom 51,697 had evidence of LTBI and 826 142 

were diagnosed with TB. Of the received data, 80,468 participants (including 803 TB cases) had 143 

sufficient data for inclusion in the primary analysis (Extended Data Figure 2). The characteristics of 144 

the included study datasets are summarised in Table 1 and Supplementary Table 1. Characteristics of 145 

the eight eligible studies for which IPD were not obtained were similar to those included in the 146 

analysis (Supplementary Table 2). Eight studies recruited adults only; the remainder recruited both 147 

adults and children. The target population was recent TB contacts in nine studies17–25, people living 148 

with HIV in two studies26,27, mixed immunocompromised groups in two studies28,29, transplant 149 

recipients in one study30, mixed population screening in two studies31,32, recent migrants in one 150 

study33, and a combination of recent contacts and migrants in one study9. Median follow-up of all 151 

participants was 3.7 years (interquartile range (IQR) 2.1-5.3). All contributing studies reported 152 

baseline assessments for prevalent TB through routine clinical evaluations, and all included culture-153 

confirmed and clinically diagnosed TB cases in their case definitions. Four studies had a proportion of 154 

participants lost to follow up >5%18,24,27,28; baseline characteristics of those lost to follow-up were 155 

similar to those followed-up in each of these studies (Supplementary Table 3). All contributing studies 156 

achieved quality assessment scores of 6 or 7/7 (Supplementary Table 4).  157 

Population-level analysis 158 

In the pooled dataset, the 2-year cumulative risk of incident TB was estimated as 4.0% (2.6-6.3) 159 

among people with LTBI who did not receive preventative therapy, 0.7% (0.4-1.3) in people with LTBI 160 

who commenced preventative therapy and 0.2% (0.1-0.4) in people without LTBI (Figure 1; 161 

Supplementary Table 5). The corresponding 5-year risk of incident TB among these groups was 5.4% 162 

(3.5-8.5), 1.1% (0.6-2.0) and 0.3% (0.2-0.5), respectively.  163 
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Among untreated people with LTBI, 2-year risk of incident TB was 14.6% (7.5-27.4) among recent 164 

child (<15 years) contacts, 3.7% (2.3-6) among adult contacts, 4.1% (1.3-12) among migrants, and 165 

2.4% (0.8-6.8) among people screened due to immunocompromise (without an index exposure). 166 

Corresponding 5-year risk was 15.6% (8.0-29.2) among recent child contacts, 4.8% (3.0-7.7) among 167 

adult contacts, 5.0% (1.6-14.5) among migrants, and 4.8% (1.5-14.3) among people screened due to 168 

immunocompromise. Among recent child contacts, risk was markedly higher among those aged <5 169 

years, compared to those aged 5-14 years (2-year risk 26.0% (9.4-60.1) vs. 12.4% (5.7-25.6); Figure 170 

1).  171 

Among child contacts, 85.4% and 93.7% of cumulative risk was accrued in the first one and two years 172 

of follow-up, respectively. Among adult contacts and migrants, the annual risk also declined markedly 173 

with time. Of the cumulative 5-year risk, 58.0% and 77.5% was accrued in the first one and two years 174 

of follow-up for adult contacts, with corresponding values among migrants of 66.4% and 81.6%. There 175 

was a more even distribution of risk during follow-up in the immunocompromised group.  176 

TB incidence rates in years 0-2 and 2-5 of follow-up, stratified by LTBI result, commencement of 177 

preventative treatment and indication for screening, are shown in Extended Data Figures 4 and 5. 178 

Within each of the risk groups assessed, incidence rates among untreated people with LTBI were 179 

markedly higher in the 0-2 year interval, compared to the 2-5 year interval, but were highly 180 

heterogeneous across studies (I2 statistics, representing the proportion of variance that is considered 181 

due to between-study heterogeneity, ranged from 54-91% for incidence rates during the 0-2 year 182 

interval among untreated people with LTBI, when stratified by indication for screening; forest plots 183 

shown in Extended Data Figure 5). These findings suggest highly variable TB risk among people with 184 

LTBI, even within risk groups. 185 

Prediction model development 186 

The observed heterogeneity in TB incidence rates across studies, even after stratification by binary 187 

LTBI result, commencement of preventative treatment and indication for screening, suggests that an 188 

individual level approach to risk stratification is required. We therefore developed a personalized risk 189 

prediction model using a subset of the received data (where sufficient individual level variables were 190 

available) including 528 TB patients among 31,721 participants from 15 studies (Extended Data 191 

Figure 2). All of these datasets were used for model development and validation, using the internal-192 
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external cross-validation framework34, described below. Characteristics of the studies included in 193 

prediction model development and validation were similar to those that were not (Table 1). Our 194 

modelling approach used a flexible parametric survival model with two degrees of freedom on a 195 

proportional hazards scale, since this showed the best fit in each imputed dataset. From our list of a 196 

priori variables of interest, we evaluated nine candidate predictors, of which only previous BCG and 197 

gender were omitted from the final model. The final prediction model included: age, a composite ‘TB 198 

exposure’ variable (modelled with time-varying covariates to account for non-proportional hazards), 199 

time since migration for migrants from countries with high TB incidence, HIV status, solid organ or 200 

haematological transplant receipt, normalised LTBI test result and preventative treatment 201 

commencement. The final model coefficients and standard errors, pooled across multiply imputed 202 

datasets, are summarised in Supplementary Table 6, with visual representations of associations 203 

between each variable and incident TB risk shown in Figure 2.  204 

Internal-external cross-validation 205 

Next, we used the internal-external cross-validation (IECV) framework, iteratively discarding one 206 

study dataset from the model training set and using this for external validation, to concurrently 207 

validate the prediction model, explore between-study heterogeneity, and examine generalizability34. 208 

Model discrimination and calibration parameters for 2-year risk of incident TB from the primary 209 

validation studies are shown in Figure 3. We assessed discrimination using the C-statistic, which 210 

ranged from 0.78 (0.47-1.0) in a study of immunocompromised participants with a small number of 211 

incident TB cases29 to 0.97 (0.94-0.99) in a study of TB contacts18. The random-effects meta-analysis 212 

estimate of the C-statistic was 0.88 (0.82-0.93).  213 

Calibration assesses agreement between predicted and observed risk. We assessed calibration 214 

visually using grouped calibration plots, supplemented by the calibration-in-the-large (CITL) and slope 215 

statistics (Figure 3). Visual calibration plots suggested reasonable calibration in most studies 216 

(Extended Data Figure 6). Since incident TB is an infrequent outcome, predictions were appropriately 217 

low, with average predicted risk <10% in all quintiles of risk. CITL and calibration slopes of 0 and 1 218 

indicate perfect calibration, respectively. The pooled random-effects meta-analysis CITL estimate was 219 

0.14 (-0.24-0.53), with evidence of systematic under-estimation of risk in one study (CITL 1.02 (0.61-220 

1.43)), and over-estimation in one study (CITL -0.64 (-1.09—0.19)). The pooled random-effects meta-221 
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analysis calibration slope estimate was 1.11 (0.83-1.38). Slopes appeared heterogeneous, though 222 

visual assessment of calibration plots suggested that these were prone to being extreme due to the 223 

skewed distribution of predicted and observed risk, likely reflecting the relatively rare occurrence of 224 

incident TB events.  225 

Distribution of predicted risk and individual predictions 226 

Figure 4 shows the distributions of predicted TB risk among participants who did not commence 227 

preventative treatment from the pooled IECV validation sets, stratified by: (a) binary LTBI test result; 228 

and (b) indication for screening (among those with a positive test). The median predicted 2-year TB 229 

risk was 2.0% (interquartile range 0.8-3.7) and 0.2% (0.1-0.3) among participants with positive and 230 

negative binary LTBI test results, respectively. We then examined incident TB risk in four quartiles of 231 

predicted risk among untreated participants with positive LTBI tests from the pooled validation sets. 232 

Kaplan-Meier plots of the four quartiles showed clear separation of observed risk among these four 233 

groups (Figure 4c), with illustrative predicted survival curves for one randomly sampled individual 234 

patient per quartile shown in Figure 4d. 235 

Decision curve analysis 236 

Net benefit quantifies the trade-off between correctly identifying true positive patients (progressing to 237 

incident TB), and incorrectly detecting false-positives, with weighting of each by the threshold 238 

probability35,36. The threshold probability corresponds to a measure of both the perceived risk/benefit 239 

ratio of initiating preventative treatment, and the threshold of predicted risk above which treatment is 240 

recommended. How patients and clinicians weigh the relative costs of drug-related adverse events 241 

(as a result of inappropriate treatment) against the benefits of preventing a case of TB can be 242 

subjective. Among untreated participants with LTBI from the pooled validation sets in IECV, net 243 

benefit for the prediction model was greater than either treating all LTBI patients, or treating none, 244 

throughout a range of threshold probabilities from 0-20% (reflecting a range of clinician and patient 245 

preferences) (Figure 5).  246 

Sensitivity analyses 247 

We re-examined population-level TB risk without any exclusion of prevalent TB (cases diagnosed <42 248 

days from testing), resulting in markedly higher cumulative risk for each risk group (Extended Data 249 

Figure 3). Recalculation of model predictor parameters revealed similar directions and magnitudes of 250 
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effect to the primary model when using shorter and longer definitions of prevalent TB (baseline risk 251 

was expectedly higher with shorter definitions) and when excluding participants who received 252 

preventative treatment (Supplementary Table 7). Model parameters were noted to be more extreme 253 

when using a complete case approach (for variables other than HIV, which was assumed negative 254 

when missing). The pooled random-effects meta-analysis C-statistic from IECV when limiting to 255 

participants who did not receive preventative treatment was 0.89 (0.82-0.93), similar to the primary 256 

analysis (Extended Data Figure 7a). The pooled random-effects meta-analysis C-statistic including 257 

only participants with a positive binary LTBI test was 0.77 (0.70-0.83). This finding indicates good 258 

discrimination even among participants with a conventional diagnosis of LTBI, albeit lower than 259 

discrimination when also including participants with a negative binary LTBI test - likely due to the high 260 

negative predictive value of LTBI tests when using standard cut-offs (Extended Data Figure 7b). 261 

Finally, in order to assess model performance in situations where the quantitative test results are not 262 

available. we imputed an average quantitative positive or negative LTBI test result (based on the 263 

medians among the study population), according to the binary result in the validation sets. This 264 

analysis provided a pooled random-effects meta-analysis C-statistic of 0.86 (0.76-0.93; Extended 265 

Data Figure 7c), and net benefit appeared higher when using this model than either the strategies of 266 

treating all patients with evidence of LTBI, or no patients, across the range of threshold probabilities. 267 

However, the model using a binary test result had a lower C-statistic, and slightly lower net benefit 268 

across most threshold probabilities, compared to the full model using quantitative test results 269 

(Extended Data Figure 7d).   270 
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Discussion 271 

In this study, we examined population-level incident TB risk in a pooled dataset of >80,000 individuals 272 

tested for LTBI in 20 countries with low M.tuberculosis transmission (annual incidence ≤20/100,000 273 

persons). We found cumulative 5-year risk of incident TB among people with untreated LTBI 274 

approaching 16% among child contacts, and approximately 5% among recent adult contacts, 275 

migrants from high TB burden settings, and immunocompromised individuals. A majority of 276 

cumulative 5-year risk was accrued during the first year among risk groups with an index exposure, 277 

supporting previous data suggesting that risk of progressive TB declines markedly with increasing 278 

time since infection13. However, we noted substantial variation in incidence rates even within these 279 

risk groups, suggesting that an individual level approach to risk stratification is required. Therefore, we 280 

developed the first directly data-driven model, to our knowledge, to incorporate the magnitude of the T 281 

cell response to M.tuberculosis with readily available clinical metadata in order to capture 282 

heterogeneity within risk groups, and generate personalized risk predictions for incident TB in settings 283 

aiming towards pre-elimination. Clinical co-variates in the final model included age, recent contact 284 

(including proximity and infectiousness of the index case), migration from high TB burden countries 285 

(and time since arrival), HIV status, solid organ or haematological transplant receipt, and 286 

commencement of preventative treatment. The model was externally validated by quantifying the 287 

meta-analysis C-statistic for predicting incident disease over 2 years, and by evaluating its calibration, 288 

using recommended methods37. Most importantly, the model showed clear clinical utility for informing 289 

the decision to initiate preventative treatment, compared to treating all or no patients with LTBI. 290 

The personalized predictions from our model will enable more precise delivery of preventative 291 

treatment to those at highest risk of TB disease, while concurrently reducing toxicity and costs related 292 

to treatment of people at lower risk. Moreover, the model will allow clinicians and patients to make 293 

more informed and individualised choices when considering initiation of preventative treatment. The 294 

model also challenges the fundamental notion of an arbitrary binary test threshold for diagnosis of 295 

LTBI. By incorporating a quantitative measure of immunosensitization to M.tuberculosis, we facilitate 296 

a shift from the conventional paradigm of LTBI as a binary diagnosis, towards personalized risk 297 

stratification for progressive TB. This approach takes advantage of stronger T cell responses being a 298 

correlate of risk, while guarding against a loss of sensitivity by arbitrarily introducing higher test 299 

thresholds programmatically16.  300 
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The results of our analyses are consistent with, and extend existing evidence. Recent analyses report 301 

similar population-level TB incidence rates among adult contacts12, with markedly higher risk among 302 

young children38. Moreover, these recent meta-analyses confirm highly heterogeneous population-303 

level estimates, thus justifying an individual-level approach to risk estimation12,38. Previous models 304 

developed and validated in Peru, a high transmission setting, have generated individual or household-305 

level TB risk estimates for TB contacts39–41. Another model, parameterised using aggregate data 306 

estimates from multiple sources, seeks to estimate TB risk following LTBI testing in all settings42. 307 

However, there are currently no publicly available validation data to support its use and the model 308 

omits key predictor variables identified in the current study (including the magnitude of the T cell 309 

response and infectiousness of index cases)42. 310 

Strengths of the current study include the size of the dataset, curated through comprehensive 311 

systematic review in accordance with Preferred Reporting Items for a Systematic Review and Meta-312 

analysis of Individual Participant Data standards43, and with IPD obtained for 18/26 (69%) eligible 313 

studies. This allowed us to examine progression from LTBI to TB disease using the largest adult and 314 

pediatric dataset available to date, to our knowledge. We conducted population-level analyses using 315 

both 1- and 2-stage IPD-MA approaches in order to present both cumulative TB risk and time-316 

stratified incidence rates, respectively, with consistent results from both. We adhered to transparent 317 

reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD)44 318 

standards, using the recommended approach of IECV37, leading to a fully data-driven and validated 319 

model for personalized risk estimates following LTBI testing. The coefficients presented in the model 320 

are clinically plausible and have been made publicly available to facilitate further independent external 321 

validation. Moreover, the contributing datasets included heterogeneous populations of adults, 322 

children, recent TB contacts, migrants from high TB burden countries, and immunocompromised 323 

groups from 20 countries across Europe, North America, Asia and Oceania, thus making our results 324 

generalizable to settings aiming towards pre-elimination globally.  325 

We also used a comprehensive approach to addressing missing data by using multi-level multiple 326 

imputation in the primary analysis, assuming missingness at random and in keeping with recent 327 

guidance34,45. This approach facilitated imputation of variables that were systematically missing from 328 

some included studies. Previous BCG vaccination and HIV status were noted to be missing from a 329 
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large proportion of participants. This missingness may have reduced our power to detect an 330 

association between these variables and incident TB, and BCG vaccination was notably not included 331 

in the final prognostic model. While increasing data support a role for BCG vaccination in reducing 332 

sensitisation to M. tuberculosis46,47, additional data are required to further assess the association 333 

between BCG vaccination and incident TB risk, after adjustment for other co-variates including 334 

quantitative T cell responses. We supported our primary multiple imputation approach using a 335 

complete case sensitivity analysis (for variables other than HIV, which was assumed negative when 336 

missing). This sensitivity analysis revealed similar findings to the primary analyses, though effect 337 

estimates were noted to be more extreme in the complete case approach, likely owing to a degree of 338 

bias in the latter, since complete cases analysis assumes no association between the pattern of 339 

missingness and the outcome (i.e. incident TB) after adjusting for all other covariates48. Given that TB 340 

incidence and predictor missingness both varied according to contributing study, this assumption is 341 

unlikely to be valid in the current context.  342 

We also used a range of arbitrary definitions of prevalent TB in the primary and sensitivity analyses, 343 

since the aim of our prognostic model is to assess the risk of incident TB, after prevalent TB has been 344 

clinically ruled out, in order to inform risk/benefit decisions regarding preventative treatment initiation. 345 

With increasing recognition of the continuum of M.tuberculosis infection using novel diagnostics 346 

(including incipient and/or subclinical phases)49, the distinction between prevalent and incident 347 

disease is becoming increasingly blurred. Future studies could consider integration of our prognostic 348 

model with next generation biomarkers, such as blood transcriptional signatures for incipient TB50,51. 349 

A limitation of the study is that its generalisability is restricted to low transmission settings (annual 350 

incidence ≤20/100,000 persons). The rationale for limiting to such settings was, firstly, to examine 351 

progression from LTBI to TB disease more accurately, by reducing risk of re-infection with 352 

M.tuberculosis during follow-up. Secondly, the majority of the population in high transmission settings 353 

are likely to have a positive LTBI test result, further undermining test specificity for progression to TB 354 

disease52. Since the quantitative LTBI test result is a strong predictor in our model, a different 355 

prediction model may therefore be required in such settings. For example, a recent study developing 356 

a prediction model for TB among close contacts in Peru found that the TST result added no value to 357 

the model39. Future studies could test our model for use in high transmission settings, updating the 358 
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parameters as necessary, in order to extend its application to these settings. A second limitation of 359 

the current study is that model calibration was observed to be imperfect during external validation. 360 

However, conventional metrics (such as the calibration slope) may not be entirely appropriate in this 361 

context, which has a highly skewed distribution of predicted and observed risk, reflecting the rare 362 

occurrence of incident TB events. Reassuringly, in decision curve analysis, which accounts for both 363 

discrimination and calibration performance in quantifying net benefit, the model showed clinical 364 

utility35. Future studies may evaluate the full health economic impact of programmatic implementation 365 

of the model.  366 

A further limitation is that, due to a lack of data from contributing studies, other potential predictors 367 

that may be associated with incident TB risk (including diabetes, malnutrition, fibrotic chest x-ray 368 

lesions and other immunosuppression)4 were not evaluated. These unmeasured covariates may have 369 

contributed to imperfect discrimination and calibration, along with residual heterogeneity in model 370 

performance between datasets. As additional studies are published, the prognostic model can be 371 

prospectively evaluated and updated as required. We also note that offer and acceptance of 372 

preventative treatment may be more likely among people at higher risk of TB. We therefore accounted 373 

for preventative treatment provision in the model by including it as a co-variate along with our other 374 

predictors of interest, as widely recommended53. However, residual confounding by indication cannot 375 

be excluded in observational studies. In addition, the present model is not applicable for patients 376 

commencing biologic agents since no datasets were identified that examined the natural history of 377 

LTBI in the context of biologic therapy, in the absence of preventative treatment for TB. A ‘hybrid’ 378 

modelling approach, with mathematical parameterisation of relative risk for any given biologic agent, 379 

may be required to extend its application to these therapies. Since the quantitative LTBI test result is 380 

a strong predictor in our model, predictions may also be attenuated in the context of advanced 381 

immunosuppression7. Reassuringly. performance appeared adequate in a dataset of 382 

immunocompromised individuals during validation29.  383 

In summary, we present a freely available and directly data-driven personalized risk predictor for 384 

incident TB (PERISKOPE-TB; periskope.org). This tool will allow a programmatic paradigm shift for 385 

TB prevention services in settings aiming towards pre-elimination globally, by facilitating shared 386 

decision-making between clinicians and patients for preventative treatment initiation.  387 
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Figure Legends 548 

Figure 1: Population-level cumulative risk of incident tuberculosis during follow-up. 549 

Risk is stratified by binary latent TB test result, provision of preventative treatment, and indication for 550 

screening among participants with untreated latent infection (total n=80,468 participants). Cumulative 551 

risk is estimated using flexible parametric survival models with random effects intercepts by source 552 

study, separately fitted to each risk group. Prevalent TB cases (diagnosed within 42 days of 553 

recruitment) are excluded. Each plot is presented as point estimates (solid line) and 95% confidence 554 

intervals (shaded area). PT = preventative treatment. Numbers of participants, TB cases and numeric 555 

cumulative risk estimates for each plot are presented in Supplementary Table 5. Cumulative TB risk 556 

including prevalent TB cases is presented in Extended Data Figure 3. 557 

Figure 2: Visual representations of associations between predictors and incident tuberculosis.  558 

Illustrative estimates are shown for a 33-year old migrant from a high TB burden setting. The example 559 

‘base case’ patient does not commence preventative treatment, is not living with HIV, has not 560 

received a previous transplant, and has an ‘average’ positive latent TB test. We vary one of these 561 

predictors in each plot ((a) age; (b) normalised latent TB test result; (c) years since migration; (d) 562 

exposure to M. tuberculosis; (e) HIV status; (f) transplant receipt; and (g) preventative treatment). 563 

Each plot is presented as point estimates (solid line) and 95% confidence intervals (shaded area). 564 

The model was trained on a pooled dataset (n=31,090 participants). Model parameters are provided 565 

in Supplementary Table 6. ‘Household smear+ contact’ = household contact of sputum smear-positive 566 

index case; ‘Other contact’ = contact of non-household or smear-negative index case; ‘Migrant’ = 567 

migrant from high TB incidence country, without recent contact. 568 

Figure 3: Forest plots showing model discrimination and calibration metrics for predicting 2-569 
year risk of incident tuberculosis.  570 

Discrimination is presented as the C-statistic; calibration is presented as calibration-in-the-large 571 

(CITL) and the calibration slope. Data from nine primary validation studies are shown,from internal-572 

external cross-validation of the model (developed among n=31,090 participants; validated among 573 

25,504 in this analysis). ‘TB’ column indicates number of incident TB cases within 2 years of study 574 

entry and ‘N’ indicates total participants per study included in analysis. Each forest plot shows point 575 

estimates (squares) and 95% confidence intervals (error bars). Pooled estimates are shown as 576 

diamonds. Calibration slopes >1 suggest under-fitting (predictions are not varied enough), while 577 
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slopes <1 indicate over-fitting (predictions are too extreme). Calibration-in-the-large indicates whether 578 

predictions are systematically too low (CITL >0) or too high (CITL <0). Dashed lines indicate line of no 579 

discrimination (C-statistic), and perfect calibration (CITL and slope), respectively.  580 

Figure 4: Distribution of predictions and risk of incident tuberculosis in four quartiles of risk 581 
for people with positive latent TB tests.  582 

Distribution of risk from prediction model using pooled validation sets of people not receiving 583 

preventative therapy from internal-external cross-validation of the model (n=27,511 participants), 584 

stratified by (a) binary latent TB test result and (b) indication for screening among untreated people 585 

with positive LTBI tests. (c) Kaplan-Meier plots for quartile risk groups (1=lowest risk) of untreated 586 

individuals with positive LTBI tests (n=6,418 participants). Quartiles represent four equally sized 587 

groups based on predicted risk of incident TB, from the pooled validation sets derived from internal-588 

external cross-validation of the prediction model. P value represents Log-rank test (p=1.137 x 10-40). 589 

(d) Randomly sampled individual patients from each risk quartile. Patient 1 is a 22-year-old with no TB 590 

exposure and a normalised latent TB test result on the 68th percentile; Patient 2 is a 41-year-old 591 

migrant from a high TB burden country (3.8 years since migration) with normalised latent TB test 592 

result on the 80th percentile; Patient 3 is a 51-year-old household contact of a smear positive index TB 593 

case with a normalised latent TB test result on the 79th percentile; Patient 4 is a 33-year-old 594 

household contact of a smear positive index TB case with a normalised latent TB test result on the 595 

94th percentile. All four example patients are HIV negative and are not transplant recipients. 596 

Equivalent values of normalised percentile test results for QuantiFERON, T-SPOT.TB and tuberculin 597 

skin test are shown in Supplementary Table 10. Plots (c) and (d) are presented as point estimates 598 

(solid line) and 95% confidence intervals (shaded area). 599 

Figure 5: Decision curve analysis. 600 

Shown as net benefit of the prediction model among untreated participants from the pooled validation 601 

sets with positive binary latent TB tests (n=6,418 participants), compared to ‘treat all’ and ‘treat none’ 602 

strategies across a range of threshold probabilities (x-axis). Net benefit quantifies the trade-off 603 

between correctly identifying true positive progressors to incident TB, and incorrectly detecting false-604 

positives, with weighting of each by the threshold probability35. The threshold probability corresponds 605 

to a measure of both the perceived risk/benefit ratio of initiating preventative treatment, and the 606 

percentage cut-off for the prediction model, above which treatment is recommended. Net benefit 607 
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appeared higher than either the strategies of treating all patients with evidence of LTBI, or no patients, 608 

throughout the range of threshold probabilities, suggesting clinical utility. For illustration, a patient who 609 

is very concerned about developing TB disease, but not concerned regarding side-effects of 610 

preventative treatment, may have a low threshold probability (e.g. 1%, which is equivalent to a 611 

risk:benefit ratio of 1:99, i.e. the outcome of developing TB is considered to be 99 times worse than 612 

taking unnecessary preventative treatment). In contrast, a patient who is less concerned about 613 

developing TB but is very concerned about side-effects of preventative treatment may have a higher 614 

threshold probability (e.g. 10% which is equivalent to a risk:benefit ratio of 1:9). The unit of net benefit 615 

is ‘true positives’35. For instance, a net benefit of 0.01 would be equivalent to a strategy where 1 616 

patient per 100 tested was appropriately given preventative treatment, as they would otherwise have 617 

progressed to incident TB if left untreated. 618 
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Tables 619 

Table 1: Characteristics of contributing studies included in individual participant data meta-analysis. 620 

Additional study characteristics are shown in Supplementary Table 1. IQR = interquartile range. 621 

Authors Publication 
Year 

Country N (total) Adults / children Population Follow-up 
years 
(median 
(IQR)) 

TB cases Loss to 
follow-up 

Included in 
prediction 
modelling 

NOS^

Abubakar et al9 2018 UK 10,045 Adults Contacts & migrants 4.7 (3.7-5.5) 147 10 (0.1%) Yes 7/7
Aichelburg et al26 2009 Austria 830 Adults People with HIV 1.2 (0.7-1.4) 11 25 (3%) Yes 7/7
Altet et al17 2015 Spain 1,339 Adults & children Contacts 4 (4-4) 95 0 (0%) Yes 7/7
Diel et al18 2011 Germany 1,414 Adults & children Contacts 3.5 (2.5-4.2) 19 381 (26.9%) Yes 7/7
Dobler & Marks19 2013 Australia 12,212 Adults & children Contacts 4.2 (2-6.9) 94 351 (2.9%) No* 7/7
Doyle et al27 2014 Australia 919 Adults People with HIV 2.9 (1.7-3.6) 2 47 (5.1%) Yes 7/7
Erkens et al32 2016 Netherlands 14,241 Adults & children Mixed population screening 5.5 (3-7.4) 134 NA No* 6/6
Geis et al20 2013 Germany 1,283 Adults & children Contacts 0.8 (0.4-1.1) 33 62 (4.8%) Yes 6/6
Gupta et al25 2020 UK 623 Adults Contacts 1.9 (1.6-2.2) 13 0 (0%) Yes 7/7
Haldar et al21 2013 UK 1,411 Adults & children Contacts 1.9 (1.3-2.4) 37 30 (2.1%) Yes 7/7
Lange et al28 2012 Germany 456 Adults Immunocompromised 2.8 (2-3.1) 1 42 (9.2%) Yes 7/7
Munoz et al30 2015 Spain 76 Adults Transplant recipients 4.3 (3.6-4.8) 2 0 (0%) Yes 7/7
Roth et al31 2017 Canada 22,949 Adults & children Mixed population screening 3 (1.8-4.3) 58 NA Subset* 6/6
Sester et al29 2014 Multiple European countries 1,464 Adults Immunocompromised 2.7 (1.5-3.5) 11 7 (0.5%) Yes 7/7
Sloot et al22 2014 Netherlands 5,895 Adults & children Contacts 5.9 (3.6-7.7) 81 NA Yes 7/7
Yoshiyama et al23 2015 Japan 625 Adults & children Contacts 1.8 (1.4-2) 12 0 (0%) Yes 6/7
Zellweger et al24 2015 Multiple European countries 5,237 Adults & children Contacts 2.6 (1.9-3.5) 55 1339 (25.6%) Yes 7/7
Zenner et al33 2017 UK 1,341 Adults Migrants 3.7 (3-4.8) 21 NA No* 7/7
Total   82,360 3.7 (2.1-5.3) 826 2294 (2.8%) 
*Not included in prediction modelling due to lack of data on proximity or infectiousness of index cases19, or absent quantitative LTBI test data32,33. A subset of 622 

the dataset was included in the prediction model for the Roth et al study31; contacts and migrants were excluded due to no data being available on country of 623 

birth or infectiousness of index cases, respectively.  624 

^Modified version of the Newcastle Ottowa Scale for cohort studies. 625 
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Methods 626 

Systematic review and pooling of individual participant data 627 

We conducted a systematic review and IPD-MA, in accordance with Preferred Reporting Items for a 628 

Systematic Review and Meta-analysis of Individual Participant Data standards43, to investigate the 629 

risk of progression to TB disease among people tested for LTBI in low transmission settings. The 630 

study is registered with PROSPERO (CRD42018115357). We searched Medline and Embase for 631 

studies published 01/01/2002 – 31/12/2018 using comprehensive MeSH and keyword terms for ‘TB’, 632 

‘IGRA’, ‘TST’, ‘latent TB’, and ‘predictive value’, without language restrictions. Longitudinal studies 633 

that primarily aimed to assess the risk of progression to TB disease among individuals tested for LTBI 634 

and that were conducted in a low TB transmission setting (defined as annual incidence ≤20/100,000 635 

persons at the midpoint of the study) were eligible for inclusion. The full search strategy and eligibility 636 

criteria are provided in Supplementary Tables 8 and 9. Titles and abstracts underwent a first screen; 637 

relevant articles were selected for the second screen, which included full text review. Both first and 638 

second screens were performed by two independent reviewers, with disagreements resolved through 639 

discussion and arbitration by a third reviewer where required. Corresponding authors of eligible 640 

studies were invited to contribute IPD. Received data were mapped to a master variables list, and the 641 

integrity of the IPD were examined by comparing original reported results with re-analysed results 642 

using contributed data. Quality assessment was performed using a modified version of the Newcastle-643 

Ottawa scale for cohort studies54. 644 

Definitions 645 

Participants entered the cohort on the day of LTBI screening or diagnosis, and exited on the earliest 646 

of censor date (last date of follow-up), active TB diagnosis date, date of death, or date of loss to 647 

follow-up (where available). LTBI was defined as any positive LTBI test (TST or commercial IGRA), 648 

using TST thresholds as defined by the contributing study (a 10mm cut-off was used for studies that 649 

assessed multiple thresholds). Quantitative IGRA thresholds were calculated according to standard 650 

manufacturer guidelines. IGRAs included three generations of QuantiFERON TB assays 651 

(QuantiFERON Gold-In-Tube, QuantiFERON Gold, QuantiFERON-TB Gold Plus; Qiagen, Hilden, 652 

Germany), which were assumed to be equivalent25, and T-SPOT.TB (Oxford Immunotec, UK). 653 

Microbiologically confirmed and/or clinically diagnosed TB cases were included, as per contributing 654 

study definitions. In the absence of a widely accepted temporal distinction between prevalent and 655 
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incident disease, prevalent TB at the time of screening was arbitrarily defined as a TB diagnosis 656 

within 42 days of enrolment; these cases were omitted from the primary analysis. Alternative shorter 657 

and longer temporal definitions were tested as sensitivity analyses. Participants with missing 658 

outcomes or durations of follow-up were considered lost to follow-up. ‘Preventative treatment’ was 659 

defined as any LTBI treatment regimen recommended by the WHO52. All contributing studies included 660 

regimens consistent with this guidance; the effectiveness of each regimen was assumed to be 661 

equivalent55.  662 

Population-level analysis 663 

Survival analysis 664 

In a one-stage IPD-MA approach, we used flexible parametric survival models, with a random effect 665 

intercept by source study to account for between study heterogeneity, to examine population level risk 666 

of incident TB, stratified by LTBI screening result (positive vs negative) and provision of LTBI 667 

treatment (commenced vs. not commenced). We further examined progression risk among untreated 668 

participants with LTBI, stratified by indication for screening (recent child contacts (<15 years) vs adult 669 

contacts vs migrants vs immunocompromised), by separately fitting random-effect flexible parametric 670 

survival models to each risk group. Child contacts were further stratified by age (<5 vs. 5 to 14 years). 671 

Incidence rates 672 

We also calculated TB incidence rates (per 1,000 person-years) in a two-stage IPD-MA approach, 673 

stratified by LTBI screening result, provision of LTBI treatment, and indication for screening. Rates 674 

were calculated separately for the 0-2 year and 2-5 year follow-up intervals. Pooled incidence rate 675 

estimates for each risk group and follow-up interval were derived using random intercept Poisson 676 

regression models, without continuity correction for studies with zero events, in the meta package in 677 

R56.  678 

Prediction model analysis 679 

Variables of interest 680 

We then developed and validated a personalized prediction model for incident TB, in accordance with 681 

transparent reporting of a multivariable prediction model for individual prognosis or diagnosis 682 

(TRIPOD) guidance44. For this analysis, we included studies that reported quantitative LTBI test 683 

results, proximity and infectiousness (based on sputum smear status) of index cases for contacts, and 684 
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country of birth and time since entry for migrants, since we considered these variables fundamental a 685 

priori.  Using this subset of the data, we examined the availability of a range of variables of interest, 686 

specified a priori, in the contributing datasets to determine eligibility for inclusion as candidate 687 

predictors in the model. We determined that the following predictors were available from a sufficient 688 

number of datasets for further evaluation: age, gender, quantitative LTBI test result, previous BCG 689 

vaccination, recent contact (including proximity and infectiousness of index case), migration from a 690 

high TB incidence setting, time since migration, solid organ or haematological transplant receipt, HIV 691 

status and TB preventative treatment commencement.  692 

Variable transformations 693 

Previous data have shown that quantitative TST, QuantiFERON Gold-in-tube (QFT-GIT) and T-694 

SPOT.TB results are associated with risk of incident TB16. However, each LTBI test is reported using 695 

different scales, and it has hitherto been unclear whether quantitative values of each test are 696 

equivalent with respect to incident TB risk. To assess this further, we examined a sub-population of 697 

the entire cohort where all three tests were performed among the same participants in head-to-head 698 

studies. We normalised quantitative results for the TST, QFT-GIT and T-SPOT.TB to a percentile 699 

scale using this head-to-head population, and examined the association between normalised result 700 

and risk of incident TB using Cox proportional hazards models with restricted cubic splines. Since 701 

TST cut-offs are frequently stratified by BCG vaccination and HIV status57,58, we also examined 702 

whether these variables modified the association between quantitative TST measurement and 703 

incident TB risk in the head-to-head subpopulation. Since there was no evidence that including 704 

interaction terms for either BCG or HIV improved model fit (based on Akaike Information Criteria 705 

(AIC)), we used unadjusted TST measurements. This analysis revealed that the normalised percentile 706 

results for each test (unadjusted TST, QFT-GIT and T-SPOT.TB) appeared to be associated with 707 

similar risk of incident TB (Extended Data Figure 8). The LTBI tests implemented differed between 708 

contributing studies. From this point, all LTBI test results were therefore normalised to this percentile 709 

scale to enable data harmonisation across studies, by transforming raw quantitative results to the 710 

relevant percentile using look-up tables derived from the head-to-head population (Supplementary 711 

Table 10). Since most people evaluated for LTBI under routine programmatic conditions have a single 712 

test performed, we only included one test result per participant in the prediction model. We 713 

preferentially included tests where quantitative results were available. Where quantitative results were 714 
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available for more than one test, we preferentially included the QuantiFERON result (since this was 715 

the most commonly used test in the dataset), followed by T-SPOT.TB, and then the TST.  716 

Recent contacts were categorised as either ‘smear positive and household’ or ‘other’ contacts, since 717 

there was no evidence of separation of risk among additional subgroups of the ‘other’ contacts 718 

stratum during exploratory univariable analyses (Extended Data Figure 8). Since we considered 719 

migration from a high TB burden country (defined as annual TB incidence ≥100/100,000 persons at 720 

the year of migration) to be a proxy for prior TB exposure, we included this in a composite ‘TB 721 

exposure’ variable, which included four mutually-exclusive levels: household contact of smear-positive 722 

index case; ‘other’ contact; migrant from country with high TB incidence, without recent contact; and 723 

no exposure. There was no evidence of separation of incident TB risk when stratified by TB incidence 724 

in country of birth above the binary country of birth threshold (TB incidence ≥100/100,000 persons) 725 

among migrants, or when stratified by country of birth among recent contacts (Extended Data Figure 726 

8).  727 

Age and normalised test result variables were modelled using restricted cubic splines (using a default 728 

of 5 knots placed at recommended intervals59) to account for their non-linear associations with 729 

incident TB.  730 

Multiple imputation 731 

A data dictionary and summary of missingness of candidate predictor variables is provided in 732 

Supplementary Table 11. We performed multi-level multiple imputation to account for sporadically and 733 

systematically missing data (assuming missingness at random48), while respecting clustering by 734 

source study, in accordance with recent guidance45 using the micemd package in R60. We used 735 

predictive mean matching for continuous variables, due to their skewed distributions. We included all 736 

variables (including transformations) assessed in the downstream prediction model in the imputation 737 

model, along with auxiliary variables, to ensure congeniality. Multi-level imputation was done 738 

separately for contacts and non-contacts due to expected heterogeneity between these groups. We 739 

generated ten multiply imputed datasets, with 25 between-imputation iterations. Model convergence 740 

was assessed by visually examining plots of imputed parameters against iteration number. All 741 

downstream analyses were done in each of the ten imputed datasets; model coefficients and 742 

standard errors were combined using Rubin’s rules61.  No imputation was done for participants 743 
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missing binary LTBI test results, or for those lost to follow-up; these individuals were excluded. For 744 

recent TB contacts or people screened due to HIV infection with missing data on transplant status, 745 

this was assumed negative due to the very low prevalence of transplant receipt when observed 746 

among these risk groups (<0.5%). 747 

Variable selection and final model development 748 

We performed backward selection of the nine candidate predictors in each of the pooled imputed 749 

datasets, using AIC. Variables that were selected in more than 50% of the imputed datasets were 750 

included in the final model. T cell responses to M.tuberculosis may be impaired in the context of 751 

immunosuppression (including among people with HIV or transplant recipients)7. We therefore also 752 

tested whether there was a significant interaction between HIV or transplant and the normalized 753 

percentile test result variable, in order to assess whether the association between the quantitative test 754 

result and incident TB risk varied according to HIV or transplant status. This analysis showed no 755 

evidence of effect modification, based on AIC, thus these interaction terms were not included in the 756 

final model.  757 

We used flexible parametric survival models in order to facilitate estimation of baseline risk throughout 758 

the duration of follow-up62, using the rstpm2 package63. We examined a range of degrees of freedom 759 

for the baseline hazard, using proportional hazards and odds scales, and selected the final model 760 

parameters based on the lowest AIC across the imputed datasets. Visual inspection of survival curves 761 

suggested non-proportional hazards for the composite exposure category; we therefore assessed 762 

whether including this variable as a time-varying covariate (by including an interaction between the 763 

composite exposure covariate of interest and time) improved model fit64. Since the AIC for the time-764 

varying covariate model was lower across all imputed datasets, this time-varying covariate approach 765 

was used for the final model.  766 

Internal-external cross-validation 767 

Following development of the final model, we used the internal-external cross-validation (IECV) 768 

framework for model validation, allowing concurrent assessment of  between-study heterogeneity and 769 

generalisability34. In this process, one entire contributing study dataset is iteratively discarded from the 770 

model training set and used for external validation. This process is repeated until each dataset has 771 

been used once for validation. The primary outcome for validation was 2-year risk of incident TB. We 772 
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included datasets with a minimum of 5 incident TB cases, and where participants had been included 773 

regardless of LTBI test result, as the primary validation sets. We assessed model discrimination using 774 

the C-statistic for 2-year TB risk. Model calibration was assessed by visually examining calibration 775 

plots of predicted risk vs. Kaplan Meier estimated observed 2-year risk in quintiles, and using the 776 

calibration slope and calibration-in-the-large (CITL) statistics65. Calibration slopes >1 suggest under-777 

fitting (predictions are not varied enough), while slopes <1 indicate over-fitting (predictions are too 778 

extreme). Slopes were calculated by fitting survival models with the model linear predictor as the sole 779 

predictor; the calculated coefficient for the linear predictor provides the calibration slope. CITL 780 

indicates whether predictions are systematically too low (CITL >0) or too high (CITL <0). We 781 

calculated CITL for each validation set by fixing all model coefficients from model development 782 

(including the baseline hazard terms), and re-estimating the intercept. The difference between the 783 

development model and recalculated validation model intercepts provided the CITL statistic66.  784 

Pooling of IECV parameters and random-effects meta-analysis 785 

IECV was performed on each imputed dataset. Validation set C-statistics, calibration slopes and CITL 786 

metrics were pooled for each study across imputations using Rubin’s rules61. We then meta-analysed 787 

these metrics across validation studies with random-effects, using logit-transformed C-statistics as 788 

previously recommended67, to derive pooled discrimination and calibration estimates. The IECV 789 

validation sets were also pooled, with averaging of the predicted 2-year risk of TB for each individual 790 

in the validation sets across imputations, for downstream decision curve analyses as described 791 

below. 792 

Decision curve analysis 793 

Decision curve analysis complements model validation parameters by assessing the potential clinical 794 

utility of a prediction model35,36. Net benefit quantifies the proportion of true positive cases detected 795 

minus the proportion of false positives, with weighting of each by the ‘threshold probability’35. The 796 

‘threshold probability’ reflects both the risk/benefit ratio of initiating preventative treatment, and the 797 

percentage cut point for the prediction model, above which treatment is recommended. We calculated 798 

net benefit across a range of clinically relevant threshold probabilities (to account for a range of 799 

clinician and patient preferences) in comparison to the default strategies of treating either all or no 800 

patients with a positive LTBI test. We analysed net benefit using the stdca command from the 801 
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ddsjoberg/dca package in R68, using the stacked validation sets of untreated participants with positive 802 

LTBI tests from IECV (to ensure that each individual for whom a prediction was generated had not 803 

been included in the model training set used to derive that prediction).  804 

Sensitivity analyses 805 

First, we re-examined population-level TB risk without exclusion of prevalent TB cases. Second, we 806 

recalculated prediction model parameters using: alternative definitions of prevalent TB (ranging from 807 

diagnosis within 0 to 180 days of recruitment); a complete case approach (for all variables except for 808 

HIV status, which was assuming negative where this was missing); and exclusion of participants who 809 

received preventative treatment. Parameters for each of these models were compared with the 810 

primary model (without time-varying covariates to facilitate interpretation).  811 

We also examined IECV discrimination parameters for validation datasets when: (a) restricted to 812 

participants with positive binary LTBI tests; (b) excluding those who received preventative treatment; 813 

and (c) imputing an average quantitative positive or negative LTBI test result (based on the medians 814 

among the study population), according on the binary result. The latter analysis was done to assess 815 

model performance in situations where the quantitative test result is not available.  816 

Ethics 817 

This study involved analyses of fully depersonalized data from previously published cohort studies, 818 

with data pooling via a safe haven. Ethical approvals for sharing of data were sought and obtained by 819 

contributors of individual participant data, where required.  820 

Data availability statement 821 

The individual participant data pooled for this analysis are subject to data sharing agreements with the 822 

original study authors. The data may be shared to interested parties by the corresponding authors of 823 

the original studies, subject to data sharing agreements. 824 

Code availability 825 

The final prognostic model developed in this study has been made freely available, to enable 826 

immediate implementation in clinical practice and independent external validation in new datasets 827 
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(periskope.org). The code underlying the prediction tool is available at github.com/rishi-k-828 

gupta/PERISKOPE-TB.  829 
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