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Appendix B. 

Ontological data models: 

a new database approach to improve 

archaeological data management and  

incorporate Fuzzy Set Theory 

 

Introduction 

In Chapters 6 and 7, we have seen that we can express the inexactness of our 

archaeological knowledge or our uncertainty about archaeological data using Fuzzy Set 

Theory (FST). If we express this knowledge, however, we should also take it into 

account in our analyses and conclusions as well (Niccolucci & Hermon 2017). This is 

only possible if the information about our uncertainty about our claims is available. 

This means that this information needs to be stored in our databases, especially if it is to 

be available to others who need it to evaluate our conclusions. 

In traditional database approaches, based on relational databases, such 

information is often stored in comment fields. This presents several, related, problems. 

Information in comment fields is almost impossible to take along in analyses. Certainly, 

the database does not distinguish between an artefact that has been classified as ‘type 

A’ and one that bears the same classification, but has an attached comment saying that 

it could also be ‘type B’. In subsequent analyses, both will be counted as certain 

instances of ‘type A’, losing the information about uncertainty and skewing results. 

Furthermore, even if the conclusions are not directly skewed, it is very difficult 

for someone going back to the data to unearth information about exactness. This is 

because they need to be aware of the existence of the comment in order to read it. Since 

not all cases have such comments attached, it is almost unavoidable for a re-user to go 

back through the entire database; a time-consuming process. 

Ontological data modelling, the database approach that I will discuss in this 

appendix, allows us to deal with these problems, as well as provide us with more 
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flexible and accurate tools for data handling and storage. Most importantly for this 

thesis, however, is that it provides the way by which FST’s potential can be 

operationalised on larger datasets. So rather than introducing a second, unrelated, new 

tool for archaeologists to get acquainted with, this second tool supports the 

implementation of the first. By changing the way we approach databases, we can open 

up the way to incorporate FST into our analyses of larger datasets as well as ensure the 

durability of its benefits for archaeological knowledge creation. In the following 

sections, I will introduce the concept of the ontological data model, the way in which 

they work and how they differ from traditional relational databases.  

 

Ontological data models 

Why the name ‘ontology’? 

 

For those with a philosophical bent, ‘ontology’ is a confusing name for database 

approaches. There is little common ground between the philosophical study of being 

and this approach to data management. The name was chosen because, fundamentally, 

an ontological data model aims to describe the data as closely to how they are in reality 

as possible (Gruber 1995). In traditional relational databases data are fitted into a 

structure which is designed to facilitate answering certain questions. With an 

ontological data model, the nature of each datum is described as accurately as possible 

and it is these descriptions which form the information stored in the system. This is still 

done using a structure, but the structure is designed to represent the data, rather than the 

data being fitted into a structure. To illustrate the difference, let us consider sixteen 

sherds that used to belong to a single vessel. A relational database would archive this as 

a single vessel using a data field ‘number of fragments’ to register the value ‘16’. An 

ontological data model would describe the sixteen sherds individually, as this is how 

they have come to us, and for each sherd record the relation of it having once been part 

of the original single vessel. An individual description such as this allows for more 

accurate descriptions of the data, which, in some cases, could enable subtler research 

questions to be answered. 

 

Building an ontological data model 
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The basic concepts of ontological data models are classes, properties and individuals. 

Formal definitions and discussions of the building blocks of ontological data models 

can be found at the OWL specification section of the World Wide Web Consortium’s 

website (W3C, see list of abbreviations). Classes are used to describe entities in reality. 

Concepts, such as ‘tree’ or ‘archaeological context’, can all be classes in ontological 

data models. Not all classes are equally general. To reflect this, classes are organised in 

a class hierarchy. ‘Beech tree’ can be a class, but it is more specific than ‘tree’. In a 

class hierarchy, it would therefore be lower down than ‘tree’ but connected to it through 

a hierarchical relation. The hierarchical relations between a class and classes higher up 

in the hierarchy are ‘is a’ relations. For example, a beech tree is a tree and this is 

expressed by ‘tree’ appearing above ‘beech tree’ in the hierarchy. All trees (including 

beech trees) are plants though. This means that ‘plant’ is a superclass of ‘tree’. Because 

all hierarchical class relations are ‘is a’ relations, it means that ‘beech tree’ is a subclass 

of ‘plant’, just like ‘tree’ is. This is, of course, exactly as we would want it, since it 

mirrors our conceptualisation of reality. As a consequence of this, anything defined as a 

property of a class is also a property of all its subclasses. This inheritance principle 

means that we can efficiently define our model, since we only have to define properties 

at the highest level in the hierarchy where they are appropriate. Inheritance ensures that 

it is propagated down the hierarchy. 

Organising concepts in this way ultimately yields a class hierarchy that branches 

out downwards into ever more specific subclasses and concentrates upwards to ever 

more general concepts. At the very top we have the class ‘thing’, which is about as 

general as we can get. 

Defining the classes is an important step in designing a data model. In order to 

optimise reusability and interoperability, standards have been developed for class 

definitions. An important one for the field of archaeology is the CIDOC CRM 

(conceptual reference model, http://www.cidoc-crm.org). In this CRM, concepts are 

described and defined in a standardised way. These definitions can be imported from 

the CIDOC CRM into your ontologies, which will ensure that the ontology is 

compatible with others using the same concepts, but it also saves a lot of re-inventing 

the wheel. In the CRM, concepts are described using description logic. This means that 

they are somewhat difficult to read for people used to natural language. An important 

advantage of using description logic is that it is machine readable. This possibility of 
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vocabulary being machine readable means that many tasks can be automated, for 

example data importing. 

Creating class hierarchies is all well and good, but for it to be useful, an 

ontological data model needs to be able to store data. We are not (just) interested in the 

concept of an amphora, we want to record specific amphorae. Classes are defined in the 

abstract, but they are concretised through their instances. A particular amphora is an 

instance of the class amphora. We use the ontological data model to describe instances. 

So if we are recording a Dragendorff 16 plate, we say (among other things) that this is 

an instance of the class ‘plate’ and an instance of the class ‘Dragendorff 16 vessel’.  

Because of the inheritance principle, an instance of a class is automatically also 

an instance of its superclasses and inherits all the properties defined for these. We will 

always try to be as specific as possible with our ascriptions, in order to record as much 

information as possible. It sometimes happens, however, that we know that a sherd is a 

fragment of terra sigillata, but cannot pinpoint a specific form type due to 

fragmentation or the condition the sherd is in. In this case we record it as an instance of 

a higher level class, meaning that it inherits all the properties of its superclasses, but not 

those defined for the more detailed appellations. This is, of course, completely in 

agreement with intuition and current practice. 

Ontological data models do not just consist of a class hierarchy. They are defined 

in two planes: the ‘vertical’ class hierarchy and a ‘horizontal’ plane of relations 

between them. This horizontal plane consists of object properties and data properties. 

Object properties are used to define the relations between classes, whereas data 

properties link instances to specific values, such as weights or dimensions. 

Object properties are used to link between classes in different branches of the 

hierarchy. That is, they describe relations between classes that are not related 

hierarchically through ‘is a’ relations. For example, the object property ‘made’ links 

instances of the class ‘maker’ to those of the class ‘artefact’. The reverse is also true, if 

a maker made an artefact, then the artefact was made by the maker. Object properties 

have inverse versions in which the order of instances is reversed (see the discussion of 

triple statements below). These inverse properties often do not need to be explicitly 

defined. Only when they become necessary do they need to be made explicit. Before 

that time, they exist implicitly. Once they are defined as the inverse of an existing 

property, the system can automatically apply the inverse property to those instances 

between which the original property was defined. 
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Because of the inheritance principle, an object property that connects instances of 

two classes, can automatically also connect instances of their subclasses. This means 

that when we define an object property ‘has_Form_Type’ that links an artefact to an 

instance of the class ‘Form_Type’, which denotes typological classifications, we do not 

need to specify that this applies to every single sub-variant within every typology, 

because these would inherit this potential link from their superclass. The result of this is 

that the model can be efficiently defined with as little doubled specifications as 

possible. 

It is also possible to define a single object property, but use it multiple times, not 

only for different instances of the class, but also to link different classes. For example, 

if we have the object property ‘was_found_in_Archaeological_Context’ linking 

artefacts to the context they were found in, rather than define a separate object property 

to document the relation between skeletal material and the context that was found in, 

we can modify the object property ‘was_found_in_Archaeological_Context’ to not only 

allow it to apply to instances of the class ‘Artefact’, but also to instances of the class 

‘Skeletal _Material’. We can expand the scope of a property by specifying extra classes 

it can link to others, known as its domain. In Figure B.1 we can see that the object 

property ‘was_found_in_Archaeological_Context’ has two classes as its domain, as it 

links both of those to their ‘Archaeological_Context’, which is its range.  
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Conversely, an object property can also link an instance of a single class to 

instances of multiple other classes. In this case, the object property is defined with 

multiple classes as its range. If we were to take the inverse of Figure B.1, we would get 

the object property ‘Context_contains’, which has a single domain 

‘Archaeological_Context’ and multiple classes as its range. 

Data properties are used to link instances of classes to specific values. If we 

wanted to document an artefact’s weight, we could use, for instance, a data property 

‘has_weight’ to link the artefact to a numerical field, in which we register its weight. Of 

course, we would need to specify the units in which this weight is measured, but this 

can be done in the definition stage. As with object properties, data properties can have 

multiple classes as a domain. This means we do not need to re-define data properties 

Figure B.1: Screenshot from the Protégé ontology editor showing the definition of the 

'was_found_in_Archaeological_Context' object property. Note the double domains and the fact that it 

has its inverse property specified. 
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for every single class, we can simply include more classes in the domain of a data 

property.  

Instances of classes, properties and data property values are combined into RDF 

(Resource Description Framework) triples, or triple statements. These triple statements 

are the form in which actual data gets stored in an ontology. A triple statement consists 

of a subject, a predicate and an object. The subject of an RDF triple is always an 

instance of a class. The predicate is formed by either an object property or a data 

property. Depending on whether the predicate was an object property or a data 

property, the object of a triple statement is an instance of a class or a data value 

respectively. Returning to Figure B.1, a hypothetical triple statement based on this 

would be ‘Artefact_1’, ‘was_found_in_Archaeological_Context’, ‘Context_1’ (subject, 

predicate, object). 

RDF triples map out relations in the three-dimensional network of the data model. 

Seen in this way, RDF triples are actually a graph. As it is triple statements that get 

stored in the database, what we are actually storing is a 3D graph mapping the ways in 

which the data we are documenting relate to one another. If defined appropriately, this 

is as accurate a description of the nature of data as possible. 

Instances of classes can be linked through multiple properties. Archaeological 

contexts can contain multiple artefacts (documented by object properties) as well as 

have dimensions (documented by data properties). In all these properties the 

corresponding instance of the ‘Archaeological_Context’ class acts as the subject of the 

triple statement (or the object of the statement if the inverse object property is used). 

The values that are the object of triple statements using data properties as their 

predicate are not re-used in the same way, but indicate unique values that characterise 

this particular case. The same value could, of course, be used multiple times, but each 

data property triple statement refers to a unique value, whereas when object properties 

refer to the same thing, they refer to the same instance. So all triple statements asserting 

that a sherd is of a Dragendorff 16 type link to the ‘Dragendorff 16’ instance of the 

‘Form_Type’ class, whereas all triple statements asserting that a sherd weighs 40g link 

to individual values. 

In some cases, properties are defined such that only one unique value is possible. 

For example, in western countries, a person is allowed only one legal spouse or 

registered partner. In this case, a functional property is defined, which limits the 

number of individuals to which a person can be linked using this property (W3C). 
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Similarly, an artefact can only have been found at one site, so this property would be an 

example of a functional property. 

Another special type of property is the so-called transitive property. Declaring a 

property as transitive means that when this property is used to link a pair of instances a 

and b and a pair b and c, that a and c are also linked by this property. This can be 

illustrated with the object property ‘is_part_of’. An archaeological context can be 

reconstructed as being part of an ancient building (e.g. a posthole for a centurion’s 

quarters) while the building is part of a larger structure (e.g. a barrack block) and so on. 

The archaeological context in this example is part of both the building and the larger 

structure. Thanks to the transitive nature of the object property ‘is_part_of’, this does 

not have to be specified separately, but is resolved through the internal logic of the 

model. 

 

Advantages of ontological data models 

 

When characterising ontological data models, above, I noted that they allow a 

description of data close to their being. This was phrased in opposition to traditional 

relational database approaches. This subsection discusses further advantages of using 

ontological data approaches. Many of these are advantages over relational databases, 

but they are also beneficial in isolation (Cf. Martinez-Cruz 2012). 

One of the benefits of ontologies is that they are very flexible tools. Traditionally, 

once data has been entered into a database, the structure of the database cannot be 

altered without potentially compromising its functionality. With an ontological data 

model, it is possible to define new relations in the model. This will require extra work, 

but provided sufficient care is taken, there are no fundamental obstructions to changes 

to the structure after it has been populated. Such flexibility is crucial when collating 

several datasets for analysis. Ontological data models allow several existing databases 

to be spliced into a single data model, so long as clear mapping rules are defined. This 

facilitates data re-use as datasets can be combined and data models carefully adapted to 

new research questions. Theoretically, any new project that a researcher embarks upon 

could benefit from data from earlier projects as new data can be added to an existing 

database while the old data is made available for new questions by adapting the model 

structure.  
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The splicing of data files into one ontological data model can be automated. With 

the proper programming knowhow, code scripts can be written which detail, for 

instance, the column to property relations, such a script can transfer data from a 

spreadsheet into an ontology. Given the magnitude of archaeological spreadsheets even 

for excavations or research projects of modest size, this means that transferring to this 

new ontological database approach does not only provide theoretical advantages, but is 

also realistic practically, since it need not involve hundreds of hours of data transfer. Of 

course, one would still need (access to someone with) the required programming skills. 

Perhaps the greatest advantage of ontological data models results from the way in 

which such models are constructed. Because the data model is like a 3D map and the 

data gets input and stored as a graph denoting certain connections within the data, new 

and expanded querying options become available to the researcher. For instance, it 

becomes possible to query relationships between, for example, two artefacts, which is 

not supported in relational databases (cf. Turbek 2008).  

Because it is possible to query and search the structure of the model itself, it is 

also possible to find information that was implicit in the data, but not readily accessible. 

Through Description Logic reasoners, the system is able to suggest links that were not 

apparent to the researcher, but which were present in the data. For instance, the system 

could suggest that duplicates exist within the model, based on similar identifiers. This is 

a valuable feature for a data model, especially when splicing together several databases, 

since duplicates become a risk in such cases. 

The graph-like nature of an ontological data model is exploited in the Visual 

Query Interface developed by Yi Hong (see van Helden et al. 2018). This tool was 

designed to be an accessible interface between the non-IT-specialist and native query 

languages used to query databases. Because query languages are rather complex, it is 

often difficult for non-specialists (such as archaeologists) to write syntactically correct 

queries. To mitigate this difficulty, user interfaces, such as search- or query forms, are 

often incorporated to allow non-specialists to create queries without having to write 

proper syntaxes. The problem with most of these interfaces is that they restrict the 

query options of the user. Hong developed the VQI to be as expressive as possible, 

while still removing the need to personally write syntaxes. By using the graph-like 

nature of the ontological data model, the VQI asks the user to draw the graph structure 

they are interested in in yEd, a free to download graph editing program. This graph is 

then translated into a SPARQL (a native query language) query, which is used to 
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retrieve the results from the actual data model and present them in an Excel compatible 

format. In this way, the nature of ontological data models allows more expressive query 

writing for non-specialists, expanding the usefulness of data models, since they can be 

used for an increasingly wide array of questions. 

 

Incorporating fuzziness 

 

As referred to above, Niccolucci and Hermon have called attention to the importance of 

expressions of our confidence, or lack thereof, in our archaeological classifications 

being useably documented alongside the data we are classifying. They have made a 

suggestion of how this could be defined in Description Logic and CIDOC CRM 

concepts (Niccolucci & Hermon 2017: 283-284), but they do not explicitly discuss how 

this would be implemented in actual data models. A very promising way in which this 

could be incorporated into an ontological data model is through reification vocabulary. 

Reification vocabulary allows the user to treat triple statements as the subject of another 

triple statement. It provides the means to attach notes to asserted relations.  

This is important, because the traditional way of attaching notes often does not 

work in ontological data models. In relational databases, a few central elements of the 

data are unique and information about these unique elements is documented in tables. 

So an artefact identification number will be unique and for each such number a 

typological classification will be documented. If two artefacts are of the same 

typological type, this is documented twice, once per artefact. As such, it is possible to 

attach a note to the documented typological identification and register the confidence, 

or uncertainty, about the classification in this note (of course with all the drawbacks of 

hiding such information in notes, discussed above).  

In ontological data models, the same information would be documented with the 

RDF triple connecting, for example, an instance of the class ‘Artefact’ to the specific 

instance of the class ‘Typological_Classification’. If two artefacts are of the same 

typological type, both are linked with the same instance of 

‘Typological_Classification’. There is therefore no way to differentiate between the two 

uses of the instance of ‘Typological_Classification’ other than through the triple 

statements. Any judgement of uncertainty or reliability of a characterisation that would 
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need to be documented needs to be related to the RDF triple which documents that 

characterisation. This is why reification vocabulary is an important tool. 

As said, reification vocabulary allows an RDF triple to be used as the subject of a 

new triple statement. Figure B.2 gives a visual representation of the process by which a 

judgement of uncertainty could be documented by reification vocabulary. Because the 

uncertainty coefficient is expressed numerically and standardised, any queries in which 

the characterisation of the original triple statement comes up as a result can be modified 

according to the stated coefficient, or at least it can be automatically flagged up. 

 Technically, the way this can be done is by specifying a new class, for 

instance ‘RDF triple’, for which three object properties are defined: ‘has_Subject’, 

‘has_Predicate’ and ‘has_Object’. The first statement in Figure B.2 could be 

represented by ‘RDF triple 1’, which is linked through the three object properties to the 

relevant instances of the relevant classes. Then ‘RDF triple 1’ could be used as the 

subject for a new triple statement. This is a slightly more convoluted way of 

representing data, meaning that there is an argument to be made to restrict this method 

to those elements where it is necessary, but fundamentally, the structure of the data 

model is unaffected. 

 

Sample ontology 

To illustrate the benefits of ontological data models, I have constructed such a model 

using the Stanford Protégé ontology editor. Protégé is a free to download, open-source 

and cross-platform ontology editing program. The data for the data model were drawn 

from two datasets from Roman Arae Flaviae, modern day Rottweil in Germany. The 

data come from two publications, Regina Franke’s (2003) publication of the 

excavations within the area of Forts I and II in the Nikolausfeld area, digitised by 

Figure B.2: Visual representation of reification vocabulary being used to document uncertainty of an 

attribution of a maker to an artefact. 
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Penelope Allison for her Engendering Roman Spaces project (Allison 2013), and 

Robert Fecher’s (2010) publication of the Kapellenösch cemeteries, for which he 

provided me access to the digital catalogue. At this stage, the data themselves are not of 

interest. Description of their nature and context is done in Chapter 7, where this is of 

relevance for the discussion of fuzzy set analytical approaches. 

 

Caveats 

 

It is important at this point to be frank about the limitations of this specific ontology. It 

does not incorporate some of the features discussed in this appendix or the thesis. This 

is in large part due to the priorities I had when researching and writing Part III of this 

thesis. Rather than producing a solution that was ready to roll out and be adopted by 

archaeology as a panacea, my goal has been to explore and explain potential and to 

spread enthusiasm, which will hopefully lead to further work being done down the line. 

It is at that stage that all of the potential discussed in this part of the thesis will, all 

being well, be integrated into a grand multipurpose tool.  

Despite my description of the benefits of using standardised CIDOC CRM 

vocabulary to define classes and properties, the sample ontology does not consistently 

do so. The CIDOC CRM has been consulted in the process of designing the data model, 

but many of my own vocabulary remains. This is due to the fact that in the process of 

learning the ideas behind ontological data models and their design, I was already 

putting together an ontology, learning as I went (see van Helden et al. 2018). This 

practice ontology formed the backbone of the current sample ontology, because I 

judged the time required to develop and fine-tune a new one could be more fruitfully 

spent on exploring wider potential rather than pursuing perfection in a limited area. 

As it stands, the ontology discussed in this appendix also does not incorporate 

reification vocabulary. This is partly because, as is, Protégé does not support reification 

vocabulary in a user-friendly way. Such hurdles are not insurmountable, though. More 

important for this ontology not including it at the moment is that it is not necessary for 

the analyses illustrated in Chapter 7 of the thesis. The datasets do not, of themselves, 

employ numerical μ-values to express uncertainty. This means that, in order to 

incorporate this information through reification vocabulary, it would need to be 

‘translated’ first, before being entered into the data model using reification vocabulary. 
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All of this is possible, but since this information does not get used in Chapter 7’s 

analyses, the effort spent on it would yield no further results than the knowledge that it 

can be done. This is not significantly more useful to the reader of this thesis than my 

explanation in the previous section. I therefore decided to focus in this thesis on the 

exploration and explanation of the potential of both ontological data models and FST 

and defer the actual incorporation of reification vocabulary to a ‘further work’ section 

and with this, postponing the true utility of this dataset to a future project, where this 

work will have to be done. 

Finally, it is important in this section to note that for the analyses discussed in 

Chapter 7, this ontology is not crucial, at least not for that chapter’s discussion. This 

means that the fuzzy sets used in Chapter 7 and their associated μ-values are not stored 

in the ontology. Furthermore, an automated dating algorithm is not incorporated into a 

front-end data entry interface as suggested Chapter 7, since no such interface has been 

designed. Again, this is because the current aim is to discuss potential and raise the 

profile of both ontological data models and FST. Because I cannot predict the uses 

others might want to put ontological data models and FST to, this seems a more 

productive avenue than to present a polished product with limited options. Hopefully, 

half measures presented with enthusiasm will inspire more work in these fields than 

finished black boxes where no further work is required. 

 

The design 

Describing a data model in natural language is rather inefficient. This would result in a 

long list of often obvious descriptions with a lot of repetition of standard phrases. The 

structure of the data model is much more easily understood visually for the horizontal 

plane and from an interactive hierarchy for the vertical. Therefore, the horizontal plane 

of the ontological data model is detailed in Figure B.3. A digital version of this is 

available as Appendices C and D (in respectively .JPG and .GML (yEd’s format)). The 

first is just a digital version of Figure B.3. The second is a Graph Markup Language 

file, which means it can be manipulated in yEd, which makes some of the properties 

more easily distinguishable. For the vertical dimensional, Appendix E is the OWL file, 

readable in Protégé, in which the class hierarchy can be explored by extending and 

collapsing the tree. 
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Conclusions 

In this appendix we have seen the role ontological data models can play in archaeology. 

By describing data in a way that is as close to their nature as possible, they provide a 

more accurate description than current approaches often do. Analogous to the way in 

which FST allows for our analytical concepts to more closely approximate the concepts 

of our thinking, ontological data models allow data description to resemble the way 

they are given to us in reality.  

The flexibility of ontological data models allows us to adapt models after data 

have already been entered. Of course, extra care needs to be taken in such cases, but the 

existence of this possibility opens up options for much wider re-use of datasets. When 

combined with agreed-upon vocabulary of conceptual reference models (such as 

CIDOC) and the relative ease with which (with appropriate IT support) data models can 

be spliced into one, the potential for accumulating larger datasets through combining 

different ones becomes apparent. In theory, a researcher could use all of their data 

collected for earlier projects on a new project, adapting the data model to fit their new 

questions. 

Most importantly in the context of this thesis, however, ontological data models 

also have an important role to play in the incorporation of FST into archaeology. 

Through the use of reification vocabulary, ontological data models can be used to store 

important information about the certainty, or lack thereof, of characterisations of the 

data, for example typological identifications. This information, that is often lost or 

glossed over in traditional databases, is of vital importance to accurately represent 

archaeologists’ knowledge of the data. Without this information, the analyses and 

interpretations based on the data collected could be seriously skewed, or at least 

misrepresented as better founded than was actually the case. 

By adopting ontological data models as a tool to describe and store archaeological 

data, we would be embracing an approach that more accurately describes the nature of 

Figure B.3: Overview of the horizontal plane of the ontological data model. Arrows represent properties 

and are labelled with the name of the property. Yellow nodes are classes, cyan ones are information 

entered in data properties. Where an arrow connects two classes (yellow nodes), it represents an object 

property. If it connects a yellow node to a cyan one, the arrow represents a data property. Cyan nodes 

are generally not labelled because they just have individual data in them (e.g. an amount in centimetres), 

whereas yellow nodes are labelled with their class name. Properties that have 'Thing' as their domain or 

have RDF triples as their domain are not shown as arrows. This explains, for example, why the cyan 

nodes in the top right-hand corner are not connected to any yellow nodes, as the information in them 

pertains to other triple statements. Modified from van Helden et al. 2018, figure 5 
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the data as they exist in reality, but is also more flexible than the systems that are 

currently widespread. This in itself might be reason enough to consider their 

incorporation into archaeological practice, but when we consider how their use would 

enable fuzzy set approaches in archaeology by allowing the recording and storage of 

the crucial μ-values, the case becomes stronger still. By dovetailing together, Fuzzy Set 

Theory and ontological data approaches strengthen the argument for each other’s 

adoption. This is also why these two concepts which, at first glance, seemed to be quite 

distinct should really be seen together. 

 


