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Abstract. This work is concerned with the proof of a posteriori error estimates for fully discrete
Galerkin approximations of the Allen–Cahn equation in two and three spatial dimensions. The
numerical method comprises the backward Euler method combined with conforming finite elements in
space. For this method, we prove conditional type a posteriori error estimates in the L4(0, T ;L4(Ω))-
norm that depend polynomially upon the inverse of the interface length ε. The derivation relies
crucially on the availability of a spectral estimate for the linearized Allen–Cahn operator about
the approximating solution in conjunction with a continuation argument and a variant of the elliptic
reconstruction. The new analysis also appears to improve variants of known a posteriori error bounds
in L2(H1), L∞(L2)-norms in certain regimes.
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1. Introduction. The Allen–Cahn problem comprises a singularly perturbed
semilinear parabolic partial differential equation (PDE) together with suitable initial
and boundary conditions, viz.,

(1.1)

ut −∆u+
1

ε2
(u3 − u) = f in Ω× (0, T ],

u = 0 on ∂Ω× (0, T ],

u(·, 0) = u0 in Ω;

we assume that Ω ⊂ Rd is a convex, polygonal (d = 2) or polyhedral (d = 3) domain
of the Euclidean space Rd, T ∈ R+, 0 < ε� 1, for sufficiently smooth initial condition
u0 and forcing function f (precise regularity statements will be given below).

The problem (1.1) belongs to the class of the so-called phase field PDE mod-
els for solidification of a pure material, originally introduced by Allen and Cahn [3]

∗Received by the editors July 26, 2019; accepted for publication (in revised form) July 6, 2020;
published electronically September 23, 2020.

https://doi.org/10.1137/19M1277540
Funding: The work of the first and second authors was supported by the Hellenic Foundation for

Research and Innovation (H.F.R.I.) under the ”First Call for H.F.R.I. Research Projects to support
Faculty members and Researchers and the procurement of high-cost research equipment” grant 3270.
The work of the third author was supported by the H.F.R.I. PhD Fellowship grant 998. The work
of the second author was also supported by the Leverhulme Trust grant RPG-2015-306. The work
of the third author was also supported by the Stavros Niarchos Foundation within the framework of
project ARCHERS (“Advancing Young Researchers’ Human Capital in Cutting Edge Technologies
in the Preservation of Cultural Heritage and the Tackling of Societal Challenges”).
†Department of Mathematics, School of Mathematical and Physical Sciences, National Technical

University of Athens, Zografou 15780, Greece and IACM, FORTH, 20013 Heraklion, Crete, Greece
(chrysafinos@math.ntua.gr).
‡School of Mathematics and Actuarial Science, University of Leicester, Leicester LE1 7RH, UK,

and Department of Mathematics, School of Mathematical and Physical Sciences, National Technical
University of Athens, Zografou 15780, and IACM-FORTH, Greece (emmanuil.georgoulis@le.ac.uk).
§Department of Mathematics, School of Mathematical and Physical Sciences, National Technical

University of Athens, Zografou 15780, Greece (dplaka@central.ntua.gr).

2662

D
ow

nl
oa

de
d 

11
/2

6/
20

 to
 1

43
.2

10
.5

4.
19

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s

https://doi.org/10.1137/19M1277540
mailto:chrysafinos@math.ntua.gr
mailto:emmanuil.georgoulis@le.ac.uk
mailto:dplaka@central.ntua.gr


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A POSTERIORI ESTIMATES FOR THE ALLEN–CAHN PROBLEM 2663

to describe the phase separation process of a binary alloy at a fixed temperature.
The nonlinear function F (u) := u3 − u is the derivative of the classical double-well
potential

∫
F (u)du. Due to the nature of the nonlinearity, the solution u develops

time-dependent interfaces Γt := {x ∈ Ω : u(x, t) = 0}, separating regions for which
u ≈ 1 from regions where u ≈ −1. The solution moves from one region to another
within the so-called diffuse interfaces of length O(ε). For a recent comprehensive
review of phase field models and their relationship to geometric flows, we refer to [16].

Realistically, ε should be orders of magnitude smaller than the physical domain
of simulation. Therefore, the accurate and efficient numerical solution of such phase
field models requires the resolution of the dynamic diffuse interfaces. This means that
the discretization parameters of any numerical method used should provide sufficient
numerical resolution to approximate the interface evolution accurately. In the context
of finite element methods, this is typically achieved via the use of very fine meshes
in the vicinity of the interface region. In an effort to simulate at a tractable compu-
tational cost, especially for d = 3, it is essential to design adaptive algorithms which
are able to dynamically modify the local mesh size.

A standard error analysis of finite element approximations of (1.1) leads to a
priori estimates with unfavorable exponential dependence on ε−1. This is impractical
even for moderately small interface length ε. The celebrated works [11, 14, 2] showed
that uniform bounds for the principal eigenvalue of the linearized Allen–Cahn spatial
operator about the solution u are possible as long as the evolving interface is smooth
(cf., (4.8) below). Such spectral estimates are used in the seminal work [18] whereby a
priori error bounds with only polynomial dependence on ε−1 for finite element meth-
ods have been proven, enabling also the proof of convergence to the sharp-interface
limit. Moreover, assuming the validity of a spectral estimate about the exact solu-
tion u, allowed the proof of the first conditional-type a posteriori error bounds for
finite element methods approximating the Allen–Cahn problem in the L2(H1)-norm,
for which the condition depends only polynomially on ε; this was presented in the
influential works [23, 17].

This direction of research has taken a further leap forward with the seminal
works [5, 7, 8], whereby the principle eigenvalue of the linearized spatial Allen–Cahn
operator about the numerical solution Uh is used instead, in an effort to arrive to fully
computable a posteriori error estimates in the L2(H1)- and L∞(L2)-norms, the latter
using the elliptic reconstruction framework [25, 24]; see also [19, 9] for application of
elliptic reconstruction to nonconforming methods. We also mention [21] whereby a
posteriori error bounds in the L∞(Lr)-norms, r ∈ [2,∞], are proven.

When the interface Γt undergoes topological changes, however, e.g., when an inter-
face collapses, unbounded velocities occur and the all-important principal eigenvalue
λ can scale like λ ∼ ε−2 on a time interval of length comparable to ε2. This crucial ob-
servation, made in [8], showed that the principal eigenvalue can be assumed to be L1-
integrable with respect to the time variable allowing, in turn, for robust conditional a
posteriori error analysis under topological changes in the L2(H1)- and L∞(L2)-norms.

In a recent work [12], a priori bounds for the L4(L4)-norm error have been proved,
which appear to deliver a rather favorable ε−1-polynomial dependence on the respec-
tive constant, noting that the L4(L4)-norm is present in the stability of the spatial
Allen–Cahn operator upon multiplication of (1.1) by u and integration with respect to
space and to time. The importance of the L4(L4)-norm is evidenced upon interpreting
the Allen–Cahn equation as a gradient flow of the energy functional,

E(u) =

∫
Ω

(1

2
|∇u|2 +

1

4ε2
(u2 − 1)2

)
dx,
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2664 K. CHRYSAFINOS, E. H. GEORGOULIS, AND D. PLAKA

related to the double-well potential. Then, the Allen–Cahn equation with f = 0 arises
as the L2 gradient flow ut = −E′(u), where E′(u) is understood as the Gâteuax de-
rivative. Upon observing the different scaling with respect to ε, it is evident that the
quantity 1

ε2 ‖u‖
4
L4(Ω) plays a crucial role. An immediate question is whether proving

conditional a posteriori error bounds in the L4(L4)-norm can also improve the depen-
dence of the condition on the interface length ε. Motivated by this, in this work, we
prove conditional a posteriori error bounds for the L4(L4)-norm for a backward Euler
finite element method. The proof is valid under the hypothesis of the existence of a
spectral estimate under topological changes in the spirit of [8]. The argument uses a
carefully constructed test function, in conjunction with a continuation argument and
a new variant of the elliptic reconstruction introduced in [20], as well as known ideas
regarding time reconstruction (see [28, 26, 24]). The special test function results in
the ‖ · ‖4L4(L4) norm for the quantities requiring estimation. At the same time, the
error terms appearing on the right-hand side maintain a typical structure in a pos-
teriori error analysis: they can be separated as time-related and space-related error
estimates, data oscillation and mesh-change errors. A key attribute of the new testing
is that leading order time- and space-error terms appear inside ‖ · ‖2L2(L2) norms. The

discrepancy in powers between the error norm, ‖ · ‖4L4(L4), and the estimator norms,

‖ · ‖2L2(L2), leads to the various ε−1-dependent constants in the estimators to have
formally milder conditions ensuring the validity of the a posteriori error bounds; cf.
also Remark 4.4 below.

As a result of the method of proof, the new a posteriori error analysis provides
also new L∞(L2)- and L2(H1)-norm a posteriori error bounds which appear to, at
least formally, be valid under less stringent smallness conditions compared to results
from the literature.

The remainder of this work is structured as follows. The model problem is intro-
duced in section 2. Section 3 includes the definition of the numerical method along
with the elliptic and time reconstructions needed for the proof of the main results.
The key estimates and the main result are stated and proven in section 4. Section
5 completes the derivation of fully computable error bounds by estimating the terms
appearing in the residuals of the main results.

2. Model problem. We denote by Lp(Ω), 1 ≤ p ≤ ∞, the standard Lebesgue

spaces with corresponding norms ‖·‖Lp(Ω). Let also W k,p(Ω) be the kth order of

Sobolev space based on Lp(Ω) and Hk(Ω) := W k,2(Ω), k ≥ 0, along with the corre-
sponding norms ‖·‖Wk,p(Ω) and ‖·‖Hk(Ω), respectively. Set H1

0 (Ω) := {v ∈ H1(Ω) :

v|∂Ω = 0}. We shall denote by 〈·, ·〉 the duality pairing between H−1(Ω) and H1
0 (Ω),

which becomes the standard L2(Ω) inner product (·, ·) when the arguments are suffi-
ciently smooth. The respective Bochner spaces are denoted by Lp(0, T ;V ), endowed
with the norms

‖v‖Lp(0,T ;V ) =

(∫ T

0

‖v‖pV dt

)1/p

, p ∈ [1,+∞), ‖v‖L∞(0,T ;V ) = ess. sup
t∈[0,T ]

‖v‖V

with V a Banach space with norm ‖·‖V .
We shall make extensive use of the classical Gagliardo–Nirenberg–Ladyzhenskaya

(GNL) inequalities reading

‖v‖L4(Ω) ≤ c̃‖v‖
1/2
L2(Ω)‖∇v‖

1/2
L2(Ω) for d = 2,(2.1)

‖v‖L4(Ω) ≤ c̃‖v‖
1/4
L2(Ω)‖∇v‖

3/4
L2(Ω) for d = 3(2.2)
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for all v ∈ H1
0 (Ω) with c̃ > 0, independent of v. For later use, we also recall a basic

algebraic estimate, often referred to as Young’s inequality : for any δ > 0, we have

ab ≤ δap + C(p, q)δ−
q
p bq, where 1/p+ 1/q = 1,

for any a, b ≥ 0 and p, q > 1, for some C(p, q) > 0 independent of a, b.
Let f ∈ L∞(0, T ;L4(Ω)) and u0 ∈ W 1,4(Ω). Then, for a.e. t ∈ (0, T ], we seek

u ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)), such that

(2.3)
〈ut(t), v〉+ (∇u(t),∇v) + ε−2

(
u3(t)− u(t), v

)
= 〈f(t), v〉,

(u(0), v) = (u0, v),

for all v ∈ H1
0 (Ω). Integrating for t ∈ (0, T ], and integrating by parts the above

becomes: find u ∈ L2(0, T ;H1
0 (Ω)) ∩ L∞(0, T ;L2(Ω)), such that

(2.4)

(u(T ), v(T )) +

∫ T

0

(
− 〈u, vt〉+ (∇u,∇v) + ε−2(u3 − u, v)

)
dt

= (u0, v(0)) +

∫ T

0

〈f, v〉dt

for all v ∈ L2(0, T ;H1
0 (Ω)) ∩H1(0, T ;H−1(Ω)).

3. The fully discrete scheme and reconstructions. We shall first present
a fully discrete scheme for the Allen–Cahn problem (1.1) by combining the implicit
Euler method (lowest order discontinuous Galerkin time-stepping scheme) with con-
forming finite elements in space. Further, we shall define suitable space and time
reconstructions of the fully discrete scheme, which will be crucial for the proof of the
a posteriori error bounds below.

3.1. Discretization. Let 0 = t0 < t1 < · · · < tN = T . We partition the time
interval [0, T ] into subintervals Jn := (tn−1, tn] and we denote by kn := tn − tn−1,
n = 1, . . . , N each time step.

Let also {T nh }Nn=0 be a sequence of conforming and shape-regular triangulations
of the domain Ω, that are allowed to be modified between time steps. We define the
mesh size function, hn : Ω → R, by hn(x) := diam(τ), x ∈ τ for τ ∈ T nh . With each
T nh we associate the finite element space

V nh := {χ ∈ C(Ω̄); χ|τ ∈ Pκ(τ) ∀τ ∈ T nh }

with Pκ denoting the d-variate space of polynomials of degree at most κ ∈ N. The
whole theory presented below remains valid if box-type elements are used and respec-
tive polynomial spaces of degree κ on each variable.

We say that a set of triangulations is compatible when they are constructed by
different refinements of the same (coarser) triangulation. Given two compatible trian-
gulations T n−1

h and T nh , we consider their finest common coarsening T̂ nh := T nh ∧T
n−1
h

and set ĥn := max(hn, hn−1). Furthermore, we denote by Snh the interior mesh skele-

ton of T nh , and we define the sets Ŝnh := Snh ∩S
n−1
h and Šnh := Snh ∪S

n−1
h . We note that

no assumption on the relative size of ĥn compared to the sizes hn−1, hn is necessary for
the validity of the estimates presented below. Reconstruction-based a posteriori error
analysis for parabolic problems is also possible under the extreme mesh-modification
scenario of no strict finest common coarsening subspace, i.e., when T̂ nh = {Ω}; we re-
fer to [10] for a detailed discussion. We do not envisage an insurmountable technical
obstacle in extending the present analysis to such an extreme scenario.
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Approximations will be subordinate to the time partition. A finite element space
V nh ⊂ H1

0 (Ω) is specified on each time interval Jn, n = 1, . . . , N . Then, we seek
approximate solutions from the space

Vhk :=
{
X ∈ L2(0, T ;H1

0 (Ω)); X|Jn ∈ P0[Jn : V nh ], n = 1, . . . , N
}

with P0

[
Jn;V nh

]
denoting the space of constant polynomials over Jn, having values

in V nh ; these functions are allowed to be discontinuous at the nodal points, but are
taken to be continuous from the left.

3.2. Fully discrete scheme. For brevity, we set F (v) := v3−v. The backward
Euler finite element method reads, for each n = 1, . . . , N , find Unh ∈ V nh such that

(3.1)
k−1
n

(
Unh − Un−1

h , X
)

+ (∇Unh ,∇X) + ε−2 (F (Unh ), X) = 〈fn, X〉,
U0
h = P0

hu
0,

for every X ∈ Vhk with fn := f(tn) and Pnh denoting the orthogonal L2-projection
operator onto V nh .

Let now ∆n
h : V nh → V nh defined by (−∆n

hV,X) = (∇V,∇X) for all V,X ∈ V nh ,
i.e., the discrete Laplacian. This allows for the strong representation of (3.1) as

(3.2) k−1
n

(
Unh − PnhUn−1

h

)
−∆n

hU
n
h + ε−2 PnhF (Unh ) = Pnh fn.

We now introduce a variant of the elliptic reconstruction [25, 24, 20], which will
be instrumental in the proof of the a posteriori error bounds below.

Definition 3.1 (elliptic reconstruction). For each n = 0, 1, . . . , N, we define
the elliptic reconstruction ωn ∈ H1

0 (Ω) to be the solution of the elliptic problem

(3.3) (∇ωn,∇v) = 〈gnh , v〉 for all v ∈ H1
0 (Ω),

where

(3.4)
gnh : = −∆n

hU
n
h − ε−2 (F (Unh )− PnhF (Unh ))− Pnh fn + fn

− k−1
n

(
PnhUn−1

h − Un−1
h

)
;

here and in the following we adopt the convention U−1
h := U0

h.

Remark 3.2 (Galerkin orthogonality). We observe that ωn satisfies

(∇(ωn − Unh ) ,∇X) = 0 for all X ∈ V nh .(3.5)

This relation implies that ωn − Unh is orthogonal to V nh with respect to the Dirichlet
inner product, a crucial property that allows us to use a posteriori error bounds for
elliptic problems to estimate various norms of ωn−Unh from above; we refer to section
5 for a detailed discussion.

Definition 3.3 (time reconstruction). For t ∈ Jn, n = 1, . . . , N , we set

(3.6) Uh(t) := `n−1(t)Un−1
h + `n(t)Unh and ω(t) := `n−1(t)ωn−1 + `n(t)ωn,

where `n is the piecewise linear Lagrange basis function with `n(tk) = δkn.

Notice that Uh, w are continuous functions with respect to time. The above
definition implies that the time derivative of Uh,

Uh,t(t) =
Unh − U

n−1
h

kn
,(3.7)

is the discrete backward difference at tn.

D
ow

nl
oa

de
d 

11
/2

6/
20

 to
 1

43
.2

10
.5

4.
19

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A POSTERIORI ESTIMATES FOR THE ALLEN–CAHN PROBLEM 2667

4. A posteriori error estimates. We shall now use the reconstructions defined
above, together with nonstandard energy and continuation arguments and a spectral
estimate for the linearized steady-state problem about the approximate solution Uh,
to arrive at a posteriori error bounds in the L4(L4)-, L2(H1)-, and L∞(L2)-norms.

4.1. Error relation. We begin by splitting the total error as follows:

(4.1) e := u− Uh = θ − ρ, where θ := ω − Uh, ρ := ω − u.

In view of Remark 3.2, θ can be estimated by a posteriori error bounds for elliptic
problems in various norms.

Also, ρ satisfies an equation of the form (2.3) with a fully computable right-hand
side that consists of θ and the problem data. To see this, (2.3) along with Definitions
3.1 and 3.3 and elementary manipulations lead to the following result.

Lemma 4.1 (error equation). On Jn, n = 1, . . . , N , and for all v ∈ H1
0 (Ω), we

have

(4.2)
〈ρt, v〉+ (∇ρ,∇v) + ε−2 (F (Uh)− F (u), v)

= 〈fn − f, v〉+ 〈θt, v〉+ ε−2 (F (Uh)− F (Unh ), v) + (∇(ω − ωn),∇v) .

Therefore, norms of ρ can be estimated through PDE stability arguments; this
will be performed below. Before doing so, however, we further estimate the term
involving the elliptic reconstructions on the right-hand side from (4.2). For brevity,
we set ∂Xn := (Xn −Xn−1)/kn for any sequence {Xn}n∈N∪{0}.

Lemma 4.2. On Jn, n = 1, . . . , N , we have

(4.3)
(∇(ω − ωn),∇v) ≤

(
‖∂Unh − ∂Un−1

h ‖L2(Ω) + ε−2‖F (Unh )− F (Un−1
h )‖L2(Ω)

+ ‖fn − fn−1‖L2(Ω)

)
‖v‖L2(Ω)

for all v ∈ H1
0 (Ω).

Proof. From (3.6) and Definition 3.1, we can write

(∇(ω − ωn),∇v) = `n−1(t)
(
∇(ωn−1 − ωn),∇v

)
= `n−1(t)

(
gn−1
h − gnh , v

)
≤ ‖gn−1

h − gnh‖L2(Ω)‖v‖L2(Ω).

Then, using (3.4) in conjunction with (3.2), we obtain

gnh = −k−1
n

(
Unh − PnhUn−1

h

)
− ε−2F (Unh ) + fn − k−1

n

(
PnhUn−1

h − Un−1
h

)
= k−1

n

(
Un−1
h − Unh

)
− ε−2F (Unh ) + fn,

and correspondingly for gn−1
h . Combining the above, the result already follows.

4.2. Energy argument. We begin by introducing some notation. We define

L1 : = ‖∂Unh − ∂Un−1
h ‖2L2(Ω) + ε−4‖F (Unh )− F (Un−1

h )‖2L2(Ω) + ‖fn − fn−1‖2L2(Ω),

L2 : = ‖fn − f‖2L2(Ω) + ε−4‖F (Uh)− F (Unh )‖2L2(Ω),

on each Jn, n = 1, . . . , N , noting that L2 ≡ L2(t); for n = 1 we adopt the convention
that U−1

h = U0
h .
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Moreover, for brevity, we also set

Θ1 ≡ Θ1(t) : =
1

2
‖θt‖2L2(Ω) +

11

4
C4
PF ‖θt‖4L4(Ω),

Θ2 ≡ Θ2(t) : = ε−4

((
C0 + 396‖Uh‖2L∞(Ω)

)
‖θ‖2L2(Ω) +

C1

2
‖θ‖4L4(Ω) + C0‖θ‖6L6(Ω)

)
,

A(t) : = ε−2

((
θ2ρ2 + ρ4 + |∇ρ|2,

∫ τ

t

ρ2(s) ds

)
+ (θ2, ρ2)

)
,

where C0 := (CPF c̃
2 + 1)/2, C1 := 9 + 9CPF c̃

2 + 64112C2
PF c̃

4, C2 := 2 · 37C2
PF c̃

4,
where CPF is the constant of the Poincaré–Friedrichs inequality ‖v‖ ≤ CPF ‖∇v‖ and
c̃ as in (2.1).

Lemma 4.3 (d = 2). Let d = 2 and u be the solution of (2.3) and ω as in (3.6).
Assume that ρ(t) ∈W 1,4

0 (Ω) for a.e. t ∈ (0, T ]. Then, for any τ ∈ (0, T ], we have

(4.4)

1

4

∫ τ

0

‖ρ‖4L4(Ω) dt+
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ(τ)‖2L2(Ω)

+

∫ τ

0

A(t) dt+

∫ τ

0

((
1− ε2

2

)
‖∇ρ‖2L2(Ω) +

1

ε2
(F ′(Uh)ρ, ρ)

)
dt

≤ 1

2
‖ρ(0)‖2L2(Ω) +

C2
PF

2
‖ρ(0)‖4L4(Ω) +

∫ τ

0

(
Θ1 + Θ2 + C0(L1 + L2)

)
dt

+
1

2

∫ τ

0

(∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+ α(Uh)‖ρ‖2L2(Ω)

)
dt

+
1

4ε6

∫ τ

0

(
β(θ, Uh)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

+ γ(θ, Uh)‖ρ‖4L2(Ω)

)
dt,

where

α(Uh) :=‖F ′(Uh)‖2L∞(Ω) + ‖Uh‖2L∞(Ω) + 7

β(θ, Uh) :=
C2ε

4

16

(
‖θ‖4L∞(Ω) + ‖Uh‖4L∞(Ω)

)
+ 2ε2‖Uh‖4L∞(Ω)

+ 2C2
PF c̃

4‖F ′(Uh)‖2L∞(Ω) + 11ε6
(
‖F ′(Uh)‖4L∞(Ω) + ‖Uh‖4L∞(Ω) + 6

)
,

γ(θ, Uh) := 2c̃4
(
C2
PF ‖F ′(Uh)‖2L∞(Ω) + 36

(
‖θ‖2L∞(Ω) + ‖Uh‖2L∞(Ω)

))
.

Proof. Using Taylor’s theorem, we immediately deduce

F (Uh)− F (u) = −eF ′(Uh)− 3e2Uh − e3.

Let φ : [0, τ]× Ω→ R for 0 < τ ≤ T , such that

(4.5) φ(·, t) = ρ(·, t)
(∫ τ

t

ρ2(·, s) ds+ 1

)
, t ∈ [0, τ].

The hypothesis ρ ∈W 1,4
0 (Ω) implies that φ ∈ H1

0 (Ω). Setting v = φ in (4.2), we have

〈ρt, φ〉+ (∇ρ,∇φ)− ε−2
(
eF ′(Uh) + 3e2Uh + e3, φ

)
= 〈fn − f, φ〉+ 〈θt, φ〉

+ ε−2 (F (Uh)− F (Unh ), φ) + (∇(ω − ωn),∇φ) .
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Observing now the identities(
e2Uh, φ

)
=
(
θ2Uh, φ

)
+
(
ρ2Uh, φ

)
− 2 (θρUh, φ) ,(

e3, φ
)

=
(
θ3, φ

)
− 3

(
θ2ρ, φ

)
+ 3

(
θρ2, φ

)
−
(
ρ3, φ

)
,

elementary calculations yield

(4.6)

1

2

d

dt
‖ρ‖2L2(Ω) +

〈
ρt, ρ

∫ τ

t

ρ2(s) ds

〉
+

(
∇ρ, ρ

∫ τ

t

∇ρ2(s) ds

)
+ ‖∇ρ‖2L2(Ω) + ε−2 (F ′(Uh)ρ, ρ) + ε−2‖ρ‖4L4(Ω) +A(t)

= 〈fn − f, φ〉+ 〈θt, φ〉+ ε−2 (F (Uh)− F (Unh ), φ) + (∇(ω − ωn),∇φ)

+ 3ε−2
(
θ2Uh, φ

)
+ 3ε−2

(
ρ2Uh, φ

)
− 6ε−2 (θρUh, φ) + ε−2(θ3, φ)

+ 3ε−2(θρ2, φ)+ε−2(F ′(Uh)θ, φ)− ε−2

(
F ′(Uh)ρ, ρ

∫ τ

t

ρ2(s) ds

)
=:

11∑
j=1

Ij .

We shall further estimate each Ij . We begin by splitting I1 into

I1 =

〈
fn − f, ρ

∫ τ

t

ρ2(s) ds

〉
+ 〈fn − f, ρ〉 =: I1

1 + I2
1 .

Applying the Hölder, GNL for d = 2, Poincaré–Friedrichs and Young inequalities
gives, respectively,

I1
1 ≤ ‖fn − f‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤ c̃‖fn − f‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥1/2

L2(Ω)

∥∥∥∥∇∫ τ

t

ρ2(s) ds

∥∥∥∥1/2

L2(Ω)

≤ C1/2
PF c̃ ‖f

n − f‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∇∫ τ

t

ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ CPF c̃
2

2
‖fn − f‖2L2(Ω) +

1

44
‖ρ‖4L4(Ω) +

11

4

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

.

The Cauchy–Schwarz and Young inequalities also yield I2
1 ≤ 1

2L2 + 1
2‖ρ‖

2
L2(Ω). Like-

wise, we split I3 as follows:

I3 = ε−2(F (Uh)− F (Unh ), ρ

∫ τ

t

ρ2(s) ds) + ε−2 (F (Uh)− F (Unh ), ρ) =: I1
3 + I2

3 ,

yielding the following bounds:

I1
3 ≤

CPF c̃
2

2ε4
‖F (Uh)− F (Unh )‖2L2(Ω)+

1

44
‖ρ‖4L4(Ω)+

11

4

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
3 ≤

1

2ε4
‖F (Uh)− F (Unh )‖2L2(Ω) +

1

2
‖ρ‖2L2(Ω).

D
ow

nl
oa

de
d 

11
/2

6/
20

 to
 1

43
.2

10
.5

4.
19

1.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2670 K. CHRYSAFINOS, E. H. GEORGOULIS, AND D. PLAKA

From Lemma 4.2 and working as before, we have

I4 =

(
∇(ω − ωn),∇

(
ρ

∫ τ

t

ρ2(s) ds

))
+ (∇(ω − ωn),∇ρ) := I1

4 + I2
4 ,

I1
4 ≤

CPF c̃
2

2
L1 +

3

44
‖ρ‖4L4(Ω) +

33

4

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
4 ≤

1

2
L1 +

3

2
‖ρ‖2L2(Ω).

Next, we split I2 as follows:

I2 =

〈
θt, ρ

∫ τ

t

ρ2(s) ds

〉
+ 〈θt, ρ〉 =: I1

2 + I2
2

and, using the Hölder, Poincaré–Friedrichs, and Young inequalities, we deduce

I1
2 ≤ ‖θt‖L4(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ CPF ‖θt‖L4(Ω)‖ρ‖L4(Ω)

∥∥∥∥∇∫ τ

t

ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ 11C4
PF

4
‖θt‖4L4(Ω) +

1

44
‖ρ‖4L4(Ω) +

1

2

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

,

I2
2 ≤

1

2
‖θt‖2L2(Ω) +

1

2
‖ρ‖2L2(Ω).

Next, we split

I5 = 3ε−2

(
θ2Uh, ρ

∫ τ

t

ρ2(s) ds

)
+ 3ε−2(θ2Uh, ρ) =: I1

5 + I2
5 ,

which can be further bounded as follows:

I1
5 ≤ 3ε−2‖θ2‖L2(Ω)‖Uh‖L∞(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤ 3ε−2c̃ ‖θ‖2L4(Ω)‖Uh‖L∞(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥1/2

L2(Ω)

∥∥∥∥∇∫ τ

t

ρ2(s) ds

∥∥∥∥1/2

L2(Ω)

≤ 3ε−2C
1/2
PF c̃ ‖θ‖

2
L4(Ω)‖Uh‖L∞(Ω)‖ρ‖L4(Ω)

∥∥∥∥∇∫ τ

t

ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ 9CPF c̃
2

2ε4
‖θ‖4L4(Ω) +

1

44
‖ρ‖4L4(Ω) +

11

4
‖Uh‖4L∞(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
5 ≤

9

2ε4
‖θ‖4L4(Ω) +

1

2
‖Uh‖2L∞(Ω)‖ρ‖

2
L2(Ω).

In the same spirit, we also have

I7 = −6ε−2

(
θρUh, ρ

∫ τ

t

ρ2(s) ds

)
− 6ε−2(θρUh, ρ) =: I1

7 + I2
7
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and, thus,

I1
7 ≤ 6ε−2‖θ‖L4(Ω)‖ρ

2‖L2(Ω)‖Uh‖L∞(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤
6C

1/2
PF c̃

ε2
‖θ‖L4(Ω)‖ρ‖

2
L4(Ω)‖Uh‖L∞(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ 64112C2
PF c̃

4

2ε4
‖θ‖4L4(Ω) +

1

44
‖ρ‖4L4(Ω) +

1

2ε4
‖Uh‖4L∞(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
7 ≤

6

ε2
‖θ‖L2(Ω)‖Uh‖L∞(Ω)‖ρ‖

2
L4(Ω) ≤

396

ε4
‖Uh‖2L∞(Ω)‖θ‖

2
L2(Ω) +

1

44
‖ρ‖4L4(Ω).

Next, we consider the splitting

I10 = ε−2(F ′(Uh)θ, ρ

∫ τ

t

ρ2(s) ds) + ε−2(F ′(Uh)θ, ρ) =: I1
10 + I2

10,

and we have the following bounds:

I1
10 ≤ ε−2‖F ′(Uh)‖L∞(Ω)‖θ‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤
C

1/2
PF c̃

ε2
‖F ′(Uh)‖L∞(Ω)‖θ‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ CPF c̃
2

2ε4
‖θ‖2L2(Ω) +

1

44
‖ρ‖4L4(Ω) +

11

4
‖F ′(Uh)‖4L∞(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
10 ≤

1

2ε4
‖θ‖2L2(Ω) +

1

2
‖F ′(Uh)‖2L∞(Ω)‖ρ‖

2
L2(Ω).

Next, we set

I8 = ε−2

(
θ3, ρ

∫ τ

t

ρ2(s) ds

)
+ ε−2(θ3, ρ) =: I1

8 + I2
8 ,

and we further estimate as follows:

I1
8 ≤ ε−2‖θ3‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤
C

1/2
PF c̃

ε2
‖θ‖3L6(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ CPF c̃
2

2ε4
‖θ‖6L6(Ω) +

1

44
‖ρ‖4L4(Ω) +

11

4

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
8 ≤

1

2ε4
‖θ‖6L6(Ω) +

1

2
‖ρ‖2L2(Ω).

For I6 and I9, we work collectively as follows:

I6 + I9 = 3ε−2

(
ρ2(Uh + θ), ρ

∫ τ

t

ρ2(s) ds

)
+ 3ε−2(ρ2(Uh + θ), ρ) =: I1

6,9 + I2
6,9,
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and estimate

I1
6,9 ≤

3C
1/2
PF c̃

ε2
‖ρ‖3L4(Ω)

(
‖θ‖L∞(Ω) + ‖Uh‖L∞(Ω)

)∥∥∥∥∇ ∫ τ

t

ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ ε−2‖ρ‖4L4(Ω) +
C2

64ε2

(
‖θ‖4L∞(Ω) + ‖Uh‖4L∞(Ω)

)∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

I2
6,9 ≤

3

ε2
‖ρ‖2L4(Ω)

(
‖θ‖L∞(Ω) + ‖Uh‖L∞(Ω)

)
‖ρ‖L2(Ω)

≤ 3c̃2

ε2
‖∇ρ‖L2(Ω)

(
‖θ‖L∞(Ω) + ‖Uh‖L∞(Ω)

)
‖ρ‖2L2(Ω)

≤ ε2

4
‖∇ρ‖2L2(Ω) +

18c̃4

ε6

(
‖θ‖2L∞(Ω) + ‖Uh‖2L∞(Ω)

)
‖ρ‖4L2(Ω).

Finally for the last term on the right-hand side of (4.6), we have

I11 ≤ ε−2‖F ′(Uh)‖L∞(Ω)‖ρ‖
2
L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ CPF c̃
2

ε2
‖F ′(Uh)‖L∞(Ω)‖ρ‖L2(Ω)‖∇ρ‖L2(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ ε2

4
‖∇ρ‖2L2(Ω) +

C2
PF c̃

4

2ε6
‖F ′(Uh)‖2L∞(Ω)‖ρ‖

4
L2(Ω)

+
C2
PF c̃

4

2ε6
‖F ′(Uh)‖2L∞(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

.

Applying the above estimates into (4.6) and integrating with respect to t ∈ (0, τ) and
observing the identities,∫ τ

0

〈
ρt, ρ

∫ τ

t

ρ2(s) ds

〉
dt = −1

2

〈
ρ2(0),

∫ τ

0

ρ2(s) ds

〉
+

1

2

∫ τ

0

‖ρ‖4L4(Ω) dt,∫ τ

0

(
∇ρ, ρ

∫ τ

t

∇ρ2(s) ds

)
dt = −1

4

∫ τ

0

d

dt

(∫ τ

t

∇ρ2(s) ds,

∫ τ

t

∇ρ2(s) ds

)
dt

=
1

4

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

;

along with elementary manipulations, the result already follows.

The terms in L1 and the term ε−4‖F (Uh) − F (Unh )‖2L2(Ω) of L2 are often re-

ferred to as the time error estimates in the a posteriori error estimation literature for
evolution problems. Correspondingly, ‖fn − f‖2L2(Ω) is the data approximation. Θ1

represents the mesh change and Θ2 (or Θ̃2, respectively) is often termed the spatial
error estimate. These will be presented in detail in section 5.

Remark 4.4. A key ingredient in the proof above is the nonstandard test function
φ given in (4.5). This test function is responsible for the appearance of the term
‖ρ‖4L4(0,T ;L4(Ω)), together with other nonnegative terms on the left-hand side of (4.4)

in the course of the energy argument. At the same time, this test function is also re-
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sponsible for the presence of favorable computable error terms in the ‖ · ‖2L2(0,T ;L2(Ω))

norm; cf., for instance, the terms in
∫ τ

0
(L1 + L2) dt that will eventually appear in

the final estimate. Thus, the dependence on ε of the constants multiplying various
terms in L1 and L2 will be halved due to the discrepancy between the fourth power
appearing in the error terms and the second power in the respective estimators. This
observation leads to a formally better dependence with respect to ε−1 in the con-
tinuation argument. At the same time, the choice (4.5) results in terms involving
‖θ‖4L4(0,T ;L4(Ω)), ‖θ‖

6
L6(0,T ;L6(Ω)), and ‖θt‖4L4(0,T ;L4(Ω)) without any detriment to the

formal dependence on ε−1 either, as we shall see in the discussion below. The latter
terms are “compatible” with the norms of the error ρ appearing in (4.4).

The use of the dimension-dependent GNL inequalities (2.1)–(2.2) necessitates
certain modifications in the above argument when d = 3, which we now provide. For
brevity, we shall only provide the terms which are handled differently from the proof
of the two-dimensional case from Lemma 4.3. Nonetheless, the advantages described
in Remark 4.4 persist for the three-dimensional case.

Lemma 4.5 (d = 3). Let d = 3, u the solution of (2.3), and ω as in (3.6).
Assume that ρ(t) ∈W 1,4

0 (Ω) for a.e. t ∈ (0, T ]. Then, for any τ ∈ (0, T ], we have

(4.7)

1

8

∫ τ

0

‖ρ‖4L4(Ω) dt+
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ(τ)‖2L2(Ω)

+

∫ τ

0

A(t) dt+

∫ τ

0

((
1− ε2

2

)
‖∇ρ‖2L2(Ω) +

1

ε2
(F ′(Uh)ρ, ρ)

)
dt

≤ 1

2
‖ρ(0)‖2L2(Ω) +

C2
PF

2
‖ρ(0)‖4L4(Ω) +

∫ τ

0

(
Θ1 + Θ̃2 + C̃0(L1 + L2)

)
dt

+
1

2

∫ τ

0

(∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+ (α(Uh) + 1)‖ρ‖2L2(Ω)

)
dt

+
1

4ε10

∫ τ

0

(
β̃(θ, Uh)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

+ γ̃(θ, Uh)‖ρ‖4L2(Ω)

)
dt,

where

Θ̃2 := ε−4

((
C̃0 + 396‖Uh‖2L∞(Ω)

)
‖θ‖2L2(Ω) +

C̃1

2
‖θ‖4L4(Ω) + C̃0‖θ‖6L6(Ω)

)
,

β̃(θ, Uh) :=
C̃2ε

8

16

(
‖θ‖4L∞(Ω) + ‖Uh‖4L∞(Ω)

)
+ 2ε6‖Uh‖4L∞(Ω)

+ 2CPF c̃
4ε2‖F ′(Uh)‖4L∞(Ω) + 11ε10

(
‖F ′(Uh)‖4L∞(Ω) + ‖Uh‖4L∞(Ω) + 6

)
,

γ̃(θ, Uh) := 324CPF c̃
4
(
‖θ‖4L∞(Ω) + ‖Uh‖4L∞(Ω)

)
with C̃0 := (C

1/2
PF c̃

2 + 1)/2, C̃1 := 9 + 9C
1/2
PF c̃

2 + 64112CPF c̃
4, C̃2 := 37CPF c̃

4.

Proof. Starting from (4.6), we discuss only the different treatment of the terms
Ij , j = 6, 9, 11; the estimation of the remaining terms is identical to the proof of
Lemma 4.3 and is, therefore, omitted. To that end, we begin by setting ζ(θ, Uh) :=
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2674 K. CHRYSAFINOS, E. H. GEORGOULIS, AND D. PLAKA

‖θ‖L∞(Ω) + ‖Uh‖L∞(Ω). Then, we have

I1
6,9 ≤

3

ε2
‖ρ3‖L

4/3
(Ω)ζ(θ, Uh)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤ 3c̃

ε2
‖ρ‖3L4(Ω)ζ(θ, Uh)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥1/4

L2(Ω)

∥∥∥∥∇ ∫ τ

t

ρ2(s) ds

∥∥∥∥3/4

L2(Ω)

≤
3c̃C

1/4
PF

ε2
‖ρ‖3L4(Ω)ζ(θ, Uh)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ 1

2ε2
‖ρ‖4L4(Ω) +

C̃2

64ε2

(
‖θ‖4L∞(Ω) + ‖Uh‖4L∞(Ω)

)∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

,

using (2.1) for d = 3. Similarly, we have

I2
6,9 ≤

3

ε2
‖ρ‖2L4(Ω)ζ(θ, Uh)‖ρ‖L2(Ω) ≤

3c̃

ε2
‖ρ‖1/4L2(Ω)‖∇ρ‖

3/4
L2(Ω)‖ρ‖L4(Ω)ζ(θ, Uh)‖ρ‖L2(Ω)

≤
3C

1/4
PF c̃

ε2
‖∇ρ‖L2(Ω)‖ρ‖L4(Ω)ζ(θ, Uh)‖ρ‖L2(Ω)

≤ ε2

2
‖∇ρ‖2L2(Ω) +

18C
1/2
PF c̃

2

ε6
‖ρ‖2L4(Ω)

(
‖θ‖2L∞(Ω) + ‖Uh‖2L∞(Ω)

)
‖ρ‖2L2(Ω)

≤ ε2

2
‖∇ρ‖2L2(Ω) +

1

2ε2
‖ρ‖4L4(Ω) +

81CPF c̃
4

ε10

(
‖θ‖4L∞(Ω) + ‖Uh‖4L∞(Ω)

)
‖ρ‖4L2(Ω).

Likewise, using completely analogous arguments, we have

I11 ≤ ε−2‖F ′(Uh)‖L∞(Ω)‖ρ‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

ρ2(s) ds

∥∥∥∥
L4(Ω)

≤
C

1/4
PF c̃

ε2
‖F ′(Uh)‖L∞(Ω)‖ρ‖L2(Ω)‖ρ‖L4(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥
L2(Ω)

≤ 1

2
‖ρ‖2L2(Ω) +

1

8
‖ρ‖4L4(Ω) +

CPF c̃
4

2ε8
‖F ′(Uh)‖4L∞(Ω)

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

.

The estimation of the remaining Ij on the right-hand side of (4.6) is completely
analogous to the two-dimensional case with the difference that one applies (2.1) for
d = 3. Collecting all the estimates, we arrive at the desirable result.

Remark 4.6. We stress that the above result remains valid for the case of Neu-
mann boundary conditions upon modifying slightly the definition of the elliptic re-
construction (3.3) to eliminate the undetermined mode. Moreover, this can be done
in such a way to recover (2.1) for terms involving ρ. This is not done here in the
interest of simplicity of the presentation only.

4.3. Spectral estimates. To ensure polynomial dependence of the resulting
estimates on ε−1, a widely used idea is to employ spectral estimates of the principal
eigenvalue of the linearized Allen–Cahn operator:

(4.8) − λ(t) := inf
v∈H1

0 (Ω)\{0}

‖∇v‖2L2(Ω) + ε−2 (F ′(u)v, v)

‖v‖2L2(Ω)

.

The celebrated works [11, 14, 2] showed that λ can be bounded independently of ε for
the case of smooth, evolved interfaces. This idea was used in the seminal works [18] for
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the proof of a priori and [23, 17] for a posteriori error bounds for finite element methods
in various norms with constants depending upon ε−1 only in a polynomial fashion.
The a priori nature of the spectral estimate (4.8) is somewhat at odds, however, with
the presence of λ in a posteriori error bounds. This difficulty was overcome in the
seminal work [5] by first linearizing about the numerical solution Uh, viz.,

−λh(t) := inf
v∈H1

0 (Ω)\{0}

‖∇v‖2L2(Ω) + ε−2 (F ′(Uh)v, v)

‖v‖2L2(Ω)

,(4.9)

and by then proving verifiable eigenvalue approximation error bounds. The latter
ensures that it is possible to compute principle eigenvalue approximations, such that
Λh ≥ λh; we refer to [5, section 5] for the detailed construction. In short, it has
been shown that for linear conforming finite element spaces, (κ = 1), it is possible
to construct Λh(t) ≥ λh(t) for almost all t ∈ (0, T ] upon assuming that ‖Uh‖L∞(Ω)

remains bounded independently of ε−1.
The ε-independence λ (resp., λh, Λh), however, is not guaranteed when the evolv-

ing interfaces are subjected to topological changes. This is an important challenge,
since phase-field approaches are preferred over sharp-interface models exactly due to
their ability to evolve interfaces past topological changes. To address this, in [8] (cf.,
also [6, 7]) a crucial observation on the temporal integrability of λ under topological
changes was given: during topological changes we have λ(t) ∼ ε−2, but only for time
periods of length ε2. Therefore, it has been postulated that there exists an m > 0
such that

(4.10)

∫ T

0

(λ(t))+ dt ≤ C + log (ε−m)

holds for some constant C > 0 independent of ε, here ν+ := max{ν, 0}; notice that
for m = 0, we return to the earlier case of no topological changes. A number of
numerically validated scenarios justifying (4.10) for the scalar Allen–Cahn and its
vectorial counterpart, the Ginzburg–Landau equation, can be found in [8]. Moreover,
a construction for a Λh ∈ L1(0, T ) such that

(4.11)

∫ T

0

(Λh(t))+ dt ≥
∫ T

0

(λh(t))+ dt,

has been provided in [8, Proposition 3.8].
The above motivate the following assumption on the behavior of the principal

eigenvalue λh, which we shall henceforth adopt.

Assumption 4.7. We postulate the validity of one of the following options:
(I) We assume that the zero level set Γt = {x ∈ Ω : u(x, t) = 0} is sufficiently

smooth. Then, for almost every t ∈ (0, T ], there exists a computable bound
Λh(t) ≥ λh(t) which is independent of ε.

(II) There exists an m > 0 such that
∫ T

0
λh(t) dt ≤ C+log (ε−m) for some constant

C > 0 independent of ε and we can construct a Λh ∈ L1(0, T ) such that (4.11)
holds.

Of course, Assumption 4.7(I) is a special case of Assumption 4.7(II), arising when
m = 0. Nonetheless, when Assumption 4.7(I) is valid, the resulting a posteriori error
estimates will have a more favorable dependence on the final time T than the estimates
that are possible under the more general Assumption 4.7(II).
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2676 K. CHRYSAFINOS, E. H. GEORGOULIS, AND D. PLAKA

We shall prove a posteriori error estimates under the more general Assumption
4.7(II), commenting, nevertheless, on the differences that would arise in the proof
under 4.7(I) instead.

4.4. Continuation argument. We begin by noting that, compared to the
state-of-the-art estimates of [8, 7], there are three additional terms on the right-hand
side of (4.4), (4.7), due to the use of the special test function (4.5): ‖θ‖L4(0,T ;L4(Ω))

and ‖θt‖L4(0,T ;L4(Ω)) which arise naturally and are symmetric with respect to the
‖.‖L4(0,T ;L4(Ω)) norm that is to be estimated, while the additional term ‖.‖L6(0,T ;L6(Ω))

can be compensated for by the presence of the additional terms A(t) (weighted norms)
appearing on the left-hand side. Since the L6(0, T ;L6(Ω))-norm does not arise nat-
urally in the Allen–Cahn energy functions, we have opted to drop the A(t) terms in
the analysis below.

Assuming that Λh is available, we set v = ρ ∈ H1
0 (Ω) in (4.9), to deduce

(4.12)
‖∇ρ‖2L2(Ω) + ε−2 (F ′(Uh)ρ, ρ)

≥− Λh(t)(1− ε2)‖ρ‖2L2(Ω) + ε2‖∇ρ‖2L2(Ω) + (F ′(Uh)ρ, ρ) .

For d = 2, we work as follows. Upon setting

η2 :=

(
1

2
‖ρ(0)‖2L2(Ω) +

C2
PF

2
‖ρ(0)‖4L4(Ω) +

N∑
n=1

∫
Jn

(
Θ1 + Θ2 + C0(L1 + L2)

)
dt

)1/4

,

D2 := max{4, α(Uh) + 2Λh(t)(1 − ε2) + 2}, and B2 := max{16β(θ, Uh), γ(θ, Uh)},
we use (4.12) on the left-hand side of (4.4) (we note that −F ′(Uh) ≤ 1, and ignore∫ τ

0
A(t) dt), to arrive at

1

4

∫ τ

0

‖ρ‖4L4(Ω) dt+
ε2

2

∫ τ

0

‖∇ρ‖2L2(Ω) dt+
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ(τ)‖2L2(Ω)

≤ η4
2 +

∫ τ

0

D2(t)

(
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ‖2L2(Ω)

)
dt

+ ε−6

∫ τ

0

B2(t)
( 1

64

∥∥∥∥∫ τ

t

∇ρ2(s) ds

∥∥∥∥4

L2(Ω)

+
1

4
‖ρ‖4L2(Ω)

)
dt

≤ η4
2 +

∫ T

0

D2(t)

(
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ‖2L2(Ω)

)
dt

+
B̄2

ε6
sup
t∈[0,τ]

{
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ‖2L2(Ω)

}

×
(
τ

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+ sup
t∈[0,τ]

τ

2
‖ρ‖2L2(Ω)

)
.

where B̄2 := supt∈[0,T ] B2(t).

Now, we set E2 := exp(
∫ T

0
D2(t) dt) and, for d = 2, 3, we use the abbreviation

N[0,τ],d(ρ) :=
1

4(d− 1)

∫ τ

0

‖ρ‖4L4(Ω) dt+
ε2

2

∫ τ

0

‖∇ρ‖2L2(Ω) dt

+
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+ sup
t∈[0,τ]

1

2
‖ρ‖2L2(Ω)
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for the collection of seminorms on the left-hand side of the last estimate. With this
notation, we define the set

I2 :=
{
τ ∈ [0, T ] : N[0,τ],2(ρ) ≤ 4η4

2E2

}
.

The set I2 is nonempty because 0 ∈ I2 and the left-hand side depends continuously
on τ. We set τ∗ := max I2, and we assume that τ∗ < T ; we aim to arrive at a
contradiction. Hence, using the definition of the set I2, we deduce

N[0,τ],2(ρ) ≤ η4
2 +

∫ τ

0

D2(t)

(
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ‖2L2(Ω)

)
dt

+ 16B̄2 η
8
2E

2
2(T + 1)ε−6.

If the last term on the right-hand side of the last estimate is bounded above by η4
2 or,

equivalently, if it holds

(4.13) η4
2 ≤ ε6

(
16B̄2(T + 1)E2

2

)−1
,

then for all 0 ≤ τ ≤ τ∗ we have

N[0,τ],2(ρ) ≤ 2η4
2 +

∫ τ

0

D2(t)

(
1

8

∥∥∥∥∫ τ

0

∇ρ2(s) ds

∥∥∥∥2

L2(Ω)

+
1

2
‖ρ‖2L2(Ω)

)
dt.

Since 1
8‖
∫ τ

0
∇ρ2(s) ds‖2L2(Ω) + 1

2‖ρ‖
2
L2(Ω) ≤ N[0,τ],2(ρ), Grönwall’s lemma implies

N[0,τ∗],2(ρ) ≤ 2η4
2E2

upon setting τ = τ∗. This contradicts the hypothesis τ∗ < T and, therefore, proves
that I2 = [0, T ].

Likewise for d = 3, we insert the spectral estimate (4.12) into (4.7), and we work
as for d = 2. Setting

η3 :=

(
1

2
‖ρ(0)‖2L2(Ω) +

C2
PF

2
‖ρ(0)‖4L4(Ω) +

N∑
n=1

∫
Jn

(
Θ1 + Θ̃2 + C̃0(L1 + L2)

)
dt

)1/4

,

D3 := max{4, α(Uh) + 2Λh(t)(1 − ε2) + 3}, B3 := max{16β̃(θ, Uh), γ̃(θ, Uh)}, and

B̄3 := supt∈[0,T ] B3(t), E3 := exp(
∫ T

0
D3(t) dt) through the same argumentation, we

conclude that now the set I3 := {τ ∈ [0, T ] : N[0,τ],3(ρ) ≤ 4η4
3E3} equals [0, T ] upon

assuming the condition

(4.14) η4
3 ≤ ε10

(
16B̄3(T + 1)E2

3

)−1
.

The above argument has already confirmed the validity of the following result.

Lemma 4.8. Assume that (4.13) holds when d = 2 or (4.14) holds when d = 3.
Then, we have the bound

(4.15) N[0,T ],d(ρ) ≤ 4η4
dEd.
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4.5. Main results. Now we are ready to present the main error estimate in
the L4(0, T ;L4(Ω))-norm, from which we can easily arrived at a fully computable a
posteriori estimate in section 5.

Theorem 4.9. Let u0 ∈ L∞(Ω) and f ∈ L∞(0, T ;L4(Ω)), Ω ⊂ Rd, d = 2, 3.
Let u be the solution of (2.3) and Uh is its approximation (3.1), (3.6). Then, under
Assumption 4.7(II) and the condition

(4.16) ηd ≤
(
16(T + 1)B̄dE2

d

)−1/4
εd−1/2,

the following error bound holds

‖u− Uh‖L4(0,T ;L4(Ω)) ≤ 2ηd ((d− 1)Ed)
1/4

+ ‖θ‖L4(0,T ;L4(Ω)).(4.17)

Proof. Ignoring nonnegative terms on the left-hand side of (4.15), we have

‖ρ‖L4(0,T ;L4(Ω)) ≤ 2ηd ((d− 1)Ed)
1/4

;

the proof follows by the triangle inequality.

Remark 4.10. Under the more restrictive Assumption 4.7(I), the continuation ar-
gument presented in section 4.4 remains analogous with minor alterations. Specifi-

cally, upon setting m = 0 and replacing Ed = exp
( ∫ T

0
Dd(t) dt

)
by Ed = exp

(
D̄dT

)
with D̄d := supt∈[0,T ] max{4, α(Uh) + 2Λh(t)(1 − ε2) + d}, d = 2, 3, Theorem 4.9
remains valid.

Remark 4.11. We stress that Theorem 4.9 also holds in cases whereby it is not
possible to assume that ‖Uh‖L∞(0,T ;L∞(Ω)) is bounded independently of ε. We note,
however, that ‖Uh‖L∞(0,T ;L∞(Ω)) remains uniformly bounded with respect to ε and
the mesh parameters in all scenarios of practical interest we are aware of and it is
typically required in scenarios ensuring the validity of Assumption 4.7.

It is instructive to discuss in detail the dependence of the various terms appearing
in (4.16) and (4.17) to assess the practicality of the resulting a posteriori error bound
below. The computational challenge for ε � 1 is manifested by the satisfaction of
the condition (4.16). Indeed as ε→ 0 the condition (4.16) becomes increasingly more
stringent to be satisfied, necessitating meshes to be increasingly locally fine enough so
as to reduce the estimator ηd; this results to proliferation of the numerical degrees of
freedom. Once ηd is small enough, an adaptive algorithm could make use of Theorem
4.9 for further estimation, which requires (4.16) to be valid.

Assume for argument’s sake that ‖Unh ‖L∞(Ω) ≤ C ′ for all n = 1, . . . , N for some

ε-independent constant C ′ > 0. Also, we have

‖θ‖L∞(0,T ;L∞(Ω)) = ‖`n−1(t)θn−1 + `n(t)θn‖L∞(0,T ;L∞(Ω)) ≤ max
n=1,...,N

‖θn‖L∞(Ω).

The L∞(Ω)-norm of each θn will be further estimated in section 5. For the moment,
if also assume that ‖θn‖L∞(Ω) ≤ C

′ uniformly with respect to ε, then we can conclude

that 24 · 6 ≤ B̄d ≤ CC ′, d = 2, 3, and, therefore,

3 ≤ 2
(
(T + 1)B̄d

)1/4 ≤ C(T + 1)1/4

for some generic constants C > 0, independent of ε, upon noting that 4
√

6 > 1.5.
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Moreover, in the case of smooth developed interfaces (Assumption 4.7(I)), one
expects that Ed ∼ 1 as highlighted in the classical works [11, 14]. When topological
changes take place, we can follow [8] and postulate that Ed ∼ ε−m, m > 0. With the
above convention, we find that (4.16) becomes

ηd ≤ Gdεd+(m−1)/2

for some constant Gd ≥ 1 for all m ≥ 0, thus encapsulating simultaneously both cases
of Assumption 4.7.

Hence, the ε-dependence for the condition (4.16) appears to be less stringent than
in the respective conditional a posteriori in the L∞(L2)- and L2(H1)-norms from
[5, 8, 7], which reads, roughly speaking, η̃ ≤ cε4+3m for the corresponding estimator
η̃ and some constant c > 0. Therefore, seeking to prove a posteriori error estimates
for the L4(L4)-norm error is, in our view, justified, as they can be potentially used to
drive space-time adaptive algorithms without excessive numerical degree of freedom
proliferation. This is a significant undertaking in its own right and will be considered
in detail elsewhere.

The new a posteriori error analysis appears to also improve the ε-dependence on
the condition for the L2(H1)- and L∞(L2)-norm bounds compared to [17, 5, 8, 7] in
certain cases. Of course, the different method of proof above results in different terms
appearing in ηd above compared to the respective conditional a posteriori error bounds
from [17, 5, 8, 7]. Therefore, the performance of the proposed estimates above has to
be assessed numerically before any conclusive statements can be made. In particular,
we have the following result.

Proposition 4.12 (L2(H1)- and L∞(L2)-norm estimates). With the hypotheses
of Theorem 4.9 and, assuming condition (4.16), we have the bounds

‖u− Uh‖L2(0,T ;H1
0 (Ω)) ≤ 2

√
2ε−1η2

dE
1/2
d + ‖θ‖L2(0,T ;H1

0 (Ω)),

‖u− Uh‖L∞(0,T ;L2(Ω)) ≤ 2
√

2η2
dE

1/2
d + ‖θ‖L∞(0,T ;L2(Ω)).

Therefore, in the same setting as before, we have (4.16) implies

η2
d ≤ G2

dε
2d−1+m.

If we accept that η2
d ∼ η̃ from [5, 8, 7], for the sake of the argument, at least at

the level of the conditional estimate, (4.16) gives formally favorable dependence on ε
when d = 2 and m ≥ 0 and also when d = 3 and m ≥ 1/2, compared to the respective
dependence η̃ ≤ cε4+3m from [8, 7].

5. Fully computable upper bound. The bound in Theorem 4.9 is still not
fully computable, due to various terms involving θ and ρ(0), which we shall now
further estimate by computable quantities.

5.1. Initial condition estimates. For the terms involving ρ(0), we have

1

2
‖ρ(0)‖2L2(Ω) ≤ ‖u0 − U0

h‖2L2(Ω) + ‖θ0‖2L2(Ω),

C2
PF

2
‖ρ(0)‖4L4(Ω) ≤ 4C2

PF

(
‖u0 − U0

h‖4L4(Ω) + ‖θ0‖4L4(Ω)

)
.

The Sobolev norms of θ appearing on ηd can be further estimated by a posteriori
bounds for elliptic problems; see, e.g., [30, 1] for p = 2 and [27, 13, 15] for p =∞. We
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focus, therefore, on the derivation of the Lp-norm a posteriori error bounds for elliptic
problems for θ and for θt via suitable duality arguments. Although the derivation is
somewhat standard, we prefer to present it here with some level of detail to highlight
the regularity assumptions required. Specifically, consider the dual problem

(5.1) −∆z = ψp−1 in Ω, z = 0 on ∂Ω,

on an Ω ⊂ Rd convex domain. Then, there exists a constant CΩ > 0, depending on
the domain Ω, such that

‖z‖W 2,p/(p−1)(Ω) ≤ CΩ‖ψp−1‖L
p/(p−1)

(Ω) = CΩ‖ψ‖
p−1
Lp(Ω), for p ≥ 2;(5.2)

we refer to [22] for details.

5.2. Spatial error estimates. We shall estimate Θ2 by residual-type estima-
tors due to the presence of non-Hilbertian norms. In view of Remark 3.2 above,
θn = wn − Unh is the error of the elliptic problem (3.3), so we can further estimate
norms of θ once we have estimators of the form

‖θn‖Lp(Ω) ≤ E(Unh , g
n
h ;Lp(Ω))

at our disposal for p = 2, 4, 6. Therefore, from (3.6) we have

‖θ‖Lp(Ω) ≤ E
(
Unh , g

n
h ;Lp(Ω)

)
+ E

(
Un−1
h , gn−1

h ;Lp(Ω)
)

giving

(5.3)
N∑
n=1

∫
Jn

‖θ‖pLp(Ω) dt ≤ ĉ
N∑
n=1

kn
(
Ep
(
Unh , g

n
h ;Lp(Ω)

)
+ Ep

(
Un−1
h , gn−1

h ;Lp(Ω)
))

for ĉ > 0 an algebraic constant.
Let 2 ≤ p < +∞. To determine the estimator E precisely, we set ψ = θn on (5.1)

and we have

‖θn‖pLp(Ω) =

∫
Ω

∇z·∇θn dx−
∫

Ω

∇Inh z·∇θn dx =

∫
Ω

∇ (z − Inh z) ·∇ (ωn − Unh ) dx

from Remark 3.2, with Inh : W 1,1(Ω),→ V nh denoting the standard Scott–Zhang inter-
polation operator that satisfies optimal approximation properties [29, 4]. Continuing
in standard fashion, we have

‖θn‖pLp(Ω) =
∑
τ∈T n

h

∫
τ

∇ωn·∇ (z−Inh z) dx+
∑
τ∈T n

h

∫
τ

∆Unh (z−Inh z) dx

−
∑
τ∈T n

h

∫
∂τ

(∇Unh ·~n) (z−Inh z) ds

=
∑
τ∈T n

h

∫
τ

rn (z−Inh z) dx−
∑
e∈Sn

h

∫
e

J∇Unh K (z−Inh z) ds

≤ CSZ
( ∑
τ∈T n

h

‖h2
nrn‖

p
Lp(τ)+

∑
e∈Sn

h

‖h1+1/p
n J∇Unh K‖pLp(e)

)1/p

‖z‖
W

2,
p

p−1 (Ω)
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for some constant CSZ > 0 independent of hn and of the functions involved, using the
approximation properties of Inh ; here rn := gnh + ∆Unh is the element residual at time
tn and J∇Unh K is the jump across the internal edge e. Then, the elliptic regularity
estimate (5.2) implies that

E
(
Unh , g

n
h ;Lp(Ω)

)
:= CΩCSZ

( ∑
τ∈T n

h

‖h2
nrn‖

p
Lp(τ)+

∑
e∈Sn

h

‖h1+1/p
n J∇Unh K‖pLp(e)

)1/p

.

For the limiting case p = +∞, we can take

E (Unh , g
n
h ;L∞(Ω)) := C`h,d

( ∑
τ∈T n

h

‖h2
nrn‖L∞(τ)+

∑
e∈Sn

h

‖hnJ∇Unh K‖L∞(e)

)

with `h,d = (ln (1/hn))
αd , where α2 = 2 and α3 = 1; we refer to [15] for details.

5.3. Mesh change estimates. The general strategy of time extensions in (3.6),
(3.7) consists in decomposing θt as follows:

(5.4) θt = ωt − Uh,t =
ωn − ωn−1

kn
−
Unh − U

n−1
h

kn
for each n = 1, . . . , N

with Unh ∈ V nh , n = 1, . . . , N . Since V nh 6= V n−1
h in general, we define the Scott–Zhang

interpolation operator Înh : H1
0 (Ω)→ V nh ∩ V

n−1
h relative to the finest common coars-

ening T̂ nh of T nh and T n−1
h . The latter allows us to apply the Galerkin orthogonality

property of the elliptic reconstruction in V nh ∩V
n−1
h . Moreover, we have the following

approximation result: for all e ∈ Šnh \Ŝnh and 1 ≤ p <∞ it holds that

(5.5) ‖ψ − Înhψ‖Lp(e) ≤ CSZ
(

max
ω(e)

ĥn

)l−1/p

‖ψ‖W l,p(ω(e)) ∀l ≤ κ+ 1,

where ĥn := max(hn, hn−1), with ω(e) denoting the neighborhood of elements sharing
the face e, where, as before, the positive constant CSZ depends only on the shape
regularity of the triangulation. Setting ψ = θt on (5.1), we work as before to deduce

‖θt‖
p
Lp(Ω) = k−1

n

∫
Ω

∇
(
z−Înh z

)
·∇
(
ωn − ωn−1 − Unh + Un−1

h

)
dx

=
∑
τ∈Ť n

h

∫
τ

∂rn
(
z − Înh z

)
dx−

∑
e∈Šn

h

∫
e

∂J∇Unh K
(
z − Înh z

)
ds

with Šnh denoting the finite element space subordinate to the coarsest common re-
finement Ť nh of T nh and T n−1

h . Standard estimation via Hölder’s inequality and (5.5)
give, in turn,

‖θt‖
p
Lp(Ω) ≤

∑
τ∈Ť n

h

‖∂rn‖Lp(τ)‖z−Î
n
h z‖L p

p−1

(τ) +
∑
e∈Šn

h

‖∂J∇Unh K‖Lp(e)‖z−Î
n
h z‖L p

p−1

(e)

≤ CSZ
( ∑
τ∈Ť n

h

‖ĥ2
n∂rn‖

p
Lp(τ) +

∑
e∈Šn

h

‖ĥ1+1/p
n ∂J∇Unh K‖pLp(e)

)1/p

‖z‖
W

2,
p

p−1 (Ω)
.
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Finally, the assumed elliptic regularity (5.2), gives the a posteriori error estimator

Ê
(
Uh,t, gh,t;Lp(Ω)

)
:= CΩCSZ

( ∑
τ∈Ť n

h

‖ĥ2
n∂rn‖

p
Lp(τ) +

∑
e∈Šn

h

‖ĥ1+1/p
n ∂J∇Unh K‖pLp(e)

)1/p

for which we have ‖θt‖
p
Lp(Ω) ≤ Ê

p(Uh,t, gh,t;Lp(Ω)).
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