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Abstract

The purpose of this PhD project was to create a new method of sex assessment for

crania using 3D point cloud data and machine learning. Through the process of investigating

sexual dimorphism, this project has been the first to define the “discrimination factor”, which

provides both researchers and practitioners of forensic anthropology a new tool for quantifying

sexual dimorphism and comparingmorphological traits. This project also created a ground-truth

database of 3D point cloud data by using structured light scanning to document 534 crania (263

belonging to females and 271 belonging to males) from four diverse skeletal collections (located

in the United Kingdom, Japan, Italy, and South Africa). A program called CraniAlign was cre-

ated in conjunction with Clotho AI to process the 3D point cloud data in a manner that was

transparent, reliable, and allowed for automation. In the first study of its kind, CraniAlign was

compared to DAVID 4, which is the industry standard, in order to demonstrate that proprietary

algorithms are not ideal for research. Finally, the 3D point cloud data of 316 individuals (134

female, 182 male) were used to train and test artificial neural networks. Three methods were

successfully created – one that sought to classify individuals according to sex regardless of the

population to which they belonged; one for classifying individuals according to sex and pop-

ulation; and one for classifying individuals into population groups regardless of sex. All three

methods yielded training accuracies of 97.1% - 100.0% and evaluation accuracies of 87.5% -

92.5%. This project was therefore the first to apply deep learning to the problems of sex, popu-

lation, and population-specific sex classification using the entire geometry of the cranium, and

has successfully established three methods with unprecedented performances when tested on

samples which were not involved in the training of the models.
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Chapter 1

Introduction & Background

1.1 Purpose & Significance

The purpose of this research project is to use machine learning to create a method of

skeletal sex assessment using 3Dmodels of the cranium, with the following aims: 1) themethod

has an accuracy (i.e. the frequency with which the parameters are correctly determined) that

is comparable or greater than existing assessment methods using the cranium; 2) the error

rate of the method is quantifiable and known; 3) the method is reproducible (i.e. the method is

not subject to large inter and intraobserver errors); and 4) the method abides by the Daubert

criteria (1993), which is necessary for its admissibility in court and forensic purposes.

In both bioarchaeology and forensic anthropology, a major component of assessing hu-

man skeletal remains is the biological profile, which primarily involves establishing the age, sex,

and ancestry of the individual (Ubelaker 2008; Braz 2009; Gapert et al. 2009a; Rogers 2009;

Calce 2012; Moore 2013; Lam et al. 2016). By supplementing the biological profile with trauma,

pathology, and burial practice assessments, bioarchaeologists can analyze demographic infor-

mation about past populations such as disease, mortality, and nutrition (Roberts and Manch-

ester 2005; Walker 2008a). These analyses are pivotal in understanding how our species has

adapted, both genetically and physiologically, to environmental and societal stresses in the

past (Larsen and Walker 2004; Walker 2008a). Assessing human skeletons is also crucial in a

modern context for forensic anthropologists. When establishing the identity of a skeletonized

7



CHAPTER 1. INTRODUCTION & BACKGROUND 8

individual, missing person profiles can be included or excluded as a possible match on the basis

of the biological profile obtained from skeletal analyses (Rogers 1999; Calce and Rogers 2011;

Moore 2013; Lam et al. 2016). Once the list of possible missing persons who fit the biological

profile has been established, comparative methods can then be undertaken to establish the

identity of the individual.

It is imperative that methods of assessing age, sex, and ancestry from the skeleton

are accurate. If not, this can drastically affect the interpretations of a skeletal population in

an archaeological context. For example, Mays (1993) used traditional regression methods for

estimating the ages of juveniles in a Roman British sample, and determined that the juvenile

mortality was caused by infanticide; however, using a Bayesian statistical model for estimating

age, Gowland and Chamberlain (2002) interpreted the ages-at-death to bemore consistent with

a natural mortality distribution. Such contrasting interpretations can sometimes be addressed

by considering evidence from historical documents or records to support one interpretation over

another, but this disparity remains a severe problem in prehistoric archaeology since no records

exist apart from the skeletons themselves. In forensic anthropology, an inaccurate biological

profile is also problematic because it may cause the true identity of the skeletonized individual

to be excluded from the list of possible missing persons. Not only would such a result hinder

the identification process, but it can also damage the credibility of the forensic anthropologist if

he/she is required to testify in court (Christensen 2004; Rogers and Allard 2004; Williams and

Rogers 2006).

Traditionally, skeletal assessments are performed by an analyst using either metric or

morphological methods. The accuracy of the results depend on two major factors: 1) the skill

and previous experience of the examiner (White et al. 2012); and 2) the clarity of the method

itself, a topic which is discussed by this PhD researcher elsewhere (Lam et al. 2016). While

the latter is merely an issue with conveying how techniques should be performed, the for-

mer addresses the inherent subjectivity in using human analysts (Moore 2013). Morphological

methods rely on the analyst’s experience with osteological landmarks and trait expressions;

therefore, an inexperienced analyst may assess landmarks differently than an experienced

one. Even metric methods, which rely on measurements between defined osteological land-

marks, are conditional to the analyst’s ability to recognize those landmarks. To illustrate the

degree of subjectivity in metric methods, a study by Adams and Byrd (2002) discovered that
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there was high interobserver error in some osteological measurements performed by analysts

with less than five years of osteometric experience, due to issues with landmark recognition.

Even more concerning is that the ability to correctly recognize these problematic landmarks did

not improve in analysts with greater levels of experience (Adams and Byrd 2002). It is unclear

whether the issue is due to the clarity of the landmark definitions or to the subjective experi-

ence of an analyst being able to correctly find the osteological landmarks, but the study does

highlight the need for reliability and repeatability in osteological analyses.

With the increasing capabilities of modern technology, skeletal assessment methods

have been adapted for computerized analyses in order to make the methods more objective.

Despite analyzing metric data with computers, however, the data are still largely obtained man-

ually and therefore suffer from the same issues of subjectivity outlined above. This project

seeks to address the bias associated with using human analysts to choose metrically-defined

landmarks, as part of the larger aim of creating a new computerized method of sex assessment

for determining the biological profile. Additionally, due to the fact that sexual characteristics are

affected by ancestry, this method also seeks to classify individuals into geographical popula-

tions as part of the sex assessment process.

Finally, it is important to consider that techniques used by forensic scientists must abide

by the Daubert Criteria (1993). Following the United States Supreme Court ruling in Daubert

v. Merrell Dow Pharmaceuticals Inc. (1993), four criteria were established in order for scien-

tific expert witness testimony to be admissible: 1) the judge is the gatekeeper of evidence and

is ultimately the ruling power that can decide what evidence is and is not admissible; 2) the

evidence must be relevant to the trial, and also reliable in its source and in how it was ana-

lyzed; 3) the conclusions presented from analyzing the evidence must be based on scientific

knowledge and should be demonstrably proven to have been derived according to the scientific

method; 4) the scientific methodology governing the theory or technique upon which evidence

is analyzed is further defined by five requirements: a) the theory or technique must be falsifi-

able, refutable, and/or testable; b) the theory/technique should have been subject to prior peer

review and publication; c) a known or potential error rate associated with the analysis should

have been established; d) the testing of the theory or technique should have been subject to

the proper standards and controls; and e) the analysis should be generally accepted by the

relevant scientific community. In forensic research, the fourth Daubert criterion - and there-
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fore the associated five requirements governing the theory or technique - is the most relevant.

This research project therefore aims to create an analytical computer program that satisfies

the fourth Daubert criterion, especially regarding the establishment of known error rates as-

sociated with skeletal analyses, which is variable and ultimately unquantifiable when human

analysts are involved. To achieve this, the use of a computer program in this project to remove

human error will increase the reliability of the method that is developed. A 3D ground-truth ref-

erence database of crania is used for both developing the assessment method and establishing

a known, quantifiable error rate. The new method of sex and ancestry assessment therefore

meets court admissibility standards to ensure that it will be useful to both bioarchaeologists and

forensic anthropologists.

1.2 Skeletal Sex Assessment & Sexual Dimorphism in the

Cranium

Biological sex refers to whether an individual is genetically male or female, which is then

expressed physiologically in the skeleton due to hormones and other genetically-controlled vari-

ables (Sutter 2003; Moore 2013; Bulut et al. 2016). Sex should be distinguished from gender,

which is a complex social construct that encompasses age, ethnicity, race, and social status

(Joyce 2005; Hollimon 2011). This research project focuses exclusively on sex rather than gen-

der, although gender can influence skeletal sex assessment if individuals undergo hormone re-

placement therapy or craniofacial surgery. Sexual dimorphism refers to the differences in body

shape and size, as well as differences in rate and timing of development, between males and

females in a single species (Stinson et al. 2012). Sexual dimorphism in the human skeleton

therefore allows analysts to assess whether an individual is male or female. As noted by several

authors (e.g. Frayner and Wolpoff 1985; Ross et al. 2003; Galdames et al. 2008; Veroni et al.

2010; Stinson et al. 2012; Garvin et al. 2014), sexual dimorphism is significantly affected by the

environment, a prime example being that body size in males are affected more than females by

nutritional deficits which results in less sexual dimorphism (Bogin 1999; Ross et al. 2003; Gal-

dames et al. 2008). It is therefore imperative to understand how environmental variables can

interact with genetic variables, in order to both identify reliable skeletal traits that truly reflect

biological sex, and to interpret them properly if they are confounded by the environment. The
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focus of this research project is therefore to identify a reliable method of using skeletal traits

that exhibit sexual dimorphism, which is then investigated to determine population differences.

Population differences encompass environmental variables since, from an evolutionary

perspective, a population is defined as a group of individuals sharing the same geographic

area and culture (DiGangi and Hefner 2013). Culture and geography form the environment for

a given population, and have been shown in numerous studies to influence human variation

significantly (e.g. Kennedy 1995; Lahr 1996; Cartmill 1999; Edgar and Hunley 2009; Relethford

2009, etc.) Geography influences dietary resources available to individuals, whereas culture

can influence how dietary resources are allocated and used, ultimately affecting nutrition (Di-

Gangi and Hefner 2013). Geography also dictates pathogen and climate exposures whereas

culture affects how society responds to such factors (DiGangi and Hefner 2013). Furthermore,

the environment affects genetic patterns of evolution by influencing which traits are advanta-

geous, neutral, or disadvantageous (DiGangi and Hefner 2013) in a manner that allows for

biological distance - how closely related populations are to one another - to be calculated (Sto-

janowski and Schillaci 2006). Populations exhibit variable degrees of human variation, and

therefore variable degrees of sexual dimorphism (González et al. 2007). The approach of us-

ing populations to understand these degrees of variation is referred to as ancestry assessment,

which is one of the three main variables in a skeletal biological profile. This research project

therefore studies ancestry insofar as to address the variation in sexual dimorphism between dif-

ferent populations, as ancestry has an important bearing on the ability to distinguish between

the sexes.

Addressing sexual dimorphism in human populations is particularly challenging asmales

and females possess physical traits that share approximately 95% of the total range of varia-

tion (St. Hoyme and Işcan 1989; Schwartz 1995; Rogers 1999). Robustness and rugosity

associated with musculature, as well as morphological differences related to child-bearing and

childbirth in females, primarily account for the differences between males and females (Rogers

1999). Unsurprisingly, the pelvis has been therefore cited as the most reliable skeletal element

for assessing sex (e.g. Đuric 2005; Decker et al. 2011; Spradley and Jantz 2011; Christensen

et al. 2014; Krishan et al. 2016) for its role in reproduction. The skull, which refers to both the

cranium and the mandible, has been traditionally viewed and taught as the second most reli-

able skeletal indicator of sex (Pickering and Bachman 1997; Byers 2002; Bass 2005; Moore
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2013); however, empirical research throughout the past few decades have shown that post-

cranial elements are actually more reliable (e.g. Berrizbeitia 1989; Robling and Ubelaker 1997;

France 1998; Klepinger 2006; Spradley and Jantz 2011). For ancestry assessment, the skull

is recognized as the most useful indicator due to the numerous population-specific traits that

are available (most notably exemplified in research by Rhine 1990, Gill and Gilbert 1990, and

Hefner 2009, with a combined trait list compiled and tested by Wood 2015). This research

therefore seeks to combine sex and ancestry analyses using the features of the cranium in

order to improve its usability for generating an accurate biological profile. The mandible is not

included in this project, and all analyses focus solely on the cranium.

The skull as a whole is an important element in forensic anthropology for the purpose

of identification. To illustrate this, Komar and Potter (2007) examined 773 cases from the New

Mexicomedical examiner’s office between 1974-2006 and found that in cases where a skull was

recovered, 87% of the individuals were successfully identified; if no skull was recovered, only

61% were identified. In the latter scenario, the researchers noted that identification rates were

negatively impacted regardless of the percentage of postcranial elements that were recovered

(Komar and Potter 2007), meaning that the presence of the skull significantly affects the ability

to identify an individual. Although it has been widely accepted through anecdotal work in foren-

sic anthropology that identification of human remains can be hindered if the remains are not

fully recovered (Haglund and Reay 1993; Komar 2004), Komar and Potter’s (2007) research

is one of the earliest published attempts at actually quantifying and demonstrating this impact,

as well as highlighting the importance of the skull in identification. Skulls, whether complete or

fragmentary, are the most common skeletal element to be recovered (Bass and Driscoll 1983);

it is therefore reasonable to improve techniques using the skull in order to maximize the ability

to identify the individual. By creating a computerized method of population-specific sex assess-

ment using the cranium, this research project provides analysts with another tool that can be

used to create the biological profile for identification purposes.

Sexually dimorphic features in the skull have been noted in diverse populations, al-

though to different extents (e.g. Ascadi and Nemeskeri 1970; Loth and Henneberg 1996, 1998;

Vidarsdottir and O’Higgins 2001; Rosas and Bastir 2002; Thayer and Dobson 2010; Coquerelle

et al. 2011). The theory behind sexual dimorphism in the skull lies in the differential growth and

development that males and females undergo throughout life, due to differences in bone re-
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sponse to hormone levels. Specifically, differences in the quantity of testosterone are primarily

responsible for the sexual dimorphism that is observable in the skeleton (Sutter 2003). Testos-

terone is detectable by the tenth week of fetal development, peaking during the 15th week

(Grumbach and Kaplan 1974; Challis et al. 1976). By the time an individual is born, sex dif-

ferences exist in the upper midface due to this peak of testosterone in males during gestation

(Bulygina et al. 2006; Coquerelle et al. 2011). From birth, both males and females follow sim-

ilar craniofacial growth trajectories until puberty, at which point males exhibit a pronounced

rate of craniofacial development and are farther along the craniofacial growth trajectory than

females (Vidarsdottir 1999; Vidarsdottir and O’Higgins 2001; Bulygina et al. 2006; Coquerelle

et al. 2011). Shape and developmental differences between the sexes are most prominent af-

ter puberty. The result is larger, more robust, and more rugged features related to muscularity

in male crania, whereas females have smaller, rounder, and more gracile features (Işcan and

Steyn 2013; Bulut et al. 2016). As females age, however, their craniofacial development con-

tinues such that post-menopausal females may resemble males (Walker 1995; Rogers 2005;

Moore 2013). Consequently, Krogman and Iscan (1986) have suggested that cranial sex as-

sessment should be limited to individuals aged approximately 20 - 55 years old, as they claim

there is too much overlap between the sexes in young and old individuals.

In terms of overall cranial shape, differences between the sexes exist in the contour

of several cranial bones. In females, the frontal and parietal bones exhibit bossing, which

refers to a smooth, rounded eminence indicating the original centers of ossification (White and

Folkens 2005). This creates a more rounded shape in the calvarium (i.e. skullcap) in females,

in contrast to a less bulbous shape in males due to the downward elongation of the craniofacial

features during male development (Rogers 2005). The result is that females tend to have

broader, rounder foreheads whereas males tend to have slightly sloped foreheads (Wilkinson

2004). Despite the fact that these are well-known and accepted traits, there is discordance

in the literature about the ability to quantify and/or define forehead sloping in a manner that

allowsmales and females to be distinguished reliably (Rogers 2005;Williams and Rogers 2006;

Ramsthaler et al. 2010; Bulut et al. 2016). Bulut and colleagues (2016) suggest that this may

be due to a failure in humans to perceive the underlying spherical shape of the male forehead

because of prominent features that protrude from the frontal bone, such as the supraorbital

ridge and glabella. Figure 1.1 below compares and contrasts the difference in overall skull

shape between males and females.
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Figure 1.1: Overall shape and feature differences between male (upper images) and female

(lower images) skulls. Note the difference in the roundness of the forehead; the shape of the

nasal cavity; the orbit size and shape; the shape of the jaw; and the overall muscularity of the

skull. Source: White 1991, pg. 321.

Glabella, which is defined as “the most forward projecting point in the midline of the

forehead at the level of the supraorbital ridges and above the nasofrontal suture” (Bass 2005 in

Chapter 1.3) has been recognized as the most sexually dimorphic and reliable part of the skull

for assessing sex (Rogers 2005; Williams and Rogers 2006; Walker 2008b; Garvin et al. 2014).

When viewed in the lateral profile, the glabella usually does not project anteriorly much or at

all in females, whereas it is pronounced and well-developed in males (Buikstra and Ubelaker
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1994). Similarly, the larger supraorbital ridge in males (labelled as the superciliary arch in

Figure 1.2) results in a thicker orbital border than in females, the range of thickness which has

been described as a “dull knife” to “approximating the width of a pencil” (Buikstra and Ubelaker

1994). The differences in the size of glabella and in the thickness of the supraorbital ridge are

due to the growth of the inner table of the frontal bone relative to the outer table (Enlow 1982).

The inner table is related to the growth of the frontal lobe, which is completed by the age of

six; conversely, the outer table is part of the nasomaxillary complex which finishes remodelling

a few years later depending on sex (Enlow 1982). Females do not have the outwards and

downwards facial growth spurt that males undergo, meaning that their nasomaxillary complexes

finish developing much earlier than males, while males will continue developing in this region

for longer. The result is that the outer table continues growing for longer in males than in

females, resulting in a thicker supraorbital ridge and glabella, as well as what appears to be a

less rounded forehead as the frontal bossing (labelled as the frontal eminence in Figure 1.2) is

lost.

Figure 1.2: The anterior view of the frontal bone. Differences between the sexes exist in

the frontal squama, which is flatter and exhibits a less prominent eminence in males; and the

thickness of the supraorbital margin/superciliary arch. Source: White and Folkens 2005, pg.

88.

Sexually dimorphic features in the cranial base have been identified, namely the fora-

men magnum, the occipital condyles, the mastoid processes, and the rugosity of the nuchal

crest (See Figure 1.3). The cranial base exhibits less growth-related changes relative to other
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areas of the skull, so developmental differences between the sexes is likely to be less promi-

nent than in other regions (Buschang et al. 1983; Gapert et al. 2013). Unsurprisingly, studies

into the size and shape of both the foramen magnum and the occipital condyles show relatively

low distinguishing abilities, ranging from 66.5% - 76% for the foramen magnum depending on

the population studied (Galdames et al. 2009; Gapert et al. 2009a), and 67.7% - 76.7% for the

occipital condyle (Gapert et al. 2009b; Macaluso Jr. 2011). In a study by Williams and Rogers

(2006), evaluating the size of the occipital condyles scored extremely high in terms of intraob-

server error (i.e. 12.5% of samples were scored inconsistently), demonstrating the subjectivity

of evaluating this trait.

Figure 1.3: The posterior view of the cranium showing the cranial base. The foraman mag-

num, occipital condyles, mastoid process, and nuchal crest show various degrees of sexual

dimorphism depending on the population to be studied. Despite this, the mastoid process has

been shown to fare better as a sex indicator than other features in the cranial base. Adapted

from: White and Folkens 2005, pg. 81.

Unlike the foramen magnum and occipital condyle, the mastoid processes and rugosity

of the nuchal crest are affected by the size of the muscles in the craniofacial region and in
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the neck, which prompts bony growth at the insertion regions (Gapert et al. 2013). As males

have more testosterone which promote muscle growth (Sutter 2003), they tend to have larger

mastoid processes and a more rugged nuchal crest than females. The mastoid processes

and the nuchal crest are therefore affected by factors other than differential developmental

processes between males and females. Physical activity and lifestyle can affect muscularity

such that athletic females may appear more masculine in these traits, and gracile males may

be mistaken for females. Despite this potentially confounding variable, Williams and Rogers

(2006) determined in their study that mastoid size was one of the best indicators of sex, since it

was able to be used to predict sex with over 80% accuracy while the associated intraobserver

error was less than 10%, although population differences do exist. Conversely, although a

scoring system does exist for assessing the nuchal crest (Buikstra and Ubelaker 1994), Rogers

(2005) and Williams and Rogers (2006) instead combine nuchal crest rugosity with a general

assessment of the overall robustness or gracility of the skull. This approach is sensible because

the cranial base is less sexually dimorphic than other regions, and assessing this region alone

has little value if it is not compared to the rest of the cranium (Nikita 2014).

The differences in the splanchnocranium, i.e. the facial region of the cranium (White and

Folkens 2005), exist due to the downward and outward growth that males undergo during ado-

lescence (Rogers 1999). The nasomaxillary region in particular undergoes significant growth

(Buschang et al. 1983; Humphrey 1998), meaning that as the maxilla elongates along with the

orbital floor, the orbits become too large relative to the eye and its associated structures. To

compensate for this enlargement, the orbital floor deposits bone in order to maintain an appro-

priate size (Enlow 1982), such that the orbits appear high in males relative to the rest of the

face. Another consequence of this bone deposition is that the distance between the orbital floor

and the nasal floor increases almost by a factor of two by the time the nasomaxillary growth

is complete (Enlow 1982), creating a nasal cavity that appears longer and narrower in males

compared to females. The nasomaxillary region, however, is also one of the primary regions

used in ancestry assessment as variation has been noted according to ancestry in many stud-

ies (e.g. Enlow 1982; Mo 2005; Weinberg et al. 2005; Frelich and Hunt 2007, etc.). Therefore,

any features in the nasomaxillary region should exhibit population-specific sexual dimorphism,

so an ancestry assessment is required to be performed before analyzing these features.

Changes in the nasomaxillary region also affect the zygomatics, which, in addition to
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being displaced downwards with the rest of the maxilla, also continue to grow laterally (Enlow

1982). The longer and more intense craniofacial growth spurt that males undergo result in the

zygomatics being larger than in females, and in the zygomatic arches being positioned more

laterally (Rogers 2005). As such, the posterior root of the zygomatic bone may be continuous

with the supramastoid crest as part of the temporal line (Keen 1950). Whether the temporal

line extends past the external auditory meatus (labelled as the suprameatal crest in Figure

1.4) is therefore an indicator of whether an individual is male or female, although it is affected

by the development of the temporalis muscle (Keen 1950). Consequently, St. Hoyme and

Işcan (1989) advise that this feature is only useful in populations that exhibit sexually dimorphic

musculature. It is therefore preferable to assess traits in the nasomaxillary region if the analyst

has had extensive experience with the population to which the unknown individual belongs, in

order to understand the variation that may occur within the population as well as any variables

such as muscularity that may influence traits.

Figure 1.4: The temporal bone, showing an extension of the temporal line over the external

auditory meatus (i.e. the suprameatal crest), which is a masculine feature due to increased

muscularity. Source: White and Folkens 2005, pg. 96.

Using any one single trait to assess sex is never recommended, so although some traits

may appear to be less sexually dimorphic than others, a combination of traits that are theoret-

ically sexually dimorphic will give a more accurate combined approach (Williams and Rogers

2006). It is important to note that the varying success rates of each cranial trait for sex as-

sessment are not only due to the inherent subjectivity of the analyst, but also due to the way in
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which traits are assessed. For example, the glabella has been recognized as one of the most

useful visual traits for distinguishing between males and females, but metric studies using the

glabella have obtained low accuracy rates not much higher than chance (e.g. 57% accuracy

rates were reported by Nikita (2014)). Similarly, mastoid size is well-accepted in the literature to

be sexually dimorphic, but attempts at quantifying the mastoid triangle (i.e. by calculating either

the 2D area or 3D volume between three craniometric points - asterion, porion, and mastoid)

have had varied and mostly unsuccessful results (Kanchan et al. 2013). The accuracy rates

therefore only partially reflect the trait’s usefulness in indicating sex, and is heavily dependent

upon whether it is assessed morphologically or metrically. If metric, the mathematical models

used to determine what values are male and female hugely impact the results, as many studies

seem to use mathematical models to find something that “works”, instead of fitting the data to

a model that actually represents the phenomenon that is being studied. For example, Walker

(2008b) tested multiple types of discriminant function analyses to assess ranked ordinal scores

of five morphological cranial traits, and concluded that logistic regression discriminant func-

tion analysis was the best option in order to minimize misclassification and sex biases. Such

a brute force approach (in computer science terms) is not based on theoretical models, and

consequently, interpreting results from such approaches are extremely limited since they do

not actually reveal anything about the underlying phenomenon being studied. This research

project foregoes the decision as to what mathematical models should be used for classifica-

tion, and instead uses an approach based in machine learning that is appropriate for solving

classification problems. In this way, the classification method in this project is not subject to the

assumptions and limitations of function-based analyses. Furthermore, by using an approach

that has been explicitly developed for the purpose of classification, the results are not at risk of

being interpreted beyond the limits of the analytical method.

1.3 3D Methods of Analyzing Bone

With the boundaries of technology continually expanding, numerous methods of 3D

data analysis have been explored for sex assessment. A review of the literature has revealed

threemajor fields of 3D data analysis in osteology: 1) landmark-basedmethods; 2) comparative

shape-based analyses; and 3) the creation of averaged 3Dmodels to determine the representa-

tive male and female shapes to be used for comparison, which is an extension of shape-based
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analysis. Each of these approaches carry significant advantages and disadvantages due to

the various methods in which 3D data are acquired, the sampling of 3D data, and the analyses

themselves. It should be noted that these three categories of methods are primarily based on

the data input, which in turn govern the type of analysis to be used. Conversely, machine learn-

ing analytical methods can be applied to a wide variety of data (Mitchell 1997; Goodfellow et al.

2016). Although there have been recent studies in osteology that have utilized some of the

machine learning algorithms (which are discussed below in more depth), this project focuses

explicitly on deep learning applied to classification, which to the author’s knowledge has not

yet been applied to 3D models of bone. In the absence of a well-established body of literature

on deep learning applied to 3D methods of analyzing bone, this section will instead explore

the three major fields of 3D data analysis in osteology to date and outline the advantages and

limitations of each. This section will conclude with a literature review of machine learning al-

gorithms (not necessarily deep learning) applied to osteological analyses in order to highlight

how machine learning can address the limitations posed by traditional methods of analysis.

1.3.1 Landmark-Based Methods

Landmark-based methods use a combination of several craniometric points in order to

capture statistically significant shapes. All landmark-based methods which require a manual

input suffer from unavoidable inter- and intra-observer error (Sholts et al. 2011), which differ

according to the method used to measure the data. For example, the error associated with tak-

ing measurements on a skull between craniometric points will depend on the analyst’s training

and ability to locate landmarks, as well as the analyst’s ability to correctly utilize sliding calipers

and/or spreading calipers.

Themost well-known landmark-based program for cranial sex and ancestry assessment

is FORDISC (currently v.3.1) created by Jantz and Ousley (2005). For the purpose of creating

FORDISC (2005), researchers from all across America pooled craniometric data from mod-

ern individuals from various ethnicities, although most of these ethnicities are from American

populations. This database forms the basis for FORDISC (2005), which is aptly named after

“Forensic Discriminant Functions”, since it uses the database content to create made-to-order

discriminant functions to assess sex and ancestry. A researcher wishing to use FORDISC

(2005) must first input as many craniometric measurements that are available on the skull.
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Based on which craniometric measurements are inputted, FORDISC (2005) will create a dis-

criminant function from the database content, and categorize the skull in an ethnic-specific sex

category. The output of the program also includes the accuracy of this function to be able to

categorize skulls in the database, as well as the posterior probability and typicality probability.

The posterior probability is the strength or significance of the resulting categorization of the

sample, since it gives the probability of correct categorization (Jantz and Ousley 2005). The

typicality probability is how similar the sample is to those in the database, based on the inputted

craniometric data (Jantz and Ousley 2005).

The advantage to FORDISC is that it can be used to assess fragmented or damaged

skulls, since the program can run properly even if only one measurement is inputted. Con-

versely, there are major limitations to FORDISC. Categorization of a sample into an ethnic-

specific sex category occurs even if the group to which the sample truly belongs does not exist

in the FORDISC database. There is no way of knowing whether a sample is actually correctly

categorized other than by interpreting the typicality probability, which indicates whether a skull

seems to be different than those in the database. The typicality probability, however, does not

indicate whether a sample is atypical merely because they are at an extreme end of a male or

female category (i.e. if they fall into the tail end of a probability distribution), or if it is because

the sample truly does not belong to any of the given categories. Additionally, FORDISC uses

2D measurements taken from craniometric points without attempting to interpret shape, which

in turn limits the ability to interpret the output.

More recently, Ross and Slice (2014) developed 3D-ID which addresses some of the

limitations of FORDISC.As the name suggests, 3D-ID uses a 3D coordinate database of cranial

measurements. Unlike FORDISC, 3D-ID creates a statistically-significant shape from inputted

3D coordinates of craniometric points. The program then analyzes the 3D shape created by

the inputted coordinates, and categorizes the sample into a sex and/or ancestral group. Unlike

the FORDISC database, the 3D-ID database contains 3D coordinate craniometric data from

multiple different skeletal collections from around the world, so the representation is more global

than that of FORDISC. The output of 3D-ID allows a deeper interpretation of the results since

it involves shape analysis. This output also includes, for each available sex/ancestral group:

the Mahalanobis squared distance, which is a calculation of how closely related the unknown

sample is to the centroid or mean of the group; the posterior probability; and the typicality
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probability. The two probabilities are defined in a similar to way to those in FORDISC. The

addition of the Mahalanobis squared distance is useful because this value does not assume

that the sample actually belongs to a group, and demonstrates how far away the sample is from

the mean of the group. Therefore, where the sample falls in terms of standard deviations away

from the mean can be interpreted.

Although 3D-ID expands upon the premise of FORDISC, it is similarly limited in that only

coordinate data can be inputted, and only for the pre-defined craniometric points that are listed

in the program. This is restrictive, as demonstrated by Coquerelle and colleagues (2011), since

there are some statistically-significant shapes that cannot be captured by standard craniometric

points. For example, Coquerelle and colleagues (2011) showed that by using semi-landmarks,

i.e. taking coordinate points at regular intervals along a surface, a better representation of the

geometric shape of the sample can be achieved. In turn, this approach can reveal shape-related

growth differences that are not seen when using only craniometric points. Therefore, there is

value in exploring point cloud data in which the entire geometry of the cranium is represented,

such as in this project.

The 3D-ID program is based on geometric morphometrics (GMM), which is defined

as a method of “analyzing and visualizing shape variation in the absence of size differences

among specimens” (McKeown and Schmidt 2013). GMM is a powerful method of analysis

since it can interpret shape-related variation separately from size if required, so size differences

which may otherwise confound shape similarities can be isolated. The literature pertaining

to GMM for adult sex assessment is almost exclusively based on the skull (e.g. Kimmerle

et al. 2008; Shearer et al. 2012; Nikita 2014; Holton et al. 2016), and it has been noted that

although absolute size differences exist between male and female skulls (Rogers 2005; Moore

2013), size should not be used for distinguishing between the sexes. Instead, cranial traits and

features should be compared to the overall size and shape of the cranium for assessing sex

(Nikita 2014). GMM is therefore best suited to ignore size differences and instead focus on

shape-related differences in the skull.

To create a geometric shape for GMManalysis, craniometric landmarks or semi-landmarks

are digitized and their position in 3D space is recorded. Within a group or category, these digi-

tized coordinates are superimposed onto each other. As seen below in Figure 1.5, image (A),

the coordinate data are not oriented the same way for each sample, and size also precludes the
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ability to meaningfully interpret these coordinates. In order to orient, scale, and locate the coor-

dinates with respect to one another, the Procrustes superimposition is used (Adams et al. 2004;

Slice 2005, 2007; Mitteroecker and Gunz 2009). The result is seen in Figure 1.5, image (B),

where clusters for each landmark or semilandmark exist. Most importantly, size differences be-

tween each of the samples are excluded, so shape differences account solely for the variation

seen for each landmark or semi-landmark. From these clustered data, a shape must be created

that represents the variation seen in this group. There are different mathematical approaches

to create this shape, and the most common approach is calculating the Mahalanobis squared

distance (McKeown and Schmidt 2013; Slice and Ross 2014). Regardless of which method

is used, they all involve representing a landmark or semi-landmark solely based on the mean

and variance of each cluster. The result is seen in Figure 1.5, image (C), where one group is

represented by the shape created by the black circles and another group is represented by the

shape created by the white circles. Two groups - in this example, an African-American group

and a Euro-American group - can therefore be superimposed and fitted to each other using a

regression method of one’s choosing such that the difference between the two groups can be

calculated statistically.
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Figure 1.5: The processing steps in generating a statistically significant shape using GMM.

(A) 3D coordinates from many different samples superimposed on top of each other, although

the orientation and scaling of each sample has not been standardized yet. (B) The 3D coor-

dinates from all samples have now been standardized using the Procrustes superimposition.

The result is that coherent clusters are now visible, with each cluster corresponding to differ-

ent craniometric landmarks. (C) From each cluster, a representative point is chosen to create

an overall shape composed of different points. The black points represent one group of sam-

ples while the grey points represent another group. The differences between these two shapes

therefore represent differences between the two groups. Source: McKeown and Schmidt 2013.

There is no arguable criticism for applying the Procrustes superimposition to the coor-

dinate data, as this is a simply a way to scale and orient the data in the same manner. The

main issue, however, is situated in the creation of a “statistical shape” from the clustered data.

Explanations of how this is done mathematically in osteological GMM are not very clear, but all

studies seem to use only the mean and the variance of each cluster (McKeown and Schmidt

2013). It is therefore uncertain if this approach assumes a normal distribution, which may be

an inappropriate assumption if there is no evidence of a normal distribution; conversely, if this

assumption is not made, there is still the limitation of only using mean and variance to de-

fine a representative point for each landmark. By the very nature of finding a representative

point for each landmark, which is further limited by only considering mean and variance, GMM

analyses do not and cannot take into account the full range of variation that may exist in the

samples themselves. Additionally, Bulut and colleagues (2016) point out that since landmark-
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based studies do not use the entire geometry, the ability for researchers to understand cranial

traits is inhibited. The fact that not all shape information is used prompts researchers to choose

different combinations of landmarks to create statistically significant shapes, resulting in a lack

of standardization and agreement on which landmarks to use, and how many. Finally, the ma-

jor epistemological issue with GMM research is that in studies that are unable to successfully

classify individuals, it is unclear whether the failure is due to: 1) the fact that not enough land-

marks or semi-landmarks are included to create shapes that are statistically significant; 2) if

the landmarks or semi-landmarks used are actually not useful at all; 3) the improper imposition

of mathematical models used for categorization; or 4) any combination of these. Therefore,

while GMM is extremely prevalent and useful in the literature for understanding size and shape

changes, such as in longitudinal or cross-sectional growth studies (e.g. Coquerelle et al. 2010),

using GMM analyses to classify individuals is problematic.

1.3.2 Comparative Shape Analysis

The second group of 3D data analyses is comparative shape analysis not based on

landmarks, meaning that the actual geometry of the sample (i.e. an entire 3D model of a bone)

is used rather than an abstract shape such as in GMM. As GMM analyses dominate the lit-

erature, studies using comparative shape analyses are relatively few, and have only recently

been published. An example of a comparative shape analysis is provided by Bulut and col-

leagues (2016), where 3D models of frontal bones were generated from computed tomography

(CT) scans. The 3D models were then aligned to a 3D sphere, and the distance between the

two were established in order to quantify the roundness of the frontal bone. This was done

to establish if there is a statistically significant difference in the frontal bone curvature between

males and females. Such an approach is advantageous since the entire frontal bone was used,

meaning that all of the available information about the geometry of the bone was included in

the analysis. Additionally, the “sphere overlap method” is completely landmark-free, and there-

fore avoids inter- and intraobserver errors associated with landmark identification (Bulut et al.

2016).

Before addressing limitations associated with landmark-based methods, however, the

issues with the study in question should first be noted. The chosen methodology in Bulut and

colleagues’ study (2016) in order to quantify roundness was incorrect. By comparing a 3D
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model to a spherical model, roundness cannot actually be quantified - what is actually quantified

is the distance between the 3Dmodel and the spherical model. This distancemay vary between

males and females, and thus is an acceptable premise to explore whether the frontal bone is

sexually dimorphic in this way. Bulut and colleagues (2016) chose to extend their study to

challenge the common conception that the frontal bone is rounder in females than in males,

and this is an interpretation that simply cannot bemade based on how the results were obtained.

Furthermore, when aligning the 3D frontal bones to the sphere, Bulut and colleagues (2016)

used a “best-fit algorithm”, which is not described. It is therefore unknown what parameters

were taken into account when aligning the two models, and the reliability of such an approach

is questionable. Finally, Bulut and colleagues (2016) note that another limitation in the overlap

method is that it is affected by the accuracy of the 3D models themselves; however, this is not

further discussed. The accuracy of 3D models of bone is therefore addressed and discussed in

Chapter 1.4 (Generating 3DModels of Bone), and is also demonstrated in Chapter 4 (Examining

the Properties of 3D Models).

Although the execution of Bulut and colleagues’ study (2016) was flawed due to method-

ological and interpretation issues, the premise of attempting a landmark-free approach using

the overlap method is not. The study rightfully demonstrates the advantages to such an ap-

proach - it is quantifiable, does not rely on human measurement, and uses the full shape infor-

mation from the bone. Furthermore, if alignment algorithms are used and properly explained,

this method can be repeatable. As demonstrated in Bulut and colleagues’ study (2016), limita-

tions to interpreting results from this approach do exist. Comparative shape analysis can only

demonstrate that there is a quantitative difference between the bone and the geometric model

to which it is compared; it cannot speak to the nature of this difference (e.g. whether or not the

difference is due to a difference in roundness). To investigate the reason for shape differences,

GMM is much better suited, especially the use of semi-landmarks on a curved surface if round-

ness is to be quantified. It is therefore the aim of this PhD project to use the full geometry of

crania in order to avoid biases from human assessment to create a method for sex assessment.

The results of the method are then compared to the results of human assessment in order to

exemplify the advantages and disadvantages of both.
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1.3.3 Averaged Representative 3D Models

Expanding on the premise of comparative shape analysis in which whole 3Dmodels are

used, and similar to the way in which GMM models use a mathematical method to determine

representative points to create a shape, it has been proposed in several recent research en-

deavours to create representative 3D meshes to which to compare unknown samples. A mesh

is created from a point cloud, which is simply a collection of 3D coordinates or points, and a

mesh is formed by connecting these points to form polygonal surfaces. A representative 3D

model for a group can be created by averaging the point clouds of each sample, and unknown

samples can be compared to this representative model in order to determine if and how the

sample differs (Furmanová et al. 2017).

Luo and colleagues (2013) have applied this premise to sex assessment using 3D

meshes of skulls, and a Master’s research project at the University of Toronto Mississauga

also averaged 3D meshes to create representative male and female models for assessing the

distal humerus for sex (K. Fleming, personal communication, January 15, 2014). The problem

with averaging meshes is that the natural biological variation that exists between individuals is

assumed to be distributed normally, and all traits/features are averaged in the same way, with

the same weighting. Even if other mathematical models were to be used to generate a “repre-

sentative” model, some kind of distribution must be assumed and there is currently no way of

knowing what mathematical model can best approximate natural biological variation. The as-

sumption as to what distribution best approximates this variation is the major, but unavoidable,

limitation to using averaged representative 3Dmodels. This is similar to the limitation with GMM

shapes, but the error associated with averagedmeshes is compoundedmany timesmore, since

a mesh can be composed of thousands of points, each of which have to be averaged, whereas

a GMM shape is limited to the number of craniometric landmarks and semilandmarks. Unfor-

tunately, this limitation is not discussed in the literature, and results of studies using averaged

representative 3D models continue to be overinterpreted. Finally, another limitation to consider

is that the process of averaging entire 3D meshes or point clouds may result in a 3D model that

exhibits features or a combination of features that do not exist naturally. It is therefore flawed

to use such an idealized 3D model to represent an entire category.

The value in creating averaged 3D models perhaps lies in demonstrative or teaching
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purposes, wherein for the sake of understanding a complex concept, oversimplified examples

can be used. This is especially helpful in court where a jury is present, in order to explain

basic differences between male and female skull morphology. Currently, however, there is little

value in using averaged representative 3D models in research to investigate cranial sexual

dimorphism, even if studies such as the one undertaken by Luo and colleagues (2013) claim

the opposite.

1.3.4 Machine Learning in Osteological Analyses

Machine learning is a field in computer science that is dedicated to the study and im-

plementation of algorithms that learn from data in order to perform a certain task (Mitchell

1997; Goodfellow et al. 2016), and encompasses many different algorithms such as decision

trees, model-based clustering, and deep learning, the latter of which is the primary focus of

this project. Deep learning builds upon the premise of Artificial Neural Networks (abbreviated

as “ANNs”), which are modelled after the way humans learn by creating associations between

acquired data (McCulloch and Pitts 1998). A singleANN consists of a sequence of nodes which

are connected in a specified way, analogous to how neurons in the human brain are connected

to each other. Two sets of data are typically used by deep learning algorithms - the training

dataset and the evaluation dataset. When the training dataset is run through the ANN, the con-

nection between the nodes are tuned (or “weighted”) (Raschka 2015), similar to how synapses

fire between neurons in humans in order to reinforce a concept. As such, the process of training

the ANN involves running the data through the network for several iterations, which are also

known as “epochs”. At each epoch, the weights of the ANN are optimized in order to improve

the accuracy of the model. Additionally, the dataset is usually divided into batches for two rea-

sons: 1) since deep learning is usually applied to large datasets, it is not always feasible to run

the entire dataset due to technological constraints; and 2) by splitting the dataset into batches,

a degree of stochastic noise is added that can mitigate issues of overfitting the model to the

dataset such that the model can be generalized. The accuracy obtained on the training dataset

quantifies how well the model was able to perform a given task using the amount and type of

data provided, and can therefore indicate the usefulness of the data to the given task as well

as the model’s theoretical suitability to perform the task. Once a model has been trained, the

evaluation dataset is then used to test the performance of the model. The accuracy obtained
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on the evaluation dataset indicates the model’s ability to be generalized, since the evaluation

dataset was not used in its training.

In the context of osteological analysis, classification is an issue that researchers have

recently tried to address by delving deeper into the principles of machine learning. Classification

in machine learning can be either supervised or unsupervised. Supervised machine learning

means that the data to be classified has associated information associated to each sample

(termed “labels”) for the purpose of training the algorithm (Hastie et al. 2009). The categories

in which the data is to be classified are therefore determined by the user, on which the algorithm

is based. Conversely, unsupervised machine learning merely utilizes the input data to identify

categories in which the data is classified. Both supervised and unsupervised machine learning

have their merits in osteological analyses.

An example of supervised machine learning in osteology is the AncesTrees program,

which was recently developed by Navega and colleagues (2015) for assessing ancestry based

on metric analyses of the skull using decision trees algorithms. Although manual measure-

ments similar to those in FORDISC were used for training this program, which suffer from

human measurement errors, AncesTrees is unique in that it demonstrates how machine learn-

ing algorithms can be applied to classifying osteological data. When testing AncesTrees on

a dataset that consisted of individuals from six ancestral groups, 75.0% of African individuals

and 79.2% of European individuals were correctly categorized; when a model was created that

only included these two groups, the performance increased to 93.8%. This study is an excellent

example as to how the use of a machine learning tool can be used in osteology for classification.

It should be noted that the issue with using supervised learning is the fact that human

biases exist as to how to annotate or categorize data. The annotation of data is not a problem

if the associated information is ground-truth (i.e. the sex or population to which an individual

belongs is known, and the bone that is being assessed is known to come from that particular

individual). The associated information only becomes a problem if the information used by ma-

chine learning algorithms comes from assessed or estimated characteristics (e.g. if a machine

learning algorithm were to be trained on a prehistoric dataset for which the sex of the individuals

is given by an analyst’s skeletal assessment), in which case, the resulting model cannot be as

robust. A study by Algee-Hewitt (2016) best exemplifies the potential bias of using supervised

learning in a practical application. Part of her study involved comparing human-determined
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ancestral groups (i.e. ethnic groups since these groups encompass social implications) to the

groups that the computer program identified using unsupervised, or unannotated, data. She

found that there was no Hispanic group identified by the computer, which is a term that forensic

anthropologists use to describe ancestry, especially in the United States. This finding supports

the assertion that Hispanic is an ethnic group with heavy social connotations and a diverse

biological basis (Algee-Hewitt 2016), and explains why forensic anthropologists have had such

difficulty in defining a biologically meaningful Hispanic group. The use of unsupervised machine

learning therefore has the potential to address classification tasks in a manner that is less in-

fluenced, if at all, by human annotation. For a more in-depth discussion into how unsupervised

machine learning approaches are beneficial and appropriate for osteological analyses, refer to

the paper by Trentin and colleagues (2018).

Recent studies have utilizedmachine learning in osteological analyses and have achieved

very promising results which further demonstrates the need for machine learning tools to be

made available to analysts. Examples include: Afrianty and colleagues (2014) who utilized

the width, height, and thickness of patellae in order to assess sex using an ANN, and who

achieved 96.1% accuracy; and Cavalli and colleagues (2017) who used the calvarium contour

from CT scans in lateral view for ANN-based sex assessment and achieved accuracies up to

87%. Some studies have even compared the performance of machine learning algorithms to

the traditional regression and multivariate methods (e.g. Curate et al. 2017) which is an impor-

tant step in establishing machine learning as a justifiable and more robust tool for analysts. It

is therefore the goal of this PhD project to further demonstrate the utility of machine learning in

osteological analyses, and to advocate for its establishment in forensic anthropology.

1.4 Generating 3D Models of Bone

Traditionally, CT imaging has been used to create 3D images of bone, and a large body

of research surrounding the use of CT images for age and sex assessments exists (e.g. Telmon

et al. 2005; Sidler et al. 2007; Barrier et al. 2009; Ferrant et al. 2009; Grabherr et al. 2009;

Decker et al. 2011; Villa et al. 2013). CT images are created by attenuating X-rays through an

object, which create 2D cross-sectional images based on density. A 3D image is then formed

by combining multiple 2D cross-sections (ASTM 1997). The advantage to using CT images is
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that internal structures of an object can be visualized without destructive or invasive procedures

(ASTM 1997; Schladitz 2011). Conversely, limitations exist in the resolution of the image, which

is heavily dependent upon the physical scanning parameters and image processing algorithms.

For example, a 2D Gaussian-like function termed the point-spread function is involved with

the image-formation process (ASTM 1997). The point-spread function causes blurring in the

CT image, which reduces resolution since small features will appear larger and sharp edges

will be softened. Consequently, features or boundaries that are very close together might not

be distinguishable. This can be a source of error when trying to take measurements from

bone surfaces, because the boundary of the bone must be interpreted. Additionally, Villa and

colleagues found that the texture quality of the resulting 3D model from CT scans is poor due to

the thickness of the 2D slices used to create the 3D image, which can complicate morphological

assessments that rely on bone texture (Villa et al. 2013).

Laser scanning has been explored to create 3D images of bone, and has been com-

pared to CT scans to determine that laser scans do indeed produce higher quality 3D models

than CT scans (Villa et al. 2013). Laser scanning can use light of any wavelength in order

to measure the distance from the light source to the object. From this measurement, point

clouds are generated that correspond to the external geometry of the object, and if the laser

scanner has a camera incorporated into it, colour photographs can be taken in order to provide

colour information to the 3D model (Sholts et al. 2010). Several scans of an object must be

taken from different angles so that the point clouds can be registered or aligned to each other

to form a complete representation of the object. The resulting 3D models are scaled and may

have colour information. Sholts and colleagues (2010) tested the reliability of measurements

taken from laser scan models of bone, and found that interobserver error was low at 2%. Laser

scanning was therefore shown to generate higher quality and more reliable 3D models than

CT scans. Limitations exist with laser scanning, however. Objects that have reflective or shiny

surfaces, such as greasy bone, may cause the laser beam to be reflected off of the surface

without returning to the scanner, or it can be reflected off of several surfaces before returning

to the scanner with a weakened wavelength. Either of these scenarios results in unquantifiable

error in the 3D model.

Photogrammetry has recently been investigated by researchers for documenting bone,

due to its cost-efficiency and portability (e.g. Johansen 2014; Lam 2014; Saly 2014). To doc-
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ument bones using photogrammetry, a camera is all that is strictly required, although some

researchers choose to use light boxes to ensure an even lighting on the object, and rotating

stands to facilitate the documentation process. A series of photos are taken of an object from

multiple angles and heights, which allows the photogrammetry software to calculate the loca-

tion of the camera relative to the object using multiple point triangulation (AgiSoft 2012). The

purpose of multiple point triangulation is to understand the position of the object and the cam-

era such that identical features in different photos can be aligned to each other using the Scale

Invariant Feature Transform (SIFT) algorithm developed by Lowe (1999). SIFT uses the colour

information in the photo for alignment, however, which means that if lighting is inconsistent

across photos, either error is introduced into the resulting 3D model, or the alignment fails and

a 3D model is unable to be created. Therefore, researchers do need to be trained in basic

photography. It is important to note that not all photogrammetric software automatically scales

objects, meaning that 3D models will need to be manually scaled, and thus may suffer from

human error. Nevertheless, Johansen (2014) found that interobserver error was statistically

insignificant when comparing measurements taken from actual crania to the corresponding

measurements taken from the 3D models of the same cranium.

3Dmodels of bone are advantageous because they provide an accurate method of doc-

umenting bone, in a manner which also allows intuitive interactions with the image to view the

bone in whatever manner suits the analyst (Telmon et al. 2005; Villa et al. 2013; Lam 2014). 3D

images of bone are also advantageous in cases where specimens in a collection need to be

repatriated, since they offer a more holistic approach for documenting the collection compared

to the limited notes, photographs, and test results that were undertaken prior to repatriation

(Kakaliouras 2014). Similarly, sharing skeletal data is much easier since researchers can ac-

cess virtual 3D models of bones rather than having to physically go to the skeletal collection.

Due to the wealth of research potential that is associated with 3D models of bones, it is impor-

tant that metric and morphological assessments of 3D bones are reliable.

While numerous studies have established that measurements are repeatable and re-

liable on 3D models of bones (e.g. Sholts et al. 2010; Decker et al. 2011; Johansen 2014),

a persistent issue that has existed with 3D models is texture (Villa et al. 2013). This PhD

researcher’s Master’s thesis (2014) investigated how the issue of texture could affect morpho-

logical assessments by assessing the auricular surface of os coxae for age using the Lovejoy
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method (1985), which is heavily dependent upon bone quality and texture. The actual bone

specimens were first assessed, before the 3D photogrammetric models were randomized and

re-assessed blindly. This study found that there was no statistical difference in the accuracy

obtained for either sample type, and that the same trends were demonstrated in the inaccu-

racy and bias charts between the two sample types. Therefore, the study concluded that there

was no statistical difference in accuracy between assessing 3D models or bone specimens for

morphological features, although it was noted that from a practical point of view, texture was

extremely difficult to assess. It was also noted that correct assignment of 3D models to an age

category was mostly reliant upon other morphological features. It was therefore asserted that

methods developed on dry bone should be adapted for use with 3D representations. Villa and

colleagues (2013) similarly state that skeletal assessments perform best on dry bone rather

than with 3D models, although their study, along with others (e.g. Barrier et al. 2009; Grabherr

et al. 2009) demonstrated that accurate morphological assessments are still possible using 3D

models.

In conclusion, each method of generating 3D models has advantages and limitations

in terms of time, cost, training, and protocol. The most important factor that all 3D modelling

methods have in common, however, is that the results are repeatable and reliable. With the

advancement of technology, the field of generating 3D models is continually improving, and

new technology can be explored in research. This research project investigates one such new

technology - Structured Light Scanning (SLS) - which is explored in Chapter 2 (DataAcquisition

& Methodology).

1.5 Research Aims

The goal of this project is to create a new method of assessing skeletal individuals ac-

cording to sex and ancestry/population using 3D cranial data, which will be facilitated by the

use of machine learning. In order to achieve this, the following research objectives have been

identified: 1) creating a 3D “ground-truth” cranial database consisting of modern individuals

from various populations which will be used to generate and test the new method; 2) establish-

ing the performance of current morphological assessments on correctly categorizing individuals

from the database as a baseline; and 3) creating a proof of concept using machine learning to
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assess the geometric shape of crania to determine the degree of sexual dimorphism globally,

as well as within different populations.

1) Creating a 3D Ground-Truth Skeletal Database

A ground-truth database consists of samples of known origin, as opposed to samples

with assessed or estimated characteristics. Such databases are important for extracting robust

statistical conclusions based on the known characteristics of the sample, and therefore exist

mostly for research purposes. A ground-truth skeletal database therefore consists of individuals

with known biographic information, since the skeletons are often from donors or from cemetery

burials with associated records. Issues with unknown or estimated age, sex, and other rele-

vant information such as disease and/or cause of death are mitigated or eliminated completely

depending on the completeness of the associated documents.

In this project, a 3D ground-truth cranial database was generated using structured light

scanning. In order to populate this database, it was necessary to document several ground-

truth skeletal collections from several geographically diverse institutions so that the variation

of sexual dimorphism in different populations was captured. Due to the requirement of using

individuals of known origin, most collections that satisfy this requirement are modern collections

(i.e. within the last 100 years), with exceptions such as documented cemetery burials, which

can date back to approximately the 1800s. It was ideal that samples included in this study

did not exhibit pathological features that could obscure or alter sexually dimorphic traits on

the cranium, which could skew the interpretation of such features when assessing sex and

ancestry. By the same principle, good preservation of the specimens was also necessary.

To choose which skeletal collections were contacted for inclusion into this project, the

following criteria were used. First, the skeletal collection should includemale and female adults,

and the crania should be available and in good condition (i.e. good preservation; few patho-

logical expressions which would interfere with sexual trait analyses; little to no fragmentation).

For the purposes of this study, adult individuals are defined as those who are 18 years of age

or older at death, since differences between males and females are usually well-established at

this point in development, and assessments of sex can be made with confidence (Braz 2009).

Collections that contained a large number of suitable samples were prioritized over

smaller collections. Additionally, the most suitable collection for a given geographical region
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was chosen. This project aimed to include individuals from European, Asian, andAfrican popu-

lations in order to create a dataset with diverse populations. Originally this project also aimed to

include NorthAmerican individuals but it was not possible to incorporate NorthAmerican collec-

tions within the scope of this PhD.A list and description of each collection that was documented

are given in Chapter 2.1 (Skeletal Collections).

The scanning and acquisition of the raw point cloud data needed to be processed into

coherent point clouds representative of the geometry of the crania. The final results then

needed to be examined for their reliability and reproducibility. Establishing the reliability and

reproducibility of 3D point cloud data on real datasets is not common practice, even though it

should be in order to uphold scientific rigour. This PhD project therefore defines the terms “reli-

ability” and “reproducibility” in the context of point cloud data, establishes a method by which to

determine these two parameters, and determines the reliability and reproducibility of the point

cloud data used in this project (see Chapter 4, Examining the Properties of 3D Models).

2) Establishing the Performance of Current Morphological Assessments

In order to have a baseline comparison to which to compare the performance of the ma-

chine learning method of sex assessment, the same individuals included in the 3D database

were also assessed using morphological traits identified to be of high quality (Williams and

Rogers 2006). It was necessary to perform these morphological assessments on the actual

bone rather than the 3D models in order to better reflect the true performance of these mor-

phological traits which were developed on dry bone; applying these methods to 3D models

may not yield the same accuracy, as Villa and colleagues (2013) suggest and as ascertained

in this researcher’s Master’s thesis (Lam 2014). By comparing the performance between the

morphological assessments and the method generated using machine learning, insight can be

gained into the morphological traits which are subject to the limitations of human perception,

and improvements to the current existing morphological traits used can be identified. Chapter 3

(Cranial Sexual Dimorphism in Various Populations) presents the results of the morphological

assessments on four skeletal collections from different populations, which are then compared

to the performance of the machine learning method in Chapter 5 (Exploring Cranial Sexual

Dimorphism with Deep Learning).

3) Establishing a Proof of Concept with Machine Learning to Generate a New Method of

Sex Assessment
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Although many features of the crania have been identified and repeatedly examined for

sexual dimorphism (e.g. Buikstra and Ubelaker 1994; Williams and Rogers 2006; Gapert et al.

2009a; Humphries and Ross 2011; Bulut et al. 2016; Jung and Woo 2016; Krishan et al. 2016,

etc.), readily available approaches that combine sexual dimorphism and population variation

with 3D data are lacking in abundance in the literature. What little studies that do exist to

address this issue focus on using craniometric points in combination with GMM (e.g. Ross

et al. 2010; Navega et al. 2015). Although such studies are very valuable and also provide

statistical methods for analyzing samples, the use of craniometric points with GMM analyses do

not account for the full range of variation that exists simply because the full geometry of crania

is not utilized. This project therefore uses point cloud data that do represent the full geometry of

the crania in order to avoid potentially excluding features that are abstract to humans but useful

for programs in classifying according to sex. Additionally, the use of GMM for classification is

limited to creating a “statistical shape” from clustered data, which does not actually account

for any external variation that may exist because only the center of the clusters are used to

create a model. Conversely, machine learning offers more powerful methods of classifying

geometric data because it attempts to create models that can account for stochastic noise (and

are therefore applicable to external samples not involved in the making of the model) while

having the ability to continually learn from the data. In Chapter 5 (Exploring Cranial Sexual

Dimorphism with Deep Learning), machine learning is applied to 3D point cloud data in order

to investigate sexually dimorphic traits and how these traits vary across populations.

The analyses using machine learning in this project are considered to be successful if

the method created has an accuracy of at least 80% when tested on both the samples used

to create the method and, more importantly, when tested on a 20% holdout sample dataset

which is not part of the creation of the method. PointNet (Qi et al. 2016) is the machine learning

(specifically, deep learning) algorithm used in this project. Due to the fact that it is quite new and

therefore untested for its applicability to cranial point cloud data, the use of PointNet (Qi et al.

2016) is used as a proof of concept to establish how deep learning can be applied to classifying

cranial point cloud data according to sex and population. Improvements as to how computer

science and bioarchaeology can collaborate are identified and discussed in the context of how

deep learning can be further applied to real datasets to help solve current research questions

in bioarchaeology.



Chapter 2

Data Acquisition & Methodology

The data collected in this project can be categorized into two groups: 1) ordinal data

from visual assessments of sexually dimorphic characteristics (discussed below in 2.2); and

2) 3D point cloud data representing the geometry of the cranial samples (the acquisition and

processing are discussed below in 2.5 and 2.6, respectively). 2D photographic recording was

also undertaken to supplement the data by providing a reference of the visually assessed char-

acteristics and also to serve as another means of visually recording data by which to check the

3D point cloud data. The photographs, however, are not formally used in any analyses, since

the analyses focus on the ordinal data and the point cloud data.

To acquire both types of data, cranial samples were used from four skeletal collections -

St. Bride’s Fleet Street Collection in London, U.K. (SB); Nagasaki University Modern Cadaver

Collection in Nagasaki, Japan (NU); Milano Skeletal Collection curated by LABANOF in Milan,

Italy (ML); and Pretoria Bone Collection in Pretoria, SouthAfrica (PR) . The number of available

crania differed at each skeletal collection. In cases where there were more than 150 crania in

a collection, 75 male and 75 female individuals were randomly chosen for inclusion. This was

done to optimize the amount of time spent at a collection and the time spent processing and

analyzing the data. Due to differences in lab set-up, collection access, and how many crania

were autopsied, assessing and documenting 150 crania took approximately between 100 - 150

hours. This translates into approximately 2.5 - 4 weeks of data collection per skeletal collection.

It should be noted that the number of samples used for collecting the ordinal data (i.e. the

number that were visually assessed and scored) differs from the number of samples that were

37
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scanned and used to create point cloud data. The major reason for this discrepancy is that

some samples could be visually assessed but were deemed unsuitable to be included in the

ground-truth database due to issues of preservation or disease. Even though some of these

degraded samples were not scanned, they were still visually assessed in order to increase the

amount of ordinal data in this project. There was also one case in the PR collection where the

point cloud data file was found to be corrupt, and the data could not be accessed or recovered.

All samples included in this project have therefore been visually assessed and have associated

ordinal data; however, not all samples have associated 3D point cloud data. The result is that

this project encompasses 637 individuals (312 female, 325 male) with ordinal data, and 534

with 3D point clouds (263 female, 271 male; before processing of the point cloud data). The

distribution of this sample size is given below in Table 2.1.

Table 2.1: The distribution of the samples according to population and sex in the ordinal dataset

and the point cloud dataset.

Dataset Population # of Females # of Males Total #

Ordinal SB 92 95 187

Total # = 641 NU 75 75 150

ML 70 80 150

PR 75 75 150

Point Cloud SB 44 41 85

Total # = 534 NU 75 75 150

ML 70 80 150

PR 74 75 149

The age profiles of the samples used in the ordinal and point cloud datasets are given

below in Tables 2.3 and 2.4, respectively, and have been categorized by age range into the

categories denoted in Table 2.2. There is a heavy bias of older individuals across all collections,

but this is an unfortunate and unavoidable limitation of most skeletal collections. The implication

of this bias is that the resulting classification methods developed in this project will need to be

applied to young adults (i.e. age categories 4 and below; 59 years of age and younger) with

caution, especially considering that the machine learning algorithms will inherit this bias during

their training.
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Table 2.2: The age categories and their associated age range used for trait-specific age and

sex analyses.

Age

Category
Age Range (years)

1 18 - 29

2 30 - 39

3 40 - 49

4 50 - 59

5 60 - 69

6 ≥ 70

Table 2.3: The distribution of the samples according to population and age category in the

ordinal dataset.

Population
Age Category

1 2 3 4 5 6

SB1 23 24 20 29 52 38

NU 5 6 23 17 39 60

ML 3 7 7 8 21 104

PR 9 9 15 25 20 72

Total # 40 46 65 79 132 274
1 One individual does not have a known age, and is therefore excluded from this table

Table 2.4: The distribution of the samples according to population and age category in the point

cloud dataset.

Population
Age Category

1 2 3 4 5 6

SB1 7 10 11 14 23 19

NU 5 6 23 17 39 60

ML 3 7 7 8 21 104

PR 9 9 15 25 20 71

Total # 24 32 56 64 103 254
1 One individual does not have a known age, and is therefore excluded from this table

Choosing which crania to include in this project was usually done before visiting the

collection and before the analyst was able to see the samples (with the Milano collection as the

only exception; this is discussed below in 2.1.3 (Milano Skeletal Collection - Milan, Italy (ML)).
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Consequently, out of the 150 samples chosen for inclusion, some were excluded once issues

of preservation become clear upon seeing the sample. Therefore, instead of simply creating a

pool of 150 samples, all samples in a collection were first divided into groups according to sex,

and then each sample in each group was numbered according to a randomly generated, non-

repeating sequence. The first 75 in the male and female groups were pooled, and assessed in

order of their given sample number (i.e. as determined by how the institution numbered them).

The samples remaining in each group starting from number 76 onwards acted as a reservoir. If

any of the 150 chosen samples were deemed unsuitable for assessment, the analyst requested

a colleague to look up the sex of the unsuitable sample and choose a replacement sample from

the appropriate reservoir group. This ensured that the number of males and females included

in the data collection were as equal as possible, and also ensured that the analyst remained

unbiased when assessing the samples, since the sexes of the samples were not revealed to

her.

2.1 Skeletal Collections

The following skeletal collections were chosen to represent an overall diverse sample

for the ground-truth database. While it is impossible to be able to properly represent each and

every population that exists within the scope of this PhD project, broad geographical regions

are included for diversity. The curator of each collection was contacted, and provided with a

brief explanation of the project. Before the commencement of data acquisition at the institution

curating the collection, ethical approval was first obtained from the University of Leicester (refer

to Appendix A) and, if required, from the institution to be visited.

2.1.1 St. Bride’s Fleet Street Collection - London, United Kingdom (SB)

The St. Bride’s Fleet Street Skeletal Collection (to be referred to as ’SB’ in this doc-

ument) comprises of cemetery burials of 227 individuals (213 adults, 14 juveniles) who died

between 1740 - 1852 (Gapert et al. 2013). There is some indication that the Fleet Street in-

dividuals were of middle socioeconomic status, as the lower churchyard is deemed to have

contained individuals of low status, and the high status individuals were kept in crypts. Due to

the associated coffin plates, it is possible to identify the individual in each burial, and thus, this



CHAPTER 2. DATA ACQUISITION & METHODOLOGY 41

collection is appropriate for inclusion into this project, since sex and age are known. A few ex-

ceptions exist, where certain burials overlapped or shifted such that the excavated individuals

do not seem to fit the identities given by the coffin plates. These individuals are noted by the

curator of the collection, and were excluded from this study.

This collection was included to represent British European individuals, although it must

be noted that it is a 19th century collection and may therefore exhibit secular changes. It has

been suggested by researchers that the cranium has become taller and narrower in the past

two centuries, based on craniometric measurements (Jantz and Jantz 2016) and morphological

assessments (Kilroy and Tallman 2019). It should be noted, however, that Kilroy and Tallman

(2019) found that the nasal bone contour and the loss of a postbregmatic depression in females

were the only cranial traits to show a sexual bias when comparing 19th century collections to

collections that contain 20th century and 21st century individuals. It is therefore expected that

secular changes will not significantly affect the sex or ancestry classifications performed in this

project for two major reasons: 1) in the visual scoring portion of this project, the nasal bone

contour is not a trait that is assessed; and 2) the application of machine learning for classification

is expected to take into account variations that are as minor as those reported by Kilroy and

Tallman (2019), especially since the algorithm will be trained using a mixed pooled sample from

SB and other skeletal collections.

2.1.2 Nagasaki University Modern Cadaver Collection - Nagasaki, Japan (NU)

TheNagasaki University Modern Cadaver Collection (NU) is composedmostly of donors

who died between 1950 and 1970 (Tsurumoto et al. 2013), although this collection is still being

expanded. As of 2016, there are 138 females and 232 males in the collection. Seventy-five

males and 75 females were chosen by the lab technician so that the analyst was blind to the

selection, although the numbering of the skeletons are according to sex (i.e. the skeletons

numbered 1-232 are male; 233-370 are female). The sample number was censored during

the assessment process using sticky notes to hide the number written on the bone, but it was

sometimes impossible not to see the number if it was written on or adjacent to a surface that

needed to be assessed, such as the nuchal crest on the occipital.

The assessment protocol was altered to account for the lack of space in the lab and

accessibility to the collection. The analyst and her assistant were not allowed to access the
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actual collection themselves; instead, a lab technician fetched the samples and brought them

into the lab room. Furthermore, the space only allowed for 15 crania to be out at once. Due to

these two constraints, the 15 crania (consisting of both males and females) were first assessed,

scanned, and then randomized by the analyst’s assistant so that the analyst could perform the

re-assessment in a different order. Once completed, the 15 crania were packed away in their

boxes for the lab technician to put away, and the next 15 crania were brought in.

2.1.3 Milano Skeletal Collection - Milan, Italy (ML)

LABANOF (Laboratorio di Antropologia e Odontologia Forense) is an organization as-

sociated with the University of Milan, and has a partnership with the City of Milan to create a

modern documented skeletal collection for research purposes, especially relating to forensic

anthropology. The Milano collection (ML) consists of more than 1700 skeletons which were ex-

humed 15 years after coffin burials. Both males and females are represented in this collection,

and range from 28 years old to 103 years old (Cappella et al. 2016). Although this collection

contains more than 1700 individuals, only about 400 skeletons have been cleaned and are

available for study as of 2017. Furthermore, since backhoe excavators were exclusively used

for exhumations, the skeletons have suffered much post-mortem damage. While at LABANOF,

460 skeletons were visually assessed for their suitability for inclusion into this project based on

the priority criteria (see Table 2.8), and whether or not they were cleaned of dirt and mould. Due

to the extensive post-mortem damage primarily caused by excavation, and the fact that some

were not cleaned, only 150 skulls were available for study. All 150 samples were therefore

included in this project, and consist of 80 males and 70 females. Due to the limited number

of cleaned skulls in good condition, it was unavoidable to have uneven sample sizes between

males and females. Furthermore, the difficulty in locating samples in various rooms across

campus, as well as the fact that it was only possible to access certain areas at certain times,

prompted an approach similar to the one used in Nagasaki to be adopted wherein 24 sam-

ples were assessed, scanned, randomized, and re-assessed before packing them away and

retrieving the next set of 24 samples.
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2.1.4 Pretoria Bone Collection - Pretoria, South Africa (PR)

For African individuals, the Pretoria Skeletal Collection in South Africa was chosen to

be included as it includes 704 male and female skulls that are well-preserved. This collection

began in 1942 and has since been reorganized to promote its usefulness to researchers (L’Abbé

et al. 2005). The 150 individuals that were assessed in this collection are primarily divided into

two “ancestral” groups - “Black” and “White”. These terms are widely used in South Africa to

refer to one’s ethnic group, both socioculturally and in the academic environment; however,

it is very common to use these terms to refer to “ancestry” in both South African society and

in the South African academic community, which is why “ancestry” is put in quotation marks.

The definition of who is considered “Black” and “White” is based upon both physical and social

criteria, such as: whether one’s hair is thick enough to hold a pencil without it falling (a “Black”

characteristic); the slope of one’s forehead; and whether one is a foreigner or not (all foreigners

are considered “White”) (L’Abbé 2017, personal communication). There is therefore a high

potential for biological variation within the “Black” and the “White” groups to the point where

it is difficult to use these terms alone to narrow a missing persons list for forensic purposes.

Additionally, there is also the fact that there is a clearly defined social dichotomy between the

“Blacks” and the “Whites” in South Africa, meaning that relationships between members of

different groups are virtually non-existent. The Pretoria Bone Collection is thus comprised of

two (at the very least, if not more) genetically, socially, and culturally diverse populations that

co-existed in one geographic area. For this reason, the analyses for this collection (provided in

Chapters 3 (Cranial Sexual Dimorphism in Various Populations) and 5 (Exploring Cranial Sexual

Dimorphism with Deep Learning)) include an examination according to “ancestral” groups to

discern patterns that may aid forensic anthropological endeavours.

2.2 Performing Sex Assessment

To obtain the ordinal data for this project, it was necessary to identify methods of sex

assessment that were both applicable to this project’s research questions, and established in

the literature to be applicable to various populations. One of the most well-established methods

of assessing sex using the cranium is given in Buikstra and Ubelaker’s Standards (1994), and

consists of four morphological traits. The scoring system, as well as the trait descriptions, are
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given below in Table 2.5. The scoring system consists of five stages, from 1 - 5, where 1 is

definite female; 2 is probable female; 3 is intermediate; 4 is probable male; and 5 is definite

male. Due to the standardized scoring, Buikstra and Ubelaker’s method (1994) has become

widely used in both forensic anthropology and in bioarchaeology. These four cranial traits were

therefore scrutinized in this project to assess their accuracy and applicability to different skeletal

populations.

Table 2.5: The traits and scoring methods given by Buikstra and Ubelaker (1994) for sex de-

termination. Images are adapted directly from Buikstra and Ubelaker 1994.

A more recent study by Williams and Rogers (2006) evaluated the accuracy and reli-

ability of 21 traits on the skull. They established six “high-quality” traits, which were defined

as having an intraobserver error of 10% or less, and an accuracy of assigning sex for 80% or

more of the population on which they tested their method. These six traits are: mastoid pro-

cess; glabella; zygomatic extension; nasal aperture; general size and architecture; and gonial

angle. The mandible was not considered in this project, so the gonial angle was not assessed

or included. Consequently, the five remaining traits given by Williams and Rogers (2006) were

used, and are given in Table 2.6.
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Table 2.6: The five high-quality traits and their descriptions as given by Williams and Rogers

(2006).

It should be noted that two of the five traits (mastoid process and supra-orbital ridge/

glabella) are also used in Buikstra and Ubelaker’s method (1994), suggesting that these two

traits have a very reliable and accurate distinguishing ability between the sexes. Unlike Buikstra

and Ubelaker (1994), however, Williams and Rogers (2006) use a binary scoring system for

assessing cranial and mandibular traits. While this approach potentially decreases inter- and

intra-observer error (simply due to the fact that there are less options from which to choose),

it is less precise when attempting to understand how a trait is distributed between the sexes

(e.g. is the trait expression normally distributed in both males or females, or is it skewed, and

if so, how?). Therefore, for the purposes of this project, the scoring system used by Buikstra

and Ubelaker (1994) was preserved for all traits described in Standards. The two traits (i.e.

mastoid process and supra-orbital ridge/glabella) that overlap with those given by Williams and

Rogers (2006) also followed this scoring method, although Williams and Rogers’ binary trait

descriptions (2006) were used to describe the two male and two female scores. The remaining

three traits (i.e. zygomatic extension, nasal aperture, and size & architecture) given by William

and Rogers (2006) were assessed as either male or female, as originally intended, although

an intermediate option was added to denote uncertainty if a trait was unable to be categorized

as male or female. The resulting list, descriptions, and scoring of the seven cranial traits used

in this project are given below in Table 2.7.
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Table 2.7: The seven traits used in this project to assess sex, based on Buikstra and Ubelaker

(1994) (given in white) and Williams and Rogers (2006) (given in grey).

All of the specimens were photographed with a Nikon AW-1 camera, along with close-

ups of the traits with a scale reference. These photographs served to check the associated

3D scans - for example, if a hole was seen in the scan, the photographs could be examined

to understand why (e.g. the hole in the scan was an error due to the fact that the area of the

cranium was stained black and therefore not captured by the scanner; or the hole is actually

exhibited in the bone due to damage or trauma).

2.3 The Premise of Structured Light Scanning

In order to understand the 3D data used in this project, it is necessary to define several

terms. “3D model” is a vague term that refers to any digital three-dimensional representation
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that can be manipulated in 3D space. Fundamentally, a 3D model consists of a point cloud,

which is a collection of points in 3D space each consisting of a set of 3D coordinates and

possibly colour information (Pitzer 2015). Due to the fact that the definition of a point cloud

includes 3D coordinate information, a point cloud is considered a type of 3Dmodel. It is possible

to use a point cloud to create a mesh, which is another type of 3D model. A mesh consists

of creating triangles by treating the 3D coordinate information from a point cloud as vertices,

and then connecting neighbouring vertices (which can be simply called “neighbours”) together

(Pitzer 2015). These triangles are commonly termed “elements” of a mesh. The result is that

the shape of the 3D model is represented by something that resembles a wire mesh, with the

size of the elements limiting the amount of detail represented. If desired, a texture can be

applied to the mesh, which defines the appearance of the surface of the mesh using an image.

Figure 2.1 below presents a simple visual comparison between a point cloud, a mesh, and a

mesh with texture.

Figure 2.1: A) is a point cloud, consisting of points with 3D coordinates; B) is a mesh, in which

the point clouds are used as vertices to create triangular elements; C) is a mesh with a texture

(represented by the gray surface). Modified from Marjanovic 2007.

This project involved the use of meshes and point clouds, although the latter was used

in the analyses for two main reasons. Firstly, most of the algorithms that were of interest in this

project use point cloud data rather than meshes. The use of point cloud data actually seem to

be more preferable within the computer software community as evidenced by the existence of

an entire C++ library solely devoted to point cloud analysis (i.e. Point Cloud Library (PCL) (Rusu

and Cousins 2011)). No such exclusive library exists for meshes as far as the author is aware.

Secondly, point cloud data are subject to less interpretation and assumptions than meshes.
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Point cloud data are simply 3D coordinates, whereas during the creation of meshes, different

mathematical models exist in order to create the elements in a mesh (Pitzer 2015). These

models are not always documented or readily available, so the use of meshes is accompanied

by a degree of uncertainty in their creation. The generation of point clouds, as well as their

subsequent subsampling for analytical purposes (which is discussed in Chapter 4), does carry

some assumptions of the same nature, but these assumptions are compounded in meshes.

Structured Light Scanning (SLS) was used to create the 3D data for this project. SLS is

a method of generating 3D models based on the distortion of numerous light patterns that have

been projected onto an object (Liscio 2014). An SLS apparatus primarily consists of a projector

and a camera mounted onto a bar such that the distance between the two is fixed. The object to

be scanned is placed a set distance away from the SLS. The projector then projects a series of

light patterns onto the object, such as stripes of different widths, which are distorted due to the

surface of the object (DAVID-4 2017) as exemplified below in Figure 2.2. Simultaneously, the

camera takes images of each distorted light pattern. The SLS program - which in this project

is the DAVID 4 program (DAVID-4 2017) that accompanied the SLS - automatically creates a

mesh that represents the external surface of the object, based on the series of light patterns

and their distortions. An additional and optional step is for the projector to project red, green,

and blue light onto the object to collect colour information, which is then applied to the mesh

as a texture (DAVID-4 2017). From this mesh, it is possible to discard texture and element

information such that only the point cloud data remains.

Figure 2.2: An example of how the distortion of a projected light pattern can be used in SLS

scanning. A) shows the original light pattern, projected onto a flat surface. Note the pattern

distortion in B) when an object with a curved external surface is placed in front of the SLS.

Using several different light patterns with stripes of different dimensions, the external surface

of the object can be represented.

It is important to note that an SLS can only create a mesh of the surface that is visible to
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the camera at the time of scanning. In order to create a complete 3D model, several scans of

the same object must be performed with the object in different positions. This is most practically

achieved by placing the object on a rotatable surface and scanning at set degree intervals. The

result is that there are several meshes of the same object in different positions that must be

aligned to one another to create a coherent 3D model (see Figure 2.3 below). A certain amount

of overlap must be present in the scans in order for this alignment to succeed, although the

optimal amount of overlap required is dependent upon the algorithm used for alignment. An

optimal overlap has never been established in the literature, although alignment algorithms

such as Super 4PCS (Mellado et al. 2014) are programmed such that alignments should theo-

retically be possible given any amount of overlap. Regardless of which algorithms are used for

alignment, two different approaches are usually used and combined - global registration and

fine registration. Global registration focuses on aligning two point clouds or meshes roughly

such that they are fairly correctly positioned with respect to one another (Mellado et al. 2014).

Fine registration aligns two point clouds or meshes that are already roughly aligned, and seeks

to minimize the point-to-point (technically vertex-to-vertex in meshes) distance between the two

scans in the overlapping region (Mellado et al. 2014). As a general rule, and in most cases, fine

registration does not succeed without first performing a global registration in order to position

the two scans correctly.

Figure 2.3: A) represents the raw data generated from the SLS, with each scan coloured dif-

ferently. Only three scans are shown here in order to exemplify the fact that they are positioned

differently and require alignment. B) shows all scans when they are correctly aligned to one

another.



CHAPTER 2. DATA ACQUISITION & METHODOLOGY 50

2.4 Setting Up & Calibrating the DAVID SLS-3 Scanner

Before any data collection could take place, the scanner had to be properly set up. The

camera and projector were already mounted onto a bar, which was then secured onto a tripod.

The tripod was then raised such that the camera and projector were angled down slightly. This

ensured that the light from the projector sufficiently highlighted the features of the object with

as little shadow on the object as possible. The distance between the camera and projector

were adjustable, but was kept at 250 mm as recommended by the DAVID manual. The camera

needed to be angled in order to create a triangle between the projector, the object, and the

viewframe of the camera, and was therefore set to the default 22°, with an aperture of f/16.

This value is the smallest aperture value on the camera and was chosen to maximize the depth

of field of the images, resulting in the largest area possible to be in focus. The trade-off to

using a small aperture was that images were darker due to the limited amount of light entering

through the aperture. This was mitigated by ensuring that the lab space was as well-lit as

possible, increasing the brightness of the projector, and/or slowing down the shutter speed of

the camera to allow more light into the camera. Decreasing the aperture further than f/16 would

have caused the resulting scans to lose sharpness (DAVID-4 2017), so a smaller aperture was

not used.

To ensure that the SLS was set up properly, a plastic 360° protractor was placed on

the table, along with a turntable covered with felt. The turntable was marked with a white line

across the two movable layers, and the lines were aligned to 0° on the protractor. The cranium

(for reference) was placed on the turntable. Using the “Setup” tab in the DAVID 4 program

to visualize the sample using the camera, the camera focus, shutter speed, SLS distance,

projector brightness, and tripod height were adjusted so that the cranium was clearly in view

from any angle. The protractor was then taped onto the table to ensure that it did not move

while scanning. The resulting set-up is seen below in Figure 2.4.
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Figure 2.4: The set-up of the SLS (the camera and projector mounted onto the red bar on a

tripod) and the sample. The protractor is taped onto the table with a black turntable placed

on top, the white marker set to 0°. The cranium is in view and in focus on the tablet screen,

indicating that the angle of the SLS and the cranium are correct. It should be noted that this

photograph features a black box covered in felt to support the cranium, which also has coloured

tape surrounding it. The varying colours were initially added to help with alignment of the conse-

quent scans, but it was later determined that this is not necessary. The box has therefore been

removed from the data collection procedure and is an extraneous feature in this photograph.

The SLS then needed to be calibrated such that the camera distance and angle rela-

tive to the projector could be calculated. With these parameters, it is possible for the software

program to automatically scale the scans such that the object dimensions are preserved. Dif-

ferent calibration settings are needed depending on the size of the object to be scanned, and

four available sizes are provided by the calibration boards. It is advisable to use the calibration

board with the smallest area that can still encompass the object to be scanned in order to en-

sure maximum possible resolution during scanning. For this reason, the calibration board used

for the crania was 120 mm. For autopsied samples, the 60 mm board was used for the calva.

Due to the need to re-calibrate depending on whether a cranium or an autopsied calva was

scanned, it was not practical to scan an entire cranium (if autopsied) before scanning the next.

Therefore, all crania were first scanned during the first round of visual assessments, before

re-calibrating and scanning the calva during the re-assessments.
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To calibrate, the calibration board needed to be placed approximately the same distance

away from the SLS as the object. The turntable and cranium were therefore set aside, leaving

just the protractor. The middle of the protractor was marked with a crosshair, which was used

as a marker to place the calibration board. The calibration board consists of two foldable panels

with dots, and for the purposes of calibration, the panels needed to be kept perpendicular (at

90°) to each other. The intersection of these two panels was then placed on top of the crosshair

of the protractor. It is important to ensure that the SLS was able to capture as many dots as

possible on the appropriate calibration board, so the height or tripod angle may needed to have

been adjusted accordingly. Lastly, the dots on the calibration board needed to be in focus on the

computer screen, and upon viewing the calibration board itself, the pattern denoting the center

of the projection needed to be sharp. After these adjustments were made, it was imperative

to ensure that the camera angle, focus, and position relative to the projector did not change

throughout the entire scanning procedure.

Using the “Calibration” tab, the appropriate calibration area was inputted (120 mm for

crania, 60 mm for autopsied calva), and the calibration process was started. This prompted a

series of light patterns to be projected onto the calibration board to establish the camera and

projector’s positions. A white balance was performed automatically by projecting red, green,

and blue patterns onto the calibration board to ensure that colour information was captured

properly. Once the calibration was complete, the projector displayed a checkered board onto

the calibration board, corresponding to each of the dots (see Figure 2.5). This exemplified a

successful calibration since the projector can only achieve this if the software program under-

stands its position relative to the calibration board.
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Figure 2.5: A checkered pattern is projected from the SLS onto the 120 mm calibration board,

corresponding to the dots on the board. This indicates that the SLS has successfully performed

calibration by calculating the distance and angles between the camera, projector, and board.

Once the calibration was performed, the calibration boards were shifted backwards and

the turntable replaced onto the protractor. The calibration boards were then covered with black

felt to create a black background during scanning. Anything that is black is automatically con-

sidered a “hole” by the SLS, and as such was not captured; therefore, by creating a black

background, the background in the scans were automatically removed.

2.5 Scanning Crania with the DAVID SLS-3 Scanner

In the DAVID 4 Pro software program, it is possible to see which scans contribute to the

overall 3D model, and where holes - or lack of information - exist. In addition to ensuring that

all the scans cover the entire sample to avoid holes, it is important to establish an adequate

amount of overlap between each subsequent scan. An overlap is necessary so that the software

program can properly align and stitch the scans together in the correct orientation. The number

of scans must therefore be optimized in terms of adequate overlap, coverage of the sample,

and the time needed to produce each 3D model. A set refers to the scans taken of an object

in a given orientation as the object is rotated at pre-determined intervals for a full 360 degrees.
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The number of sets and the orientation of the cranium were thus determined by trial scans.

Scanning at 45° intervals (8 scans) when the cranium was in an upright position did not

provide enough overlap for the software to recognize the orientation of each scan. The number

of scans was therefore increased by reducing the scanning intervals to 30°. As seen below in

Figure 2.6, the superior and inferior aspects of the cranium were not captured, so additional

sets of scans with the cranium lying down on its lateral sides were required. These sets were

able to be aligned properly with the first set when scanning at 45° intervals to create an overall

model with no holes (Figure 2.7). The orientation of the cranium for the first scan in each set is

displayed in Figure 2.8.

Figure 2.6: Six different views (anterior, posterior, lateral, superior, inferior) of the same cra-

nium when scanned at 30° intervals. The texture, or colour information, is turned off to visualize

which scans contributed to which parts of the model. As seen in the superior and inferior views,

holes exist because these aspects were not captured.
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Figure 2.7: The inferior and superior view of the cranium sample after two additional sets of

scans were performed. The holes previously seen in the superior and inferior aspects are now

closed.

Figure 2.8: The orientation of the cranium for the first scan in each of the three sets. A) the

cranium is set upright; B) the cranium is laid down on its left side; C) the cranium is laid down

on its right side.

It should be noted that autopsied crania were scanned differently depending on how

the calva was cut, and usually consisted of 15 - 22 scans. The first 12 scans were with the

autopsied crania placed inferior-side up (i.e. with the cut surface down) and scanned at 30°

intervals. The next set of scans was for capturing the details on the inferior surface of the

crania, which was oftentimes not captured by the initial set depending on the cut (e.g. straight,

egg-shell, or V-shaped) and how high up on the crania the cut was done. Due to the variation
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in how the crania were autopsied, the remaining 3 - 10 scans were done either by propping up

the crania such that the inferior surface was more or less parallel to the camera and scanning

at 45° from 3 different positions, or placing the crania on its side and performing two sets of

five scans at 45°, with the crania lying on the left and right side respectively for each set. The

interior part of the cranium was not of interest in this study, so these two sets of scans only

covered 180° around the anterior, inferior, and posterior sides.

Finally, the scanning parameters needed to be established. First, the quality of the scan

was set to the maximum level, “Quality”. This means that all of the available light patterns (a

total of 29) were used to sample the object, thus recording the maximum amount of spatial

information. The “Auto add texture” option was enabled, meaning that the colour information

of the object was recorded. To ensure that the scans were saved within the project, the “Auto

add to list” option was also enabled.

The shutter speed was adjusted on a case-by-case basis, and depended on the light-

ness or darkness of a sample, as well as the ambient light in the room. A very dark and soil-

stained sample, for example, required a longer shutter speed so that the details on the sample

were visible in the scan; conversely, a bleached sample was very bright and the shutter speed

needed to be increased. The red sinusoidal lines within the blue vertical and horizontal lines

were used to choose the correct shutter speed, since the red sinusoid should not get cut off

(indicating that the exposure is too bright), and the peaks should be as close to the blue lines as

possible (if they are too low, the exposure is too dark). A screenshot indicating correct exposure

is given as an example below in Figure 2.9.
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Figure 2.9: An example of correct exposure, which can be adjusted by increasing or decreasing

the shutter speed of the camera. The red sinusoidal lines are close to the blue bars and overall

the cranium is well-lit.

One of the goals of this project was to create a ground-truth 3D database, so it needed to

be populated with reference models that can be readily used and are as complete as possible.

Therefore, not all samples were scanned. Due to the way in which points are collected and a

point cloud is created, scanning samples that are too dark, have extremely shiny surfaces, or

have moveable features that introduce error into the scan (e.g. hair) would not result in a good

or useable 3D model, so such samples were excluded. Additionally, samples that exhibited

damage or fragmentation were likewise excluded from scanning and from being included into

the database. The following table lists the exclusion criteria which was used to determine

which samples were excluded from scanning. Only those that belonged to the third category

denoted a sample which was still assessed visually but was excluded from scanning, whereas

the first and second categories were both included for scanning. The reason for splitting the

inclusion criteria into two categories was to ensure that if for any reason the data collection

was shortened or was unexpectedly halted, the best samples in the collection that are most

suitable for inclusion into the database were prioritized, resulting in the best possible outcome

of a worst-case scenario. Samples that were assigned as second priority were those that may

not yield the best quality or results after scanning but still contained useful information/features

despite this limitation.



CHAPTER 2. DATA ACQUISITION & METHODOLOGY 58

Table 2.8: Prioritization criteria for scanning.

Priority Criteria

1 (inclusion)

100% complete (or very nearly), almost ideal bone texture and quality

(not eroded or damaged), good preservation, little to no pathology or

hair obscuring features, no deformation or warping

2 (inclusion)

≥75% complete, adequate bone texture and quality (at least 75% of

the bone should be well-preserved and/or have unobscured features,

some hair/pathology/small deformations but should not affect scan

quality; alternatively, dark-coloured specimens that are unlikely to

yield excellent scans but may still be useful despite decreased quality)

3 (exclusion)

<75% complete, poor preservation/bone texture; alternatively, the

sample is too dark (close to black) or shiny; or too much hair that

would affect scans

2.6 Creating Coherent 3D Point Clouds From Scans

Before any alignment and fusion were possible, the scans first needed to be cleaned

which involved cutting out irrelevant features that were captured during the scanning process,

such as the turntable, tape, or background. An example of a scan which requires cleaning is

given below in Figure 2.10.

Figure 2.10: A scan that requires cleaning. Note the irrelevant features that were captured

during scanning - the tape and the felt tablecloth.

Using the graphical user interface (GUI) of DAVID 4, the irrelevant features were cut
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out of the scans so that only the features of the skeletal sample remained. Once this was

done for all scans of a given sample, the files were exported from DAVID 4 into .obj files,

which is a non-proprietary file format. Exporting was necessary so that the scans could be

aligned and fused using CraniAlign. DAVID 4 was not used for several reasons: 1) Although it

is fairly straightforward to align and fuse scans manually in the DAVID 4 program, the program

that is provided with the SLS scanner does not allow for an automatic program to align and

fuse the scans. This must therefore be done manually, and is extremely time-consuming. 2)

An SDK (Software Development Kit) is available with the industrial version of the DAVID 4

program which allows for such automation, but is an extremely expensive add-on. 3) Since

the algorithms for alignment and fusion are proprietary in the DAVID 4 software, any error in

the resulting 3D models due to these processes are unknown. 4) The DAVID 4 alignment

program includes some degree of randomness (DAVID-4 2017), which compounds the issue

of unknown error. The use of DAVID 4 is inappropriate for research purposes for these four

reasons, especially because it does not allow error in the resulting 3D models to be quantified.

To address this limitation, CraniAlign was created to automate and control the alignment and

fusion process. The parameters of CraniAlign are explained in 4 (Examining the Properties of

3D Models) and compared to DAVID 4. A summary of how the 3D data in this project were

acquired and processed - which includes a cursory summary of how CraniAlign was utilized in

the data processing - is provided below in Figure 2.11.
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Figure 2.11: A workflow of the 3D data acquisition and processing required in order to achieve

3D point cloud data that were usable in the data analysis stage (see Chapter 5 for how the data

was analyzed).



Chapter 3

Cranial Sexual Dimorphism in Various

Populations

This chapter discusses the results and implications of the visual assessments on dry

bone, both from a research perspective as well as the impact the results have on this PhD

project. Following the visual assessment protocol outlined in Chapter 2 (Data Acquisition &

Methodology), individuals from the four skeletal collections were assessed based on the degree

of sexually dimorphic trait expression in the cranium. Though it is well-established that visual

assessments are subjective to varying degrees (as discussed in Chapter 1), performing these

visual assessments is a necessary precursor to understanding which traits vary according to

sex and population, which in turn was useful for comparing against and understanding the

analyses of the 3D data (see Chapter 5). An important output of this chapter is the formulation

of a “discrimination factor”, which is a novel approach for quantifying the usefulness of a trait in

indicating sex.

3.1 Visual Assessment Results

For each skeletal collection, the results and discussion are broken up into three major

sections: the overall results, which report on the overall accuracy of classifying males and

females based on all cranial traits assessed during the two rounds of visual assessments; the

results of examining the accuracy of each trait both according to sex and age category; and

61
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finally, a discussion and summary of the results from the first two sections. After the results of

the visual assessments have been reported and discussed for each collection, the results are

combined in order to discuss their implications on a global, interpopulation scale.

The overall results include the accuracy of classification for both rounds of assessments

and the intraobserver error. Intraobserver error was determined by calculating the number of

instances in which an individual was categorized differently between the two rounds, regardless

of whether the individual was categorized correctly. In order to interpret the intraobserver error,

the Kappa statistic (Cohen 1960) was also calculated. The Kappa statistic, represented by κ,

is calculated as follows:

κ =
Po − Pe

1− Pe

where Po = frequency of observations in agreement and Pe = hypothetical probability of agree-

ment due to chance. Pe is calculated using the following equation:

Pe =
1

N2

nc∑
i=1

ni mi

where N = total number of observations; n = total number of observations in a given category

(i) for the first round of observations; m = total number of observations in a given category

(i) for the second round of observations; and nc = total number of categories. In the case of

reporting the overall results achieved in this project for each skeletal collection, nc = 3 (male,

female, and indeterminate). A perfect agreement is indicated by κ= 1; a level of agreement due

purely to chance is indicated by κ = 0; and a negative κ indicates that the level of agreement

is worse than chance. In an attempt to interpret κ in a manner amenable to non-researchers,

Viera and Garrett (2005) proposed the following interpretation (Table 3.1) which is used to judge

the findings in this study.
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Table 3.1: The qualitative interpretations of the Kappa statistic (κ) proposed by Viera and

Garrett (2005).

κ Level of Agreement

< 0 Less than chance agreement

0.01 - 0.20 Slight agreement

0.21 - 0.40 Fair agreement

0.41 - 0.60 Moderate agreement

0.61 - 0.80 Substantial agreement

0.81 - 0.99 Almost perfect agreement

Examining each trait individually was done by first reporting the total number assessed

for males and females for that trait. Some traits are paired, meaning that the total number

of observations for those traits are twice the number of individuals. Intraobserver error was

also reported, along with kappa, although it should be kept in mind that there were instances

in which a sample was assessed once, but then during the re-assessment was gauged to be

too damaged/pathological to assess, or vice-versa. The total numbers for the intraobserver

error therefore only account for the number of times a sample was assessed twice, which may

be lower than the total number assessed for the trait. Following Williams and Rogers’ (2006)

definition of a high-quality trait, intraobserver error will be deemed acceptable if it is ≤ 10%.

Next, the frequency of males and females assigned to each score (1 - 5 for the Buikstra

& Ubelaker traits; 1, 3, or 5 for the Williams & Rogers traits) was established in order to be

analyzed. The frequency, rather than a count, was chosen for three main reasons. Firstly, not

all of the cranial traits were available to be assessed on every individual, resulting in different

numbers of observations for each trait. By using frequency rather than a count, results were

more comparable between traits. Secondly, and by the same logic, some cranial traits are

paired and there were instances in which only one side could be assessed, leading to different

numbers of observations for a paired trait. Frequency for that trait was then calculated by

summing the observations from both sides. Thirdly, the use of frequencies allowed probability

distribution graphs to be created for each trait, which would not have been possible if average

scores were used. The advantage to using a probability distribution graph rather than reporting

average scores is that a probability implies the chance of an individual to be scored a certain

way, rather than insinuating that the average score is reflective of an absolute truth. The issue

of reporting results that are based on subjective observations - which is a problem with scoring
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cranial traits - is therefore taken into account by reporting the results as a probability. Finally,

another advantage to using probability distributions and frequencies is that the probability of an

individual in the given population to be assigned a certain score for the particular trait in question

was able to be established. By extension, it is possible to calculate the probability of a male

and a female belonging to the population in question to be assigned to different categories (i.e.

scored differently) based on the given trait - this shall be defined as the discrimination factor

(d):

d = 1−
ns∑
s=1

P (F = s) P (M = s)

where d ∈ [0, 1]; P (F ) = frequency of females having been assigned a particular score (s);

P (M) = frequency of males having been assigned a particular score (s); and ns = the number

of scoring categories used, i.e. 5 for the Buikstra & Ubelaker traits or 3 for the Williams &

Rogers traits. The discrimination factor (d) therefore directly represents the usefulness of the

trait in question because it is a measure of discrimination between the sexes; additionally,

1 − d quantifies the amount of overlap between male and female trait expressions. It must be

made clear, however, that the latter is not related to the overlap integration between males and

females that is typically used to portray sexual dimorphism (see Figure 3.1). Instead, 1−d gives

the probability that a male and a female in a given population are given the same score, which

is more practically useful than simply calculating the area of overlap between two functions.
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Figure 3.1: A graph of how sexual dimorphism is typically represented, with the overlap be-

tween males and females given by the lined area. This can be quantified by calculating the

integral of the lined area, which is not as useful as calculating the discrimination factor d as

defined in this study. This image was taken from Wikipedia to exemplify the fact that it is quite

common to depict sexual dimorphism in this way, even outside academia. It is therefore impor-

tant to clarify that the discrimination factor is not related to this depiction, which would be an

erroneous but intuitive assumption given the way “overlap” is typically portrayed.

If d is low, the trait in question either does not display enough sexual dimorphism in the popu-

lation to be useful as an indicator of sex (i.e. the overlap in male and female trait expression is

high), or the expression of the trait was too difficult/variable for the researcher to score properly.

When possible, the discussion for each skeletal collection includes a literature review of the re-

sults from other researchers who also assessed the same trait in order to ascertain whether

the latter was a possible factor influencing the quality of the results. From a practical viewpoint,

a trait with a discrimination factor greater than or equal to 0.800 will be considered an accept-

able indicator of sex following the 80% accuracy cut-off value that Williams and Rogers (2006)

identified for high-quality traits. Probability distribution graphs for each trait and each collection

were generated, but for the sake of concision, only those of traits that have a discrimination

factor greater than or equal to 0.800 are included in the body of this thesis. For reference and



CHAPTER 3. CRANIAL SEXUAL DIMORPHISM IN VARIOUS POPULATIONS 66

completion, however, all graphs are included in Appendices C, D, E, and F.

Each trait was also examined by age to determine whether the ability to distinguish

between males and females was affected by age. It was therefore of interest in this study

to investigate whether the age at which a trait became more or less discriminatory could be

established. A scatterplot was created of trait score vs. age for each sex, and four standard

fitting functions were used - linear, quadratic, cubic, and logarithmic - in order to determine

which, if any, modelled the data best. Once this was done, the average absolute error (AAE) and

the coefficient of determination (R2) were calculated for each function. The AAE was chosen to

be calculated rather than the least mean squares error (LMSE), which is more typically used and

reported in bioarchaeological studies, because it was possible to define a meaningful cut-off

value that is more easily understood than if LMSE’s were used. In this study, any functions with

an AAE of 0.50 or less was considered a possible candidate to model the relationship between

age and trait score. Choosing a cut-off value of 0.50 means that trait scores could vary up to

1 score apart, which is consistent with Buikstra and Ubelaker’s (1994) scoring system in which

females are either scored 1 or 2 and males are either 4 or 5. Functions with an AAE greater

than 0.50 or with an R2 value of less than 0.50 were not considered or discussed because

these functions do not model the data well, although they are included in Appendices C, D, E,

and F for the sake of transparency. The function with the lowest AAE therefore theoretically

represents the function that best explains the relationship between age and trait score. This

analysis provides two pieces of information - the AAE and R2 quantify how good the fit of the

function is to the data, and therefore how well the function explains the relationship between

age and trait expression; and the function itself explains how the trait changes according to age

for each sex (or if it does at all).

Age and sex were also investigated together. First, the individuals were sorted into age

categories defined in Chapter 2 (Data Acquisition & Methodology), Table 2.2. The scoring was

compared between the sexes to determine if it was significantly different between males and

females of the same age category. This was done by performing Mann-Whitney tests between

both sexes for each age category. Mann-Whitney was chosen because this test is appropriate

to compare two groups of ordinal, non-parametric data. Mann-Whitney is also applicable if

there is the possibility of having uneven sample sizes in the two groups (Field 2013), which is

the case with the data presented here. The results of Mann-Whitney tests include the Mann-
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Whitney statistic (U) which is based on the sum of ranks in a given group and the sample sizes

of each group, and the associated p-value. Additionally, following good practice in statistics,

the standardized test statistic (z) and the effect size (r) were calculated. The standardized

test statistic (z) is a more understandable quantification of the difference in the medians of the

two groups being compared, and is used when calculating the effect size (r) which is simply

a normalized quantification of how sex affects trait scoring, when sample size is taken into

account. Achieving a significantly different result for any age category (i.e. p < 0.05) indicated

that the distribution of scoring for males and females were different enough such that the trait is

expressed differently for that age range. By comparing the scoring between the sexes for each

age category, the approximate ages at which these changes become significant in adults could

be established. The results of the Mann-Whitney tests were also substantiated by calculating

the discrimination factor (d) for each age category, which gave the probability of a male and a

female of the same age category to be scored the same way. The output of the Mann-Whitney

tests for each trait are provided in Appendices C, D, E, and F, and a simplified version that

compares all traits in each collection is presented in the body of this chapter.

It should be noted that the non-simplified version of the Mann-Whitney tables in the

Appendices serve as look-up tables for each trait. These look-up tables allow a practitioner

to gauge the strength of their result if they are assessing the sex of an unknown cranium,

provided that the population to which the unknown individual belongs is known and their age

is estimated. By reporting the generated p-value and discrimination factor for the trait that is

assessed for sex, the practitioner can quantify the strength of their conclusion. Furthermore, the

look-up tables generated in this research project can be used to interpret scores of 3 which are

otherwise considered “indeterminate”, thereby indicating whether males or females are more

likely to receive a score of 3. Even if age is not known, the overall discrimination factor for that

trait (i.e. the age-agnostic discrimination factor) can be used to interpret indeterminate scoring.

The output of this research therefore allows indeterminate scoring to be interpreted in a manner

that can indicate sex. Consequently, a score of 3 is no longer “indeterminate”, and the ability

to quantify such an interpretation provides a vital component to any analysis both in research

and for court purposes.
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3.1.1 SB Collection Results

The data collection performed on this skeletal collection formed the basis for all future

data collection protocols, as SB was the first collection to be documented. For this reason, the

exclusion/inclusion criteria outlined in Chapter 2 (Data Acquisition & Methodology) were not

consistently followed for the SB collection as these criteria were being developed contempora-

neously.

Of the 213 adults in the collection, 187 individuals were assessed for sex (92 female and

95 male). Using the combination of traits and assuming each trait was equally weighted, 114

individuals were correctly categorized in the first round of assessment (60.96%); 19 were in-

correctly categorized (10.16%); and 54 were indeterminate (28.88%). For the second round of

assessment, 105 individuals were correctly categorized (56.15%); 14 were incorrectly catego-

rized (7.49%); and 68 were indeterminate (36.36%). The breakdown of correct categorization

for both rounds of assessment is given below in Tables 3.2 and 3.3. The intraobserver error

for the SB collection was 55/187 (29.41%), and κ was calculated to be 0.533 which indicates

a moderate degree of agreement (refer to Table 3.1). This indicates that while scoring differed

29.41% of the time, the degree to which the scoring was in agreement was moderate.

One male individual did not have a known and recorded age, so his results have been

excluded from all age-related analyses. This accounts for the discrepancy between the total

number of males for this collection and the total number of males in age-related results.

Table 3.2: An overview of the classification results from the first round of visual assessments

on the SB Collection.

Correct Incorrect Indeterminate

Females
78/92

(84.78%)

2/92

(2.17%)

12/92

(13.04%)

Males
36/95

(37.90%)

17/95

(17.89%)

42/95

(44.21%)

Total
114/187

(60.96%)

19/187

(10.16%)

54/187

(28.88%)
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Table 3.3: An overview of the classification results from the second round of visual assess-

ments on the SB Collection.

Correct Incorrect Indeterminate

Females
71/92

(77.17%)

2/92

(2.17%)

19/92

(20.65%)

Males
34/95

(35.79%)

12/95

(12.63%)

49/95

(51.58%)

Total
105/187

(56.15%)

14/187

(7.49%)

68/187

(36.36%)

In order to investigate the usefulness of each trait as an indicator of sex, the discrim-

ination factor (d) was calculated for each trait, and scoring consistency was investigated by

establishing the interobserver error and the associated kappa statistic. The results for each

trait are given below in Table 3.4, while Figure 3.2 displays the discrimination factor for each

trait according to age category. The median trait scores according to age and sex were also

established for each trait, and the distribution of scoring was examined using the Mann-Whitney

statistical test to determine if there was a significant difference between males and females in

each age category. The full results of the Mann-Whitney statistical tests for each trait are found

in Appendix C, and the summary table is given below in Table 3.5.

Table 3.4: The usefulness of each trait as an indicator of sex in the SB collection, given by the

discrimination factor (d) and the ability to score the trait consistently which is represented by

interobserver error (i) and the kappa statistic (κ).

Trait d
Overall Females Males

i κ i κ i κ

Nuchal Crest 0.819
61/167

(36.53%)
0.538

26/80

(32.50%)
0.560

35/87

(40.23%)
0.488

Mastoid

Process
0.815

186/339

(54.87%)
0.292

98/170

(57.65%)
0.181

88/169

(52.69%)
0.330

Supraorbital

Margin
0.738

137/259

(52.90%)
0.281

61/132

(46.21%)
0.351

76/127

(59.84%)
0.195

Glabella 0.883
65/153

(42.48%)
0.432

19/78

(24.36%)
0.494

46/75

(61.33%)
0.176

Zygomatic

Extension
0.652

67/342

(19.59%)
0.608

32/150

(21.33%)
0.575

35/172

(20.35%)
0.479

Nasal

Aperture
0.567

35/118

(29.66%)
0.451

18/62

(29.03%)
0.267

17/56

(30.36%)
0.523

Cranial Size 0.784
31/142

(21.83%)
0.632

7/74

(9.46%)
0.513

24/68

(35.29%)
0.450
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Figure 3.2: A line graph of the discrimination factor for each trait according to age category in

the SB collection. This provides a visual comparison of each trait as an indicator of sex as well

as a representation of how the discrimination factor of a trait changes according to age.
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Table 3.5: The median scores of each trait for SB males and females in each age category. Age categories that

do not display a statistically significant difference in scoring distribution according to the Mann-Whitney statistical

tests (i.e. p < 0.05) are greyed out.

Sex
Age

Category

Nuchal

Crest

Mastoid

Process

Supraorbital

Margin
Glabella

Zygomatic

Extension

Nasal

Aperture

Cranial

Size

F
1

2.0 1.0 2.0 1.0 1.0 1.0 1.0

M 4.0 3.0 2.0 3.0 5.0 2.0 3.0

F
2

2.0 2.0 2.0 1.0 1.0 1.0 1.0

M 3.5 3.0 2.0 3.0 5.0 3.0 3.0

F
3

2.0 1.5 2.0 1.0 1.0 1.0 1.0

M 4.0 4.0 3.0 3.0 3.0 3.0 3.0

F
4

3.0 2.0 1.0 1.0 1.0 1.0 1.0

M 2.5 3.0 3.0 4.0 5.0 1.0 5.0

F
5

2.0 2.0 2.0 1.0 1.0 1.0 1.0

M 3.0 3.0 3.0 3.0 5.0 3.0 3.0

F
6

1.0 2.0 2.0 1.0 1.0 1.0 1.0

M 4.0 3.0 2.0 4.0 5.0 3.0 3.0
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Discussion & Conclusion of the SB Collection Results

Overall, combining the results of all traits to assess sex was useful for recognizing fe-

males (84.78% and 77.17% were categorized correctly for the two rounds), but very poor for

recognizing males (37.90% and 35.79% were categorized correctly). Most males were actually

categorized as indeterminate (44.21% and 51.58%), which is consistent with the researcher’s

overall impression that males were quite gracile in this population. It is therefore reasonable that

when using a global scale of trait scoring such as Buikstra and Ubelaker’s Standards (1994),

males would fall around the middle and thus be categorized as indeterminate. In this study,

however, the results show that males can in fact be distinguished from females in this popu-

lation using three traits - the glabella, the nuchal crest, and the mastoid processes, which all

achieved discrimination factor values greater than 0.800.

The glabella was the best indicator of sex in the SB population, with a discrimination

factor of 0.883. The discrimination factor also remained acceptably high (i.e. over 0.800) for

all six age categories, and the trait distributions between males and females were significantly

different in all six age categories as well. The median score for females remained at 1 in all

age categories, whereas the median score for males varied between 3 and 4, exemplifying the

fact that a score of 3 could be used to distinguish males from females in this population even

though a score of 3 is normally considered indeterminate.

The next best indicator of sex in the SB population was the nuchal crest, with an overall

discrimination factor of 0.819. The discrimination factor remained acceptably high in all but one

age category, with significantly different trait distributions between males and females in all but

one of the categories (category 4, 50 - 59 years old). There was more variation in both males

and females, with females having median scores between 1 - 3 depending on the age category,

and males having median scores between 2.5 - 4.

The third best indicator of sex in the SB population was the mastoid process, with an

overall discrimination factor of 0.815. The discrimination factor remained acceptably high in four

out of the six age categories, but males and females had significantly different trait distributions

in all categories. Median scores for females varied between 1 - 2, which is consistent with

Buikstra and Ubelaker’s scoring system, whereas the median score for males was 3 for all age

categories.
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Stevenson and colleagues (2009) used individuals from the SB collection, as well as

others from the Hamann-Todd Osteological Collection and the Robert J. Terry Anatomical Col-

lection, to create decision trees based on a combination of morphological traits in the skull

to categorize individuals by sex. The combination of traits with the highest accuracy was the

glabella, mental eminence (which is a mandibular trait), and mastoid size. Although the re-

searchers included individuals of English, European American, and African American ancestry,

they found that this combination of traits produced decision trees that best predicted the sex

of the English individuals in the SB collection. The results of Stevenson and colleagues’ study

(2009) are consistent with the findings in this chapter for the SB collection, for which the glabella

and mastoid process were among the three best traits as well. Their results are directly ap-

plicable to the results in this chapter because they also used the same scoring system given

by Buikstra and Ubelaker (1994) for their data collection. Despite analyzing their data using

different methods, however, their results are consistent with the results obtained in this chap-

ter, which lends credence to the conclusions drawn from both their study and the ones in this

chapter.

3.1.2 NU Collection Results

Out of the 150 individuals (75 female and 75 male), and using an equally-weighted com-

bination of all the traits, 86 individuals were correctly categorized in the first round of assess-

ment (57.33%); 9 were incorrectly categorized (6.00%); and 55 were indeterminate (36.67%).

For the second round of assessment, 88 were correctly categorized (58.67%); 10 were incor-

rectly categorized (6.67%); and 52 were indeterminate (34.67%). The breakdown of correct

categorization for both rounds of assessment is given below in Tables 3.6 and 3.7. The intraob-

server error for the NU collection was 33/150 (22.00%), and κ was calculated to be 0.716 which

indicates substantial agreement (refer to Table 3.1).
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Table 3.6: An overview of the classification results from the first round of visual assessments

on the NU Collection.

Correct Incorrect Indeterminate

Females
52/75

(69.33%)

1/75

(1.33%)

22/75

(29.33%)

Males
34/75

(45.33%)

8/75

(10.67%)

33/75

(44.00%)

Total
86/150

(57.33%)

9/150

(6.00%)

55/150

(36.67%)

Table 3.7: An overview of the classification results from the second round of visual assess-

ments on the NU Collection.

Correct Incorrect Indeterminate

Females
53/75

(70.67%)

1/75

(1.33%)

21/75

(28.00%)

Males
35/75

(46.67%)

9/75

(12.00%)

31/75

(41.33%)

Total
88/150

(58.67%)

10/150

(6.67%)

52/150

(34.67%)

In order to investigate the usefulness of each trait as an indicator of sex, the discrim-

ination factor (d) was calculated for each trait, and scoring consistency was investigated by

establishing the interobserver error and the associated kappa statistic. The results for each

trait are given below in Table 3.8, while Figure 3.3 displays the discrimination factor for each

trait according to age category. The median trait scores according to age and sex were also

established for each trait, and the distribution of scoring was examined using the Mann-Whitney

statistical test to determine if there was a significant difference between males and females in

each age category. The full results of the Mann-Whitney statistical tests for each trait are found

in Appendix D, and the summary table is given below in Table 3.9.



CHAPTER 3. CRANIAL SEXUAL DIMORPHISM IN VARIOUS POPULATIONS 75

Table 3.8: The usefulness of each trait as an indicator of sex in the NU collection, given by the

discrimination factor (d) and the ability to score the trait consistently which is represented by

interobserver error (i) and the kappa statistic (κ).

Trait d
Overall Females Males

i κ i κ i κ

Nuchal Crest 0.811
27/120

(22.50%)
0.711

14/52

(26.92%)
0.617

13/68

(19.11%)
0.752

Mastoid

Process
0.821

110/300

(36.67%)
0.523

49/150

(32.67%)
0.538

61/150

(40.67%)
0.451

Supraorbital

Margin
0.723

95/296

(32.09%)
0.527

45/146

(30.82%)
0.494

50/150

(33.33%)
0.494

Glabella 0.814
32/136

(23.53%)
0.667

13/67

(19.40%)
0.567

19/69

(27.54%)
0.625

Zygomatic

Extension
0.459

27/300

(9.00%)
0.795

16/150

(10.67%)
0.782

11/150

(7.33%)
0.789

Nasal

Aperture
0.669

26/114

(22.81%)
0.711

14/72

(19.44%)
0.668

12/72

(16.67%)
0.708

Cranial Size 0.803
35/150

(23.33%)
0.639

13/75

(17.33%)
0.531

22/175

(29.33%)
0.519
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Figure 3.3: A line graph of the discrimination factor for each trait according to age category in

the NU collection. This provides a visual comparison of each trait as an indicator of sex as well

as a representation of how the discrimination factor of a trait changes according to age.
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Table 3.9: The median scores of each trait for NU males and females in each age category. Age categories that

do not display a statistically significant difference in scoring distribution according to the Mann-Whitney statistical

tests (i.e. p < 0.05) are greyed out.

Sex
Age

Category

Nuchal

Crest

Mastoid

Process

Supraorbital

Margin
Glabella

Zygomatic

Extension

Nasal

Aperture

Cranial

Size

F
1

1.0 1.0 1.0 1.0 3.0 5.0 1.0

M 5.0 3.0 3.0 2.0 5.0 5.0 5.0

F
2

1.0 2.0 2.0 1.0 1.0 3.0 1.0

M 4.0 3.0 3.0 3.5 5.0 5.0 5.0

F
3

1.5 2.0 1.0 1.0 1.0 1.0 1.0

M 4.0 3.0 2.0 3.0 5.0 5.0 5.0

F
4

2.0 1.0 2.0 1.0 5.0 2.0 1.0

M 3.0 3.0 2.0 2.0 5.0 5.0 3.0

F
5

2.0 2.0 2.0 2.0 5.0 3.0 1.0

M 3.0 3.0 2.0 3.0 5.0 3.0 3.0

F
6

2.0 2.0 2.0 1.0 5.0 1.0 1.0

M 3.0 3.0 2.0 2.0 5.0 5.0 3.0
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Discussion & Conclusion of the NU Collection Results

Overall, combining the results of all traits to assess sex was more useful for recogniz-

ing females than males (69.33% and 70.67% accuracies as opposed to 45.33% and 46.67%

between the two rounds of assessments), but total accuracy is not much better than chance

(57.33% and 58.67%). Approximately a third of all individuals were categorized as indetermi-

nate during both rounds of assessment (36.67% and 34.67%), meaning that the combination of

traits used was not useful for assessing sex. There are, however, four traits which individually

have discrimination factor values greater than 0.800 - the mastoid process, the glabella, the

nuchal crest, and the cranial size.

The mastoid process had the highest discrimination factor, with a value of 0.821; how-

ever, it only seems to be useful in categories 1, 4, and 5 and does not seem to be related to

age in any way. Furthermore, the intraobserver error rates were quite high - 40.67% for males

and 32.67% for females, although scoring consistency was moderate. Despite the mastoid

process having the highest discrimination factor, it is not a very reliable trait due to the high

intraobserver error and low discrimination factor values for three age categories. The median

score for males was consistently 3 for all age categories, which is indeterminate according to

the scoring system by Buikstra and Ubelaker’s Standards (1994) as well as by Williams and

Rogers’ paper (2006). Combined with the fact that the median for females fluctuated between

1 and 2 depending on the age category means that it is difficult to create a localized scale for

the mastoid process scoring such that males and females can be distinguished more easily.

The trait with the second highest overall discrimination factor is the glabella, with a value

of 0.814. The discrimination factor remains acceptable only for the first three age categories

(≤ 49 years old). The fact that the results in this study demonstrate that the glabella has a

high discrimination factor for those 49 years old or younger makes it a more reliable trait than

the mastoid process, for which no such results were discernible. It must be noted, however,

that the number of observations for the first three age categories is small, and therefore the

results should be interpreted cautiously. Nevertheless, the results indicate that the glabella

is potentially a valuable indicator for sex in the first three age categories, although it suffers

from the same issue as with the mastoid process in that the median score for males fluctuated

between 2 - 3.5. This makes it difficult to normalize the scores such that distinguishing between

males and females can be done with a higher accuracy.
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The nuchal crest also had an acceptable overall discrimination factor, with a value of

0.811; however, the discrimination factor is only acceptable for the first three age categories (≤

49 years old), which is the same issue as the glabella. Similarly, the sample sizes are small for

the first three age categories, even moreso than for the glabella, and so these results must be

interpreted cautiously.

Lastly, the cranial size had an acceptable overall discrimination factor of 0.803, and

remained acceptable in all but two categories - 3 and 6 (40 - 49 years old, and ≥ 70 years

old, respectively). Similar to the mastoid process, there was no evident relationship regarding

the age at which the discrimination factor changes. The intraobserver error was lower than

the mastoid process, however, although it was still higher than what is deemed acceptable

for both males and females. Interestingly, while the median score for females remained at 1

throughout all age categories, the median score changed from 5 to 3 at age category 4 (50 -

59 years old) for males. It is important to remember that assessing cranial size also includes

assessing the ruggedness of the cranium, so one possible interpretation of these results is that

the ruggedness of the cranium becomes less prominent in older males. Contrarily, however, no

relationship was found between trait expression and age in the scatterplots for males, so this

remains a possible interpretation that must be explored in more depth before drawing concrete

conclusions.

In conclusion, it is difficult to ascertain which trait best indicates sex in the NU collection,

mostly due to the fact that there are so few individuals in the lower age categories. The small

sample sizes for these categories limits the ability to draw robust conclusions regarding age.

Therefore, the only strong conclusions that can be drawn are those that take into account the

sample as a whole, without sub-dividing it by age or age category. The overall discrimination

factors therefore indicate which traits were most indicative of sex in the NU collection, which

are, in order of highest to lowest: the mastoid process, the glabella, the nuchal crest, and the

cranial size.

To the researcher’s knowledge, there have been no published studies that use the NU

collection for investigating cranial sexual dimorphism. A study was conducted, however, on

modern Japanese skeletons from the Jikei Medical University in Tokyo by Işcan and colleagues

(1995) in which cranial dimensions were used in stepwise discriminant analyses to determine

which measurements were good predictors of sex. The results from the study found that mas-
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toid height alone was the best predictor of sex, which is consistent with the results in this chap-

ter where the mastoid process as a whole was found to have the highest discrimination fac-

tor. Conversely, however, the study by Işcan and colleagues (1995) found that cranial size

seems to have increased in females in recent generations, thus decreasing sexual dimorphism

in Japanese crania. Although these results seem to suggest that cranial size is not a good

indicator of sex, it must be noted that Işan and colleagues (1995) used cranial measurements

to make this determination, whereas cranial size in this research project not only included an

assessment of size but also of general rugosity or gracility. This added dimension to the as-

sessment of cranial size in this project may have therefore contributed to the fact that cranial

size had the fourth highest discrimination factor in the NU collection, with a value higher than

0.800.

3.1.3 ML Collection Results

Milano Skeletal Collection (curated by LABANOF) - Milan, Italy (ML)

Out of the 150 individuals (70 female and 80 male), and using an equally-weighted com-

bination of all the traits, 76 individuals were correctly categorized in the first round of assess-

ment (50.67%); 14 were incorrectly categorized (9.33%); and 60 were indeterminate (40.00%).

For the second round of assessment, 88 were correctly categorized (58.67%); 17 were incor-

rectly categorized (11.33%); and 45 were indeterminate (30.00%). The breakdown of correct

categorization for both rounds of assessment is given below in Tables 3.10 and 3.11. The in-

traobserver error for the ML collection was 33/150 (22.00%), and κ was calculated to be 0.709

which indicates substantial agreement (refer to Table 3.1).

Table 3.10: An overview of the classification results from the first round of visual assessments

on the ML Collection.

Correct Incorrect Indeterminate

Females
54/70

(77.14%)

0/70

(0.00%)

16/70

(22.86%)

Males
22/80

(27.50%)

14/80

(17.50%)

44/80

(55.00%)

Total
76/150

(50.67%)

14/150

(9.33%)

60/150

(40.00%)
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Table 3.11: An overview of the classification results from the second round of visual assess-

ments on the ML Collection.

Correct Incorrect Indeterminate

Females
59/70

(84.29%)

0/70

(0.00%)

11/70

(15.71%)

Males
29/80

(36.25%)

17/80

(21.25%)

34/80

(42.50%)

Total
88/150

(58.67%)

17/150

(11.33%)

45/150

(30.00%)

In order to investigate the usefulness of each trait as an indicator of sex, the discrim-

ination factor (d) was calculated for each trait, and scoring consistency was investigated by

establishing the interobserver error and the associated kappa statistic. The results for each

trait are given below in Table 3.12, while Figure 3.4 displays the discrimination factor for each

trait according to age category. The median trait scores according to age and sex were also

established for each trait, and the distribution of scoring was examined using the Mann-Whitney

statistical test to determine if there was a significant difference between males and females in

each age category. The full results of the Mann-Whitney statistical tests for each trait are found

in Appendix E, and the summary table is given below in Table 3.13.

Table 3.12: The usefulness of each trait as an indicator of sex in the ML collection, given by

the discrimination factor (d) and the ability to score the trait consistently which is represented
by interobserver error (i) and the kappa statistic (κ).

Trait d
Overall Females Males

i κ i κ i κ

Nuchal Crest 0.772
29/150

(19.33%)
0.756

15/70

(21.43%)
0.689

14/80

(17.50%)
0.785

Mastoid

Process
0.827

102/297

(34.34%)
0.554

45/139

(32.37%)
0.528

57/158

(36.08%)
0.508

Supraorbital

Margin
0.723

122/300

(40.67%)
0.414

46/140

(32.86%)
0.475

76/160

(47.50%)
0.313

Glabella 0.845
38/149

(25.50%)
0.660

12/70

(17.14%)
0.694

26/79

(32.91%)
0.553

Zygomatic

Extension
0.515

52/300

(17.33%)
0.653

17/140

(12.14%)
0.743

35/160

(21.88%)
0.555

Nasal

Aperture
0.634

31/132

(23.48%)
0.609

7/63

(11.11%)
0.761

24/69

(34.78%)
0.453

Cranial Size 0.721
36/150

(24.00%)
0.599

10/70

(14.29%)
0.405

26/80

(32.50%)
0.507
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Figure 3.4: A line graph of the discrimination factor for each trait according to age category in

the ML collection. This provides a visual comparison of each trait as an indicator of sex as well

as a representation of how the discrimination factor of a trait changes according to age.
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Table 3.13: The median scores of each trait for ML males and females in each age category. Age categories that

do not display a statistically significant difference in scoring distribution according to the Mann-Whitney statistical

tests (i.e. p < 0.05) are greyed out.

Sex
Age

Category

Nuchal

Crest

Mastoid

Process

Supraorbital

Margin
Glabella

Zygomatic

Extension

Nasal

Aperture

Cranial

Size

F
1

2.0 2.0 1.0 1.0 1.0 5.0 1.0

M 2.5 4.0 3.0 2.5 5.0 4.0 2.0

F
2

3.0 2.0 2.5 1.0 1.0 3.0 2.0

M 2.5 4.0 2.5 3.0 1.0 1.0 3.0

F
3

2.0 2.5 1.0 1.0 1.0 1.0 1.0

M 3.0 4.0 2.0 3.5 1.0 1.0 1.0

F
4

1.0 2.0 1.0 1.0 5.0 3.0 1.0

M 3.0 4.0 2.5 3.0 5.0 3.0 4.0

F
5

2.0 2.0 1.0 1.0 1.0 1.0 1.0

M 3.0 3.0 2.0 4.0 3.0 1.0 3.0

F
6

2.0 2.0 2.0 2.0 1.0 1.0 1.0

M 3.0 4.0 2.0 3.0 5.0 5.0 3.0
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Discussion & Conclusion of the ML Collection Results

Overall, using a combination of all the traits, categorizing males and females faired

little better than by chance (50.67% accuracy for the first round of assessment, and 58.67%

accuracy for the second). A large majority of individuals were indeterminate (40.00% for the

first round, and 30.00% for the second round). It was particularly difficult to categorize males

correctly (27.50% correct categorization for the first round and 36.25% correct categorization for

the second round). For females, an acceptable accuracy rate was only obtained in the second

round of assessment where 84.29% were correctly categorized (as opposed to 77.14% for the

first round). In both rounds of assessment, no female was incorrectly categorized as a male.

Only two traits had discrimination factor values that were acceptable - the glabella, and the

mastoid.

The glabella had the highest discrimination factor at 0.845, and was acceptably high in

all age categories except the first one (≤ 29 years old, d = 0.750). Due to the small sample size

in the first age category (two males, four females), however, it is unclear whether the glabella is

useful or not in the first age category. Nevertheless, the discrimination factor remains high in all

other age categories - especially category 6 which encompasses the majority of the samples -

which indicates that the glabella is a useful sexually dimorphic trait in the ML collection. This is

despite the fact that the median score for males ranged from 2.5 - 4, which overlaps with what

is considered indeterminate.

The mastoid had a slightly lower discrimination factor of 0.827, but the discrimination

factor remained acceptably high in all age categories, unlike the glabella. The trait distribu-

tions also remained significantly different in all age categories. The median score for females

fluctuated from 2 - 2.5 and for males, the median score fluctuated between 3 - 4.

To the researcher’s knowledge, there is only one study that uses the crania from the

ML collection to assess sex, which was undertaken by Manthey and colleagues (2018). In

this study, craniometric measurements were taken and used in FORDISC to both improve the

database used to create discriminant functions for categorization and to test FORDISC’s cur-

rent output on a European population, since FORDISC’s database is mainly based onAmerican

individuals. The results of the study by Manthey and colleagues (2018) show a bias toward fe-

male categorization, with almost 25% of males incorrectly categorized as females. The authors

attribute this to the fact that the Italian crania seem to differ markedly from the American crania
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in terms of their cranial vault dimensions, as well as a less pronounced development of the

glabella and mastoid height in Italians compared to Americans.

In this study, what is of interest are two results/conclusions that are drawn by the au-

thors. Firstly, almost 25% of males were incorrectly categorized as females using craniometric

points, in contrast to the 17.5% and 21.25% that were incorrectly categorized using morpho-

logical traits in this project. The implications of this statement are blatant: the assessment of

morphological traits done by a human analyst, which is more subjective, achieved a lower rate

of incorrect categorization than that achieved by a computer program, albeit one that was bi-

ased towards American samples rather than Italian (although it can be argued that the human

analyst also has a similar bias, having been trained on and exposed to North American collec-

tions for her undergraduate and Master’s degrees). Aside from this possible population-specific

bias, another reason why the morphological traits achieved a lower incorrect categorization rate

could be due to the fact that craniometric points do not always accurately represent a shape.

In fact, craniometric points are most often used to create an abstract shape on which analyses

are based (see Chapter 1.3.1 for a discussion on this topic). Considering the findings in this

project and those of Manthey and colleagues (2018), it is further evident that morphological

assessments offer insight that craniometric points do not.

The second conclusion drawn by Manthey and colleagues (2018) that is of interest to

this project is their claim that incorrect categorization was partially due to the decrease in sexual

dimorphism of the glabella and the mastoid - which, in contrast, were the only two traits in this

project that had acceptable discrimination factor values. This discrepancy could be due to sev-

eral factors - firstly, although the paper states that Italians have “less pronounced development

of glabellar projection and mastoid height” (Manthey et al. 2018), the data that they provide ac-

tually seem to demonstrate the opposite. According to their data, Italians and Americans seem

to have a very similar amount of sexual dimorphism in terms of the absolute difference between

males and females in each population (see Figure 2 in their article). Secondly, and expanding

on the first point, there does not seem to be an actual quantification of sexual dimorphism in

their study used to support their claim, unlike in this project where sexual dimorphism is defined

by the discrimination factor. The conclusion from this PhD project - which is that the glabella

and the mastoid processes are the best traits to use to distinguish males and females in the ML

collection - is thereforemore robust than thosemade byManthey and colleagues (2018) regard-



CHAPTER 3. CRANIAL SEXUAL DIMORPHISM IN VARIOUS POPULATIONS 86

ing these two traits, since this project substantiates this claim with quantifiable data. Thirdly,

there is again the issue of craniometric points not properly capturing shape information. In this

case, it is likely that the craniometric points used for glabellar projection and mastoid height do

not correspond well with the morphological equivalent of assessing the glabella and mastoid

process.

3.1.4 PR Collection Results

Pretoria Bone Collection - Pretoria, South Africa (PR)

The breakdown of the 150 individuals (75 female, 75 male) used in this project is as

follows: 32 “Black” females; 25 “Black” males; 43 “White” females; and 50 “White” males. Using

an equally-weighted combination of all the traits, 87 individuals were correctly categorized in

the first round of assessment (58.00%); 11 were incorrectly categorized (7.33%); and 52 were

indeterminate (34.67%). For the second round of assessment, 87 were correctly categorized

(58.00%); 11 were incorrectly categorized (7.33%); and 52 were indeterminate (34.67%). The

breakdown of correct categorization for both rounds of assessment is given below in Tables

3.14 and 3.15. The intraobserver error for the PR collection was 30/150 (20.00%), and κ was

calculated to be 0.733 which indicates substantial agreement (refer to Table 3.1).
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Table 3.14: An overview of the classification results from the first round of visual assessments

on the PR Collection. B = “Black”, W = “White”.

Correct Incorrect Indeterminate

Females

64/75 (85.33%)

31/32 (96.88%) B

33/43 (76.74%) W

1/75 (1.33%)

0/32 (0.00%) B

1/43 (2.33%) W

10/75 (13.33%)

1/32 (3.13%) B

9/43 (20.93%) W

Males

23/75 (30.67%)

6/25 (24.00%) B

17/50 (34.00%) W

10/75 (13.33%)

1/25 (4.00%) B

9/50 (18.00%) W

42/75 (56.00%)

18/25 (72.00%) B

24/50 (48.00%) W

Total

87/150 (58.00%)

37/57 (64.91%) B

50/93 (53.76%) W

11/150 (7.33%)

1/57 (1.75%) B

10/93 (10.75%) W

52/150 (34.67%)

19/57 (33.33%) B

33/93 (35.48%) W

Table 3.15: An overview of the classification results from the second round of visual assess-

ments on the PR Collection. B = “Black”, W = “White”.

Correct Incorrect Indeterminate

Females

65/75 (86.67%)

31/32 (96.88%) B

34/43 (79.07%) W

1/75 (1.33%)

0/32 (0.00%) B

1/43 (2.33%) W

9/75 (12.00%)

1/32 (3.13%) B

8/43 (18.60%) W

Males

22/75 (25.00%)

5/25 (20.00%) B

17/50 (34.00%) W

10/75 (13.33%)

2/25 (8.00%) B

8/50 (16.00%) W

43/75 (62.67%)

18/25 (72.00%) B

25/50 (50.00%) W

Total

87/150 (58.00%)

36/57 (63.16%) B

51/93 (54.84%) W

11/150 (7.33%)

2/57 (5.26%) B

9/93 (9.68%) W

52/150 (34.67%)

19/57 (33.33%) B

33/93 (35.48%) W

In order to investigate the usefulness of each trait as an indicator of sex, the discrim-
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ination factor (d) was calculated for each trait, and scoring consistency was investigated by

establishing the interobserver error and the associated kappa statistic. The results for each

trait are given below in Table 3.16, while Figures 3.5 (overall results), 3.6 (results for “Black”

individuals), and 3.7 (results for “White” individuals) display the discrimination factor for each

trait according to age category. The median trait scores according to age and sex were also

established for each trait, and the distribution of scoring was examined using the Mann-Whitney

statistical test to determine if there was a significant difference between males and females in

each age category. The full results of the Mann-Whitney statistical tests for each trait are found

in Appendix F, and the summary tables are given below in Tables 3.17 (overall results), 3.18

(results for “Black” individuals), and 3.17 (results for “White” individuals).
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Table 3.16: The usefulness of each trait as an indicator of sex in the PR collection, given by

the discrimination factor (d) and the ability to score the trait consistently which is represented
by interobserver error (i) and the kappa statistic (κ). B = “Black”, W = “White”.

Trait d
Overall Females Males

i κ i κ i κ

Nuchal Crest

0.775

0.752 B

0.786 W

26/144

(18.06%)
0.746 11/73

(14.07%)
0.711 14/71

(21.13%)
0.723

Mastoid

Process

0.793

0.796 B

0.795 W

93/299

(31.10%)
0.627 39/149

(26.17%)
0.715 54/158

(36.00%)
0.490

Supraorbital

Margin

0.747

0.737 B

0.767 W

125/298

(41.95%)
0.409 44/150

(29.33%)
0.506 81/148

(54.73%)
0.271

Glabella

0.788

0.809 B

0.781 W

41/143

(28.67%)
0.607 22/73

(30.14%)
0.481 19/70

(27.14%)
0.642

Zygomatic

Extension

0.580

0.609 B

0.564 W

33/299

(11.04%)
0.779 18/149

(12.08%)
0.717 15/150

(10.00%)
0.758

Nasal

Aperture

0.653

0.671 B

0.656 W

45/138

(32.61%)
0.489 25/70

(35.71%)
0.387 20/78

(29.41%)
0.545

Cranial Size

0.763

0.719 B

0.774 W

44/150

(29.33%)
0.529

6/75

(8.00%)
0.611 36/75

(48.00%)
0.260
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Figure 3.5: A line graph of the discrimination factor for each trait according to age category in

the PR collection. This provides a visual comparison of each trait as an indicator of sex as well

as a representation of how the discrimination factor of a trait changes according to age.
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Figure 3.6: A line graph of the discrimination factor for each trait according to age category in

“Black” individuals from the PR collection. This provides a visual comparison of each trait as an

indicator of sex as well as a representation of how the discrimination factor of a trait changes

according to age.
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Figure 3.7: A line graph of the discrimination factor for each trait according to age category in

“White” individuals from the PR collection. This provides a visual comparison of each trait as an

indicator of sex as well as a representation of how the discrimination factor of a trait changes

according to age.
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Table 3.17: The median scores of each trait for PR males and females in each age category. Age categories that

do not display a statistically significant difference in scoring distribution according to the Mann-Whitney statistical

tests (i.e. p < 0.05) are greyed out.

Sex
Age

Category

Nuchal

Crest

Mastoid

Process

Supraorbital

Margin
Glabella

Zygomatic

Extension

Nasal

Aperture

Cranial

Size

F
1

1.5 2.5 1.5 1.0 1.0 1.0 1.0

M 2.0 4.0 2.0 3.0 5.0 5.0 4.0

F
2

1.0 2.0 2.0 2.0 1.0 2.0 1.0

M 1.5 3.5 2.5 3.0 1.0 4.0 3.0

F
3

1.0 3.0 2.0 2.0 1.0 1.0 1.0

M 2.5 4.0 2.0 2.0 5.0 5.0 5.0

F
4

1.0 2.0 1.0 2.0 1.0 1.0 1.0

M 2.0 4.0 2.0 3.0 5.0 3.0 5.0

F
5

1.0 3.0 2.0 2.0 1.0 3.0 1.0

M 3.0 3.0 2.0 4.0 5.0 5.0 3.0

F
6

1.0 2.0 1.0 2.0 1.0 1.0 1.0

M 3.0 3.0 3.0 3.0 5.0 3.0 3.0
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Table 3.18: The median scores of each trait for PR “Black” males and females in each age category. Age

categories that do not display a statistically significant difference in scoring distribution according to the Mann-

Whitney statistical tests (i.e. p < 0.05) are greyed out.

Sex
Age

Category

Nuchal

Crest

Mastoid

Process

Supraorbital

Margin
Glabella

Zygomatic

Extension

Nasal

Aperture

Cranial

Size

F
1

1.5 2.5 1.5 1.0 1.0 1.0 1.0

M 2.0 3.5 2.0 3.5 5.0 5.0 3.0

F
2

1.0 2.0 2.0 2.0 1.0 2.0 1.0

M 1.5 3.5 2.5 3.0 1.0 4.0 3.0

F
3

1.0 3.0 2.0 2.0 1.0 1.0 1.0

M 2.0 4.0 2.5 2.0 5.0 3.0 5.0

F
4

1.0 2.0 2.0 2.0 1.0 1.0 1.0

M 3.0 4.0 2.0 3.5 5.0 1.0 3.0

F
5

1.0 3.0 2.0 2.0 1.0 3.0 1.0

M 2.5 3.0 3.0 3.0 5.0 4.0 3.0

F
6

1.0 2.0 1.5 1.0 3.0 1.0 1.0

M 2.0 4.5 3.0 3.5 1.0 3.0 4.0
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Table 3.19: The median scores of each trait for PR “White” males and females in each age category. Age

categories that do not display a statistically significant difference in scoring distribution according to the Mann-

Whitney statistical tests (i.e. p < 0.05) are greyed out. Note that there were no individiuals in age category 2, so

this category has been omitted.

Sex
Age

Category

Nuchal

Crest

Mastoid

Process

Supraorbital

Margin
Glabella

Zygomatic

Extension

Nasal

Aperture

Cranial

Size

F
1

N/A N/A N/A N/A N/A N/A N/A

M 1.0 4.5 2.5 3.0 1.0 1.0 5.0

F
3

1.0 1.5 2.0 1.5 1.0 1.0 1.0

M 3.0 4.0 1.5 3.0 5.0 5.0 4.0

F
4

1.0 2.5 1.0 1.5 1.0 2.0 1.0

M 2.0 4.0 2.0 3.0 5.0 5.0 5.0

F
5

1.5 3.0 1.0 2.0 5.0 2.0 1.0

M 3.0 4.0 2.0 4.0 5.0 5.0 4.0

F
6

1.0 2.0 1.0 2.0 1.0 1.0 1.0

M 3.0 3.0 3.0 3.0 5.0 3.0 3.0
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Discussion & Conclusion of the PR Collection Results

Overall, categorizing males and females had a poor accuracy when all traits were com-

bined, with an accuracy ranging between 56.67% - 58.67%. Females, whether they were

“Black” or “White”, had a much better overall accuracy than males, with 96.88% of “Black”

females and 76.74% of “White” females categorized correctly in the first round of assessment

as opposed to 24.00% of “Black” males and 34.00% of “White” males categorized correctly.

For the second round of assessment, a similar pattern was seen where 96.88% of “Black” fe-

males (same as the first round) and 79.07% of “White” females were categorized correctly in

the second round, whereas 20.00% of “Black” males and 34.00% of “White” males were cor-

rectly categorized. More males were categorized incorrectly than females, with one “Black”

male and nine “White” males wrongly categorized as females, whereas only one “White” fe-

male was wrongly categorized as a male for the first round; in the second round, two “Black”

males and eight “White” males were categorized as females, and only one “White” female was

categorized as a male. From these results, it is evident that it was more problematic to correctly

categorize males than females, and that more “White” than “Black” individuals were categorized

incorrectly.

Approximately a third of all individuals in the PR collection were categorized as inde-

terminate, with more “Black” males than “White” males being categorized as such (72.00% as

opposed to 48.00% in the first round, respectively; 72.00% as opposed to 50.00% in the second

round), and more “White” females than “Black” females being categorized as such (20.93% as

opposed to 3.13%, respectively; 18.60% as opposed to 3.13% for the second round, respec-

tively). This suggests that the combination of traits, as well as the levels of scoring and defini-

tions of each score, used in this study are simply not discriminatory enough to categorize males

and females, especially for “Black” males and “White” females. This is especially evident given

the fact that no single trait had an overall discrimination factor above 0.800 when the entire PR

collection was assessed.

In an attempt to draw conclusions that can be useful to practitioners working with South

African individuals, Table 3.20 ranks all the traits in order of highest to lowest discrimination

factor values for the overall PR collection, and then for “Black” and “White” individuals sepa-

rately. This table will be useful when deciding which traits should be used to assess sex in

South African individuals, based on whether “ancestry” is known or not. Examining the results
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for each of these traits, it is evident that there is only one instance in which the discrimination

factor is acceptable, which is the glabella for “Black” individuals. Otherwise, all other discrimi-

nation factor values range from 0.580 - 0.796. Despite the fact that all except one of the values

are below the acceptable cut-off of 0.800, there are patterns in the results. The mastoid pro-

cess, glabella, and nuchal crest are consistently in the top three, whereas the nasal aperture

and zygomatic extension are consistently the lowest. It can be concluded that although most

of the traits do not meet the acceptable cut-off value, the glabella and mastoid process are the

best traits to use for the PR collection regardless of “ancestry”, due to the fact that those values

are greater than 0.780; and if “ancestry” is known/assessed to be “White”, the nuchal crest can

also be used in conjunction with these two traits. Conversely, the nasal aperture and zygo-

matic extension are established to be the worst traits to use in the PR collection, regardless of

whether “ancestry” is taken into account.

Table 3.20: The ranking of traits based on discrimination factor values in the PR collection, for

“Black” individuals, and for “White” individuals.

Rank Overall “Black” individuals “White” individuals

1
mastoid process

(0.793)

glabella

(0.803)

mastoid process

(0.795)

2
glabella

(0.788)

mastoid process

(0.796)

nuchal crest

(0.786)

3
nuchal crest

(0.775)

nuchal crest

(0.752)

glabella

(0.781)

4
cranial size

(0.763)

supraorbital margin

(0.737)

cranial size

(0.774)

5
supraorbital margin

(0.747)

cranial size

(0.719)

supraorbital margin

(0.767)

6
nasal aperture

(0.653)

nasal aperture

(0.671)

nasal aperture

(0.656)

7
zygomatic extension

(0.580)

zygomatic extension

(0.609)

zygomatic extension

(0.564)

Recent studies in South African forensic anthropology regarding sex assessment of the

cranium focus mostly on metric methods, with a particular emphasis on GMM (Bidmos et al.

2010). To the researcher’s knowledge, studies that have usedmorphological methods on South

African crania are now outdated (i.e. they date back to the 1960’s; e.g. De Villiers 1968), and

have since been replaced by newer studies that focus on GMM instead. The only recent study

of which the researcher is aware that uses the PR collection to assess sex from the cranium
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is by Robinson and Bidmos (2009). The authors tested five discriminant functions previously

defined by Steyn and Işcan (1998) on three regionally different skeletal collections in South

Africa, one of which is the PR collection. These discriminant functions rely on craniometric

measurements taken from the cranium, mandible, and humerus. Considering the functions

that use craniometric points only from the cranium (“Functions 1, 2, and 5” in their study), the

authors found that the rate of correct classification for individuals in the PR collection ranged

from 66.3% - 84.7% (Robinson and Bidmos 2009). This correct classification rate is markedly

better than what was achieved in this study, which was between 56.67% - 58.67%, although

it must be remembered that discriminant function analyses force a categorization (i.e. individ-

uals are never categorized as “indeterminate”). In this Ph.D. project, approximately a third of

all individuals were categorized as indeterminate due to the nature of the scoring system; if it

was necessary to force a categorization, the number of individuals correctly categorized would

have increased, potentially making the results comparable to those achieved by Robinson and

Bidmos (2009). Additionally, it would be prudent to discuss how or if the accuracy of the dis-

criminant functions changed according to “ancestry”, but unfortunately, Robinson and Bidmos

(2009) do not provide this breakdown. If they did, it would have been interesting to see if “Black”

individuals were categorized correctly at a higher rate than “White” individuals, which was the

case in this project (“Black” individuals were categorized correctly with an accuracy ranging

from 61.40% - 64.91%, whereas “White” individuals ranged from 53.76% - 54.84%). Addition-

ally, since the sample size used by Robinson and Bidmos (2009) was smaller (49 females and

49 males), the effect of “ancestry” could have potentially influenced their results significantly.

In the study performed byRobinson and Bidmos (2009), the function that had the highest

rate of classification (“Function 1”) used the maximum length of the cranium, the bi-zygomatic

breadth, nasal height, nasal breadth, basion-nasion length, and basion-bregma height. The

function that performed the worst used the maximum length of the cranium, basion-nasion

length, and maximum frontal breadth. The morphological equivalent of these traits are as fol-

lows: cranial size can be represented using the maximum length, the bi-zygomatic breadth,

basion-nasion length, basion-bregma height, and maximum frontal breadth; nasal aperture can

be represented by using the nasal height and nasal breadth. Indirectly, the basion-nasion length

would be affected by the glabella, and so this length can be loosely attributed to glabella. Trans-

lating the results from the study by Robinson and Bidmos (2009), it can be inferred that the best

correct classification rate was achieved when both cranial size and nasal aperture were taken
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into account, whereas the worst classification rate was achieved when only cranial size was

taken into account, although in both cases glabella loosely influenced the results through the in-

clusion of the basion-nasion length. Interestingly, the cranial size was mediocre in this study for

indicating sex, with a discrimination factor ranging from 0.719 - 0.774, and nasal aperture was

consistently the second worst indicator of sex with a discrimination factor ranging from 0.653 -

0.671. This situation is therefore an example where craniometric measurements can more ac-

curately categorize individuals than morphological analyses, possibly because non-important

information - which is incorporated for visual assessments - is discarded in craniometric mea-

surements. In this case, since the assessment of cranial size includes overall gracility and

robustness, it is possible that overall size information as provided by the craniometric mea-

surements is more important than the visual assessment of ruggedness. Finally, it must be

noted that the study by Robinson and Bidmos (2009) does not include any measurements that

are related to the mastoid process, the nuchal crest, the supraorbital margin, or the zygomatic

extension. It is therefore uncertain whether these traits would have performed well using dis-

criminant function analyses, after translating them to their craniometric equivalent.

3.2 Discussion & Conclusion

Overall, using the combination of all traits, similar trends were seen in all four popu-

lations; the rate of correct categorization ranged from 50.67% (ML collection) - 60.96% (SB

collection); the rate of incorrect categorization ranged from 6.00% (NU collection) - 11.33%

(ML collection); and the rate of categorization individuals as indeterminate ranged from 28.88%

(SB collection) - 40.00% (ML collection). The combination of the Buikstra and Ubelaker (1994)

traits and the Williams and Rogers (2006) traits consistently performs poorly in the ML col-

lection, since this collection had the lowest correct categorization rate, the highest incorrect

categorization rate, and the highest rate of individuals categorized as indeterminate.

In all four skeletal collections, the mastoid process and the glabella were consistently

among the most reliable indicators of sex. With the exception of the PR collection, these two

traits had discrimination factor values above 0.800, and even in the PR collection these two

traits had the highest values. Interestingly, these two traits were the only two recognized by

both Buikstra and Ubelaker (1994) and Williams and Rogers (2006) as being good indicators of
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sex. The results in this chapter therefore affirm the conclusions made by Buikstra and Ubelaker

(1994) and Williams and Rogers (2006). In addition to the mastoid process and glabella, the

nuchal crest was also a fairly good indicator of sex. The nuchal crest had acceptable discrimi-

nation factor values for the SB and NU collections, and was always ranked in the top three in

all populations. In a practical context, knowing which traits are the most discriminatory in all

populations is useful if the population/ancestry of an individual is unknown, in which case these

three traits have been proven to be reliable regardless of population/ancestry.

In cases where the population/ancestry of an individual is known or can be assessed, the

probability graphs for each traits can be used to help analysts interpret scoring. For example,

an individual could be scored as a 3 for a given trait - this would normally be categorized as

“indeterminate” and is therefore not very useful. With the probability graphs (and the associated

P (F ) and P (M) values used to generate them), however, the probability of a female in a given

population being assigned a score of 3 can be established, as well as the probability of a male in

the same population being assigned a score of 3. These probabilities are useful for investigators

to decide if the score of 3 is more likely to be assigned to a male or a female, and, in the absence

of any other kind of information, could state with an established degree of certainty what sex

the unknown individual is likely to be (e.g. if P (M) is greater than P (F ) for a score of 3, then

it is more likely for a male to be given a score of 3 than a female; therefore, the individual is

more likely to be male if they do in fact come from the population in question). Consequently,

the use of the probability graphs, P (F ), P (M), and d as established in this chapter allows an

“indeterminate” score to be further interpreted for determining the individual’s most probable

sex, with the caveat that population can be assessed or is known. Furthermore, if the unknown

individual’s age is estimated, P (F ) and P (M ) can be calculated for their age category; if age is

unknown, the overall P (F ) and P (M) for that trait can be used instead. The limitation to using

age, however, is the smaller sample sizes in the younger age categories, so it is recommended

that analysts use the overall P (F ) and P (M) values in conjunction with the age-specific values.

Intraobserver error was an issue in this research, with error rates ranging from 7.33%

(zygomatic extension for males in the NU collection) - 54.73% (supraorbital margin for males

in the PR collection). There were only two instances in which the intraobserver error was

acceptable (i.e. ≤ 10%) - the cranial size for females in the SB collection (9.46%) and the

zygomatic extension for males in the NU collection (7.33%). Scoring agreement was generally
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in the categories of fair, moderate, and substantial agreement, and in no circumstance was the

trait scoring less than chance, meaning that although the range of trait variation was generally

well-recognized, it was somewhat problematic in determining which score should be assigned

to different trait expressions. As for the high rates of intraobserver error, they are likely due

to the researcher learning the range of trait variation within a population for the first round

(which is more indicative of its scoring on a global scale) and then subconsciously adjusting

for this fact during the second round (which is more indicative of scoring on a local scale).

Interobserver error in the form of a second person also doing two rounds of assessment on the

same population would substantiate this theory of a global versus local scoring bias.

In conclusion, the results of this chapter have proven to be extremely useful for inves-

tigating the range of trait variation in different populations, quantifying sexual dimorphism by

defining the discrimination factor, and consequently allowing “indeterminate” scores to be in-

terpreted in a more useful way. As far as the researcher is aware, no other published study

has attempted the latter, making the research in this chapter the first mathematically robust

study for doing so. In addition to this novel contribution to the field of skeletal sex assessment,

the results from this chapter indicate traits that would be useful in supervised machine learn-

ing approaches, which is explored in Chapter 5. The results from this chapter also serve as

a comparative reference for the results obtained from unsupervised machine learning, since it

allows a comparison between the areas/traits that the program defines as sexually dimorphic

and those that a human analyst finds sexually dimorphic.



Chapter 4

Examining the Properties of 3D

Models for Research Purposes

A pilot test was performed, with two major aims: 1) to assess the quality of 3D models

produced using the SLS, in terms of resolution, reproducibility, and reliability; and 2) to use

these three qualities to compare two different methods of aligning the raw data generated from

the SLS to create coherent 3D models. Currently, there are no studies that validate the qual-

ity of 3D models produced using structured light scanning, especially on a research-oriented

data set. It is therefore necessary to examine the 3D data produced by structured light scan-

ning in order to understand the limitations associated with using such data in further analyses.

Resolution is defined as the distance between each neighbouring vertex for point clouds. For

the purposes of this study, reproducibility refers to the degree of error, measured in millimetres

(mm), between two 3D models generated from the same object using the same scanning and

alignment parameters but obtained on two different days by the same analyst. Reliability is de-

termined by whether or not different objects scanned and aligned with the same method have

similar degrees of error.

This pilot test investigated two different methods of alignment - one given by DAVID

4, and another called CraniAlign that was created for the express purpose of facilitating the

large number of scans that needed to be aligned for this PhD project. Currently, the DAVID

4 program is the industry standard for processing SLS scans by aligning and fusing scans

together to create coherent 3D models in the form of meshes. Without access to the DAVID

102
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SDK (Software Development Kit), however, these processes cannot be completely controlled

by the user, and cannot be completely understood due to the use of proprietary algorithms.

Furthermore, operations must be done manually in the DAVID 4 program which is not only

time-consuming, but which also have proven to be unreliable since results vary greatly even

when the same operations are repeated by the same user. It was therefore necessary to create

an alternate program which could process scans reliably in order to create 3D models, use

algorithms which are well-documented, can be understood by the user, and whose parameters

can be controlled and replicated. CraniAlign was thus created to provide a transparent and

controllable method for processing scans such that research can be reliably undertaken on the

resulting 3D models. The automation of CraniAlign also allowed for scans to be aligned with

minimal manual input, meaning that the program could be left running overnight or even parallel

to other tasks such that the creation of coherent 3D models was as time-efficient as possible.

This pilot test therefore determined and compared the resolution, reproducibility, and reliability

between 3D models generated using the DAVID 4 program and the CraniAlign program.

The samples used in this pilot test consist of five crania, chosen from the St. Mary’s

skeletal collection at the University of Leicester. The individuals chosenwere SMC206, SMC399,

SMC417, SMC1142, and SMC1248, and were chosen based on the fact that they met the pri-

ority 1 criteria for inclusion (see Table 2.8), and were therefore representative of samples to be

included into the ground-truth database. Following the scanning protocols listed above in Data

Acquisition & Methodology, each crania was scanned twice, on separate days. On the first

day of scanning, the scanning parameters (i.e. the shutter speed and projector brightness) for

each crania were determined and recorded. These parameters were replicated on the second

day when the crania were re-scanned. After the first day of scanning, the SLS was packed up

such that on the second day, the SLS would need to be set up again and re-calibrated. This

ensured that the maximum degree of unintentional error due to setting up and calibrating the

equipment would be captured in the resulting 3D models. For both days, the windows in the lab

were covered with an opaque screen to ensure that sunlight and external weather conditions

would not affect the lighting in the lab. The lighting in the lab therefore remained as consistent

as possible throughout the entire scanning process on both days. The result is that two sets of

scans were created for each cranium, for a total of ten sets of scans.

Each set of scans underwent a two-step basic process in order to create a coherent 3D
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model in the form of a point cloud or mesh: 1) coarse alignment, which refers to orienting scans

roughly in position, and 2) fine alignment, which refers to minimizing the distance between

two neighbouring scans such that they are as closely aligned to one another as possible. All

ten sets of scans first underwent this processing with the DAVID 4 program, which involves

manually determining the coarse and fine alignments. A third step was necessary when using

the DAVID 4 program, termed “fusion” in the software, in which all of the scans were combined

and presumably subsampled in some way to create one .obj file that represented the entire

cranium. 3Dmodels for ten crania - two for each individual - were therefore created by using the

DAVID 4 program entirely. Due to issues with the CraniAlign program’s ability to robustly align

scans coarsely for full crania (see section 4.0.2) for a more detailed explanation of this issue),

only the fine alignment was run using CraniAlign, using the coarsely-aligned data generated

using the DAVID 4 program. The final point cloud was generated by a fusion method which

used a well-defined algorithm (refer to section 4.0.2) to create an .obj file that represented the

entire cranium. An additional ten 3D models of crania were therefore created using CraniAlign

to govern the final alignment results. The resulting data generated consisted of four 3D models

per individual - one generated from scans taken on day 1 and processed with DAVID 4; one

generated from scans taken on day 2 and processed with DAVID 4; one generated from scans

taken on day 1 and processed with CraniAlign; and one generated from scans taken on day 2

and processed with CraniAlign. For clarity, the term “pair” will henceforth refer to a set of 3D

models generated using the same program (DAVID 4 or CraniAlign), but using scans of the

same crania taken on different days. Refer to the flowchart given below in Figure 4.1.
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Figure 4.1: A flowchart demonstrating how data was acquired from a single cranium, which

was scanned twice. The output is two pairs of 3D models - one pair generated using DAVID

4, and another pair generated using CraniAlign. The difference between the 3D models in a

single pair is that they used different sets of scans of the same cranium - one obtained on Day

1 and the other obtained on Day 2. This process was repeated for each of the five crania.

4.0.1 The DAVID 4 Program

To create 3D models using the DAVID 4 software program, the following procedure was

loosely followed to create a single 3D model: first, two neighbouring scans to be aligned to one

another were chosen, usually using the “Around Y-Axis” parameter, without the use of texture.

To align a scan in a different orientation (e.g. aligning the anterior side of a crania placed on

its lateral side to the anterior side of a crania placed upright in anatomical position), the “Free”

parameter was chosen instead. These alignment parameters allowed the DAVID algorithms

to optimize the most probable overlap of the two scans. Once all scans were aligned in this

manner, a global fine registration was performed which minimized the error between all scans

instead of just between pairs. For the global fine registration, 30 iterations were performed and

texture was often used with a weighting of 80. It should be noted, however, that alignment

was not always successful, so monitoring of the resulting position of each scan was needed.

Re-alignment was often necessary by repeating the same alignment procedure. The DAVID

algorithms have a degree of randomness built in to allow for different possible positions to

be obtained, so repeating the same alignment procedure would sometimes result in a better
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alignment. The degree of randomness, however, cannot be controlled or even determined

without access to the DAVID SDK, which is an expensive upgrade.

Figure 4.2: A) An example of how misalignment can occur using the DAVID 4 program, which

is most evident in the nasomaxillary region (indicated by the white circle). Repeating the same

alignment procedure fixed the misalignment, as seen in B). A degree of randomness built into

the DAVID algorithms is therefore apparent, but cannot be controlled without access to the

DAVID SDK.

Once aligned, the scans were fused. A resolution parameter of 2000 was chosen with a

corresponding vertex spacing of 0.174 mm, and the sharpness setting was kept at the default

value of 1. Although these parameters for resolution are chosen, that does not necessarily

mean that the resulting 3D model, once aligned and fused, has the same vertex spacing. The

actual vertex spacing was therefore determined once the 3D models were created.

The possible sharpness values given by the DAVID program are integer values ranging

from -3 to +5. Decreasing numbers result in smoother 3D models. The trade-off to a smoothed

3D model, however, is possible loss of detail. The resolution given by the DAVID program is

unitless and therefore arbitrary, although the given resolution corresponds to a specific vertex

spacing. The possible resolution values and their corresponding vertex spacings are given in

Table 4.1 below. For the purposes of the pilot test, it was determined that a resolution parameter

of 2000 was the maximum achievable resolution for the crania (28 scans) with an i7-4700MQ

dual-core CPU, each with a speed of 2.40 GHz, and 16.0 GB of RAM. The GPU was an NVIDIA

GeForce GTX 765M with 2 GB of dedicated memory, which was important to facilitate the

demands of the DAVID program. Nevertheless, the computational process of fusing 28 scans
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at a resolution higher than 2000 was not possible with these computer specifications.

Table 4.1: Resolution parameters given by theDAVID 4 program and their corresponding vertex

spacings.

Resolution Parameter Vertex Spacing (mm)

250 1.39

500 0.695

700 0.497

1000 0.348

1500 0.232

2000 0.174

3000 0.116

4000 0.0869

4.0.2 The CraniAlign Program

The CraniAlign program was a unique opportunity for a PhD student in Archaeology

to become directly involved with the creation and development of a software program that has

widespread applications. Although the program is currently named “CraniAlign” and was devel-

oped for the alignment and processing of cranial scans, the algorithms and parameters used are

meant to be applicable to scans of any object. Due to the intention of creating a program with

such a widespread use, more technical knowledge in C++ programming was required than that

possessed by a standard PhD student in Archaeology. Consequently, the creation and devel-

opment of CraniAlign was jointly undertaken with Etienne Pillin, a PhD student in Mathematics

with experience in C++ programming. The code itself was written by Pillin, whereas the author

of this research project tested the parameters in the program on her data and indicated where

the program could be improved. The source code for CraniAlign is not made available at this

time since it is currently the intellectual property of Clotho AI, who have chosen not to release

it as of yet.

Other than reading and writing files, the CraniAlign program consists of three main func-

tions: coarse alignment, fine alignment, and fusion. The coarse alignment algorithm used was

the Super 4PCS (4-Points Congruent Sets) algorithm developed by Mellado and colleagues

(2014), and the fine alignment algorithm used was Sparse ICP by Bouaziz and colleagues
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(2013). Fusion was a combination of algorithms from Super 4PCS and those that were written

by Pillin.

For coarse alignment, Super 4PCS was chosen because it was well-documented by

a team of researchers who are still actively developing it, meaning that it was likely that they

would be available and keen to assist with the alignment required for this project, if necessary.

Additionally, the algorithm reportedly performs robustly with noisy data, and can align scans

even if there is a small amount of overlap, as well as on samples where there are little to

no geometric features present (Mellado et al. 2014). The latter was particularly important for

this PhD project because scans of the posterior and superior sides of the cranium contain no

distinct features and consist only of a curved surface. In an example provided by Mellado

and colleagues (2014), two scans of a very round bird, both with few features, were able to

be roughly aligned even when outliers were added (see Figure 4.3). Ultimately, Super 4PCS

was chosen due to its reported success as well as the fact that several other coarse alignment

algorithms were investigated and did not generate results as quickly and as satisfactory as

those of Super 4PCS.

Figure 4.3: An example given by Mellado and colleagues (2014) of two scans with few distinct

geometric features that were able to be coarsely aligned to each other using Super 4PCS, even

with outliers. This situation is similar to aligning the posterior and superior sides of a cranium.

The output of Super 4PCS, and the resulting coarse alignment, is governed by several

parameters: the number of points to be used for the alignment (n), the overlap parameter

(o), and the delta parameter (δ). The overlap parameter is the expected overlap between two

scans, and the delta parameter is a precision parameter used by Super 4PCS.

For fine alignment, Sparse ICP was chosen because it is the fine alignment algorithm

suggested by Super 4PCS (Mellado et al. 2014), and is more robust at dealing with outliers than

the traditional ICP algorithm (Bouaziz et al. 2013). The output of Sparse ICP was governed by

four parameters: the number of iterations used by Sparse ICP, the precision to be obtained (ε)
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when minimizing the distance between neighbouring scans, the p parameter which refers to the

p-norm that is minimized by the algorithm (for a more technical overview of the p parameter,

refer to Bouaziz et al. 2013), and the subsampling precision, which is a parameter added by

Pillin in order to increase the speed at which scans were aligned. The subsampling precision

refers to the fact that uniform-distance subsampled point clouds were used with Sparse ICP

rather than the input point clouds. Two versions of Sparse ICP are available - point-to-point

and point-to-plane. For the latter, the normals of the vertices are used for alignment whereas

for the former, normals are not required to be calculated. Point-to-plane was used since this

method was faster and gave more robust results.

Various implementations of the algorithms were tested during the development of Cra-

niAlign, as well as different input parameters to achieve well-aligned scans. After months of

testing, it became evident that coarsely aligning such a wide variety of point clouds robustly

was extremely challenging, despite how promising Super 4PCS seemed to be initially. Even

when Dr. Mellado from the Super 4PCS team was contacted for assistance, his suggestions

were not able to fix the coarse alignment issues present in the cranial samples. No combina-

tion of parameters was robust enough to correctly coarsely align all sample crania in this pilot

test. In an attempt to mitigate some scans that were not aligned well, CraniAlign needed to be

improved.

The major improvement to CraniAlign was to make the alignment a context-agnostic

method, meaning that no assumption is made about the order of scans or the intended order

of alignment because both could be flawed due to human error in naming scans or rotating the

turntable at an imprecise angle during the scanning process. Instead, CraniAlign determines

which pairs of scans are most likely to result in a successful alignment, which is achieved by

browsing each pair of scans, computing the associated overlap value by attempting to coarsely

align each pair using Super 4PCS, and performing the alignment on pairs which have the high-

est overlap values above a given correctness threshold (c). As a result, if a scan was unable

to be coarsely aligned with any other scan that resulted in a computed overlap value meeting

or exceeding this threshold, that scan was discarded and not included in the final alignment of

the cranium.

Unfortunately, these two features still did not generate results robust enough to be used

on several samples; however, it performed quite well on autopsied samples. After months



CHAPTER 4. EXAMINING THE PROPERTIES OF 3D MODELS 110

of iteratively testing and developing CraniAlign, it was finally concluded that it was necessary

to use the coarsely-aligned scans from the DAVID 4 program for fine alignment and fusion

with CraniAlign for the purposes of the pilot test. For generating the samples needed for this

PhD project, the coarse alignment performed well on most autopsied samples so there was

value in developing the coarse alignment with Super 4PCS. The scans then underwent the

fine alignment with CraniAlign, before the results were fused. Fusion involved merging all the

aligned point clouds from each individual scan into one, and then subsampling the resulting

point cloud using a uniform distance sampling method. The subsampling was performed with

a precision of 0.15 so that the resulting point cloud had a similar number of points to those

generated from the DAVID 4 program (roughly 12,000,000 - 15,000,000 points).

4.1 Methodology

In order to compare two paired 3D models to each other, and thus generate the data

needed to analyze reproducibility, each 3Dmesh first needed to be subsampled to create a point

cloud. Using Cloud Compare, the number of points to be subsampled was set to 1,000,000.

Normals were automatically generated at this point. Colour information was also added to the

point cloud, if applicable. The resulting point cloud is seen below in Figure 4.4 A. Although the

point cloud appears to be sparse, due to limiting the number of points so as to be manageable

in subsequent analyses, the point size can be increased for visual purposes if needed. An

example of a point cloud with an increased point size is seen in Figure 4.4 B.
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Figure 4.4: A: The point cloud generated from Cloud Compare after subsampling a mesh for

1,000,000 points. B: The point cloud after the point size has been increased to 4.

Each pair of point clouds then needed to be aligned to each other, a process which is

referred to as “registration”, and was therefore performed using the fine registration tool. In all

samples, the first point cloud (i.e. the 3Dmodel generated from scans taken on day 1) was used

as the reference sample, meaning that it did not move, and the second point cloud was instead

rotated and translated to align to the first. The RMSD (Root Mean Square Deviation, although

in Cloud Compare it is simply referred to as RMS) was set to the default value of 10−5, which is

a precision parameter specific to Cloud Compare. The final overlap, which is an estimation of
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how much overlap the two point clouds should have with each other, was set to 100% because

the two point clouds should theoretically be identical. The farthest points removal option was

enabled, which removed points that were likely to cause error in the registration computation.

Consequently, outliers would be removed, such as random points in the background of the 3D

model. In order to find the best transformation of the second point cloud to the first point cloud,

rotation and translation in the X, Y, and Z axes were allowed. The random sampling limit was

set to 100,000 - which is 10% of the number of points making up each subsampled point cloud

- and refers to the number of points to be randomly sampled in order to align, or register, the

two point clouds. A visual example of registration is given below in Figure 4.5.
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Figure 4.5: A: Two point clouds of the same cranium are loaded in Cloud Compare. The yellow

point cloud corresponds to the first 3D model (i.e. created from scans taken on day 1 of data

collection) whereas the red point cloud corresponds to the second 3D model (i.e. created from

scans taken on day 2 of data collection). In order to determine the difference between the two

models, they must be aligned to each other. B: The two point clouds have been aligned to each

other using the fine registration tool.
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After the registration of the two point clouds, the RMSD of the registration was calculated

using the same 100,000 points sampled during the registration process. Values approaching

0 demonstrate little difference between the point clouds after the registration, and refer specif-

ically to the average difference between the sampled points. It is important to note that values

greater than 0 do not necessarily mean that the two point clouds are different from a practi-

cal point of view - it simply means that the scanned object was sampled using different points

to generate the point cloud either during the scanning process, the subsampling of 1,000,000

points performed by Cloud Compare, the random sampling limit of 100,000 points for the RMSD

calculation, or a combination of any of these three possibilities. It is important to note that due

to the method in which Cloud Compare subsamples and calculates RMSD, the results of the

RMSD as well as the amount of error/difference between two point clouds (termed “distance

computation” in Cloud Compare) may be artificially inflated.

The distance computation simply calculates the distance between each corresponding

point in the two registered point clouds, termed the C2C (“cloud to cloud”) distance. If two scans

are composed of identical points and theoretically registered with an RMSD of 0, then the C2C

distance between the two point clouds should also be 0. It is necessary to note that values of 0

for both the RMSD and C2C distance are purely theoretical and are never achieved in practice

due to limitations and assumptions associated with registration and distance computation al-

gorithms. Using the distance computation tool, the mean C2C distance between the two point

clouds were calculated, as well as the standard deviation, the maximum and minimum C2C

distances, and the distribution. It is possible to visualize these distances by using the C2C

absolute distances colour ramp feature. Areas of difference, according to increasing distance,

are given by blue, green, yellow, orange, and red. An example is given below in Figure 4.6.
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Figure 4.6: An example of a distance computation result. In this image, the C2C absolute

distances are given by a colour ramp to the right, with the values and the scale given in millime-

ters. In this case, areas that differed the most between the two point clouds are the superior

roof of the orbits, the interior of the nasal cavity, and in various other canals and foramina on

the inferior aspect of the cranium.

4.2 Results

It is of interest in this study to test whether the results are consistent with the claims of

DAVID Vision Systems - in particular, the advertised “precision” of the DAVID SLS-3 which has

been stated to be 0.05% of the object size. It is unclear whether the term “precision” refers

to resolution (explored in 4.2.1), or if it refers to the degree of error one can expect from 3D

models generated using the SLS-3 (explored in 4.2.2). The stated 0.05% value will therefore

be compared against both resolution and the error obtained in this study to determine what is

most likely meant by “precision”.

Furthermore, there is no clarification as to what is meant by object size (i.e. whether

a maximum dimension is used to determine object size, or whether ’size’ refers to ’volume’

of the object). Thus, the calibration dimension used for the respective object will be used as
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the reference object size. Since crania are calibrated with the 120 mm calibration panels, the

maximum expected “precision” is 0.06 mm. Due to the vagueness of how precision is defined

by DAVID Vision Systems, however, it is necessary to accept error values up to the same order

of magnitude as what is expected. This shall be defined mathematically as

p ∈ [0.1e; 10e]

where e = the calculated error given by the respective calibration dimension, and p = “preci-

sion”. This means that in order for either resolution or error to be considered consistent with the

reported “precision”, the achieved resolution or error should be 0.006 mm - 0.600 mm. Finally, it

should be noted that although all calculations have been undertaken to the sixth decimal point,

the results reported here have been rounded to the third decimal point to stay consistent with

the same precision to which p is calculated.

4.2.1 Resolution of the 3D Models

Resolution was calculated two different ways in order to compare to the “precision”

advertised by the DAVID SLS-3 - according to average vertex spacing (R̄), and according to

average surface density (ρ̄). Vertex spacing (R) is defined as the distance between a point and

its nearest neighbour. Surface density (ρ) is calculated by dividing the number of neighbours

(N ) by the neighbourhood surface (πR2), and represents the number of points for a circular

area with a radius equal to R. It is important to note that surface density and vertex spacing are

not necessarily uniform throughout the entire point cloud, which is why the average is taken for

both. The minimum surface density values are also reported, since they represent the lowest

surface density achieved in this study, and by extension, the limitation of the resolution.

The resolution of the 3D models generated by DAVID 4 and CraniAlign are given be-

low in Tables 4.2 and 4.3. Although only the DAVID 4 3D models are of interest to compare

against the advertised “precision”, the resolution parameters for CraniAlign are provided for

transparency and interest, keeping in mind the fact that the CraniAlign results can be ad-

justed/improved according to the precision parameter used by the algorithm.
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Table 4.2: Resolution-related results for cranial 3D models generated using DAVID 4.

Sample #

Day 1 Day 2

# of

points

R̄
(mm)

ρ̄
(mm−2)

ρmin

(mm−2)
# of

points

R̄
(mm)

ρ̄
(mm−2)

ρmin

(mm−2)

SMC206 13,060,087 0.157 12.987 3.805 12,068,495 0.164 11.905 3.031

SMC399 13,720,461 0.162 12.195 2.656 12,780,234 0.168 11.236 3.245

SMC417 12,483,730 0.162 12.195 2.592 13,144,141 0.160 12.500 3.245

SMC1142 12,712,477 0.157 12.987 1.707 13,196,521 0.155 13.333 3.788

SMC1248 15,193,593 0.150 14.085 3.596 13,553,039 0.159 12.658 3.731

Table 4.3: Resolution-related results for cranial 3D models generated using CraniAlign.

Sample #

Day 1 Day 2

# of

points

R̄
(mm)

ρ̄
(mm−2)

ρmin

(mm−2)
# of

points

R̄
(mm)

ρ̄
(mm−2)

ρmin

(mm−2)

SMC206 13,669,340 0.155 13.333 0.851 11,805,345 0.166 11.494 0.845

SMC399 14,180,055 0.162 12.195 0.851 11,616,068 0.176 10.309 0.791

SMC417 13,108,211 0.160 12.500 0.855 12,763,447 0.162 12.195 0.847

SMC1142 12,206,711 0.162 12.195 0.871 11,356,463 0.169 11.111 0.843

SMC1248 14,185,314 0.158 12.821 0.774 10,788,179 0.179 10.000 0.752

From the results given above, vertex spacing remains a possible candidate for what the DAVID

SLS-3 refers to as “precision”, given that all vertex spacing values for the DAVID-4 3D models

fall within the established range of 0.006 mm - 0.600 mm.

4.2.2 Determining Reproducibility

To determine the reproducibility of the 3D models (i.e. the degree of error present be-

tween pairs of scans), each paired point cloud generated using either DAVID 4 or CraniAlign

was compared to each other using Cloud Compare, and the degree of difference between the

two 3Dmodels was calculated. It is important to note that this constitutes the total error present,

which encompasses the sum of errors from scanning, aligning, and fusing, as well as from the

registration of the two models to each other in Cloud Compare (given by the RMSD), and from

the C2C distance computation (i.e. comparison) itself between the two models. Note that all

results reported from this point on were generated using the subsampled point clouds (i.e. each

point cloud was limited to a maximum number of 100,000 points).
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DAVID 4 Comparisons

This section reports the results obtained from comparing pairs of 3D models generated

using DAVID 4. The RMSD values are reported as well as the C2C distances. Table 4.4 reports

the RMSD values, as well as the number of points used in the calculation.

Table 4.4: RMSD results calculated from the registration of the 3Dmodel pairs generated using

DAVID 4.

Sample # # of points used
Final RMSD from

registration (mm)

SMC206 90,771 0.656

SMC399 92,327 0.675

SMC417 83,937 0.751

SMC1142 86,720 0.602

SMC1248 89,245 0.630

The distribution of the C2C distances for each pair aligned and fused with the DAVID 4

program are summarized in Table 4.5, and are also represented using a histogram that displays

the data according to standard deviation, given in 4.7. Refer to Appendix G for sample-specific

histograms displaying the data according to mean C2C distance.

Table 4.5: C2C distances for pairs of cranium 3Dmodels generated using the DAVID 4 program

for alignment.

Sample #
Mean

(mm)

Standard

Deviation

(mm)

Median

(mm)

Interquar-

tile Range

(IQR)

Maximum

(mm)

SMC206 0.455 0.311 0.410 0.180 10.909

SMC399 0.423 0.374 0.379 0.224 11.386

SMC417 0.702 0.501 0.570 0.201 9.163

SMC1142 0.411 0.316 0.314 0.185 7.867

SMC1248 0.364 0.449 0.288 0.215 12.480
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Figure 4.7: A histogram displaying the C2C distances for each cranial point cloud generated

using DAVID 4, according to their standard deviation from the mean. Instead of using the

absolute number of points that fall within specific deviation categories, the percentage of the

total number of points in each point cloud was used in order to standardize the results across

all samples.

As seen above in Figure 4.7, most of the points in the 3Dmodels fall within one standard

deviation (σ) of the mean C2C distance for each pair. Table 4.6 provides the exact distribution

for each pair according to standard deviation.

Table 4.6: C2C distance distribution for pairs of cranial 3D models generated using the DAVID

4 program for alignment, expressed in percentage of total points per standard deviation.

Sample #
% of points

within 1σ
% of points

within 2σ
% of points

within 3σ
% of points

≥ 4σ

SMC206 91.31% 5.73% 1.42% 1.53%

SMC399 95.38% 3.46% 0.30% 0.87%

SMC417 86.83% 6.78% 4.39% 2.00%

SMC1142 88.16% 6.27% 2.57% 3.00%

SMC1248 95.77% 2.67% 0.69% 0.87%
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The areas that displayed the most amount of difference between pairs generated using

DAVID 4 were mostly features which were difficult to properly illuminate during the scanning

procedure, such as various foramina on the inferior side of the crania, structures within the

nasal cavity, and alveoli in which teeth are missing. Two notable exceptions exist - the occipital

squama of SMC 417 and the posterior part of the cranium roughly around lambda on SMC 1142

- seem to exhibit high levels of difference (i.e. ≥ 4 standard deviations from the mean). Figures

4.8, 4.9, and 4.10 show the areas in which the majority of the differences occur.

Figure 4.8: After the C2C distances for each cranial pair generated using DAVID 4 were com-

puted, each point was coloured according to their deviation from the mean C2C distance. In

the anterior view, areas that deviated the most are usually internal structures within the nasal

cavity. SMC 1142 is an exception, where the inferior portion of the maxilla and teeth show great

deviation, as well as the mastoid processes.
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Figure 4.9: After the C2C distances for each cranial pair generated using DAVID 4 were com-

puted, each point was coloured according to their deviation from the mean C2C distance. Along

with the standard inferior view, the crania were tilted slightly so as to be able to visualize the

superior roof of the orbital wall. Areas which consistently show high deviation are the superior

roof of the orbits; the posterior aspect of the zygomatic arches; and within the alveolar cavities.

SMC 417 and SMC 1142 show marked exceptions in the occipital squama and the posterior

part of the cranium around lambda, respectively.
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Figure 4.10: After the C2C distances for each cranial pair generated using DAVID 4 were

computed, each point was coloured according to their deviation from the mean C2C distance.

In the lateral view, the aforementioned anomalies in other views can be visualized - namely,

the occipital squama of SMC 417 and the posterior part of the cranium of SMC 1142.
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CraniAlign Comparisons

This section reports the results obtained from comparing pairs of 3D models generated

using CraniAlign. The RMSD values are reported as well as the C2C distances. Table 4.7

reports the RMSD values, as well as the number of points used in the calculation.

Table 4.7: RMSD results calculated from the registration of the 3Dmodel pairs generated using

CraniAlign.

Sample # # of points used
Final RMSD from

registration (mm)

SMC206 96,059 0.785

SMC399 90,436 0.836

SMC417 86,773 0.711

SMC1142 71,627 0.664

SMC1248 84,243 0.739

The distribution of the C2C distances for each pair aligned and fused with the CraniAlign

program are summarized in Table 4.8, and are also represented using a histogram that displays

the data according to standard deviation, given in 4.11. Refer to Appendix I for sample-specific

histograms displaying the data according to mean C2C distance.

Table 4.8: C2C distances for pairs of cranium 3D models generated using the CraniAlign pro-

gram for alignment.

Sample #
Mean

(mm)

Standard

Deviation

(mm)

Median

(mm)

Interquar-

tile Range

(IQR)

Maximum

(mm)

SMC206 0.417 0.264 0.371 0.269 11.066

SMC399 0.496 0.322 0.431 0.358 8.825

SMC417 0.432 0.354 0.337 0.289 11.225

SMC1142 0.589 0.617 0.355 0.363 8.842

SMC1248 0.403 0.310 0.348 0.241 12.167
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Figure 4.11: A histogram displaying the C2C distances for each cranial point cloud generated

using CraniAlign, according to their standard deviation from the mean. Instead of using the

absolute number of points that fall within specific deviation categories, the percentage of the

total number of points in each point cloud was used in order to standardize the results across

all samples.

As seen above in Figure 4.11, most of the points in the 3Dmodels fall within one standard

deviation (σ) of the mean C2C distance for each pair. Table 4.9 provides the exact distribution

for each pair according to standard deviation.

Table 4.9: C2C distance distribution for pairs of cranial 3D models generated using the Cra-

niAlign program for alignment, expressed in percentage of total points per standard deviation

Sample #
% of points

within 1σ
% of points

within 2σ
% of points

within 3σ
% of points

≥ 4σ

SMC206 82.08% 14.64% 2.40% 0.88%

SMC399 80.16% 17.00% 1.93% 0.91%

SMC417 87.67% 7.96% 2.92% 1.44%

SMC1142 86.81% 6.05% 4.66% 2.48%

SMC1248 90.12% 7.41% 5.62% 0.92%

The areas that displayed the most amount of difference between pairs generated using
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CraniAlign were mostly the inferior surface, inside the orbits and nasal aperture, and the alve-

olar areas of the maxilla, as well as the teeth. SMC 417 and SMC 1142 also displayed notable

difference in the superior surface of the crania. These differences are displayed in Figures 4.12,

4.13, and 4.14.

Figure 4.12: After the C2C distances for each cranial pair generated using CraniAlign were

computed, each point was coloured according to their deviation from the mean C2C distance.

In the anterior view, areas that deviated the most are usually internal structures within the nasal

cavity and orbits. SMC 417 and SMC 1142 also show great deviation in the inferior portion of

the maxilla and teeth.



CHAPTER 4. EXAMINING THE PROPERTIES OF 3D MODELS 126

Figure 4.13: After the C2C distances for each cranial pair generated using CraniAlign were

computed, each point was coloured according to their deviation from the mean C2C distance.

Along with the standard inferior view, the crania were tilted slightly so as to be able to visualize

the superior roof of the orbital wall. Areas which consistently show high deviation are the su-

perior roof of the orbits; the posterior aspect of the zygomatic arches; and the various foramina

on the basilar part of the cranium.
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Figure 4.14: After the C2C distances for each cranial pair generated using CraniAlign were

computed, each point was coloured according to their deviation from the mean C2C distance.

In the lateral view, the aforementioned anomalies in other views can be visualized.
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4.2.3 Determining Reliability

In this pilot test, reliability is defined as having similar C2C distances (i.e. error) for all

pairs of point clouds within an alignment method (i.e. between all samples aligned with DAVID

4, or between all samples aligned with CraniAlign). Due to the extremely large number of data

points for each sample (≥ 1,000,000), statistical tests were not necessary since the use of

such a large number of data points would only result in an increased sensitivity to differences

between samples. Consequently, statistical significance would be achieved even if differences

are inconsequential from a practical perspective. Instead, for the purposes of this study, the

degree of reliability will be established by examining the range of error achieved within a single

alignment method. The alignment method with the narrowest range of error is deemed more

reliable.

Both the mean and median errors were used for this comparison, which were previously

given in Tables 4.5 and 4.8. As seen in the histograms above in 4.2.2, the C2C distances are

not normally distributed so the means are potentially affected by outliers or skewed data, which

is why the medians are also reported. The non-normal distributions of the data are proven in

Appendices H and J, in which the C2C distributions for each sample were fitted to 49 different

probability distribution functions (PDF’s) to determine which PDF best approximates the data.

The median error for DAVID 4 3D models ranged from 0.288 mm - 0.570 mm (a dif-

ference of 0.282 mm), whereas the median error for CraniAlign 3D models ranged from 0.337

mm - 0.431 mm (a difference of 0.094 mm). The mean error for DAVID 4 3D models ranged

from 0.364 mm - 0.702 mm (a difference of 0.338 mm); for CraniAlign models, the mean error

ranged from 0.403 mm - 0.589 mm (a difference of 0.186 mm). It can therefore be concluded

that CraniAlign produces results that are more reliable than those from DAVID 4.

4.3 Discussion

Resolution

For DAVID 4 samples, the average vertex spacing was consistent with the target vertex

spacing provided by DAVID 4 based on their resolution parameter (i.e. Table 4.1), since the
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achieved average vertex spacing was actually slightly less than the target. This means that

the DAVID 4 3D models had a slightly higher resolution than what was expected. It should be

noted, however, that a side project that scanned, aligned, and fused mandibles with the DAVID

4 resulted in average vertex spacing values that were consistently twice what was expected by

DAVID 4. Although the results for this pilot test were consistent with what was expected, they

are apparently not supported or reproduced by other tests that used the DAVID 4. It is possible

that DAVID 4 is not actually fusing the scans to the correct resolution parameter and the results

of this pilot test were a coincidence, or Cloud Compare and DAVID 4 calculate vertex spacing

differently (and, again, the results of this pilot test were coincidentally consistent). It is impossi-

ble to determine precisely where the discrepancy lies without more transparent documentation

from DAVID 4.

CraniAlign samples achieved average vertex spacing values and average surface den-

sity values that were very similar to what was achieved with DAVID 4. The major difference

between the two alignment methods in terms of resolution is the values obtained for the mini-

mum surface density, which is a measure of the resolution limitation. CraniAlign samples had

minimum surface densities ranging from 0.752 mm−2 - 0.871 mm−2, whereas DAVID 4 had

values ranging from 1.707mm−2 - 3.805mm−2. Essentially, this means that DAVID 4 samples

had a greater minimum resolution (i.e. more points per circular area) than CraniAlign. It is

possible that this discrepancy between the two alignment methods is due to the fact that Cra-

niAlign uses a uniform distance sampling method (as opposed to a random sampling method,

although this can be undertaken by CraniAlign as well) during fusion. An example of the differ-

ence between the two sampling methods is given below in Figure 4.15. The uniform distance

sampling method would therefore discard points that are too close together such that a given

distance or area is represented by one point. As the name suggests, the resulting 3D point

cloud has points that are uniformly distributed. Conversely, a random sampling method would

mean that no such distribution of points is guaranteed, and points that are very close together in

a given area could potentially be used in the fused point cloud. The higher values from DAVID

4 3D models could therefore be outliers. Again, however, it is impossible to determine if the

sampling method during fusion is indeed the cause of the difference seen between CraniAlign

and DAVID 4 models, since there is no such documentation on the DAVID 4 fusion process.
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Figure 4.15: A) An example of a point cloud that has been fused with a uniform distance

sampling method using CraniAlign. Note the even distribution of the points that represent the

geometry of the autopsied cranium. B)An example of the same point cloud that has been fused

with a random sampling method using CraniAlign. The result is a geometry that is less “smooth”

than seen in A).

Given the similar results for average vertex spacing and average surface density be-

tween the two alignment methods, it can be concluded that CraniAlign successfully meets the

industry standard set by DAVID 4 in terms of resolution. The resulting point clouds generated

by CraniAlign are therefore acceptable for research purposes due to the transparency of the

algorithms used and the quality of the results in terms of resolution. Finally, the “precision”

advertised by the DAVID SLS-3 is most consistent with the vertex spacing values achieved in

this study, so it is likely that “precison” actually refers to resolution.

Reproducibility & Reliability

Reproducibility, or the degree of error, was determined by calculating the total error

(given by the C2C distances), what could have contributed to the total error, and where these

errors occurred in the cranial 3D models. The range of error for each alignment method was

therefore used to establish which method gave more reliable results. It was determined that

the CraniAlign 3D models had a smaller range of error (medians differed by 0.094 mm; means

differed by 0.186 mm) than DAVID 4 3Dmodels (medians differed by 0.282 mm; means differed

by 0.338 mm). Consequently, the use of CraniAlign produces results that differ less across all

samples, and is therefore more reliable than the results produced by DAVID 4, which vary more.
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The error from the scanning protocol, the scanning procedure itself, the alignment/fusion

method, the subsampling of points, the registration of the two 3D models in Cloud Compare,

and the process of calculating the RMSD is summed up by the RMSD values themselves. The

RMSD values for DAVID 4 3D models ranged from 0.602 mm - 0.751 mm, and from 0.664 mm -

0.836 mm for CraniAlign 3D models. The difference in values between the two alignment meth-

ods alludes to the error that is attributable to the alignment/fusion method, and the subsampling

of points (which is random in Cloud Compare) used for the registration of the models and the

calculation of the RMSD. Without testing Cloud Compare’s capabilities directly, the degree of

error that can be attributed to the subsampling and calculation of RMSD cannot be isolated.

The RMSD values are larger than the mean and median error values for both DAVID 4

and CraniAlign 3D models; however, it should be remembered that RMSD is calculated differ-

ently than C2C distance. RMSD, as per the name, is the square root of the sum of all squared

error whereas C2C distance is simply the distance between two points in a point cloud, and is

calculated for every point in a 3D model. As seen in Tables 4.5 and 4.8, the maximum C2C

distance values are two orders of magnitude greater than the mean and median values. If these

outlier values were used in the RMSD calculations, the RMSD values would have been inflated

because RMSD calculations are sensitive to outliers. This would explain why the RMSD values

are higher than the mean and median C2C distance values.

The areas where the total errors occurred varied according to sample, although in gen-

eral the areas that were most reproducible were the anterior and lateral sides, regardless of

alignment method. The areas that had the most error, and were therefore less reproducible,

tended to be the inferior surface, particularly the areas portraying the foramina and canals in the

CraniAlign samples (see Figure 4.13). It is possible that the same amount of error is present

in the DAVID 4 samples, but due to the wider range of error, these areas are still coloured blue

since they fall within one standard deviation of the mean (see Figure 4.9).

SMC 417 in particular produced interesting results in the inferior surface. In both the

CraniAlign andDAVID 4 samples, the entire occipital showed significant error (i.e. errors greater

than 2 standard deviations, given by orange and red colours). The fact that this same area is

highlighted in both methods suggests that this particular error is due to the scanning proce-

dure and/or protocol. It is possible that the occipital bone became loosened at some point

between the two days of scanning, causing the position of the occipital to be slightly different
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on the second day of scanning compared to the first. Since the Saint Mary’s Church collec-

tion at the University of Leicester is a teaching collection, it is possible that the samples were

handled after scanning on the first day and before scanning on the second day, causing small

modifications/damage to the bone which is reflected in the results of this pilot test.

SMC 1142 also showed significant error in both the CraniAlign and DAVID 4 samples,

although in different regions. In the DAVID 4 samples, the areas that exhibit the most error are

the postero-medial aspects of the two parietal bones. In the CraniAlign samples, the problem-

atic area is the entire superior surface of the cranium. The size and location of each of these two

problematic areas are consistent with the size and location of a single scan. It is therefore likely

that in each of the alignment methods, a single scan was misaligned for one of the 3D models

in the pair, which explains the high amount of error in this area. As previously mentioned, the

superior surface of the cranium is the most problematic to align due to the lack of geometric

features, so the chance of misaligning scans in this area is high. Furthermore, since coarse

alignment was undertaken by DAVID 4 for both alignment methods, the final coarse alignment

is determined by a visual inspection. Due to the lack of geometric features, it is possible that

the scans appeared to be aligned well but actually were not. The success of CraniAlign’s fine

alignment is predicated on the assumption that scans are already coarsely aligned properly, so

this misalignment issue would not have been completely fixed by CraniAlign. This explains why

the error is present in both the DAVID 4 and CraniAlign samples, albeit due to different scans.

4.4 Conclusion

In conclusion, this pilot test was successful in facilitating the creation of CraniAlign,

and establishing the fact that CraniAlign’s performance is on par with the industry standard

set by DAVID 4. Performance was evaluated by determining the resolution, the reproducibility,

and the reliability of the resulting 3D models. CraniAlign was able to produce 3D models with

average vertex spacing and average surface density values comparable to those fromDAVID 4,

while providing a more transparent means of fusion. Both DAVID 4 and CraniAlign 3D models

displayed similar results in the areas of the cranium that were most or least reproducible, but

CraniAlign produced 3D models with a narrower range of error and lower mean and median

errors. CraniAlign therefore has a higher degree of reproducibility and reliability than DAVID 4.
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Additionally, the automation of CraniAlign is a huge advantage over the manual input needed

for DAVID 4, especially for research purposes in which a large number of scans and samples

need to be processed. There are limitations to the CraniAlign program in its current version,

however, but these are discussed in Chapter 5.

In the context of this research project, the point clouds that were ultimately used in

the machine learning algorithm consisted of 2500 points, and not 100,000 as was used in

this pilot test. This is because point clouds that consist of exactly 2500 points needed to be

used in order to ensure that the resulting neural network fit on the memory of the Graphics

Processing Unit (GPU) (Qi et al. 2016), so the number of points was a limiting factor for the

machine learning analysis. The use of 2500 points in the pilot test, however, was not appropriate

or justifiable because it would severely limit the ability to examine how the different steps of

creating, aligning, and fusing meshes affect the resolution. Nevertheless, the results of this

pilot test are still applicable to the overall goal of this research project because they establish

the inherent limitations and sources of error in the data that were to be used in the machine

learning algorithms, before any analyses took place.

This pilot test was also the first study of its kind, as far as the researcher is aware,

because it successfully evaluated the properties of 3D models in order to validate their use

in research, as well as in forensic science analyses. The comparison between a proprietary

software such as DAVID 4 and an open-source program like CraniAlign stresses the continued

need for transparent methods of analyses for research and forensic science. Black box algo-

rithms face issues of admissibility in court, and do not abide by the Daubert standards (Daubert

v. Merrell Dow Pharmaceuticals 1993); neither do they allow for an informed approach to re-

search analyses. This pilot test has therefore successfully demonstrated the limitations of data

interpretation when using black box algorithms, since some conclusions cannot be drawn with

any degree of certainty unless further information is provided on the algorithms used in pro-

prietary software. If higher education and research are to advance, it is necessary for good

scientific protocols to be followed, which includes transparency in the methodologies used for

analysis.



Chapter 5

Exploring Cranial Sexual Dimorphism

in Different Populations Using Deep

Learning

Supervised deep learning, which has been established as a powerful tool for super-

vised learning in particular (Goodfellow et al. 2016), is used in this study as a proof of concept

to classify cranial point cloud data using sex and population information as the associated la-

bels. The goal is to establish three models, each with an acceptable accuracy (i.e. ≥ 80%

correct classification), that can be reliably used on forensic or archaeological samples - one for

classifying sex regardless of ancestry/population, another for classifying ancestry/population

regardless of sex, and a third for classifying based on both sex and ancestry/population. By

establishing these models, three methods of sex and ancestry assessment will be created that

meet the Daubert criteria (1993), can be used by any researcher or analyst without inter- or

intraobserver error, and will be the first to establish the use of deep learning to point cloud data

in forensic anthropology and osteology. For this study to be considered successful, a neural

network must achieve an accuracy of at least 80% when tested on both the training dataset

and the evaluation dataset. The results of the models for sex classification and both sex and

population classification are compared to the sex assessment results from Chapter 3 (Cranial

Sexual Dimorphism in Various Populations) to determine whether the neural networks’ param-

eters provide a higher or lower rate of classification, and what can be improved in both the

134
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visual assessments and the training of the neural networks. The result of the neural network

for population classification are discussed according to their theoretical implications on the idea

of assessing ancestry skeletally.

5.1 Methodology

A program was created for this project in Python to facilitate the deep learning analysis

required for this study (see https://bitbucket.org/JessicaFrances/workspace/projects/POIN for

the repository). The program first browses a folder path for the point cloud data and associated

labels and allocates a fraction of the samples as holdout or evaluation samples (in this case,

20% of the total number of individuals were designated to be the holdout samples). Next, the

program creates the neural network according to sex, ancestry, or sex and ancestry depending

on which model is to be generated. The neural network creation was done by modifying the

deep learning algorithm given by PointNet (Qi et al. 2016) in order to recognize the holdout

and evaluation samples. There were two outputs: 1) in the Linux terminal, the training and

evaluation accuracies obtained by the neural network were printed; and 2) in a designated file

folder, a .csv file was generated with the results of how each individual in both the training and

evaluation datasets were classified.

PointNet (Qi et al. 2016) was the algorithm used in this project, which can perform two

types of tasks - classification and segmentation. Classification refers to the problem of iden-

tifying the group to which a sample belongs, whereas segmentation refers to the problem of

identifying the different parts of a given sample (refer to Figure 5.1 for an example of segmen-

tation). Classification - which is the main task of interest in this study - is a task for which deep

learning has been recognized to be the best tool to use due to its excellent performance in ob-

ject recognition (e.g. Krizhevsky et al. 2012; Ioffe and Szegedy 2015; Goodfellow et al. 2016).

PointNet (Qi et al. 2016) was deemed as the most suitable and promising choice for use in this

study mainly because it both utilizes deep learning for classification tasks and directly accepts

point cloud data as an input. Although PointNet does compute probability densities as part of

its algorithm (Qi et al. 2016), it reports the category for which the maximum probability was

calculated for a given sample. This is useful in a study such as this one where it is of interest

whether an individual was correctly categorized, i.e. a binary result is desirable.

https://bitbucket.org/JessicaFrances/workspace/projects/POIN
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Figure 5.1: An example of a segmentation problem which has been successfully applied to

a point cloud of a chair. The three different colours represent the three parts of a chair rec-

ognized by PointNet (Qi et al. 2016) (the feet, the seat, and the back of the chair). Source:

https://github.com/fxia22/pointnet.pytorch (PointNet, Qi et al. 2016)

The data used in this study are the point cloud data of crania created by structured light

scanning and processed with CraniAlign, or a combination of DAVID 4 and CraniAlign. Due to

the issues with coarse alignment using Super 4PCS (discussed in Chapter 4 (Examining the

Properties of 3D Models)), full crania needed to first be coarsely aligned with DAVID 4 before

undergoing fine alignment and fusion with CraniAlign. The majority of samples from the SB

and PR collection were full crania and thus underwent this process. Due to time constraints,

however, not all the samples were able to be processed in this manner since manually aligning

scans in DAVID 4 is a slow and tedious process. In addition, although coarse alignment was

generally successful with autopsied crania, it was not robust enough to work for all such sam-

ples. The number of individuals that have an associated point cloud is therefore less than the

number of individuals that were assessed visually (the results of which are in Chapter 3 (Cranial

Sexual Dimorphism in Various Populations)); however, there are still enough samples to pro-

vide a solid proof of concept, which is the aim of this study. The breakdown of the point cloud

dataset is given below in Table 5.1. Note that 20% of females and males from each population

were designated for the evaluation dataset, with the rest used in the training dataset, for a total
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of 253 individuals in the training dataset and 63 individuals in the evaluation dataset. Given

that PointNet requires point clouds to be composed of exactly 2500 points, the point cloud

data underwent an additional subsampling process. Using CraniAlign’s fusion and subsam-

pling process, 2500 points were randomly selected to generate the point cloud data required

for PointNet. Random sampling was used instead of uniform distribution sampling because the

former allows an exact number of points to be specified, whereas the latter does not.

Table 5.1: The breakdown of individuals with associated point cloud data that were suitable for

use in deep learning for classification.

SB NU ML PR Total

Females 40 28 33 33 134

Males 30 65 37 50 182

Total 70 93 70 83 316

For the creation of each of the three models (sex, population, and both sex and popu-

lation), four parameters were established to govern the way in which the neural network was

trained: number of epochs, batch size, learning rate, and momentum. Number of epochs and

batch size have been defined and discussed in Chapter 1.3 (3D Methods of Analyzing Bone).

The learning rate is the initial rate at which information from the training dataset is acquired,

whereas the momentum is the decay rate of the learning curve.

In order to establish the values given to the four parameters, validation curves were

created for each model. A validation curve is a scatterplot of model accuracy vs. the parameter

in question, and plots the accuracy for both the training and evaluation results. In this way,

the maximum accuracy achieved for a given parameter can be established. Additionally, the

performance of the model on both the training and evaluation datasets can be compared - if

the accuracy for the training dataset is much higher than that of the evaluation dataset, it is a

sign that the model is overfitted and not able to be generalized.

The minimum number of epochs was established by plotting the accuracy after a set

number of epochs, and determining at what number of epochs the accuracy for both the training

and evaluation datasets begin to converge (i.e. there is little to no change in accuracy despite

increasing numbers of epochs). When convergence occurs, it is a sign that increasing the num-

ber of epochs will not yield any improvements to the neural network; this number was therefore
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set as the minimum number of epochs. The actual number of epochs used in subsequent tests

was therefore set to a higher value than what was determined, in order to account for stochastic

noise. The accuracies were recorded for each epoch, so it was safer to set a high epoch value,

rather than risk not having enough epochs.

The batch size determines how the dataset is truncated; thus, both the training and

the evaluation datasets must be a multiple of the batch size. Any samples that remain are

discarded. This is not common practice in deep learning, which usually uses k-cross validation

to ensure that at some point during the iterations, all samples are included in both the training

and evaluation dataset (Raschka 2015). Because it was of interest in this study to make the

results of the models comparable to the visual assessment results, however, it was necessary

to ensure that the training and evaluation samples were never mixed. Instead, in this study the

samples were randomly selected for inclusion into either dataset, but in order to ensure that

roughly 20% of all collections (as opposed to 20% of the entire dataset, regardless of which

collection the samples came from) were represented in the evaluation dataset, several seed

values were tested for each batch size. The seed value is the random initializer for the selection

and governs how andwhich samples are chosen. Seed values of 5 - 200 were tested in intervals

of 5 to determine which seed value gave the best distribution for each batch size tested. Ideally,

the number of SB samples should be roughly equal to the number of ML samples (usually a

difference of 1 was permissible); the number of PR samples should be greater than that of SB

and ML; and the number of NU samples should be greater than any of the other collections.

There were times when several seed values gave proportions that were either the same, or very

similar. In these cases, the seed in which the highest accuracy was obtained for the evaluation

dataset was chosen.

The last two parameters were established by reporting the highest accuracy obtained

for the evaluation dataset, as well as the corresponding accuracy obtained for the training

dataset. The accuracy for the evaluation dataset was prioritized over that of the training dataset,

because it is always a possibility that a high accuracy on the training dataset is a result of the

model being overfitted to the data. The accuracy of the evaluation dataset is therefore more

relevant and applicable. Once the first parameter (i.e. number of epochs) was established, it

was kept constant for the second parameter; once the second parameter was established, the

first two parameters were kept constant for the subsequent parameter, and so on. The order in
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which the parameters were investigated and established was therefore strictly followed (number

of epochs, batch size/seed value, learning rate, and momentum) for the creation of all three

models.

Using all available samples, the accuracy achieved from all four established parameters

was then reported for each model. A list of individuals and how they were classified was also

generated for each model so that the individuals that were misclassified could be investigated.

For the sex classification model, this list also allowed an “interobserver error” comparison be-

tween the results of the visual assessment in Chapter 3 (Cranial Sexual Dimorphism in Various

Populations) and the results given by PointNet. This was done by calculating the kappa statistic

which is also defined in Chapter 3. For the purpose of calculating the kappa statistic, all individ-

uals classified as “indeterminate” for the visual analyses were eliminated from the calculation.

5.2 Results

The results are divided into three models - one that classifies according to sex and is

population-agnostic; one that classifies according to population and is sex-agnostic; and one

that classifies according to both sex and population. The starting default parameters used were

30 for batch size (which was chosen because this is roughly 10% of the sample size, rounded

to the nearest five) with an associated default seed value of 42; 0.01 for learning rate and 0.9

for momentum, which were both defaults from PointNet.

Although the visual assessment results in Chapter 3 (Cranial Sexual Dimorphism in

Various Populations) are also broken down by age, it was not possible to do the same for the

machine learning analysis using deep learning since many of the younger age categories had

too few individuals to accommodate both an evaluation and training dataset. Furthermore, it is

much more accurate to use regression methods to estimate the age of an individual rather than

to attempt to classify individuals into age categories whose ranges are technically arbitrarily

determined (i.e. not determined by an algorithm or a mathematical model).
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5.2.1 Sex Classification Model

To create themodel for classifying by sex regardless of population, theminimum number

of epochs was determined to be 50. As seen below in Figure 5.2, the accuracy for both datasets

have begun to converge, with the evaluation dataset converging even earlier at 40. The number

of epochs in subsequent testing for the creation of the sex classification model was set to 75

to ensure that the deep learning algorithm was allowed to run until convergence.

Figure 5.2: A validation curve to establish the minimum number of epochs, which is given by

when both datasets show convergence. In this case, convergence occurs for both datasets

when the epoch number is 50. These results are obtained with the default values for all param-

eters (batch size of 30; learning rate of 0.01; momentum of 0.9).

Next, the optimal batch size and associated seed was established. At the 19th epoch,

a batch size of 40 with an associated seed value of 45 gave the best results, with a training

accuracy of 100.0% and an evaluation accuracy of 90.0%. Due to this batch size, the evaluation

and training datasets could only be a multiple of 40; therefore, the total number of individuals

in the training dataset was 240, and the number of individuals in the evaluation dataset was

40. The breakdown of each dataset is given below in Tables 5.2 and 5.3. Learning rate and

momentum were kept to the default values. The validation curve for batch size is given in

Appendix K, Figure K.1.
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Table 5.2: The breakdown of individuals in the training dataset used to create the sex classifi-

cation model.

SB NU ML PR Total

Females 27 21 29 27 104

Males 26 49 25 36 136

Total 53 70 54 63 240

Table 5.3: The breakdown of individuals in the evaluation dataset used to test the sex classifi-

cation model.

SB NU ML PR Total

Females 5 5 2 4 16

Males 3 9 5 7 24

Total 8 14 7 11 40

Establishing the learning rate gave two viable candidates - with a learning rate of 0.01,

the training accuracy was 100.0% and the evaluation accuracy was 90.0%; with a learning rate

of 0.0175 the evaluation accuracy was higher at 92.5% but the training accuracy was low at

86.7% (see Figure K.2 in Appendix K). Both learning rates were therefore investigated with

momentum in order to determine which learning rate, and at which momentum value, the best

results were obtained. It was established that a learning rate of 0.01 gave better results, and

actually resulted in 3 models with different momentum values (0.25 at epoch 65; 0.3 at epoch

29; and 0.95 at epoch 43) that gave identical accuracies for both the training and evaluation

datasets (100.0% and 92.5%, respectively) (see K.3 in Appendix K).

The three models were investigated and compared in terms of their performance on

the evaluation dataset only. The model with a momentum of 0.25 shall be denoted as S1; the

one with a momentum of 0.3 shall be denoted as S2; and the one with a momentum of 0.95

shall be denoted as S3. In S1, one male from the NU collection and one “White” male from

the PR collection were misclassified; in S2, the misclassification instead occurred with one

SB male and one ML male. In both S1 and S2, the same SB female was misclassified. The

difference between S1 and S2 is therefore the applicability of these models to classify males in

different populations. As for S3, the accuracy was better for males than females, since only one

male was misclassified (from the SB collection, but he was a different individual than the one
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misclassified in S2). Out of the two females that were misclassified in S3, one was the same SB

individual misclassified in the other two models, and the second female that was misclassified

was a “Black” individual from the PR collection.

The performance of the artificial neural networks (ANN’s) were then compared to the

results achieved from the visual assessments performed on the same individuals in Chapter

3 (Cranial Sexual Dimorphism in Various Populations). Tables 5.4 and 5.5 respectively sum-

marize the results of the training and evaluation datasets compared to the two rounds of visual

assessment results, and Table 5.6 reports the degree of agreement between each of the neural

network models and the two rounds of visual assessment.

Table 5.4: The performance of the sex classification models on the training dataset compared

to the results of the two rounds of visual assessment. Note that an indeterminate result is not

applicable to the neural network models and is therefore greyed out.

Correct Incorrect Indeterminate

Visual Assessment

Round 1

131/240

(54.6%)

15/240

(6.2%)

94/240

(39.2%)

Visual Assessment

Round 2

140/240

(58.3%)

18/240

(7.5%)

82/240

(34.2%)

ANN’s (S1, S2, S3)

Training Dataset

240/240

(100.0%)

0/240

(0.0%)

Table 5.5: The performance of the sex classification models on the evaluation dataset com-

pared to the results of the two rounds of visual assessment. Note that an indeterminate result

is not applicable to the neural network models and is therefore greyed out.

Correct Incorrect Indeterminate

Visual Assessment

Round 1

24/40

(60.0%)

7/40

(17.5%)

9/40

(22.5%)

Visual Assessment

Round 2

20/40

(50.0%)

9/40

(22.5%)

11/40

(27.5%)

ANN’s (S1, S2, S3)

Evaluation Dataset

37/40

(92.5%)

3/40

(7.5%)
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Table 5.6: A matrix of kappa values for the sex classification ANN’s and the two rounds of

visual assessment in order to indicate which models resulted in similar classifications.

Visual Assessment

Round 1

Visual Assessment

Round 2

S1
Training 0.847 0.819

Evaluation 0.869 0.756

S2
Training 0.847 0.819

Evaluation 0.771 0.756

S3
Training 0.847 0.819

Evaluation 0.738 0.651

5.2.2 Population Classification Model

To create themodel for classifying by population regardless of sex, theminimum number

of epochs was determined to be 35. As seen below in Figure 5.3, the accuracy for both datasets

have begun to converge, with the training dataset converging even earlier at 20. The number

of epochs in subsequent testing for the creation of the population classification model was set

to 60 to ensure that the deep learning algorithm was allowed to run until convergence.

Figure 5.3: A validation curve to establish the minimum number of epochs, which is given by

when both datasets show convergence. In this case, convergence occurs for both datasets

when the epoch number is 35. These results are obtained with the default values for all param-

eters (batch size of 30; learning rate of 0.01; momentum of 0.9).

The optimal batch size was determined to be 40, with a seed of 135. The validation curve

for batch size is given in Appendix L, Figure L.1. Similar to the sex classification model, the
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training dataset therefore consisted of 240 individuals while the evaluation dataset contained

40; however, due to the different seed, the composition of both datasets are slightly different

than that of the sex classification model. The composition of the datasets are given below in

Tables 5.7 and 5.8

Table 5.7: The breakdown of individuals in the training dataset used to create the population

classification model.

SB NU ML PR Total

Females 32 23 26 27 108

Males 20 46 26 40 132

Total 52 69 52 67 240

Table 5.8: The breakdown of individuals in the evaluation dataset used to test the population

classification model.

SB NU ML PR Total

Females 5 3 3 3 14

Males 4 9 6 7 26

Total 9 12 9 10 40

When testing values for learning rate, it was discovered that many different values gave

the same result - a training accuracy of 100.0% and an evaluation accuracy of 97.5% (39/40).

Investigating momentum values gave even more instances in which the same accuracies were

achieved. For the purpose of this chapter, which is to provide a proof of concept, three mod-

els were randomly selected as examples and presented here - P1 represents a model with a

learning rate of 0.01 and a momentum of 0.75, with 15 epochs; P2 represents a model with a

learning rate of 0.01 and a momentum of 0.4, with 10 epochs; and P3 represents a model with

a learning rate of 0.005 and a momentum of 0.9, with 17 epochs. All three models used a batch

size of 40 and a seed of 135. For the sake of completion, the validation curves for learning

rate and momentum are still provided in Appendix L. In all three models, the only error was the

same ML female who was misclassified as belonging to the PR collection.
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5.2.3 Sex & Population Classification Model

To create the model for classifying according to both sex and population, the minimum

number of epochs was determined to be 65. As seen below in Figure 5.4), the accuracy for both

datasets have begun to converge, with the training dataset converging even earlier at 50. The

number of epochs in subsequent testing for the creation of the population classification model

was set to 100 to ensure that the deep learning algorithm was allowed to run until convergence.

Figure 5.4: A validation curve to establish the minimum number of epochs, which is given by

when both datasets show convergence. In this case, convergence occurs for both datasets

when the epoch number is 65. These results are obtained with the default values for all param-

eters (batch size of 30; learning rate of 0.01; momentum of 0.9).

The optimal batch size was determined to be 40, with a seed of 45. The validation curve

for batch size is given in Appendix M, Figure M.1. Due to the fact that the same batch size and

seed were used as those in the sex classification model, the composition of both the evaluation

and training datasets are the same as those given above Tables 5.2 and 5.3.

The optimal learning rate was determined to be 0.0175 with a momentum of 0.9, which

gave a training accuracy of 97.1% (235/240) and an evaluation accuracy of 87.5% (35/40)

at the 44th epoch. The validation curves for learning rate and momentum are provided in

Appendix M. Themisclassification in the training dataset was purely due to sex, meaning that all

individuals were correctly categorized into their respective collections. All incorrectly classified

individuals were female - four from the ML collection and one “Black” from the PR collection.

Similarly, all individuals in the evaluation dataset were properly classified by collection, but the
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five misclassifications were due to sex - one NU female, one SB female, one PR “White” male,

one PR “Black” male, and one SB male.

5.3 Discussion & Conclusion

Three sex classification models were produced, all with the same accuracy of 100%.

When testing these models on the holdout samples, the models were able to correctly classify

92.5% (37/40) of the individuals, although each model misclassified different individuals. Both

S1 and S2 performed slightly worse than S3 at classifying males, although the individuals mis-

classified in S2 were all Caucasian/European males whereas in S1 the misclassified individuals

were non-European. Further testing is needed to establish whether S1 is truly better suited for

classifying European males than S2. Conversely, S3 performed slightly better than the other

two models at classifying males, since only one SB male was misclassified, though there does

not seem to be a population-specific bias in S3. All three models therefore show great promise

as universal sex assessment methods, due to the high model accuracy and test accuracy.

In all three sex classification models - as well as in both rounds of visual assessments

described in Chapter 3 - the same SB female was misclassified as a male. Upon investigating

the identity of this individual, it was discovered that the context number assigned to her is one

number off from a male family member, whose cranium was too fragmented to assess for this

research project. It therefore begs the following question: did commingling occur, or was there

a mix-up during the recovery and documentation of the remains such that the cranium thought

to belong to the female actually belongs to her male relative? Upon reviewing photographs

of the mandible of the male, who died 41 years prior to the woman, it is evident that the soil

staining of the mandible is much darker than that of the cranium, which is consistent with the

cranium being interred a significant amount of time after the mandible. The mandible and the

cranium therefore do not belong to the same individual due to the different degree of soil staining

between the two. It is possible that the cranium belongs to the woman, who was 61 years old

at death and who may have begun to exhibit more male-like features due to her advanced age.

Interestingly, although the accuracy obtained from the visual assessment results are

much lower than the accuracy obtained by the three sex classification models when tested on

holdout samples (92.5%), the kappa statistics showed that for those individuals who were clas-
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sified as either male or female in the visual assessments, there was a high degree of agreement

with the sex classification models (ranging from 0.651 - 0.869). It must be remembered that

the calculation of the kappa statistics only took into account those who were actually classified

as either male or female. This means that when the combination of morphological traits were

discriminate enough to classify an individual, they were sufficient to categorize an individual cor-

rectly. The results therefore confirm that the traits identified by Buikstra and Ubelaker (Buikstra

and Ubelaker 1994) andWilliams and Rogers (Williams and Rogers 2006) are appropriate traits

to use in skeletal sex assessment, but the high number of indeterminate individuals suggests

that these traits are not enough on their own to account for the overlap in sexual dimorphism

that exists. Conversely, the fact that the three neural networks created in this study were able

to achieve such high accuracies suggests that there are other combinations of geometric char-

acteristics that can decrease the number of individuals that fall into the indeterminate category

and increase classification rates. Further research is required to determine exactly what geo-

metric characteristics are useful in increasing classification rates, but if successfully identified

and incorporated into existing sex assessment methods, the usefulness of these methods (e.g.

as quantified by the discrimination factor d in Chapter 3) would increase. A suggestion for how

future research projects could address this problem is discussed in Chapter 6 (Directions for

Future Research).

Several population classification models were produced, all with an accuracy of 100%.

Testing these models on the holdout samples gave an accuracy of 97.5% (39/40). Examining

three of these models, the same ML female was incorrectly classified as belonging to the PR

collection, so there is no tangible way to compare the practical difference between all three

models. The fact that several models were produced with the same training and evaluation

accuracies, regardless of learning rate and momentum values, highly suggests that the task of

classifying according to population is a fairly “easy” task for deep learning. In the samemindset,

traditional skeletal ancestry assessment methods (with broad categories such as “Caucasian”,

“Asian”, and “African”) are starting to be abandoned in favour of identifying population-specific

traits. The results of the population classification models produced in this study support this en-

deavour because it provides a solid proof of concept for population classification even between

groups belonging to the same broad category (ML, SB, and even “White” PR individuals for

example, would have been classified together as “Caucasian” instead of being distinguished).

Further investigation is required to determine whether the models produced from this study are
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robust enough to distinguish individuals coming from very mixed populations, such as in North

America, or whether such individuals would be classified according to their genetic/ancestral

population. Such an investigation would yield information as to whether secular changes or

genetic background more prominently contribute to traits typically used for ancestry/population

classification.

The population-specific sex classification model produced in this study has an accu-

racy of 97.1% (235/240), and when tested on the holdout sample, had an accuracy of 87.5%

(35/40). All individuals regardless of whether they were in the training dataset or the evaluation

dataset were correctly classified according to population, but the errors occurred due to a mis-

classification according to sex. In the training dataset, all of the misclassified individuals were

female, whereas a mix of both male and female individuals were misclassified in the evaluation

dataset. Four out of the five incorrectly classified individuals in the training dataset were from

the ML collection. Despite the fact that the model produced does not account as well for ML

females as it does for individuals in other collections, there did not seem to be a population

bias when tested on the evaluation dataset because the misclassified individuals in the holdout

sample were quite evenly distributed across collections. Further testing on external samples is

required in order to establish whether a population bias truly does or does not exist.

In conclusion, three types of models were created using deep learning on cranial point

clouds consisting of 2500 points - a global sex classification model, a population classification

model, and a population-specific sex classification model. According to the criteria set for the

purposes of this study, all three models were successful in that both the training and evalu-

ation accuracies were well over 80.0%. Although normally a model with a training accuracy

of 100.0% is a result met with trepidation due to the implications of overfitting, the results in

this study have shown that the models were still applicable to a holdout sample that was not

involved in the creation of the model at all. The difference in accuracies between the training

and evaluation datasets were 2.5% (in the population classification models), 7.5% (in the sex

classification models), and 9.4% (in the population-specific sex classification model). This dif-

ference in accuracies can be minimized further by using k-cross validation, which is a standard

practice in deep learning (Raschka 2015), in order to ensure that throughout the many different

iterations/epochs, all individuals at some point are used in the training and evaluation dataset.

The use of k-cross validation in the training of a neural network therefore increases the chance
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that the resulting model will be able to be generalized to other data (Raschka 2015). Further-

more, the models can be improved by optimizing all parameters (batch size, sampling seed,

learning rate, and momentum) in a multi-dimensional way rather than testing them one by one

as was done in this study. Testing different seed values for the model itself (not the sampling

seed) to influence the initialization of the nodes may also result in the creation of a model with

higher accuracies.

In traditional methods of assessing bone, there is a reported accuracy for the method

given by the researcher(s) who developed the method. This reported accuracy is cited and

used as a baseline when testing the method, but in reality the reported accuracy is probably

the best-case scenario. Even in cases where a researcher both developed and tested their

method on a holdout sample, their reported accuracies for the training and evaluation datasets

tend to be higher than what can be achieved by other researchers due to interobserver error (a

topic that is discussed in Lam et al. 2016). The training accuracy of a neural network is therefore

analogous to the reported accuracy associated with a given method, and the evaluation accu-

racy is representative of the method’s actual performance, similar to when other researchers

test a given method on a different dataset. The two major advantages with neural networks is

that 1) the method’s performance is computed simultaneously with the creation of the model,

so there is no need to wait for other researchers to test the model in order to have an idea of

the model’s applicability to other datasets; and 2) the performance of the neural network will

not vary according to the researcher.

One major limitation of the use of neural networks is that the performance of the neural

network only indicates the probability that a sample belongs to a given category. This is in con-

trast to the posterior probability (discussed in Chapter 1 (Introduction & Background)) which

indicates the probability that a given sample was correctly categorized. At the moment, there

is no way to calculate the posterior probability for a neural network, meaning that the suitability

of the neural network to classify a given sample cannot be evaluated. This is an open research

problem in the field of computer science that currently does not have a well-established solu-

tion. Consequently, the use of neural networks in forensic applications is limited, since forensic

analyses require the ability to interpret whether a given sample is appropriately analyzed by

a given method. Despite this limitation, what would strengthen the results of using a neural

network is to modify the output such that the probability density for a given, unknown sample is
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reported. In this manner, the probability that an unknown individual belongs to each available

category can be provided along with the performance of the neural network so that the resulting

categorization is more transparent and can be further interpreted by an analyst. Therefore, the

fact that neural networks can provide a reliable quantification as to its performance is a major

step in being recognized in court, since it satisfies one of the Daubert criteria (1993).

No researcher has attempted to use deep learning on point cloud data of crania for sex

classification, so the only comparable studies to this one are those that fall under the cate-

gory of landmark-based GMM studies identified in Chapter 1 (Introduction & Background). As

previously discussed, these studies use craniometric landmarks and measurements for their

analyses which create a more abstract geometric shape for analysis. In this study, 2500 points

were used in the analysis - two orders of magnitude greater than any landmark-based study.

The advantage to using such a high number of points is that the true geometric shape of crania

is better represented and the shape information is better preserved. There is also the limita-

tions of the mathematical tools used by other studies to consider. Some methods, such as

FORDISC (Jantz and Ousley 2005) use made-to-order discriminant functions, which are not

complex enough to create a robust mathematical model encompassing the variation between

samples belonging to the same category. It is also common practice in osteology/archaeology

to use Principal Components Analysis (PCA) for data clustering such that classifications are

made based on a given sample’s distance from the center of the cluster (e.g. Luo et al. 2013;

Chovalopoulou and Bertsatos 2018). The intended purpose of PCA, however, is not as a clas-

sification method. Instead, PCA is a method that attempts to explain the variance in a given

dataset, by identifying how certain factors explain the variance in the dataset (Jolliffe 2002).

For example, in two-dimensional PCA analyses, factor 1 and factor 2 are two abstract factors

and it is up to the researcher to interpret what those factors are given their knowledge of the

data. PCA is therefore - and should be used as - an investigative tool that can help direct fur-

ther analyses. PCA is appropriate for establishing the distance between different clusters, but

this distance is not a direct way to determine whether something belongs to a given category.

Conversely, deep learning is a method that specifically addresses the problem of classifica-

tion, and has been well-established as a suitable tool for such a task (Goodfellow et al. 2016).

Applying deep learning to classification problems, such as sex and population classification, is

therefore a much more appropriate method of analysis than those commonly used in biological

anthropology studies.
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Although population classification was not the focus of this PhD project, the creation

of three population classification models yielded results previously unseen in the literature - a

model with a theoretical accuracy of 100.0% and 97.5% accuracy in practice. Even Ances-

Trees (Navega et al. 2015), a decision trees machine learning method tested on European and

African samples, did not perform as well. When testing AncesTrees on a dataset that consisted

of individuals from six ancestral groups, only 75.0% of African individuals and 79.2% of Eu-

ropean individuals were correctly categorized; when a model was created that only included

these two groups, the performance increased to 93.8%. The results in this PhD project are

therefore much better than those of AncesTrees, since an accuracy of 97.5% was achieved

using double the number of population groups for population classification only. Considering

the population-specific sex classification, the achieved accuracy in this project was 87.5%, al-

though 100% of individuals were correctly classified by population. To put these results into

context, the AncesTrees model using only European andAfrican individuals had a 50% chance

of correctly classifying an individual whereas in this project, there was a 25% chance of cor-

rect classification for the population model, and 12.5% chance of correct classification for the

population-specific sex classification model. The ability to achieve a test accuracy comparable

and even higher than what was achieved by AncesTrees is therefore not a small feat. There

are two possible reasons for the huge discrepancy between the accuracies from AncesTrees

and the models from this study - the first is the simple fact that deep learning is much better

suited for classification tasks than decision trees (Goodfellow et al. 2016), and the second is

that the models produced in this project used 2500 points that represent the entire geometry of

the cranium whereas AncesTrees used 23 craniometric measurements that do not capture the

entire geometric shape.

The results of this study are applicable to forensic anthropology because they present

three new models with unprecedented accuracies and performance which can aid in skeletal

identification. These models will need to be investigated more in order to test the models’ true

performance on external samples, but the fact that an evaluation accuracy is provided means

that a known error rate has been established, meeting one of the criteria of the Daubert stan-

dards (Daubert v. Merrell Dow Pharmaceuticals 1993). Testing and developing these models

on larger datasets from even more populations would also improve the ability of the models

to be generalized while maintaining high performance. Finally, providing an output of what

geometric information the model is actually using will help analysts improve current existing
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techniques of both morphological and metric assessments of the cranium.



Chapter 6

Directions for Future Research

The purpose of this PhD project was to create a new method of sex assessment for cra-

nia using 3D point cloud data andmachine learning, and to compare this newmethod to existing

morphological assessments. The output of this project has actually created three methods of

assessment instead of the original one - a global method of sex assessment, a method for

assessing ancestry/population (which was a byproduct of this project and not the focus), and

a population-specific sex assessment method. In fact, three models for sex assessment, three

models for ancestry/population, and one model for sex assessment have been produced, all

with accuracies and performances that exceeded the initial expectations. This PhD project has

therefore successfully provided a proof of concept as to how deep learning can be a valuable

tool for addressing fundamental research questions, such as those pertaining to the creation of

a biological profile in bioarchaeology and in forensic anthropology. Its applicability to forensic

anthropology is further established by meeting several of the requirements regarding the fourth

Daubert criteria (Daubert v. Merrell Dow Pharmaceuticals (1993)) pertaining to the scientific

methodology - the models created from deep learning are testable and have been tested in this

project; there is a known and potential error rate, given by the accuracy of the training dataset

(i.e. the model itself) and the accuracy of the evaluation dataset (i.e. the performance), respec-

tively; and the testing was subject to proper standards and controls through the use of holdout

samples that were not involved in the creation of the models. Therefore, what remains in order

to completely satisfy the requirements of the fourth Daubert criteria are: subjecting these three

models to peer review and publication, such that the true performance of the model can be
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tested further; and to have the models, as well as the application of deep learning for sex and

population classification, be accepted by the scientific community.

Two methods exist in order to make the models accessible for peer review or even for

use by an analyst. The first method is to simply export the state of the trained neural networks

into a repository. The end user would then access the repository and run it with their data, which

should be transformed in the same manner as what was done in this project, i.e. with 2500

points randomly subsampled. The output would then be a classification of their data. The major

limitation to exporting the state of the models, however, is that the file size is large (i.e. between

3 - 6 GB), and therefore cannot be easily accommodated by free online repositories due to

upload and download speeds as well as the size limitations imposed by the online repository

itself (e.g. Github imposes a 100 MB/file limit and BitBucket’s Large File Storage (LFS) free

account has a 1 GB overall storage limit). The second method is therefore to only export the

training data and the training parameters such that the end user can generate the state of

the model themselves. However, the end user would need to do so on a hard drive that has

sufficient space to store the model locally. The user would also have access to all of the training

data which would have ethical implications since the data would include the 3D representation

of skeletal remains and the associated personal information such as age, sex, and population.

It can be argued that the first method of exporting the state of the neural network poses a similar

ethical problem because all of this sensitive information is provided in an aggregated format,

though less readily accessible/readable to a human browsing the file. Without a carefully laid-

out plan for commercializing and/or disseminating the output from this research project - which

at the very least must include a plan for funding the data storage, ensuring the security of the

data, and addressing ethical issues surrounding the dissemination of the data - it will not be

possible to subject the neural networks to peer review.

The use of a computer program to assess skeletal samples is an invaluable tool, but a

program should not replace a human analyst. Therefore, an important aspect of this research

project was to create a computer program that can offer an improved performance pertaining

to current osteological assessments, as well as to provide a tool for improving human analysts

themselves in performing osteological assessments. The latter is especially important when

a quick but accurate assessment needs to be undertaken in circumstances that preclude the

ability to scan a sample and use a program to compare it - for example, in a forensic context
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when human remains are found in the field, police will need an immediate answer as to whether

or not the remains are consistent with the suspected missing person, or if it is another individual

that could possibly be involved. Sex, ancestry, and age therefore need to be quickly but accu-

rately assessed by the consulting forensic anthropologist/archaeologist. It is therefore vital to

continue to use computers as tools to improve current methods and not as replacements for

them, and this mindset was maintained throughout this research project. Unfortunately, deep

learning at the moment does not return an output that allows an analyst to understand what

makes a model successful - namely, the output is limited to the solution and the state of the

model, which does not allow scrutiny into what geometric features/combination of geometric

features were found to be useful for the classification task. This inability to provide an output

that is open to further scrutiny is a major obstacle for deep learning to be accepted and widely

used in forensic anthropology - the output, similar to what is provided by 3D-ID (Ross et al.

2010) and AncesTrees (Navega et al. 2015), is merely a result of whether an individual has

been classified as male or female, and/or into which population. There is no ability to interpret

the results or to gauge the possibility whether that individual falls within the small percentage of

incorrectly classified individuals. A wrong classification affects the biological profile created for

an individual, and has drastic implications in both bioarchaeology and forensic anthropology.

Computer programs should therefore not be used on their own, and their results should always

be interpreted jointly with the results of an analyst’s own assessments.

In order for the creation of the three methods of sex and population classification to be

possible to begin with, it was necessary to establish the 3D ground-truth database of cranial

point clouds. It is the hope of this PhD researcher that with proper permissions and ethical

considerations, such data will become more accessible to researchers in the form of a proper

database. A proper database is not simply a collection of data with associated information, but

is actually a formalized structure by which data can be stored, accessed, and modified. The

creation and maintenance of a proper database belongs to the realm of computer science and

is beyond the scope of this project; as a result, the concept of a database will not be discussed

further (N.B. for a discussion on the proper implementation of a research-oriented database

containing sensitive material, refer to the thesis by Pillin (2019)). There is difficulty in creating a

collaborative database of human skeletal material due to ethical concerns - namely, how to pre-

vent misuse of such material and ensure restricted access. With computer programs, however,

access to such a database can be restricted such that the information can be accessed by a
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program but cannot be visualized by the researcher. For example, in this project a program was

created in Python that automatically browsed a file folder, found all of the .obj files, browsed and

stored the associated sex and population information from a .csv file, and was able to return

the results of PointNet’s performance in a Linux terminal. None of these steps required the files

to be opened or any of the cranial data to be seen by the researcher. In this way, the misuse

of the visual representation of human remains can be eliminated, while allowing researchers

globally to access a 3D database with immense research potential. Programs, such as the

one that was created as part of this project, can be written by independent analysts to verify

existing analyses or to create new ones. By sharing virtual ground-truth data with researchers

and building one large database while respecting ethical boundaries, research potential will

increase drastically and new methods with more robust statistical conclusions can be created.

With the precedent set by studies such as this one where high accuracies (i.e. above

90%) are obtained for classification methods, it is prudent to reconsider the 80% threshold that

has traditionally been utilized as an indicator of an acceptable method in forensic anthropology.

It is clear that the utility of machine learning can far surpass this threshold, so it follows that the

performance of such methods utilized for legal purposes also be held to higher standards. With

the development of machine learning research, and with studies that test the applicability of its

numerous algorithms, the expectations for methods applied to forensic anthropology should be

made more rigorous. One important direction which this PhD project highlights is the issue of

deep learning algorithms returning results that currently cannot be linked to tangible factors. To

do so, it would first be necessary to create a program that can automatically recognize cran-

iometric points on the cranium (which would be best accomplished by only using those points

which can be defined metrically - e.g. euryon, which is defined as the points on the cranium

that give the widest cranial breadth, could be metrically determined by defining the maximum

distance of a point cloud in a given plane). A given radius surrounding certain craniometric

points could define the boundaries of the geometric shape corresponding to the morphological

traits used in this project (e.g. defining a set radius around opisthocranion, which is the most

posterior point of the cranium that is not on the external occipital protuberance, would be equiv-

alent to assessing the shape of the occipital protuberance itself, given that the radius includes

this feature).

Once the automatic detection of craniometric landmarks andmetrically-definedmorpho-
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logical features are established, two approaches could be taken. First, a supervised machine

learning approach, in which the data are labelled according to sex and population, would allow

the determination of which craniometric points and/or morphological features are most infor-

mative regarding correct classification because the traits that resulted in correct classification

could be ranked according to performance. This approach would provide insight into what

characteristics are actually useful for sex and ancestry classification, allowing a better under-

standing of which traits are globally useful for sex assessment and which ones are population

specific. The results would also provide insight into whether the successful performances in

the models produced in this PhD project were due to the fact that deep learning was used,

or because 2500 points that represent the geometry of the cranium were used, rather than the

standard craniometric points which number far less. Secondly, an unsupervised machine learn-

ing approach could be undertaken to create grouped clusters from the data. It would then be

possible to understand the combinations of craniometric points and morphological traits, and

how these combinations are actually useful in sex and ancestry classification. The clustering

based on these craniometric points and traits could be compared to the correct classification

rates, which would allow insight into how the cranial traits are applicable and useful for identify-

ing sex and ancestry in different populations. For example, if two clusters are identified by the

program which correspond to a male and female group, it can be inferred that the combination

of traits used for this clustering are not population-specific. The results of such a model could

be compared to the global sex classification models produced in this project to determine if it is

possible that the same traits were weighted more heavily in this project. Conversely, if multiple

clusters are created which correspond to specific sex and ancestry groups (e.g. Italian males

vs. Japanese females), the traits used can be inferred to be useful and affected by both sex

and population. The results of the unsupervised machine learning could then be compared to

the population-specific sex classification results achieved in this project to provide insight, once

again, into which traits were weighted most heavily in the neural network models. In conclu-

sion, the supervised machine learning approach could determine which traits are useful and to

what extent, whereas the unsupervised approach would investigate how these traits are use-

ful, and in what combination. Combining the results of unsupervised and supervised machine

learning would therefore be a powerful analytical approach to understanding and interpreting

sexual dimorphism in different populations, and would be the next step in building upon - and

understanding the neural networks created from - the research in this PhD project.



CHAPTER 6. DIRECTIONS FOR FUTURE RESEARCH 158

Another direct extension of this PhD project is to test the performance of the population-

agnostic sex assessment models produced in this project on samples that do not belong to any

of the four populations represented in the dataset. The performance of classifying sex on in-

dividuals that are unlike those used to train the neural networks would indicate how robust the

population-agnostic sex assessment models are to external samples, and would also provide

insight into whether the “global” sex assessment models truly can be considered “global”. Test-

ing the models on North American individuals, especially those who are descendants from the

geographical populations represented in this project, would provide results that could be used

to address the question of whether or not the environment has impacted cranial morphology in

a manner that distinguishes North American individuals from their ancestrally genetic counter-

parts. Finally, the acquisition of samples from populations that are not represented in this project

could be incorporated into the training of the neural network to increase the model’s ability to

be generalized to other populations, provided that the samples have associated ground-truth

information. Consequently, the models could be further improved both in terms of performance

and generalization.

This PhD project used PointNet’s classification algorithm, which has now been suc-

cessfully applied to cranial point cloud data, and sets the groundwork for future research to

investigate the applicability of PointNet’s other algorithm which focuses on segmentation. The

segmentation task in deep learning creates a neural network in which geometric shapes are

recognized and classified even if the input is incomplete. This has tremendous potential in

both bioarchaeology and in forensic anthropology, because bone fragments are often found in

both contexts due to trauma the individual could have sustained in life, post-mortem damage,

or excavation damage. If a neural network was created to recognize all the different bones

in the human skeleton, bone fragments that are otherwise visually unidentifiable could poten-

tially be identified through such a geometric analysis. Furthermore, if a hypothetical neural

network were trained on different human bones from different age, sex, and population cate-

gories with ground-truth information, the ability to identify a bone fragment could also return the

most likely age, sex, and/or population category to which the fragment belongs. The ability of

deep learning to be able to classify bones that are visually indeterminate has been established

in this PhD project, so it is quite possible that it can perform well when applied to identifying

biological characteristics from bone fragments. The success of such a hypothetical neural net-

work, however, would be highly dependent on creating a large enough dataset with associated
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ground-truth information, which would be difficult especially for bone fragments. Nevertheless,

the segmentation algorithm provided by PointNet should be explored.

Expanding on the premise of applying machine learning to fragmentary remains, it

should be noted that both autopsied and non-autopsied crania were present in all of the dif-

ferent skeletal collections, and there were individuals whose crania had damaged or missing

sections. The high performance of the neural networks on both the evaluation and training

dataset allows for an important conclusion to be made: the information that is required for sex

and population classification was acceptably represented by 2500 points, and the information in

the missing parts was not essential. This conclusion is very promising for the application of the

neural networks generated in this research project to fragmentary remains. It would therefore

be interesting to test the neural networks’ ability to classify even more fragmentary remains,

perhaps both with and without PointNet’s segmentation algorithm.

In conclusion, this PhD project has established a quantitative method of comparing point

cloud data, and has also been the first to apply deep learning algorithms to point cloud data

representing the entire geometry of crania in order to classify individuals into sex, population,

and population-specific sex categories. As a result, this PhD project adds to the wide array

of tools and methods that already exist for establishing the biological profile of a skeletonized

individual. From discriminant function analysis to PCA to decision trees; from craniometric

landmarks to point cloud data, it is clear that there is not one catch-all method that is the best.

The wide range of analyses that researchers use in physical anthropology is a testament to

the creative ways in which different individuals decide to use different tools, which allow the

knowledge of the field to grow and expand. It is the hope of this PhD researcher that the

current players in the field of bioarchaeology, biological anthropology, and forensic anthropology

continue to keep an open mind to new applications and new methods such that the field can

continue to improve while staying rooted in sound scientific methods.
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 University Ethics Sub-Committee for Science and Engineering 
and Arts Humanities 

 
 

 
27/02/2016 
 
Ethics Reference: 5474-jfl6-scharchaeolgy&anchist 
 
TO: 
Name of Researcher Applicant: Jessica Lam 
Department: Archaeology & Ancient History 
Research Project Title: Using Novel 3D Comparative Techniques to Assess Skeletal Remains 
  
  
 
Dear Jessica Lam,  
 
RE:  Ethics review of Research Study application 
 
The University Ethics Sub-Committee for Science and Engineering and Arts Humanities has 
reviewed and discussed the above application.  
 
1. Ethical opinion 
 
The Sub-Committee grants ethical approval to the above research project on the basis 
described in the application form and supporting documentation, subject to the conditions 
specified below. 
 
2. Summary of ethics review discussion  
 
The Committee noted the following issues:  
We are approving the application on the understanding that the personal information 
collected would be age, sex, the population to which the individual belongs, and any 
disease/pathology and/or trauma that could affect the subsequent analysis, and that no 
recording of names of individuals will take place. Instead each individual will be assigned an 
individual or sample number. 
 
3.  General conditions of the ethical approval 
 
The ethics approval is subject to the following general conditions being met prior to the start 
of the project: 
 
As the Principal Investigator, you are expected to deliver the research project in accordance 
with the University’s policies and procedures, which includes the University’s Research Code 
of Conduct and the University’s Research Ethics Policy. 
 
If relevant, management permission or approval (gate keeper role) must be obtained from 
host organisation prior to the start of the study at the site concerned. 
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4.  Reporting requirements after ethical approval 
 
You are expected to notify the Sub-Committee about: 

 Significant amendments to the project 

 Serious breaches of the protocol 

 Annual progress reports 

 Notifying the end of the study 
 
5. Use of application information 
 
Details from your ethics application will be stored on the University Ethics Online System. 
With your permission, the Sub-Committee may wish to use parts of the application in an 
anonymised format for training or sharing best practice.  Please let me know if you do not 
want the application details to be used in this manner. 
 
 
Best wishes for the success of this research project. 
 
 
Yours sincerely, 
 
Prof. Paul Cullis  
Chair 
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Jessica Frances Lam 
jfl6@le.ac.uk 

University of Leicester 
INTREPID Forensics Programme 

                  pg. _____ / _____ 

<Name of Skeletal 

Collection> 
 

Individual Reference #: ________________   Date of Assessment: _________________________ 
                 (MM/DD/YY) 

Photo # Range: _______________________    

 
Sex Assessment – Buikstra & Ubelaker’s Standards and Williams & Rogers’ Traits 

Trait Visualization & Score (circle) 

Nuchal Crest 
(Lateral profile) 

 
Rugosity associated to attachment of 
nuchal musculature; ignore contour of 
underlying bone 

 
 
 
 
 
 
1 = smooth, no bony projections visible in lateral profile 
5 = massive nuchal crest that projects a considerable distance; well-defined bony ledge or hook 

Mastoid Process 
(Assess R & L) 

Compare size with surrounding structures 
(e.g. EAM & zygomatic process); most 
important variable is volume of mastoid 
process, not length 

 
 
 
 
 
 
1 = very small process; projects a small distance below inferior margin of EAM & digastric groove 
5 = length and width several times that of EAM 

Supra-Orbital Margin 
(Assess R & L) 

Hold finger against margin of orbit at lateral 
aspect of supraorbital foramen; hold edge 
of orbit between fingers to determine 
thickness 

 
 
 
 
 
 
1 = extremely sharp bolder, e.g. slightly dulled knife 
2 = thick, rounded margin with curvature approximating a pencil 

Supra-Orbital Ridge/ 
Glabella 

(Lateral profile) 
 

Compare with diagrams 

 
 
 
 
 
 
 
1 = smooth contour of frontal, little or no projection at midline 
5 = massive glabellar prominence, rounded loaf-shaped projection (well-developed) 

Zygomatic Extension 
(Assess R & L) 

 
1 = does not extend past EAM                                                                                  5 = extends past EAM 
 

Nasal Aperture 
 
1 = lower, wider, rounded margins          3 = intermediate                     5 = high, thin, sharp margins 
 

Size & Architecture 
 
1 = small/smooth                                         3 = intermediate                                             5 = big/rugged 
 

Mental Eminence 
 

Hold mandible with thumbs on either side 
of mental eminence; move thumbs medially 
until they delimit the lateral borders 

 
 
 
 
 
 
1 = little or no projection of mental eminence above surrounding bone 
5 = massive mental eminence; occupies most of the anterior portion of mandible 

 

Comments: _____________________________________________________________________________________ 

_______________________________________________________________________________________________ 

Visual Sex 

Assessment 

 

 

 

 

 

 small-medium 

 

 

 

 

 

 
small-medium medium-large 

medium-large 
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Jessica Frances Lam 
jfl6@le.ac.uk 

University of Leicester 
INTREPID Forensics Programme 

                  pg. _____ / _____ 

<Name of Skeletal 

Collection> 
 

Individual Reference #: ________________   Date of Assessment: _________________________ 
                 (MM/DD/YY) 

 
Sex Assessment – Buikstra & Ubelaker’s Standards and Williams & Rogers’ Traits 

Trait Visualization & Score (circle) 

Nuchal Crest 
(Lateral profile) 

 
Rugosity associated to attachment of 
nuchal musculature; ignore contour of 
underlying bone 

 
 
 
 
 
 
1 = smooth, no bony projections visible in lateral profile 
5 = massive nuchal crest that projects a considerable distance; well-defined bony ledge or hook 

Mastoid Process 
(Assess R & L) 

Compare size with surrounding structures 
(e.g. EAM & zygomatic process); most 
important variable is volume of mastoid 
process, not length 

 
 
 
 
 
 
1 = very small process; projects a small distance below inferior margin of EAM & digastric groove 
5 = length and width several times that of EAM 

Supra-Orbital Margin 
(Assess R & L) 

Hold finger against margin of orbit at lateral 
aspect of supraorbital foramen; hold edge 
of orbit between fingers to determine 
thickness 

 
 
 
 
 
 
1 = extremely sharp bolder, e.g. slightly dulled knife 
2 = thick, rounded margin with curvature approximating a pencil 

Supra-Orbital Ridge/ 
Glabella 

(Lateral profile) 
 

Compare with diagrams 

 
 
 
 
 
 
 
1 = smooth contour of frontal, little or no projection at midline 
5 = massive glabellar prominence, rounded loaf-shaped projection (well-developed) 

Zygomatic Extension 
(Assess R & L) 

 
1 = does not extend past EAM                                                                                  5 = extends past EAM 
 

Nasal Aperture 
 
1 = lower, wider, rounded margins          3 = intermediate                     5 = high, thin, sharp margins 
 

Size & Architecture 
 
1 = small/smooth                                         3 = intermediate                                             5 = big/rugged 
 

Mental Eminence 
 

Hold mandible with thumbs on either side 
of mental eminence; move thumbs medially 
until they delimit the lateral borders 

 
 
 
 
 
 
1 = little or no projection of mental eminence above surrounding bone 
5 = massive mental eminence; occupies most of the anterior portion of mandible 

 
Comments: _____________________________________________________________________________________ 

_______________________________________________________________________________________________ 

Visual Sex 

Assessment 

(Intraobserver Error) 

 

 

 

 

 

 small-medium 

 

 

 

 

 

 
small-medium medium-large 

medium-large 
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Jessica Frances Lam 
jfl6@le.ac.uk 

University of Leicester 
INTREPID Forensics Programme 

10 samples per side                  pg. _____ / _____ 

<Skeletal Collection> 

1 = complete (~100%)   2 = fairly complete (> 75%)   3 = incomplete (<75%) / fragmented 

Individual # Cranium (circle) Scanning Parameters Mandible (circle) Scanning Parameters 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

  
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

 
1             2             3 

 
Exposure: 
 
 
Brightness: 

 

3D Models: 

List of Scans & Parameters 



APPENDIX C: Trait Distribution Graphs for

the SB Collection

178



APPENDIX C. SB TRAIT DISTRIBUTION GRAPHS 179

C.1 Nuchal Crest

Figure C.1: The distribution of the nuchal crest trait expression in the SBCollection represented

using a bar chart. Females are in blue while males are in orange.

Figure C.2: A boxplot distribution of nuchal crest scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table C.1: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the SB collection when comparing nuchal crest trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 18

M = 26

F = 2.0

M = 4.0

U = 330.0

p = 0.019

z = -1.79

r = -0.27

0.829

2
F = 22

M = 18

F = 2.0

M = 3.5

U = 272.5

p = 0.039

z = -4.85

r = -0.77

0.806

3
F = 20

M = 14

F = 2.0

M = 4.0

U = 233.0

p < 0.001

z = -4.09

r = -0.70

0.879

4
F = 20

M = 32

F = 3.0

M = 2.5

U = 277.5

p = 0.411

z = -4.75

r = -0.66

0.745

5
F = 48

M = 50

F = 2.0

M = 3.0

U = 1739.5

p << 0.001

z = -4.52

r = -0.46

0.820

6
F = 32

M = 32

F = 1.0

M = 4.0

U = 904.5

p << 0.001

z = -1.82

r = -0.23

0.878
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Figure C.3: A scatterplot of age vs. nuchal crest trait scoring for females in the SB collection,

with four fitting functions.

Figure C.4: A scatterplot of age vs. nuchal crest trait scoring for males in the SB collection,

with four fitting functions.
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C.2 Mastoid Process

Figure C.5: The distribution of the mastoid process trait expression in the SB Collection rep-

resented using a bar chart. Females are in blue while males are in orange.

Figure C.6: A boxplot distribution of mastoid process scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table C.2: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the SB collection when comparing mastoid process scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 32

M = 52

F = 1.0

M = 3.0

U = 1343.5

p << 0.001

z = -0.15

r = -0.02

0.830

2
F = 50

M = 38

F = 2.0

M = 3.0

U = 1195.0

p = 0.032

z = -8.68

r = -0.92

0.761

3
F = 34

M = 36

F = 1.5

M = 4.0

U = 1137.5

p << 0.001

z = -0.82

r = -0.10

0.924

4
F = 48

M = 58

F = 2.0

M = 3.0

U = 2109.0

p << 0.001

z = -2.91

r = -0.28

0.762

5
F = 94

M = 83

F = 2.0

M = 3.0

U = 6025.5

p << 0.001

z = -6.88

r = -0.52

0.810

6
F = 82

M = 68

F = 2.0

M = 3.0

U = 4374.5

p << 0.001

z = -6.86

r = -0.56

0.810
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Figure C.7: A scatterplot of age vs. mastoid process trait scoring for females in the SB collec-

tion, with four fitting functions.

Figure C.8: A scatterplot of age vs. mastoid process trait scoring for males in the SB collection,

with four fitting functions.
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C.3 Supraorbital Margin

Figure C.9: The distribution of the supraorbital margin trait expression in the SB Collection

represented using a bar chart. Females are in blue while males are in orange.

Figure C.10: A boxplot distribution of supraorbital margin scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.
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Table C.3: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the SB collection when comparing supraorbital margin scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 30

M = 38

F = 2.0

M = 2.0

U = 620.0

p = 0.518

z = -5.13

r = -0.62

0.702

2
F = 36

M = 29

F = 2.0

M = 2.0

U = 536.5

p = 0.846

z = -8.60

r = -1.07

0.742

3
F = 30

M = 28

F = 2.0

M = 3.0

U = 637.0

p < 0.001

z = -3.86

r = -0.51

0.762

4
F = 38

M = 43

F = 1.0

M = 3.0

U = 1189.0

p < 0.001

z = -3.49

r = -0.39

0.781

5
F = 74

M = 67

F = 2.0

M = 3.0

U = 3024.5

p = 0.020

z = -9.20

r = -0.78

0.763

6
F = 67

M = 50

F = 2.0

M = 2.0

U = 2078.0

p = 0.020

z = -10.33

r = -0.96

0.711
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Figure C.11: A scatterplot of age vs. supraorbital margin trait scoring for females in the SB

collection, with four fitting functions.

Figure C.12: A scatterplot of age vs. supraorbital margin trait scoring for males in the SB

collection, with four fitting functions.
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C.4 Glabella

Figure C.13: The distribution of the glabella trait expression in the SB Collection represented

using a bar chart. Females are in blue while males are in orange.

Figure C.14: A boxplot distribution of glabella scoring across different age categories for males

and females. Females are given in blue while males are in orange. The age categories are

defined in Table 2.2.
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Table C.4: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the SB collection when comparing glabella trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 12

M = 20

F = 1.0

M = 3.0

U = 213.0

p < 0.001

z = 0.58

r = 0.10

0.825

2
F = 20

M = 18

F = 1.0

M = 3.0

U = 307.0

p < 0.001

z = -2.43

r = -0.39

0.856

3
F = 18

M = 20

F = 1.0

M = 3.0

U = 330.0

p << 0.001

z = -0.61

r = -0.10

0.883

4
F = 20

M = 22

F = 1.0

M = 4.0

U = 415.5

p << 0.001

z = -0.37

r = -0.06

0.911

5
F = 46

M = 39

F = 1.0

M = 3.0

U = 1657.0

p << 0.001

z = -2.83

r = -0.31

0.904

6
F = 40

M = 31

F = 1.0

M = 4.0

U = 1119.5

p << 0.001

z = -3.72

r = -0.44

0.894
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Figure C.15: A scatterplot of age vs. glabella trait scoring for females in the SB collection, with

four fitting functions.

Figure C.16: A scatterplot of age vs. glabella trait scoring for males in the SB collection, with

four fitting functions.
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C.5 Zygomatic Extension

Figure C.17: The distribution of the zygomatic extension trait expression in the SB Collection

represented using a bar chart. Females are in blue while males are in orange.

Figure C.18: A boxplot distribution of zygomatic extension scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.
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Table C.5: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the SB collection when comparing zygomatic extension trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 33

M = 54

F = 1.0

M = 5.0

U = 1390.5

p << 0.001

z = -0.54

r = -0.06

0.652

2
F = 44

M = 34

F = 1.0

M = 5.0

U = 1143.0

p << 0.001

z = -6.00

r = -0.68

0.632

3
F = 38

M = 38

F = 1.0

M = 3.0

U = 779.0

p = 0.497

z = -7.11

r = -0.82

0.500

4
F = 46

M = 58

F = 1.0

M = 5.0

U = 1622.0

p = 0.028

z = -5.19

r = -0.51

0.515

5
F = 102

M = 94

F = 1.0

M = 5.0

U = 6672.0

p << 0.001

z = -8.51

r = -0.61

0.572

6
F = 78

M = 65

F = 1.0

M = 5.0

U = 3971.5

p << 0.001

z = -6.67

r = -0.56

0.661
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Figure C.19: A scatterplot of age vs. zygomatic extension trait scoring for females in the SB

collection, with four fitting functions.

Figure C.20: A scatterplot of age vs. zygomatic extension trait scoring for males in the SB

collection, with four fitting functions.
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C.6 Nasal Aperture

Figure C.21: The distribution of the nasal aperture trait expression in the SB Collection repre-

sented using a bar chart. Females are in blue while males are in orange.

Figure C.22: A boxplot distribution of nasal aperture scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table C.6: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the SB collection when comparing nasal aperture trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 10

M = 14

F = 1.0

M = 2.0

U = 80.0

p = 0.537

z = -2.63

r = -0.54

0.600

2
F = 18

M = 14

F = 1.0

M = 3.0

U = 152.5

p = 0.284

z = -5.49

r = -0.97

0.647

3
F = 13

M = 16

F = 1.0

M = 3.0

U = 148.0

p = 0.017

z = -2.06

r = -0.38

0.500

4
F = 18

M = 18

F = 1.0

M = 1.0

U = 179.0

p = 0.506

z = -4.87

r = -0.81

0.438

5
F = 34

M = 28

F = 1.0

M = 3.0

U = 621.0

p = 0.021

z = -6.37

r = -0.81

0.616

6
F = 32

M = 21

F = 1.0

M = 3.0

U = 489.5

p < 0.001

z = -6.81

r = -0.94

0.546
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Figure C.23: A scatterplot of age vs. nasal aperture trait scoring for females in the SB collec-

tion, with four fitting functions.

Figure C.24: A scatterplot of age vs. nasal aperture trait scoring for males in the SB collection,

with four fitting functions.
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C.7 Cranial Size

Figure C.25: The distribution of cranial size in the SB Collection represented using a bar chart.

Females are in blue while males are in orange.

Figure C.26: A boxplot distribution of cranial size scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table C.7: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the SB collection when comparing cranial size scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 12

M = 14

F = 1.0

M = 3.0

U = 115.5

p = 0.071

z = -2.39

r = -0.47

0.589

2
F = 22

M = 16

F = 1.0

M = 3.0

U = 272.0

p = 0.002

z = -4.64

r = -0.75

0.705

3
F = 18

M = 16

F = 1.0

M = 3.0

U = 279.0

p << 0.001

z = -1.24

r = -0.21

0.938

4
F = 18

M = 20

F = 1.0

M = 5.0

U = 316.0

p << 0.001

z = -1.02

r = -0.17

0.800

5
F = 43

M = 40

F = 1.0

M = 3.0

U = 1502.0

p << 0.001

z = -2.77

r = -0.30

0.784

6
F = 36

M = 28

F = 1.0

M = 3.0

U = 938.0

p << 0.001

z = -3.14

r = -0.39

0.873
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Figure C.27: A scatterplot of age vs. cranial size scoring for females in the SB collection, with

four fitting functions.

Figure C.28: A scatterplot of age vs. cranial size scoring for males in the SB collection, with

four fitting functions.



APPENDIX D: Trait Distribution Graphs for

the NU Collection

200



APPENDIX D. NU TRAIT DISTRIBUTION GRAPHS 201

D.1 Nuchal Crest

Figure D.1: The distribution of the nuchal crest trait expression in the NU Collection repre-

sented using a bar chart. Females are in blue while males are in orange.

Figure D.2: A boxplot distribution of nuchal crest scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table D.1: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the NU collection when comparing nuchal crest trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 2

M = 6

F = 1.0

M = 5.0

U = 12.0

p = 0.049

z = 1.00

r = 0.35

1.000

2
F = 2

M = 6

F = 1.0

M = 4.0

U = 12.0

p = 0.060

z = 1.00

r = 0.35

1.000

3
F = 6

M = 35

F = 1.5

M = 4.0

U = 201.0

p < 0.001

z = 2.77

r = 0.43

0.914

4
F = 8

M = 24

F = 2.0

M = 3.0

U = 152.0

p = 0.010

z = 0.87

r = 0.15

0.750

5
F = 27

M = 33

F = 2.0

M = 3.0

U = 594.0

p = 0.023

z = -3.41

r = -0.44

0.782

6
F = 64

M = 34

F = 2.0

M = 3.0

U = 1379.0

p = 0.025

z = -13.35

r = -1.35

0.770
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Figure D.3: A scatterplot of age vs. nuchal crest trait scoring for females in the NU collection,

with four fitting functions.

Figure D.4: A scatterplot of age vs. nuchal crest trait scoring for males in the NU collection,

with four fitting functions.
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D.2 Mastoid Process

Figure D.5: The distribution of the mastoid process trait expression in the NU Collection rep-

resented using a bar chart. Females are in blue while males are in orange.

Figure D.6: A boxplot distribution of mastoid process scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table D.2: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the NU collection when comparing mastoid process trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 12

F = 1.0

M = 3.0

U = 96.0

p << 0.001

z = 0.93

r = 0.21

1.000

2
F = 12

M = 12

F = 2.0

M = 3.0

U = 94.5

p = 0.186

z = -3.20

r = -0.65

0.785

3
F = 20

M = 72

F = 2.0

M = 3.0

U = 1091.5

p < 0.001

z = 1.53

r = 0.16

0.794

4
F = 16

M = 52

F = 1.0

M = 3.0

U = 807.5

p << 0.001

z = 3.69

r = 0.45

0.941

5
F = 76

M = 80

F = 2.0

M = 3.0

U = 4910.5

p << 0.001

z = -3.74

r = -0.30

0.831

6
F = 168

M = 72

F = 2.0

M = 3.0

U = 9232.0

p << 0.001

z = -22.34

r = -1.44

0.795
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Figure D.7: A scatterplot of age vs. mastoid process trait scoring for females in the NU collec-

tion, with four fitting functions.

Figure D.8: A scatterplot of age vs. mastoid process trait scoring for males in the NU collection,

with four fitting functions.
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D.3 Supraorbital Margin

Figure D.9: The distribution of the supraorbital margin trait expression in the NU Collection

represented using a bar chart. Females are in blue while males are in orange.

Figure D.10: A boxplot distribution of supraorbital margin scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.
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Table D.3: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the NU collection when comparing supraorbital margin trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 12

F = 1.0

M = 3.0

U = 96.0

p << 0.001

z = 0.93

r = 0.21

1.000

2
F = 10

M = 12

F = 2.0

M = 3.0

U = 113.0

p < 0.001

z = -0.13

r = -0.03

0.883

3
F = 20

M = 72

F = 1.0

M = 2.0

U = 1222.5

p << 0.001

z = 2.77

r = 0.29

0.774

4
F = 16

M = 52

F = 2.0

M = 2.0

U = 466.0

p = 0.446

z = -1.24

r = -0.15

0.668

5
F = 76

M = 80

F = 2.0

M = 2.0

U = 4531.5

p << 0.001

z = -5.09

r = -0.41

0.727

6
F = 166

M = 72

F = 2.0

M = 2.0

U = 8025.0

p << 0.001

z = -24.21

r = -1.57

0.682
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Figure D.11: A scatterplot of age vs. supraorbital margin trait scoring for females in the NU

collection, with four fitting functions.

Figure D.12: A scatterplot of age vs. supraorbital margin trait scoring for males in the NU

collection, with four fitting functions.
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D.4 Glabella

Figure D.13: The distribution of the glabella trait expression in the NU Collection represented

using a bar chart. Females are in blue while males are in orange.

Figure D.14: A boxplot distribution of glabella scoring across different age categories for males

and females. Females are given in blue while males are in orange. The age categories are

defined in Table 2.2.
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Table D.4: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the NU collection when comparing glabella trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 6

F = 1.0

M = 2.0

U = 22.0

p = 0.028

z = 0.00

r = 0.00

0.833

2
F = 5

M = 6

F = 1.0

M = 3.5

U = 30.0

p = 0.005

z = 0.00

r = 0.00

1.000

3
F = 10

M = 36

F = 1.0

M = 3.0

U = 344.0

p << 0.001

z = 2.90

r = 0.43

0.922

4
F = 8

M = 26

F = 1.0

M = 2.0

U = 170.0

p = 0.006

z = 1.22

r = 0.21

0.750

5
F = 36

M = 38

F = 2.0

M = 3.0

U = 1185.5

p << 0.001

z = -1.78

r = -0.21

0.783

6
F = 76

M = 30

F = 1.0

M = 2.0

U = 1897.0

p << 0.001

z = -15.21

r = -1.48

0.738
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Figure D.15: A scatterplot of age vs. glabella trait scoring for females in the NU collection, with

four fitting functions.

Figure D.16: A scatterplot of age vs. glabella trait scoring for males in the NU collection, with

four fitting functions.
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D.5 Zygomatic Extension

Figure D.17: The distribution of the zygomatic extension trait expression in the NU Collection

represented using a bar chart. Females are in blue while males are in orange.

Figure D.18: A boxplot distribution of zygomatic extension scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.
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Table D.5: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the NU collection when comparing zygomatic extension trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 12

F = 3.0

M = 5.0

U = 72.0

p = 0.009

z = -0.93

r = -0.21

0.500

2
F = 12

M = 12

F = 1.0

M = 5.0

U = 120.0

p < 0.001

z = -1.73

r = -0.35

0.667

3
F = 20

M = 72

F = 1.0

M = 5.0

U = 1076.0

p << 0.001

z = 1.38

r = 0.14

0.617

4
F = 16

M = 52

F = 5.0

M = 5.0

U = 470.0

p = 0.345

z = -1.19

r = -0.14

0.476

5
F = 76

M = 80

F = 5.0

M = 5.0

U = 3820.0

p < 0.001

z = -7.61

r = -0.61

0.411

6
F = 168

M = 72

F = 5.0

M = 5.0

U = 6756.0

p = 0.081

z = -27.37

r = -1.77

0.444
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Figure D.19: A scatterplot of age vs. zygomatic extension trait scoring for females in the NU

collection, with four fitting functions.

Figure D.20: A scatterplot of age vs. zygomatic extension trait scoring for males in the NU

collection, with four fitting functions.
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D.6 Nasal Aperture

Figure D.21: The distribution of the nasal aperture trait expression in the NU Collection repre-

sented using a bar chart. Females are in blue while males are in orange.

Figure D.22: A boxplot distribution of nasal aperture scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table D.6: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the NU collection when comparing nasal aperture trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 6

F = 5.0

M = 5.0

U = 11.0

p = 0.894

z = -2.35

r = -0.74

0.417

2
F = 6

M = 4

F = 3.0

M = 5.0

U = 18.0

p = 0.203

z = -3.20

r = -1.01

0.667

3
F = 10

M = 32

F = 1.0

M = 5.0

U = 214.0

p = 0.086

z = -0.03

r = -0.00

0.669

4
F = 8

M = 26

F = 2.0

M = 5.0

U = 144.5

p = 0.048

z = 0.18

r = 0.03

0.611

5
F = 36

M = 40

F = 3.0

M = 3.0

U = 870.5

p = 0.094

z = -5.36

r = -0.62

0.672

6
F = 80

M = 36

F = 1.0

M = 5.0

U = 1960.0

p < 0.001

z = -16.23

r = -1.51

0.644
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Figure D.23: A scatterplot of age vs. nasal aperture trait scoring for females in the NU collec-

tion, with four fitting functions.

Figure D.24: A scatterplot of age vs. nasal aperture trait scoring for males in the NU collection,

with four fitting functions.
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D.7 Cranial Size

Figure D.25: The distribution of cranial size in the NU Collection represented using a bar chart.

Females are in blue while males are in orange.

Figure D.26: A boxplot distribution of cranial size scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table D.7: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the NU collection when comparing cranial size scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 6

F = 1.0

M = 5.0

U = 24.0

p = 0.007

z = 0.43

r = 0.13

1.000

2
F = 6

M = 6

F = 1.0

M = 5.0

U = 35.0

p = 0.005

z = -0.64

r = -0.18

0.944

3
F = 10

M = 36

F = 1.0

M = 5.0

U = 311.0

p < 0.001

z = 2.02

r = 0.30

0.794

4
F = 8

M = 26

F = 1.0

M = 3.0

U = 191.0

p < 0.001

z = 2.07

r = 0.36

0.856

5
F = 38

M = 40

F = 1.0

M = 3.0

U = 1298.0

p << 0.001

z = -2.03

r = -0.23

0.808

6
F = 84

M = 36

F = 1.0

M = 3.0

U = 2348.0

p << 0.001

z = -15.66

r = -1.43

0.697
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Figure D.27: A scatterplot of age vs. cranial size scoring for females in the NU collection, with

four fitting functions.

Figure D.28: A scatterplot of age vs. cranial size scoring for males in the NU collection, with

four fitting functions.
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E.1 Nuchal Crest

Figure E.1: The distribution of the nuchal crest trait expression in theMLCollection represented

using a bar chart. Females are in blue while males are in orange.

Figure E.2: A boxplot distribution of nuchal crest scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table E.1: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the ML collection when comparing nuchal crest trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 2

M = 4

F = 2.0

M = 2.5

U = 6.0

p = 0.411

z = -0.46

r = -0.19

0.500

2
F = 2

M = 12

F = 3.0

M = 2.5

U = 10.0

p = 0.777

z = -0.91

r = -0.24

0.833

3
F = 8

M = 6

F = 2.0

M = 3.0

U = 45.5

p = 0.004

z = -1.87

r = -0.50

0.896

4
F = 6

M = 10

F = 1.0

M = 3.0

U = 52.0

p = 0.015

z = 0.11

r = 0.03

0.867

5
F = 16

M = 26

F = 2.0

M = 3.0

U = 269.0

p = 0.107

z = -1.94

r = -0.30

0.784

6
F = 106

M = 102

F = 2.0

M = 3.0

U = 8604.0

p << 0.001

z = -5.70

r = -0.40

0.764
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Figure E.3: A scatterplot of age vs. nuchal crest trait scoring for females in the ML collection,

with four fitting functions.

Figure E.4: A scatterplot of age vs. nuchal crest trait scoring for males in the ML collection,

with four fitting functions.
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E.2 Mastoid Process

Figure E.5: The distribution of the mastoid process trait expression in the ML Collection rep-

resented using a bar chart. Females are in blue while males are in orange.

Figure E.6: A boxplot distribution of mastoid process scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table E.2: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the ML collection when comparing mastoid process trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 8

F = 2.0

M = 4.0

U = 32.0

p = 0.002

z = 1.02

r = 0.29

1.000

2
F = 4

M = 24

F = 2.0

M = 4.0

U = 96.0

p < 0.001

z = 2.49

r = 0.47

1.000

3
F = 16

M = 12

F = 2.5

M = 4.0

U = 180.0

p << 0.001

z = -2.41

r = -0.46

0.875

4
F = 12

M = 20

F = 2.0

M = 4.0

U = 228.5

p << 0.001

z = 1.19

r = 0.21

0.921

5
F = 32

M = 52

F = 2.0

M = 3.0

U = 1295.0

p << 0.001

z = -0.60

r = -0.07

0.822

6
F = 211

M = 200

F = 2.0

M = 4.0

U = 33967.5

p << 0.001

z = -7.89

r = -0.39

0.819
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Figure E.7: A scatterplot of age vs. mastoid process trait scoring for females in the ML collec-

tion, with four fitting functions.

Figure E.8: A scatterplot of age vs. mastoid process trait scoring for males in the ML collection,

with four fitting functions.
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E.3 Supraorbital Margin

Figure E.9: The distribution of the supraorbital margin trait expression in the ML Collection

represented using a bar chart. Females are in blue while males are in orange.

Figure E.10: A boxplot distribution of supraorbital margin scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.
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Table E.3: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the ML collection when comparing supraorbital margin trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 8

F = 1.0

M = 3.0

U = 32.0

p = 0.003

z = 1.02

r = 0.29

1.000

2
F = 4

M = 24

F = 2.5

M = 2.5

U = 46.0

p = 0.916

z = -0.79

r = -0.15

0.625

3
F = 16

M = 12

F = 1.0

M = 2.0

U = 169.0

p < 0.001

z = -2.92

r = -0.55

0.802

4
F = 12

M = 20

F = 1.0

M = 2.5

U = 206.0

p < 0.001

z = 0.31

r = 0.06

0.783

5
F = 32

M = 52

F = 1.0

M = 2.0

U = 1126.0

p = 0.004

z = -2.16

r = -0.24

0.692

6
F = 212

M = 204

F = 2.0

M = 2.0

U = 28564.0

p << 0.001

z = -12.76

r = -0.63

0.719
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Figure E.11: A scatterplot of age vs. supraorbital margin trait scoring for females in the ML

collection, with four fitting functions.

Figure E.12: A scatterplot of age vs. supraorbital margin trait scoring for males in the ML

collection, with four fitting functions.



APPENDIX E. ML TRAIT DISTRIBUTION GRAPHS 232

E.4 Glabella

Figure E.13: The distribution of the glabella trait expression in the ML Collection represented

using a bar chart. Females are in blue while males are in orange.

Figure E.14: A boxplot distribution of glabella scoring across different age categories for males

and females. Females are given in blue while males are in orange. The age categories are

defined in Table 2.2.
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Table E.4: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the ML collection when comparing glabella trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 2

M = 4

F = 1.0

M = 2.5

U = 7.0

p = 0.219

z = 0.00

r = 0.00

0.750

2
F = 2

M = 12

F = 1.0

M = 3.0

U = 22.0

p = 0.074

z = 1.28

r = 0.34

0.833

3
F = 8

M = 6

F = 1.0

M = 3.5

U = 45.0

p = 0.005

z = -1.94

r = -0.52

0.875

4
F = 6

M = 10

F = 1.0

M = 3.0

U = 59.0

p = 0.001

z = 0.87

r = 0.22

0.967

5
F = 16

M = 26

F = 1.0

M = 4.0

U = 401.0

p << 0.001

z = 1.48

r = 0.23

0.928

6
F = 106

M = 101

F = 2.0

M = 3.0

U = 9336.5

p << 0.001

z = -3.92

r = -0.27

0.818
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Figure E.15: A scatterplot of age vs. glabella trait scoring for females in the ML collection, with

four fitting functions.

Figure E.16: A scatterplot of age vs. glabella trait scoring for males in the ML collection, with

four fitting functions.
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E.5 Zygomatic Extension

Figure E.17: The distribution of the zygomatic extension trait expression in the ML Collection

represented using a bar chart. Females are in blue while males are in orange.

Figure E.18: A boxplot distribution of zygomatic extension scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.
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Table E.5: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the ML collection when comparing zygomatic extension trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 8

F = 1.0

M = 5.0

U = 32.0

p = 0.001

z = 1.02

r = 0.29

1.000

2
F = 4

M = 24

F = 1.0

M = 1.0

U = 66.0

p = 0.156

z = 0.53

r = 0.10

0.375

3
F = 16

M = 12

F = 1.0

M = 1.0

U = 88.0

p = 0.624

z = -6.69

r = -1.26

0.333

4
F = 12

M = 20

F = 5.0

M = 5.0

U = 124.0

p = 0.865

z = -2.88

r = -0.51

0.433

5
F = 32

M = 52

F = 1.0

M = 3.0

U = 1014.0

p = 0.050

z = -3.19

r = -0.35

0.500

6
F = 212

M = 204

F = 1.0

M = 5.0

U = 25784.0

p << 0.001

z = -15.02

r = -0.74

0.518
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Figure E.19: A scatterplot of age vs. zygomatic extension trait scoring for females in the ML

collection, with four fitting functions.

Figure E.20: A scatterplot of age vs. zygomatic extension trait scoring for males in the ML

collection, with four fitting functions.
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E.6 Nasal Aperture

Figure E.21: The distribution of the nasal aperture trait expression in the ML Collection repre-

sented using a bar chart. Females are in blue while males are in orange.

Figure E.22: A boxplot distribution of nasal aperture scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table E.6: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the ML collection when comparing nasal aperture trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 2

M = 4

F = 5.0

M = 4.0

U = 2.0

p = 0.402

z = -2.31

r = -0.94

0.500

2
F = 2

M = 12

F = 3.0

M = 1.0

U = 9.0

p = 0.620

z = -1.10

r = -0.29

0.917

3
F = 7

M = 6

F = 1.0

M = 1.0

U = 17.5

p = 0.619

z = -4.50

r = -1.25

0.548

4
F = 6

M = 10

F = 3.0

M = 3.0

U = 33.5

p = 0.728

z = -1.90

r = -0.47

0.650

5
F = 12

M = 21

F = 1.0

M = 1.0

U = 163.0

p = 0.106

z = -1.53

r = -0.27

0.500

6
F = 100

M = 91

F = 1.0

M = 5.0

U = 6526.0

p << 0.001

z = -8.06

r = -0.58

0.671
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Figure E.23: A scatterplot of age vs. nasal aperture trait scoring for females in the ML collec-

tion, with four fitting functions.

Figure E.24: A scatterplot of age vs. nasal aperture trait scoring for males in the ML collection,

with four fitting functions.
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E.7 Cranial Size

Figure E.25: The distribution of cranial size in the ML Collection represented using a bar chart.

Females are in blue while males are in orange.

Figure E.26: A boxplot distribution of cranial size scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Table E.7: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the ML collection when comparing cranial size scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 2

M = 4

F = 1.0

M = 2.0

U = 6.0

p = 0.411

z = -0.46

r = -0.19

0.500

2
F = 2

M = 12

F = 2.0

M = 3.0

U = 20.5

p = 0.096

z = 1.00

r = 0.27

0.708

3
F = 8

M = 6

F = 1.0

M = 1.0

U = 26.0

p = 0.805

z = -4.39

r = -1.17

0.417

4
F = 6

M = 10

F = 1.0

M = 4.0

U = 57.0

p = 0.002

z = 0.65

r = 0.16

0.900

5
F = 16

M = 26

F = 1.0

M = 3.0

U = 331.0

p < 0.001

z = -0.34

r = -0.05

0.668

6
F = 106

M = 102

F = 1.0

M = 3.0

U = 8827.5

p << 0.001

z = -5.18

r = -0.36

0.723
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Figure E.27: A scatterplot of age vs. cranial size scoring for females in the ML collection, with

four fitting functions.

Figure E.28: A scatterplot of age vs. cranial size scoring for males in the ML collection, with

four fitting functions.
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F.1 Nuchal Crest

Figure F.1: The distribution of the nuchal crest trait expression in the PRCollection represented

using a bar chart. Females are in blue while males are in orange.

Figure F.2: The distribution of the nuchal crest trait expression in “Black” individuals from the

PR Collection represented using a bar chart. Females are in yellow while males are in green.
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Figure F.3: The distribution of the nuchal crest trait expression in “White” individuals from the

PR Collection represented using a bar chart. Females are in purple while males are in cyan.

Figure F.4: A boxplot distribution of nuchal crest scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.
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Figure F.5: A boxplot distribution of nuchal crest scoring across different age categories for

“Black” males and females. Females are given in yellow while males are in green. The age

categories are defined in Table 2.2.

Figure F.6: A boxplot distribution of nuchal crest scoring across different age categories for

“White” males and females. Females are given in purple while males are in cyan. The age

categories are defined in Table 2.2.
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Table F.1: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the PR collection when comparing nuchal crest trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 14

F = 1.5

M = 2.0

U = 36.0

p = 0.396

z = -0.21

r = -0.05

0.643

2
F = 10

M = 8

F = 1.0

M = 1.5

U = 44.0

p = 0.718

z = -4.53

r = -1.07

0.500

3
F = 20

M = 10

F = 1.0

M = 2.5

U = 161.5

p = 0.003

z = -6.53

r = -1.19

0.775

4
F = 18

M = 30

F = 1.0

M = 2.0

U = 489.0

p << 0.001

z = 1.02

r = 0.15

0.844

5
F = 22

M = 18

F = 1.0

M = 3.0

U = 311.0

p = 0.001

z = -3.81

r = -0.60

0.808

6
F = 74

M = 65

F = 1.0

M = 3.0

U = 3898.0

p << 0.001

z = -5.41

r = -0.46

0.792



APPENDIX F. PR TRAIT DISTRIBUTION GRAPHS 249

Table F.2: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “Black” individuals from the PR collection when comparing nuchal crest

trait scoring. Results that indicate a statistically significant difference (p < 0.05) are given in

blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 12

F = 1.5

M = 2.0

U = 34.0

p = 0.221

z = 0.00

r = 0.00

0.667

2
F = 10

M = 8

F = 1.0

M = 1.5

U = 44.0

p = 0.718

z = -4.53

r = -1.07

0.500

3
F = 18

M = 6

F = 1.0

M = 2.0

U = 78.0

p = 0.070

z = -9.80

r = -2.00

0.704

4
F = 15

M = 12

F = 1.0

M = 3.0

U = 174.0

p << 0.001

z = -1.76

r = -0.34

0.933

5
F = 12

M = 8

F = 1.0

M = 2.5

U = 78.0

p = 0.016

z = -3.70

r = -0.83

0.792

6
F = 4

M = 2

F = 1.0

M = 2.0

U = 8.0

p = 0.050

z = -2.78

r = -1.13

1.000
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Table F.3: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “White” individuals from the PR collection when comparing nuchal crest

trait scoring. Results that indicate a statistically significant difference (p < 0.05) are given in

blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 2

F = N/A

M = 1.0

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 2

M = 4

F = 1.0

M = 3.0

U = 8.0

p = 0.080

z = 0.46

r = 0.19

1.000

4
F = 3

M = 18

F = 1.0

M = 2.0

U = 49.5

p = 0.018

z = 1.66

r = 0.36

0.833

5
F = 10

M = 10

F = 1.5

M = 3.0

U = 76.5

p = 0.043

z = -2.15

r = -0.48

0.830

6
F = 70

M = 63

F = 1.0

M = 3.0

U = 3550.0

p << 0.001

z = -5.14

r = -0.45

0.792

Figure F.7: A scatterplot of age vs. nuchal crest trait scoring for females in the PR collection,

with four fitting functions.
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Figure F.8: A scatterplot of age vs. nuchal crest trait scoring for “Black” females in the PR

collection, with four fitting functions.

Figure F.9: A scatterplot of age vs. nuchal crest trait scoring for “White” females in the PR

collection, with four fitting functions.
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Figure F.10: A scatterplot of age vs. nuchal crest trait scoring for males in the PR collection,

with four fitting functions.

Figure F.11: A scatterplot of age vs. nuchal crest trait scoring for “Black” males in the PR

collection, with four fitting functions.
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Figure F.12: A scatterplot of age vs. nuchal crest trait scoring for “White” males in the PR

collection, with four fitting functions.

F.2 Mastoid Process

Figure F.13: The distribution of the mastoid process trait expression in the PR Collection rep-

resented using a bar chart. Females are in blue while males are in orange.
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Figure F.14: The distribution of the mastoid process trait expression in “Black” individuals from

the PR Collection represented using a bar chart. Females are in yellow while males are in

green.

Figure F.15: The distribution of the mastoid process trait expression in “White” individuals from

the PR Collection represented using a bar chart. Females are in purple while males are in cyan.
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Figure F.16: A boxplot distribution of mastoid process scoring across different age categories

for males and females. Females are given in blue while males are in orange. The age cate-

gories are defined in Table 2.2.

Figure F.17: A boxplot distribution of mastoid process scoring across different age categories

for “Black” males and females. Females are given in yellow while males are in green. The age

categories are defined in Table 2.2.
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Figure F.18: A boxplot distribution of mastoid process scoring across different age categories

for “White” males and females. Females are given in purple while males are in cyan. The age

categories are defined in Table 2.2.
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Table F.4: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the PR collection when comparing mastoid process trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 28

F = 2.5

M = 4.0

U = 178.0

p = 0.010

z = 1.14

r = 0.19

0.804

2
F = 20

M = 16

F = 2.0

M = 3.5

U = 268.0

p < 0.001

z = -3.25

r = -0.54

0.775

3
F = 40

M = 20

F = 3.0

M = 4.0

U = 690.0

p << 0.001

z = -8.31

r = -1.07

0.825

4
F = 40

M = 60

F = 2.0

M = 4.0

U = 1998.0

p << 0.001

z = -0.15

r = -0.02

0.832

5
F = 42

M = 36

F = 3.0

M = 3.0

U = 1034.5

p = 0.003

z = -6.26

r = -0.71

0.756

6
F = 148

M = 140

F = 2.0

M = 3.0

U = 16094.5

p << 0.001

z = -7.49

r = -0.44

0.780
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Table F.5: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in “Black” individuals from the PR collection when comparing mastoid

process trait scoring. Results that indicate a statistically significant difference (p < 0.05) are

given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 24

F = 2.5

M = 3.5

U = 146.0

p = 0.025

z = 0.61

r = 0.11

0.771

2
F = 20

M = 16

F = 2.0

M = 3.5

U = 268.0

p < 0.001

z = -3.25

r = -0.54

0.775

3
F = 36

M = 12

F = 3.0

M = 4.0

U = 371.0

p < 0.001

z = -12.17

r = -1.76

0.819

4
F = 32

M = 24

F = 2.0

M = 4.0

U = 667.5

p << 0.001

z = -4.05

r = -0.54

0.801

5
F = 22

M = 16

F = 3.0

M = 3.0

U = 205.0

p = 0.368

z = -6.62

r = -1.07

0.727

6
F = 8

M = 8

F = 2.0

M = 4.5

U = 64.0

p < 0.001

z = -0.42

r = -0.11

1.000
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Table F.6: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in “White” individuals from the PR collection when comparing mastoid

process trait scoring. Results that indicate a statistically significant difference (p < 0.05) are

given in blue. Note that there were no individuals belonging to age category 2.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 4

F = N/A

M = 4.5

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 4

M = 8

F = 1.5

M = 4.0

U = 32.0

p = 0.007

z = 1.02

r = 0.29

1.000

4
F = 8

M = 36

F = 2.5

M = 4.0

U = 228.0

p = 0.009

z = 1.46

r = 0.22

0.861

5
F = 20

M = 20

F = 3.0

M = 4.0

U = 299.0

p = 0.005

z = -3.00

r = -0.47

0.785

6
F = 140

M = 132

F = 2.0

M = 3.0

U = 14035.5

p << 0.001

z = -7.83

r = -0.47

0.768

Figure F.19: A scatterplot of age vs. mastoid process trait scoring for females in the PR col-

lection, with four fitting functions.
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Figure F.20: A scatterplot of age vs. mastoid process trait scoring for “Black” females in the

PR collection, with four fitting functions.

Figure F.21: A scatterplot of age vs. mastoid process trait scoring for “White” females in the

PR collection, with four fitting functions.
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Figure F.22: A scatterplot of age vs. mastoid process trait scoring for males in the PR collection,

with four fitting functions.

Figure F.23: A scatterplot of age vs. mastoid process trait scoring for “Black” males in the PR

collection, with four fitting functions.
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Figure F.24: A scatterplot of age vs. mastoid process trait scoring for “White” males in the PR

collection, with four fitting functions.

F.3 Supraorbital Margin

Figure F.25: The distribution of the supraorbital margin trait expression in the PR Collection

represented using a bar chart. Females are in blue while males are in orange.
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Figure F.26: The distribution of the supraorbital margin trait expression in “Black” individuals

from the PR Collection represented using a bar chart. Females are in yellow while males are

in green.

Figure F.27: The distribution of the supraorbital margin trait expression in “White” individuals

from the PR Collection represented using a bar chart. Females are in purple while males are

in cyan.
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Figure F.28: A boxplot distribution of supraorbital margin scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.

Figure F.29: A boxplot distribution of supraorbital margin scoring across different age cate-

gories for “Black” males and females. Females are given in yellow while males are in green.

The age categories are defined in Table 2.2.
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Figure F.30: A boxplot distribution of supraorbital margin scoring across different age cate-

gories for “White” males and females. Females are given in purple while males are in cyan.

The age categories are defined in Table 2.2.
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Table F.7: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the PR collection when comparing supraorbital margin trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 28

F = 1.5

M = 2.0

U = 152.0

p = 0.115

z = 0.15

r = 0.03

0.714

2
F = 20

M = 16

F = 2.0

M = 2.5

U = 236.0

p = 0.011

z = -4.27

r = -0.71

0.725

3
F = 40

M = 20

F = 2.0

M = 2.0

U = 506.0

p = 0.075

z = -11.20

r = -1.45

0.700

4
F = 40

M = 60

F = 1.0

M = 2.0

U = 1902.5

p << 0.001

z = -0.83

r = -0.08

0.727

5
F = 44

M = 34

F = 2.0

M = 2.0

U = 898.5

p = 0.105

z = -8.46

r = -0.96

0.674

6
F = 148

M = 140

F = 1.0

M = 3.0

U = 16303.5

p << 0.001

z = -7.19

r = -0.42

0.789
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Table F.8: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “Black” individuals from the PR collection when comparing supraorbital

margin trait scoring. Results that indicate a statistically significant difference (p < 0.05) are

given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 24

F = 1.5

M = 2.0

U = 124.0

p = 0.206

z = -0.35

r = -0.06

0.708

2
F = 20

M = 16

F = 2.0

M = 2.5

U = 236.0

p = 0.011

z = -4.27

r = -0.71

0.725

3
F = 36

M = 12

F = 2.0

M = 2.5

U = 314.0

p = 0.012

z = -13.52

r = -1.95

0.731

4
F = 32

M = 24

F = 2.0

M = 2.0

U = 536.0

p = 0.006

z = -6.23

r = -0.83

0.661

5
F = 24

M = 14

F = 2.0

M = 3.0

U = 219.5

p = 0.107

z = -7.52

r = -1.22

0.783

6
F = 8

M = 8

F = 1.5

M = 3.0

U = 64.0

p < 0.001

z = -0.42

r = -0.11

1.000
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Table F.9: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “White” individuals from the PR collection when comparing supraorbital

margin trait scoring. Results that indicate a statistically significant difference (p < 0.05) are

given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 4

F = N/A

M = 2.5

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 4

M = 8

F = 2.0

M = 1.5

U = 15.0

p = 0.927

z = -1.87

r = -0.54

0.688

4
F = 8

M = 36

F = 1.0

M = 2.0

U = 272.0

p << 0.001

z = 2.80

r = 0.42

0.889

5
F = 20

M = 20

F = 1.0

M = 2.0

U = 248.0

p = 0.147

z = -4.38

r = -0.69

0.560

6
F = 140

M = 132

F = 1.0

M = 3.0

U = 14365.5

p << 0.001

z = -7.32

r = -0.44

0.787

Figure F.31: A scatterplot of age vs. supraorbital margin trait scoring for females in the PR

collection, with four fitting functions.
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Figure F.32: A scatterplot of age vs. supraorbital margin trait scoring for “Black” females in the

PR collection, with four fitting functions.

Figure F.33: A scatterplot of age vs. supraorbital margin trait scoring for “White” females in the

PR collection, with four fitting functions.
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Figure F.34: A scatterplot of age vs. supraorbital margin trait scoring for males in the PR

collection, with four fitting functions.

Figure F.35: A scatterplot of age vs. supraorbital margin trait scoring for “Black” males in the

PR collection, with four fitting functions.
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Figure F.36: A scatterplot of age vs. supraorbital margin trait scoring for “White” males in the

PR collection, with four fitting functions.

F.4 Glabella

Figure F.37: The distribution of the glabella trait expression in the PR Collection represented

using a bar chart. Females are in blue while males are in orange.
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Figure F.38: The distribution of the glabella trait expression in “Black” individuals from the PR

Collection represented using a bar chart. Females are in yellow while males are in green.

Figure F.39: The distribution of the glabella trait expression in “White” individuals from the PR

Collection represented using a bar chart. Females are in purple while males are in cyan.
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Figure F.40: A boxplot distribution of glabella scoring across different age categories for males

and females. Females are given in blue while males are in orange. The age categories are

defined in Table 2.2.

Figure F.41: A boxplot distribution of glabella scoring across different age categories for “Black”

males and females. Females are given in yellow while males are in green. The age categories

are defined in Table 2.2.
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Figure F.42: A boxplot distribution of glabella scoring across different age categories for “White”

males and females. Females are given in purple while males are in cyan. The age categories

are defined in Table 2.2.
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Table F.10: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the PR collection when comparing glabella trait scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 12

F = 1.0

M = 3.0

U = 44.0

p = 0.014

z = 1.21

r = 0.30

0.875

2
F = 10

M = 8

F = 2.0

M = 3.0

U = 70.0

p = 0.005

z = -2.22

r = -0.52

0.800

3
F = 19

M = 9

F = 2.0

M = 2.0

U = 143.5

p = 0.001

z = -6.49

r = -1.23

0.678

4
F = 20

M = 30

F = 2.0

M = 3.0

U = 533.0

p << 0.001

z = 0.46

r = 0.06

0.807

5
F = 22

M = 17

F = 2.0

M = 4.0

U = 295.0

p = 0.001

z = -4.11

r = -0.66

0.813

6
F = 73

M = 67

F = 2.0

M = 3.0

U = 3791.0

p << 0.001

z = -5.65

r = -0.48

0.770
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Table F.11: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “Black” individuals from the PR collection when comparing glabella trait

scoring. Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 10

F = 1.0

M = 3.5

U = 36.0

p = 0.022

z = 0.85

r = 0.23

0.850

2
F = 10

M = 8

F = 2.0

M = 3.0

U = 70.0

p = 0.005

z = -2.22

r = -0.52

0.800

3
F = 17

M = 6

F = 2.0

M = 2.0

U = 82.0

p = 0.013

z = -8.54

r = -1.78

0.608

4
F = 16

M = 12

F = 2.0

M = 3.5

U = 161.5

p < 0.001

z = -3.27

r = -0.62

0.734

5
F = 12

M = 7

F = 2.0

M = 3.0

U = 63.0

p = 0.064

z = -4.82

r = -1.11

0.929

6
F = 4

M = 4

F = 1.0

M = 3.5

U = 16.0

p = 0.026

z = -0.58

r = -0.20

1.000
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Table F.12: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “White” individuals from the PR collection when comparing glabella trait

scoring. Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 2

F = N/A

M = 3.0

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 2

M = 3

F = 1.5

M = 3.0

U = 5.5

p = 0.224

z = -0.29

r = -0.13

0.833

4
F = 4

M = 18

F = 1.5

M = 3.0

U = 68.0

p = 0.006

z = 1.87

r = 0.40

0.889

5
F = 10

M = 10

F = 2.0

M = 4.0

U = 80.0

p = 0.020

z = -1.89

r = -0.42

0.840

6
F = 69

M = 63

F = 2.0

M = 3.0

U = 3288.0

p << 0.001

z = -5.92

r = -0.52

0.755

Figure F.43: A scatterplot of age vs. glabella trait scoring for females in the PR collection, with

four fitting functions.
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Figure F.44: A scatterplot of age vs. glabella trait scoring for “Black” females in the PR collec-

tion, with four fitting functions.

Figure F.45: A scatterplot of age vs. glabella trait scoring for “White” females in the PR collec-

tion, with four fitting functions.
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Figure F.46: A scatterplot of age vs. glabella trait scoring for males in the PR collection, with

four fitting functions.

Figure F.47: A scatterplot of age vs. glabella trait scoring for “Black” males in the PR collection,

with four fitting functions.
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Figure F.48: A scatterplot of age vs. glabella trait scoring for “White” males in the PR collection,

with four fitting functions.

F.5 Zygomatic Extension

Figure F.49: The distribution of the zygomatic extension trait expression in the PR Collection

represented using a bar chart. Females are in blue while males are in orange.
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Figure F.50: The distribution of the zygomatic extension trait expression in “Black” individuals

from the PR Collection represented using a bar chart. Females are in yellow while males are

in green.

Figure F.51: The distribution of the zygomatic extension trait expression in “White” individuals

from the PR Collection represented using a bar chart. Females are in purple while males are

in cyan.
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Figure F.52: A boxplot distribution of zygomatic extension scoring across different age cate-

gories for males and females. Females are given in blue while males are in orange. The age

categories are defined in Table 2.2.

Figure F.53: A boxplot distribution of zygomatic extension scoring across different age cate-

gories for “Black” males and females. Females are given in yellow while males are in green.

The age categories are defined in Table 2.2.
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Figure F.54: A boxplot distribution of zygomatic extension scoring across different age cate-

gories for “White” males and females. Females are given in purple while males are in cyan.

The age categories are defined in Table 2.2.
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Table F.13: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the PR collection when comparing zygomatic extension trait scoring.

Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 28

F = 1.0

M = 5.0

U = 174.0

p = 0.007

z = 0.99

r = 0.16

0.634

2
F = 20

M = 16

F = 1.0

M = 1.0

U = 162.0

p = 0.952

z = -6.62

r = -1.10

0.425

3
F = 40

M = 20

F = 1.0

M = 5.0

U = 590.0

p < 0.001

z = -9.88

r = -1.28

0.605

4
F = 40

M = 60

F = 1.0

M = 5.0

U = 1800.0

p << 0.001

z = -1.55

r = -0.15

0.625

5
F = 44

M = 36

F = 1.0

M = 5.0

U = 1298.0

p << 0.001

z = -4.68

r = -0.52

0.694

6
F = 146

M = 140

F = 1.0

M = 5.0

U = 13658.0

p << 0.001

z = -10.43

r = -0.62

0.556
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Table F.14: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in “Black” individuals from the PR collection when comparing zygomatic

extension trait scoring. Results that indicate a statistically significant difference (p < 0.05) are

given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 8

M = 24

F = 1.0

M = 5.0

U = 160.0

p < 0.001

z = 1.22

r = 0.22

0.719

2
F = 20

M = 16

F = 1.0

M = 1.0

U = 162.0

p = 0.952

z = -6.62

r = -1.10

0.425

3
F = 36

M = 12

F = 1.0

M = 5.0

U = 336.0

p = 0.001

z = -13.00

r = -1.88

0.616

4
F = 32

M = 24

F = 1.0

M = 5.0

U = 584.0

p < 0.001

z = -5.43

r = -0.73

0.625

5
F = 24

M = 16

F = 1.0

M = 5.0

U = 372.0

p << 0.001

z = -3.31

r = -0.52

0.938

6
F = 8

M = 8

F = 3.0

M = 1.0

U = 28.0

p = 0.669

z = -4.20

r = -1.05

0.500
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Table F.15: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in “White” individuals from the PR collection when comparing zygomatic

extension trait scoring. Results that indicate a statistically significant difference (p < 0.05) are

given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 4

F = N/A

M = 1.0

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 4

M = 8

F = 1.0

M = 5.0

U = 26.0

p = 0.060

z = 0.00

r = 0.00

0.625

4
F = 8

M = 36

F = 1.0

M = 5.0

U = 244.0

p < 0.001

z = 1.95

r = 0.29

0.694

5
F = 20

M = 20

F = 5.0

M = 5.0

U = 260.0

p = 0.043

z = -4.06

r = -0.64

0.465

6
F = 138

M = 132

F = 1.0

M = 5.0

U = 12423.0

p << 0.001

z = -9.79

r = -0.60

0.565

Figure F.55: A scatterplot of age vs. zygomatic extension trait scoring for females in the PR

collection, with four fitting functions.
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Figure F.56: A scatterplot of age vs. zygomatic extension trait scoring for “Black” females in

the PR collection, with four fitting functions.

Figure F.57: A scatterplot of age vs. zygomatic extension trait scoring for “White” females in

the PR collection, with four fitting functions.
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Figure F.58: A scatterplot of age vs. zygomatic extension trait scoring for males in the PR

collection, with four fitting functions.

Figure F.59: A scatterplot of age vs. zygomatic extension trait scoring for “Black” males in the

PR collection, with four fitting functions.
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Figure F.60: A scatterplot of age vs. zygomatic extension trait scoring for “White” males in the

PR collection, with four fitting functions.

F.6 Nasal Aperture

Figure F.61: The distribution of the nasal aperture trait expression in the PR Collection repre-

sented using a bar chart. Females are in blue while males are in orange.
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Figure F.62: The distribution of the nasal aperture trait expression in “Black” individuals from

the PR Collection represented using a bar chart. Females are in yellow while males are in

green.

Figure F.63: The distribution of the nasal aperture trait expression in “White” individuals from

the PR Collection represented using a bar chart. Females are in purple while males are in cyan.
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Figure F.64: A boxplot distribution of nasal aperture scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.

Figure F.65: A boxplot distribution of nasal aperture scoring across different age categories for

“Black” males and females. Females are given in yellow while males are in green. The age

categories are defined in Table 2.2.
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Figure F.66: A boxplot distribution of nasal aperture scoring across different age categories

for “White” males and females. Females are given in purple while males are in cyan. The age

categories are defined in Table 2.2.
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Table F.16: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in the PR collection when comparing nasal aperture trait scoring. Results

that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 13

F = 1.0

M = 5.0

U = 46.0

p = 0.017

z = 1.13

r = 0.27

0.769

2
F = 10

M = 8

F = 2.0

M = 4.0

U = 47.5

p = 0.500

z = -4.22

r = -0.99

0.637

3
F = 18

M = 8

F = 1.0

M = 5.0

U = 117.0

p = 0.006

z = -7.00

r = -1.37

0.778

4
F = 19

M = 29

F = 1.0

M = 3.0

U = 332.5

p = 0.189

z = -2.80

r = -0.40

0.610

5
F = 20

M = 17

F = 3.0

M = 5.0

U = 225.0

p = 0.077

z = -4.72

r = -0.78

0.735

6
F = 71

M = 66

F = 1.0

M = 3.0

U = 2712.0

p = 0.084

z = -9.42

r = -0.80

0.637
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Table F.17: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “Black” individuals from the PR collection when comparing nasal aperture

trait scoring. Results that indicate a statistically significant difference (p < 0.05) are given in

blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 11

F = 1.0

M = 5.0

U = 42.0

p = 0.006

z = 1.31

r = 0.34

0.909

2
F = 10

M = 8

F = 2.0

M = 4.0

U = 47.5

p = 0.500

z = -4.22

r = -0.99

0.637

3
F = 16

M = 4

F = 1.0

M = 3.0

U = 44.0

p = 0.216

z = -11.72

r = -2.62

0.719

4
F = 15

M = 12

F = 1.0

M = 1.0

U = 89.0

p = 0.977

z = -5.90

r = -1.14

0.500

5
F = 10

M = 8

F = 3.0

M = 4.0

U = 52.0

p = 0.279

z = -3.82

r = -0.90

0.700

6
F = 4

M = 4

F = 1.0

M = 3.0

U = 12.5

p = 0.222

z = -1.59

r = -0.56

0.938
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Table F.18: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “White” individuals from the PR collection when comparing nasal aperture

trait scoring. Results that indicate a statistically significant difference (p < 0.05) are given in

blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 2

F = N/A

M = 1.0

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 2

M = 4

F = 1.0

M = 5.0

U = 8.0

p = 0.050

z = 0.46

r = 0.19

1.000

4
F = 4

M = 17

F = 2.0

M = 5.0

U = 44.0

p = 0.356

z = 0.00

r = 0.00

0.676

5
F = 10

M = 9

F = 2.0

M = 5.0

U = 60.0

p = 0.202

z = -3.27

r = -0.75

0.778

6
F = 67

M = 62

F = 1.0

M = 3.0

U = 2349.0

p = 0.163

z = -9.46

r = -0.83

0.633

Figure F.67: A scatterplot of age vs. nasal aperture trait scoring for females in the PR collection,

with four fitting functions.
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Figure F.68: A scatterplot of age vs. nasal aperture trait scoring for “Black” females in the PR

collection, with four fitting functions.

Figure F.69: A scatterplot of age vs. nasal aperture trait scoring for “White” females in the PR

collection, with four fitting functions.
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Figure F.70: A scatterplot of age vs. nasal aperture trait scoring for males in the PR collection,

with four fitting functions.

Figure F.71: A scatterplot of age vs. nasal aperture trait scoring for “Black” males in the PR

collection, with four fitting functions.
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Figure F.72: A scatterplot of age vs. nasal aperture trait scoring for “White” males in the PR

collection, with four fitting functions.

F.7 Cranial Size

Figure F.73: The distribution of the cranial size in the PR Collection represented using a bar

chart. Females are in blue while males are in orange.
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Figure F.74: The distribution of the cranial size in “Black” individuals from the PR Collection

represented using a bar chart. Females are in yellow while males are in green.

Figure F.75: The distribution of the cranial size in “White” individuals from the PR Collection

represented using a bar chart. Females are in purple while males are in cyan.
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Figure F.76: A boxplot distribution of cranial size scoring across different age categories for

males and females. Females are given in blue while males are in orange. The age categories

are defined in Table 2.2.

Figure F.77: A boxplot distribution of cranial size scoring across different age categories for

“Black” males and females. Females are given in yellow while males are in green. The age

categories are defined in Table 2.2.
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Figure F.78: A boxplot distribution of cranial size scoring across different age categories for

“White” males and females. Females are given in purple while males are in cyan. The age

categories are defined in Table 2.2.
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Table F.19: The results of the Mann-Whitney statistical tests and the discrimination factor d
for each age category in the PR collection when comparing cranial size scoring. Results that

indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 14

F = 1.0

M = 4.0

U = 50.0

p = 0.015

z = 1.27

r = 0.30

0.786

2
F = 10

M = 8

F = 1.0

M = 3.0

U = 65.0

p = 0.005

z = -2.67

r = -0.63

0.625

3
F = 20

M = 10

F = 1.0

M = 5.0

U = 190.0

p << 0.001

z = -5.28

r = -0.96

0.900

4
F = 19

M = 30

F = 1.0

M = 5.0

U = 506.5

p << 0.001

z = 0.65

r = 0.09

0.798

5
F = 22

M = 18

F = 1.0

M = 3.0

U = 315.0

p < 0.001

z = -3.70

r = -0.58

0.682

6
F = 74

M = 70

F = 1.0

M = 3.0

U = 4303.0

p << 0.001

z = -4.24

r = -0.35

0.763



APPENDIX F. PR TRAIT DISTRIBUTION GRAPHS 303

Table F.20: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “Black” individuals from the PR collection when comparing cranial size

scoring. Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 4

M = 12

F = 1.0

M = 3.0

U = 42.0

p = 0.023

z = 0.97

r = 0.24

0.750

2
F = 10

M = 8

F = 1.0

M = 3.0

U = 65.0

p = 0.005

z = -2.67

r = -0.63

0.625

3
F = 18

M = 6

F = 1.0

M = 5.0

U = 108.0

p << 0.001

z = -7.80

r = -1.59

1.000

4
F = 16

M = 12

F = 1.0

M = 3.0

U = 148.0

p = 0.003

z = -3.90

r = -0.74

0.594

5
F = 12

M = 8

F = 1.0

M = 3.0

U = 84.0

p < 0.001

z = -3.24

r = -0.72

0.750

6
F = 4

M = 4

F = 1.0

M = 4.0

U = 14.0

p = 0.067

z = -1.15

r = -0.41

0.750
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Table F.21: The results of the Mann-Whitney statistical tests and the discrimination factor d for
each age category in “White” individuals from the PR collection when comparing cranial size

scoring. Results that indicate a statistically significant difference (p < 0.05) are given in blue.

Age

Category

# of

observations

Median

Score

Mann-Whitney

results

Discrimination

Factor (d)

1
F = 0

M = 2

F = N/A

M = 5.0

U = N/A

p = N/A

z = N/A

r = N/A

N/A

3
F = 2

M = 4

F = 1.0

M = 4.0

U = 7.0

p = 0.211

z = 0.00

r = 0.00

0.750

4
F = 3

M = 18

F = 1.0

M = 5.0

U = 52.5

p = 0.004

z = 1.96

r = 0.43

0.944

5
F = 10

M = 10

F = 1.0

M = 4.0

U = 72.5

p = 0.065

z = -2.46

r = -0.55

0.690

6
F = 70

M = 66

F = 1.0

M = 3.0

U = 3821.5

p << 0.001

z = -4.24

r = -0.36

0.762

Figure F.79: A scatterplot of age vs. cranial size scoring for females in the PR collection, with

four fitting functions.
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Figure F.80: A scatterplot of age vs. cranial size scoring for “Black” females in the PR collection,

with four fitting functions.

Figure F.81: A scatterplot of age vs. cranial size scoring for “White” females in the PR collec-

tion, with four fitting functions.
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Figure F.82: A scatterplot of age vs. cranial size scoring for males in the PR collection, with

four fitting functions.

Figure F.83: A scatterplot of age vs. cranial size scoring for “Black” males in the PR collection,

with four fitting functions.
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Figure F.84: A scatterplot of age vs. cranial size scoring for “White” males in the PR collection,

with four fitting functions.
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Figure G.1

Figure G.2
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Figure G.3

Figure G.4
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Figure G.5
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List of continuous random variables used:

• Alpha

• Beta prime

• Burr (Type III)

• Burr (Type XII)

• Chi

• Chi-squared

• Erlang

• Exponential

• Exponential power

• Exponentiated Weibull

• F-distribution

• Fatigue Life (Birnbaum-

Saunders)

• Fisk (log-logistic)

• Folded Cauchy

• Folded Norm

• Fréchet right (variation of

Weibull minimum)

• Gamma

• Generalized exponential

• Generalized gamma

• Generalized half-logistic

• Generalized Pareto

• Gilbrat

• Gompertz

• Half-Cauchy

• Half generalized normal

• Half-logistic

• Half-normal

• Inverse-gamma

• Inverse Gaussian

• Inverse Weibull

• Three-parameter kappa

• General Kolmogorov-

Smirnov one-sided test

• Kolmogorov-Smirnov two-

sided test

• Lévy

• Log-Laplace

• Log-normal

• Lomax

• Maxwell

• Mielke’s Beta-Kappa

• Nakagami

• Non-central F-distribution

• Non-central chi-squared

• Power log-normal

• Rayleigh

• Reciprocal inverse Gaus-

sian

• Rice (Ricean)

• Truncated normal

• Wald (variation of inverse

Gaussian)

• Weibull minimum

To calculate the bin sizes for the histograms required formodelling the data, the Freedman-

Diaconis rule (1981) was followed:

Binsize = 2(IQR(x))/( 3
√
n)

where IQR = interquartile ratio; x = the distribution of a given sample; and n = the number of
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observations, i.e. the number of data points in the given distribution.

Table H.1: The parameters of the probability distribution functions (PDF’s) that best approxi-

mated each sample’s C2C distance distribution for DAVID 4 samples.

Sample # PDF PDF Parameters

SMC206 Log-Laplace (3.293, -0.028, 0.438)

SMC399 Mielke’s Beta-Kappa (2.739, 4.253, 0.002, 0.435)

SMC417 Folded Cauchy (5.454, 0.003, 0.101)

SMC1142 Folded Cauchy (3.621, 0.005, 0.080)

SMC1248 Fisk (log-logistic) (2.904, 0.002, 0.284)
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Figure H.1: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC206, with all the fitted PDF’s.

Figure H.2: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC206, with the best fitted PDF.



APPENDIX H. PDF MODELLING - DAVID 4 C2C DISTRIBUTIONS 316

Figure H.3: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC399, with all the fitted PDF’s.

Figure H.4: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC206, with the best fitted PDF.
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Figure H.5: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC417, with all the fitted PDF’s.

Figure H.6: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC417, with the best fitted PDF.
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Figure H.7: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC1142, with all the fitted PDF’s.

Figure H.8: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC1142, with the best fitted PDF.
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Figure H.9: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC1248, with all the fitted PDF’s.

Figure H.10: A histogram of the C2C distributions from comparing DAVID 4 alignments for

SMC1248, with the best fitted PDF.
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Figure I.1

Figure I.2
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Figure I.3

Figure I.4
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Figure I.5
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List of continuous random variables used:

• Alpha

• Beta prime

• Burr (Type III)

• Burr (Type XII)

• Chi

• Chi-squared

• Erlang

• Exponential

• Exponential power

• Exponentiated Weibull

• F-distribution

• Fatigue Life (Birnbaum-

Saunders)

• Fisk (log-logistic)

• Folded Cauchy

• Folded Norm

• Fréchet right (variation of

Weibull minimum)

• Gamma

• Generalized exponential

• Generalized gamma

• Generalized half-logistic

• Generalized Pareto

• Gilbrat

• Gompertz

• Half-Cauchy

• Half generalized normal

• Half-logistic

• Half-normal

• Inverse-gamma

• Inverse Gaussian

• Inverse Weibull

• Three-parameter kappa

• General Kolmogorov-

Smirnov one-sided test

• Kolmogorov-Smirnov two-

sided test

• Lévy

• Log-Laplace

• Log-normal

• Lomax

• Maxwell

• Mielke’s Beta-Kappa

• Nakagami

• Non-central F-distribution

• Non-central chi-squared

• Power log-normal

• Rayleigh

• Reciprocal inverse Gaus-

sian

• Rice (Ricean)

• Truncated normal

• Wald (variation of inverse

Gaussian)

• Weibull minimum

To calculate bin sizes, the Freedman-Diaconis rule (1981) was followed (see H).

Table J.1: The parameters of the probability distribution functions (PDF’s) that best approxi-

mated each sample’s C2C distance distribution for CraniAlign samples.

Sample # PDF PDF Parameters

SMC206 Beta prime (17.173, 9.390, -0.110, 0.257)

SMC399 Fatigue life (0.497, -0.085, 0.517)

SMC417 Mielke’s Beta-Kappa (3.824, 2.587, -0.019, 0.294)

SMC1142 Burr (Type XII) (7.988, 0.217, -0.175, 0.362)

SMC1248 Burr (Type III) (3.455, 0.803, 0.003, 0.378)
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Figure J.1: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC206, with all the fitted PDF’s.

Figure J.2: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC206, with the best fitted PDF.
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Figure J.3: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC399, with all the fitted PDF’s.

Figure J.4: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC399, with the best fitted PDF.
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Figure J.5: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC417, with all the fitted PDF’s.

Figure J.6: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC417, with the best fitted PDF.
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Figure J.7: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC1142, with all the fitted PDF’s.

Figure J.8: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC1248, with the best fitted PDF.
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Figure J.9: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC1248, with all the fitted PDF’s.

Figure J.10: A histogram of the C2C distributions from comparing CraniAlign alignments for

SMC1248, with the best fitted PDF.
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Figure K.1

Figure K.2



APPENDIX K. VALIDATION CURVES FOR SEX 333

Figure K.3
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Figure L.1

Figure L.2
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Figure L.3
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Figure M.1

Figure M.2
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Figure M.3
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