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Abstract—
An important ability of self-adaptive systems is to be able to autonomously understand the environment in which they operate and use
this knowledge to control the environment behaviour in such a way that system goals are achieved. How can this be achieved when the
environment is unknown? Two phase solutions that require a full discovery of environment behaviour before computing a strategy that
can guarantee the goals or report the non-existence of such a strategy (i.e., unrealisability) are impractical as the environment may
exhibit adversarial behaviour to avoid full discovery.
In this paper we formalise a control and discovery problem for reactive system environments. In our approach a strategy must be
produced that will, for every environment, guarantee that unrealisablity will be correctly concluded or system goals will be achieved by
controlling the environment behaviour. We present a solution applicable to environments characterisable as labeled transition systems
(LTS). We use modal transition systems (MTS) to represent partial knowledge of environment behaviour, and rely on MTS controller
synthesis to make exploration decisions. Each decision either contributes more knowledge about the environment’s behaviour or
contributes to achieving the system goals. We present an implementation restricted to GR(1) goals and show its viability.

Index Terms—Adaptive systems, reactive systems, discrete event controllers, environment control and discovery.
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1 INTRODUCTION

AN important ability of self-adaptive systems is to be
able to autonomously understand the environment in

which they operate and use this knowledge to control the
environment in such a way that its goals are achieved( [1],
[2], [3], [4], [5], [6], etc.).

Consider a self-adaptive component that has to orches-
trate available services whose protocols are completely or
partially unknown at design time. How can the component
gain sufficient knowledge about the behaviour of these ser-
vices to come up with a strategy for correctly orchestrating
them according to some system goal? Alternatively, how
can the component conclude, should it be the case, that its
environment is such that achieving system goals cannot be
guaranteed, i.e., the goals are unrealisable? The component
must explore its environment, stimulating the services and
sensing their behaviour to acquire enough knowledge to
guarantee its goals or declare unrealisability.

A key difficulty of controlling an unknown environment
is that environment behaviour discovery is hindered by
uncontrollable environment behaviour. For example, an ex-
ternal component or agent may exhibit different behaviours
depending on some internal setting that cannot be changed
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by the system performing the exploration. Furthermore, to
be on the safe side, it is reasonable to assume the envi-
ronment can exhibit adversarial behaviour, hence, deliber-
ately not exhibiting relevant potential responses to stimuli
it receives. Thus, there is no guarantee that during the
exploration all behaviour will be discovered. This renders
two phase approaches inadequate: in such approaches the
environment behaviour is expected to be fully discovered
first (be it through automata learning [1], [3], [7], [8] or
some sort of random exploration), and only then is a control
strategy computed.

In this paper we present a formalisation of the problem
of controlling the behaviour of a reactive system’s un-
known environment -which is assumed to be characterisable
as a deterministic finite Labelled Transition System (LTS)
supporting event-based communication- to achieve system
goals expressed in Linear Temporal Logic. The key insight we
exploit to avoid a two phase strategy is to ensure that every action
taken either increases the knowledge about the environment’s
behaviour or moves the system “closer” to achieving its goals.

We show how Modal Transition Systems (MTS) [9] can
be used to characterise the partial knowledge of the environ-
ment behaviour that the discovery process starts with and
the knowledge that is accumulated during the discovery.

We also present a solution to the control and discovery
problem restricted to GR(1) goals [10]. The solution is based
on MTS controller synthesis [11]. We show how, assuming
that the environment behaviour can be characterised as a
deterministic finite Labelled Transition System (LTS), syn-
thesis can be used to reason about control and discovery
strategies that are guaranteed to either exhibit, in the long
run, system behaviour that achieves the goal, or conclude
that the goal cannot be realised.
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Indeed the control and discovery procedure we propose
guarantees that given a realisable environment, even if the
environment deliberately tries to prevent discovery, it can
be controlled without necessarily achieving full behaviour
knowledge (i.e., part of the LTS that characterises the be-
havior might remain unexplored/unknown).

The use of MTS controller synthesis allows guiding the
control and discovery process through controlled actions
that either are known to help achieve the goal or lead to
undiscovered behaviour of the environment. Thus, synthe-
sised controllers do not rely on achieving full exploration to
either conclude that the goal is unrealisable or to actually
achieve the goal. Should new behaviour be discovered, it is
integrated into the current knowledge – we require the en-
vironment to be capable of consistently reporting its current
state id, to allow loop detection. Should new behaviour lead
to a state in which the goals are unrealisable, then control
and discovery must be capable of resetting the environment
to reattempt to control and discover but with the additional
knowledge that has been acquired.

In addition to the need to reset the environment, as
explained, our approach requires also to identify re-visits
to the same state. These conditions, although restrictive,
can be satisfied, for example, by service oriented systems
(where sessions can be thought of as resets and state ab-
straction functions for state IDs). Discovery followed by
control in this domain has been studied (e,g., [1], [3])
and is often based on automata learning techniques (e.g.,
MAT [7]) that have arguably stronger assumptions on what
can be done with the environment (e.g., controlability of the
environment responses and the ability to answer equiva-
lence queries, typically approximated by using conformance
testing [12], which, in particular, requires resetting the envi-
ronment).

In the rest of the paper we provide motivation and an
example in Section 2, preliminary definitions in Section 3
and then formalise the control and discovery problem and
provide a solution in Sections 4-5. We report validation in
Section 6 and finalise with related work and conclusions.

2 MOTIVATION AND RUNNING EXAMPLE

We are interested in developing a client that will interact
with a book loan service that allows users to request and
have books delivered to their homes. Having read the books,
users return them by post. This example is taken from [13].

A book loan service and its interface may be discovered
via a discovery service such as the Google APIs Discov-
ery Service. However, in practice the protocol (the order
in which the methods of the service should be called) to
correctly interact with the service is usually at best only
partially available. Consequently, the problem is to build
a client that can deduce how to use the book loan service
while attempting to satisfy its goals if it can.

The protocol applied by the service could be imple-
mented in many different ways. For instance, in Figure 1
we depict the protocol of a very basic book loan service (in-
teraction between user and client is not part of the protocol).
Note that we use dotted lines to distinguish between event
that the system can and cannot control. For example, the
availability of a book is uncontrollable. When a user wants

0 1 2 3 4

queryBook list select

unavailable

available

deliver

Fig. 1. Basic Book Loan service. No wait/hold functionality is provided
(usrReq and abort are not depicted as they are user-client interac-
tions). Dotted and continuous lines represent uncontrolled and con-
trolled events
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Fig. 2. A Book Loan service with a guaranteed wait/hold functionality.

to borrow a book it performs a request usrReq, the client
must then perform a search (queryBook). Then, the book
loan service returns a list of available copies from which the
client can choose one (select) and get it delivered (deliver).
Alternatively, if no copies are available (unavailable) the
client can reattempt after some time or inform the user that
the request cannot be fulfilled (abort).

Other services (e.g., Figure 2) allow users to reserve a
copy of a currently unavailable book (wait&hold). When a
copy of the reserved book is returned, the copy is held and
delivered. Some services (Figure 3) may provide the same
functionality but in which finally, the book may finally be
reported as unavailable.

Regardless of the protocol applied by the unknown
service provider, the goals that the client is to achieve
are the following. Firstly, that for every request a book is
delivered. This goal can be formalised in linear temporal
logic as follows ϕ1 = �(usrReq → ♦deliver). Secondly,
the client should not use the book loan service more than
once per request (ϕ2 = �(queryBook → ©(¬queryBook
W deliver))).

Note that goal realisability depends on how the avail-
able service is implemented. For instance, for the service
depicted in Figure 1 there is no way of achieving the goals:
To achieve ϕ1, on usrReq it must queryBook in order to
eventually get available or unavailable. However, if the
service reports the book unavailable, the client cannot query
again (perhaps the day after) because it would violate ϕ2.

0 1 2 3 4 5 6 7

queryBook list select unavailable

available

waitAndHold

unavailable

ready

deliver

deliver

Fig. 3. A Books Loan service non-guaranteed wait/hold functionality.
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On the other hand, the goals are achievable with the
service in Figure 2 as in the event of an unavailable book,
the hold and wait functionality can be used. Finally, for the
service in Figure 3 the goals cannot be guaranteed because
the hold and wait service may finally return unavailable.

How should the client behave to achieve its goals, or to
conclude that it cannot do so if it knows the interface of the book
loan service it is connected to but not the protocol and supported
functionalities of the service? The client must interact with
the service and accumulate sufficient knowledge about the
service’s behaviour. During the discovery process, due to
lack of knowledge, some goals may be violated. In these
cases, the client must be able to reset the service to try again
(but this time with more knowledge). Thus, we assume an
action reset! that does so.

An example of how the client may try to control and
discover the initially unknown service shown in Figure 1
(for which it is not possible to achieve ϕ1 and ϕ2) is as
follows (in order to identify returning to the same state
we assume the client can request a state id of the service):
Having received usrReq to reach state 0, the client must try
some controllable action that may lead it to obtain deliver.
Assume it tries select. The service will reject this call and its
state will continue to be 0. If the client now tries queryBook,
it succeeds leading to state 1. It then starts trying controlled
actions only to discover that in state 1 none are possible.
It will eventually receive event list (possibly before trying
all controlled events) leading to state 2. From state 2, it
might try select and reach state 3. Then event available
may happen followed by deliver taking the service back
to state 0. Should another usrReq occur, the client knows
how to achieve deliver as long as it observes the same
uncontrollable behaviour (i.e., it gets available on 3).

If in state 3 it gets an unavailable event, then it will land
in state 1 from which it knows that queryBook is available
while select is not. Performing queryBook is not an option
as it would violate ϕ2 so the client would attempt the rest of
its controlled actions only to discover that none are available
in state 0. Clearly there is no strategy from this point on
that can guarantee ϕ1 as no controlled actions can move
the service forward and the client has no guarantee that an
uncontrolled action may occur. Indeed, we know this as a
fact (see Figure 1) but the client does not.

Figure 4 depicts an MTS that encodes the knowledge
accumulated by the client so far. Transitions with question
marks indicate that it is currently unknown if such be-
haviour is available. States 1 through 6 encode behaviour
observed so far and unknown behaviour goes to state 0
which models no knowledge at all about future behaviour.

Based on the MTS, the client can reason that the fact that
it has reached a dead end does not mean that there is no
hope of achieving the goals. The dead end may have been
reached by mistakenly trying select in state 3. Perhaps, had
it tried some other controlled action (queryBook or abort)
the dead end would have been avoided. Thus, the client
performs a reset! and starts again.

Of course, when the client reaches state 3 again it will
discover that there are no other controlled actions that are
accepted by the service. It will also eventually discover that
it did not have other controllable options in state 2. As a
result it will conclude that there is no hope of guarantee-

01 2 3 4 5 A?

queryBook

abort?

list

A\{list}?

A\{list}?

select

queryBook?

abort?

available

unavailable

A\{available,
unavailable}?

deliver

A\{deliver}?

Fig. 4. MTS with partial knowledge of a Book Loan service’s behaviour.
A is the set of actions of its interface. A \ B is set subtraction. Labels
with question marks represent unknowns (i.e., possible but not required
transitions).

ing system goals and will halt, outputting a message that
denotes unrealisability (which in this paper we refer to as
none!). Note that for states 2, 4 and 5 knowing if controllable
actions are available is irrelevant because even if they were,
there is no guarantee that they would win a race condition
against the uncontrollable actions that are known to be
possible in those states.

The same client will, when connected to service in Fig-
ure 2, explore the available behaviour and eventually try
the wait and hold functionality. It will discover that this
functionality is crucial for guaranteeing delivery and thus
will finally succeed in producing an execution that, since
the last reset!, achieves all goals forever. On the other hand,
for the service in Figure 3 as with the simplest service, the
client will achieve its goals as long as unavailable does not
occur in either state 3 or 5. Once both occur, the client will
report that the book loan service cannot be used with full
guarantees of achieving system goals.

Note the tension between control and discovery: If
the environment deliberately or by chance does not ex-
hibit some of its behaviour then full knowledge cannot
be achieved. Some of the behaviour not observed may be
needed to conclude unrealisability of the goals and even
allow achieving goals temporarily.

How can the reasoning described above be automated?
In this paper we formalise the control and discover problem
described above and show how to solve it using MTS
controller synthesis for SGR(1) goals.

3 PRELIMINARIES

We give a summarised background on controller synthesis.

3.1 Transition Systems

Definition 3.1. (Labelled Transition Systems) A Labelled
Transition System (LTS) is W = (SW ,ΣW ,∆W , s0

W ), where
SW is a finite set of states, ΣW ⊆ Act is its communicating
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alphabet, ∆W ⊆ (SW × ΣW × SW ) is a transition relation,
and s0

W ∈ SW is the initial state. We use ∆W (s) to denote
{e | ∃s′.(s, e, s′) ∈ ∆W }. We say an LTS is deterministic
if (s, e, s′) and (s, e, s′′) are in ∆W implies s′ = s′′. An
execution ε of W is a finite or infinite word ε = s0, e0, s1, . . . ∈
(SW × ΣW )ω ∪ (SW × ΣW )∗ · SW , where |ε| is the number
of symbols in ΣW appearing in ε and for every i < |ε| we have
(si, ei, si+1) ∈ ∆W . An execution is maximal if it is infinite or
ends in a state s such that ∆W (s) = ∅. A word π ∈ Σω

W ∪Σ∗W is
a trace of W if there is an execution ε of W such that ε|ΣW

= π,
where ε|Σ is the projection of word ε over the alphabet Σ. A
trace is maximal if it is the projection of a maximal execution. If
(s, e, s′) ∈ ∆W we say that e is enabled from s.

Modal Transition Systems (MTSs) [9] are abstract notions
of LTSs. They extend LTSs by distinguishing between two
sets of transitions. Intuitively an MTS describes a set of
possible LTSs by describing an upper bound and a lower
bound on the set of transitions from every state. Thus, an
MTS defines required transitions, which must exist, and
possible transitions, which may exist. By elimination, other
transitions cannot exist.

Definition 3.2. (Modal Transition Systems [9]) A Modal
Transition System (MTS) is K = (SK ,ΣK ,∆

r
K ,∆

p
K , s

0
K),

where SK is a finite set of states, ΣK is its communicating
alphabet, ∆r

K ⊆ ∆p
K ⊆ (SK ×ΣK × SK) are the required and

possible transition relations, respectively, and s0
K ∈ SK is the

initial state.

We denote by ∆p
K(s) the set of possible actions enabled

in s, namely ∆p
K(s) = {e | ∃s′ · (s, e, s′) ∈ ∆p

K}. Similarly,
∆r

K(s) denotes the set of required actions enabled in s.
We define a refinement relation between MTSs [9].

Definition 3.3. (Refinement [9]) Let K and M be two
MTSs, where K = (SK ,ΣK ,∆

r
K ,∆

p
K , s

0
K) and M =

(SM ,ΣM ,∆
r
M ,∆

r
M , s

0
M ). Relation R ⊆ SK × SM is a re-

finement between K and M if the following holds for every
e ∈ ΣK ∪ ΣM and every (sK , sM ) ∈ R.
• If (sK , e, s

′
K) ∈ ∆r

K then there is s′M such that
(sM , e, s

′
M ) ∈ ∆r

M and (s′K , s
′
M ) ∈ R.

• If (sM , e, s
′
M ) ∈ ∆p

M then there is s′K such that
(sK , e, s

′
K) ∈ ∆p

K and (s′K , s
′
M ) ∈ R.

We say that M refines K if there is a refinement relation R
between K and M such that (s0

K , s
0
M ) ∈ R, denoted K �M .

Intuitively, M refines K if every required transition
of K exists in M and every possible transition in M is
possible also in K . An LTS can be viewed as an MTS
where ∆p

K = ∆r
K . Thus, the definition generalises to when

an LTS refines an MTS. LTSs that refine an MTS K are
complete descriptions of the system behaviour and thus are
called implementations of K . We denote by Idet[K] the set of
deterministic implementations of K .

3.2 Fluent Linear Temporal Logic
We describe properties using Fluent Linear Temporal
Logic [14] (FLTL). To simplify notations we do not include
the next operator in FLTL. All our results can be easily
generalised to include the next operator.

A fluent Fl is defined by a pair of sets and a Boolean
value: Fl = 〈IFl, TFl, InitFl〉, where IFl ⊆ Act is the set of

initiating actions, TFl ⊆ Act is the set of terminating actions
and IFl ∩ TFl = ∅. A fluent may be initially true or false as
indicated by InitFl. Every action e ∈ Act induces a fluent,
namely ė = 〈e,Act \ {e}, false〉. To simplify presentation we
interchangeably refer to action fluents as ė or e.

Let F be the set of all possible fluents over Act. An FLTL
formula is defined inductively using the standard Boolean
connectives and the temporal operator U operator (strong
until) as follows: ϕ ::= Fl | ¬ϕ | ϕ∨ψ | ϕUψ, where Fl ∈ F .
As usual we introduce ∧,→,♦ (eventually), and � (always)
as syntactic sugar. We do not include the next operator
(although we have used it in the motivating example). All
our results can be easily generalised to include the next
operator.

Let Π be the set of infinite traces over Act. The trace
π = e0, e1, . . . satisfies a fluent Fl at position i, denoted
π, i |= Fl, if and only if one of the following conditions
holds:
• InitFl ∧ (∀j ∈ N · 0 ≤ j ≤ i→ ej /∈ TFl)
• ∃j ∈ N · (j ≤ i ∧ ej ∈ IFl) ∧ (∀k ∈ N · j < k ≤ i →
ek /∈ TFl)

In other words, a fluent holds at position i if and only if
it holds initially or some initiating action has occurred, but
no terminating action has yet occurred. The interval over
which a fluent holds is closed on the left and open on the
right, since actions have an immediate effect on the value of
fluents.

Given an infinite trace π, the satisfaction of a formula ϕ
at position i, denoted π, i |= ϕ, is defined as in standard
LTL [15]. We say that ϕ holds in π, denoted π |= ϕ, if π, 0 |=
ϕ. A formula ϕ ∈ FLTL holds in an LTSW (denotedW |= ϕ)
if it holds on every infinite trace produced by W .

We use FLTL to describe control goals as explained
below. We restrict attention to SGR(1) formulas [16], which
are formulas of the form �ρ∧ (

∧n
i=1 �♦Ai →

∧m
j=1 �♦Gj),

where ρ, Ai and Gj are Boolean combinations of fluents. We
choose FLTL rather than LTL since it provides a convenient
way of referring abstract states (defined by the fluents) in
a model that is based on events. We concentrate on SGR(1)
due to the good performance of SGR(1) control solvers and
their availability.

3.3 LTS Controller Synthesis

We now define the controller synthesis problem.

Definition 3.4. (LTS Control Problem [17]) The LTS control
problem is a tuple K = 〈W,G,Σc〉. It includes a domain model
in the form of a deterministic LTS W = (S,Σ,∆, s0

W ), where
the alphabet Σ is partitioned in controllable and uncontrollable
actions, i.e. Σ = Σc ] Σu, and an FLTL formula G.

A controller is a function f : Σ∗ → P(Σc) that associates a
set of controllable actions with every sequence of actions.

A trace σ ∈ Σω is compatible with controller f if for every
i ≥ 0 we have σi ∈ f(σ0..i−1) ∪ Σu.

We say f is a solution for K if all maximal traces σ of W that
are compatible with f are infinite and in addition we have σ |= G.
When such a controller exists we say the problem is realisable, and
is unrealisable otherwise.

LTL realisability is decidable [18] and thus LTS Con-
trol is decidable in consequence. If realisable, extracting a
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controller C can be done simultaneously. Efficient synthesis
of reactive-design have been developed to treat important
fragments of LTL (e.g., GR(1) [10]). In this paper we will
build on the polynomial time solution for SGR(1) goals (i.e.,
GR(1) goals [16] plus safety goals) in [11].

The decision of whether an LTS control problem is re-
alisable is translated to a two-player game and winning in
this game for one of the players (the controller). We freely
use the term winning state to signify states that are visited
by a solution controller. In other words, winning states are
those from which it is possible for a controller to guarantee
the goals. By determinacy of the underlying games all states
that are not winning are losing.

We note that the specification of the example in Section
2 is not directly expressible as a SGR(1) goal. However,
standard techniques can be used to extend the model with
extra parts that allow to express these specifications as
SGR(1) goals [16].

3.4 MTS Controller Synthesis

The problem of control synthesis for MTS is to check
whether all, some or none of the deterministic LTS imple-
mentations of a given deterministic MTS can be controlled
by an LTS controller [11]. This is defined formally below.

Definition 3.5. (MTS Control Problem [11]) Given a determin-
istic MTS K, an FLTL formula G and a set Σc ⊆ Σ of control-
lable actions, to solve the MTS control problemK = 〈K,G,Σc〉
is to answer:
• All, if for all LTS W ∈ Idet[K], the control problem
〈W,G,Σc〉 is realisable,

• Some, if for some LTS W ∈ Idet[K], the control problem
〈W,G,Σc〉 is realisable,

• None, otherwise.

Note that, as in the case of LTS control problem, we re-
strict attention to deterministic domain models. This follows
from the fact that our solution for MTS realisability is by a
reduction to LTS realisability. In this paper we distinguish
between two cases: (a) None and (b) Some or All. As All
implies Some we refer to this generally as Some.

The MTS control problem can be solved by reducing
it to LTS control. We provide an overview here of how to
decide if the answer is None or Some. How to distinguish
between Some and All is not relevant for this paper. A full
description of the reduction of MTS to LTS control can be
found in [11].

To distinguish the None and Some cases, we build an
LTS control problem in which at each state of the MTS, the
controller gets to decide which possible but not requires
actions should be available. If under these conditions the
controller can achieve its goal, then the picks of possible but
not required actions determine an MTS implementation for
which a controller exists.

Indeed, this approach models an LTS control problem in
which the controller gets to pick the “easiest” implementa-
tion to control. Formally, given an LTS K , we construct from
it an LTS, which we call KI , that has additional transition
controllable actions (i ⊆ ΣK ). The additional transitions
model the choice that the controller can make regarding
which possible but not required transitions are available.

Definition 3.6. Given an MTS K = (SK ,ΣK ,∆
r
K ,∆

p
K , s

0
K).

We define KI = (SKI ,ΣKI ,∆KI , s0
K) as follows:

SKI = SK ∪ {(s, i) | s ∈ SK , i ⊆ ΣK and ∆r
K(s) ⊆ i}

ΣKI = ΣK ∪ ΣK , where ΣK = {ei | i ⊆ ΣK}
∆KI ={(s, ei, (s, i)) | s ∈ SK and ∆r

K(s) ⊆ i ⊆ ∆p
K(s)}

∪ {((s, i), e, s′) | (s, e, s′) ∈ ∆p
K and e ∈ i}

States in KI are of two kinds. Either states s ∈ SK or
pairs (s, i), where s ∈ SK and i is a set of actions. Those
that are of the form s encode a choice of which subset of
possible transitions the implementation of K implements
from s. Choosing a subset i ⊆ Σ, where ∆r

K(s) ⊆ i ⊆
∆p

K(s), leads to a state (s, i). States of latter form (s, i) have
outgoing transitions labelled with actions in i. A transition
from (s, i) on an action e ∈ i leads to the same state s′ in
KI as taking e from s in K . Thus, for (s, i) and e ∈ i the
e-transition from (s, i) leads to the t such that (s, e, t) ∈ ∆p

K .
Having built KI , the LTS control problem to be solved

KI
S = 〈KI , G,Σc ∪ Σ〉 extends the controllable actions to

include the new labels in KI that choose which actions
to enable and includes special treatment of the controller
goals. We note that the algorithm for solving MTS control is
simplified by the removal of the next operator, which we do
not use. For further details, refer to [11].

The algorithm in Listing 1 computes the solution for the
MTS control problem.

1 procedure solveMTS(K,G,Σc)
2 KI

S = 〈KI , G,Σc ∪ Σ〉
3 if (isLTSRealisable(KI

S))
4 return Some
5 else
6 return None

Listing 1. Solution for Definition 3.5

Note that a controller for KI
S encodes both the control-

lable actions Σc needed to achieve the goal G but also
the actions in Σ that “pick” for which implementation of
K the goal G could be achieved. By hiding transitions
labelled with Σ, the controller can be run in an unknown
environment with the hope that it is the the environment
consistent with K for which the controller achieves its goal
G.

4 CONTROL AND DISCOVERY PROBLEM

We now formalise the Control and Discovery Problem.
The Control and Discovery (C&D) problem assumes that

the actual environment behaviour (currently unknown to
the controller) can be described with an LTS W (the world).
Furthermore, it assumes that there is an MTS K that repre-
sents the initial (possibly null) partial knowledge available
about the environment behaviour that is to be controlled
and that initial knowledge available is consistent with the
environment. Formally, this means that they have the same
alphabet (Σ = ΣW = ΣK ) and the environment behaviour
is a refinement of the knowledge: (K �W ). Note thatK can
model the complete absence of information about the envi-
ronment’s behaviour (i.e., ({s},ΣK , ∅, {s} × ΣK × {s}, s)).
We also assume that the interface with the environment (i.e.,
controlled and monitored events) is known. The problem
then is to find an approach that controls the environment by
choosing which controlled actions to enable when.
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We assume it is possible to reset (reset!) the environ-
ment, which means to set the current state of W to its
original initial one (s0

W ). Finally, we assume that there is
a controlled action (none!) that is used by the controller
to report that the goal is not realisable in the current
environment. We denote the complete set of events of the
C&D problem as Σ! = Σ]{reset!, none!} and its controlled
events as Σc

! = Σc ] {reset!, none!}.
The C&D problem for an FLTL goal G is to find a

controller (f : Σ∗! → P(Σc
! )) that, based on the behaviour

observed so far, chooses controllable actions to enable in
such a way that it will eventually either satisfy G from the
last reset! or conclude unrealisability.

Definition 4.1. (Control and Discovery Problem)) Let K
be a deterministic MTS with alphabet partitioned into control-
lable and uncontrollable actions, i.e., Σ = Σc ] Σu, Σ! =
Σ ] {reset!, none!}, Σc

! = Σc ] {reset!, none!} and G an
FLTL formula. We define a Control and Discovery C&D Problem
as a tuple K = 〈K,G,Σc

! 〉.
A controller is a function f : Σ∗! → P(Σc

! ) that associates
every sequence of actions with a set of controllable actions. A
trace σ ∈ Σω

! is compatible with controller f if for every i ≥ 0
we have: if f(σ0..i−1) ∈ {reset!, none!} then σi = f(σ0..i−1),
otherwise σi ∈ f(σ0..i−1)∪Σu. To simplify some of the notations
we assume that f(ε) = {reset!}.

We say f is a solution for K if for all W ∈ Idet[K] and
for every trace σ ∈ Σω

! that is compatible with f such that each
maximal subsequence with no reset! symbols in σ, projected onto
Σ is a (finite or infinite) trace of W , we have:

1) σ |= ♦ none! implies 〈W,G,Σc〉 is unrealisable, and
2) σ |= ♦ none!∨♦(reset!∧©(G∧� ¬(reset!∨ none!))

According to the definition above, a solution f when
used in an environment in which it is possible to guar-
antee G, the resulting system behaviour is guaranteed to
eventually discover enough of the unknown environment
behaviour to guarantee G. More precisely, to perform a final
reset! of the environment and from then on guarantee G.

On the other hand, the same solution f if deployed in an
environment in which it is impossible to guarantee G, the
resulting system behaviour is guaranteed to either achieve
G indefinitely after some last reset! or eventually report that
G cannot be guaranteed, outputting none!. Recall that the
former corresponds to the case in which the environment
does not play its best strategy (i.e., it does not pick actions
that would force a violation of G) or does not exhibit
behaviour that would allow concluding unrealisability.

5 CONTROL AND DISCOVERY SOLUTION

We now present an algorithm that solves for C&D problems.
We restrict attention to SGR(1) goals (i.e., GR(1)

goals [16] plus safety), which given the assumption of deter-
ministic implementations, admit polynomial time solution
of the MTS control problem [11]. Furthermore, realisability
check allows for checking if an SGR(1) goal can be realised
from a non-initial state of the MTS with no extra cost.
We exploit this in each exploration step as we must query
realisability both from the initial system state and the cur-
rent exploration state. One can generalise these techniques

to full FLTL by using an alphabetised next and adding
the additional bookkeeping required for checking the full
formula from the non-initial states.

The algorithm interacts with the environment by means
of an API env that provides the following methods:
getCurrentStateID returns a state ID from a finite un-
known set of possible IDs (recall that we assume the en-
vironment behaviour can be characterised as a finite LTS).
Method reset restarts the environment to its initial state.
Method try(C) requests execution of one of the control-
lable actions in (the possibly empty) set C and returns the
action that was actually executed. The return value may be
an action not in C if an uncontrollable action occurred, i.e., a
race condition. The return value may be null if none of the
controllable actions in C was available for execution in the
environment (and no uncontrollable action was available
either). For simplicity, we assume that the execution of the
algorithm is fast enough for only up to one uncontrolled
event to occur between each call to try, dropping this
assumption requires simply managing a queue of events.

If the environment exhibits behaviour that corresponds
to that of an LTS W that is a refinement of the (possibly
empty) initial knowledge captured by K then the algorithm
forces the environment to exhibit a trace that is consistent
with a controller that solves the C&D problem 〈K,G,Σc

! 〉.
We introduce some additional methods to make the

main algorithm more readable. Given an MTS K =
(SK ,ΣK ,∆

r
K ,∆

p
K , s

0
K) we assume a method that solves

the control problem appearing in Listing 1: Given a state
s ∈ SK , we will use getController(s) as the method that
either (a) returns a set of actions enabled from s according
to the controller for 〈KI , G,Σc ∪ Σ〉, or (b) if there are
no such actions returns null. Note that initiating to state
s requires not only setting the initial state of KI but also
updating the initial value of fluents in G based on the trace
observed up to s. We assume that the methods solveMTS
and getController do not recompute the controller un-
less the knowledge changes. This affords both consistency
and efficiency. This means that as long as the knowledge
is not updated one controller is used ensuring that if this
controller is used continuously the goal is satisfied.

We assume copyState(s), which creates a fresh copy
of the state s with the same outgoing transitions and target
states. Note that this operation produces an equivalent MTS
(i.e., does not change its set of implementations).

For states s and s′, a set of actions A, and an action
e, method removeTransitions(s,A) removes all
the transitions from s with actions in A and method
makeRequired(s, e, s′) sets transition (s, e, s′) as
required. Finally, methods getInitialState, set-
InitialState, existsStateWithID, and
getStateByID work as expected, and we assume
that states of K have get/set methods for their ID attribute.

The algorithm that solves the C&D problem is given in
Listing 2. The main procedure Control&Discover treats
the env API as implicit. It receives am MTS parameter K ,
which we assume is refined by env. Its other parameters are
the goal G and the set of controllable actions Σc. Initially,
the procedure creates a copy of the initial state of K and
sets its ID to the ID of the initial state of the environment
env. It then sets the initial state of K to the newly created
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1 procedure Control&Discover(K,G,Σc):
2 output(”reset!”)
3 scK = K.copyState(K.getInitialState)
4 scK.setID(env.getCurrentStateID)
5 K.setInitialState(scK)
6
7 while (solveMTS(K,G,Σc)6= None)
8 CS = getController(scK)
9 if (CS == null)

10 env.reset
11 scK = K.getInitialState
12 output(”reset!”)
13 else
14 Ac = CS ∩ Σc

15 e = env.try(Ac)
16 if (e == null)
17 K.removeTransitions(scK , Ac ∪ Σu)
18 else
19 updateKnowledge(K, e, scK)
20 output(e)
21 endif
22 endif
23 endwhile
24 output(”none!”)
25 endprocedure
26
27
28 procedure getController(s)
29 KI

s = (SKI ,ΣKI ,∆KI , s)

30 sKI
S = 〈KI

s, G,Σc ∪ Σ〉
31 if (isLTSRealisable(sKI

S))
32 win = winningStatesOf(sKI

S)
33 succ(s) = {(s, i) ∈ win | (s, i, (s, i)) ∈ ∆KI }
34 ∆win(succ(s)) = {((s, i), e, s′) ∈ ∆KI | (s, i), s′ ∈ win}
35 CS = {e | ((s, i), e, s′) ∈ ∆win(succ(s))}
36 return CS

37 else
38 return null
39 endprocedure
40
41 procedure updateKnowledge(K, e, scK)
42 if (K.existsStateWithID(env.getCurrentStateID))
43 s′ = K.getStateByID(env.getCurrentStateID)
44 else
45 s′ = K.copyState(∆K(scK , e))
46 s′.setID(env.getCurrentStateID)
47 endif
48 K.removeTransitions(scK , {e})
49 K.makeRequired(scK , e, s′)
50 scK = s′

51 endprocedure

Listing 2. Algorithm for solving C&D Problems

state. The procedure continues as long as the answer to the
MTS control problem is not None from the initial state of
the current knowledge. If this is not the case, it signals
none! and terminates. Otherwise, the main loop proceeds
by first, checking if from the current state the answer to the
MTS control problem is None (inside getController). If
that is the case, the C&D algorithm needs to restart from
the initial state (lines 10-12). Note that this is not a case
of unrealisability as from the initial state of K we just
confirmed that the answer is not None. Reaching None is
due to a bad (uninformed) decision of the controller at some
earlier point.

By line 8, CS is a set of actions that are possible from
the current state of K and are part of the controller for
the current stage of the knowledge. This set of actions
is then used to offer its subset of controllable actions Ac

that are guaranteed to move towards achieving G for some
implementation that refines K .

We then call env’s try method to attempt to execute
some controllable action in Ac. Method try returns infor-

mation (e) of what actually happens: If e is null, then in the
current state of the environment no uncontrollable actions
are possible and all actions in Ac are not possible either.
Accordingly, we update K by making Ac ∪ Σu prohibited
from scK in Line 17. Otherwise, we update our MTS by
calling updateKnowledge (Line 19) informing e and scK .
Finally, the algorithm outputs the executed action e.

Procedure updateKnowledge gets the action that was
executed by the environment e and current state scK , which
it updates. The procedure must decide if the current state
of the environment (having executed e) has been visited
before, and decides whether it must update the knowledge
K . If the state has been visited before, we use the same
knowledge state. Otherwise, we create a fresh copy of the e
successor of scK and set its ID. As action e was just taken,
we know that it is required. Finally, we update the current
state of K before returning. Notice that the procedure does
not necessarily refine the knowledge. That is, the set of im-
plementations of the updated knowledge is not necessarily
a subset of the set of implementations before updating.
However, the sensed environment remains an implementation
of the updated knowledge.

Choice of Controllable Actions
Method getController in Line 8, which is elaborated
in Line 28, encapsulates the choice of controllable actions
to offer in Line 15. This choice requires a more detailed
explanation of how the set of actions CS is chosen.

Let K = 〈K,G,Σc〉 be the MTS control problem, the
derived LTS KI = (SKI ,ΣKI ,∆KI , s0

K), and the control
problem some KI

S as in Definition 3.6. Recall that the states
of KI are either states s of K or pairs (s, i), where s is a
state of K and i is a set of actions.

The solution of the scK
KI

S control problem classifies states
of KI

scK
as winning or losing. A state s is winning if for

some set of actions iwe have that (s, i) is winning. However,
due to the transition structure of KI

S it follows that regard-
less of the set of actions i, there is some set of successors of
s that are also winning. Hence, there is a unique maximal set
of actions i such that all l ∈ i successors of s are winning.
In our implementation, method getController returns
the set i. Later, set i ∩ Σc of controllable actions that lead
to winning states is offered to env.try. Notice that every
non-empty subset of this maximal set i would be suitable
for our purposes. For example, we could choose to explore
more or less based on including more/less possible (but not
known to be required) transitions.

Statement of Correctness
We now state and prove the correctness of the algorithm in
Listing 2.

Theorem 5.1. The algorithm Control&Discover enacts a
controller that solves the Control and Discovery problem for K
and G.

The proof of correctness relies on the following lemmata.

Lemma 5.1. The current state of K always has the ID of the
current state of the environment.

Proof. This is established initially (in line 5) by creating a
copy of the initial state of K and giving it the identifier of
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the initial state of W . Whenever in W there is a non null
transition, this invariant is re-established by either getting
the state of K that has the identifier of the current state of
W or creating such a state.

Lemma 5.2. If initially W is an implementation of K , then after
every knowledge update W is an implementation of K .

Proof. We prove a stronger claim, the current state of K is
refined by the current state of W and that for every pair of
states t of W and s of K such that s has t’s identifier then t
refines s. This is the loop invariant.

Our proof is by induction on the progress of the algo-
rithm. Initially, we assume that K is refined by W . Hence,
the initial state of K is refined by the initial state of W . We
create a copy of the initial state ofK and give it the identifier
of the initial state of W (line 5). It follows that the lemma
holds when the loop condition is evaluated the first time.

Suppose by induction that K is refined by W , that the
current state t ofW is refined by the current state s ofK , and
that for every pair t′ and s′ such that t′ and s′ have the same
identifier we have t′ refines s′. There are three possible runs
through the loop. Either CS is null or not. In the second
case, either the action returned in line 15 is null or not
null. If CS is null, then nothing in the refinement mapping
is changed and both the environment and the knowledge
return to their initial states, which, by induction, are in a
refinement relation.

Suppose that CS is not null. If the returned action in
line 15 is null, then both the environment and K remain in
the same state. Every possible transition that is removed in
K is known not to exist in the environment maintaining the
refinement relation.

The last case is when the action returned in line 15 is not
null. Let t denote the state of W before taking action e and
t′ denote the state of W after the action. By assumption scK
refines t. Procedure updateKnowledge then re-establishes
the invariant as follows.

In case t′ was visited previously, there is a state s′

of K such that t′ refines s′. The first branch of the if
in updateKnowledge is taken. We set s′ as a required e
successor of scK . The transition (t, e, t′) is required in W
and hence possible as well. As required by the refinement
relation, transition (scK , e, s

′) is possible in K . Transition
(scK , e, s

′) is required in K. As needed by the refinement
relation, transition (t, e, t′) is required in W . It follows that
this change re-establishes the refinement relation.

In case t was not visited previously, there is no state
of K with the same ID. The second branch of the if in
updateKnowledge is taken. As (t, e, t′) is a required (and
hence possible as well) transition of W and by induction
scK is refined by t, it follows that for some state s′ we have
(scK , e, s

′) is a possible transition in K and t′ refines s′. We
create a copy of s′ and set the ID of the new copy to that
of t′. Let s′′ denote the copy of s′. Clearly, s′′ is still refined
by t′. We make the transition (scK , e, s

′′) required in K . In
order to re-establish the refinement, we have to show that
there is a matching required transition in W . However, the
transition (t, e, t′) is a required transition in W supplying
this requirement.

We are now ready to prove Theorem 5.1.

Proof. Sequences of actions taken between reset! or none!
are sequences of actions taken byW . It follows that maximal
subsequences with no reset! symbols are traces of W .

We show the algorithm outputs none! only when
〈W,G,Σc〉 is unrealisable. The only case where the algo-
rithm outputs none! is after concluding that the result of the
MTS control problem 〈K,G,Σc〉 is none. By the soundness
of the MTS control it follows that in every implementation
of K the goal G cannot be realised. By Lemma 5.2 W
implements K implying that 〈W,G,Σc〉 is unrealisable.

Finally, we show that the trace satisfies either eventually
none! or eventually after the last reset the trace satisfies the
goal. Suppose that the algorithm does not output none!. We
have to show that there is a final reset! and that after that
reset! the trace satisfies G.

We note that a state can be found to be losing only once.
A visited state of K has an ID and the same ID cannot be
given to two different states of knowledge. Hence, this can
happen a finite number of times. Once a state of K is found
to be losing w.r.t. the goal, it can only be visited again by
exploring a new transition. Indeed, otherwise, the controller
in 〈KI , G,Σc ∪ Σ〉 never visits states that are losing. More
formally, we say a state s of K is said to be visited if at
some point of the procedure it is stored as value of scK . Note
that those states also have been assigned an ID and, as said
before, that, for a given ID, there is at most one state of
K with that ID assigned. Revisiting a losing state s of K
can only happen after executing an env.Try (line 15), and
finding that the target state of the e transition has an ID that
has been already assigned to s (line 30) and is losing. Given
that there is a refinement relation between K and W that
is consistent with the IDs assigned so far, there must be at
least a possible transition labeled as e from state stored in
scK . Note that line 15 was executed knowing that the current
state (scK ) of K is not a losing state implying that (a) all
required uncontrollable transitions lead to winning states
and (b) all controllable transitions that are enabled lead to
winning states. It follows that one of the following two
options happened: (a) scK has an uncontrollable permissible
(but not required) transition to the losing s and by execution
of the env.Try we are learning that this transition is required
or (b) scK has a (controllable or uncontrollable) permissible
or required transition to some other state s′ that has not been
visited. However, upon taking the e-transition we learn that
the e successor in the environment actually has the ID of
s. In both cases, a new transition is explored, which can
happen a finite number of times as there are finitely many
transitions.

Hence, there is a finite number of reset! events.
For similar reasons, after the last reset!, the number

of updates to K is finite. We conclude that an infinite
suffix is played according to a controller obtained from the
same knowledge. However, this controller guarantees the
goal according to 〈KI , G,Σc ∪ Σ〉. It follows that the suffix
satisfies G from the last reset!.

6 VALIDATION

The goal of this section is to explore feasibility and in
particular the behaviour that the C&D exhibits for different
case studies and how it varies depending on two factors:
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Realisability of the goals in the environment to be controlled
and discovered, and the degree to which the environment
facilitates behaviour discovery by exhibiting behaviour un-
known to the controller. We use seven case studies from the
literature in two different versions, realisable and unrealis-
able, and for each one we run the C&D seven times against
three different kinds of environments.

Briefly, each case study includes a third-party developed
behaviour model of the environment and goals that a con-
troller is to achieve. We treat this model as the unknown W
to be discovered and controlled. We define ourselves some
(very basic) initial knowledge K . We then show how the
algorithm either controls the (unknown) environment and
achieves the goals or discovers enough behaviour to declare
that the (unknown) environment cannot be controlled.

All the material for replicating the validation can be
found at [19].

6.1 Subjects

All case studies were run using an extension of the MTSA
tool, which natively supports specification of LTS and prop-
erties using a textual process-algebraic notation (FSP) and
temporal logic. The tool also supports synthesis of con-
trollers for SGR(1) control problems. The tool was extended
to support defining and solving C&D problems, and also
for executing solutions against environments. The extended
version of the tool and case studies can be found at [19].

To avoid bias and manual manipulation, we used case
studies where environments to be controlled are described
as LTS and goals are given as temporal logic formulas.

We use the case study from [4] taken from the Global
Monitoring for Environment and Security (GMES) Euro-
pean Programme emergency management service, which
covers catastrophic events such as floods, earthquakes, and
fires. The scenario involves coordinating services from two
different countries. In one country there is a Command and
Control center in charge of forest monitoring and forest fire
management. The other country is to provide source rein-
forcement services including UAVs and weather services.

We used the specification of the Production Cell case
study in in [20], which was originally presented in [21] and
studied extensively: a robotic arm coordinates the applica-
tion of various tools to construct a product fulfilling some
safety and liveness requirements. The liveness requirement
is to construct infinitely many products. The assumption is
that if the controller is waiting for pieces to construct a new
product, it eventually receives them. Safety rules describe
how and when tools can be used and the requirements to
be fulfilled before placing products in the outgoing con-
veyor belt. The specification assumes that tools may fail
but include a liveness assumption stating, in essence, that
these failures are of a probabilistic nature and that retrying
them sufficiently will eventually lead to a successful use of
the tool. The problem here is to synthesise a controller for
the robotic arm that satisfies the specification based on the
knowledge of the tool APIs.

We use a search and rescue case study originally pre-
sented in [22]. Here a robot must explore within a collapsed
house taking supplies to people trapped in one of the
rooms. In addition a number of obstacles may intermittently

0 12

request1?request2?

reply1?reply2?

Fig. 5. MTS for request/response patterns.

impede movement of the robot. The controller for the robot
must be synthesised automatically based on the behaviour
of the robot API and mission requirements.

We also adapted the Purchase and Delivery case study
from [5], which involves synthesising a controller for com-
posing and monitoring of distributed web services. We
used the Bookstore from [6] that has similarities with the
Purchase and Deliver case study, services are to be coordi-
nated to provide a more complex book querying, purchasing
and delivery system. For all the case studies mentioned
above we used the formalisation published in [20]. We use
the service mediation case study from [23] which involves
mediating two services with different interfaces, and a travel
aggregator service (Travel Agency) [20]) which involves
an orchestration scenario of multiple booking services to
provide holiday packages.

All of the case studies above present realisable control
problems. To include unrealisable scenarios, and due to the
unavailability of published unrealisable control problems
expressed as LTS + FLTL, we manually modified each case
study to make unrealisable versions of them. We modified
the GMES case study to allow for unrecoverable UAV
landing failures, the Production Cell was changed similarly
to allow for unrecoverable tool failures. In the search and
rescue case study we removed transitions in which the
environment allowed the door to be opened once the robot
has picked up but not delivered packages, thus impeding
it from achieving its goals. Service mediation was changed
to allow for different services to time-out and not return
the expected results. In Travel Agency and Bookstore case
studies we removed a fairness assumption on the successful
termination of services and for Purchase and Delivery we
added the possibility of failing purchases. Unrealisable ver-
sions of the case study are referred to with an “UR” suffix.

6.2 Experiments
For each case study we chose an MTS to represent the initial
knowledge the controller has of its environment. We used
two different types of initial knowledge. For Production
Cell, Disaster Recovery, Service Mediation, Travel Agency,
and Purchase and Delivery we assumed that there was no
initial knowledge whatsoever. In other words we used an
MTS with one state and all model actions enabled with
looping maybe transitions. For the rest of the case studies
(GMES and Bookstore) we assumed knowledge of request
response nature of some events, resulting in MTS following
a pattern depicted in Figure 5.

To run the algorithm we need to provide an interface to
the concrete execution environment that is to be controlled
and discovered. We built an enactor that given the descrip-
tion of the environment behaviour as an LTS implements the
World API. A key decision is how the enactor chooses the
next action to take (i.e., try(Ac)). We chose three kinds of
enactors: a random environment that picks the next action to



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 10

occur randomly, an environment that facilitates discovery by
choosing transitions that have not been taken before, and an
environment that hinders discovery by deliberately taking
transitions that have been taken before.

As the algorithm is designed to control the environment,
if possible, ad infinitum while achieving the goal, we intro-
duced a stopping point to heuristically detect if the process
has converged (i.e., no more reset! occur in the future).
Note that the algorithm cannot necessarily recognise this
point as it cannot distinguish between behaviour that may
occur but the environment decides not to exhibit for some
(unbounded) time from behaviour that cannot occur. Thus,
we use a criterion that stops the C&D process when the
number of actions of the execution trace is 11 times the
number of events up to the last time the knowledge about
the environment was refined. After stopping, we checked
if the entire behaviour of W was covered or if the resulting
behaviour since the last reset! corresponds to behaviour that
a controller built directly with full knowledge of W would
have performed. Such an inspection contributes to ensuring
that indeed the behaviour of the controller has stabilised.
Indeed, in all cases at the stopping point the C&D process
had stabilised for all realisable case studies.

6.3 Results

In Table 1 we show results obtained from running the
algorithm against the case studies for the random (R) en-
vironment and for the environments that facilitate (F) and
hinder (H) discovery. We report the number of refinements
and resets performed while discovering behaviour. This
provides information on how many times new information
was incorporated into the knowledge that the algorithm is
building up, and the number of times the algorithm ran
into a dead end (making it inevitable that it will violate a
property) and had to start again.

We also report on the moment (measured in number
of actions) when the last refinement was performed. This
shows how soon sufficient knowledge to control or declare
unrealisability was achieved. We also report on the occur-
rence of the last reset which, for executions that do gives
an indication as to from when the system goal is being
achieved. Note that no information available for last reset
means that the behaviour from the very beginning satisfies
the system goals (i.e., the goals were never violated). Finally,
we report on the degree of coverage of the actual environ-
ment behaviour in terms of states and transitions.

The table reports coverages with significant variability
amongst the various case studies. Variation can be due to
different reasons, for instance the degree of controllability
of the environment and the extent to which certain un-
controlled actions do not contribute to achieving the goal
or lead to violations. The latter can allow the controller to
avoid exploration of large portions of the state space. Of
course, the use of an environment that hinders discovery (H)
typically leads to less exploration than one that facilitates
discovery (F) or a random (R) one. As expected, F tends to
produce higher coverage than R. There is also significant
variability between case studies in terms of the number of
resets and refinements required to stabilise behaviour or
actually declare non-realisability. Also, as can be expected,

unrealizable environments tend to have more resets than
their realisable counterparts.

We do not report on execution times as these are irrele-
vant in our experiments using synthetic environments. Exe-
cution time in a real setting will depend on aspects such as
the speed at which the service responds to controlled actions
or the time it takes to produce an uncontrolled event that is
expected by the controller. The C&D algorithm’s impact on
execution time depends on the computation time for the
next action to control. The average time for this operation
was under 1 second for 10 of the 14 case studies, the GMES
and Travel Agency were significantly more complex with
average times of 18 and 32 seconds.

Additional data that is relevant but not in the table is
which of the C&D executions for unrealisable specifications
achieved their goals and did not terminate because the
controller concluded none!. As expected, when using an en-
vironment that facilitates discovery (F), all executions con-
cluded none!. This is because the C&D controller succeeds
in exploring sufficient environment behaviour and refine its
knowledge to conclude that realising the goal is impossible.
The same happened for random environments (R) because
with sufficient attempts, all uncontrolled choices are taken at
least once, hence eventually sufficient knowledge to declare
none! is acquired. For environments that hinder discovery,
30% of executions did not declare none!, rather they satisfied
the goals from the last reset. These cases correspond to
executions in which the first time the environment picked
randomly the actions that the controller needed to achieve
its goals. Environment H then sticks to this choice, helping
the controller achieve its goals.

In contra-position to our approach (in which goals may
be achieved in unrealisable settings depending on the be-
haviour of the environment), consider an approach where
the controller selects randomly what action to take until it
has enough information to either produce a strategy that
wins or declare unrealisability. Such a naive approach with
an unrealisable environment runs the risk of not achieving
either. Indeed, we experimented with such an approach and
found executions in which the controlled system continu-
ously reset! and never declared none!. An example is the
unrealisable Production Cell case study which we ran for 20
times longer than any other execution and in which reset!
was periodically performed.

In conclusion, we applied C&D to realisable and unre-
alisable versions of seven case studies taken from the liter-
ature. For each case study we used three different kinds of
environments that vary the degree to which their behaviour
is amenable to discovery. For each of these 42 scenarios we
observed that the algorithm succeeds in its C&D task but
that the degree to which behaviour is actually discovered
and the number of resets varies significantly depending on
the environment’s strategy.

7 RELATED WORK AND DISCUSSION

Interacting with unknown environments and trying to
achieve system goals has been the focus of significant study
in the context of service oriented systems. Service discovery
is readily available in many environments (e.g., Google APIs
Discovery Service, WS-Discovery, Bonjour) and interface de-
scriptions can be described using languages such as WSDL.
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Refinements Resets Last Refinement Last Reset (#Actions) State Cvg.(%) Transition Cvg. (%)
Case study R F H R F H R F H R F H R F H R F H
Bookstore 19 19 8 0 0 0 60 54 8 - - - 100 100 69 100 100 71
Bookstore UR 17 17 9 1 1 0 54 30 9 - 24 - 98 100 70 96 96 76
GMES 45 45 6 0 0 0 318 350 7 - - - 100 100 32 98 98 36
GMES UR 33 39 8 5 6 0 69 73 8 104 150 - 85 91 34 85 91 39
ProductionCell 54 58 4 6 6 0 176 171 5 137 148 - 83 85 9 59 62 4
ProductionCell UR 38 29 15 4 3 3 89 56 54 81 - - 67 49 27 42 31 16
Purchase & Delivery 10 10 9 0 0 0 13 12 9 - - - 25 25 24 9 9 7
Purchase & Delivery UR 19 20 11 0 0 0 37 38 13 - - - 35 35 26 15 16 9
Search & Rescue 36 48 30 0 0 0 132 388 238 - - - 66 80 56 48 65 41
Search & Rescue UR 9 11 4 1 1 0 12 13 5 - - - 16 22 9 9 12 5
Service Mediation 27 38 29 0 0 0 1276 1354 3059 - - - 19 23 20 8 11 9
Service Mediation UR 40 40 37 3 2 1 71 69 60 62 - 50 26 26 23 9 9 8
Travel Agency 142 143 5 0 0 0 2767 1868 10 - - - 36 36 2 16 16 0
Travel Agency UR 38 37 10 2 2 1 81 58 18 57 52 - 14 14 4 4 4 1

TABLE 1
Control and discovery for three types environments: One that chooses randomly (R), one that facilitates discovery (F) and one that hinders

discovery (H). Numbers are rounded to the nearest integer.

Verification of orchestration strategies of such environments
typically assumes the existence of behaviour models of the
services to be coordinated (e.g., [24]).

The automated construction of connectors, orchestrators
and mediators can be understood as a controller synthesis
problem. Connector synthesis approaches like [2] exploit
ontology reasoning and constraint programming to auto-
matically infer mappings between component interfaces.
When behavior models are unavailable, those approaches
suggest, as a pre-process, the use of automata learning
techniques (e.g., the MAT framework [7]) for the extraction
of behavioural models [1] and for the construction of emer-
gent middleware [3]. Unlike our approach, MAT framework
requires the ability to answer equivalence queries (typically
approximated by using conformance testing (e.g., [12])).
Moreover, it is assumed that the produced abstract output
symbol is uniquely determined by the preceding sequence
of abstract input symbols [8]. This assumption does not
hold in general when the environment exhibits uncontrol-
lable behaviour. Our approach is designed to overcome this
limitation by integrating control strategy with the discovery
process (i.e., it is not a two phase approach).

The community studying motion and high-level mission
planning (e.g., [25], [26]) has recently addressed the problem
of recovery from inaccurate description of the environment
[27], [28], [29], [30], [31], [32], partial models of the envi-
ronment [33] and model inference [34], [35]. In the first
group of works, synthesis procedures are adapted to toler-
ate modelling assumption violations. The work presented
in [27], considers uncertainties in open finite transition
systems due to unmodeled transitions. In the same vein,
[28] proposes a way to synthesise robust controllers that
will be able to win even if certain unexpected transitions
that occur a finite number of times. Similarly, [29] solves
the problem of synthesising error resilient systems from
specifications in temporal logic. Error resilience means tol-
erate arbitrarily many violations of safety assumptions. The
work in [30] presents a tiered framework for combining
behaviour models, each with different associated assump-
tions and risks due to modelling inaccuracies. In [31], [32]
the controller for an originally realisable specification is
extended with actions, if any exist, that preserve the robot‘s
safety requirements and make sure that the robot can make
progress towards its goals when the environment resumes

the expected behaviour. In this line of work one should start
with a realisable specification and the actual environment
can just add (unexpected) behaviour. This is not adequate
when behaviour to achieve goals needs to be discovered:
in our approach, actual environment can either exhibit or
even eliminate potential behaviour and there is no need
to start with realisable specifications. MTS [9] have been
used to reason about partial knowledge of system behaviour
(e.g., [36]) and also for synthesising controllers with incom-
plete knowledge about the environment [11], [37]. However,
progressive refinement of MTS models based on runtime
observations of the system is not considered.

Recently [33] proposes an ad-hoc method, inspired on
MTS [9], to produce plans for multi-robot missions with
partial knowledge. Authors hard-code three sources of un-
certainty: partial knowledge about the actions execution,
unknown service provisioning, and unknown meeting ca-
pabilities of robots. Each type of uncertainty is managed in a
specialised way. That approach in not meant to handle gen-
eral partial models of reactive systems in a uniform way, as
we propose in this work. In particular, the partial planning
approach used is not able to deal with general uncertainty
regarding uncontrollable actions: They only handle cases of
uncertain responses to controllable actions and cannot, for
instance, deal with uncertain occurrence of interrupt-like
uncontrolled behaviour. Another difference is that in [33]
a single non-occurrence of an uncertain transition is consid-
ered enough evidence to conclude, during execution, that
the transition is not present. In the motivating example (Sec-
tion 2) this means assuming that if the first query resulted
in an available book, all future queries will do so too.

Another collection of results, on adaptive planning (e.g.,
[34], [35]), deal with a problem close to ours, namely when
the precise shape of the model is (partially) unknown.
In [38] a framework is used that integrates grammatical
inference with symbolic control on finite-state transition
systems interacting with partially unknown, adversarial,
rule-governed environments (i.e., states are observable by
means of the propositional assignment that rule precondi-
tion/postcondition of actions). However, there are a couple
of limitations that are not present in our work. Firstly, the
class of grammar representing the environment must be
known in advance [39], secondly, a positive enumeration of
the game’s language (a function that enumerates all prefixes
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of the game runs) is given as hypothesis of the theoretical
results on playing an equivalent game. Positive enumeration
can be potentially hindered by an adversarial environment
and while our approach explicitly deals with the environ-
ment not collaborating to exhibit its full behaviour, which
may imply contingently but perpetually winning the game.

Given a unrealizable control problem, mining assump-
tions (e.g., [40], [41]) attempts to find an assumption for
which a control problem is realisable. This process does not
include finding an assumption that is consistent with an
actual environment. Indeed, the authors argue that the goal
is ”to discover the designer’s intent” as opposed to discover
the assumptions that hold in the environment.

To the best of our knowledge, the use of controller
synthesis to develop strategies that also discover is a novel idea.
Synthesis based on partial knowledge guarantees that when
the controller chooses a controlled action it either continues
to progress towards achieving the goal or eventually reveals
unknown environment behaviour. Put differently, the cho-
sen action is guaranteed not to be losing (the environment
can prevent the goal from being achieved) based on the
current knowledge. A random exploration may pick actions
that are losing, thus leading to behaviour that never acquires
new knowledge nor gets closer to achieving its goals. A
discovery strategy that aims to only discover (e.g., shortest
path to a maybe transition in K) may never succeed in fully
discovering while not achieving the goal either.

7.1 Limitations of Our Approach

The approach presented in this paper has two assumptions
that can be limiting in various contexts. Both assumptions
are related to expectations about the interface with the
environment. We assume that it is possible to ask the envi-
ronment for an ID that uniquely identifies the current state
of the environment. We also assume that it is possible to
reset the environment back to its initial state. Although this
may considered a tall order, it is arguably less restrictive
than the assumptions used in widespread automata learning
approaches inspired by the MAT framework [7]. In these
approaches the use of equivalence queries means answering
a more complex question (behaviour equivalence, which
implies knowing the current state and its behavioral capabil-
ities) and is typically implemented via conformance testing,
which requires the ability to reset the environment.

Note that service oriented systems (where sessions can
be thought of as resets and hash functions could implement
state IDs) are an example of a class of systems that could be
made compatible with our assumptions on environments.
In addition note that for 6 out of 7 case studies (in their
realisable versions) resetting was not needed to achieve the
desired goal.

Nonetheless, our assumptions do limit the applicability
of the approach. Beyond service-oriented systems, cyber-
physical systems are significantly more challenging. Con-
sidering how to extend our approach to cope with partial
knowledge regarding state ID (e.g., knowledge about loca-
tion but not other features) is of interest.

Although this paper goes beyond a purely theoretic so-
lution by providing an implementation and showing is can
handle literature case studies, there are major technological

challenges for actually deploying this approach. One of
these is to perform an API wrapping of the system under
control. Indeed, a self adaptation approach could include
wrapping the managed system with the components that
implement a MAPE loop [42] including a module that
observes the state of the environment and recognises that
it has been there before. This module could feed state ids to
the approach described herein.

We envision a large spectrum of alternatives depending
on how one could interact with the API/interface and
underlying development technology of the system-to-be-
controlled (we believe it would be easier to design or alter a
component to provide the suggested API than altering it to
yield an always up-to-date protocol model). Ultimately, if an
external component has uncontrollable behavior, traditional
Mealy machine learning approaches are not applicable,
some form of exploration is required.

8 CONCLUSIONS

In this paper we define the control and discovery prob-
lem that supports controlling environments with initial
unknown behaviour. The problem allows (but does not
require) starting with partial knowledge, represented as an
MTS, about the environment behaviour. We also present a
solution to the control and discovery problem for FLTL goals
by building on MTS control. The algorithm assumes that
the discovery process can identify when the environment
returns to a previously visited state and that environment’s
behaviour corresponds to that of a regular language. The
solution to an MTS control problem provides a controller
that either incrementally builds up more knowledge about
environment behaviour or guarantees the systems goals.
We discuss an implementation of the control and discovery
algorithm in the MTSA tool and report on its use on various
case studies taken from the literature.
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