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Abstract—All existing physiological tremor filtering algo-
rithms, developed for robotic microsurgery, use non-linear phase
pre-filters to isolate the tremor signal. Such filters cause phase
distortion to the filtered tremor signal and limit the filtering
accuracy. We revisited this long-standing problem to enable
filtering of the physiological tremor without any phase distortion.
We developed a combined estimation-prediction paradigm that
offers zero-phase type filtering. The estimation is achieved with
the mathematically modified recursive singular spectrum analysis
algorithm and the prediction is delivered with the standard
extreme learning machine. In addition, to limit the computational
cost; we developed two moving window versions of this struc-
ture, appropriate for real-time implementation. The proposed
paradigm preserved the natural phase of the filtered tremor.
It achieved the key performance index of error limitation below
10µm, yielding the estimation accuracy larger than 70%, at a time
delay of 36ms only. Both moving window versions of the proposed
approach restricted the computational cost considerably; whilst
offering the same performance. It is for the first time that effective
estimation of the physiological tremor is achieved, without any
pre-filtering and phase distortion. This proposed method is
feasible for real-time implantation. Clinical translation of the
proposed paradigm can significantly enhance the outcome in
hand-held surgical robotics.

Note to Practitioners—The imprecision caused by physiological
hand tremor in microsurgeries has motivated researchers to inno-
vate an efficient tremor compensating technique that can improve
the surgical performance. Yet, all the existing tremor filtering
algorithms, implemented in hand-held surgical instruments, use
non-linear phase pre-filters to separate the tremor signal. The
inherent phase distortion caused by such pre-filters restricts
the filtering performance significantly and renders the existing
methods inadequate for hand-held robotic surgery. Motivated by
this, we proposed a novel estimator-predictor based framework,
by adopting the modified recursive singular spectrum analysis
estimator and the extreme learning machine predictor. The
proposed framework filters the tremor signal accurately, without
distorting it, but at a small fixed lag. In a set of rigorous testing
performed by emulating a real-time processing, the proposed
algorithm showed higher performance compared to the state-of-
the-art algorithms. This validates not only its suitability for real-
time implantation but also its potential to improve the surgical
performance, which has been limited by the distorted filtering.
Nonetheless, we have presented a proof-of-principle framework
for a distortion free filtering, but its full implementation in a
real surgical instrument, such as Micron or ITrem, requires a
substantial amount of experimental testing and verification. It
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can be also applicable in a wide range of areas, including health-
care, digital manufacturing, smart automation and control, and
various other robotic technologies where efficient filtering of
advanced sensors data is highly desirable. In future, we will
develop the multidimensional model of the proposed framework
to enable filtering of tremor in the xyz axes simultaneously.

Index Terms—Extreme learning machine, physiological tremor,
recursive singular spectrum analysis, robotic microsurgery.

I. Introduction

PHYSIOLOGICAL tremor is an involuntary and quasi-
periodic movement that commonly exists in normal hu-

man hand motion [1]. Its frequency spectrum lies in the range
of 6–14Hz [2], [3] and its magnitude can be as high as
100µm [4]–[7]. This level of oscillation is not so much of
a problem for day-to-day tasks but causes detrimental effects
in microsurgery that requires precise hand positioning [8], [9].
The undesired vibration of the tip of a surgical tool, caused
by natural hand tremor degrades the efficacy of microsurgical
interventions, such as treatment procedures for retinal vascular
occlusions or peeling of thin membranes, in which a position-
ing accuracy of 10µm, or less, is typically required [10]–[12].

The movement of the tip of a microsurgery tool com-
prises voluntary motion and involuntary motion that includes
the physiological hand tremor, jerk and low frequency drift.
Amongst all, the physiological tremor has most adverse effect
on surgical micromanipulation as jerk occurs rarely and drift
can be adjusted by visual feedback [13]. To attenuate the
physiological hand tremor, there have been remarkable ad-
vancements in surgical robotics in last three decades, including
tele-robotic and robot-assisted systems [14]–[16], steady-hand
robotic systems [17], [18] and smart hand-held surgical de-
vices [2], [3], [19], [20]. Amongst all, direct hand surgery still
retains its appeal as it provides surgeons’expertise and natural
feel; and is intuitive due to the fast correspondence between
the visual feedback and voluntary hand motion of the surgeon
who is directly holding the instrument [2], [6], [16], [21].
Despite these advantages, the high level of hand positioning
and dexterity required for microsurgery restricts a number of
qualified surgeons due to their natural tremor [19]. Hence to
enhance the dexterity of direct hand surgery, smart hand-held
surgical instruments such as Micron [2], [19] and ITrem [20]
have been developed with the aim to effectively alleviate the
physiological tremor from the tip of the instrument.

The voluntary motion of the hand is confined below 4Hz
[22]. Hence, initially in human-machine interface, linear-phase
lowpass or bandstop filters were applied directly to the whole
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motion to suppress the tremor [23], [24]. To be effective, these
filters require a large filter order that introduces a considerable
time delay [25]. Therefore the use of these filters was discour-
aged [5], [26]. Riviere et al. [2] proposed a smart hand-held
device, called Micron, which senses its own motion, isolates
the tremor from other components, then actuates the tip in an
equal but opposite direction to cancel the tremor effectively.
For effective performance of Micron, the accurate estimation
of the tremor is crucial otherwise exact anti-phase actuation
cannot be accomplished. The amplitude and the spectrum of
the tremor are however unknown and time-varying. Hence,
to track the non-stationary tremor, they utilised an adaptive
filtering approach called a weighted Fourier linear combiner
(wFLC) [6]. In recent years, wFLC has been extended to
autoregressive [27], bandlimited [28]–[30] and quaternion [31]
versions. To function accurately, all of these adaptive tech-
niques required a reference tremor signal, which was generated
by pre-filtering the whole motion with an infinite impulse
response (IIR) filter.

A. The detrimental effect of pre-filtering

The key shortcoming of the wFLC algorithm is caused by
the aforementioned pre-filter. The time delay introduced by
such IIR pre-filters is much less compared to the delay intro-
duced by linear phase filters but they cause frequency selective
delays. Fig. 1A shows the time delay versus frequency plot for
the 5th−order bandpass Butterworth IIR filter with a passband
of 2 − 20Hz, which was used in [27], [30], [32]. In addition,
it shows the same for a linear phase Hamming-window based
finite impulse response (FIR) filter with order 1000. The IIR
filter causes a frequency-specific time delay. However, the FIR
filter features a constant time delay of 2s (= 1000

2 × 4ms;
sampling time is 4ms) to all the frequencies in its passband. A
time-domain representation of the frequency-specific effect of
the above IIR pre-filter on four tones in the tremor frequency
band is shown in Fig. 1B.

Fig. 1C shows a 2s plot of a real tremor signal (black)
obtained for a novice subject by using a zero-phase pre-filter
with the same specifications as the IIR pre-filters of Fig. 1A.
The IIR pre-filter completely distorts the shape of the reference
tremor signal. The FIR pre-filter accurately approximates the
tremor signal; however, the trade-off is extremely high delay
which makes it inapplicable for real-time implementation.
The resulting frequency-specific distortion of the IIR pre-
filter limits the efficacy of the wFLC algorithm in real-time
implementations. All of the off-springs of the wFLC, e.g. [28],
[31], [32], inherit this shortcoming.

To overcome this frequency-specific distortion effect, Velu-
volu et al. [30] proposed a multistep prediction method with
a fixed-horizon. They postulated that if the exact delay caused
by a non-linear phase filter is pre-known, then it can be
overcome by using multistep prediction. However, the fre-
quency selective delay experienced by the reference tremor
cannot be pre-known in real-time, as the spectrum of the
tremor signal is non-stationary. This was later acknowledged
in [32], [33]. The authors agreed that the limitation of the
conventional non-linear phase filters is their inherent phase
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Fig. 1. The effect of pre-filtering: (A) Time versus frequency responses of the
linear-phase FIR and non-linear phase IIR pre-filters; (B) Frequency-specific
phase delay caused by the IIR filter introduced in A. (C) The reference tremor
signal, of a novice surgeon, generated with zero-phase, IIR, and FIR pre-filters.
Unlike the FIR filter the IIR pre-filter distorts the shape of the tremor signal.
The output of the FIR filter is adjusted for the 2s delay.

distortion. As a solution, they proposed a phase correction
technique based on the moving window least squares support
vector machines (MWLSSVM) and the one-dimensional on-
line sequential robust ELM (1D-OSRELM) algorithms, which
yielded better filtering performance [32], [33]. These algo-
rithms however still relied on IIR pre-filters to isolate the
tremor signal from the whole motion. As a consequence, the
isolated tremor was completely distorted. The distorted tremor
signal was then rectified by mapping it with the non-distorted
tremor signal obtained from a zero-phase filtering. Since the
tremor signal is non-stationary, for an accurate rectification,
these methods necessitated the tremor signal to be zero-phase
filtered continuously to adapt to its changing characteristics.
However, the zero-phase filtering is a non-causal system and
cannot be performed in real-time. This limitation renders the
aforementioned methods inadequate for a real-time implemen-
tation. Although, frequent offline mapping can be performed,
the filter’s transient characteristic restricts the prompt update
of the mapping, which degrades the filtering performance
significantly.

In this paper, we offer a new paradigm to address this
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problem. Instead of pre-filtering the tremor signal, we directly
extract the voluntary and the tremor signal from the whole
motion by decomposing it. We first extract the voluntary signal
and then deduct it from the whole motion to approximate
the tremor signal. Our approach comprises two units: 1) an
estimator and 2) a predictor. We achieve zero-phase type
estimation of voluntary motion by adopting the recursive
singular spectrum analysis (RSSA) [34] algorithm. However,
this zero-phase estimation comes at the cost of a fixed time
delay. To shorten this delay, we append a predictor unit, that
is an extreme learning machine (ELM) [35] to the RSSA
estimator. This combined structure is tested with the real
physiological tremor data recorded from five novices and
four microsurgeons, and the results show that the proposed
paradigm: 1) yields zero-phase type filtering of the voluntary
and tremor signals without causing any distortion; and 2)
attenuates the unwanted tremor below 10µm limit which is
desired in microsurgeries. The main contribution of this paper
is the novel paradigm that can filter the tremor signal as
accurately as a high order linear phase filter, yet within a small
processing delay like a non-linear phase filter. Hence it offers
the best of both conventional filters, without need of any pre-
filtering or zero-phase filtering. This is the major advantage
of the proposed framework compared to the existing state-of-
the-art techniques.

The paper is organised as follows. Section II provides the
theoretical overviews of the SSA and ELM algorithms. In
Section III, we present the proposed RSSA-ELM method, and
moving window RSSA-ELM methods. We evaluate offline and
real-time performance of these algorithms using real tremor
data in Section IV. Section V contains discussion of results
and finally, we conclude in Section VI. Preliminary results
were reported in [36].

II. Review of ExistingMethods
A. Singular Spectrum Analysis

The SSA algorithm decomposes a time series into a number
of interpretable components by using singular value decompo-
sition (SVD) of a lag-covariance matrix formed from a time
series. The SSA algorithm is computed in two complementary
stages: decomposition and reconstruction [34].

1) Decomposition: The decomposition stage comprises two
substages, embedding followed by SVD. In the embedding
substage, the original one dimensional time series xN =

[x1, x2, · · · , xN] is reconstructed into a multidimensional series.
The multidimensional series is a sequence of L−lagged vectors
xi, which forms the trajectory matrix, XL×K = [x1 x2 x3 · · · xK]
where x1 = [x1, x2, · · · , xL]T , x2 = [x2, x3, · · · , xL+1]T and
xK = [xK , xK+1, · · · , xN]T and (.)T denotes the transpose
operator. The length of each vector is called the window
length, L, which can range between [2,N−1]. For a time series
of length N, the total number of lagged vectors is K = N−L+1.
Following embedding, SVD is performed on the covariance
matrix S = XXT . The SVD operation enables the trajectory
matrix X to be represented in terms of its L elementary
matrices: X = X1 +X2 +· · ·+XL, where Xi =

√
λiuivT

i , λi is the
ith eigenvalue, and ui and vi are ith left and right eigenvectors,
respectively.

2) Reconstruction: This step comprises eigentriple group-
ing and diagonal averaging to reconstruct elementary matri-
ces Xi. First, the trajectory matrix for the desired signal is
constructed from one or more elementary matrices. The SVD
splits the time series into several groups I = (i1, i2, · · · , ig) with
g number of eigenvalues. The resultant trajectory matrix of the
desired signal is,

X̂I =

ig∑
j=i1

Xj =



x̂11 x̂12 x̂13 . . . x̂1K

x̂21 x̂22 x̂23 . . . x̂2K

x̂31 x̂32 x̂33 . . . x̂3K
...

...
...

...
...

x̂(L−1)1 x̂(L−1)2 x̂(L−1)3 . . . x̂(L−1)K
x̂L1 x̂L2 x̂L3 . . . x̂LK


L×K

.

The second step is diagonal averaging. Unlike X, the matrix
X̂I is not a Hankel matrix. Hence, the anti-diagonal elements
of X̂I are averaged to obtain an accurate estimation of each
sample. The reconstructed desired series is expressed as x̂N =

[x̂1, x̂2, x̂3, · · · , x̂N] where,

x̂1 = x̂11
x̂2 = (x̂12 + x̂21)/2
...

x̂L−1 = (x̂(L−1)1 + x̂(L−2)2 + · · · + x̂1(L−1))/(L − 1)
x̂L = (x̂L1 + x̂(L−1)2 + · · · + x̂1L)/L
...

x̂K = (x̂L(N−2L+2) + x̂(L−1)(N−2L+3) + · · · + x̂1K)/L
x̂K+1 = (x̂L(N−2L+3) + x̂(L−1)(N−2L+4) + · · · + x̂2K)/(L − 1)

...
x̂N−1 = (x̂L(K−1) + x̂(L−1)K)/2

x̂N = x̂LK

.

Any sample can be estimated accurately only when L
number of anti-diagonal elements are averaged. For example,
x̂L−1 and x̂K+1 are calculated by averaging L − 1 elements
and are less accurate compared to their adjacent samples x̂L

and x̂K , respectively. The accuracy reduces as the number of
anti-diagonal elements representing the same instant decreases,
hence x̂1 and x̂N are the most erroneous samples. These L− 1
samples at the two ends form the transition phase of SSA and
are discarded in batch filtering. The rest of the N − 2L − 2
samples are accurate and possess zero-phase characteristics.

B. Extreme Learning Machine

For the prediction of voluntary motion, we adopted the
ELM algorithm as it can learn the underlying relationship
between an input and an output vector in a random feature
space efficiently. The learning of the ELM algorithm is 1000
times faster than the state-of-the-art algorithms such as support
vector machines, with comparable or even better generalisation
performance [35], [37]. Hence it has been frequently employed
in a wide range of industrial applications [38]–[41]. Briefly, if
a training set includes N distinct input, xi | ∈ R

m, and target,
ti | ∈ R

n, vectors, the ELM algorithm performs a nonlinear
mapping as,
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fÑ(x j) =

Ñ∑
i=1

βigi(wi · x j + bi) = t̂ j, for j = 1, · · · ,N (1)

where Ñ is the number of hidden neurons, t̂ j is the pre-
dicted target signal, gi(.) is the activation function, and
wi = [wi1,wi2, · · · ,wim]T is the output weight vector which
links the ith hidden neuron to input vector x. Further, βi =

[βi1, βi2, · · · , βin]T represents the output weight vector which
links the ith hidden neuron to output vector ti, and bi is the
ith hidden layer bias. The N equations of (1) can be written
as Hβ = T where H is a hidden layer output matrix, β is the
output weight matrix and T is the target matrix.

III. ProposedMethods

A. RSSA: zero-phase estimator

In batch processing, the covariance matrix formed by N
number of samples is decomposed to extract the desired
voluntary and tremor signal from the whole motion. To use
the SSA algorithm in real-time, when the (N + 1)th sample
arrives, the covariance matrix is amended to form the weighted
covariance matrix, Sw(N′), which corresponds to the inclusion
of an additional column namely the (K + 1)th lagged vector
[42]. Therefore when the (N + i)th sample arrives, Sw(N′) is
updated as below [42],

Sw(N′) = (1 − γ)Sw(N′ − 1) + γxK′xT
K′ , (2)

where N′ = N + i, K′ = K + i, γ = 1/N′ is a forgetting factor
and xK′ is the last column of the trajectory matrix X. After
eigentriple grouping, the reconstructed matrix will be:

X̂I =



x̂11 x̂12 x̂13 . . . x̂1K′

x̂21 x̂22 x̂23 . . . x̂2K′

x̂31 x̂32 x̂33 . . . x̂3K′

...
...

...
...

...
x̂(L−1)1 x̂(L−1)2 x̂(L−1)3 . . . x̂(L−1)K′

x̂L1 x̂L2 x̂L3 . . . x̂LK′


L×K′

. (3)

At this instance, addition of the K
′th column in the recon-

structed matrix X̂I only contributes to the accuracy of the last
L samples from x̂K′ to x̂N′ . However, the last L − 1 samples
from x̂K′+1 to x̂N′ are in a transition phase; the latest sample,
which can be estimated accurately with diagonal averaging at
this instance, is the K

′th sample, x̂K′ . Hence to obtain zero-
phase filtered characteristics, we apply the RSSA algorithm
with an L− 1 sample lag and estimate the K

′th sample at each
iteration.

B. RSSA-ELM

The RSSA algorithm decomposes the whole hand motion
into dominant voluntary and several oscillatory tremor compo-
nents. The power of the voluntary motion in the 0–4Hz range
is significantly larger than that of the tremor components.
Initially, we perform an offline SSA on the first N samples to
decompose the whole motion. Then, we apply the fast Fourier
transform (FFT) on the first few reconstructed components

Offline
 SSA

Whole motion

Amend input 
series and 
update  

Arrival of 
new sample

RSSA

ELM

Predicted voluntary 
motion    samples ahead 
of  the last training data

Estimated voluntary motion

Separate �rst 
samples for training and last
            samples for testing

Cancellation 
Error

Apply FFT to identify 
components related to 

voluntary motion

Cancelled tremor

zero-phase
lowpass filter

Only for evaluation

 Tremor 
(zero-phase)

Fig. 2. Functional block diagram of the proposed RSSA-ELM algorithm.
RSSA estimates N′ samples of the voluntary motion, of which the first N′−L+
1 are accurate and the last L−1 are in the transient phase. The ELM algorithm
predicts q samples ahead to shorten the transient phase. The approximated
voluntary motion is deducted from the whole motion to obtain the tremor.

with dominant power, to automatically group all voluntary
components below 4Hz with dominant power. The use of
FFT for automatic grouping of SSA decomposed electroen-
cephalogram signal has been also discussed in [43]. When
the (N + 1)th sample arrives, the RSSA algorithm activates
to estimate N + 1 data samples, out of which the last L − 1
transient samples are corrupted. This way, the RSSA algorithm
provides suitable zero-phase type estimation but suffers from
L − 1 sample delay. To minimise this delay, we cascade an
ELM predictor with RSSA as shown in Fig. 2. For prediction,
the last L − 1 corrupted samples are segregated for testing
and the rest of the initial uncorrupted samples are used for
training. While reconstructing the samples at each RSSA
iteration, only the last L samples are estimated by averaging.
The accuracy of the rest of the initial samples cannot be any
further improved by averaging, as we do not get any additional
elements representing those initial samples with addition of a
new column, as shown in (3). Hence, except for the last L
samples, all samples are copied from the previous iteration.

The ELM provides the mapping between input feature space
and target space such that each element in target space is
q samples ahead of the corresponding input feature space
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Algorithm 1 The proposed RSSA-ELM algorithm
1: Perform batch SSA of a time series with the first N

samples - here 8s.
2: Perform FFT to identify components related to voluntary

motion for automatic grouping.
3: When a new sample arrives, append it to the existing time

series and activate RSSA.
4: Estimate only the last L samples of the voluntary motion

by averaging and copy the first N′ − L estimated samples
from the previous operation. Note N′ is the dynamic length
of the time series and N′ = N+1 for the 1st RSSA iteration.

5: Separate the initial N′−L+1 samples as training data and
the last L − 1 samples as testing data.

6: Formulate feature space matrices X̃ttrain and X̃ttest and target
space vectors t̃ttrain and t̃ttest for both training and testing
data.

7: Randomly generate the input weight vector w and hidden
layer input biases b.

8: Calculate the hidden layer output matrix, Htrain for training
data, output weight matrix β, and hidden layer output
matrix, Htest for testing data.

9: Predict q sample ahead target t̂t using Htest and β with
Htestβ = T and deduct t̂t from the whole motion to obtain
the tremor signal.

10: When a new sample arrives repeat from step 3.

element, that is, t̃t = x̃t−q. The input feature space matrix and
target space vector are formulated for both training and testing
data. The input feature space matrix is formed by a sequence
of delayed target vectors such that X̃t = [x̃t, x̃t−1, · · · , x̃t−p]
where x̃t is the vector that is a q sample delayed version of
the target space vector t̃t and p is the size of the feature space.
The output weight matrix obtained by the non-linear mapping
implemented in the training phase is used for q sample ahead
prediction of the data samples in the testing phase. The steps
for the proposed method are described in Algorithm 1.

C. Two Moving Window RSSA-ELM variants

To restrict the computational time for each iteration, we
propose a method which is a moving window RSSA-ELM, de-
noted with: MW RSSA-ELM. In the MW RSSA-ELM setting,
when the (N + 1)th sample arrives, the 1st sample is discarded
and then the (N + 1)th sample is appended to the data series.
Similarly, when the N

′th sample arrives such that N′ = N + i,
the time series is updated as, x = [xi+1, xi+2, · · · , xN′ ]T . Hence,
the size of X remains fixed, that is, (L× K). After application
of the SVD and grouping, the resultant trajectory matrix is,

X̂I =



x̂(i+1)1 x̂(i+1)2 x̂(i+1)3 . . . x̂(i+1)K
x̂(i+2)1 x̂(i+2)2 x̂(i+2)3 . . . x̂(i+2)K
x̂(i+3)1 x̂(i+3)2 x̂(i+3)3 . . . x̂(i+3)K
...

...
...

...
...

x̂(i+L−1)1 x̂(i+L−1)2 x̂(i+L−1)3 . . . x̂(i+L−1)K
x̂(i+L)1 x̂(i+L)2 x̂(i+L)3 . . . x̂(i+L)K


L×K

. (4)

In the MW RSSA-ELM method, every time RSSA is per-
formed, all the N samples are estimated by diagonal averaging

as in the conventional RSSA [42]. Moreover, we developed a
second version of the MW RSSA-ELM and called it Enhanced
MW RSSA-ELM. In this method, the initial N − L samples,
x̂i+1 to x̂i+K−1, are copied from the previous iteration and only
the last L samples, x̂i+K to x̂N′ , are estimated by averaging.
By doing so, the first L− 1 samples are averaged with L anti-
diagonal elements, when the RSSA window is shifted L − 1
times. Hence these samples are accurately estimated, and are
no longer in the transition phase. This approach not only saves
significant computational time but also improves accuracy of
the first L − 1 samples at each iteration simultaneously.

D. Performance Indices

The efficacy of the proposed algorithms was evaluated
with the root mean square error (RMSE) that quantifies the
remaining uncompensated residual tremor after the estimation.
For N data samples, assuming xk is the kth sample of the
original data, x̂k is the kth predicted sample, then the RMSE
is defined as,

RMS E =

√√√ N∑
k=1

(xk − x̂k)2/N.

In microsurgeries, it is crucial to suppress the undesired tremu-
lous vibration below 10µm, hence RMSE of 10µm is set as the
required threshold for performance evaluation. RMSE above
this level implies failure to achieve the required compensation.

Additionally, we calculated Accuracy (%) that quantifies the
percentage match between the actual and estimated tremor
signal and is defined as

Accuracy (%) =
RMS (X) − RMS E

RMS (xk)
× 100,

where RMS (X) is the root mean square of the original data

series X and is defined as RMS (X) =

√∑N
k=1 x2

k/N.
Given the RMSE limit of 10µm, for this dataset, the required

threshold of Accuracy (%) is 70%, as previously validiated in
[32], [33]. Accuracy (%) obtained below this level signifies
failure to achieve the required estimation. Throughout this
paper, all reported performance measures are averaged across
the x, y and z axes.

IV. Results

A. Recording of Physiological Tremor Data

Participants: Five medical students with basic surgical skills
(novice subjects) and four experienced surgeons (surgeon
subjects) were recruited. All the subjects provided informed
written consent prior to their participation. The study was
approved by the local ethics committee at Nanyang Techno-
logical University (NTU) [44].

Measurement: With the aim to develop an intelligent
hand-held instrument capable of cancelling the physiological
hand tremor during microsurgery, the researchers from the
Biorobotics lab at NTU developed the optical micro motion
sensing system (M2S2) [45]. The M2S2 was embedded with a
pair of orthogonally placed position sensitive detectors (PSDs)
as depicted in Fig. 3 in [45]. The PSDs tracked the three
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dimensional (3-D) displacement of the tip of a microsurgical
instrument in x, y and z axes, while the participants carried out
some synthetic tasks that mimicked the manoeuvres performed
during a real microsurgical procedure. The tasks were carried
out in the workspace of M2S2, which was a target platform of
dimension 10×10×10mm3 as depicted in Fig. 1 and Fig. 2 in
[46]. A stylus which had similar mass and design as a typical
surgical forceps was designed with a small white reflector ball
attached to its tip as depicted in Fig. 4 and Fig. 5 in [46]. When
an IR diode illuminated the workspace, the 3-D position of the
tip of the instrument was calculated using the centroid position
of the reflected IR rays captured by the PSDs.

As the participants performed the tasks in the M2S2

workspace, for their visual feedback, a 19
′′

flat LCD TV
screen was provided. The TV screen was placed 70cm away
from their seating position. The participants were asked to seat
comfortably facing the TV screen and hold the stylus between
their index and thumb fingers. They were also instructed to
rest their wrist on the small platform of M2S2. The data
was collected at 250Hz with a data acquisition card (PD-MF-
16-150, United Electronics Industries, USA) with a 16 bits
resolution. For more details about the M2S2 design and data
acquisition, the readers are referred to [44]–[46].

Overall, 54 tremor traces were recorded in 3-D while the
participants carried out the two tasks:
• Pointing: The participants were asked to point at the

centre of the platform and maintain the position of the
tip of the stylus at the set point for 30s. For the visual
feedback, two dots were displayed on the screen. One dot
was stationary and the other could be moved according to
the position of the tip of the stylus. The subjects had to
overlap the two dots, to maintain the tool tip at the target
position [44]. The pointing task was designed to approxi-
mate a typical step carried out in retinal surgery, where a
surgeon braces the tool motionless against the sclera for a
short duration before inserting it through a targeted area
of the sclera to perform precise manipulations inside the
eyeball [47].

• Tracing: The participants were asked to trace a syn-
thetic circle of 4mm diameter with the speed which
was realistic to surgical manipulation as the subjects had
surgical knowledge. At the beginning of the task, a white
circle of 4mm diameter was displayed on the screen,
the participants had to rotate the displayed dot on this
fixed circle clockwise for 30s [44]. This synthetic task
was medically relevant and was designed to simulate the
incision and vein tracing manoeuvres [46], [47]. The vein
tracing manoeuvre is often performed in a retinal surgery
where a surgeon traces curved retinal vein (≈10mm )
choosing a speed comfortable to them [47].

B. The performance of the SSA algorithm - offline analysis

We applied offline SSA algorithm on the data recorded
in the xyz axes independently. To select an optimal window
size, we varied L from 15 to 200. Fig. 3 shows Accuracy
(%) averaged across all subjects and the xyz axes. It peaks at
certain values of L. It has been suggested to separate a desired
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Fig. 3. Accuracy (%), averaged across all subjects versus L. The dashed line
shows the minimum acceptable accuracy of 70%.
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Fig. 4. (A) The SSA filter provides closer approximation of the tremor signal
compared to the conventional FIR and IIR filters. (B) Accuracy (%) averaged
across each subject group. The SSA filter outperforms both FIR and IIR filters.
The dashed line shows the minimum acceptable accuracy of 70%.

periodic or quasi-periodic signal from the mixture, L ≥ fs/ fl
[48]; where fs is the sampling frequency and fl is the lowest
frequency present in the desired periodic or quasi-periodic
signal. In our case, the lowest frequency component in the
quasi-periodic tremor band is 6Hz, hence L should be ≥ 42.
We obtained an average Accuracy (%) of 93.3% at L = 42
across all the subjects for both tasks. At L = 20 where the
first peak occurred, the average Accuracy (%) was 84.3%. The
smallest L that can yield the desired accuracy is the optimal
selection, as it leads to reduced size of the covariance matrix
in the SVD, hence we chose L = 20.

The performance of the SSA algorithm was compared
against conventional FIR and IIR lowpass filters. The SSA
algorithm with L = 20 causes the fixed delay of 19 sample.
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To choose an FIR filter with similar order, an FIR lowpass
filter based on an Hamming window with cut-off frequency
5Hz and order 40 was chosen, which causes time delay of 20
sample. The IIR Butterworth filter had 5Hz cut-off frequency
and was of order 2. The lower order was chosen to minimize
the phase delay which is just 12 samples. The zero-phase filter
with the same specifications as the IIR filter was used to extract
the original tremor, which served as the ground truth.

Fig. 4(A) shows an 0.5s plot of the approximated tremor
data in the z−axis, obtained from three filters for the novice
subject N1. It is evident that the SSA algorithm closely
estimates the actual tremor compared to both conventional IIR
and FIR filters. Fig. 4(B) shows a bar chart with averaged
Accuracy (%) across each subject group. The SSA algorithm
outperforms both FIR and IIR filters in both tasks. The IIR
filter fails to achieve the required accuracy for the tracing task.
This encouraged adoption of the RSSA-ELM setting for real-
time filtering.

C. Selection of ELM Parameters

Before we proceed with the results of the RSSA-ELM
method, we describe how the ELM algorithm was initialised.
Performance of ELM depends on the optimum initialisation
of the parameters: 1) hidden neurons Ñ, 2) feature vectors
p and 3) the number of offline training samples N. We
performed a grid search to determine the number of Ñ and
p. Taking 80% of the total data for training and 20% for
testing, the percentage accuracy was calculated for 8-sample
ahead prediction. The numbers Ñ and p were varied in the
range [20, 200] and [6, 30], respectively. Fig. 5A and B show
Accuracy (%) averaged across all the subjects for both pointing
and tracing tasks. The variation in Accuracy (%) between two
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Fig. 7. An example for the performance of the RSSA and RSSA-ELM
algorithms in approximating: (A) the intended and (B) tremor components
of the whole motion signal.

extreme values of Ñ was around 1% for the pointing task
and 2% for the tracing task. However, between two extreme
values of p, variation in Accuracy (%) was significant in both
pointing task and tracing task. The optimal parameters of the
ELM algorithm were identified as Ñ = 100 and p = 10.

In real-time tremor cancellation, it is highly desirable to
have the shortest possible processing delay to ensure the faster
correspondence and more intuitiveness. In this work, we aim
to reduce the RSSA estimation delay by at least half, with the
motivation to achieve the required performance within just 9-
sample (36ms) delay. This delay is similar to the delay caused
by the conventional IIR filters. Hence the prediction horizon
was set to 10. The optimal Ñ and p were utilised to compute
the minimum size of N and the output of RSSA was fed to the
ELM algorithm sample-by-sample as shown in Fig. 2. At each
iteration the latest L−1 samples were separated for the testing,
and the remaining initial samples were used for the training.
Training was recursively performed with an arrival of each
new sample and the size of the training data was varied from
250 to 3000 samples. Fig. 6 shows Accuracy (%) averaged
across both subject groups for the pointing and tracing tasks.
The prediction performance improved significantly up to 750
samples in the pointing task and 2000 samples in the tracing
task. In the tracing task, the prediction accuracy reaches to
70% only when N ≥ 2000. Therefore, to achieve the required
prediction performance in both tasks the optimum N was set
to 2000 (8s).

D. The performance of the RSSA-ELM - online analysis

Fig. 7 illustrates a representative performance of the RSSA
and RSSA-ELM algorithms on a short excerpt of data,
recorded during the pointing task. As it will be described later,
for the RSSA algorithm, the estimation was performed at 9-
sample delay. Fig. 7A shows that the tremor fluctuations, rid-
ing on the voluntary motion, have been effectively attenuated
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needs at least 36ms delay to perform reliably in both tasks and in all subjects. Error bars represent the upper range: [mean, maximum].

with both the RSSA and RSSA-ELM algorithms. We observe
that the RSSA-ELM compensates better for the 36ms delay
than the RSSA method and closely tracks the intended motion,
which was approximated by zero-phase filtering. Similarly,

Fig. 7B shows that the RSSA-ELM algorithm tracks the actual
tremor signal more successfully.

Fig. 8 shows the RMSE, obtained from both RSSA and
RSSA-ELM at various delays. The RSSA-ELM outperforms



9

0

70

100

0

70

100

0

70

100

0

70

100

68 60 52 44 36 28 20

A    Novice B    Surgeon

Ac
cu
ra
cy

 (%
)

Ac
cu
ra
cy

 (%
)

delay (ms)

RSSA - ELM 

Pointing

Tracing Tracing

Pointing

MW RSSA-ELM Enhanced MW RSSA-ELM

68 60 52 44 36 28 20
delay (ms)

Fig. 9. Accuracy (%) obtained with RSSA-ELM, MW RSSA-ELM and Enhanced MW RSSA-ELM, averaged across novice subjects (A) and surgeons (B).
Both moving window versions of the RSSA-ELM achieve the same performance as RSSA-ELM but at a significantly reduced computational cost. The black
boxes show the performances at 36ms. Error bars represent the range: [minimum, maximum].

the RSSA-only algorithm at all time delays, in all participants,
in both pointing and tracing tasks. The RMSE of tremor
estimation with the RSSA-ELM method is below the 10µm
threshold for most subjects even at very short time delays of
20ms. Most conservatively, when the delay is 36ms, the RSSA-
ELM limits RMSE ≤ 10µm yielding ≥ 70% Accuracy (%),
meeting both RMSE and Accuracy (%) requirements for all
subjects. The overall performance was better in the pointing
task that may reflect its simpler dynamics compared to the
tracing task.

E. Moving Window RSSA-ELM

Fig. 9 shows the plots with Accuracy (%) obtained from
the RSSA-ELM algorithm, averaged across the participants,
and that achieved with the two proposed moving window
algorithms, namely the MW RSSA-ELM algorithm and the
Enhanced MW RSSA-ELM algorithm. For delays as large as
36ms, the performance of the RSSA-ELM algorithm matches
that of the Enhanced MW RSSA-ELM algorithm. At 36ms
lag, the Enhanced MW RSSA-ELM algorithm provides 4%
and 3% more accuracy than MW RSSA-ELM, for novice
and surgeon pointing tasks. Similarly, it provides 10% better
accuracy than the MW RSSA-ELM algorithm for tracing tasks
of both subject groups. Beyond 36ms lag, the savings achieved
by the MW RSSA-ELM algorithm are at the expense of
reduced accuracy. The Enhanced MW RSSA-ELM can recover
this reduction only partially.
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Fig. 10. The required computational time of the RSSA-ELM, MW RSSA-
ELM, and Enhanced MW RSSA-ELM. The Enhanced MW RSSA-ELM
achieves the same performance as the RSSA-ELM and MW RSSA-ELM but
with a significantly lower computational time.

F. Computational Time

We quantified the computational time required by the
RSSA-ELM, MW RSSA-ELM and the Enhanced MW RSSA-
ELM algorithms as a function of the number of samples, as
shown in Fig. 10. Our analysis was run on a PC with an
Intel(R) Core i5-4670 CPU (3.40GHz) and 32GB RAM and
using Matlab R2017a. In all algorithms the delay was 36ms
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and the window size was kept to 8s for both moving window
algorithms. Crucially, the computational time taken by the
RSSA-ELM method increases linearly with the data, whereas
the time required by the moving window methods is almost
fixed: 20 ms and 35ms on average for Enhanced MW RSSA-
ELM and MW RSSA-ELM, respectively.

G. Comparision with the existing methods

Finally, we compared the performance of the proposed En-
hanced MW RSSA-ELM against the conventional FIR and IIR
filters and the existing state-of-the-art MWLSSVM and 1D-
OSRELM algorithms. A detailed description on the parameters
optimisation of MWLSSVM and 1D-OSRELM is provided
separately in the supplementary material. For the fairness in
evaluation, the ELM predictor cascaded in the Enhanced MW
RSSA-ELM to improve the performance, was also appended
with the conventional FIR and IIR filters, and are referred
as FIR-ELM and IIR-ELM. In FIR-ELM, IIR-ELM and 1D-
OSRELM algorithms, N was fixed to 2000 samples. Similarly,
the moving window length of the Enhanced MW RSSA-
ELM and MWLSSVM was also set to 2000 samples. In all
five algorithms, with arrival of every new sample the output
weights were updated as detailed in III-B. For the consistency
in comparison, the performance of all the algorithms was
evaluated at 9-sample delay.

Fig. 11 depicts the averaged compensation Accuracy (%)
obtained for all the subjects for the pointing and tracing tasks,
which shows the superior performance of the proposed En-
hanced MW RSSA-ELM algorithm compared to the existing
methods. The proposed algorithm provided 80.21% Accuracy
(%) in the pointing task compared to 73.83% and 72.03%
Accuracy (%) obtained from the MWLSSVM and the 1D-
OSRELM algorithm, respectively. Similarly, in the tracing task
the Enhanced MW RSSA-ELM algorithm yielded 10% better
Accuracy (%) compared to the MWLSSVM algorithm and
it outperformed all the other algorithms. In an average, over

all the subjects and tasks, the Enhanced MW RSSA-ELM
algorithm provided 74.54% Accuracy (%) which is 8.37%
and 9.61% higher than the Accuracy (%) obtained with the
MWLSSVM and the 1D-OSRELM algorithm.

V. Discussion

The development of an efficient tremor cancellation method
that can remove a surgeon’s involuntary physiological tremor
from the tip of a surgical instrument improves microsurgical
performance radically. All of the existing tremor compensating
techniques use non-linear phase pre-filtering to isolate the
tremor from the whole motion, which significantly distorts
the filtered tremor signal and restricts the filtering accuracy.
Although, in recent years, the phase correction methods have
been proposed, those methods still utilised non-linear phase
filters to separate the tremor. Moreover, to rectify the distorted
phase, those methods needed zero-phase filtering, which sig-
nificantly limits their feasibility for real-time implementation.
In our preliminary work, we had studied viability of the stan-
dard RSSA-only algorithm to filter the tremor signal without
causing any phase distortion. In this work, we have applied
algorithmic improvement to the standard RSSA algorithm to
reduce the computational cost whilst keeping the performance
same. We exploited the zero-phase characteristics of this
modified RSSA algorithm to develop a combined estimator-
predictor based RSSA-ELM framework to directly extract the
voluntary motion and the tremor from the whole motion,
without need of any pre-filtering or zero-phase filtering. This
is the main distinctiveness of the proposed framework.

We have uniquely formulated the RSSA-ELM structure such
that, at every iteration, the last L-1 corrupted samples coming
from the RSSA estimator were discarded and only rest of non-
distorted samples were fed to the ELM predictor. Thus, the
RSSA estimator offered zero-phase type filtering but with the
transient delay of 19 sample (76ms). The ELM predictor then
learnt the accurate signal fed from the RSSA estimator, and
made a forward prediction to shorten this delay to 9 sample
(36ms) only. Since the hand tremor is a non-stationary signal
and its characteristics varies continuously, this continual feed
of the actual tremor signal to the ELM predictor enabled it
to constantly track and predict the tremor signal accurately.
Therefore, the proposed framework is dynamic, in contrast to
the phase correction techniques that could track the tremor
signal offline only. The is the major advantage the proposed
RSSA-ELM framework.

The cascaded RSSA-ELM framework suppressed the un-
desired tremulous motion below 10µm, yielding estimation
accuracy over 70%. In a pseudo-real time implementation, it
can achieve this performance at only 9 sample (36ms) delay.
In addition, we proposed two moving window variants of
the RSSA-ELM algorithm. These moving window algorithms
iteratively operate on a fixed number of samples, so that
the computation time is constant regardless of the input
data length. We showed that on an average, the Enhanced
MW RSSA-ELM algorithm provided 3.5% and 10% better
performance than MW RSSA-ELM algorithm in the pointing
and tracing tasks. The compuational cost of the Enhanced
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MW RSSA-ELM algorithm is 1.5 times less compared to
the MW RSSA-ELM algorithm. The Enhanced MW RSSA-
ELM algorithm outperformed the conventional FIR and IIR
filters and the state-of-the-art MWLSSVM and 1D-OSRELM
algorithms. As such the proposed framework exceeds the
industry standard considerably.

Nonetheless, the proposed framework showed superior per-
formance in a real-time emulation, the extensive experimental
testing and verification is crucial for a complete implementa-
tion of the proposed framework in a real surgical instrument.
Additionally, the extent of compensation entirely depends on
manipulator which controls actuation of the tool tip. A full
compensation cannot be achieved if the erroneous motion is
larger than manipulator range of motion.

Due to the efficient learning rate, the ELM algorithm is
gaining popularity in the hardware implementations which
require frequent on-chip training [49]–[51]. Therefore, the
proposed Enhanced MW RSSA-ELM algorithm is suitable
to implement in surgical hand-held tools, such as Micron
and its descendant ITrem, for cancellation of tremor in real-
time. The RSSA estimator and ELM predictor algorithms were
used in this proof-of-concept study to show the potential of
the proposed estimation-prediction framework. The proposed
framework can be readily adopted to any other suitable esti-
mator which offers zero-phase filtering similar to RSSA; and
any other machine learning predictor which provides simple
yet efficient learning as ELM.

VI. Conclusions

We have revisited a long-standing problem in the existing
research and offered a novel estimator-predictor based RSSA-
ELM framework which does not require pre-filtering unlike
the existing methods. The proposed algorithm can attenuate the
undesired tremor below 10µm and yield filtering accuracy over
70% at only 9 sample (36ms) delay. For real-time implementa-
tion, we proposed two variants of moving window RSSA-ELM
algorithm. The Enhanced MW RSSA-ELM algorithm provides
6.75% more Accuracy (%) and is 1.5 times faster than the MW
RSSA-ELM algorithm. The Enhanced MW RSSA-ELM also
outperforms the conventional FIR and IIR filters and beats
the performance of the existing state-of-the-art MWLSSVM
algorithm by 8.37%.

Our future work includes quaternion extension of the pro-
posed 1-D RSSA-ELM framework for real-time tremor filter-
ing, since the quaternion adaptive filters have shown improved
performance compared to their 1-D versions [52]–[54]. We
have previously presented quaternion modelling and prediction
algorithm for offline tremor filtering in [31], [55], [56].
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