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THE DIAGONAL OF THE ASSOCIAHEDRA
BY Narukt Masupa, Hucir Tromas, Anpy Tonks
& BrRuno VALLETTE
Asstract. — This paper introduces the first general method to solve the problem of the ap-

proximation of the diagonal for face-coherent families of polytopes. We recover the classical
cases of the simplices and the cubes and we solve it for the associahedra, also known as Stasheff
polytopes. We show that it satisfies an easy-to-state cellular formula. For the first time, we
endow a family of realizations of the associahedra (the Loday realizations) with a topological
and cellular operad structure; it is shown to be compatible with the diagonal maps.

Résumi (La diagonale de 1'associaédre). — Cet article introduit pour la premiére fois une mé-
thode générale permettant de résoudre le probléeme de 'approximation de la diagonale de fa-
milles de polytopes satisfaisant a une propriété de cohérence par faces. On retrouve les cas
classiques des simplexes et des cubes et on résout celui des associaedres, appelés aussi polytopes
de Stasheff. On montre que ce dernier cas vérifie une formule cellulaire facile & énoncer. Pour la
premiere fois, nous munissons une famille de réalisations des associa¢dres (celle de Loday) d’une
structure d’opérade topologique cellulaire, dont nous montrons qu’elle est compatible avec les
diagonales.
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INTRODUCTION

The present paper has three goals: to introduce, for the first time, a general ma-
chinery to solve the problem of the approximation of the diagonal of face-coherent
families of polytopes (Section 2), to give a complete proof for the case of the associa-
hedra (Theorem 1) and, last but not least, to popularize the resulting magical formula
(Theorem 2) to facilitate its application in other domains.
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129 N. Masupa, H. Tromas, A. Tonks & B. VALLETTE

The problem of the approximation of the diagonal of the associahedra lies at the
crossroads of three clusters of domains. There are first the mathematicians who will
apply it in their work: to compute the homology of fibered spaces in algebraic topology
[Bro59, Prol1], to construct tensor products of string field theories [GZ97], or to con-
sider the product of Fukaya /. -categories in symplectic geometry [Sei08, Amol7].
Second, there is the community of operad theory and homotopical algebra, where
the analogous result is known in the differential graded context [SU04, MS06] and ex-
pected on the topological level. Third, there are combinatorists and discrete geometers
who can appreciate our result conceptually as a new development in the theory of
fiber polytopes of Billera-Sturmfels [BS92].

The possible ways of iterating a binary product can be encoded, for example, by
planar binary trees. Interpreting the associativity relation as an order relation, Dov
Tamari introduced in his thesis [Tam51] a lattice structure on the set of planar binary
trees with n leaves, now known as the Tamari lattice. These lattices can be realized
by polytopes, called the associahedra, in the sense that their 1-skeleton is the Hasse
diagram of the Tamari lattice. We refer the reader to [CFZ02, GKZ08, Lod04] for
examples and the introduction of [CSZ15] for a comprehensive survey.

For loop spaces, composition fails to be strictly associative due to the different
parametrizations, but this failure can be controlled by an infinite sequence of higher
homotopies. This was made precise by James D. Stasheff in his thesis [Sta63]. He in-
troduced a family of curvilinear polytopes, called the Stasheff polytopes, whose com-
binatorics coincides with the associahedra. Endowing them with a suitable operad
structure, that is, an algebraic way to compose operations of various arities, allowed
him to establish a now famous recognition theorem for loop spaces. In Stasheff’s the-
ory, what is important is to have a family of contractible CW-complexes, endowed
with an operad structure, whose face lattice is isomorphic to the lattice of planar
trees.

Stashefl’s thesis was a profound breakthrough which opened the door to the study
of homotopical algebra by means of operad-like objects. It prompted, for instance, the
seminal monograph of Boardman—Vogt [BV73] on the homotopy properties of alge-
braic structures, and the recognition of iterated loop spaces [May72]. In this direction,
Peter May introduced the little disks operads, which play a key role in many domains
nowadays. In dimension 1, this gives the ‘little intervals’ operad, a finite dimensional
topological operad satisfying Stasheff’s theory. Its operad structure is given by scaling
a configuration of intervals in order to insert it into another interval.

Thus two communities, one working on operad and homotopy theories, the other
on combinatorics and discrete geometry, seem to share a common object. Until now,
however, no operad structure on any family of convex polytopal realizations of the
associahedra has appeared in the literature. One was proposed in [MSS02, Part II
§1.6] but does not hold as faces cannot be scaled in the same way as little intervals,
and in [AA17] the problem was solved up to a notion of ‘(quasi)-normal equivalence’.
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THE DIAGONAL OF THE ASSOCIATIEDRA 123

In general, the set-theoretic diagonal of a polytope will fail to be cellular. There-
fore, there is a need to find a cellular approzimation to the diagonal, that is, a cellular
map from the polytope to its cartesian square homotopic to the diagonal. For a face-
coherent family of polytopes, that is to say, a family where each face of each polytope
in the family is combinatorially a product of lower-dimensional polytopes from the
family, finding a family of diagonals compatible with the combinatorics of faces is a
very constrained problem. In the case of the first face-coherent family of polytopes, the
geometric simplices, such a diagonal map is given by the classical Alexander—Whitney
map of [EZ53, EML54]. This seminal object in algebraic topology allows one to define
the associative cup product on the singular cochains of a topological space. (The lack
of commutativity of the cup product gives rise to the celebrated Steenrod squares
[Sted7].) The next family is given by cubes, for which a coassociative approximation
to the diagonal is straightforward, see Jean-Pierre Serre’s thesis [Ser51]. The associa-
hedra form the face-coherent family of polytopes that comes next in terms of further
truncations of the simplices or of combinatorial complexity. For this family there was,
until now, no known approximation to the diagonal. While a face of a simplex or a
cube is a simplex or a cube of lower dimension, a face of an associahedron is a product
of associahedra of lower dimensions; this makes the problem of the approximation of
the diagonal more intricate.

Dimension 1 | Dimension 2 | Dimension 3

SIMPLICES _—

CUBES D

ASSOCIAHEDRA _—

The two-fold main result of this paper is: an explicit operad structure on the
Loday realizations of the associahedra together with a compatible approximation to
the diagonal (Theorem 1). To accomplish this, we first consider a geometric defini-
tion (Definition 10) for a diagonal map of a polytope suitably oriented by a vector
in general position. Such an approach comes from the theory of fiber polytopes of
Billera—Sturmfels [BS92], after Gel’fand-Kapranov—Zelevinsky’s theory of secondary
polytopes [GKZ08]. In order to define the operad structure, we resolve the issue
that a face of an associahedron may not be affinely equivalent to a product of the
lower-dimensional associahedra, by introducing a notion of Loday realization with
arbitrary weights. Since we are looking for an operad structure compatible with the
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124 N. Masupa, H. Tromas, A. Tonks & B. VALLETTE

diagonal, we define it using the diagonal, without loss of generality. (Notice that the
aforementioned coherence for the diagonal maps with respect to the combinatorics
of faces amounts precisely to this compatibility with the operad structure.) In the
end, this provides the literature with the first object common to both of the afore-
mentioned communities, providing discrete geometers an extra algebraic structure on
realizations of the associahedra, and homotopy theorists a polytopal (and thus finite)
cellular topological «7,.-operad that recognizes loop spaces.

Throughout the paper, there is a dichotomy between pointwise and cellular for-
mulas. In order to investigate their relationship and to make precise the various face-
coherent properties, we introduce a meaningful notion of category of polytopes with
subdivision which suits our needs. Since the definition of the diagonal maps comes
from the theory of fiber polytopes, we get an induced polytopal subdivision of the
associahedra. In fact, we prove a magical formula for it, in the words of Jean-Louis
Loday: it is made up of the pairs of cells of matching dimensions and comparable
under the Tamari order (Theorem 2). This recovers the differential graded formula of
[SU04, MS06].

The new methods introduced in the present paper should allow one to attack the
problem of the approximation of the diagonal for other families of polytopes, such
as the ones coming from the theory of operads. Our first subsequent plan is to treat
the case of the multiplihedra [Sta70] since these polytopes encode the notion of co-
morphisms between o7, -algebras. This will provide us with a functorial construction
of the tensor products of .7, -categories, which is needed in symplectic geometry.
There are then the cases of the cyclohedra, permutoassociahedra, nestohedra, hy-
pergraph polytopes, etc. These would give rise, for instance, to a tensor product
construction for homotopy operads. Another relevant question the present approach
allows one to study is “what kind of monoidal co-category structure does the collection
of @-algebras admit?” In [MS06], it is proved that the differential graded diagonal
cannot be coassociative. We expect that the fiber polytope method can measure the
failure of this coassociativity and a useful formulation for the attacking this problem.

Layout. The paper is organized as follows. The first section recalls the main rele-
vant notions, introduces the new category of polytopes in which we work. Section 2
gives a canonical definition of the diagonal map for positively oriented polytopes and
states its cellular properties. In the third section, we endow the family of Loday real-
izations of the associahedra with a (nonsymmetric) operad structure compatible with
the diagonal maps. Section 4 states and proves the magical cellular formula for the
diagonal map of the associahedra.

Conyentions. — We use the conventions and notations of [Zie95] for convex polytopes
and the ones of [LV12] for operads. We consider only convez polytopes whose vertices
are the extremal points; they are equivalently defined as the intersection of finitely
many half-spaces or as the convex hull of a finite set of points. We simply call them
polytopes; we denote their sets of vertices by ¥'(P), their face lattices by £ (P), and
their normal fans by Ap.

JIEP. — M., 2021, tome 8
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1. THE APPROXIMATION OF THE DIAGONAL OF THE ASSOCIAHEDRA

1.1. PrANAR TREES, TAMARI LATTICES, AND ASSOCIAHEDRA. — We consider the set PBT,,
of planar binary (rooted) trees with n leaves, for n > 1. We read planar binary trees
according to gravity, that is from the leaves to the root. The edges of a rooted tree
are of three types: the internal edges are bounded by two vertices, the leaves lie at
the top and the root at the bottom.

Derinirion 1 (Tamari order [Tamb51]). — The Tamari order is the partial order,
denoted by <, on the set of planar binary trees generated by the following covering
relation

t1 to to t3

ta ta

where t;, for 1 < ¢ < 4, are planar binary trees.

For every n > 1, this forms a lattice (PBT),,, <). The right-leaning leaves or internal
edges are the ones of type “\, and the left-leaning leaves or internal edges are the ones
of type /. So two trees satisfy s < ¢ if and only if one goes from s to ¢ by switching
pairs of successive left and right-leaning edges to corresponding pairs of successive

right and left-leaning edges.

%/
J
Y

d

Ficure 1. The Tamari lattice (PBTy, <) with minimum at the top.
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126 N. Masupa, H. Tromas, A. Tonks & B. VALLETTE

We also consider the set PT,, of all planar trees with n leaves, for n > 1. Each
of these sets forms a lattice (after adjoining a minimum) under the following partial
order: a planar tree s is less than a planar tree ¢, denoted s C t, if ¢ can be obtained
from s by a sequence of edge contractions.

DeriNition 2 (Associahedra). — For any n > 2, an (n—2)-dimensional associahedron
is a polytope whose face lattice is isomorphic to the lattice of planar trees with n
leaves.

Y
< yd

Ficure 2. A 2-dimensional associahedron.

The codimension of a face is equal to the number of internal edges of the corre-
sponding planar tree. The 1-skeleton of an associahedron gives the Hasse diagram of
the Tamari lattice.

The operation of grafting a tree t at the i*"-leaf of a tree s is denoted by so;t. These
maps endow the collections of planar (binary) trees with a non-symmetric operad
structure. We denote the corolla with n leaves by ¢, i.e., the tree with one vertex
and no internal edge. The facets of an (n — 2)-dimensional associahedron are labeled
by the two-vertex planar trees cpii14r Opt1¢q, for p+qg+r=nwith2<g<n—1.

1.2. LODAY REALIZATIONS OF THE ASSOCIAHEDRA. — An example of realization of the
associahedra can be given as follows; it is a weighted generalization of the one given
by Jean-Louis Loday in [Lod04]. Notice that Loday realizations produced as convex
hulls are the same polytopes as Shnider—Stasheff [SS97] produced by intersections of
half-spaces, or equivalently by truncations of standard simplices.

Derinition 3 (Weighted planar binary tree). A weighted planar binary tree is a
pair (¢,w) made up of a planar binary tree ¢t € PBT,, with n leaves having some
weight w = (w1, ..., wy) € ZZ,. We call w the weight and n the arity of the tree ¢ or
the length of the weight w.

Let (t,w) be a weighted planar binary tree with n leaves. We order its n—1 vertices
from left to right. At the i*" vertex, we consider the sum o of the weights of the leaves

JIEP. — M., 2021, tome 8



THE DIAGONAL OF THE ASSOCIATIEDRA 127

supported by its left input and the sum 3; of the weights of the leaves supported by its
right input. Multiplying these two numbers, we consider the associated string which
defines the following point:

M(t7 UJ) = (alﬂla 042627 R anflﬁnfl) S Rn_l'
Derinirion 4 (Loday realization). The Loday realization of weight w is the polytope

K, =conv{M(t,w) |t € PBT,} C R* .

The Loday realization associated to the standard weight (1,...,1) is simply de-
noted by K,. By convention, we define the polytope K|, with weight w = (w;1) of
length 1, to be made up of one point labeled by the trivial tree |.

)

Ficure 3. The Loday realization K35, see Proposition 2 for the defi-
nition of the €;.

In the sequel, we will need the following key properties of these polytopes. They
mainly come from [Lod04] and [For08, §6].

Prorosition 1. The Loday realization K, satisfies the following properties.
(1) It is contained in the hyperplane with equation
n—1
Z xT; Z WrWy.
i=1 1<k<t<n
(2) Letp+qg+r=n with2< g<n—1. For any t € PBT,,, the point M(t,w) is
contained in the half-space defined by the inequality

Tp+1 +F Lptq—1 P § WrWe,
p+1<k<t<p+q

with equality if and only if the tree t can be decomposed as t = w opy1 v, where
u € PBT,414 and v € PBT,.

(3) The polytope K, is the intersection of the hyperplane of (1) and the half-spaces
of (2).

(4) The face lattice (L (K,,), C) is equal to the lattice (PTy, C) of planar trees with
n leaves.

(5) Any face of a Loday realization is isomorphic to a product of Loday realizations,
via a permutation of coordinates.

J.E.P.— M., 2021, tome 8



128 N. Masupa, H. Tromas, A. Tonks & B. VALLETTE

Proof. This proposition is a weighted version of the results of [Lod04], except for
Point (5), which actually prompted the introduction of this more general notion.

(1) This is straightforward from the definition.

(2) This is straightforward too.

(3) Let us denote by P the polytope defined by the intersection of the hyperplane
of (1) and the half-spaces of (2). One can see that the points M (¢,w), for t € PBT,,
are vertices of P, since they are defined by a system of n — 1 independent linear
equations: the one of type (1) and n — 2 of type (2). In the other way round, any
vertex of P is characterized by a system n — 1 independent linear equations with the
one of type (1) and n — 2 of type (2). We claim that any pair of equations

xp+1+...+xp+q71: E WrWy
p+H1<k<E<p+q
and Tp/41 + -4 Tp'4q'—1 = E WEWp

P H1<k<ELp' +4q

of type (2) appearing here is such that the corresponding intervals
p+1,....,p+q—1] and [p'+1,...,p ' +¢ —1]
are either nested or disjoint. If not, we are in the configuration:
p+1<p +1<p+q+1<p +4q+1

Using these equalities and the defining inequalities of P, one can get

Tprg1 + o+ Tppg—1 < E Wrwe + E WrWe — E Wiy
p+1<k<t<p+g P/ H1ISk<<p’ +¢’ PHISk<LLp’ +q’

= E WrWp — E Wrwy < E WrWe,
P/ +1<k<E<pt+q p+H1<k<p’ p'+1<k<<p+q

p+q+1<e<p’ +¢'

which contradicts the definition of P. The solution of a system of equations as above,
where the defining intervals are nested or disjoint, is a point M (t,w), with ¢t € PBT,,.

(4) Point (2) shows that the facets of K, correspond bijectively to two-vertex
planar trees: the facet labeled by cpy14r0pyri1¢q, for p+g+r=nand2<g<n—-1,
is the convex hull of the points M (¢,w) associated to planar binary trees of the form
t =wuopy1 v, for u € PBTpy14, and v € PBT,. Any face of K, of codimension £,
for 0 < k < n — 2, is defined as an intersection of k facets. The above description of
facets gives that the set of faces of codimension k is bijectively labeled by planar trees
with k£ internal edges: the face corresponding to such a planar tree ¢ is the convex hull
of points M(s,w), for s C ¢t. With the top dimensional face labeled by the corolla ¢,
the statement is proved.

(5) The proof of the above point shows that it is enough to treat the case of the
facets. Let p+ g+ r =n with 2 < ¢ < n — 1. We consider the following two weights

W= (W1, Wy Wpt1 + -+ F Wptqs Wptgt1s---»Wn) and @ = (Wpt1,--.,Wptq)-

JIEP. — M., 2021, tome 8



THE DIAGONAL OF THE ASSOCIATIEDRA 129

The image of Kz x Kz — K, under the isomorphism

~

o : RPHT x RI~1 — R"1
(xla"'7xp+7‘)X(yla"qufl) L (xla"'7xp7y17"'7yq715$p+17"'7xp+7‘)
is equal to the facet labeled by the planar tree cpy14r 0pt1 Cq- O

In other words, Point (4) shows that the polytopes K, are realizations of the
associahedra.

1.3. THE CATEGORY OF POLYTOPAL SUBDIVISIONS. The proposed notions of category
of polytopes present in the literature only allow affine maps, which is too restrictive
for our purpose: the facets of the Loday realizations of associahedra with standard
weights are not affinely equivalent to the product of lower realizations with standard
weights. In order to introduce a more suitable category, we begin with the following
definition, which extends the classical notion of simplicial complex.

Derinition 5 (Polytopal complex). — A polytopal complez is a finite collection € of
polytopes of R™ satisfying the following conditions:

(1) the empty polytope @ is contained in €,

(2) P € ¥ implies Z(P) C €,

(3) P,Q € € implies PNQ € Z(P)NZL(Q).

Any polytope P gives an example of polytopal complex £ (P) made up of all
its faces. A subcomplex of a polytopal complex % is a subcollection ¥ C % which
forms a polytopal complex. The underlying set of a collection % is given by the union
|C] = Upeew P CR™.

Derinirion 6 (Polytopal subdivision). A polytopal subdivision of a polytope P is
a polytopal complex € whose underlying set |%| is equal to P.

The face poset Z (%) of a polytopal complex is defined in the obvious way. We say
that two polytopal complexes are combinatorially equivalent when their face posets
are isomorphic. Now let us introduce the category we will work in.

Derinition 7 (The category Poly). — The category Poly is made up of the following
data.

« Objects: An object is a d-dimensional polytope P in the n-dimensional Fuclidian
space R™, for any 0 < d < n.

o Morphisms: A continuous map f : P — @ is a morphism when it sends P
homeomorphically to the underlying set |2| of a polytopal subcomplex 2 C Z(Q)
of Q such that f=1(2) defines a polytopal subdivision of P.

There exists obvious forgetful functors from the category Poly to the category Top
of topological spaces with continuous maps and to the category CW of CW complexes
with cellular maps. The latter functor is well-defined since any morphism in Poly is
automatically cellular. An isomorphism P = @ in this category is a cell-respecting

~

homeomorphism which induces a combinatorial equivalence .Z(P) & Z(Q).

JE.P. — M., 2021, tome 8



130 N. Masupa, H. Tromas, A. Tonks & B. VALLETTE

Levmva 1. The category Poly endowed with the direct product x and the zero-
dimensional polytope made up of one point is a symmetric monoidal category.

Proof. — The verification of the axioms is straightforward. O

This extra structure allows one to consider operads in the category Poly. Since
the cellular chain functor Poly — dgMod, is strong symmetric monoidal, it induces
a functor from the category of polytopal (non-symmetric) operads to the category of
differential graded (non-symmetric) operads.

1.4. THE APPROXIMATION OF THE DIAGONAL OF THE ASSOCIAHEDRA. In the sequel, we
solve the following two-fold problem.

ProsLEmM
(1) Endow the collection of Loday realizations of the associahedra {Ky}n,>1 with
a nonsymmetric operad structure in the category Poly, whose induced set-theoretical
nonsymmetric operad structure on the set of faces coincides with that of planar trees.
(2) Endow the collection {K}n>1 with diagonal maps {2, : K, — Ky X Ky 1
which form a morphism of nonsymmetric operads in the category Poly.

Remark 1

(1) Even in the category of topological spaces and for any family of realizations
of the associahedra, we do not know any solution to this question in the existing
literature.

(2) The compatibility of the diagonal maps with the operad structure amounts
precisely to the coherence required by the approximation of the diagonal maps with
respect to sub-faces by Point (5) of Proposition 1.

In order to find an operadic cellular approximation to the diagonal of the asso-
ciahedra, we introduce ideas coming from the theory of fiber polytopes [BS92| as
follows.

2. CANONICAL DIAGONAL FOR POSITIVELY ORIENTED POLYTOPES

2] . I)OSI'I‘I\’I‘JIAY ORIENTED POLYTOPES

Derinition 8 (Positively oriented polytope)
(1) An oriented polytope is a polytope P C R™ endowed with a vector ¢ € R™ such
that no edge of P is perpendicular to v, see Figure 4.

<L

Ficure 4. An oriented polytope.

JIEP. — M., 2021, tome 8



THE DIAGONAL OF THE ASSOCIATIEDRA 131

(2) A positively oriented polytope is an oriented polytope (P,¥) such that the in-
tersection polytope
(P Np.P, U)

is oriented, where p, := 2z — P stands for the reflection with respect to any point
z € P, see Figure 5.

The data of an orientation vector induces a poset structure on the set of vertices
¥ (P) of P, which is the transitive closure of the relation induced by the oriented
edges of the 1-skeleton.

Derintrion 9 (Well-oriented realization of the associahedron). — A well-oriented
realization of the associahedron is a positively oriented polytope which realizes the
associahedron and such that the orientation vector induces the Tamari lattice on the
set of vertices.

Prorosition 2. — Let w be a weight of length n. Any vector ¥ = (vq,...,v,_1) € R*71
satisfying vi > vg > -+ > v, induces a well-oriented realization (K,,,V) of the
associahedron.

Proof. — Let us first prove that such an orientation vector ¥ induces the Tamari
lattice. Let s < ¢ in the Tamari lattice. The corresponding edge in K|, is of the form

M(s,w)M(t,w) = (0,...,0,2,0,...,0,—2,0,...,0),

with # > 0, which implies (M (s,w)M(t,w),7) = x(vj4; — v;) > 0. This also proves
that (K, ¥) is oriented.

Let us now prove that (K, ¥) is positively oriented. We denote by 7 = (1,...,1)
and i = (0,...,0,1,...,1,0,...,0) the normal vectors of a facet F, given by
Points (1) and (2) of Proposition 1. Since edges of K, N p, K, are one-dimensional
intersections of facets of K, or p, K, their directions d are the unique solutions to a
system of equations of type (7, d_} =0 and (7ip, c{; = 0, for some set of facets F. The
first equation imposes d= Z;L;lz a;€;, where €; :==(0,...,1,—1,...,0), in which 1 is
in the j-th place for 1 < j < n — 2. The second equation is equivalent to one of the
following three constraints apy1 = 0, aptg—1 = 0, OF aptq—1 = apy1. Therefore, d is
of the form X (&), +--- + &, ), with A € R~ {0}, and so (d, %)) # 0. 0

2.2. CONSTRUCTION OF DIAGONAL MAPS. Before getting into specific argument on the
associahedra, we construct a diagonal map A : P — P x P for any positively oriented
polytope (P, ¥). Let topz P (resp. botz P) denote the top (resp. bottom) vertex of P
with respect to the orientation vector v.

Derinition 10 (Diagonal of a positively oriented polytope). — The diagonal of a
positively oriented polytope (P, ¥) is defined by

A(pﬂ-;) :P— PxP
z — (botg(P N p.P), tops(P N p.P)).
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<y

p=P P

Fricure 5. The diagonal map

Apa)(z) = (botz(P N p.P), tops(P N p.P)) = (z,y).

Let 8 be the middle-point map P x P — P;(x,y) — % With the notation pr;
for the projection to the i-th coordinate, we have pr; 371(2) = pry 571(2) = PNp.P.
The diagonal Ap ) is a section of 8 since PN p. P is symmetric with respect to the
point z.

Since the Loday realizations K, of the associahedra are positively oriented when
the orientation vector ¢ has decreasing coordinates, the above formula endows them
with diagonal maps, which do not depend on the choice of such an orientation vector.

Prorosition 3. Let ' and @ be two vectors of R~ ! with decreasing coordinates,
then

D, 5 = D(Ky@)s
for every weight w of length n.
Proof. — The argument given in the proof of Proposition 2 shows that the formula
(botU(Kw Np.K,), topz(K, N Psz)) = (botu7(Kw Np.Ky,), topg (K, N pZKw))

produces the same pair for any orientation vector with decreasing coordinates. O

We denote by A, : K, — K, x K, the diagonal map given by any such orientation
vector and we use the simple notation top and bot for associahedra. In the case of
the standard weight w = (1,...,1), we denote the diagonal simply by A, : K, —
K, x K,.

Levma 2. — Any face F of a positively oriented polytope (P,v) is positively ori-
ented once equipped with the orientation vector U. Moreover, the two diagonals agree:
Api)(2) = N (2), for any z € F.

Proof. This follows from the relation PN p,P = FNp,F, for any z € F. O
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2.3. PoLYTOPAL SUBDIVISION INDUCED BY THE DIAGONAL. The above formula for the
diagonal A actually defines a morphism in the category Poly. To prove this property,
we use some ideas coming from the theory of fiber polytopes [BS92], see also [Zie95,
Chap. 9].

Let m : @ — P be an affine projection of polytopes with P C RP and @ C R?.
We denote by Q. := QN7 1(2) the fiber above z € P. To any linear form 1) € (R9)*,
we associate a collection . Z¥ C Z(Q) as follows. We first factor the affine projection as

T =7prom, where 7~r::(7r,1/}):Q—»1’3
and pr:P —» P; (2,t) —> 2, where P = {(m(z),¥(z)) |z € Q} C RPH,

Next let Z+(P) C .,2’(]5) be the subcomplex of lower faces, i.e., F € Z4(P) if and
only if any (z,t) € F satisfies the equation ¢ = min(Q,). Since the preimage of any
face by a projection of polytopes is again a face, this defines a collection

FV={Qn7aY(F) | Fe 2YP)} c 2(Q).

(This is in general not a polytopal complex since it is not stable under faces.) In the
case of the point P = {*}, the unique face contained in .#¥ is by definition

Q¥ = {z € Q| ¥(z) = miny(Q)}.
Prorosition 4. —  The collection F¥ C £(Q) satisfies the following properties.
(1) The polytopal complex w(FV) = {x(F) | F € F%} is a polytopal subdivision
of P.
(2) For any z € P, the fiber satisfies (FV). =n"1(z)N|F¥| = (Q.)".

Proof

(1) By definition 7 (ﬁw) = %(fi(.ﬁ)) The right-hand side defines a polytopal
subdivision of P, since the restriction of the map pr is a linear homeomorphism from
a polytopal complex.

(2) This is clear from the definition. O

Derinition 11 (Coherent and tight subdivisions)

(1) A subcollection . C Z(Q) is called a coherent subdivision of P when it is of
the form .Z¥ for some 1 € (RY)*.

(2) A coherent subdivision .# is called tight when, the faces F' and w(F') have the
same dimension, for every F' € .%.

A coherent subdivision .Z is tight if and only if, for any z € P, the fiber .7, = (Q.)¥
is a point, by Point (2) of Proposition 4. (This is also equivalent to .% being a polytopal
complex.) Therefore a tight coherent subdivision can be identified with the unique
piecewise-linear section of 7|g which minimizes ¢ in each fiber. By the Point (1) of
Proposition 4, this section is a morphism of the category Poly.

We apply these results to the projection
B:PxP—P; (x,y)— x—;—y

and to the linear form ¢ (z,y) = (x —y, ¥) in order to obtain the following proposition.
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Prorosition 5. If (P, v) is a positively oriented polytope, the diagonal map A pz) :
P — P x P is a morphism in the category Poly.

Proof. — For any z € P, the fiber 371(2) is the set of pairs (z,y) € P x P such that
x+y = 2z. Since the sum of x and y is constant, 1(z, y) is minimized in the fiber when
(x,¥) is minimized, or equivalently, (y, @) is maximized. On both coordinates, 57!(2)
projects down to the intersection PN (2z — P), which is oriented by definition. So the
fiber 371(2) admits a unique minimal element (botz(P N p,P), topz(P N p,P)) with
respect to 1. In the end, the section defined by the tight coherent subdivision agrees
with the definition of the diagonal map A(p ) given in Definition 10. ]

Cororrary 1. — The image of Npy) is contained in sk,(P x P), where n is the
dimension of P. In particular, if one of two components of A(z) lies in the interior
of P, then the other component is either topz P or botg P.

Remark 2. — Notice that the diagonal map A(p ) is fiber-homotopic to the usual
diagonal z — (z,x).

We denote by .#(py the corresponding tight coherent subdivision of P and by
B(F(p,#) the polytopal subdivision of P. In the case of the Loday realizations of the
associahedra, Proposition 3 shows that they do not depend on the orientation vector
(with decreasing coordinates), so we use the simple notations %, and §(.%,).

There is a simple way to draw this polytopal subdivision: one glues together two
copies of P along an axis of direction ¢/, then one draws all the middle points of pairs
of points coming from some choices of a face on the left-hand side copy and a face on
the right-hand side copy, see Figure 6. In the case of the associahedra, these choices
are given by the magical formula of Section 4.

\VAVAVA

——
0t

Itcure 6. Example of polytopal subdivision.

Exampre 1. — This approach allows us to recover the classical cases of the simplices
and the cubes.

(1) The classical Alexander—-Whitney approximation to the diagonal of simplices
AW, : A" — A™ x A™ can be recovered with the following geometric realizations

A" :=conv{(l,...,1,0,...,0) e R"} = {(z1,...,20) ER" [1 =21 = --- > 2, > 0}.
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As usual, we denote by i the point of R™ of coordinates (1,...,1,0,...,0), where 1s

appear i times. If we consider the vector 7 := (1,...,1), as in the proof of Propo-
sition 2, the same argument as there shows that (A",ﬁ) is positively oriented. For
2= (21,...,2,) satisfying 1 > 21 > -+ > 2, 2 1/2 > 241 = -+ 2 2z, = 0, one can

easy see that the minimum of 4 is attained by

A(An ﬁ)(z) =((221—1,...,22, — 1,0,...,0),(1,...,1,2z41,...,22,)).
We consider the faces given by the convex hull of the first ¢ and of the last n — ¢
vertices:
A{O""’i} = {(2’1,...,27;,0,...,0) e R" ‘ 12> 2z 20}
and Albent — {(1, e Lzig1, e zn) ERM 12200 2 2 2, 2 0}.

The tight coherent subdivision of A™ is equal to

P () = (A x A} 10 < <,
which recovers the (simplicial) Alexander-Whitney map of [EZ53, EML54].

(2) The approximation of the diagonal C™ — C™ x C™ of the cube C™ = [0,1]"
used by Jean-Pierre Serre in [Ser51] can easily be recovered by the present method.
First, it is a positively oriented polytope once equipped with the orientation vector 7.
Since an n-dimensional cube is a product of n intervals, the various formulas are

straightforward.

Notice that these two examples work particularly well because we do not need to
stretch the faces and their combinatorial complexity is very limited: any face appearing
here is affinely equivalent to a lower dimensional polytope of the respective family.
These properties do not hold anymore for the Loday realizations of the associahedra;
such a difficulty is omnipresent in the rest of this paper.

3. OPERAD STRUCTURE ON LLODAY REALIZATIONS

3.1. CELLULAR PROPERTIES

Prorosition 6. — Suppose P and Q are normally equivalent polytopes, i.e., with same
normal fans Np = Ng. If P and Q) are well-oriented by the same orientation vector U,
then the tight coherent subdivisions F(py) and Fq 5 are combinatorially equivalent
in a canonical way.

Proof. — Normal equivalence of polytopes induces combinatorial equivalence
o L(P)2Z(Q).

By the definition of the diagonal map, a pair of points (z,y) € P x P is contained
in the image Im A p if and only if it satisfies the following condition: there exists no
vector W and positive number ¢ > 0 with (¢,@) > 0 and = — ew,y + e € P. The
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latter conditions can be restated in terms of normal cones as follows. Recall that, for
any subset C' C R™, the polar cone C* of C' is defined by

C*={zeR"|Vxel (z,y) <0}

The polar cone theorem asserts that C** is the smallest closed convex cone which
contains C. By definition, (P — y)* is the normal cone A5 (G) corresponding to the
face which satisfies y € G. Applying the polar cone theorem to C' = P — y, we obtain
that (P —y)** = A4p(G)* is the set of vectors & such that y+ew € P for some € > 0.
Therefore if 2 € F and y € é, the condition for (z,y) € Im Ap is that there exists
no vector « such that (¥, w) > 0 and & € —Ap(F)* N Ap(G)*. Since this condition
depends only on the normal fan, the map ® x ® : Z(P x P) —» Z(Q x Q) induces
the canonical combinatorial equivalence 7 p ) = Z(q,7)- |

CoroLraRry 2. — Let w and 0 be two weights of same length. The two polytopal subdi-
visions B (Z,,) and B (Fy) of K, and Ky respectively are combinatorially equivalent,
i.e., labeled by the same pairs of planar trees.

Proof. This is a direct corollary of Point (3) of Proposition 1 and Proposition 6. O

Proposition 3 and Corollary 2 show that the type of faces composing the polytopal
subdivision of the Loday realizations of the associahedra are intrinsic: they depend
neither on the orientation vector (with decreasing coordinates) nor on the weight.
From now on, we simply denote them by %, C PT, x PT,, and 8(%,). Their
description will be the subject of the magical formula given in Section 4.

3.2. POINTWISE PROPERTIES. We can enhance the above one-to-one correspondence
of polytopal subdivisions to the pointwise level using the isomorphism in the category
Poly.

ProposiTiON 7. Let (P,7) and (Q, W) be two positively oriented polytopes, with a
combinatorial equivalence ® : £ (P) =, Z(Q). Suppose that tight coherent subdivi-
sions F(py) and Fq 5 are combinatorially equivalent under ® x .

(1) There exists a unique continuous map
tr = trjq;2 :P— Q,

which extends the restriction ¥ (P) — ¥(Q) of ® to the set of vertices and which
commutes with the respective diagonal maps.

(2) The map tr is an isomorphism in the category Poly, whose correspondence of
faces agrees with ®.

We call this map tr the transition map.

Proof

(1) In the core of this proof, we use the simple notation Ap for A(p ) and

AW = AT oA o oA 0 Ap 1 P— P
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for its iterations. We also denote the averaging map by
(n) . 2n
b P — P
T+t Ton
2n '
Notice that Agl) is a section of Bl(pn). Any map tr commuting with the respective
diagonal maps satisfies

(1'1,...7117271) —

tr = 68) otr? o Agf).

Let us prove the statement by induction on the dimension d of the polytopes P
and Q. It is obvious for d = 0. For d = 1, let us suppose that P = Q = [0,1]
and that ®(0) = 0, ®(1) = 1, without any loss of generality. Since the two polytopal
subdivisions correspond bijectively under @, the definition of the diagonal maps shows
that ¥ and W are oriented in the same direction. By dichotomy, one can check that the
2™-tuple AED") (k/2™) is made up of 2™ — k zeros and k ones. This induces the formula

tr(k/27) = 857 0 87" 0 AW (k/27) = k/2".

The identity of [0, 1] therefore provides the map tr, and is unique by continuity.

Let us now suppose that the statement holds up to dimension d—1 and let P and @)
be two polytopes of dimension d. Since the restriction of the diagonal map of P to a
face F' € Z(P) is equal to the diagonal map of the face, i.e., Ap g (2) = A (2),
for any z € F, by Lemma 2, the induction hypothesis implies that the transition map
tr exists and is uniquely defined on the (d — 1)-skeleton of P. To study the interior of
the top face of P, we consider the following filtration

2" 1kbot P+ (2" —1—k)topP + P
P(n) ::P\( U ( ) ),

k=0 2

for n > 0. Notice that

U P(n) = P~ [bot P,top P],
n>0

where [bot P, top P] stands for the line segment defined by the top and the bottom
vertices of P. Corollary 1 shows that the faces appearing in the tight coherent subdi-
vision corresponding to the section Agl) are of two kinds:

« (bot P,...,bot P, P,top P, ..., top P)

e or (Fy,..., Fon), with codim F; > 1, for all 4 such that 1 < ¢ < 2™
The images of the first ones under 61(3") are equal to the sets excluded from P in the
definition of P(n). Otherwise stated, the image of any z € P(n) under the iterated
diagonal map satisfies Agb)(z) € (skd,lP)TL, and so

tr(z) = 85" o (trlop)” 0 AW (2).
The image of the transition map tr on the main axis [bot P, top P] is given by the
same dichotomy argument as in the case d = 1. In the end, this proves the uniqueness
of the transition map.
To show the existence of such a suitable transition map, we define it by the above-
mentioned formulas. It remains to prove the continuity at points z € [bot P, top P]
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of the main axis. Let ¢ > 0 and let us find 6 > 0 such that |z — y| < J§ implies
[tr(z) —tr(y)| < e. We consider n € Zq satisfying diam ) < 2"¢. There are two cases
to consider.

(a) When z cannot be written as (k bot P+ (2" —k) top P) /2", with 0 < k< 2",
it is of the form (kbot P + (2" — 1 — k) top P + a')/2" for some 2’ € P. In this
case, we can take a small enough ¢ > 0 such that |z — y| < § implies that y is of
the form (kbot P + (2" — 1 — k) top P + /) /2", for some 3/ € P. This implies

. Agf)(x) = (bot P,...,bot P,2',top P, ..., top P)
. and Ag)(y) = (bot P,...,bot P,y/,top P, ..., top P),

with the same number of bot P and top P, and so

tr(z’) — tr(y’ diam
)| = |tx( )2n Wl 2nQ .
(b) Otherwise, we can write x as (k bot P+ (2" —k) top P)/2", with 0 < k< 2™.
We further divide into the following two cases and take the least 4.
(i) When y ¢ P(n), we can take 6 > 0 such that if |z — y| <4,
then y is contained in
o (kbotP+ (2" —1—k)top P + P)/2"
sor (k—1)bot P+ (2" — k) top P + P)/2™.
This implies |tr(z) — tr(y)| < € as above.
(ii) When y € P(n), observe that Bg’) o (tr|ap)2“ o Agf) actually
defines a continuous restriction of tr to the closed set

tr(a) — tr(y

2"~1khot P+ (2" — 1 —k)topP + P
po (U R 2 Lo bop Pt Py
k=0

which contains both z and y. Therefore we can choose § which satis-
fies the condition.

(2) This is straightforward from the above description. The inverse morphism in
Poly is the transition map trg. |

CoroLrary 3. — Any two normally equivalent polytopes positively oriented by the
same orientation vector U are isomorphic in the category Poly, with an isomorphism
commuting with the diagonal maps.

Proof. — This is a direct corollary of Proposition 6 and Proposition 7. g

This produces a stronger comparison between the diagonal maps of two Loday
realizations associated to different weights than Corollary 2: the transition map
tr = tr? : K, — Ky preserves homeomorphically the faces of the same type and it
commutes with the respective diagonals. Up to isomorphisms in the category Poly, the
diagonal maps do not depend on the orientation vector (with decreasing coordinates)
nor on the weight.
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3.3. OPERAD STRUCTURE. We use the above results to endow the collection { Ky, }r>1
of Loday realizations (with standard weights) with an operad structure as follows.

Derinirion 12 (Operad structure). — For any n,m > 1 and any 1 < ¢ < m, we define
the partial composition map by

tr x id

o + Ky x Ky ——— K(l,...,n,...,l) x Ky i) Kn+m717

where the last inclusion is given by the block permutation of the coordinates intro-
duced in the proof of Proposition 1.

Thurorem 1

(1) The collection {K,}n>1 together with the partial composition maps o; form
a non-symmetric operad in the category Poly.

(2) The maps {An @ Ky — Ky X Kptp>1 form a morphism of non-symmetric
operads in the category Poly.

Proof. — By Proposition 7 and Proposition 5, the various maps are morphisms in
the category Poly.

(1) We need to prove the sequential and the parallel composition axioms of a non-
symmetric operad, see [LV12, §5.3.4]. The sequential composition axiom amounts to
the commutativity of the following diagram

id>< Oj
Kix Ky x Ky, —— Ky X Kipyn—1

Joi X id J{Oi

0ipi1
K€+m—1 X Kn T K€+m+n—2-

Let us denote by F' the face of Kyi4+n—2 labeled by the composite tree
Cy 94 (Cm Oj Cn) = (Cz 04 Cm) Oi4+j—1Cn-

The two maps of this diagram have the same image equal to F. They both induce
two cellular homeomorphisms K, x K,, x K,, — F which meet the requirements of
Proposition 7 by Proposition 1 and by the fact that the transition map tr and the
isomorphism © commute with the diagonal maps. So they are equal by Point (1) of
Proposition 7. The parallel composition axiom is proved in the same way.

(2) This statement means that the partial composition maps commute with the
diagonal maps, which is the case since the maps tr and © do. g

Under the cellular chain functor, we recover the classical differential graded non-
symmetric operad 2, encoding homotopy associative algebras [Sta63], see also [LV12,
Chap. 9]. To understand the induced diagonal on the differential graded level, we need
the following magical formula describing its cellular structure.
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4. THE MAGICAL FORMULA

Turorem 2 (Magical formula). — For any Loday realization of the associahedra, the
approximation of the diagonal satisfies
ImA, = U FxG.

top F'<bot G
dim F+dim G=n—2

Ficure 7. The polytopal subdivision (%) of Kj.

The pairs of faces appearing on the right-hand side of the magical formula are
called matching pairs. In other words, the tight coherent subdivision

Fn={(F,G) | top F < bot G, dim F + dim G = n — 2},

made up of matching pairs, gives a polytopal subdivision of the associahedron under .
Applying the cellular chain functor, we recover the differential graded diagonal given
in [SU04, MS06]. Notice that neither the pointwise version nor the cellular version of
the diagonal map A, can be coassociative by [MS06, Th. 13].

4.1. First step: Im A, C|JF x G. — We prove this property more generally for any
product P = K, x ---x K, of Loday realizations of the associahedra. Recall that
P CcRY, where N:=ny+---+ny —k,and d == dimP = nq + - -- + ny — 2k. The
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set ¥ (P) of vertices of P coincides with PBT,,, x --- x PBT,, . By Proposition 2, any
vector U = (v1,va,...,vy) satisfying

V1 >+ >Uny—1, Uny > """ > Unjdng—2y-++5 Ungjdedny_1—k+2 > *°° > UN

makes (P,?) into a positively oriented polytope with 1-skeleton isomorphic to the
product of Tamari lattices.

We consider the map L = (L;)1<i<m—2 : PBT,, — {0,1}™72 to the Boolean lattice
defined by

Ll‘ (t) =

0 if the (i + 1)-th leaf is left-leaning ./,
1 if the (i 4+ 1)-th leaf is right-leaning .

We extend it to a map L = (L;)1<i<a : ¥ (P) — {0,1}4. We consider the collection
of vectors €1,...,€; in RV defined by & = (0,...,1,—1,...,0), where 1 is in the
place a;, with {a;}1<i<a the increasing sequence found by starting with 1,..., N and
deleting the values ny +---+mn; —j, for j =1,... k.

Lemma 3. — The following properties are satisfied:
(1) s<t= L(s) < L(t),
(2) (€;,0) >0, for 1 <i<d,
(3) each edge connecting s € Ly *(0) and t € L; (1) is parallel to €,
(4) any fiber L=1(b), for b € {0,1}¢, is contained in a facet of P.

Proof

(1) When we switch a pair of successive left and right-leaning edges to a pair of
successive right and left-leaning edges, either it does not change the orientation of the
leaves or it just changes one left-leaning leaf into a right-leaning leaf.

(2) This is straightforward from the definition of .

(3) It is enough to prove it on one polytope K. In this case, ¢ is a planar binary tree
obtained from a planar binary tree s by switching the (i + 1)*® leaf from left-leaning
to right-leaning, which implies

M(s,w)M (t,w) = wiw;4+2€;.
(4) Reading the sequence (1,by,...,b,,-2,0) from left to right, there is at least

one occurrence of (1,0), say at place ¢ and i + 1. Every face labeled by a forest of
trees t satisfying L(t) = b lies in the facet labeled by (cnl_l 0; €2y Crygy - - s cnk). a

Lemma 4. — Let F be a face of P which contains a vertex s such that L;(s) = 1. For
any x € F, there exists € > 0 such that x — ee; € P.

Proof. — Tt is enough to perform the proof for one Loday realization P = K, that
we endow with the linear form ¢ (z) = (x,¢&;). We claim that, for the projection
id : P — P, the associated subcomplexes of lower and upper faces, introduced in
Section 2.3, are given by

V(LHP)) = {M(t,w) | Li(t) =0} and ¥ (£ (P)) = {M(t,w) | Li(t) = 1}.
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The intersection L;*(0) N #Y(P) is nonempty, since it contains the vertex bot P.
Suppose that the polytopal complex Zi(ﬁ) contains a vertex living in L 1(1). By the
connectivity of Z4(P), it admits an edge with vertices s € L7(0) and ¢ € L;(1).
Point (3) of Lemma 3 says that such an edge is parallel to €;, which contradicts the
minimality of .Z+(P). This proves the inclusion “//(fi(ﬁ)) C {M(t,w) | L;(t) = 0}.
The opposite inclusion is proved by the same argument as for ,,?T(ﬁ) together with
the fact that the union .Z+(P)U.Z"(P) contains all the vertices of P. If not, a vertex z,
which is not contained in it, is neither maximal nor minimal with respect to €;, which
contradicts the fact that x is an extremal point. This characterization of the polytopal
complex of lower faces shows that any face F' of P containing a vertex s such that
Li(s) = 1 satisfies F ¢ |.£*+(P)|, and thus F N ’fi(ﬁ){ = @&, which concludes the
proof. O

Prorosrrion 8. Let F' and G be two faces of P of matching dimensions, i.e.,
dim F + dim G = d. We consider s := top F' and t := bot G. When L(s) & L(t),
we have F x GNImA = @.

Proof. — When L(s) € L(t), there exists ¢ such that L;(s) = 1 and L;(t) = 0.
By Lemma 4 and a dual version of it proved with the same arguments, for every
z € F and y € G, there exists ¢ > 0 such that (x —e€;,y+eé;) € Px P. Suppose now
that there exists (z,y) € F x GNImA. Since (z+y)/2 = ((z — €&) + (y + €;))/2,
the two points (z,y) and (x — €, y +¢&¢&;) lie in the same fiber of 8. As we saw in the
proof of Proposition 5, the point (x,y) minimizes (x,¥) in the fiber of 5. However,
the computation

(U, x —e€;) = (U, x) — e (T, &) < (¥, x)

violates the definition of A. O

Proposition 8 excludes faces F' x G of matching dimensions with L(s) £ L(t) from
the image of A. Notice that, by Point (1) of Lemma 3, L(s) £ L(t) implies s £ t.
In order to exclude the remaining case when s £ ¢t and L(s) < L(t), we prepare the
following two lemmas.

Leymwva 5. Let t € PBT,,, x --- x PBT,, be a forest of planar binary trees with
a total of ry + k right-leaning leaves and ¢, + k left-leaning leaves. There exists a
unique mazimal (with respect to inclusion) face Fy (resp. Gi) of P such that top F' =t
(resp. bot G = t). The dimensions of these faces are given by dim Fy = ¢ and
dim G; = 4.

Proof. — The cell F; (resp. G;) can be obtained by collapsing all the left-leaning
(resp. right-leaning) internal edges of all the trees of the forest ¢t. One can see that,
for any forest of planar binary trees, the number of left-leaning (resp. right-leaning)
internal edges is equal to the number of right-leaning (resp. left-leaning) leaves mi-
nus k. |
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Lemma 6. Let F, G C P be a pair of faces of matching dimensions. When s == top F’
and t = bot G satisfy L(s) < L(t), then (F,G) = (Fs,G¢) and L(s) = L(t).

Proof. — By definition, F C Fs and G C G, and thus dim F' + dim G < 4; + 7 < d
by Lemma 5. The top dimension assumption dim F' +dim G = d allows us to conclude
that dim F' = {,, dim G = ry, F = F, G = Gy, and L(s) = L(t). O

We can now conclude Step 1: we prove by induction on the dimension d of P that
any pair F, G C P of faces of matching dimensions with s € t and L(s) < L(¢) satisfies
F x G ¢ ImA. This is straightforward to check in dimensions d = 0 and d = 1. In
dimension d, let us suppose, to the contrary, that there exists such a pair F,G of
faces satisfying F' x G C Im A(p 3. Lemma 6 implies L(s) = L(t). In this case, both
points s and t lie in a common facet @ of P by Point (4) of Lemma 3. By Lemma 2,
the induced diagonal A (g 7 on @ is the restriction of A(pg). Let us consider F' =
FNQand G' = GNQ. If dim F' +dimG" > dim @, then F' x G' ¢ A5 by
Corollary 1. When dim F’ + dim G’ < dim @, we consider any pair of faces F’ C F"”
and G’ C G” of @ of matching dimensions: dim F”’ + dim G’ = dim Q. They satisfy
r:=topF"” > topF' = s and u := bot G’ < bot G’ = ¢, which implies r £ u.

We claim that F" x G" ¢ Im /(5. Since Q is a facet of P, it is of type Q' ==
Ko, x K, x K, X -+ x K, = @, under the isomorphism © : RY = R¥ given by the
block permutation of coordinates described in the proof of Point (5) of Proposition 1.
The image of the orientation vector ¥ = (v1,...,Vn,—1,Un,,...) under the inverse
permutation of coordinates is equal to

= 17 —
v =0 (’U) - (vla"'avi717vi+m717"'71)77417171]1'7"'7Ui+m72avn17"‘7)a

so it well-orients )'. Therefore the isomorphism O intertwines the two diagonals
A and Agr . Let us denote by r = (ry,...,r) and u = (u1,...,ux) the
various planar trees composing the two forests. Under the notation of the proof of
Point (5) of Proposition 1, one can write the two planar trees r; = 71 o; 7 and
uy = Uy o; u1. This gives

7 =top @ N (F") = (F1, 71,72, ..., Tk)
and v =Dbot O N G") = (U, U1, u, ..., up).

We have ' € u/. Indeed, the condition r € u implies that there exists 1 < j < k
such that r; £ u;. If j # 1, then automatically r’ £ . If j = 1, then either 71 £
or 71 £ 1y, since o; preserves the Tamari order, and again ' € u'. If L(r') £ L(u'),
we conclude with Proposition 8, otherwise we conclude our claim with the induction
hypothesis. Finally, notice that any cell appearing in Im A is contained in a product of
cells of matching dimensions. The above argument shows that F’ x G’ cannot appear
in Im A (@, #)- This concludes the first step.

4.2. Seconp step: Im A, D |JF xG. — In this section, we prove that every matching
pair (F,G) of K, satisfies F' x G C Im A,,. By Point (1) of Lemma 3 and by Lemma 6
such pairs are of type (Fy, G;) with s <t and L(s) = L(t).
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Prorosrtion 9. For every t € PBT,,, we have F; x Gy C Im /\,,.

Proof. By the pointwise formula (¢,¢) € Im A,,. But F} x G is the only cell coming
from a matching pair that can contain (¢,t) by Section 4.1. |

Levma 7. Let t < u be an edge of K,, satisfying L(t) = L(u).
(1) The cell GeN Gy is a facet of Gy and G.,.
(2) The cell Gy NGy is not of type G, for v € PBT,,.
(3) If Gy NGy, is a facet of Gy, thenv =1 orv=u.

Proof

(1) Let the planar binary tree u be obtained from ¢ by switching a pair (f,e) of
successive left and right-leaning edges to a pair (f/,€’) of successive right and left-
leaning edges:

tq to

ty

By Lemma 5, the cell G; N G, corresponds to a tree s obtained by collapsing all the
right-leaning internal edges of u except f’. The cell G,, corresponds to the tree s/f’
obtained from s by contracting the edge f’. The cell G; corresponds to the tree s/¢’.

(2) Notice first that a cell G is of type G, for v € PBT,, if and only if it is labeled
by a planar tree having only left-leaning internal edges. This is not the case of the
tree s, since it carries the right-leaning internal edge f'.

(3) In this case, the labeling tree r of G, is obtained from s by contracting one
internal edge. Since r should not contain any right-leaning internal edge, it can only
be obtained in two ways: by contracting e’ or f’. In the former case v =t and in the
latter case v = u. ]

Provosirion 10. — If s <t and L(s) = L(t) then Fy x Gy CIm A,,.

Proof. — We fix s and we consider the sub-lattice PBTZ* of elements greater than s.
Let us prove by induction on the elements ¢t of PBTZ* N L= (L(s)) that Fy, x G; C
Im A,,. The base case is s = ¢ and this is done in the above Proposition 9. Suppose
the conclusion holds for ¢ and let ¢ < u be an edge satisfying L(t) = L(u). Then
H=F,xGNF;xG, = Fs x (G:NG,) is a facet of Fy x Gy by Point (1) of
Lemma 7 and it does not project into the boundary of K, via . Since Fs x G, lies in
Im A, it is attached along H to a cell F, x G, by Section 4.1. We claim that r = s,
v =u. Since H = Fx x (G:NG,,) is a facet of F,. x G,, there are two options: either
F; =F, or G; NG, = G,. The latter case is contradicted by Point (2) of Lemma 7.
Therefore, Gy N G,, is a facet of G,,, and we conclude by Point (3) of Lemma 7. O

This concludes the proof of Step 2.
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