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Parallel complement network for real-time semantic
segmentation of road scenes
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Abstract—Real-time semantic segmentation is in intense de-
mand for the application of autonomous driving. Most of the
semantic segmentation models tend to use large feature maps and
complex structures to enhance the representation power for high
accuracy. However, these inefficient designs increase the amount
of computational costs, which hinders the model to be applied on
autonomous driving. In this paper, we propose a lightweight real-
time segmentation model, named Parallel Complement Network
(PCNet), to address the challenging task with fewer parameters.
A Parallel Complement layer is introduced to generate comple-
mentary features with a large receptive field. It provides the
ability to overcome the problem of similar feature encoding
among different classes, and further produces discriminative
representations. With the inverted residual structure, we design
a Parallel Complement block to construct the proposed PCNet.
Extensive experiments are carried out on challenging road scene
datasets, i.e., CityScapes and CamVid, to make comparison
against several state-of-the-art real-time segmentation models.
The results show that our model has promising performance.
Specifically, PCNet* achieves 72.9% Mean IoU on CityScapes us-
ing only 1.5M parameters and reaches 79.1 FPS with 1024 <2048
resolution images on GTX 2080Ti. Moreover, our proposed
system achieves the best accuracy when being trained from
scratch.

Index Terms—Road scene understanding, real-time semantic
segmentation, deep convolutional neural networks.

I. INTRODUCTION

MANTIC segmentation is a basic task in computer vision,

which is mainly responsible for labeling each pixel in the
image. Thus, the segmentation model is able to understand
the specific object details according to the data captured by a
single or multiple cameras. It can be widely applied to many
vision-based intelligent transportation systems such as au-
tonomous driving, stereo reconstruction and video surveillance
[1]-[5]. Therefore, the research of semantic segmentation has
a great potential value for supporting above applications.

In the past few years, deep convolutional neural networks
have made great progress in many areas [6]—-[12]. In contrast
to traditional methods, they will provide reliable features to ac-
complish specific task. Since Long et al. [13] firstly proposed
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Fig. 1. FPS and Mean IoU comparison on the CityScapes test set. Red points
represent the model is trained from scratch. Blue points indicate that the model
utilizes the pretrained backbone. The number of the parameters is shown
beside the points. PCNet* achieves comparable higher performance compared
to the other pretrained methods. The FPS of most methods are evaluated
on 1024 x2048 resolution except SegNet, SQ, ENet with 640x360, FSSNet,
ESPNet and ERFNet with 5121024, BiseNet with 768 x 1536, DFANet with
1024 % 1024.

to use fully convolutional neural network to solve the semantic
segmentation task, many high performance networks [14], [15]
have been developed in this area. Inspired by the transfer
learning, most of the established system transfer general
classification neural networks [16]-[18] as the backbone whilst
exploiting prior information, which gives the model a strong
capability for feature encoding. For example, many state-of-
the-art models (DeeplabV2 [19], Dense ASPP [20], PSPNet
[21]) utilize ResNet [17] to extract high-level features. They
also illustrate that multi-scale features are able to gradually
improve the segmentation quality. However, limited by huge
computational costs, the above methods do not tend to be
applied in intelligent systems.

Recently, with rapidly increasing demand of real-time in-
teraction, many researches turn to study how to perform
fast semantic segmentation. Although early methods somehow
reduce the computational costs, they result in significant per-
formance degradation. For instance, SegNet [22] and SQNet
[23], two representative models, are able to achieve a fast in-
ference speed, but lose more than 10% segmentation accuracy
compared with the other high-performance networks. Recent
methods mainly address the real-time segmentation challenge
from two directions. On the one hand, extremely efficient



IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

OO T
L] O O
L] 0O OO L

(a) Plain 5 x 5 (b) Stack 3 x 3(c) Dilated 3 x 3 (d) PC layer

1 1 1 1 1

1 1 1 111 1

RS [ Y N

AlOMIN

ool w

AloOMIN

NG I ) [P N
-

ala|lalala
aAlalalala

aAlalalala

aAlalalala

=N WwiN =

= INwWwiN =

1
(e) Plain

213]2
(f) Stack

Fig. 2. Different convolutions and their sampling distribution with the same
receptive field.

1 1 1 1 1 1
(g) Dilated (h) PC layer

models are expected for the application of edge devices.
However, the more lightweight the model is, the harder it is
to achieve a breakthrough in performance [24]-[28]. Thus,
the segmentation performance of the above models tend to
be lower than other competitors. On the other hand, inspired
by the success of the high performance models, some methods
(i.e. BiSeNet [29], SwiftRN [30]) transfer ImageNet-pretrained
backbones to exploit effective prior information. Compared
with above lightweight models, they require large amount
of computational costs. But the segmentation performance of
them are improved considerably. Triangle points in Fig. 1
denote most recent real-time segmentation methods, which
shows it is still a challenge to reach a satisfactory balance
between computational costs and segmentation performance
on large resolution images.

It is a common belief that enlarging receptive field helps the
model make accurate prediction [19]-[21]. We first analyze
the impact of different convolution operations with the same
receptive field. Using a large convolution kernel [31] is a
straightforward way to enlarge the receptive field, and this
slightly improves the accuracy of segmentation. However, it
is not an appropriate way for addressing the above challenge.
Stacking [27], [28] and dilated convolution [25] are two
alternative methods to acquire the same receptive field as large
convolution kernels. Stacking convolution falls into the prob-
lem of heavily depending on local features, whereas dilated
convolution hardly preserves local features. The problem is
mainly due to the unreasonable sampling distribution. Fig. 2f
demonstrates the result of a stacking method. Compared with
the plain 5x5 convolution, the distribution changes to a hill
shape which gradually forces the layer to over-sample the
features within the same receptive field. Thus, similar feature
representations of different classes confuse the classifier in
prediction. As mentioned in [32], dilated convolution tends
to ignore local features (see an example shown in Fig. 2g).
Therefore, the gradient cannot be propagated in these zero
weight areas, leading to the gridding effect on the high-level
feature representations.

Based on the above analysis, a Parallel Complement layer
(PC layer) is proposed to solve the above problems in this
paper. The layer adopts two parallel convolutions to preserve
local features and further enhance the representations through

complementary information in a large scale. As shown in
Fig. 2h, the PC layer produces a balanced sampling distri-
bution which does not overuse local features. Therefore, the
proposed PC layer has the ability to make consistent and
accurate prediction.

Moreover, inspired by the structure of inverted residuals
[33], we design an efficient Parallel Complement block (PC
block). It has been proved in [33] that such architecture
effectively captures the manifold of interest’ embedded in a
low-dimensional representation. Based on the PC block, we
form the proposed Parallel Complement network (PCNet).
The overall structure of our proposed model can be regarded as
an encoder-decoder framework. The Encoder is comprised of
a fast down-sampling module (FDM) and a feature extractor.
To reduce computational complexity, the feature extractor
is designed with a large down-sampling rate. The Decoder
consists of a high-level fusion module (HLF) and a classifier.
The HLF generates fused high-level features, and then the
classifier combines the features with spatial information to
make the final prediction.

The main contributions of this paper are as follows:

1) We design a Parallel Complement layer to enhance local
features with proper complement information. The layer
enlarges the receptive fields in a cheaper and more
effective way than other competitors. More importantly,
it is profitable for improving dense classification perfor-
mance.

2) We design a Parallel Complement block by integrating
the PC layer in the inverted residual to maintain the
representation power. Moreover, we propose a PC-lite
block to reduce parameters and computational costs by
near a quarter.

3) We propose a Parallel Complement Network to ad-
dress the real-time segmentation task. Compared with
other state-of-the-art models, our system achieves higher
Mean IoU (Intersection over Union) and a faster in-
ference speed on high resolution images. It achieves
a better balance among the parameters, computational
costs and segmentation performance on two public scene
segmentation benchmarks, i.e., CityScapes and CamVid.

II. RELATED WORK
A. Semantic Segmentation

FCN [13] is the first model to use fully convolutional
network to address the semantic segmentation task. It replaces
the fully connected layer which is usually used for classifi-
cation with convolution operation to acquire the pixel-level
prediction. Many subsequent methods are based on the fully
convolution fashion.

Inspired by the undecimated wavelet transform [34],
Deeplab [35] introduced atrous convolution into segmentation,
which inserts zero holes within the convolution kernel. This
operation is able to efficiently enlarge the receptive field.
Then, in order to enhance the ability of multi-scale feature
extraction, the Atrous Spatial Pyramid Pooling (ASPP) [19] is
proposed, which uses different dilation rates within several
parallel convolution operations. Hence, it is able to enrich
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scale information during the procedure of feature encoding.
Furthermore, Yang et al. [20] propose to use dense connections
within ASPP in order to make the final output features cover
a large-scale range semantic information. In addition, for
exploring the effectiveness of global contextual information
[36], Zhao et al. [21] proposed to use global average pooling
instead of atrous convolution to capture global image features.
On the other hand, feature aggregation within the same
class helps to improve the segmentation quality. Object context
pooling is introduced in OCNet [37] to find unified class
feature representation. The features after aggregation are more
discriminative. Similarly, DANet [38] performs feature aggre-
gation from the view of attention. The model exploits both
spatial and channel attention to adaptively integrate similar
features from spatial and channel aspects. And in [39], the
attention complementary module is introduced to selectively
explore complementary feature from RGB and depth images
by using channel attention mechanism. Meanwhile, for im-
proving computational efficiency, CCNet [40] includes a criss-
cross attention module to simplify the attention propagation.
The above models are able to achieve promising segmentation
performance. However, they incur huge computational burden
which makes them hard to be applied in practical systems.

B. Real-time Semantic Segmentation

Recent years, real-time segmentation approaches [24]-[26],
[29], [30], [41]-[46] have been proposed to reduce compu-
tational costs. As the pretrained backbones [17], [18] can
provide a promising ability of feature encoding, some methods
[29], [30], [41], [42] focus on innovating the decoder structure
to address real-time segmentation tasks. ICNet [41] embeds
PSPNet [21] in the cascade structure and feeds the network
with a 1/4x input image. BiSeNet [29] introduces a two-
branch network to preserve spatial information and obtain a
sufficient receptive field. To reduce the overall computational
costs, BiSeNet scales the input image to the size of 768 x 1536.
DFANet [42] replicates the lightweight backbone and performs
cross-level feature aggregation for capturing discriminating
features. SwiftNet [30] incorporates the lightweight ResNet18
[17] backbone and fuses features at multiple resolutions
to produce accurate segmentation results. Dong et al. [45]
propose distinctive ASPP, based on MobileNetV2 [33], to
exploit multi-scale information as much as possible. Benefiting
from the pretrained backbone, the above methods are able to
achieve promising performance. However, they still require
large amount computational costs during inference.

As for pursuing high computational efficiency, some
lightweight models [24]-[28], [43] pay more attention to
reduce the number of the used parameters. ENet [24] develops
an extremely lightweight architecture which only uses 0.4M
parameters to construct the model. ESPNet [25] proposes an
efficient spatial pyramid module for exploiting multi-scale
features, and the model has 0.4M parameters in total. ERFNet
[43] is formed with 2.1M parameters and the model adopts
factorized convolution to improve computational efficiency.
FSSNet [26] uses only 0.2M parameters to deliver a real-time
segmentation task. Such lightweight networks are suitable for

resource constrained devices, however they sometimes lead to
the degradation of segmentation accuracy.

To bridging the gap between high-performance and
lightweight models, knowledge distillation [47] provides a
practical way for compact model to learn useful knowledge
from a cumbersome model. Wang et al. [48] gives a com-
prehensive review about the knowledge distillation technique
in many areas which is helpful for understand the technique
details of knowledge distillation. In [49], Liu et al. proposed to
use pairwise distillation and holistic distillation techniques to
distill knowledge from teach segmentation model. In addition,
He et al. [50] proposed to use a pretrained autoencoder to per-
form knowledge distillation so that the knowledge is able to be
reinterpreted in a simplified form. Meanwhile, another affinity
distillation module is used to provide long-range dependen-
cies for student model. Therefore, the knowledge distillation
method has great potential to be applied as a postprocessing
technique to further optimize the model. In this work, we
mainly focus on constructing a novel lightweight real-time
segmentation model. Without any knowledge transferred from
a cumbersome model, our best model PCNet* only has 1.5M
parameters but produces accurate prediction results.

C. Effective Layer Design

Multi-scale information and receptive fields significantly
influence the segmentation performance. To generate high
quality image descriptors, SDC is proposed in [51] to enlarge
the receptive fields so that the model is able to deal with the
problem of image description. In terms of the segmentation
task, many high performance models [19]-[21], [52] execute
multi-scale feature extraction through elaborate modules. For
example, ASPP [19] utilizes different dilated convolution
schemes to exploit discriminative features. Pyramid pooling
module [21] fuses sub-region features generated by four differ-
ent levels of pooling operations. Dense ASPP [20] module in-
troduces dense connections to make the features cover a larger
scale range than ASPP. In addition, to improve the efficiency,
QGNet [53] proposes a novel method to decomposes the target
mask into a linear quadtree.

For most real-time segmentation models, they have to focus
on the operational efficiency of each layer. ESPNet [25]
applies spatial pyramids of dilated convolution to acquiring
a large effective receptive field. Hierarchical feature fusion
operation is used after the pyramid pooling to compensate
heavy gridding artifact. ERFNet [43] uses factorized convolu-
tions to improve the computational efficiency while keeping
comparable accuracy. In our work, the proposed PC layer
utilizes heterogeneous convolutions to generate a balanced
sampling weight distribution in a large receptive field, and
thus has the ability to produce discriminative representations.

D. Inverted Residuals

Because residual learning [17] alleviates the problem of
gradient vanishing, a model with deep structure can be trained
to acquire strong representational power. To enhance the rep-
resentational power of a lightweight model, MobileNetV2 [33]
introduces inverted residuals with a linear bottleneck structure
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to capture critical information embedded in low-dimensional
representations. Incorporating with depth-wise separable con-
volution [18], inverted residuals lead to high computation
efficiency while maintaining certain representational power.
We form the proposed PC block with a similar structure.
To further reduce computational costs, the PC-lite block is
designed with a small expand ratio.

III. METHODOLOGY

In this section, we first introduce the proposed parallel
complementary layer. Then for integrating the PC layer into
a building block, we illustrate the structure of PC block
and its lightweight version. Finally, we construct the Parallel
Complement Network in the form of an encoder-decoder
framework.

conv dilated conv dilated
’ ’

Fig. 3. The structure of parallel complementary layer and its downsampling
structure.

A. Parallel Complement Layer

As mentioned in Section I, the stacking method causes the
problem of heavily depending on local features and the dilated
manner tends to lose essential local features. To overcome
the above drawbacks, we propose parallel complementary
layer (PC layer) to improve the ability of feature extraction.
The PC layer consists of two parallel convolution operations,
i.e., plain convolution and is dilated convolution. The two
operations have the same settings except the dilation rate.
The strides are set to 2 when the PC layer is applied to
perform downsampling. Furthermore, we employ the depth-
wise separable convolution to extract features instead of the
normal convolution. Specifically, the depth-wise separable
convolution reduces the parameters of operation by c times,
where ¢ denotes the channel number of the operation. Fig. 3
shows the structure of the PC layer. Fig. 3 (b) represents
the structure of the PC layer when it is used to downsample
features.

The main advantage of PC layer comes from the com-
plementary relationship between features extracted by the
two heterogeneous convolutions. In practice, the multi-scale
features plays a significant role for improve the segmentation
accuracy. For example, Deeplabv2 [19] introduces ASPP to
extract multi-scale features, ESNet [28] proposes PFCU to
capture multi-scale information and ESPnet [25] designs the
ESP module to aggregate features from different scales. How-
ever, too many independent and parallel operations within a

module also influence the efficiency. To reach a balance of per-
formance and efficiency, we only use one dilated convolution
within the PC layer to provide feature from a different scale.
However, a problem is how the complementary relationship
influences the segmentation performance of model. In [19],
the ASPP chooses three relatively large dilation rates (6, 12,
18) to extract features while PFCU [28] employs (2,5,9) as
the dilation rates of three parallel factorized convolutions. For
the PC layer it will be beneficial for classifying large objects
when the dilation rate is large. However, large dilation rate
will inevitably confuse the model for small objects, because it
will brings redundant features from other classes. On the other
hand, the complementary relationship is too weak to provide
necessary features from different scales when the dilation rate
is small. Therefore, we further investigate the complementary
relationship in the ablation study section. The results indicate
that a proper dilation rate is profitable for improving the
segmentation accuracy.

B. PC Block

As the complementary features from different scales are
capable of refining the segmentation performance, we con-
struct the Parallel Complementary block (PC block) with
the PC layer as the basic feature extraction module. On the
one hand, PC block is good at processing low-dimensional
features which are vulnerable in preserving information. This
is mainly because our PC block is developed based on the
structure of inverted residual [33]. The channel expansion
strategy is used in the inverted residual so as to guarantee
the strong nonlinear transformation ability. In addition, the
linear bottleneck prevents the information embedded in the
low dimensional data from being destroyed by the nonlinear
activation function. Therefore, PC block is able to exploit
low-dimensional features. On the other hand, PC block is
lightweight and efficient. A small expansion rate reduces
the amount of parameters and computational costs while the
performance is still relatively higher than other competitors
[29], [41]. Then we describe the detailed structure of proposed
PC block.

A PC block consists of three different layers, i.e., projection,
transform and linear bottleneck layers. The projection layer
employs one 1x1 convolution to project the compressed input
data into the high-dimensional space. Although it increases
the parameters and computational costs, the expanded fea-
tures acquire excellent representation power, which alleviates
information losing after nonlinear operation to some extent.
The transform layer is mainly responsible for feature transfor-
mation. We apply the PC layer to form the transform layer.
The proposed PC layer performs balanced sampling with a
large receptive field. Thus, integrating the PC layer as the
transform layer makes the whole block more sensitive for
capturing rich scale information. After that, another pixel-wise
sum operation is added to generate the transformed features.
The detailed structure is shown in Fig. 5a. For improving
computational efficiency, we reduce the expansion ratio and
use concatenation to replace the pixel-wise sum operation,
which can be seen in Fig. 5b. The linear bottleneck layer is
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constructed without the ReLU activation operation, which is
used to prevent non-linearity from destroying too much detail.
We also use shortcut to perform residual learning when the
channel of the input is equal to the output or the stride of the
block is 1. It should be noted that the PC block is only used to
illustrate the effectiveness of the PC layer. The PC-lite block
is finally unitized to construct the proposed model.

Table I illustrates the implementation of the PC-lite block.
For the input features of C' x H x W, the projection layer
performs channel expansion to generate %C channel high-
dimensional features where k represents the expansion ratio.
Then the transform layer utilizes heterogeneous convolutions
to produce complementary features, and we concatenate them
to form kC' channel features like the original inverted residual.
Finally, the linear bottleneck layer is used to produce the
output of C' xHxW. Compared with the inverted residual,
the PC-lite block reduces parameters and computational costs
by nearly a quarter. Specifically, suppose that we have an input
of C'x H x W, the inverted residual block has total 12C%+454C

parameters, while PC-lite only has 9C? + 54C' parameters.

TABLE I
THE IMPLEMENTATION OF THE PC-LITE BLOCK.
Input Operators Output
CxHxW 1 x 1 conv §C><H><W
kCx HxW 1 x 1 conv C' xHxW

C. Network Structure

Our proposed Parallel Complementary network (PCNet) is
constructed with an encoder-decoder structure. Different from
most modern lightweight segmentation model designs [25],
[28], [54], we employ a large downsampling rate to maintain
high efficiency. Another advantage is large downsampling rate
brings benefits for the network to increase the depth, which
improves the representation power of the model. In addition,
we expect to use the low-level features to refine the final
segmentation prediction. The reason is that low-level feature
is able to reserve spatial details which are beneficial to provide
accurate location information [29], [41].

The structure of PCNet contains two main parts, named
encoder and decoder, which can be seen in Fig. 4. In detail,
the encoder contains one fast down-sampling module (FDM)
and one feature extractor. The FDM is designed to perform
fast downsampling so as to improve the computation efficiency
of feature extractor. It’s worth noting that we only use normal
convolutions with stride in the FDM instead of the lightweight
depth-wise separable convolution. Then, the feature extractor
is constructed by two groups of PC block (PCG). The two
groups contain n1 and n2 PC blocks respectively. In the best
model, the input feature of the second group is formed by con-
catenating the output feature of the first group and the output
feature of FDM. And we simply adopt bilinear interpolation to
align two different size feature maps. Furthermore, we perform
downsampling in the first PC block of each group. Therefore,
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TABLE II
PERFORMANCE COMPARISON FOR THE CITYSCAPES VALIDATION SET.
ALL MODELS ARE TRAINED WITH THE 512x 1024 INPUT. FPS AND
FLOPS ARE EVALUATED ON GTX 1080T1 WITH 1024 x2048 IMAGES.
IR-k X kK MEANS THE FEATURE EXTRACTOR IS MADE UP BY THE
INVERTED RESIDUAL BLOCK WITH DEPTH-WISE CONVOLUTION OF A
k X k KERNEL SIZE. dn DENOTES THAT THE DILATION RATE OF DILATED
CONVOLUTION IS SET TO n. PC-(k, d) AND PC-LITE-(k, d) REPRESENT
THAT THE MODEL IS CONSTRUCTED WITH PC AND PC-LITE BLOCKS
WHERE THE PLAIN CONVOLUTION IS k X k DEPTH-WISE CONVOLUTION
AND THE COMPLEMENTARY CONVOLUTION IS DILATED CONVOLUTION

WITH RATE d.
Block FLOPs | FPS | Params | MIoU
IR-3x3 (baseline) 8.49G 68.8 1.5IM | 67.2%
IR-5x5 8.85G 56.2 1.62M | 69.8%
IR-7x7 940G | 47.2 1.77M | 69.4%
IR-3x3,d2 8.49G 68.8 1.5IM | 65.2%
IR-3x3,d3 8.49G 68.8 1.5IM | 63.5%
IR-3 X 3,stack 8.76G 54.1 1.58M | 63.6%
IR-3 x 3,stack-d2 8.76G 54.1 1.58M | 68.2%
IR-3 X 3,stack-d3 8.76G 54.1 1.58M | 67.1%
PC-(3,2) 8.76G 52.3 1.58M | 70.8%
PC-lite-(3,2) 7.1G 70.5 1.19M | 68.3%
PC-lite-(3,2)-deep 9.17G 51.7 1.44M | 70.5%

the final downsampling rate of the network is 32. The decoder
is comprised of high-level feature fusion unit (HLF) and
classifier. HLF is designed to fuse two different size high-
level features which come from the two groups of PC block
and the output of HLF is fed into classifier to generate the final
segmentation prediction. As mentioned before, we introduce
the output of FDM to classifier to provide location information
and spatial details so as to refine the segmentation result.
Finally, we directly apply bilinear interpolation to upsample
the prediction. We use the cross entropy loss as the main
objective loss function to optimize the whole network and it
can be defined as:

1 1 ebi

IV. EXPERIMENTS

To evaluate the performance of our PCNet, we perform
experiments on challenging benchmark datasets including
CityScapes [55] and CamVid [56]. In this section, we first
describe the implementation details of our experiments. Then
the ablation study of the proposed method is conducted and
discussed. Finally, we carry out comparison experiments with
several state-of-the-art real-time segmentation algorithms.

-

(b) plain5 (d) dilated (e) PClayer

(a) input (c) stack
Fig. 6. Visualization results of high-level features. We randomly sample a
point and compute its cosine similarity against the whole high-level feature
map. Illustrations from left to right represent the original image, plain
5x5 convolution, stacking convolution, dilated convolution and PC layer
respectively.

TABLE III
#PARAMETERS, #EFFECTIVE RECEPTIVE FIELDS(ERF) AND MEAN IOU
COMPARISON WITH ESP MODULE [25], EDA MODULE [27] AND FCU
[28]. FOLLOWING THE SETTING OF [25], HERE m = n = 100. THE
DILATION RATE OF PC-LITE BLOCK IS SET TO 4.

Block #Parameters | #FLOPs #ERF MIoU
Inverted Residual [33] 125400 529.2M 3x3 -

ShuffleNetV2 unit [58] 5450 - 3x3 -

ESP module [25] 20000 83.15M 33%x33 | 60.3%
EDA module [27] 23200 - 5%5 67.3%
FCU(K=3) [28] 120000 496.44M 5%5 69.1%
PC-lite 95400 402.64M 9%9 72.7%

A. Implementation Details

Our proposed model is implemented based on PyTorch and
we perform end-to-end training without any other postprocess-
ing like conditional random fields. The Cross-Entropy loss is
used as the objective function. We adopt mini-batch stochastic
gradient descent (SGD) [57] to optimize the network with
momentum 0.9 and weight decay 5e — 4 and the batch size of
each iteration is set to 16. Following [19], we also utilize the
‘poly’ learning rate strategy where the initial rate is multiplied
by (1— m;t;;w )POWer per iteration with power 0.9. The initial
learning rate of the training is le — 2 and experiments are
performed on 2x RTX 2080Ti. To avoid over-fitting, common
data augmentations are used as preprocessing which includes
random scaling of the origin image in the range of [0.5, 2]
and image flipping image on horizontal with probability 0.5.
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Fig. 7. Various settings of the PC-lite block. Red line denotes that the PC-lite
block is constructed by standard 5x5 convolution and dilated convolution of
rate d. Green line refers to standard 3 x3 convolution and dilated convolution
of rate d to form the PC-lite block.

B. Datasets and Evaluation Metrics

1) Datasets: We evaluate the proposed PCNet on two
public road scene datasets: CityScapes [55] and CamVid [56].
Each dataset is introduced in the following content.

a) CityScapes: This dataset is mainly focused on seman-
tic understanding of urban street scenes which contain a large
number of paired data. In detail, CityScapes has 5000 finely
annotated images and 20000 more coarsely annotated images
collected from 50 cities. We only use the finely annotated im-
ages to train our model and the overall images are divided into
2975/500/1525 images for training/validation/testing. Each
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pixel of an image is labeled from 19 pre-defined classes which
includes car, person, bicycle, etc. The resolution of each image
is 1024 x 2048. For many ablation experiments, we train the
proposed model by randomly cropping a 512 x 1024 patch
from the image. For acquiring the best performance, we use
the full resolution for training.

b) CamVid: CamVid is a road scene dataset which is
captured from the perspective of a driving automobile. There
are 701 labeled images in the dataset. Following SegNet [22],
the dataset is split into 367 training images, 101 validation
images and 233 images for testing. The dataset contains 11
different classes and the resolution is 960 x 720.

2) Metrics: The results is reported by using mean
intersection-over-union (MIoU) which is widely used as the
evaluation metric in semantic segmentation and scene under-
standing. It can be formulated as the following equation:

Nels
N
Mean IoU = — =
Nels DN+ Yo ngi —ng
where n;; means the number of the pixels of class ¢ predicted
to belong to class j. To evaluate the inference speed, we
average the total time of 100 forward computations. The
FLOPs and parameters are also listed in the result tables.

C. Ablation Study

In this section, we conduct extensive experiments on
CityScapes with 512 x 1024 input resolution to perform
ablation study. We first demonstrate the effectiveness of the
PC layer and study the influence of the dilation rate of the
complementary convolution. Then, different block structures
are used to compare the segmentation performance so as to
find the best basic block. Finally, to find the best network
structure, we explore the impact of the depth of the feature
extractor.

1) Effectiveness of PC block: To investigate the effec-
tiveness of the PC block, we firstly compare it with the
original inverted residual within the same network structure.
The basic network structure is constructed with (nqy = 4,
no = 8). The baseline block is an inverted residual with
33 depth-wise convolutions. Table II shows the baseline only
achieves 67.2% Mean IoU on the CitySccapes validation set.
Then, we enlarge the kernel size of depth-wise convolution.
When the kernel size is 5x5, the Mean IoU is improved
from 67.2% to 69.8%, and Mean IoU of the model reaches
69.4% with 7x7 kernel size. The improvement of segmenta-
tion accuracy implies that enlarging kernel size is a working
strategy to achieve high performance. IR-3x3-dn represents
the model uses dilated convolution to replace the normal 3x3
convolution. Results illustrate that zero weight sample points
result in the degradation of performance. Meanwhile, directly
applying the stacking method into the model also degrades the
performance of model. However, the segmentation accuracy
of stacking method is slightly improved when it coupled with
dilated convolution. PC-(k,d) and PC-lite-(k,d) reveal that the
block is formed with plain convolution with k x k kernel
size and dilated convolution with the d dilation rate. PC-
(3,2) reaches 70.8% Mean IoU on the CityScapes validation

set, which is a significant improvement compared with IR-
5x5, IR-3x3-d2 and the stack method. This promising result
is achieved because the PC layer is capable of producing
discriminative feature representations. Furthermore, the PC-
lite block is designed to reduce computational complexity.
With the same network structure, PC-lite-(3,2) saves many
parameters while still acquiring high performance than the
dilated or stack manner. After increasing the network depth
to (n; = 10, ng = 8), PC-lite-(3,2)-deep achieves comparable
Mean IoU with PC-(3,2). We also perform qualitative compar-
ison on high-level features of different methods to illustrate
the effectiveness of PC layer. Fig. 6 shows the visualization
results of high-level feature similarity. We randomly sample a
point and compute the cosine similarity between the point and
the whole feature map. The results show that the PC layer can
generate cleaner features than other competitors, which means
the high-level features of a certain class in PC layer have few
similarities with others.

2) Ablation for complementary relationship: We conduct
ablation experiments on dilation rate to study how the comple-
mentary relationship influences the segmentation quality. We
compare two PCNet with different basic blocks as the baseline
models to investigate the correlation between the features.
Fig. 7 summaries the experimental results. The green point
represents the block of a 3x3 and dilated convolution to form
the PC layer. The red point replaces the 3x3 convolution
by 5x5 convolution. When we enlarge the dilation rate of
dilated convolution, the green line shows that PC-lite block
with a large rate’s dilated convolution gradually worsens the
segmentation performance. Thus, rate 4 dilated convolution
is the most effective choice to exploit the complementary
features for 3x3 convolution. Furthermore, the red line also
reveals almost the same trend. As a result, the best dilation
rate is able to provide the best complementary feature for
plain convolution in the PC layer, which enhances the block
representational power.

3) Quantitative comparison with other methods: In this
part, we further conduct quantitative comparison with other
lightweight blocks [25], [27], [28], [33]. This comparison
takes parameters, effective receptive fields and Mean IoU
into account and Table III summaries the results. Following
[25], we use the same setting to compute the parameters and
effective receptive fields. ESP module [25] has few parameters
and large receptive fields by using tens of parallel dilated con-
volution. However, the low-dimensional representation makes
it difficult for the module to improve the ability of generating
discriminative features. In PC block, the features are expanded
when performing transformation, which helps the block to
exploit information compressed in the low-dimensional fea-
tures. Factorized convolution unit (FCU) [28] stacks factorized
convolutions to construct efficient structure. Recall the results
of Stack-d2 and Stack-d3 in Table II, it illustrates that the
performance still gets worse than plain 5x5 convolution when
the stacking method is coupled with dilated convolution. It
is worth noting that here we do not apply the factorized
convolution in Stack-d2 and Stack-d3 because the factorized
convolution and the normal convolution almost have the same
affect except the factorized convolution is able to reduce
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TABLE IV
COMPARISON OF PER-CLASS ACCURACY RESULTS ON CITYSCAPES TEST SET. THE BEST RESULT AMONG THESE METHODS IS MARKED BY BOLD STYLE.
Model Pretrain Roa | Sid | Bui | Wal | Fen | Pol | TLi | TSi | Veg | Ter
SegNet [22] | ImageNet | 96.4 | 73.2 | 84.0 | 284 | 29.0 | 35.7 | 39.8 | 45.1 | 87.0 | 63.8
ICNet [41] ImageNet | 97.1 | 79.2 | 89.7 | 432 | 489 | 61.5 | 60.4 | 63.4 | 91.5 | 683
ESPNet [25] Scratch | 97.0 | 77.5 | 76.2 | 35.0 | 36.1 | 45.0 | 35.6 | 46.3 | 90.8 | 63.2
PCNet* Scratch | 98.3 | 844 | 914 | 484 | 52.6 | 57.1 | 63.8 | 69.7 | 92.3 | 70.0
Model Sky | Per | Rid | Car | Tru | Bus | Tra | Mot | Bic | Params | MloU
SegNet [22] | 91.8 | 62.8 | 42.8 | 89.3 | 38.1 | 43.1 | 44.1 | 35.8 | 51.9 | 29.5M | 57.0%
ICNet [41] 935 | 746 | 56.1 | 92.6 | 51.3 | 72.7 | 51.3 | 53.6 | 70.5 | 26.5M | 69.5%
ESPNet [25] | 92.6 | 67.0 | 409 | 923 | 38.1 | 52.5 | 50.1 | 41.8 | 57.2 | 04M 60.3%
PCNet* 94.6 | 80.6 | 61.5 | 945 | 61.2 | 73.9 | 63.2 | 57.3 | 69.3 | 1.485M | 72.9%
TABLE V TABLE VII

MODEL PERFORMANCE COMPARISON OF DIFFERENT PC-LITE BLOCK
STRUCTURES. HERE, THE MEAN IOU IS EVALUATED ON THE CITYSCAPES
VALIDATION SET. APS REFERS TO AVERAGE POOLING SI1ZE AND KS
STANDS FOR KERNEL SIZE USED IN THE PLAIN CONVOLUTION. DR
REPRESENTS DILATION RATE.

Block KS | DR | APS | Params | MIoU
PC-lite-(3,2) 3 2 - 1.I9M | 68.3%
PC-lite-(3,2)-Add 3 2 - 0.85M | 68.5%
PC-lite-(3,2)-deep 3 2 - 1.44M | 70.5%
PC-lite-(3,2)-deep-Add 3 2 - 1.03M | 69.4%
PC-lite 3 - 4 1.1I6M | 64.5%
PC-lite 3 - 8 1.16M | 64.0%
TABLE VI
ABLATION STUDY ON HLF.

Model Input shape | MIoU
HLF PC-lite(3,2)-deep 512 x 1024 | 70.5%
HLF-LB PC-lite(3,2)-deep | 512 x 1024 | 70.6%

parameters. We also report the FLOPs of each modules wchich
is evaluated with a 100x 64 x64 input in Table III. The results
show that our proposed PC-lite block is able to achieve higher
performance with relatively lower computational costs than
others.

Meanwhile, the structure of PC block is similar to some
other modules to some extent like EDA-ASPP [27] and PFCU
in ESNet [28]. However, the meaning of parallel is different.
For ASPP and PFCU, the parallel convolutions are all the
dilated convolutions. That is complementary relationship ex-
isted in these parallel dilated convolutions enriches the scale
information, which makes the whole module approximate a
large and dense dilated convolution especially for extracting
multi-scale features after encoder. As for PC block, the parallel
operations are designed to provide complementary features
with each other, which makes the block approximate a rel-
atively large and sparse convolution. Additionally, because of
the high efficiency, PC block is able to be applied into feature
extractor to optimize the process of feature encoding. As a
result, the proposed PC block is more profitable for real-time
segmentation task.

4) Block Structure: In this subsection, our baseline net-
work consists of the PC-lite-(3,2) block. We utilize the Global
Average Pooling (GAP) operation within the PC-lite block
to provide global contexts instead of complementary dilated
convolution. As shown in Table V, the PC-lite block with
Average Pooling Size (APS) 8 only achieves 64.0% Mean IoU
which is lower than its competitor PC-lite-(3,2). There is a

PERFORMANCE COMPARISON ON THE CITYSCAPES VALIDATION SET
WITH DIFFERENT NETWORK STRUCTURES OF PCNET. THE INPUT
RESOLUTION IS 512X 1024. HERE, WE USE PC-LITE-(3,4) TO FORM THE
PROPOSED NETWORK.

Methods | nq no Params MloU
PCNet 4 8 1.382M | 70.2%
PCNet 6 8 1.465M | 70.4%
PCNet 8 8 1.548M | 70.3%
PCNet 10 8 1.631M | 70.6%
PCNet 10 6 1.384M | 70.1%
PCNet 10 8 1.631M | 70.6%
PCNet 16 12 | 2.241M | 72.0%

slight performance improvement from 64.0% to 64.5% in the
case of APS = 4, which suggests the global context has little
contribution to the features generated by plain convolution. In
addition, we replace the concatenation with the point-wise sum
operation within the PC-lite to form the 'PC-lite-(3,2)-Add’
block. Results show that it not only reduces extra parameters
but also improves the segmentation accuracy. However, the
"PC-lite-(3,2)-Add’ block cannot achieve higher performance
than the original PC-lite block with a deeper structure. In
summary, the PC-lite block is more efficient than the others.

5) Network Structure: We further perform experiments
to optimize the PCNet from the viewpoint of the feature
extractor. Table VII shows the experimental results with dif-
ferent structures of PCNet. PCNet with n; 10 acquires
the best segmentation accuracy when we keep no = 8 fixed.
Meanwhile, PCNet achieves the best performance with no = 8
when we fixed n; = 10. In addition, to prove the performance
can be further improved with increasing the number of PC
block in each PC block group, we add 6 and 4 more PC
blocks in the two groups respectively. The result is presented
in the last row of Table VII. To balance inference speed
and performance, we choose nl = 10 and n2 = 8 as the
upper bound. Furthermore, inspired by the structure of inverted
residual [33], we redesign HLF with channel expansion and
linear bottleneck. Initially, the HLF is comprised of two depth-
wise separable convolutions. We first concatenate the two
different size features and then feed them to the following two
convolutions. As for the redesigned HLF-LB, we first project
the two different size features into a high-dimensional space
and perform transformation on them respectively. Finally, we
align the size of two features and project the feature back to a
low-dimensional representation. Table VI shows the ablation
results about HLF which can be seen that HLF-LB slightly
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TABLE VIIL
PERFORMANCE COMPARISON ON THE CITYSCAPES TEST SET. ”’-” INDICATES THE CORRESPONDING RESULT IS NOT PROVIDED HERE. ”-VAL” MEANS
THE PERFORMANCE IS EVALUATED ON THE VALIDATION SET. ”T” REPRESENTS THE FPS IS EVALUATED ON GTX 2080TI WITH 1024 x2048 INPUT.

Model InputSize Pretrain FLOPs Params FPS GPU Type MIloU
DeepLab [35] 512 x 1024 ImageNet | 457.8G - 0.25 - 63.1%
PSPNet [21] 713 x 713 ImageNet | 412.2G - 0.78 - 81.2%
SegNet [22] 640 x 360 ImageNet | 286.03G | 29.5M 16.7 - 57%
SQ [23] 640 x 360 ImageNet 270G - 16.7 - 59.8%
ESPNetV2 [59] 512 x 1024 | ImageNet 322M 725K 83 GTX Titan X 66.2%
BiSeNetl [29] 768 x 1536 | ImageNet | 14.80G 5.8M 105.8 | GTX Titan XP | 68.4%
ICNet [41] 1024 x 2048 | ImageNet | 28.30G 26.5M 30.3 GTX Titan X 69.5%
GUNet [60] 512 x 1024 | ImageNet - - 33.3 | GTX Titan XP | 70.4%
DFANet-A [42] 1024 x 1024 | ImageNet 3.40G 7.8M 100 GTX Titan X 71.3%
KD-Resnet18 [49] - ImageNet 128.2B 15.24M - - 71.4%
KD-MobileNetV2 [50] 1025 x 2049 | ImageNet - - 26.3 - 72.7%
TwoColumn [50] 512 x 1024 ImageNet - - 14.7 GTX 980 72.9%
Dong et al. [45] 448 x 896 ImageNet 49.5G 6.2M 51 GTX Titan X 73.6%
BiSeNet2 [29] 768 x 1536 | ImageNet 55.3G 49M 65.5 | GTX Titan XP | 74.7%
ShelfNet-18 [44] 1024 x 2048 | ImageNet 90.0G 14.6M 36.9 GTX 1080Ti 74.8%
SwiftNetRN-18 [30] 1024 x 2048 | ImageNet 104G 11.8M 39.9 GTX 1080Ti 75.5%
ENet [24] 640 x 360 Scratch 3.83G 0.4M 1354 | GTX Titan X 57 %
FSSNet [26] 512 x 1024 Scratch - 0.2M 51 GTX Titan XP | 58.8%
ESPNet [25] 512 x 1024 Scratch - 0.4M 112 GTX Titan X 60.3%
CGNet [54] 640 x 360 Scratch 6G 0.5M 35.21 GTX 2080Ti 64.8%
ERFNet [43] 512 x 1024 Scratch - 2.1M 41.7 GTX Titan X 68.0%
FRRN [61] 512 x 1024 Scratch 235G - 2.1 GTX Titan X 71.8%
PCNet 1024 x 2048 Scratch 11.8G 1.631IM | 30.1 GTX Titan X 72.7%
PCNet 1024 x 2048 Scratch 11.8G 1.63IM | 718 GTX 2080Ti 72.7%
PCNet* 1024 x 2048 Scratch 11.5G 1.485M | 79.1 GTX 2080Ti 72.9%
SwiftNetRN-18-val [30] | 1024 x 2048 Scratch 104G 11.8M 39.9 GTX 1080Ti 70.4%
PCNet-val 1024 x 2048 Scratch 11.8G 1.63IM | 718 GTX 2080Ti 72.7%

improves the segmentation accuracy by 0.1%.

6) PCNet*: In this part, we introduce the structure about
our best model PCNet*. Actually, PCNet* has the same
structure with PCNet except that the PC block of the second
group is replaced by large kernel PC blocks. In the second
group of PCNet, we use 8 PC blocks to extract deep semantic
information. While in the PCNet*, we replace the 8 blocks by
5 large kernel PC block. The kernel size of plain convolution
of each large kernel convolution is set to be 5x5. As for
the dilated convolution, the kernel size is still 3x3 while the
dilation rate is set to be 3. The main purpose of this change
is to improve the efficiency of PCNet. It is not only profitable
for reducing the overall parameters and computational costs
but also helpful to refine the final segmentation prediction.

D. Results

a) CityScapes: Due to the low computational costs of
our proposed model, the full resolution inputs are used to
train the best model. We carry out extensive comparison
experiments against several state-of-the-art methods. Table IV
summaries the per-class accuracy results on CityScapes test set
of some real-time segmentation models. It can be concluded
that our proposed PCNet* achieves better performances than
others in most classes except “Pole” and “Bicycle”. On the
other hand, we perform comprehensive comparison in infer-
ence speed, computational costs, parameters and segmentation
performance with other methods and the results are presented
in Table VIII. We do not apply TensorRT for acceleration. The
speed evaluation of PCNet is conducted on one Nvidia GTX
2080Ti GPU and one Titan X GPU respectively. For a fair
comparison, Table VIII lists the image resolution and the type

of GPU. We do not add any testing augmentation strategies
(i.e. Multi Scale test) in the evaluation process.

The first two rows of Table VIII show the results of two
state-of-the-art high performance segmentation algorithms.
Compared with these algorithms, PCNet reduces much more
computational complexity and runs at a faster inference speed.
For example, the proposed PC Net reduces the computational
costs by almost 34 x compared with PSPNet [21] and achieves
a even high inference speed. Next, we also list twelve real-
time semantic segmentation algorithms with the pretrained
backbones. We can see that our method is still competitive. It is
obvious that PCNet outperforms BiSeNetl [29] by 4.3% Mean
IoU and reduces much computational complexity. Compared
with DFANet-A [42], PCNet can also achieve higher per-
formance. SwiftNetRN-18 [30] finally achieves 75.5% Mean
IoU with the pretrained backbone. It should be noticed that
the PCNet achieves higher Mean IoU than SwiftNetRN-18
on the Cityscapes validation set when we train the model
from scratch. The third part reports the performance of
the lightweight segmentation models which are trained from
scratch. Our proposed PCNet only occupies 1.32 GFLOPs
when it is fed with a 640x360 input image, which is more
efficient than ENet [24] and CGNet [54]. To make a fair
comparison, we reimplement the CGNet [54] and evaluate
the FPS on GTX 2080Ti with 1024 x2048 resolution input.
The results illustrate the competitiveness of PCNet. As for
the segmentation performance, the proposed PCNet is able to
deliver a descent performance compared with several state-of-
the-art methods. In addition, we further refine the structure of
PCNet to form our best model. PCNet* utilizes less parameters
than PCNet while achieving better performance. Overall, the
PCNet improves the segmentation performance in terms of
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TABLE IX
PERFORMANCE COMPARISON ON THE CAMVID TEST SET. THE FPS OF OUR PROPOSED PCNET IS EVALUATED ON GTX TITAN X.
Model Pretrain Bui Tre Sky Car Sig Roa | Ped | Fen Pol Sid Bic | FPS | Params | MlIoU
SegNet [22] ImageNet | 88.8 | 87.3 | 924 | 82.1 | 20.5 | 97.2 | 57.1 | 493 | 27.5 | 84.4 | 30.7 46 29.5M | 55.6%
DFANet A [42] ImageNet - - - - - - - - - - - 120 7.8M 64.7%
BiSeNetl [29] ImageNet | 822 | 744 | 919 | 80.8 | 42.8 | 93.3 | 53.8 | 49.7 | 254 | 77.3 | 50.0 - 5.8M 65.6%
ICNet [41] ImageNet - - - - - - - - - - - - 26.5M 67.1%
ENet [24] Scratch 747 | 77.8 | 95.1 | 824 | 51.0 | 95.1 | 67.2 | 51.7 | 354 | 86.7 | 34.1 - 0.4M 51.3%
FSSNet [26] Scratch 84.6 | 86.0 | 943 | 84.6 | 579 | 952 | 809 | 434 | 53.6 | 929 | 674 | 179 0.2M 58.6%
SwiftNetRN-18-pyr [30] Scratch - - - - - - - - - - - - 11.8M | 65.7%
PCNet Scratch 823 | 745 | 914 | 80.5 | 448 | 95.1 | 56.8 | 40.2 | 34.0 | 81.7 | 55.3 | 62.1 1.6M 67.0%

accuracy and speed with few parameters.

b) Discussion on Knowledge Distillation: As a novel
technique to transfer knowledge from a cumbersome model
to a compact model, knowledge distillation enables the
lightweight model to improve the segmentation accuracy with-
out any other computational costs increased. Wang et. al.
[48] provide a comprehensive illustration about the technique.
Such teacher-student training mechanism helps the compact
model improve performance to some extent. For example,
KD-MobileNetV2 [50] adopts the ResNet50 as the teacher
network to distill knowledge to MobilenetV2 network. KD-
Resnet18 [49] introduces a novel structured distillation method
to transfer the knowledge to ResNet-18 model. Yang et. al.
[62] propose a specialized ensemble method to bridge the gap
existing in multiple heterogeneous data sources. The above
methods give many insights to optimize the performance
from the view of training progress. Comparing with above
two methods [49], [50], our proposed PCNet also achieves
a considerable performance without any other knowledge
involved, which demonstrates the effectiveness of PCNet. As
a result, knowledge distillation is still having great potential
when applied to the training process of lightweight network.

c) CamVid: We also evaluate the proposed PCNet on
the CamVid datatset. Note that in [22], [24], [26], they
all downsample the images to 480 x 360 for classification.
While following [29], we use the full resolution to train our
model. The results are shown in Table IX and we use the
per class accuracy, parameters and Mean IoU to compare
our model against the other state-of-the-art models. Without
being pretrained on ImageNet, PCNet is able to achieve
comparable Mean IoU. Meanwhile, the proposed network is
of less parameters than the other high performance models.
Therefore, PCNet is capable for a real-time segmentation task.

E. Qualitative Results

Fig. 8 displays the results of ESPNet [25], BiSeNetl [29]
and PCNet. There is gridding artifact existing in the prediction
of ESPNet. Even though the hierarchical feature fusion is de-
signed to alleviate the gridding problem, it can not compensate
for the side effect which is caused by a large dilation rate.
The results of BiseNetl illustrate that the segmentation results
of big objects can be further improved. More importantly,
our proposed PCNet achieves better results than the other
real-time segmentation methods. On the one hand, the PC
layer utilizes highly correlated heterogeneous convolutions to
address the gridding artifact without an over large dilation
rate. On the other hand, the PC layer is capable of generating

complementary features which provide a suitable receptive
field to increase the segmentation accuracy for big objects.
Overall, our proposed PCNet achieves better segmentation
performance while acquiring better efficiency than these state-
of-the-art real-time segmentation models.

V. CONCLUSION

In this paper, we proposed a lightweight real-time segmen-
tation network, named Parallel Complement network, which
acquires a better balance between segmentation performance
and inference speeds. The network employs a PC layer to
generate complementary features with large receptive fields,
which allows the model to learn discriminative representation
among different classes. Moreover, we designed the Parallel
Complement block integrating the PC layer in inverted resid-
ual. Extensive experiments on the CityScapes and CamVid
datasets show that our model achieves best accuracy in the case
of being trained from scratch. The results also demonstrate
that the proposed PCNet has made a satisfactory balance
between segmentation accuracy, inference speed and the model
parameters. Real-time semantic segmentation is in intense
demand for the application of autonomous driving, which
has the ability to provide reliable scene understanding and
predictions in a short time. This work contributes to understand
the scene and interact with the environment in real-time, which
is valuable to intelligent transportation applications.
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