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Abstract—Recent progress on remote sensing scene 

classification is substantial, benefiting mostly from the explosive 
development of convolutional neural networks (CNNs). However, 
different from the natural images in which the objects occupy 
most of the space, objects in remote sensing images are usually 
small and separated. Therefore, there is still a large room for 
improvement of the vanilla CNNs that extract global image-level 
features for remote sensing scene classification, ignoring local 
object-level features. In this paper, we propose a novel remote 
sensing scene classification method via enhanced feature pyramid 
network with deep semantic embedding. Our proposed 
framework extracts multi-scale multi-level features using an 
enhanced feature pyramid network (EFPN). Then, to leverage the 
complementary advantages of the multi-level and multi-scale 
features, we design a deep semantic embedding (DSE) module to 
generate discriminative features. Third, a feature fusion module, 
called two-branch deep feature fusion (TDFF), is introduced to 
aggregate the features at different levels in an effective way. Our 
method produces state-of-the-art results on two widely used 
remote sensing scene classification benchmarks, with better 
effectiveness and accuracy than the existing algorithms. Beyond 
that, we conduct an exhaustive analysis on the role of each module 
in the proposed architecture, and the experimental results further 
verify the merits of the proposed method. 
 

Index Terms—Remote sensing image, scene classification, 
convolutional neural network, feature pyramid network, deep 
semantic embedding.  

I. INTRODUCTION 

CENE classification in remote sensing (RS) images, referred 
to as the task of assigning a specific semantic label to a RS 

scene, has received wide interests in recent years, since it can be 
used in a wide range of practical applications, such as urban 
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planning, environment prospecting, natural disaster detection, 
and land-use classification [1]-[3].  

Over the past decades, an extremely rich set of remote sensing 
scene classification algorithms has been developed. Earlier 
methods were mainly based on various hand-crafted features 
and classical classifiers, such as support vector machine (SVM) 
[4], random forest [5] and boosting [6]. In general, these 
methods are divided into two categories: methods relying on 
low-level features and methods using mid-level representations. 
The representative low-level features include histogram of 
oriented gradient (HOG) [7], scale-invariant feature transform 
(SIFT) [8], local binary pattern (LBP) [9] and gray-level 
co-occurrence matrix [10], etc. They perform well on images 
with simple objects and high contrasts between objects and the 
background, but fail to depict the characteristics of complex 
remote sensing scenes. 

Compared with the low-level methods, mid-level approaches 
attempt to develop a holistic scene representation by coding the 
low-level local features. The popular mid-level methods 
include bag-of-visual-word (BoVW) [11], locality-constrained 
linear coding (LLC) [12], spatial pyramid matching (SPM) [13], 
improved fisher kernel (IFK) [14], etc. As the most popular 
mid-level approach, BoVW represents the image by using a 
histogram of visual word occurrences [11]. LLC uses the 
locality constraint to project each descriptor into its 
local-coordinate system and integrates the projected 
coordinates by max pooling to produce the final representation 
[12]. SPM builds a spatial pyramid coding of local image 
descriptors by using a sequence of increasingly coarser grids 
[13]. IFK applies Gaussian mixture model based probability 
densities to encoding local image features [14]. Although 
mid-level methods produce more impressive representations 
for remote sensing scenes, their performance essentially relies 
on low-level features. Furthermore, lacking the flexibility in 
discovering highly intricate structures, these methods also carry 
little semantic meaning [15]-[17].  

Recently, convolutional neural networks (CNNs) have 
successfully broken the limits of traditional hard-crafted 
features in a variety of computer vision tasks, such as object 
detection [18], semantic segmentation [19], edge detection [20], 
and image classification [21]. AlexNet [22], VGGNet [23], 
GoogLeNet [24] and ResNet [25] are four of the most 
commonly used backbones. For instance, in [16], an end-to-end 
learning system was proposed to learn a feature representation 
with the aid of convolution layers so as to shift the burden of 
feature determination from hand-engineering knowledge to a 
deep convolutional neural network. In [23], very deep 
convolutional networks were investigated to extract very deep 
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features for large-scale image recognition. In [25], a residual 
learning framework was presented to extract feature maps from 
input data for image recognition. In [26], an architecture using 
stacked autoencoders is proposed to extract high-level features 
for hyperspectral data classification. In [27], a pre-trained deep 
CNN model was selected as a feature extractor, and then the 
initial feature maps were fed into the CapsNet to obtain the final 
classification result. In [28], different global features using 
different CNN-based models were reported for aerial scene 
classification. In [29], an end-to-end convolution neural 
network was adopted to extract global-context features for 
remote sensing scene classification.  

Although progress has been made in feature extraction by 
CNNs, there is still a large room for improvement of the generic 
CNN models that extract global image-level features for remote 
sensing scene classification, ignoring local object-level features 
[30]-[34]. Different from the natural images in which the 
objects occupy most of the space, remote sensing scene images 
generally contain a diversity of objects which are smaller and 
more decentralized than the background, as shown in Fig. 1. 
Due to the highly complex spatial patterns and geometric 
structures in remote sensing scene images, they have larger 
intra-class variations and smaller inter-class dissimilarity. For 
instance, the left subfigure of Fig. 1 shows a ‘Commercial’ 
scene, while the right subfigure illustrates a ‘Dense Residential’ 
scene. Both of these two categories of scenes contain houses, 
roads, trees, cars, as well as other kinds of objects. The 
differences between them are merely reflected in the spatial 
layouts and the density distributions of the objects. Hence, 
accurate remote sensing scene classification needs to extract 
not only the global image-level features, but also the local 
object-level ones.  

To overcome the drawbacks of the vanilla CNNs for remote 
sensing scene classification, in this paper, we propose a new 
remote sensing scene classification method via enhanced 
feature pyramid network with deep semantic embedding. By 
introducing the enhanced feature pyramid network (EFPN), 
deep semantic embedding (DSE) module, and two-branch deep 
feature fusion (TDFF) module into the unified framework, the 
performance of remote sensing scene classification can be 
intrinsically improved.  

We summarize our contributions as follows: 
1) To address the problem that many previous CNN-based 

algorithms only capture global image-level features but 
ignore local object-level features for remote sensing scene 
classification, a novel pyramid-like network called EFPN 
is proposed to extract multi-scale multi-level features 
simultaneously.  

2) To leverage the complementary advantages of multi-scale 
multi-level features, a deep semantic embedding module, 
DSE, is proposed. By mapping the semantics of 
higher-level but coarser-resolution features into 
lower-level with finer-resolutions, both of the stronger 
semantics as well as higher spatial resolutions could be 
reserved, so that more reliable features can be generated.  

3) A two-branch deep feature fusion module named TDFF is 
proposed. With this module, the features at different 
levels can be aggregated to get complete and accurate 
descriptions of complex scenes. 

 
Fig. 1.  Remote sensing scenes contain a diversity of objects. The highly 
complex spatial patterns and geometric structures in remote sensing scene 
images bring smaller inter-class dissimilarity for instance. 

 

4) We evaluate our method and compare it against a number 
of state-of-the-art methods on two well-known 
benchmark datasets. Results show that our method 
performs favorably over all the others. Also, we provide 
a very comprehensive ablation study to demonstrate the 
effectiveness of each module in our method. 

The rest of the paper is organized as follows. Section II 
introduces the details of the proposed method. In Section III, 
the experimental results are reported. Section IV discusses the 
effectiveness of each module in the proposed method. Finally, 
conclusions are drawn in Section Ⅴ. 

II. PROPOSED METHOD 

The overall architecture of our proposed method is illustrated 
in Fig. 2. It contains four main modules. The first module is the 
enhanced feature pyramid network, which is used to produce 
initial feature maps at multi-levels and multi-scales. The second 
one, i.e., the deep semantic embedding, is designed for boosting 
the ability to generate features with rich semantics and high 
spatial resolutions. The third one is the two-branch deep feature 
fusion, in which two branches, namely the top branch and down 
branch, are designed to process and fuse different levels of 
features. The fused deep features are fed into the last module 
for RS scene classification. 

A. Enhanced Feature Pyramid Network 

Motivation. Current CNNs based methods prefer to cast the 
RS scene classification as an end-to-end problem and learn a 
global image-level representation from the raw image data [30], 
[35]-[37]. Nevertheless, the insightful consensus has pointed 
out that neurons in high layers respond to the whole image, 
while neurons in low layers are more likely to be activated by 
local patterns [38]. This manifests that it is necessary to utilize 
local object-level features extracted from low layers to further 
enhance the performance of RS scene classification.  

To this end, we propose a pyramid-like network, which can 
capture both the global image-level features and local object- 
level features for scene reasoning. Our architecture is based on 
the well-known feature pyramid network (FPN) [31], which has 
been proposed for object detection tasks. FPN can produce a 
feature pyramid at multiple scales and multiple levels. Howev- 
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Fig. 2.  The overall architecture of our proposed method. 
 

 
Fig. 3.  Illustration of our proposed enhanced feature pyramid network. 
 
er, FPN adopts nearest neighbors or bilinear interpolation to 
generate higher resolution feature maps, leading to the lack of 
high-frequency components of the higher resolution features, 
discontinuous phenomena production, as well as blurred edges 
of objects [32], which may influence the generation of precise 
feature maps for complex remote sensing scenes. This 
motivates us to utilize a more effective technique, that is, 
deconvolution, for upsampling. Compared to nearest neighbor 
or bilinear interpolation, deconvolution, as a vital tool in 
super-resolution, motion deblurring and semantic segmentation 
[33], can effectively complement the lost details caused by the 
convolutional layers in FPN and at the same time, suppress 
blurry edges or noise. We call our proposed pyramid-like 
network “enhanced feature pyramid network” (EFPN). 

Enhanced Feature Pyramid Network. Fig. 3 illustrates the 
architecture of our enhanced feature pyramid network. It 
consists of a bottom-up pathway, a top-down pathway and 
lateral connections. It is worth noting out that, in the top-down 
pathway, as shown in Fig. 3, the spatial resolution is increased 
by deconvolution. The specific description of our EFPN is 
given as follows. 

 In the bottom-up pathway, layers of the backbone which 
generate feature maps of the same resolutions are defined as a 
stage. Considering that feature maps generated by different 
stages should be multi-scale and multi-level, we choose 
ResNet34 who has five hierarchies [39] as the basic backbone. 

Let   , 1, 2, ...,,
n n

Q n NI L   denote the remote sensing 

scene image dataset for training, where N  represents the 

number of training images, 
n

I  denotes the input image, and 
n

L  

is the class label for 
n

I . For each image 
n

I , we feed it into 

ResNet34 [40], and calculate the outputs of each stage’s last 

residual block. Formally, let ,
H W C

X Y
 

  denote the input 

and output tensors of the last convolutional layer for a certain 
stage of ResNet34, where H  and W  denote the spatial 
dimensions, and C  is the number of feature maps or channels. 

Let 
K K C  

  denote a K K  convolution kernel with C  

channels. Each feature map in ,

C

p q
Y   can be calculated by  

  1 1 ,, 
2 2

,

,

, = 

K

K K p i q ji jp q

i j

Y X X      


              (1) 

where   denotes a convolution layer, ( , )p q  represents the 

location coordinate and  

      1 1 1 1

2 2 2 2
, : ,..., ,  , ...,

K

K K K K
i j i j

   
        (2) 

defines a local neighborhood. For simplicity, here we assume 
that K  is an odd number. Based on ResNet34, the outputs of 
conv2_3, conv3_4, conv4_6, conv5_3 are used as the initial 

bottom-up feature maps for 
n

I , which are denoted by 

2,3, 4, 5,i i iH W C

i
iF

 
 , where i  represents the -thi  stage 

of ResNet34.  
In the lateral connections, to reduce the channel dimensions, 

we apply a 1 1  convolutional layer to each bottom-up map 
i

F  

as below 

 
1 1

2,3, 4, , 5,
i i

L F i                       (3) 

where  
1 1

,  denotes a 1 1  convolution with parameters 

1
 . Then, based on lateral connections, more precise locations 

of features can be passed from the finer levels of the bottom-up 
maps to the top-down ones.  

In the top-down pathway, considering that the semantically 
stronger feature maps are spatially coarser, a deconvolution 
processing block is designed (dashed box in Fig. 3), in which a 
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deconvolutional layer is, in effect, followed by a batch 
normalization (BN) and a rectified linear unit (ReLU), that is 
Deconv-BN-ReLU. The deconvolution processing block aims 
to upsample the spatial resolution by a factor of 2 with a 
coarser-resolution feature map. The deconvolution process can 
be simply expressed as 

  3, 4,, 5,
i i i

iT P                            (4) 

where  ,
i
  refers to a deconvolutional layer with a kernel 

size of 3 3  and parameters 
i
 . The upsampled map is then 

merged with the corresponding bottom-up map by 
element-wise addition. Besides, to reduce the aliasing effect of 
upsampling, a 3 3  convolution is subsequently applied to the 
outputs of element-wise addition operation. Finally, the EFPN 

feature maps 2, 3, 4,
i

P i   can be generated. 

   
2 1 2

,
i i i

P T L 


                            (5) 

where   represents the element-wise addition operation and 

 
2 2

,  denotes a 3 3  convolution with parameters 
2

 . 

Note that in the top-down pathway, the coarsest resolution map 

5
P  is directly generated from 5

F  through 1 1  convolution 

operation. The final outputs of EFPN are referred to as 

 
2 3 4 5
, , ,P P P P , which correspond to  

2 3 4 5
, , ,F F F F . 

B. Deep Semantic Embedding 

Motivation. Due to repeated downsampling and pooling 
operations in the bottom-up pathway, the resolutions of top 
feature maps are reduced. The loss of spatial details makes 
them unable to extract clear boundaries of small-scale objects. 
Our framework aggregates semantics of features by 
incorporating high responses of bottom features and strong 
activations of top features based on the fact that high responses 
to instances is helpful for accurately localizing objects and 
strong activations to semantics is an indicator for exactly 
understanding scenes. For this reason, we build a 
light-weighted and simple module, called deep semantic 
embedding (DSE), to aggregate features from different levels. 
Through this module, spatial information can be directly 
propagated into the target map without crossing dozens of 
layers. By integrating the fine details of lower-level but 
finer-resolution features with the semantics of higher-level but 
coarser-resolution features, DSE can make full use of the 
complementary information and learn more reliable features. 

 

Fig. 4.  Illustration of our proposed deep semantic embedding module. 

Deep Semantic Embedding. Fig. 4 shows the architecture 
of DSE. The two-stream inputs of a DSE module are 

   
1

, , 3, 5
j j

P P P j


  , where j j jH W C

j
P

 

   corresponds to 

the -thj  level feature maps of EFPN. First, to capture more 

accurate representations, we apply two convolutional layers, 
with the kernel sizes of 3 3  and 1 1  respectively, to 
adjacent-level features for cross-channel information 
interaction and integration. Then, by applying a deconvolution 
operation, we upsample the higher-level feature maps to the 
scale of lower-level ones. The process can be represented by 

   1 12 2,
j j

S P 
 
                              (6) 

where  
2 2

, denotes the 3 3  convolution with 

parameters 
2

 .   

        1 1, ,
j j jS P                          (7) 

where  
1 1

, denotes the 1 1  convolution with parameters 

1
  and  ,

j
  refers to the deconvolutional layer in DSE.  

Subsequently, we embed the strong semantic information of 
the upsampled features into the lower-level features by using 
element-wise addition. Similarly, to alleviate the aliasing effect, 
a 3 3  convolution is applied to the merged maps to get the 

final feature maps 
1
, {3,5}

j
D j


  of DSE. The final outputs of 

DSE can be computed by 

            1 3 1 3
,

j j j
D S S 

 
                          (8) 

where  
3 3

,  denotes the 3 3  convolution with 

parameters 
3

 . 

C. Two-branch Deep Feature Fusion 

Motivation. In the generic FPN, a proposal on a specific 
level is chosen for recognition according to the size of objects, 
since object detection only needs to assign a specific category 
to an individual object. Albeit simple and efficient, it cannot 
meet the demand of RS scene classification, because we infer 
the scene label via recognizing the combined characteristics of 
multiple discriminative objects rather than a single object.  

Our motivation stems from the fact that, when manually 
classifying RS scene images, specialists always set the 
semantic labels based on the global characteristics of scenes as 
well as the local features of objects [2], [18]. Therefore, we 
believe that global image-level and local object-level features 
are two important representations for distinguishing RS scenes. 
To be specific, the higher-level feature maps generated by 
global receptive fields give the strongly semantic features. 
Making lower-level features access them will better absorb 
meaningful contextual information for prediction. On the 
contrary, the lower-level feature maps generated by local 
receptive fields reflect refined details for locating objects.  Such 
features can help higher-level features to complement their loss 
of spatial information, which is beneficial for classification. 
Therefore, based on the above analysis, we present a 
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two-branch deep feature fusion module to fuse the features at 
different levels in a more effective way. 

Two-branch Deep Feature Fusion. This architecture 
consists of two branches to deal with the higher-level and 
lower-level feature maps, respectively. To process various 
levels and at the same time, enlarge the receptive fields so as to 
incorporate multi-level contextual information without 
increasing computational cost, we advocate the use of the 
combination of convolution and atrous convolution. Thereinto, 
atrous convolution, also known as dilated convolution, has 
been verified to be a powerful tool for dense prediction tasks  
[41], [42]. In addition, to avoid network degradation that may 
be caused by excessive depth, we also introduce skip 
connection into the architecture. Further, the last layers in the 
architecture are two global average pooling (GAP) layers, 
which are used to generate image-level representation features. 
A high-level illustration of the presented two-branch deep 
feature fusion module is shown in Fig. 5. 

Top Branch: This branch receives the higher-level feature 

maps 
4

D  produced by DSE. It is equipped with two residual 

blocks and one global average pooling layer. Table I shows the 
details of the residual blocks in this top branch, in which the 
1 1 , 3 3  and 3 3  convolutional layers are arranged orderly 
to learn deep feature efficiently. Note that each layer is also 
followed by a batch normalize layer and a ReLU layer for 
nonlinear transformation, and the outputs of internal paths for a 
residual block are combined by element-wise addition. 

The output of one residual block can be represented by 

         
4 4

, ,
i

Y X X                     (9) 

 

 
Fig. 5. Illustration of our proposed two-branch deep feature fusion module. 

TABLE I 
 DETAILS OF THE RESIDUAL BLOCKS IN THE TOP BRANCH. 

Residual Blocks Layer 
Kernel_ 

Size 
Padding 

In_ 
Channels 

Out_ 
Channels 

Main Pipeline 

Conv1 1×1 0 256 64 

Conv2 3×3 1 64 64 

Conv3 3×3 1 64 256 

Secondary Pipeline Conv4 1×1 0 256 256 

where 

      
3 2 1 1 2 3

, , , ,
i

X X                (10) 

where X  and Y  denote the input and output of the residual 

block, respectively. 
1
 , 

2
 , 

3
  and 

4
  denote the 1 1 , 

3 3 , 3 3  and 1 1  convolutional layers in TDFF. 
1

 , 
2

 ,

3
  and 

4
  are the corresponding parameters.   represents 

the ReLU function, as shown in Eq. 11. In Eq. 9, the BN and 
ReLU are omitted for simplifying notations. 

   max , 0x x                                (11) 

We can now write the outputs of the two residual blocks as 

      1 1 1 1 1 1 1 1 1

4 4 4 3 2 1 4 1 2 3
, , , ,

t
Y D D            (12) 

      2 2 1 2 2 2 2 1 2 2 2

4 4 3 2 1 1 2 3
, , , ,

t t t
Y Y Y          (13) 

where 
1

t
Y  and 

2

t
Y  denote the outputs of the first and second 

residual blocks in the top branch, respectively. Note that, in Eq. 

12, the input is the higher-level feature maps 
4

D  and in Eq. 13, 

the input is the output of the first residual block 
1

t
Y . 

After two residual blocks, GAP [43] is introduced to 
strengthen the correspondences between categories and feature 
maps, and generate deep features. Ultimately, the output 
features of the top branch can be described as 

,

1 1

2 1
( )

H W
l

t i j

i j

t
Branch Y Y

H W


 

 

                   (14) 

where   denotes the global average pooling operation and 
l H WY   is a feature map with height H  and width W  for 

the -thl  channel of the input 
2

t
Y . 

Down Branch: Compared with the top branch, the down 
branch replaces the convolutional layers in each residual block 
with atrous convolutional ones, because of the different scales 
of the inputs. By virtue of atrous convolution, our down branch 
is able to enlarge the receptive fields, thus capturing objects or 
useful image contextual information for classifying complex 
RS scenes. The information of residual blocks in the down 
branch is given in Table II.  

Compared with standard convolution, atrous convolution can 
enlarge the kernel via integrating holes between pixels in 
kernels [44]. In the down branch, we utilize atrous convolution 
to increase the receptive field of the output units without increa 
sing the kernel size. Generally, an atrous convolution with a ke- 

TABLE II 
DETAILS OF THE ATROUS RESIDUAL BLOCKS IN THE DOWN 

BRANCH. 

Atrous 
Residual 
Blocks 

Layer 
Kernel_ 

Size 
Dilation 

In_ 
Channels 

Out_ 
Channels 

Main 
Pipeline 

AtrousConv1 1×1 1 256 64 

AtrousConv2 3×3 3 64 64 

AtrousConv3 3×3 5 64 256 

Secondary 
Pipeline 

AtrousConv4 1×1 1 256 256 
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rnel size K K  and atrous rate r  has a receptive filed of 

   1 1 1M K r K rK r                      (15) 

As a result, the output of M M  convolution, which can be 
calculated by Eq. 1, may be used as the result of K K  atrous 

convolution. In detail, suppose ,
H W C

U V
 

  are the input 

and output tensors of an atrous convolutional layer, where H  
and W  denote the spatial dimensions, and C  is the number of 

channels. Each feature map in 
,

C

p q
V   with the location 

coordinate ( , )p q  can be computed by 

1 1 ,, 
2 2

,

,



M

M M p i q ji jp q

i j

V U     


                         (16) 

where  

      1 1 1 1

2 2 2 2
, : , ..., ,  , ...,

M

M M M M
i j i j

   
        (17) 

denotes a local neighborhood and   are the parameters of 

atrous convolution. 
Based on atrous convolution, the output of one residual block 

in the down branch can be calculated by 

     
4 4

, ,
i

V U U                       (18) 

where 

      
3 2 1 1 2 3

, , , ,
i

U U                  (19)  

where U  and V  denote the input and output of the residual 

block in the down branch, respectively. 
1
 , 

2
 , 

3
  and 

4
  

denote the 1 1 , 3 3 , 3 3  and 1 1  atrous convolutional 

layers in TDFF. 
1
 , 

2
 , 

3
  and 

4
  are the corresponding 

parameters.  
  Similarly, we can obtain the outputs of the two residual 

blocks as 

      1 1 1 1 1 1 1 1 1

4 2 4 3 2 1 2 1 2 3
, , , ,

d
V D D             (20) 

      2 2 1 2 2 2 2 1 2 2 2

4 4 3 2 1 1 2 3
, , , ,

d d d
V V V           (21) 

where 
1

d
V  and 

2

d
V  denote the outputs of the first and second 

residual blocks in the down branch, respectively. Note that, in 

Eq. 20, the input is the lower-level feature maps 
2

D  and in Eq. 

21, the input is the output of the first residual block 
1

d
V .  

Subsequently, the global average pooling is applied to 
2

d
V  to 

acquire the deep features for the down branch. As a result, the 
output features of the down branch can be described as  

,

1 1

2 1
( )

H W
l

d i j

i j

d
Branch V V

H W


 

 

                   (22) 

where 
l H W

V
  is a feature map with height H  and width  

W  for the -thl  channel of the input 
2

d
V . 

Ultimately, TDFF with atrous convolutions effectively 

captures two-branch deep features, i.e., 
t

Branch  and 
d

Branch . 

The serial feature fusion scheme is adopted to concatenate these 
two different types of features together, so as to obtain more 
significant and informative features to represent the RS scene 
images.  

D. Scene Classification 

The fused deep features are subsequently fed into the next 
scene classification module. This module, composed of the 
fully connected layer and softmax layer, is utilized to predict 
the class label for the input image.  

Suppose the output of the fully connected layer is 

 , 1, 2, ...,
i

Z z i m  , where m  is the total number of class 

labels. The softmax function is defined as: 

 

 
1

exp

exp

i

i m

jj

z

z







                                 (23) 

 
1 2

max , , ...,
m

                                (24) 

where 
i
  represents the probability that the input image 

belongs to the -thi  class. The final predicted label is determined 
by  . Besides, during the process of classification, our loss 
function is the cross-entropy loss [45], which is given by  

1 1

1
{ }log

N m
n

j
n j

Loss y j
N


 

  1                   (25) 

where y  is the real scene label, m  is the number of scene 

categories, N  denotes the size of mini-batch, and { }1  

represents an indicator function. Mathematically, if ny  is equal 

to i , { } 1ny i 1 , else { } 0ny i 1 . 

The proposed method is summarized in Algorithm 1. 

III. EXPERIMENTS 

In this section, we evaluate our proposed method on two 
publicly available datasets for remote sensing scene 
classification. Firstly, the datasets used in experiments are 
described. Secondly, we give an introduction of the 
experimental setup. Finally, the proposed architecture is 
compared with a number of state-of-the-art algorithms. 

A. Datasets 

We test the proposed method on two different remote sensing 
scene datasets. One is the well-known UCMerced Land-Use 
dataset (referred to as UCM) [46], and the other is the Aerial 
Image dataset (referred to as AID) [28]. 

UCM: This dataset has 2100 remote sensing scene images, 
each of which is categorized into a certain class. These scene 
images with the RGB color space, which originate from 20 
diverse regions, are all provided by United States Geological 
Survey (USGS) National Map. There are 21 scene labels in 
total, including Agricultural, Airplane, Baseball Diamond, etc. 
Some example images of all the categories in UCM are 
illustrated in Fig. 6. Each class consists of 100 images with the 
size of 256 256 , and spatial resolution of 30 cm per pixel. 

AID: This dataset is from Wuhan University, which is also 
available online. All images are categorized into 30 classes: 
Airport, BareLand, Baseball Field, etc. A total of 10000 images 
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are in the dataset; however, the number of images in each 
category varies from 220 to 420. Table III illustrates the 
detailed information of AID, and some example images of all 
categories are shown in Fig. 7. Each image has the size of 
600 600 , but the spatial resolution ranges from 1m to 8m. 

B. Experimental Setup 

 

Algorithm 1: The Proposed Method 

Step 1 Enhanced Feature Pyramid Network 
Input: Full Image I 
Output: Enhanced Feature Map P 

1: Input I to the pre-trained ResNet34, the convolutional 
feature maps of different stages are reserved as F2, F3, 
F4, F5. 

2:  P5 ≡ L5 ←  1 5 1
,F   

3:  for i = 4; i ≥ 2; i ← i-1 do 
4:      Li     ←  1 1

,
i

F   
5:      Ti+1  ←  

1 1
,

i i
P 
 

  

6:      Pi     ← 
 

2 1 2
,

i i
T L 

  

7:  end for 
Step 2 Deep Semantic Embedding 
Input: Enhanced Feature Map P 
Output: Deep Semantic Embedding Feature Map D 

8:  for j = 3; j ≤ 5; j ← j + 2 do 

9:      Sj-1  ←  12 2,
j

P 


  

10:      Sj   ←    1 1
, ,

j jP     

11:      Dj-1 ←  3 1 3
,

j j
S S 


  

12:  end for 
Step 3 Two-branch Deep Feature Fusion 
Input: Deep Semantic Embedding Feature Map D 
Output: Fused Deep Feature Iout 
13:  for k = 1; k ≤ 2; k ← k + 1 do  

14:      if k == 2 do D4 = 1

t
Y , D2 = 1

d
V  

15:     k

t
Y ←       4 4 4 3 2 1 4 1 2 3

, , , ,
k k k k k k k k

D D       
 

16:     k

d
V ←       4 2 4 3 2 1 2 1 2 3

, , , ,
k k k k k k k k

D D         

17:  end for    

18:  Brancht ← 2
( )

t
Y

 19:  Branchd ← 2
( )

d
V

 20: Concatenate Brancht and Branchd in channel dimension 
to form the final fused deep feature Iout 

Step 4 Scene Classification 
Input: Fused Deep Feature Iout 
Output: Predicted Label L 
21: Calculate the output of the fully connected layer Z 
22:  for i = 1; i ≤ m; i ← i + 1 do  

23:  
i
 ← 

 

 
1

exp

exp

i

m

jj

z

z


 
24:  end for    
25:   ←  1 2

max , , ...,
m

  
 

26: The final predicted label L is determined by  . 

Training/Testing. To make a comprehensive evaluation, the 
training-testing ratios for UCM are set to 80%-20% and 
50%-50%, and the training-testing ratios for AID are set to 
50%-50 and 20%-80%. We randomly select the samples from 
each scene category for training and leave the remaining 
images for testing. All images are resized to 224 224 . 
Besides, to enhance the generalization ability of our method, 
some data augmentation techniques, including random 
horizontal flipping and random rotation, are adopted. 

 
Fig. 6.  Example images of UCM dataset. 

TABLE III  
THE NUMBER OF IMAGES FOR EACH CLASS OF AID DATASET. 

Class Number Class Number Class Number 

Airport 360 Farmland 370 Port 380 

Bare land 310 Forest 250 
Railway 
station 

260 

Baseball 
field 

220 Industrial 390 Resort 290 

Beach 400 Meadow 280 River 410 

Bridge 360 
Medium 
residential 

290 School 300 

Center 260 Mountain 340 
Sparse 
residential 

300 

Church 240 Park 350 Square 330 

Commercial 350 Parking 390 Stadium 290 

Dense 
residential 

410 Playground 370 
Storage 
tanks 

360 

Desert 300 Pond 420 Viaduct 420 

 
Fig. 7. Example images of AID dataset. 
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Implementation Details. The proposed method is 
constructed based on the Pytorch library on Google 
Colaboratory, which is a cloud platform with a NVIDIA Tesla 
T4 GPU and 16G memory. Parameters of the backbone 
(ResNet34) are initialized from the official model pre-trained 
via ImageNet. In our framework, we discard the last global 
average pooling and fully connected layers of ResNet34 and 
introduce several lateral connections and DSE. Among them, 
the weights of 1 1  convolutional layers are initialized as 0.1, 
and the biases are initialized as 0. The kernel size, stride, 
padding and out padding of the deconvolutional layers are set to 
3, 2, 1 and 1, respectively. In TDFF, the dilation_rates of the 
atrous convolutional layers in a block are set to 1, 3, and 5 
orderly and the other parameters are initialized as the PyTorch 
default settings. We use the stochastic gradient descent (SGD) 
approach to optimize the proposed model. The initial learning 
rate is set to 1e-2 and is divided by 10 every 80 epochs, while 
the momentum is set to 0.9. The minibatch of SGD depends on 
the running data. In the testing phase, the batch sizes are 10 and 
36 for the UCM and AID datasets, respectively, while in the 
training phase, the batch sizes of both datasets are set to 72. All 
images are resized to 224×224.  

Evaluation Metrics. Two widely used metrics, i.e., overall 
accuracy and confusion matrix [47]-[49], are selected here to 
evaluate the performance of our proposed algorithm. Overall 
accuracy is the proportion of the number of correct predictions 
to the total number of samples, reflecting the overall 
classification performance of a classification method. 
Furthermore, to analyze the detailed classification errors 
between different classes, a specific table layout named 
confusion matrix is used, each column/row of which denotes 
the instances in a predicted/actual class. It is worth pointing out 
that, to achieve reasonable results of evaluation metrics as well 
as reduce the influence of randomness, all experiments are 
repeated ten times. 

C. Comparison with State-of-the-arts 

The proposed method, called EFPN-DSE-TDFF, is 
compared with a set of state-of-the-art algorithms, including 
SCK [11], BoVW [28], Dense-SIFT [50], IFK [28], 
salM3LBP-CLM [4], CaffeNet [28], GoogLeNet [28], 
VGG-VD-16 [28], TEX-Net-LF [51], DCA with concatenation 
[52], CaffeNet-DCF [53], VGG-VD16-DCF [53], CNN-NN 
[36], AlexNet+VGG16 [47], VGG-16-CapsNet [27], Fusion by 
addition [52], and Fusion by concatenation [52]. 

Thereinto, SCK, BoVW, Dense-SIFT, IFK and 
salM3LBP-CLM are the remote sensing scene classification 
methods based on midlevel scene features, while the other 
comparing approaches are based on high-level deep features. 
For those models with available code, we train and test those 
models using their default settings. For those models without 
released code, we used their results proposed in their original 
works. Also, for a fair comparison, the same ratios were applied 
in the following experiments according to the experimental 
settings in the related works. For the UCM dataset, the ratios of 
the number of the training set are set to 80% and 50%, 
respectively, while for the AID dataset, the ratios are fixed at 50% 
and 20%, respectively. 
1) Experimental results on UCM dataset 

In this section, we compare our proposed method with a 
number of state-of-the-arts on the widely used UCM dataset. 
The experimental results and analysis consists of four parts: the 
overall accuracy results under the training ratios of 80% and 
50%, and the confusion matrix results under the training ratios 
of 80% and 50%.  

We randomly select the fixed percent of the images to 
construct the training set by repeating ten times on the UCM 
dataset, and then compute the means and standard deviations of 
overall accuracy. The results are given in Table IV. From this 
table, we can find that, among the four kinds of midlevel 
methods, i.e., SCK, BoVW, Dense-SIFT, and salM3LBP-CLM, 
salM3LBP-CLM performs much better than others. However, 
its performance is still inferior to most of the other high-level 
deep feature methods shown in Table IV. This indicates that the 
midlevel methods have limited abilities for RS scene 
classification. On the contrary, benefiting from the superiority 
of deep neural networks, significant improvement of scene 
classification performance has been made by deep feature 
methods for remote sensing images.  

Comparing the results of various deep feature methods, our 
method, EFPN-DSE-TDFF, achieves the best performance 
with the ratios of 80% and 50%. VGG-16-CapsNet and 
AlexNet+VGG16 obtain the 2nd best results with the training 
ratio of 80%, while under the training ratio of 50%, 
VGG-16-CapsNet, TEX-Net-LF, VGG-VD16-DCF, and 
CaffeNet-DCF achieve competitive performances. In addition, 
our method also has much smaller standard deviations with 
both ratios.  

All the above phenomenon indicates that our proposed 
strategy of combining enhanced feature pyramid network, deep 
semantic embedding, and two-branch deep feature fusion in a 
unified framework is effective to improve the classification 
performance for RS scenes. 

Besides the overall accuracy, we also compute the confusion 
matrix for the proposed method. With different fixed training 
ratios, we choose to show the best results. Fig. 8 shows the 
confusion matrix with the training ratio of 80%. From Fig. 8, 
we can see that most scene categories obtain the classification 
accuracy equal to 1. Categories with classification accuracy lo- 

 
TABLE IV 

OVERALL ACCURACY (%) OF DIFFERENT METHODS WITH THE 
TRAINING RATIOS OF 80% AND 50% ON UCM DATASET 

Methods 
Overall Accuracy 

80% Training Ratio 50% Training Ratio 

SCK [11] 72.52 / 

BoVW [28] 74.12 ± 3.30 71.90 ± 0.79 

Dense-SIFT [50] 81.67 ± 1.23 / 

salM3LBP-CLM [4] 95.75 ± 0.80 94.21 ± 0.75 

CaffeNet [28] 95.02 ± 0.81 93.78 ± 0.67 

GoogLeNet [28] 94.31 ± 0.89 92.70 ± 0.60 

VGG-VD-16 [28] 95.21 ± 1.20 94.14 ± 0.69 

TEX-Net-LF [51] 96.62 ± 0.49 95.89 ± 0.37 

CNN-NN [36] 97.19 / 

CaffeNet-DCF [53] 96.79 ± 0.66 95.26 ± 0.50 

VGG-VD16-DCF [53] 97.10 ± 0.85 95.42 ± 0.71 

AlexNet+VGG16 [47] 98.81 ± 0.38 / 

VGG-16-CapsNet [27] 98.81 ± 0.12 95.33 ± 0.18 

EFPN-DSE-TDFF (Ours) 99.14 ± 0.22 96.19 ± 0.13 
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Fig. 8.  Confusion matrix of the proposed method under the training ratio of 80% 
on UCM dataset. 

wer than 1 only includes ‘Medium Residential’ (0.95) and 
‘Storage Tanks’ (0.95). As is known, for the UCM dataset, the 
most confused scene types are ‘Dense Residential’, ‘Medium 
Residential’, and ‘Sparse Residential’, due to their similar 
spatial patterns and the common objects shared by them such as 
buildings and trees. In our confusion matrix, 5% images from 
‘Medium Residential’ are mistakenly classified as ‘Dense 
Residential’. Besides, 5% images from ‘Storage Tanks’ are 
mistakenly classified as ‘Parking Lot’, which may attribute to 
their similar land cover types. 

Fig. 9 presents the confusion matrix with the training ratio of 
50%. From this confusion matrix, we can observe that 15 of the 
21 categories achieve the classification accuracy over 95%. 
Apart from these, the scene categories with the classification 
accuracy rate of more than 90% include ‘Building’ (0.90), 
‘Golf Course’ (0.92), ‘Medium Residential’ (0.92), ‘Overpass’ 
(0.92), and ‘Storage Tanks’ (0.92). The most obvious confusion 
is still between ‘Dense Residential’ and ‘Medium Residential’. 
As can be seen, 10% images from ‘Dense Residential’ are 
mistakenly classified as ‘Medium Residential’, while 8% 
images from ‘Medium Residential’ are classified as ‘Dense 
Residential’ by mistake. Besides, 6% images from ‘Overpass’, 
are mistakenly classified as ‘Intersection’, due to their similar 
appearances. And 6% images from ‘Golf Course’, are 
mistakenly classified as ‘River’, for both of them contains large 
areas of trees. 

2) Experimental results on AID dataset 
In this experiment, we use the publicly available remote 

sensing scene dataset, i.e., AID dataset to evaluate the 
effectiveness of the proposed method.  

The comparative results of our method against a number of 
state-of-the-art scene classification algorithms over the AID 
30-class scenes are shown in Table V. The overall accuracy of 
midlevel methods, i.e., BoVW, IFK, and salM3LBP-CLM are 
67.65%, 77.33%, and 89.76% respectively under the training 
ratio of 50%, and 61.40%, 70.60%, 86.92% respectively with 

 
Fig. 9.  Confusion matrix of the proposed method under the training ratio of 50% 
on UCM dataset. 

TABLE V 
OVERALL ACCURACY (%) OF DIFFERENT METHODS WITH THE 

TRAINING RATIOS OF 50% AND 20% ON AID DATASET 

Methods 
Overall Accuracy 

50% Training Ratio 20% Training Ratio 

BoVW [28] 67.65 ± 0.49 61.40 ± 0.41 

IFK [28] 77.33 ± 0.37 70.60 ± 0.42 

salM3LBP-CLM [4] 89.76 ± 0.45 86.92 ± 0.35 

CaffeNet [28] 89.53 ± 0.31 86.86 ± 0.47 

GoogLeNet [28] 86.39 ± 0.55 83.44 ± 0.40 

VGG-VD-16 [28] 89.64 ± 0.36 86.59 ± 0.29 

DCA with concatenation 
[52] 

89.71 ± 0.33 / 

Fusion by addition [52] 91.87 ± 0.36 / 

Fusion by concatenation 
[52] 

91.86 ± 0.28 / 

TEX-Net-LF [51] 92.96 ± 0.18 90.87 ± 0.11 

VGG16+CapsNet [27] 94.74 ± 0.17 91.63 ± 0.19 

EFPN-DSE-TDFF (Ours) 94.50 ± 0.30 94.02 ± 0.21 

 

the training ratio of 20%. Compared with the midlevel methods, 
the methods based on deep features achieve far better 
performance, which indicates that the deep features are more 
informative and discriminative than the hand-crafted 
descriptors. 

Moreover, among all the deep feature methods, our method, 
i.e., EFPN-DSE-TDFF, and VGG16+CapsNet achieve 
comparable results (94.50% and 94.74%) with the training ratio 
of 50%. When the training ratio drops to 20%, our method still 
performs better (94.03%), while the overall accuracy of 
VGG16+CapsNet drops to 91.63%. It indicates that the strong 
discriminative power of our EFPN-DSE-TDFF compared to 
VGG16+CapsNet, providing a more robust representation for 
remote sensing scenes from AID. 

Due to limited space, we only report the confusion matrixes 
of our method under the training ratios of 50% and 20% in Figs. 
10 and 11, respectively. As shown in Fig. 10, 25 of the 30 
categories achieve the classification accuracy of more than 
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90%. Categories with classification accuracy lower than 0.9 
include ‘Center’ (0.88), ‘Industrial’ (0.88), ‘Resort’ (0.69), 
‘School’ (0.79), and ‘Square’ (0.89). Over the AID dataset, the 
major confusions occur between ‘Resort’ and ‘Park’, ‘School’ 
and ‘Commercial’, ‘Stadium’ and ‘Playground’, or ‘BareLand’ 
and ‘Desert’. These results are explained by the fact that these 
categories have similar ground object distributions or 
geometrical structures. However, some types with large inter- 
class similarity, such as ‘Medium Residential’ (0.93) and 
‘Sparse Residential’ (0.99), can be accurately classified. In 
addition, ‘Bridge’, ‘Port’, and ‘River’, which have the 
analogous objects and image textures, also achieve high overall 
accuracy of 0.97, 0.96, and 1.00. 

Fig. 11 demonstrates the confusion matrix with the training 
ratio of 20%, in which the row reflects the producer’s accuracy, 
while the column reflects the user’s accuracy. From this figure, 
we can see that most of the classes obtain a satisfactory 
classification result over 90%, and only five categories 
including ‘Center’, ‘Park’, ‘Resort’, ‘School’, ‘Square’ have a 
bit severe misclassification. Although the number of the 
training images has decreased dramatically, some categories 
that are easily confused can be still effectively classified, such 
as ‘Medium Residential’ (0.92) and ‘Sparse Residential’ (0.99), 
or ‘Bridge’ (0.98), ‘Port’ (0.98), and ‘River’ (0.99). The reason 
why our proposed method obtains effective scene classification 
results can attribute to different modules including enhanced 
feature pyramid network, deep semantic embedding, 
two-branch deep feature fusion in the unified framework. 

From the above experimental results, we can summarize 
some interesting observations as follows. By comparing the 
proposed method with different scene classification algorithms, 
it can be seen that midlevel methods achieve worse 
performances, while deep feature methods perform better on all 
the datasets. Also, among the deep feature methods, our 
proposed framework has better performance, indicating the 
progress in RS scene classification. 

 
Fig. 10.  Confusion matrix of the proposed method under the training ratio of 50% 
on AID dataset. 

 
Fig. 11.  Confusion matrix of the proposed method under the training ratio of 20% 
on AID dataset. 

IV. DISCUSSION 

To comprehensive evaluate the effectiveness of our proposed 
method, various ablation experiments are performed by using 
different connection patterns or different design options. 

A. Impact of Data Augmentation 

Data augmentation has been proven to be very useful in 
many learning based vision tasks [45]. Therefore, in our 
experiments, we also employ data augmentation to generate 
enhanced data to train an effective model. The input images are 
augmented by randomly horizontal flipping and random 
rotation during training, which results in an augmented image 
set richer than the original one. We compare the methods with 
and without data augmentation so as to verify the effectiveness 
of data augmentation. The comparison results are shown in 
Table VI. In this table, ResNet34+ represents our proposed 
method that adopts data augmentation, while ResNet34* 
represents the corresponding method without data 
augmentation. From experimental results, we can find that 
adopting data augmentation improves the overall accuracy by 
more than 0.6%. 

B. Scalability 

There are two popular backbone networks (i.e., VGG-VD-16 
and ResNet34) that are utilized in scene classification. To 
further validate the scalability of our proposed method, we 
conduct comparison experiments using different backbones in 
Table VI. For both of backbones, we choose the last outputs of 
each stage (except stage 1) as the initial inputs of top-down 
pathway. We keep all other settings the same. The comparison 
results are shown in Table VI. As can be seen, with the same 
training set, the performance of our ResNet34 based 
architectures (ResNet34+) are much better than that of the 
VGG-VD-16 based architecture. 
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TABLE VI 
ABLATION ANALYSIS ON DATA AUGMENTATION AND DIFFERENT 

BACKBONES 

Backbone UCM 80% UCM 50% AID 50% AID 20% 

ResNet34+ 99.14 96.19 94.50 94.02 

ResNet34* 98.48 95.37 93.75 92.33 

VGG-VD-16 95.71 94.76 90.24 87.62 

 

TABLE VII 
OVERALL ACCURACY (%) OF DIFFERENT ARCHITECTURES WITH 

THE TRAINING RATIOS OF 80% AND 50% ON UCM DATASET. 

Scheme Architecture 
Overall Accuracy 

80%  
Training Ratio 

50%  
Training Ratio 

1 Without EFPN 91.38 ± 0.53 89.81 ± 0.39 

2 Without DSE 96.36 ± 0.80 94.68 ± 0.52 

3 Without TDFF 97.02 ± 0.54 95.91 ± 0.33 

4 EFPN-DSE-TDFF (Ours) 99.14 ± 0.22 96.19 ± 0.13 
 

C. Effects of Different Modules 

Our framework contains three main modules, i.e., EFPN, 
DSE and TDFF. To analyze the importance of each main 
module, a series of ablation experiments are conducted with 
different architecture designs. For each architecture, we adopt 
the controlling method that only omits one module at a time. 
The concise illustration of various architectures is shown in Fig. 
12, and Fig. 12 (a), (b) and (c) represent the architectures in 
which EFPN, DSE and TDFF are omitted, respectively. 

For fair comparisons, all the results are tested on the UCM 
dataset. The overall accuracy of different architectures under 
the training ratios of 80% and 50% on UCM dataset is listed in 
Table VII, and the following can be seen from the results. 

Effects of EFPN: Results from Scheme 1 are the worst, 
which is because the EFPN is omitted from this architecture, 

while the function of EFPN is to initially strengthen semantics 
of all level feature maps. Compared with Scheme 1, since 
Schemes 2, 3 and 4 contain the EFPN, the overall accuracy of 
them increases by 4.98%, 5.64%, 7.76% under 80% training 
ratio respectively, and 4.87%, 6.1%, 6.38% under 50% training 
ratio respectively. These results demonstrate that the EFPN we 
address is indeed beneficial for RS scene classification. 

Effects of DSE: Scheme 2 directly links the TDFF to the 
outputs of EFPN without deep semantic embedding. Compared 
with it, by using DSE, our method, i.e., Scheme 4 achieve better 
performance, with an increase in overall accuracy of 2.78% and 
1.51% under 80% and 50% training ratios, respectively. This 
phenomenon strongly validates the effectiveness and 
superiority of our proposed DSE. 

Effects of TDFF: In Scheme 3, we delete the TDFF and 
replace it with a simple global average pooling layer, GAP for 
the subsequent scene classification. From Table VII, one can 
find that despite better performance is obtained by Scheme 3 
when comparing with Schemes 1 and 2, there are still slight 
decreases when comparing with Scheme 4. In detail, there are 
slight decreases in overall accuracy of 2.12% and 0.28% under 
80% and 50% training ratios. 

Besides overall accuracy, we also report the per-class 
classification accuracies of these four different architectures in 
Fig. 13. As can be seen from Fig. 13 (a) and (b), no matter 
whether the training ratio is 80% or 50%, our method achieves 
the best performance, which indicates the effectiveness and 
superiority of our proposed architecture. 

Moreover, we report the accuracy comparison achieved after 
convergence of different architectures on UCM dataset, as 
shown in Fig. 14. As we can see, the accuracy of our method is 
much more stable and higher than those of other three 
architectures under the training ratios of 80% as well as 50%. 
 

 
Fig. 12.  Concise illustration of various architectures. (a) Without EFPN. (b) Without DSE. (c) Without TDFF. 

           
(a)                                                                                                                     (b) 

Fig. 13. Per-class classification performance of different architectures under the training ratios of 80% and 50% on UCM dataset. (a) Training ratio = 80%.  (b) 
Training ratio = 50%. 
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(a)                                                                                                                   (b) 

Fig. 14. Comparison of accuracy achieved after convergence of different architectures under the training ratios of 80% and 50% on UCM dataset. (a) Training ratio 
= 80%.  (b) Training ratio = 50%. 

 

TABLE VIII 
EVALUATION ON THE EFFECTS OF UPSAMPLING STRATEGIES ON 

UCM DATASET (80% TRAINING RATION) 

Mode 
Top-Down 
Pathway 

Deep Semantic 
Embedding 

Overall 
Accuracy (%) 

1 Nearest Nearest 96.35 ± 0.67 

2 Nearest Bilinear 96.83 ± 0.70 

3 Nearest Deconv 97.02 ± 0.52 

4 Bilinear Nearest 97.88 ± 0.36 

5 Bilinear Bilinear 98.19 ± 0.61 

6 Bilinear Deconv 98.33 ± 0.36 

7 Deconv Nearest 98.57 ± 0.26 

8 Deconv Bilinear 98.83 ± 0.17 

9 Deconv Deconv 99.14 ± 0.22 

D. Different Upsampling Strategies 

In our framework, we propose to use the deconvolution 
technique (referred to as Deconv) instead of the commonly 
used upsampling strategies, such as nearest neighbor (referred 
to as Nearest) and bilinear interpolation (referred to as Bilinear). 
To verify this improvement, we do the experiments 
correspondingly. Specifically, we change the up-sampling 
methods in either the top-down pathway or deep semantic 
embedding module. For simplicity, here we merely 
demonstrate the experimental results using the UCM dataset 
with the 80% training ratio. 

Table VIII reveals the details of various combinations of 
upsampling techniques used in the top-down pathway and deep 
semantic embedding module. There are totally nine different 
modes, and for instance, the first mode means that both of the 

top-down pathway and the deep semantic embedding module 
utilize the nearest neighbor method for upsampling. 

We first take Modes 1, 4 and 7 for example to illustrate the 
importance of upsampling strategies in the top-down pathway. 
By comparing Modes 1, 4 and 7, in which all the deep semantic 
embedding modules use ‘Nearest’ for upsampling, while the 
upsampling schemes are set to ‘Nearest’, ‘Bilinear’, and 
‘Deconv’ in the top-down pathways, we can find that the 
overall accuracy has changed from 96.35%, 97.88% to 98.57%. 

Second, we take Modes 1, 2 and 3 for instance to show the 
importance of upsampling strategies in the deep semantic 
embedding module. In these three modes, the top-down 
pathways adopt ‘Nearest’ for upsampling, while the deep 
semantic embedding modules use ‘Nearest’, ‘Bilinear’, and  
 ‘Deconv’ respectively for upsampling. The increasing overall 
accuracy, changing from 96.35%, 96.83% to 97.02%, illustrate 
the effectiveness of our proposed upsamping scheme. The 
similar conclusion can be also drawn by comparing the Modes 
4, 5 and 6. 

Third, by comparing Modes 7, 8 and 9, in which all the 
top-down pathways use ‘Deconv’ for upsampling, while the 
upsampling schemes are set to ‘Nearest’, ‘Bilinear’, and 
‘Deconv’ in the deep semantic embedding module, we can see 
that our final method, i.e., Mode 9, which uses ‘Deconv’ in both 
the top-down pathway and deep semantic embedding module 
achieves the highest overall accuracy, i.e., 99.14%. 

In addition, in the light of the better performance of Modes 7, 
8 and 9, we further select them for comparison to illustrate the 
superiority of our ‘Deconv’ upsampling technique by the loss 
curve. Figs. 15, 16, and 17 display the loss curves of different  

              
(a)                                                                                                            (b)   

Fig. 15. The loss curves of Mode 7 (Deconv + Nearest). (a) Training ratio = 80%. (b) Training ratio = 50%. 
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(a)                                                                                                            (b)   

Fig. 16. The loss curves of Mode 8 (Deconv + Bilinear). (a) Training ratio = 80%. (b) Training ratio = 50%. 

             
(a)                                                                                                            (b)   

Fig. 17. The loss curves of Mode 9 (Deconv + Deconv). (a) Training ratio = 80%. (b) Training ratio = 50%. 
 
modes under various training-testing ratios. The dataset is the 
UCM dataset. From these figures, we note that the losses of our 
proposed method (Mode 9) for both training-testing ratios 
converge faster than Modes 7 and 8. Also, the values of losses 
of our proposed method are much lower than those of Modes 7 
and 8. In summary, these suggest that our upsampling scheme 
is beneficial to the whole architecture. 

E. Benefits of Atrous Convolution 

We further investigate the contribution of our atrous 
convolution. The study of different numbers and modes in 
atrous residual units is shown in Fig. 18, and the corresponding 
classification results are listed in Table IX. It can be seen that 
Shallow-Atrous Unit achieves the worst results. The 
performance of Parallel-Atrous Unit is a bit better, but the 
increase of the number of channels may lead to the increase of 
learning parameters. The other two units, Deep-Atrous and 
Deeper-Atrous obtain suboptimal results. Our Standard-Atrous 
Unit wins the competition on the RS classification task. 

 

Fig. 18. The ablation study of different numbers and modes in atrous residual 
unit. 

 

TABLE IX 
OVERALL ACCURACY (%) OF DIFFERENT ARRANGES OF ATROUS 

CONVOLUTION ON UCM DATASET 

Scheme Architecture 
Overall Accuracy 

80%  
Training Ratio 

50%  
Training Ratio 

1 Shallow-Atrous 95.23 ± 0.53 92.21 ± 0.38 

2 Standard-Atrous(ours) 99.14 ± 0.22 96.19 ± 0.13 

3 Deep-Atrous 99.07 ± 0.27 96.15 ± 0.14 

4 Deeper-Atrous 98.29 ± 0.54 95.34 ± 0.46 

5 Parallel-Atrous 97.32 ± 1.14 94.61 ± 0.57 

V. CONCLUSION 

In this paper, we first detailed the challenges for the task of 
scene classification in remote sensing images. In order to 
overcome these problems, we constructed a unified deep 
learning framework, called EFPN-DSE-TDFF, in which three 
main contributions were made. In consideration of different 
rich characteristics of different level features, we designed an 
enhanced feature pyramid network to extract multi-scale 
multi-level feature maps and initially strengthen semantics. 
Besides, a deep semantic embedding module has been 
introduced to map the semantics of higher-level but 
coarser-resolution features into lower-level but finer-resolution 
ones so as to learn more reliable features. A two-branch deep 
feature fusion module is also employed for processing and 
aggregating the features at different levels together. We have 
compared the proposed method with many representative 
remote sensing scene classification approaches on several 
well-known RS scene datasets. 
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