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INTRODUCTION

Hypostomus Lacépède (1803) is the dominant genus of armored catfish (Siluriformes, Loricariidae,
Hypostominae) in Brazilian rivers (Britski, 1972). This group presents a wide interspecific color
and morphology variation (Oyakawa et al., 2005), which hinders the identification of some
species. Likewise, the existence of various cytogenetic phenotypes, including different chromosomal
numbers, karyotype formulas, and location of ribosomal genes (Rocha-Reis et al., 2020), reinforces
the need for more appropriate methodologies for species identification.

The Alto Paraná river basin concentrates the largest number of studies on freshwater fish
in Brazil (Agostinho et al., 2007). This drainage basin is the habitat of 25 species of the genus
Hypostomus (Weber, 2003), suggesting a complex evolutionary history for the taxon in this region.
Hypostomus ancistroides Ihering (1911), which has a natural distribution in the basins of the rivers
Tietê, Ribeira de Iguape, and Alto Paraná (Fricke et al., 2020), is considered a complex of cryptic
species due to the differentmorphotypes found in its area. In fact, this complex of cryptic species has
representatives with small morphological variations among populations, different chromosomal
numbers, unique karyotype formulas for each population, polymorphisms related to the number
and location of Nucleolus Organizer Regions, ribosomal DNAs, constitutive heterochromatin
patterns, and even the (occasional) existence of sex chromosome systems (Rocha-Reis et al., 2020).

A previous study conducted by Rocha-Reis et al. (2018) showed that a population of this complex
collected in the Paranapanema river (Alto Paraná basin, Brazil) had highly differentiated traits when
compared to other groups. Although morphologically similar to H. ancistroides, the specimens
presented distinct karyotypic data, characterized by lower chromosome numbers and the presence
of a neo-XY sex chromosome system in which X chromosomes constitute a pair of small acrocentric
chromosomes in females with only one chromosome of this type in males (Rocha-Reis et al., 2018).
The Y chromosome, on the other hand, is the largest metacentric of the karyotype complement,
only present in males.

Species delimitation within a complex is often difficult because lineages might not show
large morphological differences, despite being reproductively isolated (Lane, 1997). Consequently,
Evolutionary Significant Units (ESU) and species can be both identified using alternative
approaches, such as genetic techniques (Rocha-Reis et al., 2018).
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The mitochondrial genome (mtDNA) of vertebrates is a
circular and closed molecule, with conserved gene content
(Billington and Hebert, 1991). It is 16–20 kb in length and
consists of a light and a heavy chain with a non-coding control
region and 37 genes: 13 protein-coding genes (PCGs), 22 RNA
transfer genes (tRNAs), and 2 ribosomal RNA genes (rRNAs)
(Boore, 1999; Taanman, 1999; Bernt et al., 2013). Features such
as high evolutionary rate, low recombination, and maternal
inheritance make mtDNA a powerful molecular marker and
a useful tool for biological identification studies, phylogenetic
analyses, and population genetics (Harrison, 1989; Caccone et al.,
2004; Ma et al., 2012; Hirase et al., 2016).

Here, we describe the complete mitochondrial genome of two
Hypostomus populations of the H. ancistroides species complex.
In addition, we seek to elucidate the phylogenetic positioning of
these populations based on their mitogenomes.

MATERIALS AND METHODS

Specimen Collection and DNA Extraction
We collected one male specimen of H. ancistroides from the
Tietê river basin, near the municipality of Conchas, São Paulo,
Brazil (22◦59′57.84′′S; 48◦0′16.09′′O), and two individuals of
Hypostomus aff. ancistroides, one of each sex, from a stream
near the municipality of São Miguel Arcanjo, São Paulo,
Brazil (23◦54′44.58′′S; 47◦57′40.50′′O). The identification of their
sex was performed either through morphological observation,
since many species of Hypostomus have sexual dimorphism, or
through the presence of gonads. We extracted heart and liver
to obtain DNA, which were stored in a freezer at −20◦C. We
deposited the tissue and DNA samples from individuals under
accession numbers in the Tissue, Cell Suspension, and DNA
Bank in the Laboratory of Ecological and Evolutionary Genetics,
Federal University of Viçosa—Campus Rio Paranaíba. Sampling
and euthanasia procedures were conducted in accordance
with the Conselho Nacional de Controle de Experimentação
Animal (CONCEA).

We extracted the total genomic DNA from liver and heart
samples according to the instructions of Invitrogen’s DNA
extraction and purification kit and checked DNA quality
and concentration on a 1% agarose gel, with subsequent
measurement using a NanoDrop 2000 spectrophotometer and a
Qubit fluorometer.

Library Construction and Sequencing
The Whole Genome Sequencing was performed by Novaseq
6000 (Illumina, San Diego, CA) by the company Novogene,
UK. A total amount of 1.0 µg of DNA per sample was used
as input material for the DNA sample preparations. Sequencing
libraries were generated using NEBNext R© DNA Library Prep
Kit following the manufacturer’s recommendations and indices
were added to each sample. The genomic DNA was randomly
sheared to 350-bp fragments. These DNA fragments were then
end-polished, A-tailed, and ligated with the NEBNext adapter
for Illumina sequencing, and further PCR enriched by P5 and
indexed P7 oligos. The PCR products were purified (AMPure
XP system) and the resulting libraries were analyzed for size

distribution through Agilent 2100 Bioanalyzer and quantified
using real-time PCR. The qualified libraries were input into
Illumina sequencers after pooling according to their effective
concentration and expected data volume.

Sequence Assembly and Analysis
For the de novo mitogenome assembly, we used NovoPlasty 3.7
(Dierckxsens et al., 2017) with 2 × 150 raw reads and three
distinct kmers (19, 21, and 23).

We annotated the mitochondrial sequences obtained in
MitoAnnotator (Iwasaki et al., 2013) present in MitoFish. We
performed the analyses as a base composition with Fasta Statistics
1.0.1 (Seemann and Gladman, 2012), available at The Galaxy
Project (https://usegalaxy.org/) (Afgan et al., 2018). The complete
mitochondrial genomes of the two populations are available
at GenBank under accessions MT066232 for H. ancistroides,
MT081402 for the male, and MT396945 for the female of
Hypostomus aff. ancistroides.

Phylogenetic Analysis
We estimated the phylogenetic relationships of H. ancistroides
and H. aff. ancistroides by comparison with three Hypostominae
species: Hypostomus francisci (sequence obtained through
personal communication with the author, Pereira et al., 2019),
Hypostomus plecostomus (NC025584, Liu et al., 2016), and
Pterygoplichthys disjunctivus (NC015747, identical to AP012021,
Nakatani et al., 2011). Additionally, we included a species
of the family Hypoptopomatinae, Hypoptopoma incognitum
(NC028072, Moreira et al., 2015), as the outgroup. We used
ClustalW (Thompson et al., 1994), implemented byMEGA 7.0.21
software (Kumar et al., 2018), with all the default parameters to
align the complete mitogenome sequences.

We performed Bayesian Analysis with the concatenated
sequences using the 13 PCGs. Each gene was divided into three
partitions, allowing the selection of the best model for each
segment individually. The analysis of the model choice was
performed in PartitionFinder 2.1.1 (Lanfear et al., 2016) using
the Bayesian Information Criterion (BIC), which resulted in five
partitions with the following models: SYM+ I, HKY+ I, GTR+

G,HKY+ I, andHKY. After 10million samples ofMarkov Chain
Monte Carlo in MrBayes 3.2.7a (Ronquist et al., 2012), the length
of the sampling chain was calculated every 1,000 generations
using Tracer 2.6.2 (Rambaut et al., 2018) to estimate the
effectiveness of sample size and chain convergence.We visualized
the tree in the FigTree 1.4.4 software (http://tree.bio.ed.ac.uk/
software/figtree/) and edited the images with Inkscape (https://
www.inkscape.org) and GNU Image Manipulation Program
(GIMP) 2.10.14 (https://www.gimp.org/).

RESULTS AND DISCUSSION

Organization of Mitochondrial Genomes
The organization of the mitogenomes of the two populations was
very similar to other ostariophysan fishes (Satoh et al., 2016)
and, consequently, to other Hypostomus already described: 13
PCGs, 22 tRNA genes, 2 rRNA genes, and a partial control region
(D-loop) (Figure 1). However, we found different sizes for the
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FIGURE 1 | The complete mitochondrial genomes of Hypostomus ancistroides (A) and male (B) and female (C) of Hypostomus aff. ancistroides. The mitogenomes of

the two populations have a similar organization, with small variations in the start and stop positions of genes. In (D), a comparison between the control regions

(D-loop): homologous bases among individuals are represented in red, bases exclusive to H. ancistroides are in blue, and bases exclusive to the female of H. aff.

ancistroides are in green. Blanks represent absent regions.

three mitochondrial genomes: H. ancistroides presented 16,826
bp, while the male of H. aff. ancistroides was 16,505 bp and the
female was 17,066 bp (Figure 1, Supplementary Table 1). The
difference in sizes is due to the control region.

The base composition of the mitochondrial genome of H.
ancistroides was estimated as 31.7% A, 26.6% C, 14.6% G, and
26.9% T. For the H. aff. ancistroides male, we found 31.5%
A, 26.5% C, 14.7% G, and 27.1% T, while for the female, we
found 31.6% A, 25,89% C, 14,51% G, and 27,87% T. In all
mitogenomes, most genes are in the heavy chain, with only
eight tRNAs and a PCG found in the light chain (Figure 1,
Supplementary Table 1).

Protein-Coding Genes
The three mitogenomes analyzed were the same size for
PCGs. Hypostomus aff. ancistroides individuals showed
identical sequences, although they may have varied the

starting and ending position of PCGs within the genome
when compared to H. ancistroides (Supplementary Table 1).
The mitochondrial genomes have thirteen PCGs: atp6 (683
bp), atp8 (168 bp), cox1 (1551 bp), cox2 (691 bp), cox3
(784 bp), cytb (1138 bp), nad1 (975 bp), nad2 (1045 bp),
nad3 (349 bp), nad4 (1381 bp), nad4L (297 bp), nad5
(1827 bp), and nad6 (522 bp), representing about 70% of
the mitogenomes.

There was an overlapping coding region between
atp8 and atp6, nad4L and nad4, and nad5 and nad6.
Except for cox1, which starts with GTG, the other PCGs
use the ATG codon for initiation. The stop codons
identified were TAA (for atp8, nad4L, atp6, nad1, cox1,
and nad5), TAG (for nad6), and incomplete T-stop (for
nad3, cox2, cox3, nad2, cytb, and nad4). Except for nad6,
all the other PCGs were in the heavy chain (Figure 1,
Supplementary Table 1).
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FIGURE 2 | Bayesian phylogenetic tree for mitogenomes of Hypostomus and other Loricariidae species using Hypoptopoma incognitum as an external group. The

analysis was performed with the concatenation of the 13 PCGs after choosing the best nucleotide replacement model for each gene. The analysis was carried out

using four independent chains with 10,000,000 generations. The numbers on each node represent the posterior probabilities obtained.

Ribosomal and Transfer RNA Genes
We found two rRNA genes, 12S rRNA (954 bp) and 16S rRNA
(1677 bp), located between tRNA-Phe and tRNA-Leu, separated
by tRNA-Val (Figure 1, Supplementary Table 1), as commonly
observed in other vertebrates (Inoue et al., 2000).

There were 22 tRNAs in both mitogenomes, with sizes
ranging from 67 to 75 bp. There was a single tRNA size
difference between the two populations: tRNA-Lys has 74 bp in
H. ancistroides and 73 bp in H. aff. ancistroides. There are only
eight tRNAs in the light chain: tRNA-Gln, tRNA-Ala, tRNA-
Asn, tRNA-Cys, tRNA-Tyr, tRNA-Ser, tRNA-Glu, and tRNA-
Pro (Supplementary Table 1). Some tRNAs had atypical codons,
such as tRNA-Leu (UAA), tRNA-Ser (UGA), tRNA-Ser (GCU),
and tRNA-Leu (UAG).

Control Region
As presented before, we found different sizes for the three
mitochondrial genomes: H. ancistroides presented 16,826 bp,
while the male of H. aff. ancistroides had 16,505 bp and
the female had 17,066 bp (Figure 1, Supplementary Table 1).
This difference was observed in the control region (D-loop):
H. ancistroides presented 1186 bp, whereas males of H. aff.
ancistroides had 865 bp and females had 1426 bp in this same
region (Figure 1, Supplementary Table 1). We compared the D-
loop sequences of the three individuals and found some regions
that are exclusive in H. ancistroides and others that are exclusive
in the female of H. aff. ancistroides (Figure 1D). This exclusivity
in each individual, probably due to a 35-bp tandem repeat unit,
is responsible for the significant difference in the total size of

the control regions and may consequently reflect the difference
in the size of their genomes. Repeated regions are a well-known
problem for sequence assembly algorithms. Therefore, it was
hard to assemble the D-loop region with extensive repeated units.
Consequently, repetitive sequences and their repetitions resulted
in different sequence length byNGS (Hahn et al., 2013; Tang et al.,
2014). D-loop size variations have also been observed in other
mitogenomes of different species (Wilkinson and Chapman,
1991; Miracle and Campton, 1995; Shan et al., 2014; Xue et al.,
2015; Zhang et al., 2016), and differences in the size of this
region between sexes were also observed in Meretrix lamarckii
(Bettinazzi et al., 2016). Except for the gap in the D-loop region,
all mitogenomes were assembled successfully in their entirety.
Nevertheless, further studies on this variation in the D-loop are
still necessary.

Phylogenetic Analysis
Almost all representatives of Hypostomus were grouped in the
same clade in the tree topology obtained through Bayesian
Analysis (Figure 2), except for H. plecostomus. This species
position as a sister group of Pterygoplichthys may suggest
an introgression of mitochondrial genes, a misidentification
of the individual, or a result from the possible paraphyletic
characteristic of Hypostomus (Armbruster, 2004).

Furthermore, females and males of H. aff. ancistroides form
a well-supported clade (Figure 2). Despite being part of the same
population, individuals of both sexes have sufficient differences in
the PCGs that allow their separation into two distinct branches.
However, they remain in a single clade, which presents itself as a
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sister group ofH. ancistroides. Besides the proximity of these two
populations, these data reinforce how differentH. aff. ancistroides
is when compared to H. ancistroides.

In conclusion, based on the morphological, cytogenetic,
genetic, and mitochondrial differences here presented, this
scenario supports H. aff. ancistroides as another species of the
complex (Rocha-Reis et al., 2018), which needs to be formally
described and named as a taxonomically valid species.
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