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Abstract—In this paper, a statistical similarity measure is in-
troduced to quantify the similarity between two random vectors.
The measure is then employed to develop a novel outlier-robust
Kalman filtering framework. The approximation errors and the
stability of the proposed filter are analyzed and discussed. To
implement the filter, a fixed-point iterative algorithm and a
separate iterative algorithm are given, and their local convergent
conditions are also provided, and their comparisons have been
made. In addition, selection of the similarity function is consid-
ered, and four exemplary similarity functions are established,
from which the relations between our new method and existing
outlier-robust Kalman filters are revealed. Simulation examples
are used to illustrate the effectiveness and potential of the new
filtering scheme.

Index Terms—Kalman filter, statistical similarity measure,
outliers, heavy-tailed noise, separate iterative algorithm

I. INTRODUCTION

THE Kalman filter is best-known as an optimal recursive
state estimator in the sense of minimum variance for

a linear system with Gaussian noises. In view of this, the
Kalman filter has been widely used in positioning, navigation,
target tracking and signal processing [1]. The estimation
accuracy of the Kalman filter degrades dramatically for a
linear system with non-Gaussian heavy-tailed noises which are
often induced by state and measurement outliers from external
interference or unreliable sensors [2].

For such non-Gaussian filtering problems, the particle filter
(PF) can achieve an approximate state estimate by modelling
the noises as non-Gaussian heavy-tailed distributed and ap-
proximating the posterior probability density function (PDF)
as a set of weighted random samples using the sequential
Monte Carlo sampling technique [3]–[5]. The Gaussian sum
filter (GSF) can be also used to address the non-Gaussian
filtering problem by running a group of Kalman filters, in
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which a finite sum of Gaussian distributions are employed
to model non-Gaussian noises, and the posterior PDF can be
updated as a weighted sum of Gaussian PDFs [6]. Moreover,
the interacting multiple model (IMM) filter is a promising
approach to address model uncertainty, in which several sub-
filters are performed in parallel based on the preselected model
set and the corresponding model transition probability matrix,
and the sub-filters interact with each other by fusing the state
estimates and corresponding estimation error covariance matri-
ces based on the recursive estimates of the mode probabilities
[7]. Normally, the performances of the PF, GSF and IMM filter
rely heavily on the preselected distributions to model non-
Gaussian state and measurement noises. Unfortunately, it is
very difficult to select accurate distributions to model unknown
and time-varying non-Gaussian noises which are often induced
by outliers so that the estimation accuracy of the PF, GSF
and IMM filter degrades significantly when inaccurate or even
wrong noise distributions are used. The contribution of this
work is therefore to provide a unified theoretic framework to
solve the non-Gaussian filtering problem for a linear state-
space model with unknown non-Gaussian heavy-tailed noises.

A large number of outlier-robust Kalman filters have been
proposed to achieve a tradeoff between estimation accuracy
and computational complexity. As a classic robust regression
technique, the M-estimator is robust to measurement outliers
and has been successfully extended to the Kalman filter
setting [8]. By employing the influence function approach on
the prediction error and residual error, many outlier-robust
Kalman filters have been proposed based on the M-estimate
method [9]. The Huber Kalman filter (HKF) is the most
famous extension of the M-estimator to the Kalman filter
setting, which utilizes a combined l1 and l2 norm as a robust
cost function, and a generalized robust maximum likelihood
estimate is achieved by minimizing the Huber cost function
[10]. The maximum correntropy Kalman filter (MCKF) is an
alternative method to handle state and measurement outliers.
The sum of the Gaussian kernel functions of the prediction
error and residual error are selected as the robust cost function,
and many MCKFs have been proposed by maximising such
robust cost functions [11]–[13]. Motivated by the fact that
the outlier contaminated state and measurement noises often
have non-Gaussian heavy-tailed distributions, many outlier-
robust filters have been proposed by modelling the state and
measurement noises as Student’s t distributed [14]–[23]. These
robust filters can be divided into two categories: Student’s t
filter and robust Student’s t based Kalman filter (RSTKF). In
the Student’s t filter, the posterior PDF is approximated as a
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Student’s t PDF with fixed degrees of freedom (dof) parameter
based on the Bayesian rule [14]–[16], nevertheless, in the
RSTKF, the posterior PDF is approximated as a Gaussian PDF
based on the variational Bayesian (VB) approach [22], [23].
For a linear system with moderately heavy-tailed state and
measurement noises, the RSTKF can achieve better estimation
accuracy than the Student’s t filter but at the cost of higher
computational complexity. Also, the adaptive Kalman filter
based on the VB approach can to some extent address the
heavy-tailed state and measurement noises induced by outliers
based on the adaptive modifications of the one-step prediction
error covariance matrix and measurement noise covariance
matrix [24].

Although the HKF, MCKF and RSTKF can all achieve
better estimation accuracy than the standard Kalman filter for
a linear system with outlier corrupted state and measurement
noises, their interrelationships have as yet not been revealed.
Except for the Gaussian scale mixture distributions, the design
method of the existing RSTKF cannot be generalized to a
general non-Gaussian heavy-tailed distribution, which limits
its further improvement. In addition, it is worth studying
whether the estimation accuracy of the existing HKF, MCKF
and RSTKF can be further improved. An advanced outlier-
robust Kalman filtering framework is therefore required to
reveal the interrelationships between the existing HKF, MCKF
and RSTKF and further improve the estimation accuracy of the
existing HKF, MCKF and RSTKF.

In this paper, a statistical similarity measure (SSM) is
introduced to quantify the similarity between two random
vectors. The measure is then used to develop a novel outlier-
robust Kalman filtering framework, in which lower bounds of
the SSM between the state vector and the predicted state vector
and that between the measurement vector and the predicted
measurement vector are maximized, and the posterior PDF
is approximated as Gaussian. To illustrate the effectiveness
of the proposed framework, the effects of the approximation
errors on the proposed framework are analyzed in detail,
and the numerical and filtering stabilities of the proposed
framework are also discussed. To implement the proposed
framework, the fixed-point iterative algorithm and the separate
iterative algorithm are proposed, and their local convergence
conditions are also provided and compared. Furthermore,
the selections of the similarity functions are presented, and
four exemplary similarity functions are provided, from which
the relations between the proposed method and the existing
outlier-robust Kalman filters are revealed. Simulation results
of a manoeuvring target tracking example illustrate that by
selecting appropriate similarity functions, the proposed filters
have improved estimation accuracy but higher computational
complexities than the existing state-of-the-art filters.

The remainder of this paper is organized as follows. In
Section II, a novel SSM is proposed to quantify the simi-
larity between two random vectors. In Section III, a novel
outlier-robust Kalman filtering framework based on the SSM
is proposed, and its error analyses and stability discussions
are provided. In Section IV, two novel iterative algorithms
for proposed outlier-robust Kalman filtering framework are
proposed, and their local convergence conditions are provided.

In Section V, we present the selections of the similarity
functions. In Section VI, simulation results of a manoeuvring
target tracking example and comparisons with existing filters
are given. Conclusions are drawn in Section VII.

II. PROPOSED SSM
In this paper, a novel SSM is proposed to quantify the

similarity between two random vectors. The proposed SSM
s(x,y) for random vectors x and y is defined as follows

s(x,y) = E
[
f(∥x− y∥2)

]
=

∫ ∫
f(∥x−y∥2)p(x,y)dxdy

(1)
where E[·] denotes the expectation operation, and ∥·∥ denotes
the Euclidean norm, and p(x,y) denotes the joint PDF of
random vectors x and y. In the paper, the scalar function f(·)
is named as the similarity function, and it must satisfy the
following three conditions.

• Condition 1: f(·) is a continuous function defined on
[0,+∞);

• Condition 2: f(·) is a strictly monotonically decreasing
function: ḟ(t) < 0 for t ∈ [0,+∞);

• Condition 3: The second derivative of f(·) is non-
negative: f̈(t) ≥ 0 for t ∈ [0,+∞).

The monotonically decreasing property of the similarity
function f(·) can guarantee that the proposed SSM s(x,y)
is increasing as the distance between x and y decreases. As a
result, the proposed SSM conforms to the usual definition of a
similarity measure that is in some sense the inverse of distance
metrics. The higher similarity between random vectors x and
y, the larger SSM becomes. The proposed SSM has some
basic properties as follows.

• Property 1: The proposed SSM is symmetric: s(x,y) =
s(y,x);

• Property 2: The proposed SSM achieves the maximum
value if and only if the random vectors x and y are
identical;

• Property 3: The proposed SSM includes all the even
order moments of the random vector x − y: s(x,y) =
+∞∑
l=0

f(l)(0)
l! E

[
∥x− y∥2l

]
if the Taylor expansion of the

similarity function f(t) exists when t ≥ 0.
Property 1 can be easily verified using the definition of the

proposed SSM in (1), and Property 3 can be directly derived
by exploiting the Taylor series expansion of the similarity
function f(t) at t = 0. Next, we will prove Property 2 in
the following Theorem 1.

Theorem 1. If the similarity function f(·) satisfies Condition
2, then Property 2 holds.

Proof. See Appendix A.

Property 2 guarantees that the proposed SSM has a max-
imum point, i.e. x = y. It is noteworthy that the proposed
SSM s(x,y) is an upper bound of f

(
E[∥x− y∥2]

)
, and they

have the same maximum point, i.e. x = y.

Remark 1. The proposed SSM is a generalized similarity
measure between two random vectors and encompasses ex-
isting similarity measures. For example, the proposed SSM
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s(x,y) is the negative mean squared error (MSE) between
random vectors x and y when the similarity function is
chosen as f(t) = −t. The proposed SSM s(x,y) is the
correntropy between random vectors x and y when the
similarity function is selected as f(t) = exp(− 1

2σ2 t) [11],
[13]. More interestingly, the generalized correntropy [25]
between random vectors x and y is also a special case of the
proposed SSM s(x,y) when the similarity function is chosen
as f(t) = α

2βΓ(1/α) exp
(
−t

α
2 β−α

)
and the shape parameter

satisfies the constraint 0 < α ≤ 2.

Remark 2. For the proposed SSM, except for the first two
conditions, the similarity function f(·) has to satisfy the third
condition. The third condition not only can facilitate the design
of an outlier-robust Kalman filter but also can guarantee
robustness to outliers and local convergence of fixed point
iterations, as will be shown in Sections III, IV and V.

The proposed SSM can be used in Bayesian inference. Dif-
ferent SSMs are achieved when different similarity functions
f(·) are selected, based on which different state estimates can
be obtained by maximizing the corresponding SSMs. Next,
we will propose an outlier-robust Kalman filtering framework
based on the proposed SSM.

III. PROPOSED OUTLIER-ROBUST KALMAN FILTERING
FRAMEWORK BASED ON SSM

Consider a linear dynamical system described by a linear
discrete-time state-space model as follows{

xk = Fkxk−1 +wk (state equation)
zk = Hkxk + vk (measurement equation) (2)

where k is the discrete time index, xk ∈ Rn is the state
vector, zk ∈ Rm is the measurement vector, Fk ∈ Rn×n

and Hk ∈ Rm×n are, respectively, the known state transition
matrix and measurement matrix, and wk ∈ Rn and vk ∈ Rm

are, respectively, state and measurement noise vectors. In this
paper, the state and measurement noises are assumed to have
non-Gaussian distributions that are, respectively, induced by
state and measurement outliers.

A. Design of outlier-robust Kalman filtering framework

Similar to the standard Kalman filter, the proposed outlier-
robust Kalman filtering framework is also composed of time
and measurement updates. In the time update, the one-step
predicted state vector x̂k|k−1 and corresponding nominal
prediction error covariance matrix Pk|k−1 are calculated as
follows {

x̂k|k−1 = Fkx̂k−1|k−1

Pk|k−1 = FkPk−1|k−1F
T
k +Qk

(3)

where x̂k−1|k−1 and Pk−1|k−1 are, respectively, the state
estimate and corresponding estimation error covariance matrix
at time k − 1, and Qk denotes the nominal state noise
covariance matrix. Note that Pk|k−1 is called the nominal
prediction error covariance matrix since the used nominal state
noise covariance matrix Qk is inaccurate in the presence of
state outliers.

In the measurement update, we aim to achieve an approxi-
mate posterior PDF q∗(xk) ≈ p(xk|z1:k) through maximizing
the sum of the SSM between S−1

k|k−1xk and S−1
k|k−1x̂k|k−1 and

the SSM between S−1
Rk

zk and S−1
Rk

Hkxk, i.e.,

q∗(xk) = arg max
q(xk)

{
s
(
S−1
k|k−1xk,S

−1
k|k−1x̂k|k−1

)
+

s
(
S−1
Rk

zk,S
−1
Rk

Hkxk

)}
(4)

where Sk|k−1 and SRk
are, respectively, the square roots of

the predicted error covariance matrix Pk|k−1 and the nominal
measurement noise covariance matrix Rk, i.e.,

Pk|k−1 = Sk|k−1S
T
k|k−1 Rk = SRk

ST
Rk

(5)

where Rk denotes the nominal measurement noise covariance
matrix. Note that the 1-step statistical similarity measure based
cost function in (4) is sufficient for designing an outlier-robust
Kalman filtering framework in this paper, in which the one-
step predicted state vector x̂k|k−1 and measurement vector zk
at the current time are used to construct the cost function. The
idea of this paper can be extended to derive an outlier-robust
Kalman smoothing framework based on a multiple-steps SSM
cost function by resorting to some standard techniques for
designing a maximum a-posterior estimator in a Bayesian
framework [26].

Considering that the one-step predicted state vector x̂k|k−1

and measurement vector zk are known and deterministic
quantities in the measurement update of the Kalman filter, the
maximization problem in (4) can be reformulated as

q∗(xk) = arg max
q(xk)

{∫
fx(∥S−1

k|k−1(xk − x̂k|k−1)∥2)q(xk)dxk

+

∫
fz(∥S−1

Rk
(zk −Hkxk)∥2)q(xk)dxk

}
(6)

where fx(·) and fz(·) denote the similarity functions of state
and measurement models, respectively.

It is very difficult to achieve an optimal solution for the
maximization problem in (6) since both the explicit form of
posterior PDF q(xk) and closed form solutions for the integrals
are unavailable. To solve this problem, we propose to achieve
an approximate q∗(xk) by approximating the posterior PDF
q(xk) as Gaussian and maximizing the lower bound of the
cost function.

Firstly, we propose to approximate the posterior PDF q(xk)
as a Gaussian PDF, i.e.,

q(xk) ≈ N(xk;µk,Σk) (7)

where µk and Σk are, respectively, the mean vector and
covariance matrix of the posterior PDF q(xk).

Substituting (7) in (6), the maximization problem with
respect to the posterior PDF q(xk) in (6) is approximately
transformed into a maximization problem with respect to the
posterior mean vector and covariance matrix, i.e.,

{µ∗
k,Σ

∗
k} ≈ arg max

{µk,Σk}
{
∫

fx(∥S−1
k|k−1(xk − x̂k|k−1)∥2)×

N(xk;µk,Σk)dxk +

∫
fz(∥S−1

Rk
(zk −Hkxk)∥2)N(xk;µk,

Σk)dxk}, s.t. Σk > 0 (8)
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where µ∗
k and Σ∗

k denote the optimal posterior mean vector
and covariance matrix. Next, the cost function in (8) will be
approximated as its lower bound, and then an approximate
solution can be obtained.

Theorem 2. If the similarity functions satisfy Condition 3, i.e.,
f̈x(t) ≥ 0 and f̈z(t) ≥ 0 for t ∈ [0,+∞), the maximization
problem in (8) can be transformed as follows

{µ∗
k,Σ

∗
k} ≈ arg max

{µk,Σk}
J1(µk,Σk) s.t. Σk > 0 (9)

where J1(µk,Σk) is the lower bound of the cost function in
(8) and formulated as

J1(µk,Σk) = fx

(
tr(AkP

−1
k|k−1)

)
+ fz

(
tr(BkR

−1
k )
)

(10)

where tr(·) denotes the trace operation of a matrix, and Ak

and Bk are, respectively given by

Ak =

∫
(xk − x̂k|k−1)(xk − x̂k|k−1)

TN(xk;µk,Σk)dxk

= Σk + (µk − x̂k|k−1)(µk − x̂k|k−1)
T (11)

Bk =

∫
(zk −Hkxk)(zk −Hkxk)

TN(xk;µk,Σk)dxk

= (zk −Hkµk)(zk −Hkµk)
T +HkΣkH

T
k (12)

Proof. See Appendix B.

Define four auxiliary variables ξk, λk, ξ̃k and λ̃k as followsξk , −2ḟx

(
tr(AkP

−1
k|k−1)

)
, λk , −2ḟz

(
tr(BkR

−1
k )
)

ξ̃k , 2f̈x

(
tr(AkP

−1
k|k−1)

)
, λ̃k , 2f̈z

(
tr(BkR

−1
k )
)
(13)

and three auxiliary matrices as follows
∆µk

(µk,Σk) =
∂J1(µk,Σk)

∂µk

∆Σk
(µk,Σk) =

∂J1(µk,Σk)
∂Σk

Θµk
(µk,Σk) =

∂2J1(µk,Σk)

∂µk∂µT
k

(14)

where ∆µk
(µk,Σk) and ∆Σk

(µk,Σk) denote the Jacobian
matrices of the approximate cost function J1(µk,Σk) with
respect to the posterior mean vector and covariance matrix,
respectively, and Θµk

(µk,Σk) denotes the Hessian matrix of
the approximate cost function J1(µk,Σk) with respect to the
posterior mean vector.

Theorem 3. The optimal solution µ∗
k of the approximate cost

function J1(µk,Σk) is formulated as follows

µ∗
k = x̂k|k−1 + K̃∗

k(zk −Hkx̂k|k−1) (15)

K̃∗
k = P̃∗

k|k−1H
T
k

(
HkP̃

∗
k|k−1H

T
k + R̃∗

k

)−1

(16)

where P̃∗
k|k−1 and R̃∗

k are, respectively, the modified one-step
prediction error covariance matrix and measurement noise
covariance matrix given by

P̃∗
k|k−1 = Pk|k−1/ξ

∗
k, R̃∗

k = Rk/λ
∗
k (17)

and the auxiliary parameters ξ∗k and λ∗
k are given by

ξ∗k = −2ḟx

(
tr(A∗

kP
−1
k|k−1)

)
, λ∗

k = −2ḟz
(
tr(B∗

kR
−1
k )
)

(18)
and the auxiliary parameters A∗

k and B∗
k are given by

A∗
k = Σ∗

k + (µ∗
k − x̂k|k−1)(µ

∗
k − x̂k|k−1)

T (19)

B∗
k = (zk −Hkµ

∗
k)(zk −Hkµ

∗
k)

T +HkΣ
∗
kH

T
k (20)

Proof. See Appendix C.

Next, we will further confirm the extreme point µ∗
k in (15)

is a maximum point or a minimum point, and present the
monotonicity of the approximate cost function J1(µk,Σk)
with respect to the posterior covariance matrix Σk.

Theorem 4. If the similarity functions satisfy Condition 2 and
Condition 3 and the following inequalities hold

−(ξ∗k)
2 + 2ξ̃∗k < 0, −(λ∗

k)
2 + 2λ̃∗

k < 0 (21)

then both the Hessian matrix Θµk
(µ∗

k,Σ
∗
k) and the Jacobian

matrix ∆Σk
(µk,Σk) are negative definite, i.e.,

Θµk
(µ∗

k,Σ
∗
k) < 0, ∆Σk

(µk,Σk) < 0 (22)

Proof. See Appendix D.

Theorem 4 implies that the extreme point µ∗
k in (15) is a

maximum point of the approximate cost function J1(µk,Σk).
It can be also observed from Theorem 4 that the approximate
cost function J1(µk,Σk) is monotonically decreasing with
respect to the posterior covariance matrix Σk, and then the
approximate cost function J1(µk,Σk) can achieve a unique
optimal solution Σ∗

k at the lower bound of the posterior co-
variance matrix. Next, we will determine the optimal posterior
covariance matrix Σ∗

k.
To obtain the maximum point Σ∗

k, we need to find a
reasonable constraint to apply upon Σk. Motivated by the fact
that the covariance matrix of the posterior PDF is the negative
inverse of the Hessian matrix of the least squares cost function
in the traditional maximum a posteriori estimation framework,
we propose a heuristic assumption that Σk is not less than the
negative inverse of the Hessian matrix Θµk

(µ∗
k,Σ

∗
k), i.e.,

Σk ≥ −Θ−1
µk

(µ∗
k,Σ

∗
k) (23)

It is worth noting that the well-known M-estimate employs
a similar way to deal with the posterior covariance matrix
which is set as the negative inverse of the Hessian matrix
of the robust cost function [8]–[10]. Since the cost function
J(µk,Σk) is monotonically decreasing with respect to Σk,
the optimal covariance matrix should be the negative inverse
of the Hessian matrix, i.e., −Θ−1

µk
(µ∗

k,Σ
∗
k). Unfortunately,

the Hessian matrix can easily lose its negative definiteness
during the iterative computation, and then the filter was often
found to halt its operation due to the numerical problem.
To keep the negative definiteness, the positive semi-definite
term D1(µ

∗
k,Σ

∗
k) is mandatorily subtracted from the Hessian

matrix Θµk
(µ∗

k,Σ
∗
k). That is to say, the lower bound of the

posterior covariance matrix is further reduced, i.e.,

Σk ≥ −Θ−1
µk

(µ∗
k,Σ

∗
k) ≥ − [Θµk

(µ∗
k,Σ

∗
k)−D1(µ

∗
k,Σ

∗
k)]

−1

(24)
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Exploiting (24) and (60), the maximum point Σ∗
k can be

formulated as

Σ∗
k =

(
ξ∗kP

−1
k|k−1 + λ∗

kH
T
kR

−1
k Hk

)−1

(25)

Employing the matrix inversion lemma [1, pp. 11-12] and
equations (16)-(17) and (25) gives

Σ∗
k = P̃∗

k|k−1 − K̃∗
kHkP̃

∗
k|k−1 (26)

B. Error analyses of the proposed framework

In Section III. A, three approximations are employed to
derive an analytical solution for the original maximization
problem in (6), which are listed as follows:

• Approximation 1: The posterior PDF q(xk) is approxi-
mated as a Gaussian PDF in (7);

• Approximation 2: The original cost function is approxi-
mated as its lower bound by Theorem 2;

• Approximation 3: The original Hessian matrix is approx-
imated as Θµk

(µ∗
k,Σ

∗
k)−D1(µ

∗
k,Σ

∗
k).

Firstly, we discuss the reasonability of Approximation 1.
The outlier-contaminated state and measurement noises often
have non-Gaussian distributions, and then the true posterior
PDF p(xk|z1:k) also has a non-Gaussian distribution [14],
[16]. Unfortunately, there is often not a mathematical formu-
lation for a general non-Gaussian distribution. As a result, it is
not possible to achieve an optimal solution of the maximization
problem in (6) for a general non-Gaussian linear system.
Motivated by the fact that the Gaussian approximation to the
posterior PDF has been widely accepted in designing a cost-
effective filter for a linear system with non-Gaussian noises,
the posterior PDF is also approximated as a Gaussian PDF
in this paper, as shown in (7), based on which an approx-
imately analytical solution can be obtained. Although such
an approximation may impose an error on the posterior PDF,
it often exhibits good estimation accuracy with reasonable
computational complexity. Thus, the Gaussian approximation
to the posterior PDF can provide a tradeoff between estimation
accuracy and computational complexity.

Secondly, we analyze the effects of Approximation 2 on
the optimal solution. To this end, the relation between the
maximization problem in (8) and the maximization problem
in (9)-(12) will be further revealed. Define four auxiliary
variables as follows{

Y1k = ∥S−1
k|k−1(xk − x̂k|k−1)∥2, Y ∗

1k = tr(A∗
kP

−1
k|k−1)

Y2k = ∥S−1
Rk

(zk −Hkxk)∥2, Y ∗
2k = tr(B∗

kR
−1
k )

(27)
where Y ∗

1k and Y ∗
2k are, respectively, the expectations of Y1k

and Y2k with respect to the approximate posterior PDF q∗(xk)
= N(xk;µ

∗
k,Σ

∗
k).

Taking the first-order Taylor series expansions of the sim-
ilarity functions fx(t) and fz(t) at t = Y ∗

1k and t = Y ∗
2k,

respectively, we have{
fx(t) = fx(Y

∗
1k) + ḟx(Y

∗
1k)(t− Y ∗

1k) + o(t− Y ∗
1k)

fz(t) = fz(Y
∗
2k) + ḟz(Y

∗
2k)(t− Y ∗

2k) + o(t− Y ∗
2k)

(28)

where o(t − Y ∗
1k) and o(t − Y ∗

2k) denote the first-order re-
mainder terms of the similarity functions fx(t) and fz(t) at
t = Y ∗

1k and t = Y ∗
2k, respectively.

Using (28) yields{
fx(Y1k) ≈ fx(Y

∗
1k) + ḟx(Y

∗
1k)(Y1k − Y ∗

1k)

fz(Y2k) ≈ fz(Y
∗
2k) + ḟz(Y

∗
2k)(Y2k − Y ∗

2k)
(29)

Proposition 1. The maximization problem in Theorem 2 and
the maximization problem in (8) with the first-order Taylor
approximations (27) and (29) have the same optimal solution
{µ∗

k,Σ
∗
k}.

Proof. See Appendix E.

Proposition 1 means that the lower bound of the original
cost function and the first-order approximation of the original
cost function have the same maximum solution. Thus, the
effects of Approximation 2 on the optimal solution are deter-
mined by the higher-order approximation errors o(Y1k − Y ∗

1k)
and o(Y2k − Y ∗

2k). Since Y ∗
1k and Y ∗

2k are the mean values
of the random variables Y1k and Y2k, the difference values
Y1k − Y ∗

1k and Y2k − Y ∗
2k depend heavily on the variances

of the random variables Y1k and Y2k. That is to say, the
higher variances of the random variables Y1k and Y2k, the
larger fluctuation ranges of the difference values Y1k − Y ∗

1k

and Y2k − Y ∗
2k will be generated and then result in larger

higher-order approximation errors, and vice versa. Thus, the
approximation accuracy of Theorem 2 is mainly dominated by
the variances of the random variables Y1k and Y2k. Therefore,
next, we will study the variances of the random variables Y1k

and Y2k.

Proposition 2. The variances of the random variables Y1k

and Y2k satisfy the following upper bound constraints

Var[Y1k] ≤ (n2 + 2n− 1)
[
tr(ΣkP

−1
k|k−1)

]2
+∥∥∥2ΣT

2

k P−1
k|k−1(µk − x̂k|k−1)

∥∥∥2
Var[Y2k] ≤ (n2 + 2n− 1)

[
tr(HkΣkH

T
kR

−1
k )
]2

+∥∥∥2ΣT
2

k HT
kR

−1
k (zk −Hkµk)

∥∥∥2
(30)

where Var[·] denotes the variance operation.

Proof. See Appendix F.

It is observed from Proposition 2 that both the variances
of the random variables Y1k and Y2k depend on the state
dimension n and the posterior covariance matrix Σk. It can
be observed from (30) that the higher the state dimension,
the larger will be the variances of the random variables Y1k

and Y2k. Such a result is consistent with the intuition that
the higher the state dimension, the larger the errors will be
when the original cost function is approximated by its lower
bound in Theorem 2. We can also observe from (30) that the
larger the posterior covariance matrix Σk, the larger will be
the variances of the random variables Y1k and Y2k. This result
is also consistent with the fact that the approximation errors
are mainly dominated by the randomness of state vector xk

(i.e., the covariance matrix) when the original cost function is
approximated by its lower bound based on Jensen’s inequality.
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In conclusion, the effects of Approximation 2 on the optimal
solution relies mainly on the state dimension and the posterior
covariance matrix of the state vector. Fortunately, the posterior
uncertainty is gradually reduced as the filter converges, which
can to some extent mitigate the effects of Approximation 2
on the optimal solution. More importantly, both the errors
Y1k−Y ∗

1k and Y2k−Y ∗
2k can be deemed as small terms as the

filter converges, and the higher-order derivatives of the similar-
ity functions fx(t) and fz(t) are significantly smaller than the
first-order derivatives for the exemplary similarity functions
in Table I. As a result, the higher-order approximation errors
o(Y1k − Y ∗

1k) and o(Y2k − Y ∗
2k) are significantly smaller than

the first-order terms for the exemplary similarity functions,
which contributes to the effectiveness and reasonability of
Approximation 2.

Finally, we discuss the effects of Approximation 3 on
the optimal solution. The original Hessian matrix is forcibly
reduced by subtracting a positive semi-definite matrix, and the
resultant posterior covariance matrix is less than the optimal
value. Although such approximation imposes an error on the
posterior covariance matrix, it is beneficial to guarantee the
positive definiteness of the posterior covariance matrix and
then improve the numerical and filtering stabilities, as will
be shown in Section III. C and Section IV. A. Moreover, the
reduction of the posterior covariance matrix is also beneficial
to mitigate the effects of Approximation 2 on the optimal
solution.

C. Stability discussions of proposed framework

In order to employ the proposed algorithm in engineering
applications, it is necessary to guarantee the numerical and
filtering stabilities of the proposed method. Next, these will
be discussed.

It is seen from (18) that if the similarity functions fx(·) and
fz(·) satisfy Condition 2, i.e., ḟx(t) < 0 and ḟz(t) < 0 for
t ∈ [0,+∞), then both the auxiliary parameters ξ∗k and λ∗

k are
greater than zero, i.e.,

ξ∗k > 0, λ∗
k > 0 (31)

Using (17), (25) and (31) yields

P̃∗
k|k−1 > 0, R̃∗

k > 0, Σ∗
k > 0 (32)

We can see from (32) that if ḟx(t) < 0 and ḟz(t) < 0
for t ∈ [0,+∞), then the modified one-step prediction error
and measurement noise covariance matrices and the posterior
covariance matrix are all positive definite. Thus, the proposed
filter is numerically stable if the similarity function similarity
functions fx(·) and fz(·) satisfy Condition 2.

In this paper, the filtering stability means that the state
estimation error x̃k|k is bounded in the sense of mean square,
i.e., E{∥x̃k|k∥2} < +∞ [27]. According to the theoretical
analysis of the filtering stability in [27], if the modified one-
step prediction error and measurement noise covariance matri-
ces and the posterior covariance matrix satisfy the following
constraints{

P̃∗
k|k−1 ≤ qmaxIn, R̃∗

k ≥ rminIm
pminIn ≤ Σ∗

k ≤ pmaxIn
(33)

where qmax, rmin, pmin and pmax are all positive real number-
s, then the state estimation error x̃k|k of the proposed filter is
bounded in the sense of mean square, i.e., E{∥x̃k|k∥2} < +∞.
Note that the other conditions for guaranteeing the filtering
stability in [27] hold naturally for linear systems.

Proposition 3. If there exists positive real numbers ξmin,
ξmax, λmin and λmax such that the following constraints are
fulfilled

ξmin ≤ ξ∗k ≤ ξmax, λmin ≤ λ∗
k ≤ λmax (34)

then the inequalities in (33) hold.

Proof. See Appendix G.

Proposition 3 demonstrates that if both the auxiliary parame-
ters ξ∗k and λ∗

k have lower and upper bounds, then the proposed
outlier-robust Kalman filtering framework is always stable,
which will impose additional constraints on the similarity
functions fx(·) and fz(·).

Remark 3. The proposed outlier-robust Kalman filtering
framework is related to some existing advanced Kalman filter-
ing algorithms. The standard Kalman filter and existing RSTK-
F [22] are special cases of the proposed outlier-robust Kalman
filtering framework. The proposed outlier-robust Kalman fil-
ter becomes the standard Kalman filter when the similarity
functions are, respectively, chosen as fx(t) = −0.5t and
fz(t) = −0.5t, and the proposed outlier-robust Kalman filter
becomes the existing RSTKF when the similarity functions are,
respectively, selected as fx(t) = −0.5(ν + n) log(1 + t

ν ) and
fz(t) = −0.5(ν +m) log(1 + t

ν ).

IV. NOVEL ITERATIVE ALGORITHMS FOR PROPOSED
OUTLIER-ROBUST KALMAN FILTERING FRAMEWORK

A. Fixed-point iterative algorithm

In general, it is very difficult to find analytical solutions
for µ∗

k and Σ∗
k through solving equations (15)-(20) and (26)

directly when the similarity functions fx(·) and fz(·) are
nonlinear functions. To solve this problem, we employ fixed-
point iterations to solve these equations approximately. The
detailed implementation of the proposed outlier-robust Kalman
filtering framework based on fixed-point iterations is listed in
Algorithm 1, where ϵ denotes the iteration threshold, and Nm

denotes the maximum number of iterations, and i∗ denotes the
cyclic variable at the end of the loop, and δ denotes the lower
bounds of the auxiliary parameters ξk and λk that is beneficial
to guarantee the filtering stability, as will be discussed in
Section V.

The premise of applying the proposed outlier-robust fil-
tering algorithm to practical engineering is to guarantee the
convergence of fixed-point iterations. To this end, the relation
between the fixed-point iterative algorithm and the existing
nonlinear optimization algorithm is firstly revealed.

Proposition 4. The fixed-point iterative algorithm is identical
to the existing Newton’s method with the modified Hessian
matrix as follows

Θ̃µk
(µ

(i)
k ,Σ

(i)
k ) = Θµk

(µ
(i)
k ,Σ

(i)
k )−D1(µ

(i)
k ,Σ

(i)
k ) (35)
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Algorithm 1: One time step of the proposed outlier-robust Kalman
filtering framework based on fixed-point iterations
Inputs: x̂k−1|k−1, Pk−1|k−1, Fk , Hk , zk , Qk , Rk , fx(·), fz(·),
ϵ, Nm, δ.
Time update:
1. x̂k|k−1 = Fkx̂k−1|k−1

2. Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Iterative measurement update:
3. Initialization: ξ(0)k = 1, λ(0)

k = 1

for i = 0 : Nm − 1

Calculate P̃
(i+1)
k|k−1

and R̃
(i+1)
k

4. P̃(i+1)
k|k−1

= Pk|k−1/ξ
(i)
k , R̃

(i+1)
k = Rk/λ

(i)
k

Evaluate µ
(i+1)
k and Σ

(i+1)
k

5. K̃(i+1)
k = P̃

(i+1)
k|k−1

HT
k

(
HkP̃

(i+1)
k|k−1

HT
k + R̃

(i+1)
k

)−1

6. µ(i+1)
k = x̂k|k−1 + K̃

(i+1)
k (zk −Hkx̂k|k−1)

7. Σ(i+1)
k = P̃

(i+1)
k|k−1

− K̃
(i+1)
k HkP̃

(i+1)
k|k−1

Check the convergence of iteration

8. If

∥∥∥µ(i+1)
k

−µ
(i)
k

∥∥∥∥∥∥µ(i)
k

∥∥∥ ≤ ϵ, stop iteration.

Calculate A
(i+1)
k and B

(i+1)
k

9. A(i+1)
k = Σ

(i+1)
k + (µ

(i+1)
k − x̂k|k−1)(µ

(i+1)
k − x̂k|k−1)

T

10. B(i+1)
k = (zk −Hkµ

(i+1)
k )(zk −Hkµ

(i+1)
k )T +HkΣ

(i+1)
k HT

k

Evaluate ξ
(i+1)
k and λ

(i+1)
k

11. ξ(i+1)
k = −2ḟx

(
tr(A

(i+1)
k P−1

k|k−1
)
)

12. λ(i+1)
k = −2ḟz

(
tr(B

(i+1)
k R−1

k )
)

Check the constraints in (36)
13. If ξ(i+1)

k < δ, then ξ
(i+1)
k = δ.

14. If λ(i+1)
k < δ, then λ

(i+1)
k = δ.

end for
13. x̂k|k = µ

(i∗)
k , Pk|k = Σ

(i∗)
k

Outputs: x̂k|k and Pk|k

Proof. See Appendix H.

Proposition 4 means that the fixed-point iterative algorithm
is an improved version of the existing Newton’s method. The
positive semi-definite term D1(µ

(i)
k ,Σ

(i)
k ) is subtracted from

the original Hessian matrix so that the negative definiteness
can be preserved. As a result, the fixed-point iterative algo-
rithm has better numerical stability than the standard Newton’s
method. Normally, to guarantee the local convergence of the
Newton’s method, the Hessian matrix needs to satisfy the
Lipschitz condition, and the initial value is sufficiently close
to the optimal value. Next, we will provide the convergence
conditions of the fixed-point iterative algorithm.

Theorem 5. If the initial mean vector µ
(0)
k is sufficiently

close to the optimal mean vector µ∗
k and there are positive

and bounded real numbers α1 and α2 making the following
inequalities hold{

0 ≤ f̈x(t
2)t ≤ α1

0 ≤ f̈z(t
2)t ≤ α2

, ∀t ≥ 0 (36)

then the fixed-point iterative algorithm has local convergence.

Proof. See Appendix I.

Generally, the initial mean vector µ
(0)
k is selected as the

one-step predicted state vector x̂k|k−1, i.e., µ
(0)
k = x̂k|k−1,

since x̂k|k−1 is the only available information for the mean
vector before the iterative measurement update. It is seen
from Theorem 5 that the initial value µ

(0)
k , i.e., x̂k|k−1,

needs to be sufficiently close to the optimal value µ∗
k to

guarantee the local convergence of the fixed-point iterative
algorithm. Unfortunately, the one-step predicted state vector
x̂k|k−1 may be far away from the optimal value µ∗

k when the
linear system suffers from large process uncertainty or a state
outlier. As a result, the fixed-point iterative algorithm may not
converge to a local optimum when the linear system suffers
from large process uncertainty or a state outlier, which will
degrade the filtering accuracy of the proposed outlier-robust
filter dramatically.

B. A novel separate iterative algorithm

In order to motivate the proposed separate iterative algorith-
m, we firstly present the problems that exist in the fixed-point
iterative algorithm. It can be seen from Algorithm 1 that the
Kalman gain K̃

(i+1)
k plays an important role in the iterative

measurement update because it can adjust the weights of one-
step predicted state vector x̂k|k−1 and measurement innovation
zk−Hkx̂k|k−1 adaptively. Next, we will discuss the behavior
of the Kalman gain K̃

(i+1)
k during the iterative measurement

update.
Using the 4th and 5th equations in Algorithm 1, the Kalman

gain K̃
(i+1)
k can be rewritten as

K̃
(i+1)
k = Pk|k−1H

T
k

(
HkPk|k−1H

T
k +

ξ
(i)
k

λ
(i)
k

Rk

)−1

(37)

It is observed from (37) that the behavior of the Kalman
gain K̃

(i+1)
k depends only on the ratio of auxiliary parameters,

i.e., ξ
(i)
k

λ
(i)
k

, during the iterative measurement update. It can
be also observed from the 9th-12th equations in Algorithm

1 that the ratio of auxiliary parameters ξ
(i)
k

λ
(i)
k

relies on not

only the similarity functions fx(·) and fz(·) but also the
parameters A

(i)
k and B

(i)
k , and the parameters A

(i)
k and B

(i)
k

are adaptively adjusted by the iterative posterior mean vector
µ

(i)
k and covariance matrix Σ

(i)
k at the same time. As a

result, the behavior of the Kalman gain K̃
(i+1)
k is likely to be

indefinite and depends heavily on the relative size of state and
measurement outliers. The indefinite behavior of the Kalman
gain K̃

(i+1)
k is easy to cause the iterative posterior mean

vector µ
(i)
k and covariance matrix Σ

(i)
k not to converge to

local optimums.
In this paper, we propose a heuristic idea that the iterations

of auxiliary parameters are separated to guarantee the definite
behavior of the Kalman gain. That is to say, the auxiliary pa-
rameter λ(i)(0)

k is firstly iterated with fixed auxiliary parameter
ξ
(0)(0)
k = 1 until convergence, i.e., lim

i→+∞
λ
(i)(0)
k = λ̄k, and

then the auxiliary parameter ξ(0)(j)k is iterated with fixed aux-
iliary parameter λ̄k until convergence, i.e., lim

j→+∞
ξ
(0)(j)
k = ξ̄k,

where ξ̄k and λ̄k denote the local optimums of the auxiliary pa-
rameters. The detailed implementation of the proposed outlier-
robust Kalman filtering framework based on the proposed
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Algorithm 2: One time step of the proposed outlier-robust Kalman
filtering framework based on the proposed separate iterative algorithm
Inputs: x̂k−1|k−1, Pk−1|k−1, Fk , Hk , zk , Qk , Rk , fx(·), fz(·),
ϵ1, ϵ2, N1, N2, δ.
Time update:
1. x̂k|k−1 = Fkx̂k−1|k−1

2. Pk|k−1 = FkPk−1|k−1F
T
k +Qk

Iterative measurement update:
3. Initialization: ξ(0)(0)k = 1, λ(0)(0)

k = 1

for i = 0 : N1 − 1

Calculate P̃
(i+1)(0)
k|k−1

and R̃
(i+1)(0)
k

4. P̃(i+1)(0)
k|k−1

= Pk|k−1/ξ
(0)(0)
k , R̃

(i+1)(0)
k = Rk/λ

(i)(0)
k

Evaluate µ
(i+1)(0)
k and Σ

(i+1)(0)
k

5. K̃(i+1)(0)
k = P̃

(i+1)(0)
k|k−1

HT
k

(
HkP̃

(i+1)(0)
k|k−1

HT
k + R̃

(i+1)(0)
k

)−1

6. µ(i+1)(0)
k = x̂k|k−1 + K̃

(i+1)(0)
k (zk −Hkx̂k|k−1)

7. Σ(i+1)(0)
k = P̃

(i+1)(0)
k|k−1

− K̃
(i+1)(0)
k HkP̃

(i+1)(0)
k|k−1

Calculate B
(i+1)(0)
k

8. B(i+1)(0)
k = (zk −Hkµ

(i+1)(0)
k )(zk −Hkµ

(i+1)(0)
k )T+

HkΣ
(i+1)(0)
k HT

k

Evaluate λ
(i+1)(0)
k

9. λ(i+1)(0)
k = −2ḟz

(
tr(B

(i+1)(0)
k R−1

k )
)

Check the constraints in (36)
10 If λ(i+1)(0)

k < δ, then λ
(i+1)(0)
k = δ.

Check the convergence of iteration

11. If
|λ(i+1)(0)

k
−λ

(i)(0)
k

|

|λ(i)(0)
k

|
≤ ϵ1, stop iteration.

end for
for j = 0 : N2 − 1

Calculate P̃
(i∗1)(j+1)

k|k−1
and R̃

(i∗1)(j+1)

k

12. P̃(i∗1)(j+1)

k|k−1
= Pk|k−1/ξ

(0)(j)
k , R̃

(i∗1)(j+1)

k = Rk/λ
(i∗1)(0)
k

Evaluate µ
(i∗1)(j+1)

k and Σ
(i∗1)(j+1)

k

13. K̃(i∗1)(j+1)

k = P̃
(i∗1)(j+1)

k|k−1
HT

k

(
HkP̃

(i∗1)(j+1)

k|k−1
HT

k + R̃
(i∗1)(j+1)

k

)−1

14. µ(i∗1)(j+1)

k = x̂k|k−1 + K̃
(i∗1)(j+1)

k (zk −Hkx̂k|k−1)

15. Σ(i∗1)(j+1)

k = P̃
(i∗1)(j+1)

k|k−1
− K̃

(i∗1)(j+1)

k HkP̃
(i∗1)(j+1)

k|k−1

Calculate A
(0)(j+1)
k

16. A(0)(j+1)
k = (µ

(i∗1)(j+1)

k − x̂k|k−1)(µ
(i∗1)(j+1)

k − x̂k|k−1)
T+

Σ
(i∗1)(j+1)

k

Evaluate ξ
(0)(j+1)
k

17. ξ(0)(j+1)
k = −2ḟx

(
tr(A

(0)(j+1)
k P−1

k|k−1
)
)

Check the constraints in (36)
18. If ξ(0)(j+1)

k < δ, then ξ
(0)(j+1)
k = δ.

Check the convergence of iteration

19. If
|ξ(0)(j+1)

k
−ξ

(0)(j+1)
k

|

|ξ(0)(j)
k

|
≤ ϵ2, stop iteration.

end for
20. x̂k|k = µ

(i∗1)(j
∗
2 )

k , Pk|k = Σ
(i∗1)(j

∗
2 )

k

Outputs: x̂k|k and Pk|k

separate iterative algorithm is listed in Algorithm 2, where
ϵ1 and ϵ2 denote the iteration thresholds of ξk and λk,
respectively, and N1 and N2 denotes the maximum numbers
of iterations of ξk and λk, respectively, and i∗1 and j∗2 denote
the cyclic variables at the end of the first and second loops,
respectively.

Theorem 6. If the similarity functions fz(·) and fx(·) satisfy
Condition 3 and ḟz(0) and ḟx(0) have lower bounds, then the

iterative auxiliary parameters λ(i)(0)
k and ξ

(0)(j)
k will converge

to local optimums λ̄k and ξ̄k, respectively, i.e.,

lim
i→+∞

λ
(i)(0)
k = λ̄k, lim

j→+∞
ξ
(0)(j)
k = ξ̄k (38)

Proof. See Appendix J.

We can see from Theorem 6 that if the similarity functions
fx(·) and fz(·) satisfy Condition 3 and ḟz(0) and ḟx(0) have
lower bounds, the iterative auxiliary parameters λ

(i)(0)
k and

ξ
(0)(j)
k will converge to local optima, and then the correspond-

ing posterior mean vector and covariance matrix also converge
to local optima, which guarantees the local convergence of the
proposed separate iterative algorithm. As compared with the
fixed-point iteration algorithm, the proposed algorithm doesn’t
require initial mean vector to be sufficiently close to the
optimal mean vector. Thus, the local convergence conditions
of the fixed-point iterative algorithm are more harsh than those
of the proposed separate iterative algorithm.

V. SELECTIONS OF THE SIMILARITY FUNCTIONS

It is seen from Algorithm 1 and Algorithm 2 that the
similarity functions fx(·) and fz(·) are necessary to implement
the proposed outlier-robust framework. Next, we will provide
the selections of the similarity functions to guarantee that
the proposed framework is identical to the standard Kalman
filter for the case of Gaussian noises and robust to state and
measurement outliers.

Firstly, the relationship between the approximate one-step
prediction error covariance matrix A∗

k and the true one-step
prediction error covariance matrix Pk|k−1 and that between
the approximate measurement noise covariance matrix B∗

k

and the true measurement noise covariance matrix Rk are
studied for a linear state-space model with Gaussian state and
measurement noises.

Proposition 5. For a linear state-space model with Gaussian
state and measurement noises, A∗

k and B∗
k can be, respective-

ly, approximated as the one-step prediction error covariance
matrix and measurement noise covariance matrix, i.e.,

A∗
k ≈ Pk|k−1, B∗

k ≈ Rk (39)

Proof. See Appendix K.

Secondly, we study the conditions of the similarity functions
fx(·) and fz(·) to guarantee that the proposed framework is
identical to the standard Kalman filter for the case of Gaussian
noises. Substituting (39) in (18), we have

ξ∗k = −2ḟx (n) , λ∗
k = −2ḟz (m) (40)

where n and m are, respectively, the dimensions of the state
vector and the measurement vector.

It is seen from Algorithm 1 and Algorithm 2 that the
proposed robust filter is identical to the standard Kalman filter
when the modified parameters are unity, i.e., ξ∗k = λ∗

k = 1.
Therefore, in order to guarantee that the proposed filter is
identical to the standard Kalman filter when there are no state
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TABLE I: Exemplary similarity functions f(·) and their first
and second derivatives.

f(t) ḟ(t) f̈(t)

−0.5t −0.5 0

σ2 exp( p−t
2σ2 ) −0.5 exp( p−t

2σ2 )
1

4σ2 exp( p−t
2σ2 )

−0.5(ν + p) log(1 + t
ν
) −0.5 ν+p

ν+t
0.5 ν+p

(ν+t)2

−
√

(ω + p)(ω + t) −0.5
√

ω+p
ω+t

0.25
√

ω+p
3√ω+t

and measurement outliers, the similarity functions fx(·) and
fz(·) need to satisfy the following equations

ḟx(n) = −0.5, ḟz(m) = −0.5 (41)

Finally, we discuss the conditions of the similarity functions
fx(·) and fz(·) to guarantee that the proposed framework is
robust to outliers. Define two auxiliary matrices as follows

Ψk1 = A∗
k −Pk|k−1, Ψk2 = B∗

k −Rk (42)

In general, if there are state and measurement outliers,
the approximate one-step prediction error covariance matrix
A∗

k is not less than the nominal one-step prediction error
covariance matrix Pk|k−1, and the approximate measurement
noise covariance matrix B∗

k is also not less than the nominal
measurement noise covariance matrix Rk, i.e.,

Ψk1 ≥ 0, Ψk2 ≥ 0 (43)

Furthermore, the auxiliary matrices Ψk1 and Ψk2 depend
on the magnitudes of the state and measurement outliers,
respectively, and the larger the state and measurement outliers,
the larger auxiliary matrices Ψk1 and Ψk2 will be generated.

Proposition 6. For a linear state-space model with outlier-
contaminated state and measurement noises, if the similarity
functions fx(·) and fz(·) satisfy the following conditions{

ḟx(t) < 0 f̈x(t) ≥ 0 ḟx(n) = −0.5 t ∈ [0,+∞)

ḟz(t) < 0 f̈z(t) ≥ 0 ḟz(m) = −0.5 t ∈ [0,+∞)
(44)

then the modified auxiliary parameters ξ∗k and λ∗
k satisfy the

following equations

0 < ξ∗k ≤ 1, 0 < λ∗
k ≤ 1 (45)

and the larger state and measurement outliers, the smaller
modified auxiliary parameters ξ∗k and λ∗

k will be obtained.

Proof. See Appendix L.

Employing (45) in (17) results in

P̃∗
k|k−1 −Pk|k−1 ≥ 0, R̃∗

k −Rk ≥ 0 (46)

It is observed from (46) that the modified prediction error
covariance matrix and the modified measurement noise covari-
ance matrix are, respectively, not less than the nominal pre-
diction error covariance matrix and the nominal measurement
noise covariance matrix when there are, respectively, state and
measurement outliers. Moreover, according to Proposition 6
and (17), the larger the state and measurement outliers, the
smaller the modified auxiliary parameters ξ∗k and λ∗

k will

be, and the larger the modified prediction error covariance
matrix and modified measurement noise covariance matrix will
become.

Using (16)-(17), the Kalman gain K̃∗
k can be reformulated

as

K̃∗
k = Pk|k−1H

T
k

(
HkPk|k−1H

T
k +

ξ∗k
λ∗
k

Rk

)−1

(47)

According to Proposition 6 and (47), the Kalman gain
K̃∗

k depends heavily on the relative magnitudes of the state
and measurement outliers. Specifically, the Kalman gain is
increased if the state outlier has larger magnitude than the
measurement outlier, and vice versa. As a result, the negative
effects of outliers on the proposed Kalman filtering framework
can be resisted through adjusting the Kalman gain adaptively.

As an example, some exemplary similarity functions f(·)
are listed in Table I, where p denotes the dimension of the
state vector for f(·) = fx(·) and p denotes the dimension of
the measurement vector for f(·) = fz(·), and σ and ν are,
respectively, named as the kernel size and the dof parameter
to be consistent with the existing MCKF [12] and RSTKF
[22], and ω is also named as the dof parameter.

It is easy to verify that the exemplary similarity functions
listed in Table I satisfy the conditions of Theorems 1 and 2
and Proposition 6. Theorem 3 and Propositions 1, 2, 4 and
5 don’t need the exemplary similarity functions to satisfy the
additional conditions. Next, we will further confirm whether
the exemplary similarity functions satisfy the conditions of
Theorems 4–6 and Proposition 3.

Corollary 1. If the kernel size σ and the dof parameter ν
satisfy the following constraints

σ2 exp(
n− Y ∗

1k

2σ2
) > 1, σ2 exp(

m− Y ∗
2k

2σ2
) > 1, ν > 2− p

(48)
then the exemplary similarity functions in Table I satisfy the
equation (21) in Theorem 4.

Proof. See Appendix M.

It is worth noting that there is not a constraint on the dof
parameter ω to guarantee that Theorem 4 holds. It is seen from
Corollary 1 the constraint on the kernel size σ depends on the
auxiliary parameters Y ∗

1k and Y ∗
2k. As a result, the constraint

on the kernel size σ may change for different application
scenarios. To address this problem, a reasonable scheme is
choosing a sufficiently large kernel size σ so that the constraint
on the kernel size always holds.

It is seen from (45) that ξ∗k and λ∗
k have positive upper

bounds ξmax = λmax = 1. Since the second derivatives of
the similarity functions are nonnegative, the minimum values
of the negative derivatives of the similarity functions −ḟx(t)
and −ḟz(t) are achieved at t = +∞. It can be seen from
Table I that the negative derivatives of the exemplary similarity
functions approach 0 as t tends to +∞. As a result, the
modified auxiliary parameters ξ∗k and λ∗

k don’t have positive
lower bounds, and then Proposition 3 doesn’t hold, which may
lead to filtering instability. To address this problem, we can
impose a very small lower bound δ on the modified auxiliary
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parameters ξ∗k and λ∗
k to guarantee filtering stability, as shown

in the 13th and 14th equations of Algorithm 1 and the 10th
and 18th equations of Algorithm 2.

Corollary 2. For the exemplary similarity functions, if the
kernel size σ 9 0 and the dof parameters ν 9 0 and ω 9 0,
then there exists positive and bounded real numbers α1 and
α2 making equation (36) in Theorem 5 hold.

Proof. See Appendix N.

Finally, we discuss the conditions of Theorem 6. It is
easy to verify that if the kernel size σ 9 0 and the dof
parameters ν 9 0 and ω 9 0, then ḟ(0) has a lower
bound, which guarantees the local convergence of the proposed
separate iterative algorithm. Also, according to Theorem 5 and
Corollary 2, if the kernel size σ 9 0 and the dof parameters
ν 9 0 and ω 9 0, then the fixed-point iterative algorithm
has local convergence when the initial mean vector µ

(0)
k is

sufficiently close to the optimal mean vector µ∗
k. Thus, for

the exemplary similarity functions, the convergence conditions
of the proposed separate iterative algorithm is easier to be
satisfied as compared with that of the fixed-point iterative
algorithm.

Remark 4. It is observed from Table I that the derivatives
of the exemplary similarity functions are all −0.5 when the
kernel size σ and the dof parameters ν and ω tend to infinity,
i.e., σ → +∞, ν → +∞ and ω → +∞. As a result, the
proposed outlier-robust Kalman filters based on the exemplary
similarity functions all reduce to the standard Kalman filter
when the parameters σ, ν and ω tend to infinity.

Remark 5. The state vector is deemed as a random quantity
in the proposed outlier-robust Kalman filter but the state
vector is treated as a deterministic quantity in the existing M-
estimator. It is observed from Algorithm 1 and Algorithm 2 that
the posterior covariance matrix is employed to calculate the
modified parameters during the iterative measurement update
in the proposed filter but the posterior covariance matrix is
independent of the minimization of the robust cost function in
the existing M-estimator. As compared with the existing M-
estimator, the proposed outlier-robust Kalman filter considers
the randomness inherent in the state vector by exploiting the
posterior covariance matrix during the iterative measurement
update so that the state estimation accuracy can be further
improved, as will be shown in the simulation study.

Remark 6. Different from the existing MCKF, the correntropy
is approximated as its lower-bound by using Jensen’s inequal-
ity in the proposed outlier-robust Kalman filter when the sim-
ilarity functions are, respectively, set as fx(t) = σ2 exp(p−t

2σ2 )
and fz(t) = σ2 exp(p−t

2σ2 ), and the robust state estimate is
obtained by maximizing the lower-bound of the correntropy.
Thus, the proposed outlier-robust based Kalman filter is an
improved version of the existing MCKF when the similarity
functions are, respectively, set as fx(t) = σ2 exp(p−t

2σ2 ) and
fz(t) = σ2 exp(p−t

2σ2 ), and the improved state estimation ac-
curacy can be achieved, as will be illustrated in the simulation
study.

VI. SIMULATION STUDY

A. Simulation setup and description

We consider a problem of tracking an agile target whose
positions are measured in clutter, and the horizontal positions
and corresponding velocities are chosen as elements of the
state vector. The state transition matrix and measurement ma-
trix are, respectively, Fk =

[
I2 T I2
0 I2

]
and Hk =

[
I2 0

]
,

where T = 1s and I2 denote the sampling interval and 2-
D identity matrix, respectively. The outlier contaminated state
and measurement noises are generated according to [28]

wk ∼
{
N(0,Q) w.p. 0.95
N(0, 100Q) w.p. 0.05

vk ∼
{
N(0,R) w.p. 0.95
N(0, 500R) w.p. 0.05

(49)

where the nominal state and measurement noise covariance

matrices are, respectively, selected as Q =

[
T 3

3 I2
T 2

2 I2
T 2

2 I2 T I2

]
and R = 100I2. The true initial state vector is chosen as
x0 = [0, 0, 10, 10]T, and the initial estimation error variance
is set as P0 = diag([10000, 10000, 100, 100]), and the
initial state estimate is randomly selected from a Gaussian
distribution, i.e., x̂0|0 ∼ N(x0,P0).

As an example, the similarity functions fx(·) and fz(·) are,
respectively, selected as exponential, logarithmic and square-
root functions as in Table I, and the separate iterative algorithm
is employed to implement the proposed outlier-robust Kalman
filtering framework. Then, three outlier-robust Kalman filters
can be obtained including SSMKF-exp-S, SSMKF-log-S, and
SSMKF-sqrt-S, where SSMKF-exp-S denotes the exponential
similarity function and the separate iterative algorithm based
Kalman filter, and the explanations of the other two abbrevi-
ations are similar to the SSMKF-exp-S.

The proposed outlier-robust Kalman filters are compared
with the standard Kalman filter with true noise covariance
matrices (KFTNCM), the HKF [10], the MCKF [12], the
RSTKF [22], the IMM filter [7], and the PF [3], where the true
noise covariance matrices are used to obtain filtering estimates
in the KFTNCM. The tuning parameter of the existing HKF
is set as a common value of γ = 1.345 [10], and the kernel
size of the proposed SSMKF-exp-S and the existing MCKF is
selected as σ = 10 to achieve a tradeoff between estimation
accuracy and stability [12], and the dof parameter of the
proposed SSMKF-log-S and the existing RSTKF is set as
ν = 10, and the dof parameter of the proposed SSMKF-sqrt-S
is set as ω = 5. To guarantee the convergence of the iterations,
the iteration threshold and the maximum number of iterations
are, respectively, set as ϵ = 10−16 and Nm = 50 in the
proposed filters and the existing outlier-robust Kalman filters.
To guarantee the filtering stability of the proposed filters, the
lower bounds of the auxiliary parameters are set as δ = 10−8.
To better show the advantages of the proposed filters, two
IMM filters and three particle filters are performed. In the
first IMM filter (IMM-1), the true instantaneous values of state
and measurement noise covariance matrices are used, and the
four corresponding noise models are, respectively, {Q,R},
{Q, 500R}, {100Q,R}, and {100Q, 500R}, and the model
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TABLE II: Single step run time and ARMSEs over 40s-200s.

Filters ARMSEpos (m) ARMSEvel (m/s) Time (ms)
KFTNCM 37.17 8.44 0.019

HKF 17.11 6.71 0.445

MCKF 17.43 6.56 0.465

RSTKF 16.12 10.48 0.505

IMM-1 10.73 5.91 0.4337

IMM-2 17.04 11.53 0.4337

PF-1 15.00 5.80 80.365

PF-2 16.65 8.95 80.365

PF-3 21.54 6.30 40.183

SSMKF-exp-S 14.38 6.28 0.563

SSMKF-log-S 12.75 6.22 1.359

SSMKF-sqrt-S 14.11 6.29 1.220

transition probability matrix of the first IMM filter is set as
Π1, where Π1(i, i) = 0.85 and Π1(i, j) = 0.05(i ̸= j). In the
second IMM filter (IMM-2), the inaccurate instantaneous state
and measurement noise covariance matrices are employed,
and the four corresponding noise models are, respectively,
{Q,R}, {Q, 100R}, {1000Q,R}, and {1000Q, 100R}, and
the model transition probability matrix of the first IMM filter is
selected as Π2, where all elements of Π2 are 0.25. The initial
model probability vectors of the IMM-1 and IMM-2 are both
chosen as [0.25, 0.25, 0.25, 0.25]. In the first PF (PF-1) and
the third PF (PF-3), the true Gaussian mixture PDFs of state
and measurement noises given in (49) are used, and the particle
numbers are, respectively, selected as 1000 and 500 in the PF-
1 and PF-3. In the second PF (PF-2), the inaccurate Gaussian
mixture PDFs of state and measurement noises are employed,
where the used state and measurement noise PDFs are, respec-
tively, p(wk) = 0.98N(wk;0,Q) + 0.02N(wk;0, 1000Q)
and p(vk) = 0.98N(vk;0,R) + 0.02N(vk;0, 100R). Note
that the IMM-1 and PF-1 are only used as filtering refer-
ences since the true instantaneous values of state and mea-
surement noise covariance matrices and the true state and
measurement noise PDFs are all unavailable in the presence
of random and unknown state and measurement outliers.
All filtering algorithms are coded with MATLAB and are
executed on a computer with Intel Core i7-6900K CPU
@ 3.20 GHz. The MATLAB codes of this paper will be
open access and can be freely downloaded from the link
https://www.researchgate.net/profile/Yulong Huang3.

In this simulation, the simulation time is set as 200s, and the
total number of Monte Carlo runs is selected as 1000. The root
mean square errors (RMSEs) and averaged RMSEs (ARMSEs)
of position and velocity are chosen as performance metrics to
compare the estimation accuracy, whose definitions are given
in the literature [22]. To better exhibit the RMSEs of position
and velocity of all filters in Fig. 1–Fig. 2, the RMSEs are
smoothed using a moving average method with span of 10s.

B. Simulation results and comparisons

The RMSEs and ARMSEs (40s-200s) of position and veloc-
ity and single step run time from the proposed SSMKF-exp-
S, SSMKF-log-S and SSMKF-sqrt-S and the existing outlier-
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Fig. 1: RMSEs of the proposed SSMKF-exp-S, SSMKF-log-
S and SSMKF-sqrt-S and the existing outlier-robust Kalman
filters.
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Fig. 2: RMSEs of the proposed SSMKF-exp-S, SSMKF-log-S
and SSMKF-sqrt-S and the existing IMM filters and PFs.

robust Kalman filters are, respectively, illustrated in Fig. 1
and Table II. It can be seen from Fig. 1 and Table II that
the RMSEs and ARMSEs of position and velocity from the
proposed SSMKF-exp-S, SSMKF-log-S and SSMKF-sqrt-S
are all smaller than those from the existing KFTNCM, HKF,
MCKF and RSTKF. We can also see from Table II that the
proposed SSMKFs all require more run time than the existing
outlier-robust Kalman filters. As compared with the best
ARMSEpos from the existing RSTKF and the best ARMSEvel

from the existing MCKF, the ARMSEs of position and velocity
from the proposed SSMKF-log-S improve 20.91% and 5.18%,
respectively. Thus, the proposed SSMKF-exp-S, SSMKF-log-
S and SSMKF-sqrt-S all have better estimation accuracy but
higher computational complexities than the existing KFT-
NCM, HKF, MCKF and RSTKF.
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Fig. 2 and Table II, respectively, show the RMSEs and
ARMSEs (40s-200s) of position and velocity and single step
run time from the proposed SSMKF-exp-S, SSMKF-log-S and
SSMKF-sqrt-S and the existing IMM filters and PFs. It is ob-
served from Fig. 2 and Table II that the proposed SSMKF-exp-
S, SSMKF-log-S and SSMKF-sqrt-S all have smaller RMSEs
and ARMSEs of position and velocity than the existing IMM-
2 (inaccurate noise models), PF-2 (inaccurate noise PDFs
and 1000 particles), and PF-3 (accurate noise PDFs and 500
particles). As compared with the best ARMSEpos from the
PF-2 and the best ARMSEvel from the PF-3, the ARMSEs
of position and velocity from the proposed SSMKF-log-S im-
prove 23.42% and 1.27%, respectively. It can be also observed
from Fig. 2 and Table II that the RMSEs and ARMSEs of
position of the proposed SSMKF-log-S are close to those of
the IMM-1 (filtering reference), and the RMSEs and ARMSEs
of velocity of the proposed SSMKF-log-S are close to those
of the PF-1 (filtering reference), and the proposed filters all
have smaller RMSEs and ARMSEs of position than the PF-
1. The reason that PF-1 exhibits poor estimation accuracy of
position may be because the heavy-tailed features of posterior
PDFs are easily lost during the particle filtering process when
a limited number of particles are used. Furthermore, we can
observe from Table II that the proposed SSMKFs have slightly
greater run time than the IMM filters but significantly less run
time than the PFs. Although the computational time of the PF
can be significantly reduced if it is implemented in a parallel
fashion, it still requires accurate knowledge of the probability
distributions of the state and measurement noises. Thus, the
proposed SSMKF-exp-S, SSMKF-log-S and SSMKF-sqrt-S
all have better estimation accuracy than the IMM-2, PF-2 and
PF-3, and slightly higher computational complexities than the
IMM filters but significantly lower computational complexities
than the standard PFs.

VII. CONCLUSIONS

In this paper, a SSM was proposed to quantify the similarity
between two random vectors. The measure was then employed
to develop a novel outlier-robust Kalman filtering frame-
work. Some theoretical analyses and discussions about the
approximate errors and the numerical and filtering stabilities
were provided to illustrate the effectiveness of the proposed
framework. The fixed-point iterative algorithm and the sep-
arate iterative algorithm were proposed to implement the
proposed framework, and their local convergence conditions
were also provided and compared. In addition, the selections
of the similarity functions were presented, and four exemplary
similarity functions were provided, from which the relations
between the proposed method and the existing outlier-robust
Kalman filters were revealed. Simulation results illustrated
that by selecting appropriate similarity functions, the proposed
filters can achieve improved estimation accuracy but have
higher computational complexities than the existing outlier-
robust Kalman filters. Also, as compared with the existing
IMM filter and PF, the proposed filters are more suitable for
addressing the filtering problem of a linear system with outlier-
contaminated state and measurement noises.

VIII. APPENDICES

A. Proof of Theorem 1
Using ḟ(t) < 0 and ∥x− y∥2 ≥ 0 yields

f(∥x− y∥2) ≤ f(0) (50)

Substituting (50) in (1) gives

s(x,y) = E
[
f(∥x− y∥2)

]
≤ E [f(0)] = f(0) (51)

Considering that the inequality (51) holds for arbitrary
random vectors x and y, we have

max s(x,y) = f(0) (52)

It is evident that the SSM s(x,y) is identical to f(0) when
x = y, and then x = y is a maximum point of the SSM
s(x,y).

B. Proof of Theorem 2
Since f̈x(t) ≥ 0 and f̈z(t) ≥ 0 for t ∈ [0,+∞), fx(·) and

fz(·) are convex functions. Using Jensen’s inequality, we have∫
fx(∥S−1

k|k−1(xk − x̂k|k−1)∥2)N(xk;µk,Σk)dxk ≥

fx

(∫
∥S−1

k|k−1(xk − x̂k|k−1)∥2N(xk;µk,Σk)dxk

)
(53)

∫
fz(∥S−1

Rk
(zk −Hkxk)∥2)N(xk;µk,Σk)dxk ≥

fz

(∫
∥S−1

Rk
(zk −Hkxk)∥2N(xk;µk,Σk)dxk

)
(54)

where the equalities hold if and only if the similarity functions
fx(·) and fz(·) are linear or the covariance matrix of q(xk) is
zero.

Substituting (53)-(54) into (8), the maximization problem
with respect to the posterior mean vector and covariance
matrix can be approximated as (9)-(12).

C. Proof of Theorem 3
Using (10)-(13), the Jacobian matrix ∆µk

(µk,Σk) is cal-
culated as

∆µk
(µk,Σk) = −ξkP

−1
k|k−1(µk − x̂k|k−1) + λkH

T
kR

−1
k ×

(zk −Hkµk) (55)

According to the maximum criterion, the maximum point
µ∗

k satisfies the following equation

∆µk
(µ∗

k,Σ
∗
k) = 0 (56)

Utilizing (18)-(20) and (55)-(56) yields

−ξ∗kP
−1
k|k−1(µ

∗
k − x̂k|k−1) + λ∗

kH
T
kR

−1
k (zk −Hkµ

∗
k) = 0

(57)
Solving equation (57), we can obtain the maximum point

µ∗
k as follows

µ∗
k =

(
P̃∗−1

k|k−1 +HT
k R̃

∗−1
k Hk

)−1 (
P̃∗−1

k|k−1x̂k|k−1+

HT
k R̃

∗−1
k zk

)
(58)

Substituting (17) in (58) and employing the matrix inversion
lemma [1, pp. 11-12], we can obtain (15)-(16).
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D. Proof of Theorem 4

Using (10)-(13), the Jacobian matrix ∆Σk
(µk,Σk) and the

Hessian matrix Θµk
(µk,Σk) can be calculated as

∆Σk
(µk,Σk) = −0.5ξkP

−1
k|k−1 − 0.5λkH

T
kR

−1
k Hk (59)

Θµk
(µk,Σk) = −ξkP

−1
k|k−1 − λkH

T
kR

−1
k Hk +D1(µk,Σk)

(60)
where D1(µk,Σk) denotes the second-order term given by

D1(µk,Σk) = 2ξ̃kP
−1
k|k−1(µk − x̂k|k−1)(µk − x̂k|k−1)

T×

P−1
k|k−1 + 2λ̃kH

T
kR

−1
k (zk −Hkµk)(zk −Hkµk)

TR−1
k Hk

(61)

Utilizing ξk > 0 and λk > 0 in (59), we can obtain
∆Σk

(µk,Σk) < 0, and then the maximum point Σ∗
k can be

given by (26). Substituting (17)-(20) in (60) yields

Θµk
(µ∗

k,Σ
∗
k) = −ξ∗kP

−1
k|k−1 − λ∗

kH
T
kR

−1
k Hk +D1(µ

∗
k,Σ

∗
k)

(62)
Employing (15)-(16) in (61) D1(µ

∗
k,Σ

∗
k) is calculated as

D1(µ
∗
k,Σ

∗
k) = 2ξ̃∗kP

−1
k|k−1K̃

∗
kP̄

zz
k|k−1

(
K̃∗

k

)T
P−1

k|k−1+

2λ̃∗
kH

T
kR

−1
k (Im −HkK̃

∗
k)P̄

zz
k|k−1(Im −HkK̃

∗
k)

TR−1
k Hk

(63)

where P̄zz
k|k−1 denotes an approximate innovation matrix given

by

P̄zz
k|k−1 = (zk −Hkx̂k|k−1)(zk −Hkx̂k|k−1)

T (64)

It is seen from (63) that the second-order term D1(µ
∗
k,Σ

∗
k)

depends on the real-time measurement zk. As a result, it is
very difficult to compare the term −ξ∗kP

−1
k|k−1−λ∗

kH
T
kR

−1
k Hk

and the second-order term D1(µ
∗
k,Σ

∗
k). To solve this problem,

we propose a reasonable approximation as follows

P̄zz
k|k−1 ≈ P̃zz∗

k|k−1 = HkP̃
∗
k|k−1H

T
k + R̃∗

k (65)

where P̃zz∗
k|k−1 denotes the modified innovation matrix.

Exploiting (16), (26) and (65) yields
K̃∗

kP̄
zz
k|k−1

(
K̃∗

k

)T
≈ P̃∗

k|k−1 −Σ∗
k < P̃∗

k|k−1

(Im −HkK̃
∗
k)P̄

zz
k|k−1(Im −HkK̃

∗
k)

T ≈ R̃∗
k×(

HkP̃
∗
k|k−1H

T
k + R̃∗

k

)−1

R̃∗
k < R̃∗

k

(66)

Substituting (63) in (62) and using (17) and (66) obtains

Θµk
(µ∗

k,Σ
∗
k) = (−ξ∗k + 2ξ̃∗k/ξ

∗
k)P

−1
k|k−1 − (λ∗

k − 2λ̃∗
k/λ

∗
k)×

HT
kR

−1
k Hk (67)

Employing (21) in (67), we can obtain Θµk
(µ∗

k,Σ
∗
k) < 0.

E. Proof of Proposition 1
Using (29), the cost function in (8) can be approximated as

J̃1(µk,Σk) =

∫
[ḟx(Y

∗
1k)Y1k + ḟz(Y

∗
2k)Y2k]N(xk;µk,Σk)

dxk + c{µk,Σk} (68)

Substituting (27) in (68) and using (11)-(13) and (18) yields

J̃1(µk,Σk) = −0.5ξ∗ktr(AkP
−1
k|k−1)− 0.5λ∗

ktr(BkR
−1
k )+

c{µk,Σk} (69)

Employing (69), the Jacobian matrices of J̃1(µk,Σk) with
respect to µk and Σk and the Hessian matrix of J̃1(µk,Σk)
with respect to µk are, respectively, formulated as

∂J̃1(µk,Σk)
∂µk

= −ξ∗kP
−1
k|k−1(µk − x̂k|k−1)+

λ∗
kH

T
kR

−1
k (zk −Hkµk)

∂J̃1(µk,Σk)
∂Σk

= −0.5ξ∗kP
−1
k|k−1 − 0.5λ∗

kH
T
kR

−1
k Hk

∂J̃2
1 (µk,Σk)

∂µk∂µT
k

= −ξ∗kP
−1
k|k−1 − λ∗

kH
T
kR

−1
k Hk

(70)

According to the maximum criterion and utilizing (70),
the maximum points µ∗

k and Σ∗
k can be formulated as (15)

and (26). Thus, the maximization problem in Theorem 2 and
the maximization problem in (8) with the first-order Taylor
approximations (27) and (29) have the same optimal solution.

F. Proof of Proposition 2
Using (27) yieldsY1k = ∥S−1

k|k−1Σ
1
2

k τx∥2 + 2aTxS
−1
k|k−1Σ

1
2

k τx + ∥ax∥2

τx = Σ
− 1

2

k (xk − µk), ax = S−1
k|k−1(µk − x̂k|k−1)

(71)
Since the posterior mean vector and covariance matrix of

the Gaussian distributed random vector xk are, respectively,
µk and Σk, the random vector τx has a standard Gaussian
distribution, i.e., τx ∼ N(0, In). Employing (71) and τx ∼
N(0, In), the variance of Y1k is calculated as

Var[Y1k] = E[∥S−1
k|k−1Σ

1
2

k τx∥
4]−

[
tr(ΣkP

−1
k|k−1)

]2
+∥∥∥2ΣT

2

k P−1
k|k−1(µk − x̂k|k−1)

∥∥∥2 (72)

where note that the cross variance between ∥S−1
k|k−1Σ

1
2

k τx∥2

and 2aTxS
−1
k|k−1Σ

1
2

k τx is zero since the odd origin moments of
τx are all zeros. According to the compatibility of matrix and
vector norms, we have

E[∥S−1
k|k−1Σ

1
2

k τx∥
4] ≤ E[∥τx∥4]

[
tr(ΣkP

−1
k|k−1)

]2
(73)

Considering that the random vector τx has a standard
Gaussian distribution, then the random variable ∥τx∥2 is a sum
of the squares of n independent Gaussian random variables
and has a chi-square distribution with the dof parameter
n, i.e., ∥τx∥2 ∼ χ2(n). According the property of the
chi-square distribution, the second order origin moment of
∥τx∥2 can be calculated as E[∥τx∥4] = n2 + 2n. Employing
E[∥τx∥4] = n2 + 2n and (72)-(73), we can obtain the upper
bound constraint of Var[Y1k] in (30). Similarly, we can also
derive the upper bound constraint of Var[Y2k] in (30).
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G. Proof of Proposition 3

Using (34) in (17) and (25) yields

P̃∗
k|k−1 ≤ Pk|k−1/ξmin, R̃∗

k ≥ Rk/λmax (74)Σ∗
k ≥

(
ξmaxP

−1
k|k−1 + λmaxH

T
kR

−1
k Hk

)−1

Σ∗
k ≤

(
ξminP

−1
k|k−1 + λminH

T
kR

−1
k Hk

)−1 (75)

Choosing qmax and pmax as the maximum eigenvalues of

Pk|k−1/ξmin and
(
ξminP

−1
k|k−1 + λminH

T
kR

−1
k Hk

)−1

and
selecting rmim and pmin as the minimum eigenvalues of

Rk/λmax and
(
ξmaxP

−1
k|k−1 + λmaxH

T
kR

−1
k Hk

)−1

, we can
obtain (33).

H. Proof of Proposition 4

Using (35) and (60), the modified Hessian matrix is calcu-
lated as

Θ̃µk
(µ

(i)
k ,Σ

(i)
k ) = −ξ

(i)
k P−1

k|k−1 − λ
(i)
k HT

kR
−1
k Hk (76)

According to the Newton’s iterative scheme, we haveµ
(i+1)
k = µ

(i)
k −

[
Θ̃µk

(µ
(i)
k ,Σ

(i)
k )
]−1

∆µk
(µ

(i)
k ,Σ

(i)
k )

Σ
(i+1)
k = −

[
Θ̃µk

(µ
(i)
k ,Σ

(i)
k )
]−1

(77)
Employing (55) and (76) in (77) results inµ

(i+1)
k = Σ

(i+1)
k

(
ξ
(i)
k P−1

k|k−1x̂k|k−1 + λ
(i)
k HT

kR
−1
k zk

)
Σ

(i+1)
k =

(
ξ
(i)
k P−1

k|k−1 + λ
(i)
k HT

kR
−1
k Hk

)−1

(78)
By utilizing the matrix inversion lemma [1, pp. 11-12],

µ
(i+1)
k and Σ

(i+1)
k in (78) can be written as the 6th and 7th

equations in Algorithm 1. Thus, we can obtain Proposition 4.

I. Proof of Theorem 5

Let ∆Θ̃(µk,Σk) =
∂Θ̃µk

(µk,Σk)

∂µk
. Using (11)-(13), (35)

and (60) yields

∆Θ̃(µk,Σk) = 2ξ̃k

[
P−1

k|k−1(µk − x̂k|k−1)
]⊗

P−1
k|k−1−

2λ̃k

[
HT

kR
−1
k (zk −Hkµk)

]⊗[
HT

kR
−1
k Hk

]
(79)

where
⊗

denotes the Kronecker product.
Taking the norm on both sides of (79) and utilizing the

properties of matrix norms results in∥∥∆Θ̃(µk,Σk)
∥∥
F
≤ 2β1ξ̃k

∥∥∥S−1
k|k−1(µk − x̂k|k−1)

∥∥∥
F
+

2β2λ̃k

∥∥S−1
Rk

(zk −Hkµk)
∥∥
F

(80)

where ∥ · ∥ denotes the Frobenius norm, and β1 and β2 are,
respectively, given by{

β1 =
∥∥∥S−T

k|k−1

∥∥∥
F

∥∥∥P−1
k|k−1

∥∥∥
F

β2 =
∥∥HT

k S
−T
Rk

∥∥
F

∥∥HT
kR

−1
k Hk

∥∥
F

(81)

Employing (5) and (11)-(12), we have
∥∥∥S−1

k|k−1(µk − x̂k|k−1)
∥∥∥
F
≤
√
tr(AkP

−1
k|k−1)∥∥S−1

Rk
(zk −Hkµk)

∥∥
F
≤
√

tr(BkR
−1
k )

(82)

Exploiting (13), (36) and (81)-(82) in (80) gives∥∥∆Θ̃(µk,Σk)
∥∥
F
≤ 4α1β1 + 4α2β2 (83)

Define an auxiliary function as follows

φ(τ) = Θ̃µk
(µ2

k + τ(µ1
k − µ2

k),Σk), s.t., τ ∈ [0, 1] (84)

where µ1
k and µ2

k are arbitrary two posterior mean vectors.
Taking the first-order derivative of φ(τ) obtains

φ̇(τ) = ∆Θ̃(µ2
k + τ(µ1

k − µ2
k),Σk)(µ

1
k − µ2

k) (85)

According to the Lagrange mean value theorem, there is a
variable θ ∈ [0, 1] such that the following equation is fulfilled

φ(1)− φ(0) = φ̇(θ)(1− 0) (86)

Substituting (84)-(85) in (86) yields

Θ̃µk
(µ1

k,Σk)− Θ̃µk
(µ2

k,Σk) =

∆Θ̃(µ2
k + θ(µ1

k − µ2
k),Σk)(µ

1
k − µ2

k) (87)

Taking the norm on both sides of (87) and using (83), we
have∥∥∥Θ̃µk

(µ1
k,Σk)− Θ̃µk

(µ2
k,Σk)

∥∥∥
F
≤ β

∥∥µ1
k − µ2

k

∥∥ (88)

where β is given by

β = 4α1β1 + 4α2β2 (89)

It is seen from (88)-(89) that the modified Hessian matrix
Θ̃µk

(µk,Σk) satisfies the Lipschitz condition. Thus, if the
initial mean vector µ

(0)
k is sufficiently close to the optimal

mean vector µ∗
k, then the fixed-point iterative algorithm has

local convergence.

J. Proof of Theorem 6

Firstly, we prove the convergence of λ(i)(0)
k . To this end, we

consider the two cases: λ(1)(0)
k ≥ λ

(0)(0)
k and λ

(1)(0)
k ≤ λ

(0)(0)
k .

Case 1: We first assume λ
(i)(0)
k ≥ λ

(i−1)(0)
k . Then, using the

4th-8th equations in Algorithm 2 yields
B

(i+1)(0)
k = (Im −HkK̃

(i+1)(0)
k )

(
zk −Hkx̂k|k−1

)
×(

zk −Hkx̂k|k−1

)T
(Im −HkK̃

(i+1)(0)
k )T

Im −HkK̃
(i+1)(0)
k = Rk

(
Hkλ

(i)(0)
k Pk|k−1H

T
k +Rk

)−1

(90)
Employing (90) and λ

(i)(0)
k ≥ λ

(i−1)(0)
k results in

tr(B
(i)(0)
k R−1

k ) ≥ tr(B
(i+1)(0)
k R−1

k ) (91)

Since f̈z(t) ≥ 0, −ḟz(t) is a monotonically decreasing
function. Utilizing (91) and the 9th equation in Algorithm 2
obtains

λ
(i+1)(0)
k ≤ λ

(i)(0)
k (92)

According to the mathematical induction method, we have

λ
(0)(0)
k ≤ λ

(1)(0)
k ≤ · · · ≤ λ

(i)(0)
k ≤ · · · ≤ λ

(∞)(0)
k (93)
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Considering that −ḟz(t) is a monotonically decreasing
function and tr(B

(i)(0)
k R−1

k ) ≥ 0, we obtain

λ
(i)(0)
k = −2ḟz

(
tr(B

(i)(0)
k R−1

k )
)
≤ −2ḟz(0) (94)

It is seen from (93)-(94) that {λ(i)(0)
k } is a monotonically

increasing sequence with an upper bound −2ḟz(0). Thus, the
sequence {λ(i)(0)

k } converges when λ
(1)(0)
k ≥ λ

(0)(0)
k and ḟz(0)

has lower bound.
Case 2: Similar to the Case 1, if λ(1)(0)

k ≤ λ
(0)(0)
k , we have

λ
(0)(0)
k ≥ λ

(1)(0)
k ≥ · · · ≥ λ

(i)(0)
k ≥ · · · ≥ λ

(∞)(0)
k > 0 (95)

It can be seen from (95) that {λ(i)(0)
k } is a monotonically

decreasing sequence with a lower bound 0. Thus, the sequence
{λ(i)(0)

k } also converges when λ
(1)(0)
k ≤ λ

(0)(0)
k . Above all, the

sequence {λ(i)(0)
k } converges if the similarity function fz(·)

satisfies Condition 3 and ḟz(0) has lower bound. Similarly,
we can also prove that the sequence ξ

(0)(j)
k converges if the

similarity function fx(·) satisfies Condition 3 and ḟx(0) has
lower bound.

K. Proof of Proposition 5
Using the Kalman measurement update equations in (19)-

(20) yields
A∗

k = Pk|k +KkP̄
zz
k|k−1K

T
k

B∗
k = (Im −HkKk)P̄

zz
k|k−1(Im −HkKk)

T+

HkPk|kH
T
k

(96)

Considering that P̄zz
k|k−1 ≈ HkPk|k−1H

T
k +Rk for the case

of Gaussian noises and employing (96) results inA∗
k ≈ Pk|k +Kk(HkPk|k−1H

T
k +Rk)K

T
k

B∗
k ≈ Rk −HkPk|k−1H

T
k +HkKk×

(HkPk|k−1H
T
k +Rk)K

T
kH

T
k +HkPk|kH

T
k

(97)

Substituting the Kalman measurement update equation in
(97), we can obtain (39).

L. Proof of Proposition 6
Using (42)-(43) yields{

η1 = tr(A∗
kP

−1
k|k−1) = tr(Ψk1P

−1
k|k−1) + n ≥ n

η2 = tr(B∗
kR

−1
k ) = tr(Ψk2R

−1
k ) +m ≥ m

(98)

Substituting (98) in (18) results in

ξ∗k = −2ḟx (η1) , λ∗
k = −2ḟz (η2) (99)

Employing (44) in (99), we can obtain (45). Moreover,
the larger state and measurement outliers, the larger auxiliary
matrices Ψk1 and Ψk2 are generated. Then, the larger η1 and
η2 are obtained, based on which the smaller modified auxiliary
parameters ξ∗k and λ∗

k are achieved by using (44).

M. Proof of Corollary 1
Using (13) and (27), (21) can be rewritten as

[ḟx(Y
∗
1k)]

2 ≥ f̈x(Y
∗
1k), [ḟz(Y

∗
2k)]

2 ≥ f̈z(Y
∗
2k) (100)

where Y ∗
1k and Y ∗

2k are given in (27).
Substituting the exemplary similarity functions in Table I in

(100), we can obtain (48).

N. Proof of Corollary 2

Let g(t) = f̈(t2)t. For the case of exponential similarity
function, the first-order derivative of g(t) is formulated as
follows

ġ(t) =
1

4σ2
exp

(
p− t2

2σ2

)
(1− t2

σ2
) (101)

It is observed from (101) that ġ(t) ≥ when t ∈ [0, σ] and
ġ(t) ≤ 0 when t ∈ [σ,+∞]. Then, g(t) achieves the maximum
value at t = σ, and its maximum value is 1

4σ exp(0.5p/σ2 −
0.5). Thus, if the kernel size σ 9 0, then there is a positive
and bounded α = 1

4σ exp(0.5p/σ2 − 0.5) making (36) hold.
Similarly, (36) also holds for logarithmic and square-root

similarity functions if the dof parameters satisfy the constraints
ν 9 0 and ω 9 0.
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