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Abstract—This letter investigates the ergodic secrecy rate (ES-
R) of a reconfigurable intelligent surface (RIS)-assisted communi-
cation system in the presence of discrete phase shifts and multiple
eavesdroppers (Eves). In particular, a closed-form approximation
of the ESR is derived for both non-colluding and colluding Eves.
The analytical results are shown to be accurate when the number
of reflecting elements of the RIS N is large. Asymptotic analysis
is provided to investigate the impact of N on the ESR, and it is
proved that the ESR scales with log2 N for both non-colluding
and colluding Eves. Numerical results are provided to verify the
analytical results and the obtained scaling laws.

Index Terms—Reconfigurable intelligent surface, discrete
phase shifts, multiple eavesdroppers, ergodic secrecy rate.

I. INTRODUCTION

Reconfigurable intelligent surfaces (RISs) utilize a large
number of passive reflecting elements to customize wireless
communication environments [1]–[4]. Due to the low-cost,
high energy-efficiency and full-duplex advantages, RISs are re-
garded as a promising technology for next-generation wireless
communications and hence have recently received significant
academic and industrial attention [5]–[8].

RISs have various potential applications in wireless commu-
nications, which include the design of secure wireless systems
based on the concept of physical layer security (e.g., [9]–[14]).
In [9]–[12], the authors investigated optimization problems to
jointly design the beamforming vectors and phase shifts at the
transmitter and RIS, respectively. In general, there exist two
objectives for the design of the phase shifts at the RIS: (i) to
strengthen the legitimate channels by co-phasing the reflected
signals with the signal directly received from the transmitter;
and (ii) to suppress the eavesdropping channels by setting the
reflected signals at the eavesdroppers (Eves) to be in opposite
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M. Di Renzo is with Université Paris-Saclay, CNRS and CentraleSupélec,
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phase with respect to the signal from the transmitter. The
key idea behind the optimization problems in existing works
[9]–[12] lies in achieving a favorable trade-off between these
two design objectives, which requires the knowledge of the
instantaneous eavesdropping channel state information (CSI)
at the transmitter and RIS. However, the instantaneous eaves-
dropping CSI is difficult to obtain in practice, since the Eves
are usually passive and do not actively communicate with other
nodes. Motivated by this consideration, the authors of [13] and
[14] considered RIS-assisted secrecy communications without
assuming the knowledge of the instantaneous eavesdropping
CSI.

Different from these existing works, this letter investigates
the ergodic secrecy rate (ESR) of RIS-assisted systems in
the presence of discrete phase shifts and multiple Eves. In
particular, by approximately characterizing the distribution of
the received signal-to-noise-ratios (SNRs) at the Eves, we
obtain a closed-form approximation of the ESR for both non-
colluding and colluding Eves. The analysis of the ESR, in
fact, is essentially different from the analysis of the ergodic
rate without security constraints [15], since the phase shifts at
the RIS lead to a different impact on the intended receiver
and Eves. Moreover, based on passive beamforming, the
received SNRs at the destination and Eves depend on phase
quantization errors and cascaded channels, that are different
from those in massive multiple-input multiple-output (MIMO)
systems. In order to provide insights, asymptotic analysis is
also provided, which shows that the ESR scales with logN
for both non-colluding and colluding Eves. Numerical results
are illustrated to verify that the analytical results are accurate
for large values of N .

Notation: C and Z denote the complex domain and integer
set, respectively; we denote [1 :M ] , {1, . . . ,M}, where M
is a positive integer, and [x]+ , max{0, x}; CN denotes the
complex Gaussian distributions; E[·] denotes the expectation
of a random variable; log(·) and ln(·) denote the base-two and
natural logarithms, respectively; and κ is Euler’s constant.

II. SYSTEM MODEL AND PRELIMINARIES

We consider an RIS-assisted secure communication system
with a source (S), an RIS (R) with N reconfigurable elements,
a destination (D) and K Eves (Ek, ∀k ∈ [1 : K]). The
reconfigurable elements of the RIS are arranged in a uniform
array of tiny antennas spaced half of the wavelength apart.
All nodes are assumed to be equipped with a single antenna1.

1RIS-aided transmission has several applications when multiple antennas
are not available at either the transmitter or the receiver, e.g., in device-to-
device communications [2].



2

The channels S → D, S → Ek, S → R, R → D and
R→ Ek are denoted by hSD ∈ C, hSEk

∈ C, hSR ∈ CN×1,
hRD ∈ CN×1 and hk ∈ CN×1, respectively. These channels
are modeled as hSD = gSDd

−α
2

SD , hSEk
= gSEk

d
−α

2

SEk
,

[hSR]n = gSR,nd
−α

2

SR , [hRD]n = gRD,nd
−α

2

RD and [hk]n =

gk,nd
−α

2

k , where gSD, gSEk
, gSR,n, gRD,n, gk,n ∼ CN (0, 1)

denote the small-scale fading2, dSD, dSEk
, dSR, dRD and dk

denote the distances S → D, S → Ek, S → R, R → D and
R → Ek, respectively, ∀n ∈ [1 : N ], k ∈ [1 : K], and α is
the pass-loss exponent. Then, the received signal at D and Ek
can be written as

yD =
√
P
(
ηhTSRΦhRD + hSD

)
xS + nD, (1)

yEk =
√
P
(
ηhTSRΦhk + hSEk

)
xS + nEk , (2)

respectively, where xS is the transmitted signal, E(|xS |2) = 1,
P is the transmit power, nD and nEk

∼ CN (0, δ2) are the
additive white Gaussian noises at D and Ek, respectively,
η ∈ (0, 1] is the amplitude reflection coefficient, Φ ,
diag(ejϕ1 , . . . , ejϕN ) and ϕn ∈ [0, 2π) is the phase shift of
the nth element of the RIS.

We assume that the RIS does not have access to the instanta-
neous eavesdropping CSI, so that it cannot design ϕn in order
to suppress the received SNRs at the Eves. However, the RIS
is assumed to know the instantaneous legitimate CSI. Under
these assumptions, the optimal value of ϕn that maximizes
the received SNR at D is ϕ∗

n = θSD− θSR,n− θRD,n, where
θSD, θSR,n and θRD,n denote the phases of gSD, gSR,n and
gRD,n, respectively. Due to hardware limitations, ϕn can only
take a finite number of discrete values. In particular, the set of
discrete phase shifts is denoted by F ,

{
0, 2π

2b
, . . . , (2b−1)2π

2b

}
,

where b denotes the number of quantization bits. Accordingly,
we set ϕn = f1(ϕ

∗
n), where the function f1(ϕ

∗
n) maps ϕ∗n to

the nearest point in F , i.e.,

f1(ϕ
∗
n) = ϕ̂i, if |ϕ∗

n − ϕ̂i| ≤ |ϕ∗
n − ϕ̂j |, ϕ̂i, ϕ̂j ∈ F , ∀j ̸= i. (3)

Therefore, the phase quantization error is Θn = f1(ϕ
∗
n)−ϕ∗n,

which is uniformly distributed in
[
− π

2b
, π
2b

]
, similar to [15],

[17]. According to (1) and (2), the received SNRs at D and
Ek can be formulated, respectively, as follows

γD = ρ

∣∣∣∣∣|hSD|+ η

N∑
n=1

|[hSR]n[hRD]n| ejΘn

∣∣∣∣∣
2

= ρ

∣∣∣∣∣d−α
2

SD |gSD|+ ηd
−α

2
SR d

−α
2

RD

N∑
n=1

|gSR,ngRD,n|ejΘn

∣∣∣∣∣
2

, (4)

γEk = ρ

∣∣∣∣∣hSEk + η

N∑
n=1

|[hSR]n[hk]n| ejψk,n

∣∣∣∣∣
2

= ρ

∣∣∣∣∣d−α
2

SEk
gSEk + ηd

−α
2

SR d
−α

2
k

N∑
n=1

|gSR,ngk,n| ejψk,n

∣∣∣∣∣
2

, (5)

where ψk,n , f2(ϕ
∗
n, θSR,n) + θk,n, θk,n is the phase of gk,n

and the function f2(ϕ∗n, θSR,n) is defined as follows

f2(ϕ
∗
n, θSR,n) , f1(ϕ

∗
n) + θSR,n. (6)

2Since the elements of the RIS are spaced half of the wavelength apart and
we assume that the location of the RIS cannot be optimized to ensure strong
line-of-sight links, we have, as a first approximation similar to [14]–[16], that
the channels can be modeled as independent and identically distributed, and
follow a Rayleigh distribution.

The ESR3 can be expressed as follows

Rs = [RD −RE ]
+, (7)

where RD = EγD [log(1 + γD)] and RE denote the ergodic
rates from S to D and from S to the Eves, respectively.
Given {Θn}Nn=1, an approximated expression of RD can be
found in [15, Eq. (13)]. By averaging over {Θ}Nn=1, RD can
be calculated as shown in (8) at the top of the next page,
where A1 , η2d−αSRd

−α
RD, A2 ,

√
πη2b

4 d
−α

2

SD d
−α

2

SR d
−α

2

RD sin π
2b

and A3 , η222b

32 d−αSRd
−α
RD

(
1−cos 2π

2b

)
.

Remark 1: The analysis of the ESR for the considered RIS-
assisted system relies only on the knowledge of the statistical
eavesdropping CSI, which can be obtained by using several
methods, such as those used in [19].

In the following sections, RE is calculated for non-colluding
and colluding Eves, respectively.

III. NON-COLLUDING EVES

In the non-colluding case, RE can be expressed as follows

RE = max
k∈[1:K]

REk , (9)

where REk
, EγEk

[log(1+γEk
)]. In order to derive REk

, the
distribution of γEk

in (5) needs to be computed.
A. Distribution of γEk

Before deriving the distribution of γEk
, we introduce the

following lemma.
Lemma 1: The phase ψk,n, k ∈ [1 : K], n ∈ [1 : N ], in

(5) has the following properties:
a) ψk,n is uniformly distributed in [0, 2π);
b) ψk,n is independent of f2(ϕ∗n, θSR,n) defined in (6);
c) ψk,i is independent of ψk,j , ∀i ̸= j, i, j ∈ [1 : N ].

Proof: See Appendix A.
Based on Lemma 1, the distribution of γEk

in (5) is provided
in the following lemma.

Lemma 2: When N is large, γEk
can be approximated

with an exponential random variable with mean λEk
=

ρ
(
d−αSEk

+NBk
)
, where Bk , η2d−αSRd

−α
k .

Proof: Define Gk ,
∑N
n=1 |gSR,ngk,n| ejψk,n , k ∈ [1 :

K]. Based on [20, Lemma 2] and the fact that {ψk,n}Nn=1

are independent and identically distributed uniform random
variables in [0, 2π) as proved in Lemma 1, Gk ∼ CN (0, N)
as N → ∞. Furthermore, since gSEk

is independent of Gk,
we have

d
−α

2

SEk
gSEk

+ηd
−α

2

SR d
−α

2

k Gk ∼ CN
(
0, d−αSEk

+NBk
)
,

as N → ∞. Recalling that γEk
= ρ

∣∣∣d−α
2

SEk
gSEk

+
√
BkGk

∣∣∣2
in (5), the proof follows.

Remark 2: The authors of [15] approximated RD based on
the fact that Jensen’s inequality is tight, rather than an upper
bound, if Var[γD]

E2[γD] → 0, as N → ∞. However, Lemma 2 shows
that Jensen’s inequality cannot be applied for approximating
RE , since Var[γEk

]

E2[γEk
] → 1, as N → ∞.

3We assume that the RIS appropriately customizes the wireless channel
but we consider that the distribution of the signal transmitted by S is always
Gaussian. It is worth mentioning that the information-theoretic characteriza-
tion of RIS-assisted transmission and the calculation of the optimal input
distribution in the presence of an RIS is an open issue that is currently under
active research [18]. This is, however, beyond the scope of this letter.
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RD≈ log

(
1+ρ

(
Nη2d−αSRd

−α
RD+d−αSD+

π
3
2 η

4
d
−α

2
SD d

−α
2

SR d
−α

2
RD

N∑
n=1

EΘn [cosΘn]+
π2η2

8
d−αSRd

−α
RD

N−1∑
i=1

N∑
k=i+1

EΘi,Θk [cos(Θk−Θi)]

))
= log

(
1 + ρNA1 + ρd−αSD + ρNA2 + ρN(N − 1)A3

)
, (8)

B. Ergodic Secrecy Rate

The ESR for non-colluding Eves is summarized in the
following theorem.
Theorem 1: When N is large, the ESR for non-colluding

Eves can be expressed as follows

Rs ≈
[
RD +

1

ln 2
max
k∈[1:K]

e
1

λEk Ei

(
− 1

λEk

)]+
, (10)

where Ei(x) , −
∫∞
−x

e−t

t dt, x < 0, is the exponential integral
function [21, Eq. 8.211].

Proof: When N is large, based on Lemma 2, REk
in (9)

can be approximated as follows

REk
≈
∫ ∞

0

log(1 + x)
1

λEk

e
− x

λEk dx =
1

ln 2

∫ ∞

0

e
− x

λEk

1 + x
dx

=− e
1

λEk

ln 2
Ei

(
− 1

λEk

)
, (11)

where the last equality is based on [21, Eq. 3.352.4]. Com-
bining (7), (9) and (11), the theorem is proved.

C. Asymptotic Analysis

To obtain insights from the obtained ESR, its asymptotic
behavior is analyzed in the following corollary.
Corollary 1: As N → ∞, Rs → logN + logA3 +
κ

ln 2 −maxk∈[1:K] logBk, which implies that the ESR for non-
colluding Eves scales with logN .

Proof: From (8), we have

RD≈ log

(
ρA3N

2

(
1

ρA3N2
+

A1

A3N
+

d−αSD
A3N2

+
A2−A3

A3N
+1

))
→ 2 logN + log ρ+ logA3, as N → ∞. (12)

In addition, REk
in (11) can be further expressed as follows

REk

(a)
≈ e

1
λEk

ln 2

(
−κ+ ln(λEk

) +
∞∑
i=1

(−1)i+1

i · i! · λiEk

)
(b)→ log(λEk

)− κ

ln 2

(c)
= log (NρBk) + log

(
1 +

d−αSEk

NBk

)
− κ

ln 2

→ logN + log ρ+ logBk −
κ

ln 2
, as N → ∞. (13)

where (a) is based on (11) and [21, Eq. 8.214.1], (b) holds
since 1/λEk

→ 0 as N → ∞, and (c) is based on the
definition of λEk

in Lemma 2.
Combining (7), (9), (12) and (13), the corollary follows.
Remark 3: Compared with the scaling law 2 logN for non-

secrecy transmission with discrete phase shifts [15], Corollary
1 shows that the ESR scales with logN .

IV. COLLUDING EVES

When the Eves are colluding, they can combine their
received signals for information interception. Based on [22],
RE in (7) can be expressed as follows

RE = E{γEk
}K
k=1

log

(
1 +

K∑
k=1

γEk

)
. (14)

Since common random variables {gSR,n}Nn=1 are present in
every γEk

as shown in (5), {γEk
}Kk=1 are correlated random

variables. However, the following lemma shows that such
correlation is negligible for large values of N .

Lemma 3: γEi is independent of γEj if N → ∞, i, j ∈
[1 : K], i ̸= j.

Proof: Let us define HEk , d
−α

2
SEk

gSEk +√
Bk
∑N
n=1 |gSR,ngk,n| e

jψk,n . Thus, γEk
= ρ|HEk

|2.
According to Lemma 1-a), E

[
ejψk,n

]
= 0 and E [HEk ] = 0,

∀k ∈ [1 : K]. Moreover, since ψi,n is independent of ψj,m if
i ̸= j or n ̸= m, we have E[HEiHEj ] = 0, ∀i ̸= j. Therefore,
the covariance of HEi and HEj is zero. Furthermore, based
on Lemma 2, {Hk}Kk=1 are uncorrelated complex Gaussian
variables if N → ∞, and hence {Hk}Kk=1 are independent of
each other. This completes the proof.

A. Ergodic Secrecy Rate

Based on Lemma 2 and Lemma 3, the ESR is provided in
the following theorem.

Theorem 2: When N is large, and λEi ̸= λEj , ∀i ̸= j,
i, j ∈ [1 : N ], the ESR for colluding Eves can be approximated
as follows

Rs≈

RD+
1

ln 2

K∑
i=1

e
1

λEi Ei

(
− 1

λEi

) K∏
j=1,j ̸=i

λEi

λEi−λEj

+

.

(15)
Proof: Based on Lemma 2 and Lemma 3, if λEi ̸= λEj ,

∀i ̸= j,
∑K
k=1 γEk

has the following probability density
function (PDF) [23]:

f∑K
k=1

γEk
(x)=

K∑
i=1

1

λEi

e
− x

λEi

K∏
j=1,j ̸=i

λEi

λEi−λEj

. (16)

Combining (11), (14) and (16), we obtain

RE ≈ − 1

ln 2

K∑
i=1

e
1

λEi Ei

(
− 1

λEi

) K∏
j=1,j ̸=i

λEi

λEi − λEj

. (17)

Recalling (7), the theorem is proved.
Remark 4: Theorem 2 corresponds to the case that the Eves

lie in different locations, so that {γEk
}Kk=1 have different

means. When the Eves are clustered relatively closely together,
{γEk

}Kk=1 have the same (or a very similar) mean. In this case,
the ESR can be analyzed in a similar way, whose details are
not provided due to space limitations.
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Fig. 1. Ergodic secrecy rate vs. N , for K = 5.

B. Asymptotic Analysis

The asymptotic behavior of the obtained ESR for colluding
Eves is provided in the following corollary.
Corollary 2: As N → ∞, Rs → logN +logA3+

κ
ln 2 −∑K

i=1 logBi
∏K
j=1,j ̸=i

Bi

Bi−Bj
, which implies that the ESR for

colluding Eves also scales with logN .
Proof: From (11), (13) and (17), we have

RE →
K∑
i=1

(
logN+log ρ− κ

ln 2
+logBi

) K∏
j=1,j ̸=i

λEi

λEi−λEj

(a)→
K∑
i=1

(
logN+log ρ− κ

ln 2
+logBi

) K∏
j=1,j ̸=i

Bi
Bi−Bj

(b)
= logN+log ρ− κ

ln 2
+

K∑
i=1

logBi

K∏
j=1,j ̸=i

Bi
Bi−Bj

, (18)

where (a) holds since λEk
= ρNBk

(
1 +

d−α
SEk

NBk

)
→ ρNBk

as N → ∞, and (b) is based on the fact that∑K
i=1

∏K
j=1,j ̸=i

Bi

Bi−Bj
= 1, as proved in [23, Chapter 5].

Combining (7), (12), (14) and (18), the proof follows.
Remark 5: Comparing Corollaries 1 and 2, we evince that

only the last terms for the asymptotic ESR are different, i.e.,
maxk∈[1:K] logBk and

∑K
i=1 logBi

∏K
j=1,j ̸=i

Bi

Bi−Bj
for non-

colluding and colluding Eves, respectively. In addition, the
ESRs for both non-colluding and colluding Eves have the same
scaling law, i.e., logN .

C. Large Number of Eves

To obtain more insights from the obtained ESR, we provide
a simplified expression of Rs for large values of K in the
following corollary.
Corollary 3: When N and K → ∞, the ESR for collud-

ing Eves can be approximated as follows

Rs ≈

[
RD − log

(
1 +

K∑
k=1

λEk

)]+
. (19)

Proof: Based on Lemma 3,
Var

[∑K
k=1 γEk

]
→
∑K
k=1 λ

2
Ek

as N → ∞. Thus,
Var[

∑K
k=1 γk]

(E[
∑K

k=1 γk])
2 →

∑K
k=1 λ

2
Ek

(
∑K

k=1 λEk)
2 → 0 as N and K → ∞.

According to [24, Theorem 4], RE in (14) can be
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Fig. 2. Ergodic secrecy rate vs. K, for N = 250.

approximated as RE ≈ log
(
1 + E

[∑K
k=1 γk

])
. This

completes the proof.

V. NUMERICAL RESULTS

In this section, numerical results are provided to verify the
analytical results stated in the theorems and corollaries. For
illustrative purposes, we set α = 3, b = 3 bits, P = 20 dBm,
σ2 = −96 dBm and η = 0.8. In addition, S, R and D are
located at (0, 0) m, (100, 0) m and (90, 20) m, respectively. As
for the Eves, Ek is located at

(
90k
K ,−20

)
m, k ∈ [1 : K]. For

the considered simulation setup, the ESR is zero in the absence
of RIS. In this case, in fact, the ESR for non-colluding Eves
can be expressed as Rs =

[
f3(dSD)−maxk∈[1:K] f3(dSEk)

]+
,

where f3(x) , 1
ln 2

∫∞
0
e
− t

ρx−α /(1 + t)dt, x > 0. Therefore,
Rs = 0 since f3(x) is a decreasing function of x and dSD ≥
dSEk

in the considered network configuration, ∀k ∈ [1 : K].
Fig. 1 shows the impact of the number of reconfigurable

elements N on the ESR, when the number of Eves is K = 5.
We observe that the approximated analytical results in Theo-
rems 1 and 2 match well with Monte Carlo simulations almost
for all values of N . This is because the ESR is zero for small
values of N , and starts to be positive for large values of N ,
i.e., N ≥ 46 in the considered case. We also observe that the
ESR increases with N . For example, the ESRs are about 3.7
bps/Hz and 2.5 bps/Hz for non-colluding and colluding Eves,
respectively, if N = 100. In addition, the analytical results
obtained in Corollaries 1 and 2 asymptotically approach the
simulations as N becomes sufficiently large, which confirms
the scaling laws. The setup with non-colluding Eves provides
a larger secrecy rate since only the “best” Eve determines the
ESR. There exists a constant gap of about 1 bps/Hz between
the ESRs for non-colluding and colluding Eves if N exceeds
104.

In Fig. 2, the ESR as a function of the number of Eves
K for N = 250 is shown. The figure confirms the findings
in Corollary 3 for colluding Eves, and we observe that the
approximation in (19) becomes tighter as K increases. The
ESR for non-colluding Eves is less affected by K. We observe,
in particular, that there exists an ESR floor of about 5 bps/Hz
for large values of K. This is because the ESR for non-
colluding Eves is determined by the nearest Eve to the source.
In the considered simulation setup, the nearest Eve is located
at around (0,−20) m, when K is large.
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VI. CONCLUSIONS

This letter investigated the ESR of an RIS-assisted com-
munication system in the presence of discrete phase shifts
and multiple Eves. We obtained an approximated closed-form
expression of the ESR and unveiled that the ESR scales with
logN in the presence of both non-colluding and colluding
Eves. An interesting future direction is to analyze the ESR
of RIS-assisted systems in the presence of multi-antenna
transmitters. For example, the recent research works in [16],
[25] could be generalized in order to take into account security
constraints.

APPENDIX A
PROOF OF LEMMA 1

Let us denote X1,n , f2(ϕ
∗
n, θSR,n), X2,n , θk,n and

Yn , ψk,n. Accordingly, Yn = X1,n + X2,n as shown in
Section II. We note that the random phases X1,n, X2,n and
Yn have a uniform circular distribution.

Given X1,n = x1, ∀x1 ∈ [0, 2π), Yn = x1 + X2,n is uni-
formly distributed in [x1, x1+2π) = [x1, 2π)∪ [2π, x1+2π).
Since Yn has a circular uniform distribution, [2π, x1 + 2π)
is equivalent to [0, x1). Thus, Yn is uniformly distributed in
[0, 2π), which proves Lemma 1-a).

Since X1,n and X2,n are independent, their joint PDF is

fX1,n,X2,n(x1, x2)=fX1,n(x1)fX2,n(x2)=
1

2π
fX1,n(x1). (20)

We can construct the following Jacobian matrix

JX1,n,Yn(x1, x2) =

[
∂x1
∂x1

, ∂x1
∂x2

∂y
∂x1

, ∂y
∂x2

]
=

[
1, 0
1, 1

]
. (21)

Thus, the joint PDF of X1,n and Yn can be written as

fX1,n,Yn(x1, y) =
fX1,n,X2,n(x1, x2)

det(JX1,n,Yn(x1, x2))
=

1

2π
fX1,n(x1)

= fX1,n(x1)fYn(y), (22)

which implies that Yn is independent of X1,n. Thus, Lemma
1-b) is proved.

For ∀i ̸= j and i, j ∈ [1 : N ], we have Yi = X1,i + X2,i

and Yj = X1,j +X2,j . Although the same random phase θSD
is present in both Yi and Yj as shown in Section II, Yi is still
independent of Yj , due to the following two facts: (i) Yi and
Yj are independent of X1,i and X1,j , respectively, according
to Lemma 1-b); (ii) X2,i is independent of X2,j . Therefore,
Lemma 1-c) is proved.
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