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A B S T R A C T   

Forest height is an important forest biophysical parameter which is used to derive important information about 
forest ecosystems, such as forest above ground biomass. In this paper, the potential of combining Polarimetric 
Synthetic Aperture Radar (PolSAR) variables with LiDAR measurements for forest height estimation is investi-
gated. This will be conducted using different machine learning algorithms including Random Forest (RFs), 
Rotation Forest (RoFs), Canonical Correlation Forest (CCFs) and Support Vector Machine (SVMs). Various Pol-
SAR parameters are required as input variables to ensure a successful height retrieval across different forest 
heights ranges. The algorithms are trained with 5000 LiDAR samples (less than 1% of the full scene) and different 
polarimetric variables. To examine the dependency of the algorithm on input training samples, three different 
subsets are identified which each includes different features: subset 1 is quiet diverse and includes non-vegetated 
region, short/sparse vegetation (0–20 m), vegetation with mid-range height (20–40 m) to tall/dense ones (40–60 
m); subset 2 covers mostly the dense vegetated area with height ranges 40–60 m; and subset 3 mostly covers the 
non-vegetated to short/sparse vegetation (0–20 m) .The trained algorithms were used to estimate the height for 
the areas outside the identified subset. The results were validated with independent samples of LiDAR-derived 
height showing high accuracy (with the average R2 = 0.70 and RMSE = 10 m between all the algorithms and 
different training samples). The results confirm that it is possible to estimate forest canopy height using PolSAR 
parameters together with a small coverage of LiDAR height as training data.   

1. Introduction 

Forest height is a significant forest biophysical parameter which 
could be used to derive important information about forest ecosystems, 
such as forest above ground biomass (AGB). Remote sensing technolo-
gies offer different techniques for retrieval of this parameter including 
Light Detection And Ranging (LiDAR) and Polarimetric Interferometric 
Synthetic Aperture Radar (PolInSAR). LiDAR is able to measure the 
forest canopy height directly and it provides the most precise mea-
surements in compare to other remote sensing techniques. The use of 
LiDAR data for forest canopy height mapping is well demonstrated and 

established in the literature (Dubayah and Drake, 2000, Simard et al., 
2011, Fayad et al., 2016, Silva et al., 2018). Nevertheless, LiDAR 
availability, particularly on airborne platforms, is limited by the ac-
quisitions cost and persistent cloud cover especially in the tropics. 
PolInSAR is a model-based technique for estimation of forest canopy 
height (Cloude and Papathanassiou, 1997, Cloude and Papathanassiou, 
1998). It uses two polarimetric SAR (PolSAR) images that are acquired 
over a test site with a given temporal and spatial baselines. Besides the 
challenges associated with temporal and volume decorrelation (Kugler 
et al., 2015, Lavalle and Hensley, 2012) affecting the performance of 
PolInSAR model, current applications of PolInSAR are constrained by 
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the limited availability of spaceborne PolInSAR data (Pourshamsi et al., 
2018a). Currently there are data sources from spaceborne SAR in-
terferometers such as Sentinel-1A and B (C-band; (Torres et al., 2012), 
Tandem-X (X-band (Krieger et al., 2007), RADARSAT-2 (C-band; (Khati, 
et al., 2018)), and ALOS-PALSAR2 (L-band; (Shimada et al., 2014)). SAR 
C- and X-band are categorized as SAR short wavelengths and are not 
suitable for mapping forest height over tropical regions, because tropical 
forests are highly complex, dense and up to 70 m tall. Short SAR 
wavelengths do not penetrate into the canopy all the way to the ground; 
therefore, canopy height is generally underestimated unless a ground 
digital terrain model is available. Kugler et al., 2015 explored the suit-
ability of the TanDEM-X PolInSAR data for forest height estimation for 
three different forest types, boreal, temperate and tropical. While the 
results are significantly accurate for the boreal (R2 = 0.86) and 
temperate (R2 = 0.77), it is less accurate for the tropical forest (R2 =

0.50) (Kugler et al., 2015). This is due to the interaction of the X-Band 
SAR with the canopy leaves which causes a low penetration. 
RADARSAT-2 and Sentinel-1A and B offer a SAR C-Band which is again 
categorised as short SAR wavelength. Likewise X-Band SAR, it is also 
suffered by the canopy penetration capability for the tropical forest. In 
addition to this limitation, their data are acquired in a repeat-pass 
interferometric mode. Hence, their data are highly influenced by the 
volume and temporal decorrelations that significantly lead to a loss of 
coherence, which then cause a large bias in the height estimation of the 
tropical forest (Khati, et al., 2018). PolInSAR data from ALOS-PALSAR2 
sensor are also available. However, similar to RADARSAT-2 and 
Sentinel-1A and B data, its data are acquired in a repeat-pass mode 
(Khati, et al., 2018). 

Considering the issues associated with the current techniques for 
forest height estimation and the availability of the required data, there 
are needs for new approaches for forest canopy height estimation. An 
example is merging multi-source remotely sensed data such as PolSAR 
and LiDAR. PolSAR data provide important information about the 
physical scattering mechanisms (Lee and Pottier, 2009), but they do not 
allow direct retrieval of vertical scattering profiles. Hence, they should 
be combined with other data sources that provide vertical scattering 
profiles inside forest canopies such as LiDAR. This could be conducted in 
a machine learning approach. Therefore, in this study the potential of 
integrating PolSAR and sparse LiDAR datasets using machine learning 
algorithm for estimating tropical forest canopy height is demonstrated. 

Recently, numerous machine learning algorithms methods have been 
used for combining multisource remotely sensed data due to accurate 
classification/regression capability, less parameter tuning and lower 
computational complexity, higher ability to integrate multisource data, 
or no assumptions made on the data distribution among others. The 
most popular and widely used machine learning methods are Decision 
Trees (DT) ensemble methods (e.g. Random Forest (RF)) and Support 
Vector Machine (SVM) (Smola and Schölkopf, 2004). DT ensembles 
capture non-linearity between predictors and response, and also deal 
with highly correlated features. They can run on large-scale datasets in 
an efficient way and are robust to outliers and noise. 

SVM is a supervised classifier which explicitly looks for the best 
separating line (hyperplane) in the multi-dimensional dataset (Smola 
and Schölkopf, 2004) for both regression and classification tasks. The 
support vectors attempt to find an optimal regression that deviates from 
the target (training input) less that a given threshold ε while being as flat 
as possible (Smola and Schölkopf, 2004). 

The applications of machine learning algorithms for merging 
multisource remotely sensed data for forestry applications have been 
well established and documented in the scientific literature. They cover 
various applications such as forest health (Wang et al., 2015), forest fire 
(Zhao et al., 2011), forest change (Singh et al., 2014), and forest biomass 
(Gleason and Im, 2012; Fassnacht et al., 2014), etc. Although there have 
been many studies focused on various forestry applications (e.g. forest 
biomass estimation) using machine learning, only a small attempt has 
been made for forest height estimation. Stojanova et al., 2010 

investigated forest canopy height mapping by combining LiDAR and 
Landsat data using ensemble methods and single- and multi-target 
regression trees. Chen et al., 2012 suggested a joint use of LiDAR and 
Quickbird imagery in a Support Vector Regression (SVR) model to es-
timate forest canopy height over a test site in Quebec, Canada. Gu et al., 
2018 explored forest height mapping using a combination of Geometric- 
Optical Model for Sloping Terrains (GOST), Landsat 7 ETM+, and 
airborne LiDAR in the western Greater Khingan Mountains of China 
using neural network and a look-up table. García et al. (2018) proposed 
a forest canopy height modelling technique by merging LiDAR, multi-
spectral data and SAR backscatter using SVM where SAR backscatter and 
multispectral data were used to extrapolate LiDAR measurements and 
estimate forest canopy height at a larger scale. Li et al., 2020 proposed 
merging the ICESat-2 satellite LiDAR data with Sentinel-1 (SAR C-Band), 
Sentinel-2 (Optical) and Landsat-8 data using Deep Learning and 
Random Forest. Brigot et al., 2019 investigated the potential of fusing 
PolInSAR data with LiDAR height using Random Forest and Neural 
Network. Xie et al., 2019 proposed a multi-baseline PolInSAR and LiDAR 
data merging approach for improved forest height estimation. In a 
similar study, Pourshamsi et al. (2018a) examined an integration of 
PolInSAR components and LiDAR-derived height using SVM for 
improved estimation of forest height. Whilst the results obtained from 
this approach are more accurate than PolInSAR alone, the model per-
formance is limited by the PolInSAR data availability. Pourshamsi et al., 
(2018b) investigated the combined use of polarimetric SAR parameters 
extracted from different decomposition techniques (H/A/Alpha (Cloude 
and Pottier, 1996) and Krogager (Krogager, 1990) and LiDAR samples to 
estimate forest height using SVM. The estimated height has a significant 
accuracy and is relatively similar to the one estimated by the PolInSAR 
technique (Pourshamsi et al., 2018c). Although their results are signif-
icant and showed the potential of the approach for accurate forest height 
estimation in the absence of interferometric measurements, the LiDAR 
samples for training the model were collected from all part of the scene. 
This large distribution of LiDAR samples overlapping the entire SAR 
image is not often available. This underlines the need for examination of 
the approach with a different data sampling scenario for training the 
model. Additionally, in their study only the performance of the SVM is 
assessed. So, there is a need to assess the effectiveness of the application 
(PolSAR and LiDAR data integration for forest height estimation) by 
examining it in different machine learning models. 

This study aims at investigating the capabilities of PolSAR parame-
ters extracted from different polarimetric decompositions for forest 
height estimation by combining them with LiDAR-derived height using 
different machine learning algorithms and extracting the training sam-
ples from a subset of the scene. This allowed investigating the de-
pendency of the model performance on the training data. Multiple 
machine learning algorithms including Random Forest (RF), Rotation 
Forest (RoF), Canonical Correlation Forest (CCF) and Support Vector 
Machine (SVM) are used to extrapolate LiDAR-derived height using 
PolSAR parameters. This allowed checking PolSAR parameters capa-
bilities for forest height estimation independent of the type of machine 
learning algorithms. The specific objectives of this paper are to 1) 
quantify the accuracy of forest canopy height retrieval integrating 
PolSAR-decomposition-based components with LiDAR samples; 2) 
explore the potential of PolSAR components for estimation of forest 
height in the absence of interferometric SAR measurements; 3) investi-
gate the dependency of model performance on the training data and 4) 
explore the sensitivity of the input features to forest canopy height 
estimation. Presenting this method for integrating these multi-sensor 
datasets for forest height estimation, exploring the model dependency 
on the selected training data, and investigating the application perfor-
mance across different machine learning models are the novel contri-
bution of this research. 
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2. Study site and data 

The datasets used for this study was acquired as part of the AfriSAR 
campaign (ESA, 2017). The campaign was organised by the European 
Space Agency and NASA to collect a series of airborne and field data at 
multiple forest sites in Gabon namely: Mondah, Lope, Mabounie and 
Rabi (ESA, 2017). Here, we focus on Lope. 

2.1. Study site 

The study site is located at the North Eastern part of Lope National 
Park in central Gabon (Fig. 1). The area covers three dominant vegeta-
tion types, namely short/sparse savannas (0–20 m), vegetation with 
mid-range height (20–40 m) and tall/dense forest (20–60 m). Fig. 1 (a) is 
the location of Gabon within the continent of Africa, Fig. 1 (b) represents 
the geographical position of Lope National Park in Gabon, Fig. 1 (c) is 
the location of study site in North Eastern part of Lope and Fig. 1 (d) is 
the map of forest top canopy height retrieved from airborne LiDAR 
(RH100). The RH100 map indicates three dominant regions within the 
study site:  

i) Dark blue areas are the non-vegetated, bare soils, and sparsely 
distributed short woody savannas, where the canopy height 
reaches up to 20 m. This area covers about 40% of the test site;  

ii) Light blues areas are vegetation with medium range height 
(20–40 m). They only cover about 20% of the test site and mainly 
located at the edge between the non-vegetated and forested re-
gions; and  

iii) Green/light yellow areas are tall/dense forested regions with 
canopy height ranges between 40 and 60 m. They cover about 
40% of the test site. These areas comprise trees with different 
ages: young (<10 years), intermediate (10–24 years), older 
(25–49 years), maturing (>50 years) and old growth and various 
tropical species (Lewis and Labrière, 2016). 

The topographic variation is visible within the test site which is more 
dominant in the north part of the image. 

2.2. Radar acquisitions 

Fully polarimetric SAR data were acquired by the NASA’s UAVSAR, 
which is an airborne instrument equipped with an L band SAR and 
operates at 1217.5–1297.5 MHz (Lavalle and Hensley, 2012). The 
UAVSAR dataset for Lope was collected in February 2016. The nominal 

Fig. 1. (a) Location of Gabon within the continent of Africa, (b) geographical position of Lope National Park in Gabon, (c) location of study site in North Eastern part 
of Lope and (d) map of forest top canopy height retrieved from airborne LiDAR (RH100). 
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flight altitude was 12.5 km, which allowed a data coverage of about 22 
km wide. The incidence angles range from θ = 25◦ to θ = 65◦ from near 
to far range. The UAVSAR polarimetric single-look-complex (SLC) data 
has ground range and azimuth resolutions of 2.5 m and 1 m, respectively 
(Lavalle and Hensley, 2012, Hensley et al., 2009) 

2.3. LiDAR acquisitions 

LiDAR data were acquired by the Land Vegetation and Ice Sensor 
(LVIS) LiDAR sensor (Anderson et al., 2008). LVIS is an airborne 
mounted sensor on the NASA Langley KingAir B-200. LVIS nominal 
footprint diameter is 25 m with 9 m separation along track. The LVIS 
waveforms allow a retrieval of various metrics and relative height 
ranges. In this study we used the LVIS relative height 100 (RH100) 
which refers to forest top canopy height. RH100 was produced and 
distributed by the GSFC LVIS team. The raster image of RH100 datasets 
was provided in slant range geometry with a dimension of 600x1000 
(pixels). LiDAR data was co-registered with UAVSAR image using 
location information stored in the LVIS metadata (Pourshamsi et al., 
2018a). The original dimensions of UAVSAR SLC image were 3000 ×
29000 pixels. The UAVSAR image was multi-looked using a window of 5 
× 29 to have it in the same geometry of the LiDAR image. The LVIS and 
UAVSAR images cover the same area (Fig. 1). Nevertheless, for the data 
integration, only 5000 samples (less than 1%) of the LiDAR collected 
across a small subset of the scene are used for training the algorithm; the 
remaining pixels are used for validating the results. 

3. Methodology 

An overview of methodology followed in this research is given in 
Fig. 2. 

3.1. Polarimetric SAR processing 

The method starts with generating a set of PolSAR variables by 
decomposing the 2 × 2 polarimetric complex scattering matrix. We used 

Pauli basis target vector, H/A/Alpha polarimetric target decompositions 
(Cloude and Pottier, 1996), and backscattering which will be briefly 
illustrated in the following. Out of many available decomposition 
techniques, the H/A/Alpha method was selected as its components have 
shown significant potential for forest ecosystem monitoring applica-
tions. However, their potentials for forest height estimations have been 
poorly investigated in the scientific literature. Pourshamsi et al., 
(2018b) made a brief exploration of this approach by using different 
decomposition techniques including H/A/Alpha (Cloude and Pottier, 
1996) and Krogager (Krogager, 1990). Pourshamsi et al., (2018c) 
further investigated this, and revealed that including PolSAR parameters 
generated by both decomposition techniques does not significantly 
improve the accuracy of the estimated height but just increase the data 
processing time. Therefore, in the current study we only use H/A/Alpha 
components (Cloude and Pottier, 1996). 

3.1.1. H/A/alpha decomposition 
This decomposition technique was developed by Cloude and Pottier 

(Cloude and Pottier, 1996). Entropy (H), alpha (α) and anisotropy (A) 
are the polarimetric components of this decomposition. They are 
effective components which provide important information behind the 
scattering mechanism inside each pixel of a SAR image. It is based on an 
eigenvalue–eigenvector decomposition of a coherency matrix T3. The 
types of scattering processes are identified by the eigenvectors, and their 
relative magnitude is given by their eigenvalue (Cloude and Pottier, 
1996). The components of this decompositions are alpha (α), entropy 
(H) and anisotropy (A). Alpha angle (α) is the main component which 
identifies the principal scattering mechanism. Entropy (H) measures the 
statistical disorder of individual scatterer inside a pixel. Anisotropy (A) 
is paired with entropy (H) and measures the relative significance of the 
secondary scattering mechanisms (Cloude and Pottier, 1996). A low 
value of entropy result in a noisy anisotropy. When entropy values are 
high, the types of scattering processes become indistinguishable. Hence, 
anisotropy supports entropy for identifying the number of distinguish-
able scatterers (Cloude and Pottier, 1996). 

Fig. 2. Overview of methodology followed in this research. There are seven key stages: 1) generating polarimetric SAR components, 2) defining a 5x5 window 
patches to reduce the noise, 3) identifying couple of subsets for samples collection, 4) collecting samples, 5) training the algorithm, 6) applying the trained algorithm 
to the area outside of subsets to estimate the height and 7) validating the results versus true height. 
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3.1.2. Backscattering parameters 
The radar backscatter coefficient (σ0) is the signal reflected back to 

the sensor by the scattering elements of an illuminated scene, and pro-
vides information on the surface parameters such as geometric shape, 
dielectric properties of the target and roughness (Oliver and Quegan, 

2004, Wallington and Woodhouse, 2006, Ulaby et al., 2014). The 
backscatter information is influenced by different radar parameters such 
as polarisation, incidence angle and frequency of the incident radiation. 
We calculated the backscatter coefficient (σ0) in dB for all available 
polarisations (i.e. HH, HV and VV) using the following formula: 

Table 1 
Input features used for training machine learning algorithms.  

Input Parameters SAR Based Backscatter in dB (σ0) 
σHH σHV σVV 

Pauli basis target vectors 
HH + VV HH-VV 2HV 
H/A/Alpha decomposition components 
Entropy (H) alpha (α) anisotropy (A) 

Ancillary datasets Ancillary datasets 
SRTM DEM STRM slope STRM aspect Incidence angle 

LiDAR Based Forest top canopy height 
RH100  

Fig. 3. Identification of multiple subsets for collecting samples.  

M. Pourshamsi et al.                                                                                                                                                                                                                           



ISPRS Journal of Photogrammetry and Remote Sensing 172 (2021) 79–94

84

σ0 (dB) = 10*log10(|backscatter|)(1)                                                         

where |backscatter| is the absolute value of single look complex image. 
We followed the procedures given above and generated the polari-

metric SAR components. In addition to these, the incidence angle, SRTM 
Digital Elevation Model (DEM), SRTM aspect and SRTM slope were used 
for input features. The total list of polarimetric SAR parameters and 
ancillary components are gathered in Table 1. 

3.2. Sampling scenario 

3.2.1. Sample size 
The random sampling technique was followed to collect the required 

training samples. In total, 5000 samples were selected which is less than 
1% of the entire image (600,000 pixels). The samples were collected 
across three different height classes [0–20 m, 20–40 m, 40–60 m], ac-
cording to the RH100 image, using an unequal sampling ratio driven by 
the proportion of each height class in the RH100 image. 

Furthermore, the patch size (5 × 5) was utilized to extend the fea-
tures dimension and to reduce the biased error of the estimation. Thus, 
the number of features for each sample used for training and estimation 
is 5 × 5 × 16 = 400 (16 is the number of input training features). 

3.2.2. Sample types 
To assess the dependence of the algorithms on the training data, 

three groups of training samples were selected (subset 1, 2 and 3 in 

Table 2 
Number of training samples categorized in three different height ranges 
collected from different subsets.  

Height Range [m] Subset 1 Subset 2 Subset 3 

0–20 1172 148 3578 
20–40 1610 1166 1071 
40–60 2218 3686 351  

Fig. 4. The estimated heights from different algorithms based on samples collected from subset 1. Subset 1 includes features both from non-vegetated and highly 
vegetated regions. Image (a) is the height derived from LiDAR RH100. Image (b) is the estimated height from Random Forest (RF), image (c) from Rotation Forest 
(RoF), image (d) from Canonical Correlation Forest (CCF), and image (e) is from Support Vector Machine (SVM). 
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Fig. 3). Table 2 lists the training samples from different height classes 
across three subsets. Subset 1 represents the diversity of features within 
the test site. It includes non-vegetated regions together with vegetation 
with different height ranges short/sparse (0–20 m), mid-range height 
(20–40 m) and tall/dense (40–60 m). 

The distribution of samples from the different classes is relatively 
similar to 1172 samples from 0 to 20 m class, 1610 from 20 to 40 m, and 
2218 from 40 to 60 m (Fig. 3 and Table 2). 

Subset 2 represents the forested region of the study site. The features 
are mainly from medium (20–40 m) and large (40–60 m) height classes. 
Out of the total 5000 samples, only 148 samples belong to short height 
class 0–20 m, whereas 1166 samples are from 20 to 40 m and 3686 ones 
from 40 to 60 m (Fig. 3 and Table 2). 

Subset 3 represents the non-vegetated and short/sparse vegetation 

features of the study site. There are 3578 samples from 0 to 20 m height 
class, 1071 from 20 to 40 m, and only 351 from 40 to 60 m (Fig. 3 and 
Table 2). 

3.3. Machine learning algorithms 

We used DT ensemble and SVM classifier to integrate LiDAR and 
PolSAR components. 

3.3.1. Desision tree ensmble 
DT ensemble consists of a series of T trees {ξ1 (X), …, ξT (X)} where 

{X, Y} = {(x1, y1), …, (xn, yn)} are the total number of n training sam-
ples. × denotes D-dimensional features (F) obtained from PolSAR pa-
rameters and ancillary datasets and y is the forest top canopy height 

Fig. 5. Validations plots for individual algorithms versus LiDAR RH100 for the heights estimated based on samples collected from subset 1. a) validation of the height 
estimated from Random Forest (RF), b) from Rotation Forest (RoF), c) from Canonical Correlation Forest (CCF), and d) is from Support Vector Machine (SVM). 
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(RH100) acquired from LiDAR. In this work, D equals to 400 which is 
obtained by applying a 5 × 5 window to 16 input features. The final 
output is obtained by averaging all tree predictors. To construct the 
diverse decision trees, three ensemble methods, RF (Breiman, 2001), 
RoF (Rodriguez et al., 2006) and CCF (Rainforth and Wood, 2015) are 
applied. 

3.3.2. Support vector machine 
For SVM classifier, the following regression function g(x) is learned: 

g(x) = 〈W,∅(x)〉+ b (4)  

where w is the weight vector in the kernel feature space, ∅(x) is the 
kernel feature mapping of x, and b is the bias. The solution is obtained by 
solving a convex optimization problem. Where LiDAR and PolSAR 
components are not linearly separable, a non-linear modeling can be 
achieved by means of the ‘kernel trick’, which maps the data into a 
higher dimensional space. We used a Radial Basis Function (RBF) kernel 

to model the non-linear relationship between the RH100 and the 
polarimetric SAR features. The kernel’s bandwidth (h) and regulariza-
tion parameter (λ) control the RBF. The possible overfitting issue is 
avoided by deciding optimal values for the parameters using a grid 
search method with a 10-fold cross validation approach (Smola and 
Schölkopf, 2004, Pelckmans et al., 2005). 

4. Results and discussion 

The results are divided into three different sections corresponding 
each subset that is used for selection of training samples (refer to Section 
3.2.2). Subset 1 presents the diversity of features within the test site and 
covers various height ranges (0–60 m); Subset 2 is located within tall/ 
dense forested areas with height ranges mainly between 40 and 60 m; 
and Subset 3 includes non-vegetated and short/sparse vegetation with 
height ranges between 0 and 20 m (Table 2). 

Fig. 6. The estimated heights from different algorithms based on samples collected from subset 2. Subset 2 includes features from highly vegetated regions where the 
trees height ranges between 20 and 60 m. Image (a) is the height derived from LiDAR RH100. Image (b) is the estimated height from Random Forest (RF), image (c) 
from Rotation Forest (RoF), image (d) from Canonical Correlation Forest (CCF), and image (e) is from Support Vector Machine (SVM). 

M. Pourshamsi et al.                                                                                                                                                                                                                           



ISPRS Journal of Photogrammetry and Remote Sensing 172 (2021) 79–94

87

4.1. Subset 1 

Fig. 4 indicates the map of estimated heights from the different al-
gorithms used. The validation scatterplots for each algorithm are pre-
sented in Fig. 5. Overall, the accuracy of estimated heights is good with 
R2 0.80, 0.82, 0.83, and 0.78; and RMSE of 7.52, 7.05, 6.92, and 7.89 m 
for RF, RoF, CCF and SVM respectively. Different algorithms performed 
relatively similar, SVM worked slightly better for tall/dense forest 
(40–60 m) and CCF for short/sparse vegetation (0–20 m). The results for 
mid-range height (20–40 m) are similar between all algorithms with 
slightly overestimation. 

To better judge the performance of the models, we have identified 
three typical regions within the test site (Fig. 4). Box 1 is selected from 
the forested (40–60 m), box 2 is within non-vegetated to short/sparse 

vegetation (0–20 m), and box 3 includes vegetation with mid-range 
height (20–40 m). There is slight underestimation of height for box 1 
using RF, RoF and CCF, with better result performed by SVM. For box 2 
with short vegetation, RF, RoF and CCF performed quite well with better 
performance from CCF, while SVM did not perform as well as others. 
This could be observed also in Fig. 5 (d). The performance of all algo-
rithms is relatively similar for box 3 where all underestimate the vege-
tation heights. 

4.2. Subset 2 

Fig. 6 indicates the map of estimated heights from different algo-
rithms. The validation scatterplots for different algorithms are presented 
in Fig. 7. 

Fig. 7. Validations plots for individual algorithms versus LiDAR RH100 for the heights estimated based on samples collected from subset 2. a) validation of the height 
estimated from Random Forest (RF), b) from Rotation Forest (RoF), c) from Canonical Correlation Forest (CCF), and d) is from Support Vector Machine (SVM). 
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The accuracy of estimated heights is similar for all the algorithms for 
heights above 40 m. The R2 0.48, 0.51, 0.77, and 0.65 for RF, RoF, CCF 
and SVM respectively. In the same order the calculated RMSE is 13.83, 
13.84, 16.29, and 14.46 m. The large values of RMSE reports the large 
overestimation of the height for height ranges between 0 and 40 m. This 
is clearly due to the lack of samples from these height classes. For tall 
vegetation (40–60 m), all algorithms performed similar, but CCF and 
SVM resulted in higher R2 (Fig. 7). According to the identified regions 
(Fig. 6) within the test site, for box 1 (40–60 m), the estimated heights 
from all the algorithms are similarly underestimated. For box 2 with 
short vegetation, RF and RoF did not perform well and they even did not 
capture the pattern of features on the ground. CCF and SVM captured the 
pattern but the estimated height is somewhat overestimated. In oppo-
site, for box 3 (20–40 m), RF and RoF could capture the pattern with 
overestimated height, while CCF and SVM did not perform well at all. 
Despite the relatively high r2, the results are not good, and saturation 
could be observed. 

4.3. Subset 3 

Fig. 8 indicates the map of estimated heights from different algo-
rithms. The validation scatterplots for different algorithms are presented 
in Fig. 9. The accuracy of estimated heights is pretty good for heights 
below 20 m. The R2 0.72, 0.71, 0.77, and 0.54; and RMSE of 9.29, 9.81, 
7.54, and 10.81 m for RF, RoF, CCF and SVM respectively. The large 
values of RMSE reports the large underestimation of the height for 
height ranges above 40 m. This is clearly due to the lack of samples from 
these height classes. For short vegetation (0–20 m), all algorithms per-
formed relatively well with CCF and SVM worked slightly better. 

According to the identified regions (Fig. 8) within the test site, for 
box 1 (40–60 m), the heights are fairly underestimated by all algorithms. 
For box 2 with short vegetation, all performed really well with RF and 
RoF slightly better. For box 3 (20–40 m), CCF and SVM performed 
slightly better in compare to RF and RoF. While CCF resulted in the 
scatterplot with the least dispersion, it is clear a saturation point for the 

Fig. 8. The estimated heights from different algorithms based on samples collected from subset 3. Subset 3 includes features mainly from non-vegetated and short/ 
sparse vegetation. Image (a) is the estimated height from Random Forest (RF), image (b) from Rotation Forest (RoF), image (c) from Canonical Correlation Forest 
(CCF), and image (d) is from Support Vector Machine (SVM). 
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upper lobe. This saturation is less evident in RF and RoF; and SVM seems 
to work better, generally. The reason for the saturation of RF, RoF and 
CCF, is because RF (and its derived algorithms) cannot predict values 
beyond the maximum and minimum values found in the training data, 
which is clearly seen in the scatterplots, whereas SVM can extrapolate 
values, although it is patent the large uncertainty of estimates outside 
the range of values of the training data (Smola and Schölkopf, 2004, 
Pelckmans et al., 2005). 

In general, different machine learning algorithms were applied to 
confirm the potential of this approach for estimating forest height from 
PolSAR parameters. The motivation is not on comparing how different 
machine algorithms are performing but indicating that PolSAR param-
eters are capable of estimating forest height, and they are not limited to 
a specific type of machine learning algorithm. 

4.4. Model dependence on the selected training data 

The results achieved from subset 1 have higher accuracy in compare 
to the other two subsets. To better compare the results obtained based on 
samples collected from different subsets, we generated the map of height 
differences by subtracting the estimated height of individual algorithms 
from RH100. Fig. 10 reports the histograms of these. For subset 1, a 
similar amount of overestimation and underestimation of height (~-17 
to + 17 m) is observed for all algorithms. For subset 2, a large over-
estimation of height (~10–35 m) are observed, while for subset 3, an 
underestimation of height (~17 m) and small overestimation (~5 m) are 
noticeable. 

In subset 1, the training samples cover the different height classes 
harmoniously, 23% of samples comes from 0 to 20 m, 32.2% from 20 to 

Fig. 9. Validations plots for individual algorithms versus LiDAR RH100 for the heights estimated based on samples collected from subset 3. a) validation of the height 
estimated from Random Forest (RF), b) from Rotation Forest (RoF), c) from Canonical Correlation Forest (CCF), and d) is from Support Vector Machine (SVM). 
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40 m and 44.3% from 40 to 60 m. Based on the results (Fig. 10 (a)), the 
height is overestimated up to 17 m for mid-range height (20–40 m) and 
about 17 m underestimated for larger heights (40–60 m). Subset 2 
covers mostly tall vegetation (40–60 m), and the training samples are 
mainly from this class. Only 2.9% comes from height class 0–20 m, 
23.3% from 20 to 40 m and about 73.7% from 40 to 60 m. Obviously 
with having most samples coming from this class, the height would be 
well estimated for taller vegetation, and a very small amount of un-
derestimation (~5 m) is observed. Due to the lack of training samples 
from shorter vegetation, the height is largely overestimated (Fig. 10 (b)). 
The samples collected from subset 3 mostly come from short height with 
71.5% from height class 0–20 m, 21.4% from 20 to 40 m and only 7% 
from 40 to 60 m. As expected, the height is well estimated for shorter 
vegetation, and it is underestimated about (~17 m) for taller vegetation 
(Fig. 10 (c)). 

According to the results, the performance of the machine learning 
models is highly dependent on the training data. The tall heights (40–60 
m) are largely underestimated when the samples are from subset 3, and 
short heights (0–20 m) are overestimated when the samples are picked 
from subset 2. The mid-range heights (20–40 m) are commonly 

overestimated in all the subsets. This is due to the lack of training 
samples from this height class. In general, the test site includes a small 
number of vegetation with mid-range height. 

The tall heights are slightly underestimated when the samples are 
collected from subset 2 which are mainly have tall height samples. This 
could be due to the canopy-penetrating capabilities of L-band SAR. The 
forest height in Lope is high (up to 60 m). The L-band SAR might not able 
to penetrate the canopy completely and reach the ground. In such case, 
the bottom part of the trees remains unseen and might cause underes-
timation of the height. The other reason could be related to the topo-
graphic effect inside the UAVSAR images. This effect was corrected 
using the SRTM DEM. However, the coarse resolution of the SRTM (30 
× 30 m) might not be sufficient for correcting terrain affect inside the 
high-resolution UAVSAR image (2.5 × 1 m). Topographic effects are 
visible within the Lope site. Therefore, the height might be under-
estimated on negative slope and overestimated on positive slopes 
(Kugler et al., 2015). 

Fig. 10. (a) Histograms of height differences for individual algorithms RF, RoF, CCF and SVM based on samples collected from subset 1, (b) based on subset 2, and (c) 
based on subset 3; the x-axes represent the height differences with positive values signify the overestimation, and negative ones do the underestimation; the y-axes 
represent the number of pixels [×106]. Red curves stand for estimated height from RF, blue from RoF, green from CCF, and black from SVM. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the web version of this article.) 
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4.5. The sensitiveness of polarimetric features to canopy height estimation 

We carried out features importance analysis to understand the 
sensitiveness of individual input features to canopy height estimation 
(Table 3). The sensitivity of individual input features varies from one 
subset to another. The top four important components in RF algorithm 
for each subset by order of importance are as follow:  

- Subset 1: entropy (H), slope, alpha (α) and anisotropy (A)  
- Subset 2: entropy (H), slope, anisotropy (A), σHV  
- Subset 3: slope, alpha (α), entropy (H), DEM 

The components of the H/A/alpha decomposition together with 
slope are significantly sensitive. However, their sensitiveness varies 
depending on the selected training samples. Slope is the key component 
in all scenarios. This is due to the effects of topography and terrain slope 
within the test site. In a flatter test site, this parameter should have less 
impact. 

The significant sensitivity of H/A/alpha decomposition components 
are related to different types of scattering occurred inside one pixel with 
respect to different features on the ground (Fig. 11). Various features on 
the ground interact differently with the radar beam (Cloude and Pottier, 

1996). 
These various scattering scenarios with respect to different features 

on the ground will make different values for H/A/Alpha components 
(Fig. 12). 

Different values of these components will cause a different level of 
sensitivity of them to the forest canopy height estimation. Where there 
are medium values of alpha and entropy with lower values of anisot-
ropy, the scatterings represent the dense vegetation with taller heights 
(40–60 m). This is due to volume scattering which causes a large amount 
of radar beam to be scattered away from the senor, and only a small 
amount bounced back to it. In this case, the values of all components are 
at the medium. In contrast, higher values of entropy and alpha with low 
values of anisotropy are due to double bounce scattering. This represents 
sparse/short vegetation (0–20 m) where the radar beam reaches the 
ground, and the reflected signal may hit tree trunks and bounce back 
towards the sensor. In comparison, the low values of alpha and entropy 
with higher values of anisotropy can be representative of non-vegetated 
region and bare soil where the radar beam reaches the ground and 
immediately bounce away from the senor and they show very small 
sensitivity to the canopy height. What becomes more apparent here is 
the range of variation: for short/sparse vegetation, anisotropy and en-
tropy vary in a much larger range than for tall/dense vegetation. This is 
due to the fact that over sparse/short vegetation, there is a mixture of 
different scattering mechanisms, surface, volume and double bounce, 
whereas over the tall/dense forested regions, volume scattering is more 
dominant and over non-vegetated region surface scattering (Cloude and 
Pottier, 1996). 

Entropy is a sensitive parameter in all cases with higher sensitivity 
when samples are collected from subset 1 and 2. Entropy measures the 
statistical disorder of different scattering mechanisms within each pixel. 
These phenomena more likely appears within forested region which 
causes higher values for entropy. When entropy values are high, the 
types of scattering processes become indistinguishable which makes it 
hard to differentiate between multiple scattering processes incurred 
over dense forest (subset 2 and part of subset 1). Hence, anisotropy 
supports entropy for identifying the number of distinguishable 
scatterers. 

In non-vegetated areas, entropy values are low which result in a 
noisy anisotropy. Hence, the different types of scattering processes 

Table 3 
Contribution of individual input features in the model performance (their effects 
appearance in number of pixels).  

Subset 1 Subset 2 Subset 3 

Entropy (3210) Entropy (2630) Slope (1026) 
Slope (760) Slope (370) Alpha (800) 
Alpha (130) Anisotropy (250) Entropy (760) 
Anisotropy (76) σHV (113) DEM (750) 
DEM (53) 2HV (110) Aspect (640) 
HH-VV (53) HH-VV (50) Anisotropy (620) 
Incidence Angle (45) DEM (50) Incidence Angle (560) 
2HV (44) Incidence Angle (45) HH-VV (550) 
σHV (42) Aspect (42) HH + VV (445) 
HH + VV (41) HH + VV (40) σVV (400) 
σHH (36) Alpha (40) σHH (390) 
aspect (33) σVV (36) σHV (328) 
σVV (32) σHH (35) 2HV (326)  

Fig. 11. A simulation of different features within the test site and possible contribution of individual PolSAR components.  
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become indistinguishable. This is why entropy and anisotropy have 
lower sensitivity to canopy height estimation when the training samples 
are selected from subset 3 which mainly covers non-vegetated area. 

Additionally, the sensitivity of other components should be taken 
into account. When the training samples are selected from subset 2, HV, 
σHV and Pauli 2HV show a large sensitivity due to the presence of vol-
ume scattering. In compare, when the training samples are selected from 

subset 3, Pauli HH-VV and HH + VV are sensitive which are represen-
tative of ground scattering. 

The polarimetric SAR components represent two-dimensional in-
formation about the scattering mechanisms. It is not possible to derive 
three-dimensional details from them. So, LiDAR with its vertical infor-
mation could be included in the machine learning algorithms to enable 
retrieval of three-dimensional information. They allocate the canopy top 

Fig. 12. Analysis of H/A/alpha components for different height ranges within the study site. Left: entropy/alpha (H/alpha) two-dimensional classification plane, 
right: entropy/anisotropy (H/A) two-dimensional classification plane. 
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height provided by LiDAR to corresponding polarimetric SAR scattering 
processes and define a relationship between them within a specified 
subset. The defined relation between input features can then be used to 
estimate height in an area outside of the subset. Having samples 
collected from a small subset for training, the results are relatively good. 
Nevertheless, the results are very dependent of diversity of input sam-
ples. The collected samples are from a small subset from a certain part of 
the scene. This, however, could not represent all the features with the 
entire test site. Improving the samples adequately for collecting input 
training samples can capture the height variations and can potentially 
increase the accuracy of the results. 

5. Conclusions 

We have shown the capability of PolSAR parameters for forest height 
estimation using machine learning algorithms. We integrated LiDAR 
samples and multiple PolSAR variables extracted from different polari-
metric decomposition techniques using different machine learning al-
gorithms including RFs, RoFs, CCFs and SVMs. Each algorithm was run 
three times with the training samples were selected from a subset of the 
scene representing different vegetation characteristics. The first set of 
training samples were chosen from a heterogeneous part which covers 
various height ranges (0–60 m); second ones are within the forested part 
with high heights (40–60 m); and the third ones are from a part which 
mostly cover short heights (0–20 m). Whilst the results have shown a 
great potential of PolSAR variables for retrieval of forest height, the 
algorithm performance highly depend on the input training samples. 
The best results were achieved when the training samples are selected 
from the heterogeneous part of the scene which includes vegetation with 
different height ranges and density. Therefore, for successful height 
estimation over a heterogeneous forest, the input features should convey 
a set of different features within the study site. Different machine 
learning algorithms were used for the experiment, RF, RoF, CCF and 
SVM. Whilst the results are pretty similar, SVM performed slightly bet-
ter. The results confirm that it is possible to estimate forest height using 
PolSAR parameters together with a small portion of LiDAR samples in 
the absence of interferometric measurements. This presented way of 
combining PolSAR parameters and LiDAR for forest height estimation is 
beneficial for the upcoming and current data from spaceborne SAR and 
LiDAR missions (BIOMASS, NISAR and GEDI) which provide a wealth 
amount of polarimetric SAR and LiDAR data at global scale. 
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