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Abstract—In recent year, due to motility and wide coverage,
unmanned aerial vehicle (UAV) has been widely applied in
surveillance system. Human action recognition in UAV video is
essential for surveillance video understanding. However, existing
action recognition methods suffer from heavy computing, which
makes it hard to deploy in real applications. In this paper, a
lightweight action recognition method for UAV video(LARMUY)
is proposed. This method is based on TSN and adopt Mo-
bileNetV3 as backbone, which greatly reduces amount of com-
puting and parameters. Self-attention mechanism is adopted to
capture temporal structure among different frames. For loss
function, Focal Loss is used to putting more focus on hard,
misclassified examples. Last but not least, knowledge distillation
is employed to enhance the performance of our model, which
transfer knowledge from a larger teacher model to student model.
Experimental results on HMDB51, UCF101 and UAV dataset
show that our method can achieve competitive performance
compared to baseline methods while run in real-time mode.
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I. INTRODUCTION

In recent year, unmanned aerial vehicle (UAV) has been
widely applied in both military and civilian fields due to its
agility, economy, and versatility. Compared with traditional
fixed camera, camera on UAV shoots video from the air,
which has broader horizon. In addition, UAV has great range
of movement, which can cover greater range of surveillance.
Given its advantages, UAV has been playing more and more
important role in surveillance system. Human action recogni-
tion is a key technique for surveillance video understanding.
Therefore, human action recognition in UAV video is of great
importance.

Traditional action recognition methods [1], [2]can be di-
vided into two stages. It first extracts pre-defined spatial-
temporal features from videos, and then the extracted spatio-
temporal features are classified using classifiers such as sup-
port vector machines (SVM). Dense trajectory [1] is one of the
most classic action recognition methods. It first extracts dense
trajectories by tracking dense points, and then extracts trajec-
tory shape, Histogram of Oriented Gradients feature (HOG),
Histogram of Optical Flow (HOF) as well as Motion Boundary
Histogram (MBH) descriptors along the trajectory, and finally
performs action classification using a SVM classifier.
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Traditional methods rely on manually designed features,
and the process of feature extraction is time-consuming. Deep
learning has developed rapidly in the field of computer vision,
and has also achieved great success in action recognition [3]-
[8]. Deep learning methods do not need to extract features
manually, and can achieve end-to-end learning. [4] proposed
a architecture which incorporates spatial (RGB images) and
temporal (optical flow) networks separately, which are then
combined by late fusion. TSN [5] introduced a sparse temporal
sampling strategy, which removes the redundant information
between consecutive frames. The disadvantage of 2D con-
volution is that it cannot capture temporal structure among
frames, so methods based on 2D CNN needs optical flow as
temporal features. However, extracting optical flow is really
time-consuming. [6] proposed 3D convolution for spatio-
temporal feature learning, which can model appearance and
motion simultaneously. As the expansion of convolutional
kernel from 2D to 3D, the amount of network parameters and
calculations increase significantly. I3D [7] extended the classic
2D convolutional network such as Inception to 3D ConvNet.
Recently, Facebook proposed slowfast [8], which combines
a fast frame rate pathway and a slow frame rate pathway,
and achieved state-of-the-art accuracy on action recognition
benchmarks.

Existing action recognition methods are computational ex-
pensive and memory intensive, so it is difficult to meet the time
requirements in practical applications, especially for embedded
devices with limited computing resource such as UAV. UAV
usually take shots from high altitudes, with different angles,
making it difficult to distinguish human action on the ground.
In view of the limited memory and computing resource of
UAV platform, as well as the complexity of video background
information from the UAV’s perspective, this paper proposes
a lightweight action recognition framework based on the TSN
architecture, which can achieve both high speed and high-
quality performance.

The contributions of our work can be summarized as
follows:

« To increase the operating speed, this paper chooses the
lightweight network MobileNetV3 as the feature extrac-
tion network, which reduces the amount of parameters
and calculations significantly;
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e Vanilla TSN use aggregation function such as mean
or max pooling, which failed to capture the temporal
structure among different frames. This paper uses the
Transformer, that is the self-attention mechanism, to
model the dependence among frames.

e To pay more attention to misclassified, hard examples
during training, Focal Loss is adopted to down-weights
the loss of well-classified samples and focus on hard
samples during optimizations.

o Finally, this paper introduces knowledge distillation to
enhance the performance of our model. By transferring
knowledge from a large teacher model to student model,
the performance can be improved without increasing the
amount of parameters and calculations.

II. METHODOLOGY

This paper introduces a lightweight action recognition
method for UAV video(LARMUYV), as is shown in Figure 1.
LARMUYV can be considered as a single stream architecture,
based on the TSN architecture. Given a video V, we first
divide it into K segments {S7,Ss,...Sk}, and then sample
K frames {T},Ts,... Tk} from these segments. We feed the
K frames into feature extraction network MobileNetV3 to get
hidden vector {H;, Ho,...Hg }. Considering that the extrac-
tion of optical flow is time-consuming, our method discards
the optical flow stream and only preserve RGB stream. Then
Transformer, that is the self-attention mechanism, is used
to model the temporal structure between different frames.
Here we get the output vectors O = {O;,0,,...0x} after
Transformer layer. Finally we aggregate the output vectors
and get the final classification probability p through the fully
connected layer.

Considering that MobileNetV3 has few parameters, so its
feature extraction ability is limited. Here knowledge distil-
lation is adopted to further improve the performance of our
model. The first step is to train a teacher network with a
large amount of parameters. Here the I3D network pre-trained
on the large-scale Kinetics dataset is selected as the teacher
network. Then in the process of student network training, by
matching the output of student network and teacher network,
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we can transfer the learned knowledge from teacher network
to student network. Thereby, performance of student network
is improved without increasing the amount of parameters and
calculations.

A. MobileNetV3

As neural network becomes deeper and deeper, it achieves
significant accuracy improvements in many visual recognition
tasks. However, expensive computation and intensive memory
requirements hinders their deployment in device with low
memory and real-time applications [9]. Therefore, it is critical
to reduce deep neural network’s storage and computational
cost. MobileNetV3 [10] is an efficient network for mobile
and embedded device, which aims to reduce the amount of
network parameters and calculations. For unmanned aerial
vehicle, due to its limited computational power and memory
resource, MobileNetV3 is adopted as the feature extraction
network. MobileNetV3’s network structure is optimized by the
hardware-aware network architecture search (NAS) algorithm
complemented by the NetAdapt algorithm. The main improve-
ments of MobileNetV3 architecture design can be summarized
as follows:

o Combining the depthwise separable convolutions of Mo-
bileNetV1 [11] and the inverted residual structure with
Linear Bottlenecks of MobileNetV2 [12], greatly reduc-
ing the amount of parameters and calculations.

o Lightweight attention modules based on the squeeze and
excitation (SE) is introduced, which adaptively recali-
brates channel-wise feature responses.

o The swish activation function is replaced by h-swish
function.

swish[z] = x - o(x), (1)
in which o(-) function is computationally expensive, so
h-swish approximates o(-) function with its piece-wise
linear hard analog to reduce the amount of memory and
calculations:

ReLU6(x + 3)

h-swish|z| =
swish[z] = 5
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B. Self-attention

Through the MobileNetV3 network, we can obtain feature
vectors {Hy, Ha,...Hg} of K frames. For vanilla TSN, a
consensus function is used to aggregate K vectors, such as
mean or max pooling. However, directly using mean or max
pooling ignores the temporal structure of the video. [13]
proposed to use Long short-term memory network (LSTM)
to model the temporal structure of video. The main drawback
is that LSTM cannot be computed in parallel, so as K
increases, the running speed of model will inevitably slow
down. Transformer [14] is adopted to model the temporal
structure among different frames. Transformer is widely used
in sequence modeling tasks, which has achieved great success
in natural language processing. The Transformer layer is a
combination of a self-attention layer and a point-wise feed-
forward layer. First, attention mechanism can be formalized
as:

| (@K")
Attention(Q, K, V) = softmax | ——= | V 3)
Vd
When Q, K and V' are the same matrix, it is called the self-
attention mechanism. Instead of performing a single attention
function, the multi-head attention linearly projects @), K and
V' h times, and perform attention function in parallel. Then we
concatentate results of h heads to get the final output, namely

MultiHead(@, K, V') = Concat (heady, . . . ,head,) W°,
where head; = Attention (QW, KW} VW) .
“)

Compared to single-head attention, the multi-head attention
introduces more parameters and enhances the expressive abil-
ity of the model.

For point-wise feed-forward layer, it consists of two linear
layers with a ReLU activation function:

FFN(z) = maz(0, Wy + b1)Wa + ba. 5)

Here we take the feature vector of the video frames as input,
namely Q = K =V = {Hy, Ho, ..., Hg}, H € RE*? where
d is the dimension of the feature vector and K is the number
of frames of the video, and get the output vector O € R¥*¢
finally.

C. Focal Loss

Focal Loss [15] reshapes the standard cross entropy loss
to down-weight the loss assigned to well-classified examples,
and pay more attention to hard negative examples. Take binary
classification problem as an example, we define p as the
model’s estimated probability for class with label y = 1, in
which p € (0,1). p; is defined as

_ )} D
pt—{ 1—p,

The binary cross entropy loss can be formulated as:

CE (pt,y) = —log (p:) @)

ify=1
otherwise

(6)
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Focal Loss adds a modulating factor (1—p;)” to cross entropy
criterion, which is defined as:

Focal_loss (pg,y) = — (1 —py)” log (pt) (8)

in which v = 2 works well in our experiments. The modulating
factor is used to reduce weights of well-classified examples.
For example, when label y = 1 and p = 0.9, the modulating
factor (1 — p¢)” = 0.01, which means the weight is 1% of
cross entropy criterion.

D. Knowledge Distillation

Knowledge distillation [16] refers to the process of trans-
ferring the learned knowledge of the teacher network to the
student network. Generally speaking, teacher networks refers
to large cumbersome model, even ensemble of several models,
while student network is smaller. Teacher model can learn
better knowledge representation of videos, however, it can
hardly deploy in real applications because their expensive
computation cost. The output probability encodes the learned
knowledge representation of teacher network: when model
correctly predicts a class, it also assigns a smaller probability
to a similar class. For example, from the output probability it
can be inferred that the similarity between ‘squat’ and ‘bend’
is higher than ‘squat’ and ‘walk’. While the true label is
one-hot encoded, the correlations among classes is ignored.
Therefore, to transfer knowledge from teacher network to
student network, we train the student network by letting it
match both the soft output of teacher network and the ground
truth label.

The process of knowledge distillation is shown in Figure
2. Teacher network with larger parameters is trained at first.
Here I3D model is selected as the teacher network, which
is pre-trained on the Kinetics dataset, and then trained on the
action recognition dataset. To further improve the performance
of the teacher network, the teacher network has two streams:
spatial and temporal stream, which are trained separately and
then fused. Then student network is trained to fit both the soft
output of teacher network and the ground truth label. Let p
and ¢ denote the output of the student network and teacher
network respectively, y denotes the one-hot encoding of the
true label, and the loss function is:

L= (1-X)loss(y,p) + Aloss(q,p). )



TABLE I
EXPERIMENTAL RESULTS ON 3 DATASETS, USING ONLY RGB STREAM.

Pre-training | HMDBS51 | UCF101 UAV

Vggl6 ImageNet 423 75.41 62.14
ResNet18 ImageNet 43.82 77.75 58.96
ResNet34 ImageNet 45.94 80.5 70.42
ResNet50 ImageNet 47.54 81.33 76.17
Inception vl ImageNet 45.94 83.23 76.67
Inception v3 ImageNet 46.36 80.24 77.96
C3D Scratch 7.10 40.26 36.74
C3D Kinetics 41.60 80.16 78.86
13D ImageNet 43.06 74.25 74.58
13D Kinetics 66.03 90.83 92.13
LARMUYV(Our method) ImageNet 55.14 86.41 87.81

Here ) is a hyper-parameter, which controls the weight of the
loss corresponding to the soft target ¢ and the real label .

However, directly matching the output of teacher network
q is not a good choice. As the probability of correct class is
too high, and the probabilities of other classes are too small.
As a result, it is difficult to distill from the teacher network.
softmax-T is introduced here to ”soften” the original output
probability. The formula is as follows:

o e (/T) w0

b exp(5/T)
in which z is the logit before softmax function. If 7' = 1,
softmax-T is equivalent to standard softmax function. Using a
higher value for 7' produces a softer probablity distribution
over classes. Meanwhile, the entropy of ¢ would increase,
therefore provides more information to be distilled. We set
T = 2 in our experiments.

III. EXPERIMENTS
A. Dataset

We evaluate the our method on both benchmarks, includ-
ing HMDB51, UCF101 datasets and UAV dataset. HMDBS1
dataset contains 5100 video clips divided into 51 categories;
UCF101 dataset contains 13320 video clips divided into 101
categories. To further evaluate our method in video under UAV,
we construct a human action recognition dataset under UAV,
which is shooted in an altitude of 20 to 30 meters by DJI Mavic
Pro. It contains 964 video clips divided into 11 categories:
bend, handshake, clap, hug, kick, push, rid, run, squat, walk,
walk with multiple persons. We use accuracy as evaluation
metric in our experiments.

B. Implementation Details

We use MobileNetV3-Large as the backbone network, and
use ImageNet pre-trained weights as initialization. Multiple
data augmentation strategies are employed to alleviate over-
fitting, including:

« Random cropping: we choose the cropping position ran-

domly from the middle, upper left, lower left, upper right,
and lower right of the frame. The input frame size is

TABLE I
COMPARISON OF NETWORK PARAMETERS, COMPUTATIONAL COST AND
RUNNING SPEED.

Params(M) | FLOPs(M) | VPS | UAV Accuracy
Vggl6 1345 15466.4 67 62.14
ResNet18 11.2 1816.1 212 58.96
ResNet34 21.4 3667.0 167 70.42
ResNet50 23.8 4098.5 118 76.17
Inception v1 11.3 2018.1 117 76.67
Inception v3 23.8 5743.1 79 77.96
C3D 78.4 8660.9 59 78.86
13D 53.8 6445.2 8 92.13
LARMUYV(Our Method) 10.6 226.8 157 87.81

fixed as 256 x 340 and the cropping width and height
are randomly sampled from {256,224,192,168}. Then
we scale the image to a size of 224x224 as the input to
the backbone network;

o Horizontal flipping: Flip the video frame horizontally
with a probability of 0.5;

¢ Color jittering: Randomly change the brightness, contrast
and saturation of the frame.

We set number of segments K as 3 in our experiments.
Considering computation cost, we use 1 layer Transformer
and set number of heads as 2. During training, We use Adam
for optimization,and set learning rate as to le-3, weight decay
as 0.0001. The experiments were carried out on the Nvidia
1080Ti GPU.

C. Baselines

We compare our method with a variety of action recognition
methods, mainly in two categories: methods based on 2D
and 3D convolution. The method based on 2D convolution
is based on the vanilla TSN architecture with different feature
extraction networks, including Vggl6, ResNetl8, ResNet34,
ResNet50, Inception v1, Inception v3. For methods based
on 3D convolution, C3D and I3D with different pre-training
strategy are included.

D. Results

Table I shows experimental results of our method and base-
lines on HMDB51, UCF101 and UAV datasets. Our method
achieves 55.14%, 86.41%, 87.81% accuracy on HMDBS5I,
UCF101 and UAV datasets respectively. Our method outper-
forms all the other baselines except for I3D model pre-trained
on Kinetics dataset.

E. Comparison of Network Parameters, Computational Cost
and Running Speed.

In this section, we compare the network parameters, com-
putational cost and running speed of our method and baseline
methods. The computational cost is measured by floating-
point operations (FLOPs). The running speed is measured by
videos per seconds (VPS) processed at inference time. The
experiment was carried out on a single Nvidia 1080Ti GPU.



TABLE III
COMPARISON OF MODELS

MobileNetV3 Self- Focal Loss Knowledge UCF101 HMDB51 UAV

attention Distillation
Model 1 4 48.2 81.97 78.85
Model 2 Vv 4 50.00 82.47 81.10
Model 3 Vv v 51.99 82.56 81.77
Model 4 4 4 51.43 83.91 84.25
Model 5 4 4 v Vv 55.14 86.41 87.81

As shown in Table II, the parameters and FLOPs of our method
are significantly lower than other baseline models. As a result,
our method achieves 157 videos per seconds at inference time
while achieves competitive performance. Though the accuracy
of our model is slightly lower than 13D, LARMUYV is an
order of magnitude faster than I3D. For embedded devices
with limited computing resource such as UAV, our method
has great advantage in practical applications.

F. Ablation Study

We set backbone network as MobileNetV3, and compare the
effectiveness of several improvements of our method, includ-
ing the self-attention mechanism, Focal Loss, and knowledge
distillation. As shown in Table III, Model 2, Model 3 and
Model 4 show better performance than Model 1, which verifies
the effectiveness of the our proposed improvements. Model
5 combines these improvements and achieves the highest
accuracy on all datasets.

IV. CONCLUSION

In this paper, a lightweight action recognition framework
is proposed for video under UAV. To reduce computational
cost and memory requirement, the lightweight network Mo-
bileNetv3 is adopted as the backbone network. To model
the temporal structure among different frames, self-attention
mechanism is employed here. Focal Loss is adopted to pay
more attention to misclassified, hard examples during training.
Finally, knowledge distillation from teacher network further
improve the performance of our proposed LARMUYV without
additional cost. The experimental results on benchmarks and
UAV dataset show that our method has achieved competitive
performance while greatly reducing the amount of calculation
and parameter. Through running speed analysis, our method
can achieve real-time recognition, which make it advantageous
in actual deployment. For future work, although optical flow
is time-consuming, there is no doubt that it is effective for
action recognition. Therefore, it is worth thinking about how
to use the network to learn features related to optical flow.
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