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Abstract—Scene classification in very high resolution (VHR) 

remote sensing (RS) images is a challenging task due to complex 

and diverse content of the images. Recently, convolution neural 

networks (CNNs) have been utilized to tackle this task. However, 

CNNs cannot fully meet the needs of scene classification due to 

clutters and small objects in VHR images. To handle these 

challenges, this letter presents a novel multi-level feature fusion 

network with adaptive channel dimensionality reduction for RS 

scene classification. Specifically, an adaptive method is designed 

for channel dimensionality reduction of high dimensional features. 

Then, a multi-level feature fusion module is introduced to fuse the 

features in an efficient way. Experiments on three widely used 

data sets show that our model outperforms several state-of-the-art 

methods in terms of both accuracy and stability. 

 
Index Terms—Remote sensing scene classification, 

convolutional neural networks (CNNs), adaptive channel 

dimensionality reduction, multi-level feature fusion. 

I. INTRODUCTION 

EMOTE sensing scene classification, which focuses on 

assigning specific semantic labels to RS scene images, has 

attracted wide attention in the field of remote sensing. However, 

the lack of rich well-labeled training data as well as the high 

intraclass variations and low interclass dissimilarity make the 

scene classification a challenging task [1]. 

In general, RS scene classification methods are divided into 

two categories according to the features they used: 

handcrafted/deep learning (DL) features. Compared with the 

first category, DL methods, especially CNNs have exhibited a 

powerful ability for RS image feature extraction and achieved 

remarkable performance for scene classification [2]-[4]. 

Recently, with the rapid development of RS instruments, 

VHR RS images have become available, which contain very 

detailed and complex object information. A VHR scene image 

may include diverse objects, each of which plays an important 
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Fig. 1.  VHR RS scenes contain a diversity of objects, each of which plays an 
important role in determining the semantic labels for the scenes. 

role in determining the semantic label for the scene. As shown 

in Fig. 1, the „ship‟ objects in the „Bridge‟ scene hardly appear 

in the „Commercial‟ scene. If a deep neural network identifies 

„ship‟ objects from a scene image, it has a small probability to 

assign the scene as „Commercial‟, while it has a large 

probability to assign it as „Bridge‟. Unfortunately, in CNNs, 

due to the downsampling operations, the resolutions of feature 

maps gradually decrease, leading to the ignorance of some 

small objects which are very important for the classification of 

scenes. In general, small-scale information is often preserved in 

shallow high-resolution feature maps, while large-scale 

information is more concentrated in the higher-level features 

because of the larger receptive field in the deeper convolutional 

layers. Shallow low-level features usually contain spatial 

contextual and location information, while deeper high-level 

features always include more abstract semantic information.  

Therefore, to improve the classification performance for 

VHR scenes, fusing the CNN features at different levels has 

attracted much attention. For example, Li et al. [5] proposed an 

aggregated deep Fisher feature to fully use deep convolutional 

features for VHR RS scene classification. Ma et al. [6] 

proposed a CNN-based multilayer feature fusion method to 

explore potential information from additional layers. Although 

these methods increase the scene classification performance 

through multiple feature combination, they struggle to handle 

different scenes based on the shallow CNN models. Ji et al. [7] 

proposed to integrate multiple VGG-Nets to deepen the original 

network and gain an advantage over a shallower VGG-Net, 

which also indirectly proves that the shallow network is not as 

good as the deeper network for RS scene classification. 

In fact, for deeper CNN networks, taking ResNet [8] as an 

example, they can capture more abundant spatial and 

higher-level semantic information. Combining these features 

together will improve the performance greatly. Nevertheless, 

directly fusing multi-level features extracted from such deeper 
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Fig. 2.  Framework of the proposed method. It is composed of four modules: 1) 

multi-level features extraction by ResNet-50; 2) ACR; 3) MLFF; and 4) scene 

classification by a softmax classifier. 

CNNs will increase the computational cost. Meanwhile, since 

the feature level span of deeper CNNs is often large, the direct 

integration may also lead to semantic gaps [9], decreasing the 

classification ability. Therefore, to effectively fuse mid-level 

and high-level features with the low-level ones, it is necessary 

to reduce the channel dimensionalities of higher-level features, 

so that the final fused features have smaller dimensions and 

more coherent semantic information, which is more conducive 

to classification. Currently, for channel dimensionality 

reduction in CNNs, the widely used approaches mainly rely on 

1×1 convolution. However, a large amount of information may 

be lost by doing so. Furthermore, 1×1 convolution cannot 

adaptively mix channel information [10]. These drawbacks will 

affect the fused features, eventually affecting the performance 

of classification.  

To overcome the above problems, in this letter, we propose 

novel multi-level feature fusion networks with adaptive 

channel dimensionality reduction for RS scene classification. 

The main contributions can be summarized as follows. 

1) A multi-level feature fusion network with adaptive 

channel dimensionality reduction (ACR-MLFF), which 

makes full use of multi-level features of deep 

convolutional neural networks, is proposed for remote 

sensing scene classification. 

2) An adaptive channel dimensionality reduction (ACR) 

module is proposed to solve the information loss problem 

caused by 1×1 convolution channel dimensionality 

reduction. It contains a trunk branch for dimensionality 

reduction and two side branches for enhancing the 

channel attention and supplementing the semantic 

information, respectively. The adaptivity is achieved by 

reweighting the features through the channel attention 

calculation of the top branch. 

3) A multi-level feature fusion (MLFF) module is designed 

to integrate multi-level and adaptive channel reduction 

features together for classifying the complex scenes. 

II. PROPOSED METHOD 

Fig. 2 illustrates the overall architecture of the proposed 

method for RS scene classification. As can be seen, it mainly 

consists of four modules: 1) multi-level features extraction 

using a pretrained ResNet-50 model; 2) ACR; 3) MLFF; and 4) 

scene classification by a softmax classifier. The details of this 

framework are described below.  

 
Fig. 3.  Adaptive channel dimensionality reduction (ACR) module.  

A. Multi-level Features Extraction 

In this letter, ResNet-50 is chosen as a feature extractor, as it 

possesses great capabilities of extracting features at different 

levels, such as basic features at the shallow level and complex 

features at the high level, avoiding the influence of gradient 

disappearance in the backpropagation process. 

In the feature extraction process of ResNet-50, the layers 

which generate feature maps of the same sizes are generally 

defined as a stage, and then there are total five stages, as shown 

in Fig. 2. Since „Stage 1‟ only contains a convolutional layer of 

size 7 7 , we do not use its outputs as multi-level features. 

Thus, we obtain four level features: 2
C , 3

C , 4
C , and 5

C  at 

Stages 2~5, the number of channels of which are 256, 512, 

1024 and 2048, respectively.  

B. ACR 

With the ResNet-50 model, we have collected multi-level 

features. Next, ACR, as shown in Fig. 3, is constructed for 

adaptive channel dimensionality reduction, which is made up of 

three branches: one trunk branch (i.e., the middle branch) and 

two side branches (i.e., the top and the down branches).  

1) The Middle Branch: Given the feature maps X
H W C   

before dimensionality reduction, where H , W  and C  

represent the height, width and channel dimension of the 

feature maps, we perform a 1×1 convolution on them to get 

1

  H W C
R  (  C C ), which are shown as follows: 

1 1 1
R X

conv
G


            (1) 

where 1
R  represent the feature maps with low-dimensional 

channels, 1 1convG   denotes a two-dimensional (2-D) convolution 

of kernel size 1×1 and   represents the rectified linear unit 

(ReLU) activation function. 

 2) The Top Branch: This branch is designed for enhancing 

the channel attention for the reduced features 1
R . The idea is 

inspired by the squeeze operation in the SENet [11], which 

exploits the global embedding information to model channel 

relationships and modulate feature maps on the channel-wise 

level. By decoupling the relationships between channels, the 

channel attention could be generated, and such attention is 

beneficial for emphasizing informative features and 

suppressing less useful ones in the channel dimension. 

First, we adopt global average pooling (GAP) to generate the 

global features for each channel dimension. We rewrite the 

feature maps X  as: 
1 2[ ], , , C

X  
                      

 (2) 
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where ( 1,2, , ) k H W k C  refers to the feature map of 

the - thk channel. The pooling operation can be expressed as: 

1 1

1
( ) ( , )

 





H W

pool

i j

G i j
H W

                  (3) 

After the pooling operation, the obtained results are stacked to 

produce the global pooling result  C
Z  of X : 

1 2 ,[ ( ) (, ],) ( ) pool pool

C

poolG G GZ              (4) 

Then, the attention of channels, Z
C , is calculated 

through a fully connected (FC) layer. The calculated attention 

is quite similar to the gate mechanism of a recurrent neural 

network. It uses parameter W  in FC to generate the attention, 

i.e., the weight for each feature channel after dimensionality 

reduction. We express this process as: 

FC( , ) ( )Z Z W W Z         (5) 

where 
 C

Z  is the attention vector,   refers to the Sigmoid 

activation function, and W
C C is learned to explicitly 

model the correlation between channels. 

Third, with the attention  Z , which reflects the importance 

of each feature channel, the feature maps 1
R  of the middle 

branch can be reweighted in the channel dimension: 

2 1R Z R           (6) 

where 2

  H W C
R  denote the channel attention-enhanced 

feature maps and   denotes the element-wise multiplication. 

3) The Down Branch: The down branch can be treated as the 

calculation of saliency maps, which further extracts the feature 

information and compensates in the spatial dimension for 

information lost after dimension reduction. 

First, a 3×3 convolution is performed on the input feature 

maps X  to produce feature maps   H W C
D  with 

low-dimensional channels: 

3 3( ( ))D XconvG              (7) 

where 
3 3convG 

 is a 2-D convolution of kernel size 3×3.  

Next, the information in D is used as a complement to the 

semantic information of 
2R . The final output of ACR is 

obtained by: 

1 1 3 3( ) ( ( )) ( ( ))   

 

  

   conv convG G

2

1

A R D

Z R D

W Z X X
      

 (8) 

where 

 

denotes the element-wise addition.     

C. MLFF 

By applying ACR to 3
C , 4

C  and 5
C , the multi-level and 

adaptive channel feature maps 3
A , 4A and 5A  can be obtained. 

Considering that the spatial resolutions of these maps are 

different, we use global average pooling to spatially normalize 

the sizes of 3
A , 4A , 5A  and 2

C . This pooling operation can 

effectively retain salient features, preserve the directional 

invariance of feature maps, and reduce the spatial dimension of 

feature maps for better classification. 

Then, the features processed by global average pooling are 

fused by the concatenation method: 

Concat[ ( ), ( ), ( ), ( )]
2 3 4 5

M C A A Apool pool pool poolG G G G
  

(9) 

where Concat  refers to the concatenation operation and M  is 

the multi-level fused features, which will be fed into the 

Softmax classifier for the final scene classification. 

III. EXPERIMENTS AND ANALYSIS 

A. Data Sets 

We evaluate our method on three well-known data sets: 

UC-Merced Data Set (UCM) [12], Aerial Image Data Set (AID) 

[13], and NWPU-RESISC45 (NWPU) [14].  

1) UCM: This dataset contains 2100 images of 256×256 

pixels and 1ft/pixel spatial resolution, covering 21 land-use 

scene classes with 100 images per class.  

2) AID: This is a collection of 10000 images divided into 30 

categories. The number of images in each category varies from 

220 to 420. Each image is of 600×600 pixels in size, and the 

spatial resolution ranges from 0.5 to 8 m.  

3) NWPU: This is a larger RS data set, which contains 31500 

images distributed into 45 classes. Its size is 256×256 pixels, 

and the spatial resolution varies from 0.2 to 30 m. 

B. Implement Details 

To make a fair comparison between our method and the 

state-of-the-arts, we choose the training-test ratios as 8:2 & 5:5 

for UCM, 5:5 & 2:8 for AID, and 2:8 & 1:9 for NWPU. The 

training samples are randomly selected and all the experiments 

are performed ten times, independently. During training, all 

images are randomly cropped to 224×224 pixels with random 

horizontal flipping. For testing, the images are also resized to 

224×224 pixels. 

All the experiments are performed on NVIDIA RTX 2080Ti 

GPU with the PyTorch deep learning framework. The 

backbone parameters are initialized by a pretrained ResNet-50 

on ImageNet. The optimization is performed using Adam with 

the weight decay penalty of 10
-5

 and a batch size of 64. The 

learning rate is set to 3×10
-4

 and the total training epoch number 

is 200. 

C. Ablation Study 

To show the effect of ACR, a series of ablation experiments 

are conducted with different architecture designs. As shown in 

Fig. 4, for each architecture, we use ResNet-50 to extract the 

multi-level features 1
C , 2

C , 3
C , 4

C , and 5
C . As described 

in Section II-A, similarly, we only consider the fusion of four 

multi-level features 2
C , 3

C , 4
C , and 5

C . For the three 

multi-level features 3
C , 4

C , and 5
C , we use ordinary 1×1 

convolution to replace our ACR module to achieve channel 

dimensionality reduction, as shown in Fig. 4(a). Then, we 

gradually increase the number of the ACR modules in the 

dimensionality reduction paths, as shown in Fig. 4(b) and Fig. 

4(c). Fig. 4(d) corresponds to our method. 

We compare the above four cases with the experiments on 

„backbone‟, which only uses the output of the last layer of 

ResNet-50 for scene classification, with the goal of verifying 

our proposed multi-level fusion idea.  
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Fig. 4.  Illustration of various architectures. (a) Without ACR. (b) With one 

ACR. (c) With two ACRs. (d) With three ACRs. 

 

The overall accuracy of different architectures on the UCM, 

AID and NWPU data sets is listed in Tables I, II and III, 

respectively, and the following observation come from the 

results. 

First, by comparing the results of Schemes (a), (b), (c) and 

(d), we witness with the increasing number of the ACR 

modules in the architectures, the overall accuracy becomes 

higher. Evidently, ACR provides better channel reduction 

performance than that of 1×1 convolution.  

Second, by comparing our method (Scheme (d)) with 

Scheme „backbone‟, we observe that our method achieves 

largely improved performance for all the data sets, which 

specifies the effectiveness of our multi-level fusion scheme. 

Third, the comparison between Schemes (a) and „backbone‟ 

shows that, the direct dimension reduction by 1×1 convolution 

leads to inferior performance. The reason is that, for Scheme (a), 

the feature 5
C  has the highest level semantic information and 

the largest number of channels. When the feature 5
C  with the 

channel of 2048 is reduced to 256 dimension by 1×1 

convolution, most of the semantic information may be lost. 

Lower level features cannot help to boost the system 

performance. This further demonstrates the effectiveness of our 

ACR module. 
TABLE I 

OVERALL ACCURACY (%) OF DIFFERENT ARCHITECTURES ON UCM DATASET 

(THE BEST RESULT IS IN BOLD, WHICH IS SIMILAR TO THE FOLLOWING TABLES). 

Scheme ACR1 ACR2 ACR3 
Training set : Test set 

8 : 2 5 : 5 

backbone    98.33 ± 0.47 97.05 ± 0.71 

(a)    98.04 ± 0.52 96.67 ± 0.89 

(b)    98.75 ± 0.30 97.48 ± 0.55 

(c)    99.18 ± 0.23 97.71 ± 0.42 

(d)(Ours)    99.37 ± 0.15 97.99 ± 0.26 

TABLE II 

OVERALL ACCURACY (%) OF DIFFERENT ARCHITECTURES ON AID DATASET. 

Scheme ACR1 ACR2 ACR3 
Training set : Test set 

5: 5 2 : 8 

backbone    94.48 ± 0.62 92.04 ± 0.70 

(a)    94.22 ± 0.97 91.98 ± 0.89 
(b)    94.76 ± 0.30 92.36 ± 0.51 

(c)    94.94 ± 0.25 92.61 ± 0.42 

(d)(Ours)    95.06 ± 0.33 92.73 ± 0.12 

TABLE III 

OVERALL ACCURACY (%) OF DIFFERENT ARCHITECTURES ON NWPU DATASET. 

Scheme ACR1 ACR2 ACR3 
Training set : Test set 

1 : 9 2: 8 

backbone    88.99 ± 0.61 91.36 ± 0.57 

(a)    88.72 ± 0.55 91.15 ± 0.73 
(b)    89.34 ± 0.52 91.66 ± 0.48 

(c)    89.78 ± 0.36 92.01 ± 0.42 

(d)(Ours)    90.01 ± 0.33 92.45 ± 0.20 

 
   (a)                                                  (b) 

Fig. 5. Comparison of accuracy achieved after convergence of different 
architectures. (a) Under the 50% training ratio on the UCM dataset. (b) Under 

the 20% training ratio on the AID dataset. 

Moreover, we report the accuracy comparison achieved after 

the convergence of different architectures on the UCM and AID 

data sets. The results are shown in Fig. 5, where the X-axis 

represents the domain of 10 epochs since the training 

processing has become stable. It can be seen that, the accuracy 

of our method is much higher than that of the other four 

architectures. 

D. Comparative Study 

To measure the classification performance of the proposed 

method in depth, the classification accuracy for each class of 

each data set is given by confusion matrix (CM), as shown in 

Figs. 6-8. It can be seen that our method yields more than 90% 

classification accuracy for most of the categories (e.g., 21 of the 

21 classes for the UCM data set, 22 of the 30 classes for the 

AID data set, and 35 of the 45 classes for the NWPU data set) 

even with a small number of training samples.  

We also compare our method (referred to as ACR-MLFF) 

with several state-of-the-art algorithms. The results are 

presented in Tables IV~ and VI. As can be seen, our method 

achieves superior performance with higher overall accuracies 

and smaller standard deviations compared to most of the 

competing algorithms. Compared to the SFCNN, our method 

yields a 0.1% lower accuracy with the 20% training ratio, 

whereas obtains 0.12% higher accuracy with the 10% training 

ratio, for the NWPU data set, as shown in Table VI. 

 
Fig. 6.  CM of our method under the 50% training ratio on the UCM dataset. 

 
Fig. 7.  CM of our method under the 20% training ratio on the AID dataset. 
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Fig. 8.  CM of our method under the 10% training ratio on the NWPU dataset. 

TABLE IV 

OVERALL ACCURACY (%) ON THE UCM DATASET. 

Method 80% for training 50% for training 

TEX-Net-LF [2] 96.62 ± 0.49 95.89 ± 0.37 

MCNN [3] 96.66 ± 0.90 - 
Two-Stream Fusion [15] 98.02 ± 1.03 96.97 ± 0.75 

MSCP [4] 98.36 ± 0.58 - 

ADFF [5] 98.81 ± 0.51 - 
MLFF-WWA [6] 98.46 - 

ARCNet-VGG16 [16] 99.12 ± 0.40 96.81 ± 0.14 

ResNet_LGFFE [17] 98.62 ± 0.88 - 
LCPB [18] 96.66 ± 1.36 - 

LCPP [18] 97.54 ± 1.02 - 

ORRCNN [19] 96.42 96.58 
ACR-MLFF(Ours) 99.37 ± 0.15 97.99 ± 0.26 

TABLE V 
OVERALL ACCURACY (%) ON THE AID DATASET. 

Method 50% for training 20% for training 

MCNN [3] 91.80 ± 0.22 - 
TEX-Net-LF [2] 92.96 ± 0.18 90.87 ± 0.11 

ARCNet-VGG16 [16] 93.10 ± 0.55 88.75 ± 0.40 

Two-Stream Fusion [15] 94.58 ± 0.25 92.32 ± 0.41 
MSCP [4] 94.42 ± 0.17 91.52 ± 0.21 

ResNet_LGFFE [17] 94.46 ± 0.48 90.83 ± 0.55 

LCPB [18] 91.33 ± 0.36 87.68 ± 0.25 
LCPP [18] 93.12 ± 0.28 90.96 ± 0.33 

ORRCNN [19] 92.00 86.42 

ACR-MLFF(Ours) 95.06 ± 0.33 92.73 ± 0.12 

TABLE VI 

OVERALL ACCURACY (%) ON THE NWPU DATASET. 

Method 10% for training 20% for training 

MSCP [4] 88.07 ± 0.18 90.81 ± 0.13 

SFCNN [20] 89.89 ± 0.16 92.55 ± 0.14 

Siamese ResNet50 [21] - 92.28 ± 3.78 

SDAResNet [22] 89.40 91.15 

VGG_VD16+SAFF [23] 84.38 ± 0.19 87.86 ± 0.14 
SCCov [24] 89.30 ± 0.35 92.10 ± 0.25 

ACR-MLFF(Ours) 90.01 ± 0.33 92.45 ± 0.20 

IV. CONCLUSION 

This letter has proposed a RS scene classification method by 

multi-level feature fusion network with adaptive channel 

dimensionality reduction. We designed ACR to reduce the high 

dimensionality of features. Then, the multi-level features are 

fused together for precise classification. The proposed method 

is evaluated on three RS data sets, and the results show that it 

outperforms several baseline algorithms. For the future work, 

we will work on designing more plug-and-play modules, like 

the proposed ACR, and embedding them into different CNN 

architectures to further boost the networks‟ ability for RS scene 

classification. 
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